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1. INTRODUCTION 

We consider the problem of placing some number t of identical resources 
at nodes of a distributed network in such a way as to minimize the expected 
cost of servicing a random set of t requests. Each request originates at a 
randomly chosen node according to an underlying probability distribution, 
so requests can be regarded as independent identically distributed random 
variables over nodes. We often identify a request with the node at which it 
originates. 

Each request is serviced by assigning a distinct resource to it. The cost 
of servicing a request is the distance from the request to its assigned 
resource. Distance between two nodes is measured by the number of edges 
along the shortest path that joins them. In this paper, we consider only tree 
networks, so the shortest path is always unique. 

This problem arises in several contexts. Suppose, for example, that the 
resources are processors and that each request is to establish a virtual con- 
nection with a processor which will be used for a very long period of time. 
An important cost might be the total amount of communication traffic 
introduced into the network over the duration of the connection, which 
grows in proportion to the distance between a request and its assigned 
processor. Because of the long holding times, it is probably reasonable to 
expend considerable effort to find a good assignment of resources to 
requests. Assuming each set of random requests is serviced optimally but 
that processors cannot be moved from their initial positions, we can ask 
where processors should be placed in the network so as to minimize the 
expected communication costs. 

For a similar example, suppose that the resources are copies of a read- 
only file residing on separate disks and that requests are programs which 
make such heavy use of the file that it is necessary to assign each a distinct 
copy of the file to avoid unacceptable disk contention. One might then 
want to minimize the amount of network traffic needed for all the 
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programs to communicate with their files, or equivalently, to minimize the 
average communication delay incurred by the programs while waiting for 
responses from the tiles. Again, we ask where the disks should be placed in 
the network so as to minimize the expected cost. 

Thus, we are considering the resource placement problem under the 
following assumptions: 

l Requests arrive randomly and independently at nodes. 
l Resources are permanently assigned to nodes and cannot be moved 

in response to a request. 
l The underlying network is a tree. 
l The cost of servicing a particular set of requests is the least total 

distance between requests and their assigned resources taken over all 
possible assignments of resources to requests. 

l The cost of a particular placement of t resources is the expected 
cost of servicing a set of t random requests. 

A placement is optimal if its cost is the least among all placements of the 
same number of resources. We give upper bounds on the costs of optimal 
placements, and we give certain easily described placements which are close 
to optimal. We also provide fast algorithms for finding optimal and near- 
optimal placements. 

All our results assume that the network is configured as a tree. In the 
case of general connected networks, one can apply these results to a 
spanning tree of the network, but of course the cost function then considers 
only paths that lie in the tree. This may or may not be a useful cost 
function depending on the way routes are constructed. 

Our methods also allow us to obtain upper bounds for each edge of the 
tree on the expected number of paths between requests and assigned 
resources on which that edge appears. This can be used to determine the 
capacities required on the links and nodes to handle communication traffic 
between requests and their assigned resources. 

Our results are intended to apply to networks with point-to-point 
communication. For broadcast networks such as Ethernet, it is not clear 
whether the strategy of configuring the network as a tree can be used to 
advantage for resource-allocation problems. Also, our results apply only to 
situations in which only one resource is required by each request. If it is 
important to consider multiple resources-e.g., various different files-then 
it might be necessary to consider the distances of the different resources 
from each other as well as from the requests. In this case, an approach 
more complicated than ours seems to be required. 

We generalize the above to allow for the possibility that fractions of 
resources, rather than whole resources, might be located at some nodes of 
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the network tree. Each request is then for a unit quantity of resource, and 
a given request can be satisfied by fractional resources located at several 
different nodes. This situation is reasonable if, for instance, the resources 
are large blocks of available data storage space, for it might be perfectly 
permissible for a user to obtain parts of his needed storage from different 
places. 

The rest of the paper is organized as follows. In Section 2, we present 
some mathematical preliminaries, in particular, some properties of convex, 
piecewise linear functions. Our cost measures turn out to be functions of 
this type. In Section 3, we show that our problem can be regarded as a 
min-cost flow problem, sometimes known as the Hitchcock transportation 
problem. In Section 4, we derive properties of optimal placements and 
present an algorithm for finding an optimal placement which runs in time 
O(M), where m is the number of edges in the tree and t the number of 
resources. In Section 5, we bound the expected cost of optimal placements 
by analyzing the cost of a natural placement which puts a number of 
resources on each node equal to the expected number of requests at that 
node. Surprisingly, this placement is not always optimal, although its cost 
is never more than an amount m greater than the optimum. In Section 6, 
we analyze the special case of a complete tree with a symmetric request 
probability function. 

A preliminary version of this paper appeared as (Fischer et al., 1981). 
Further related results appear in (Lynch er al., 1986). 

2. MATHEMATICAL PRELIMINARIES 

In this section, we present some basic notation and prove a collection of 
results which are applied in many places later in the paper. The results 
give interesting properties for a certain class of convex, piecewise linear 
functions. The cost measures we are interested in are functions of this type. 
The reader may prefer to skip this section for now, returning to it later 
when its results are required. 

2.1. Notation 
We use the following notation. 

N denotes the natural numbers, including 0. 
!R denotes the real numbers. 
!R+ denotes the nonnegative real numbers. 

2.2. Convex Functions and Convolution 
Let t is a positive integer. Let F, be the set of functions f: [0, t] --f 'iH + 

such that f is convex and piecewise linear with all singularities occurring at 
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integer values. In this subsection, we provide some definitions and basic 
results involving functions in F,. 

For f~ F,, let f’-(x) be the “left-hand” derivative off at XE (0, t] (i.e. 
the limit of (f(x’) -f(x))/(x’ - x as x’ approaches x from below), and let ) 
f’+(x) be the “right-hand” derivative off at XE [0, t) (i.e. the limit of 
(f(x’) -f(x))/(x’-x) as x’ approaches x from above). For completeness, 
define f’-(O)= -cc andf’+(t)= +co. The following is obvious from the 
definition of F,. 

LEMMA 2.2.1. Let f E F, and u E [0, t]. Then 

1. f’+(u) <f’+(u), and equality holds if u 4 N. 

2. Ifu<o thenf’+(u)<f’-(u). 
3. Zfrz~N anduE(n-l,n] thenf’+(u)=f’-(n). 

4. IfneN anduc[n,n+l) thenf’+(u)=f’+(n). 

DEFINITION 2.2.2. Let f E F,. x E [0, t] is the left (right) minimum off if 
it minimizes f over the interval [0, t] and is the smallest (largest) value 
having this property. We write x = leftmin( f) (x = rightmin( f )). 

LEMMA 2.2.3. Let f E F, and u E [0, t]. If u E [leftmin( f ), rightmin( f )], 
then 

f’-(U)<O<f’+(U). (1) 

Moreover, if u = leftmin( f) then f’ - (u) < 0 and if u = rightmin(f) then 
o< f’+(u). 

Proof. Obvious. m 

Let dE N. We use u to denote the vector (u,, . . . . ud) E (‘33 + )d, and we let 
cu=c;=‘=, ui. 

We define the “convolution” of two functions in I;,. The convolution of 
fi and fi describes the “best” way to split up a given nonnegative amount 
u of “resource” into two parts, u1 and uq, so as to minimize the sum of 
fi(ul) and fi(uz). In our later applications, the functions fi andf,, as well 
as their convolution, are cost functions. 

DEFINITION 2.2.4. Let fi E F,,, f2 E F,,. We define f = fi * f2 (“the con- 
volution”) by 

f(u)= $$F,,, Cfi(Ul) +f*(dl 
U2E co: 121 u,+u2=u 

for u E [IO, ti + t,]. 



FISCHER ET AL. 

LEMMA 2.2.5. Convolution is associative. In particular, 

for UE LO, dtl,fi,fi, . . . ..fd~F.. 
Proof: It suffices to show it for d = 3. Then the general result follows by 

induction. The d = 3 case is immediate from the definition and the 
associativity of addition. 1 

DEFINITION 2.2.6. Let fi, f2, . . . . fde F,. We say that UE [0, tld is a 
minimizing vector for (f,, fi, . . . . fd) if 

VI * f2 * ‘. * fd) (c u)  = ;$, fi(k), 

It follows from the above that a minimizing vector u for (fi, fi, . . . . fd) 

minimizes C fi(ui) over all v with C v = 1 u. The convolution 
(fl *f2 * ... * fd)(u) is the minimum so achieved. We now characterize 
minimizing vectors. 

LEMMA 2.2.7. Let fi, fz, . . . . fdE F,. The vector u = (u,, u2, . . . . ud) is a 
minimizing vector for ( fi , f2, . . . . fd) iff there exists y such that 

for all i, 1 <i<d. 

Proof: ( * ) Let u be a minimizing vector for (fi , f2, . . . . fd), and sup- 
pose to the contrary that no such y exists. Suppose f i -  (u,) > fj + (Uj) for 
some choice of i and j as illustrated in Fig. 1. Then the local perturbation 

for sufficiently small E > 0 reduces 2 fi(ui) while leaving 1 u unchanged, 
contradicting the assumption that u is a minimizing vector. Hence, 

f: -( uj) < fj ‘(ui) for all i, j, so the interval 

Cmax {fl-(u,)ly min {f;+(y)11 i i 

is non-empty, and any y in that interval satisfies the conditions of the 
lemma. 
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ui % 

FIG. f. A nonminimizing vector. 

( G ) For the converse, suppose fly (ui) < y <f; + (u,) for all i, 
1 < i < d. Let v be any vector in [0, tld with C v = C u. It follows from the 
convexity of each fi that 

Summing, we get 

j, fi(ui) 2 i$, fita;) + Y ,it Cut- *i)= i fi(ui)’ 
i=l 

Thus, u is a minimizing vector for (f,, fi, .,., fd) as desired. 1 

Lemma 2.2.7 gives us an easy way of visualizing the convolution 
fi *f2 * ... * fd using the “kinetic” approach introduced in (Guibas et al., 
1983). Regard each f, as describing a polygonal path in the plane, and 
imagine d cars, one traveling along each such path. Car i starts at point 
(0, f,(O)), 1 < i<d. Only one car moves at a time, and cars move with a 
constant velocity along the x-axis. The goal is for the cars to keep the sum 
of their y positions as small as possible. Clearly, the best strategy is for the 
car on the path of least (or “most negative”) slope to move first until it 
reaches a corner. Because each f, is convex and piecewise linear, once a car 
starts moving, it can keep moving until it reaches a corner (where f, 
changes slope). 

The value of the convolution cfi * fi * ... * fd)(u) is just the sum of the 
y positions of the cars at time U, and the positions of the cars at time u is 
a minimizing vector for U. It follows from this description that the slope of 
the convolution at u +! N is the same as the slope of the f, that corresponds 
to the car that was moving at that time. Fig. 2 illustrates this notion of 
“merging” in computing the convolution of two functions. 

The construction above can be described more formally as follows. Let 
fi, . . . . fdEFt. Let yi,.i=fi'(j) for in { 1, . . . . d} andje (0, . . . . t- 1). Because 
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each fj is convex, each sequence ji = (vi. 0, . . . . y,. ,- 1) is nondecreasing. Let 
[ = (lo, i,, . . . . cd,- 1) be the nondecreasing sequence of slopes that results 
from merging the sequences $, , . . . . jd. There is a natural one-to-one corre- 
spondence between the elements in < and the elements in the sequences 
P, 3 ..., jd, since c is just a reordering of those elements. We specify this 
correspondence by functions c( and /I such that ik corresponds to ~~~~~~~~~~~ 

We define inductively a function f(u) and an indexed set of vectors v(” 
for u E [IO, dt] as follows: f(0) = C fi(0), and v(O) = (0, 0, . . . . 0). Let k be a 
nonnegative integer and assume that f(u’) and v@‘) are defined for all U’ in 
the interval [0, k], where k<dt - 1, and let UE (k, k + 11. Define 
f(u)=f(k)+[,.(u-k). Define ~‘~‘=v(~‘+I~~~,.(u-k), where I, is the 
unit vector that is 0 in all components except for the j th component which 
is 1. 

LEMMA 2.2.8. Let f(u) and v”’ be as defined above. 

1. Cv(‘)=u, and ifkEN, then vCk’~Nd. 

2. Each v(” is a minimizing vector for (fi, f2, . . . . fd). 

a I,: b c 

fl * f2 

FIG. 2. The convolution of two functions. 
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3. v$, = P(k) for all integers k E [0, dt]. 

4. f(u) = Cfi(dU’). 

5. r=r,*j2*..:*r,. 

Proof. Part 1 is immediate from the definition of v@‘. 
For part 2, the vector v(O) = (0, 0, . . . . 0) is a minimizing vector. It is easily 

shown for each u E (0, dt] that the vector v(‘) satisfies the conditions of 
Lemma 2.2.7; hence, v(“) is a minimizing vector for (fi, f2, . . . . fd). 

For part 3, an easy induction on k shows that 

vf”’ = I {k’ < k ( cr(k’) = i} 1 

and 

P(k) = 1 {k’ < k 1 cr(k’) = cl(k)} I. 

The result follows immediately by taking i = a(k). 
We show part 4 by induction on k’ = ru]. If k’ = ru] = 0 then u = 0 and 

part 4 obviously holds. 
Now suppose 0 <k’= rul<dt. Let k =k’- 1, let i=@(k), and let 

z = p(k). Since ik = yi, ;, it follows that fi(z + (u - k)) =fi(z) + ck. (u-k). 
Hence, 

f(u)=f(k)+i,.(u-k)=f(k)+fi(z+(U-k))-.f,(z). 

By the induction hypothesis, f(k) = cj f;(vjk’). Thus, 

BY part 3, B(k)=&, so z= vtk). The result follows from the fact that 
v!~)=v~~) forj#i, and J v!~‘=v!“‘*+(u-k)=z+(u-k). 

Finally, part 5 follows immediately from parts 1, 2, and 4 and the defini- 
tions of convolution and minimizing vector. 1 

Lemma 2.2.8 says in particular that is is always possible to get minimizing 
vectors for integer values with integral components. 

COROLLARY. rff, , .f2, . . . . fd E I;;, then 

Proof. From Lemma 2.2.8, it is clear that f is convex and has slope 
discontinuities only at integer values. 1 
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2.3. Decreasing Closure 

Recall that the convolution (fi * f2 * . . * fd)( U) gives the minimum 
value of C fi(ui) over all ways of partitioning u into d pieces ui, . . . . ud with 
C ui = U. In our applications, however, we do not require that all of u be 
“used,” so we wish instead to minimize Cfi(ui) subject only to the 
constraint that C ui < U. Thus, we consider in this section an asymmetric 
variant of the convolution. 

DEFINITION 2.3.1. IffE F,, then define ,f, by 

for u E [0, t]. We call f, the decreasing closure off: 

LEMMA 2.3.2. Let fe F,. Then f G is a non-increasing function in F,. 
Moreover, 

f’ (‘) = i 

f(u) for u 6 leftmin( f) 
f (leftmin(f)) for u > leftmin( f ). 

Prooj Obvious. B 

DEFINITION 2.3.3. In case f = fi * f2 * . . * fd, we call f ~ the decreasing 
conuolution of (fi, fi, . . . . fd). 

Note that f S E F;, by Lemma 2.3.2, assuming each fi E F,. 

LEMMA 2.3.4. Let fi, fi, . . . . fdE F,. Then 

for u E [0, dt]. 

Proof: Obvious. 1 

The following is a key optimality definition, which is used later to 
describe the “best” way of splitting up a set of resources when not all of 
them must be used. 

DEFINITION 2.3.5. Let fi, fi, . . . . fde F,, u E [0, dt]. We say that 
u E [0, tld is optimal,for u and (f, , fI, . . . . fd) if 1 u < u and 

(fi *fi * ... * fd) < t”) = i f;fi(ui)* 
i= 1 
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The following lemma characterizes optimal vectors in terms of the rela- 
tionship between the sum of their components and the minimum points of 
the convolution. 

LEMMA 2.3.6. Let f= f, *f2 * . . * fd. A vector u is optimal for u and 
(f,, f2, . . . . fd) ifjf u is a minimizing vector for (,f,, fi, . . . . fd) and 

min(u, leftmin(f )) 6 c u < min(u, rightmin(f )). 

Proof: Let f,, fi, . . . . fdE F, and let f = fi * fp ... * fd. It suffices to 
consider three cases. 

Case 1. u < leftmin(f ). Then f and f G are strictly decreasing and 
equal on the interval [0, u], so u is optimal for u iff C u = u and u is a 
minimizing vector for (fi , f2, . . . . fd). 

Case 2. leftmin( f) < u 6 rightmin( f ). Then f and f G are constant and 
equal in the interval [leftmin(f ), u], so u is optimal for u iff 
C u E [leftmin(f ), u] and u is a minimizing vector for (fi , f2, . . . . fd). 

Case 3. u > rightmin(f ). Then f is strictly increasing in the interval 
[rightmin, u] and f $ (u) = f (leftmin( f )) = f (rightmin( f )), so u is optimal 
for u iff C u E [leftmin(f ), rightmin(f )] and u is a minimizing vector for 
(fi 2 f*r ...? fd). I 

Now we give a definition to describe the case where all the functions f, 
are simultaneously minimized. 

DEFINITION 2.3.7. Let fi, f2, ,.., fdE F,. A vector u is saturated for 
(fi, f2, . . . . fd) provided that fip(ui)<O<f;+(ui) for all i, 1 di<d. 

It is obvious from this definition that a saturated vector simultaneously 
minimizes each of the f, and thus is a minimizing vector for (f,, f?, . . . . fd). 

The following lemma gives some properties of saturated vectors. 

LEMMA 2.3.8. Let u and v be vectors and let u, VE [0, dt]. 

1. If u is optimal for u and ( fi , fi, . . . . fd), then either C u = u or else 
u is saturated for (f, , fi, . . . . fd). 

2. rf u is saturated for (f,, f2, . . . . fd), C u d Cv, and v is optimal for 
v and (f,, f2, . . . . fd), then v is saturated for ( fi, fi, . . . . fd). 

Proof. 1. Let u be optimal for u. Then C u d u. If C u = u, we are 
done, so assume C u < u. We show u is saturated. 

Assume to the contrary that u is not saturated. Then some& is not mini- 
mized by uj. But then perturbing uj by f some small E yields a new vector 
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u’ such that C fi(u:) < C fi( ui) and C u’ < U. This contradicts the assumed 
optimality of u. 

2. Since u is saturated and z u <C v, u is optimal for C v. But v is 
also optimal for u, so C f,(ui) = C fi(oi). Since u is saturated, it follows that 
v is also. 1 

The following lemma shows how minor perturbations (not crossing 
integer boundaries) of optimal vectors remain optimal. 

LEMMA 2.3.9. Let u be optimal for u and (f,, fi, . . . . fd). Let VE [0, t]” 
and u E [0, dt] such that 

(a) b,J 6 4 Q rki, 
(b) LU-cnj<O-cv+-cul. 

Then v is optimal for u and (fi, fz, . . . . fd). 

ProoJ By Lemma 2.3.6, u is a minimizing vector for (fi, f2, . . . . fd), so 
Lemma 2.2.7 yields y such that f ;-(ui) < y d f i’(ui) for all i, 1 d id d. But 
then condition (a) implies that f; -(ui) < y <f i+(u,) for all i since either 
U;E N and ui=ui or uj$ N and 

Another use of Lemma 2.2.7 shows that v is a minimizing vector. 
If u is saturated, then y can be taken equal to 0, so v is also saturated. 

This suffices since condition (b) implies C v 6 D. On the other hand, if u is 
not saturated, then Lemma 2.3.8 implies that C u = U, and condition (b) 
implies that C v = u. Since u is optimal for U, y can be assumed to be 60. 
Thus, v must be optimal for u and (f,, f2, . . . . fd). 1 

A variation of Lemma 2.2.8 holds for the decreasing clusure of the 
convolution. 

LEMMA 2.3.10. Let f,, fi, . . . . fdEFt and let f =fi * fi *...*fd. Then 
there is a sequence of uectors II(‘), II(‘), . . . . ufdr’ such that 

1. Each uti’ has integral components and is optimal for i and 
(fi 9 f2, “., fd). 

2. u(‘+‘)=u(“+S’(‘), 1 <i<dt, where 6 ‘(” is a unit vector of aN o’s 
except for at most one 1. Furthermore, if 6 ‘(j’ = (0, . . . . 0), then 6 ‘(A = 
(0, . . . . 0) for all j 3 i. 

Proof: The proof follows from Lemmas 2.3.2 and 2.2.8. After the 
integer u where the global minimum of f, * f2 * ... * fd is passed, 
(fi * f2 * “‘* fd)< stays constant. 1 
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The final iemma of this subsection deals with the symmetric case-where 
all the component functions are the same. It says that if there are not 
enough resources for the “average” number to reach the leftmin, then the 
vector cannot be saturated. 

LEMMA 2.3.11. Let f. = g E F, for all‘ i, 1 < i < d, Let u be optimal for u 
and (.f,, fi, . . . . fd), and assume u/d < leftmin( g). Then u is not saturated for 
(h, f2, ..,, fd), and C u = u. 

Proof. Since x u <u, there is some i with U, <uJd. Since u/d< 
ieftmin(f), it follows that u is not saturated. Lemma 23.8 implies the other 
conclusion. 1 

3. PROBLEM FORMULATION 

In this section, we formulate the resource placement problem, first in 
terms of matchings of resources to requests and then as a min-flow 
problem. The latter formulation is used in the remainder of the paper. 

3.1. Basic Definif ions 

A tree T= (I’,, ET) is a finite undirected acyclic graph, where I’, is the 
vertex (node) set and E, is the edge set. We abuse notation and write ,D E T 
to mean p E V,. We let m T = (E,) be the number of edges in T, and we 
use L, to denote the set of leaves (vertices of degree one). We often omit 
subscripts when the meaning is clear from context. 

We arbitrarily orient each edge e of T by distinguishing its two 
endpoints-one is called “low(e),” the other is called “high(e),” and we 
think of e as being directed from low(e) to high(e). The removal of e 
divides T into two disconnected components: A(e) is the component con- 
taining high(e) and B(e) is the component containing low(e). (It is 
suggestive to read A as “above” and B as “below.“) We write R(e) (B(e)) 
to denote the subtree of T consisting of A(e) (B(e)) together with the 
edge e. 

A tree T is rooted if it has a distinguished node called the root and 
denoted by root. If v, w E V and u # w, we say w is a descendant of v if v 
lies on the unique path from w to root, and w is an immediate descendant 
(also called a child) of v if v is adjacent to w on that path. We assume that 
all edges are directed towards root, that is, for any edge e, high(e) is 
closer to root than to low(e). A node v of a rooted tree is at 1eveZj if there 
arej edges on the path from v to root. Thus, root is at level 0, and all 
edges are directed from vertices with larger level numbers to vertices with 
smaller numbers. A tree T is a compfete d-ary tree if it is rooted, every 
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non-leaf vertex has exactly d immediate descendants, and every leaf is at 
the same level. 

In dealing with rooted trees, one commonly uses the node Jo to name the 
subtree consisting of p and all of its descendants. In this work, we find it 
convenient to denote subtrees by edges rather than by nodes, using the 
notation B(e) introduced above. This has the disadvantage that the entire 
tree T cannot be so named, for T# B(e) for any e. Therefore, as a technical 
convenience, we assume that every rooted tree T has an extra edge 
“rootedge” such that low(rootedge)= root. Thus, &rootedge) 
= T, and B(rootedge) is the subtree below and including root. The 
other end of rootedge, high(rootedge), is a distinguished leaf of T 
denoted by “top.” We treat top as a special case. It is henceforth not con- 
sidered to be a leaf of T, nor is it a descendant of root, and we define its 
level to be - 1. (In fact, for consistency, we define root to be a descendant 
of top.) Thus, all edges are directed towards top, and a node p is at level 
j if there are j+ 1 edges on the (directed) path from p to top. 

A set of requests is described by a function r: I’+ N such that r(v) is the 
number of requests originating at vertex v. If T is rooted, then we always 
assume that no requests originate at top, thus, r(top) = 0. A placement of 
resources is described by a function S: V -+ ‘N + such that S(V) is the number 
of resources placed at vertex 1’. A placement s is whole provided that 
S(V) E N for all v E V.’ 

For any tree T and function g: V, + ‘9I + , let 

total(T,g)= 1 g(v). 
L’S C’, 

For the remainder of the paper, we fix a particular, arbitrary positive 
integer t, which represents both the total number of requests and the 
total number of resources. In particular, for every set r of requests and 
every placement s that we consider, we assume that to tal( T, r) = 
total( T, s) = t. 

Finally, 4: V -+ ‘$3 + is a probability density function on T if d(v) E [0, 1 ] 
for all v E V, and total( T, 9) = 1. If T is rooted, then we assume that 
&top) = 0. The function d(v) is the probability that a random request 
arrives at node v. We say that I$ is symmetric if T is rooted and 4 depends 
only on the level of a vertex in T. (In other words, CJ~ is the same for all 
vertices at the same level.) 

’ Although we permit resources to be placed at top, it will turn out that in any optimal 
placement, s(top) =O, for it will always reduce the cost of the placement to move any 
resources from top to root. Thus, our restriction to trees containing a special rootedge 
will lead to no loss of generality in our results. 
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3.2. Matching Requests to Resources 

Our problem is to determine how to place resources in a tree T so as 
to minimize the expected cost of matching requests to resources, where 
requests arrive at vertices of the tree according to a probability density 
function 4 on V. We first formulate this problem as a matching problem on 
a tree. 

Let T be a tree.* If r is a set of requests and s a placement for T, then 
a matching for r, s on T is a function M: Vx V-+ ‘$I + such that 

and 

(2) 

s(v)= c M(Pu,V). (3) 
LIE P 

The value M(p, v) gives the number of requests at node p satisfied by 
resources from node v. A function satisfying conditions (1) and (2) will 
exist whenever total(T, r)= total(T,s), which we always assume. The 
cost of a matching M is defined by 

cost(M) = c Mb, v) .d(pL, v), p, P E C’ 
where d(p, v) is the number of edges in the unique path from p to v in T. 
A matching M is optimal for r, s if cost(M) is minimal over all matchings 
for r, s. 

EXAMPLE 3.2.1. Figure 3 illustrates the above definitions. Two different 
matchings are given for identical request arrivals and resource placements. 
A request arrival at a vertex is indicated by an r, a resource by an s. The 
two s’s on the right-hand leaf indicate that two resources have been placed 
there. 

3.3. Min-Cost Flows 

Given a matching M for r, s, it is natural to think of each request 
“flowing” along the unique path in the tree to its matching resource. This 
leads us to formulate a related min-cost flow problem, also known as the 
Hitchcock transportation problem (cf. Papadimitriou and Steiglitz, 1982). 

’ Neither this nor the following subsection requires the assumption that T be rooted. We 
will restrict attention to rooted trees later, starting in Subsection 3.4. 
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s r S r ss S r S r ss 

An optimal matching of cost 7. A matching of cost 13. 

FIG. 3. Two matchings of the same request arrivals and resource placements for the same 
tree. 

We show that the cost of an optimal matching for T, s is the same as the 
cost of the flow in the related flow problem for Y, s, thus enabling us to 
restrict attention to flows in the remaining sections of this paper. 

A flow for r, s on T is a function f: Vx P’+ R f(p, v) specifies the 
amount of “flow” along the edge {CL, v) moving out of p and into v. 
(A negative value for f(p, v) indicates “flow” moving into p from v.) The 
flow function satisfies three “conservation of flow” conditions: 

a4-~fh v)-s(P)=09 (4) 

f(/A v) = -.f(v, .a), (5) 
fh v)=O if {K v} #E. (6) 

Equation (4) says that the net flow at a node is zero. Equation (5) says 
that the flow leaving node ~1 along edge (11, v} is the same as the flow 
entering node v along the same edge. Equation (6) says that there is no 
flow along nonedges. 

Using our fixed orientation of edges, we can regard f as a function 
E-P 9I by letting f(e) =f(low(e), high(e)). We say that flow along e is 
forwards iff(e) > 0 and backwards otherwise. The cost of a flow, cost(f), 
is simply C, If(e 

Because T is a tree and the number of requests is equal to the number 
of resources, the flow along e is exactly the difference between the number 
of requests and the number of resources in B(e) (or equivalently, the dif- 
ference between the number of resources and the number of requests in 
A(e)). This is because conservation of flow ensures that flow is not lost, 
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and the only place for excess flow in B(e) to go is across the edge e. Hence, 
there is a unique flow for Y, s on T, which is given by3 

flow,+,(e)=total(B(e),r)-total(B(e),s) 

=total(A(e),s)-total(d(e),r). 
(7) 

It is easily verified that flow, s as defined here satisfies Eqs. (4)-(6). 
We now relate the costs of matchings to the cost of flows. Let M be a 

matching over Y, s. The quantity CPGBCcJ CvcACe, M(p, v) gives the total 
amount4 of requests in B(e) for which the path to the assigned resource 
includes e. Similarly, ClrGACej CYEB,P) M(p, v) gives the total amount of 
requests in A(e) whose corresponding path includes e. The following is a 
direct consequence of Eqs. (2), (3) and (7). 

LEMMA 3.3.1. Let M he a matching for r, s. Then 

THEOREM 3.3.2. Let M be a matching for r, s. Then 

cost(flow,.)< cost(M). 

Proof: The proof is immediate from Lemma 3.3.1. m 

We now show that the bound of Theorem 3.3.2 is tight. 

THEOREM 3.3.3. Given T, r, s, there exists a matching M for r, s such that 

cost(M)=cost(flow,,). 

Moreover, if s is a whole placement, then M can be chosen so that 
M(p, v) E N for all p, v E V. 

Proof: We proceed by induction on the number #(r, s) of edges e for 
which 1 flow,.(e)1 >O. 

Basis: #(r, S) = 0. Then flow, Je) = 0 for every edge e. It follows 
from Eq. (4) that r(p) = s(p) for all p. Hence, the function M defined 
by Mb7 P) = r(p) and M(p, v) =0 when p # v is a matching, and 
cost(M)=O= cost(flow,,) as desired. 

’ Strictly speaking, we define flow,,(p, v) = flow,,,(e) if p = low(e) and v = high(e) for 
some edge e, flow,,.(p,v)= -flow,,,(e) if p=high(e) and v= low(e) for some edge e,and 
flow,,~(p,v)=O if {p, v)$E. 

4 Recall that we do not require a matching to be integral, 
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Znductiue step: #(r, s) > 0. We first show that there are nodes p, v such 
that flow,,(p, v) >O, and for all p’, flow,,,(p', v) 2 0. In words, there is 
a node v with inward flow along some edge and no outward flow. Suppose 
this were not the case. Then from every node o with positive inward flow, 
there would be another node o’ # o for which flow,., s(o, w’) > 0. Because 
T is finite and a tree, a simple induction would show that 
there must be an edge (0, w’} for which flow,,.(W, w’) > 0 and 
flow, ,(o’, w) > 0. But this is impossible by Eq. (5). 

Let c = flow, ,(p, v). By Eq. (4) and the fact that no flow leaves u, 
s(u) > c. Define a new placement s’ by 

s’(p) = s(p) + c, 

s’(v) = s(v) - c, 

s’(a) = s(a) for all u #p, v. 

Note that if s is a whole placement, then c = flow,,,(e) E N for all edges 
e, so also s’ is a whole placement. 

Now consider flow,,,. It is easily seen that 

flow&4 v) = 0, 

flowr,,.(a, t)= flOW,,,JG, z) for all (a, r) # (cc, v). 

It follows that cost(flow,..) = cost(flow,,,)-c and #(Y,s’) = 
#(r,s)- 1. 

By induction, there exists a matching M’ for r, s’ such that cost(M) = 
cost(flow, ,,). Moreover, M’ is integer-valued if s’ is whole. We define a 
new matching A4 which is like M’ except that A4 assigns a total of c units 
of requests to v which M’ assigned instead to p. Let a(o) denote the 
amount of requests from 0 that are to be reassigned. Since C, M’(o, p) = 
s’(p) 2 c, c( can be chosen so that total( T, CI) = c, cc(a) < M’(a, p), and c( 
is integer-valued if M’ and c are. Now define M: 

Ma, p) = M’(a, P) - do), 
M(o, v) = M’(a, v) + Lx(a), 
M(a, z) = M’(a, 7) if T # {p, v}. 

It is easily verified that CT M(o, z) = r(g) and x0 M(o, z) =s(r) for all 7 
and that M is integer-valued if s is whole. Thus, M is a matching 
for r, s. Moreover, since only c resources were reassigned, cost(M) G 
cost(M')+c= cost(flow,,). It follows from Theorem 3.3.2 that 
cost(M)= cost(flowr,,s) as desired. 1 
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It follows from these theorems that the cost of the optimal matching is 
the same as the cost of a particular flow, flow, s. 

3.4. Expected Flow 

From now on in the paper, we assume that T is rooted. Let Q be a 
probability density function on V and recall that (S(top) = 0. A random 
r: I/--+%+ can be chosen as follows: for each i in turn, 1 6 i< t, q5 is used 
to select a vertex (other than top). Then for each VE V, r(v) is the total 
number of times v is selected. 

For edge e and placement s, let 

edgecost,,(s)=expected value of Iflow,,(e)l, 

where r is chosen randomly according to 4 as just described. This gives the 
amount of flow across the edge e “averaged” over request sets. Note that 
the edgecost measure is independent of edge orientation. 

In the course of our development, we will be interested in the total 
edgecost on the subtrees B(e) of T consisting of the edges “below” and 
including e, so we define 

treecost,,&S)= 1 edgecostd,&). 
C/E B(e) 

We are of course also interested in the total edgecost over the whole of T. 
Since T = 8( roo tedge), we define our whole tree measure, 

cost,(s)= treecost...,,,,,,d(S). 

Our central problem is to minimize cost,(s) over all placements s with 
total(T, s) = t. To do so, we will be looking at some constrained mini- 
mization problems, namely, restricting the placements over which we are 
minimizing to those which place a fixed number u E [0, t] of resources in 
the subtree B(e). Thus, we extend the definition of edgecost to the domain 
[d, t] by defining 

edgecost,, 

=min(edgecost,,(s) 1 total(B(e),s)=u and total(T,s)=t). 

It follows from Eq. (7) and the definition of edgecost that the function 
edgecost,, is a continuous function of s, where s can be regarded as 
a vector in a vector space with dimension 1 VI. Since the minimum is taken 
over a closed and bounded set, this minimum exists. 

Intuitively, edgecost,, is the smallest average flow across e that 
can be achieved by any placement that puts u resources on the subtree B(e) 
and (t - U) resources on the subtree A(e). 
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In a similar way, we extend the definitions of treecost and cost to 
the domain [0, t], as follows: 

treecost,+ 

=min{treecost,,(s) (total(B(e),s)=u and total(T,s)=t), 

and 

Since treecost,, is a continuous function of s, and the minimum is 
taken over a closed and bounded set, this minimum exists. 

Removing the constraint on the number of resources to be placed in 
B(e), we define global quantities: 

minedgecost,,4= min edgecost,,( 
UE w, II 

mintreecost,m= min treecost,,( 
u E co. r1 

Use of the minimum operator is justified as before. Note that minces t, 
is independent of the particular choice for root edge. 

We say a placement s is optimal for 4 and t if tot al( r, s) = t and 

cost,(s)=mincost,. 

It is easy to see that such a placement exists, for any 4 and t. 
An optimal whole placement for ~+5 and t is a placement s that is both 

optimal and whole. An optimal whole placement obviously has minimal 
cost among all whole placements, but it is not a priori obvious that a mini- 
mal cost whole placement is always optimal. We show in Section 4 that 
optimal whole placements always exist. 

4. OPTIMAL PLACEMENTS 

In this section, we develop some useful and interesting properties of 
optimal placements. First, in Section 4.1, we ask whether the total cost can 
be minimized by minimizing the flow on each edge individually. A simply 
stated and elegant result is that the number of resources which minimizes 
the flow on an edge e, when placed anywhere in the subtree below e, is 
either L tp J or r tpl, where p is the probability of a request being in the sub- 
tree. (The actual placement of the resources in this subtree clearly has no 
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effect on the flow on the edge.) However, Example 4.1.8 shows that it is not 
always possible to minimize the flow on all edges simultaneously. 

Next, in Section 4.2, we show that whenever the probability of at least 
one request arriving in a subtree is less than 4, it is never advantageous to 
place any resources at all in the subtree. This result is used in Section 6 to 
improve the efficiency of an algorithm for finding optimal placements by 
allowing the tree to be pruned. 

In Section 4.3, we derive properties of the function tree c o s t e, +(u), the 
least total expected flow in the subtree B(e) for any placement of u E [0, t] 
resources on the vertices of B(e). This leads to a recursive expression for 
the treecost as a function of u and permits us to show that the treecost can 
always be achieved by a placement that puts an integral number of resour- 
ces on each node. In other words, the ability to split resources and place 
fractional amounts on nodes is of no help, as long as the requests come in 
integral units. This same recursive decomposition also leads to an efftcient 
algorithm for finding an optimal placement. 

Finally, in Section 4.4, we show how to convert an optimal placement 
which may put fractional numbers of resources on nodes into another 
optimal placement which puts whole resources on each node and which is 
“close” to the original fractional placement. Also, the whole placement can 
be found quickly. 

4.1. Optimizing Flow on Individual Edges 

In this section, we show that the function edgecost,( which 
expresses the expected flow on an edge e in terms of the number u of 
resources placed in the subtree below e, is convex, piecewise linear, and has 
all singularities at integers. Moreover, edgecos t,(u) is minimized by 
taking u equal to the median of a certain binomial density function. 

We begin by giving an explicit characterization of the edgecost function. 

THEOREM 4.1.1. Let p= total(B(e), q5), UE [0, t]. Then 

edgecost, = pi(l -p)‘-’ Iu- il. 

Proof: In the ith term of the series, IU - iI is the absolute flow across e 
that results when exactly i requests land in B(e), and (:) pi( 1 -P)‘-~ is the 
probability of that event occuring. 1 

THEOREM 4.1.2. Let q5 be a probability density function, t E N - {0}, and 
eE E. Then edgecost,E F,. 

Proof. By Theorem4.1.1, edgecost, is the sum of functions 
g,(u)=cilu-iI, iEN, O<igt, where c, does not depend on U. Each gi, 
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restricted to the interval [0, t], is a convex, piecewise linear function from 
[0, t] to % + with a singularity at u = i. The result follows because addition 
preserves all required properties. 1 

LEMMA 4.1.3. Let u, U’E [0, t]. Then ledgecost,( edgecost, 
< lu-24’1. 

ProoJ: It suffices to show the result for U’ = u + 1, so assume that 
u’=u+ 1. Let p= total(B(e),d). Then by Theorem 4.1.1, 

edgecost, - edgecost, f = 4 : p’(l-p)‘-‘lu+l-iI- i ‘. p’(l-p)‘--‘/u-i] 
j=o 1 (> ,=o 1 
u 

= 
z(> 

T pi(l-p)r-i- i 
0 

; pi(l -p)‘-’ 
;=o 1 r=u+l ’ 

=2i : 
0 

p’ (1 -p)‘-‘- 1. 
r=O 1 

Since 

-1<2 E 0 ” p’(l-p)‘-‘-1<2 2 0 : pi(l -p)f-f- 1= 1, 
i-0 1 i=O 1 

we have ledgecost,( edgecost,(u’)l < 1, as needed. 1 

Let t E N - (O}, 0 <p < 1. Let x be a random variable whose value is the 
number of successes in t independent trials, each of whose probability of 
success is p. That is, the value of x is given by the binomial density function 
with parameters t and p. Define medi an(t, p) as the smallest c E N such 
that Pr[x 6 c] 2 1. 

LEMMA 4.1.4. Let 4 be a probability density function on V, let 
ZEN-(O), and let eE E. Then edgecost, is minimized at u= 
median(t,p), wherep= total(B(e),+b). Moreouer, ifOdu<median(t,p) 
then edgecost, > edgecost,(median(t, p)). 

Proof Write f for edgecost,, and let nEN, Odn<t-1. By the 
calculations in the proof of Lemma 4.1.3, 

f(n+l)-f(n)=2 i f 
0 

pf(l-p)‘-‘-l 
i=O z 

=2Pr[ x<n]- 1. 
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As a consequence of Theorem 4.1.2, f is minimized at an integer u which is 
the smallest integer n E [0, t - l] with f(n + 1) -f(n) nonnegative, if such 
an n exists, or at u = t otherwise. In the former case, u is the smallest 
integer n E [0, t - 11 with 2Pr[x < n] - 1 nonnegative, or Pr[x < n] 2 i; 
that is, u=median(t, p). If no such n exists, then Pr[x <n] < $ for all 
n<t--1. But since Pr[xdt]=l we have u=t=median(t,p). In either 
case, u = median( t, p) is the smallest integer minimizing f: Since f is 
piecewise linear, it follows that ,f(u) >f(u) if u E % + and 0 < v < u. m 

Two results of Jogdeo and Samuels (1968, Theorem 3.2 and 
Corollary 3.1) give the following theorem. It is also implicit in some earlier 
work by Uhlmann (1963, 1966). 

THEOREM 4.15 Let t E N, t 3 1, and 0 fp 6 1. Then 

median( (L~PI, rfpl}. 

Since rp is the mean number of successes in t independent trials with 
success probability p, this theorem implies that for a binomial distribution, 
the mean and median differ by less than one. 

Lemma 4.1.4 shows that placing med ian( t, p) resources in B(e) mini- 
mizes the expected flow on e, and Theorem 4.1.5 shows that the median lies 
close to the mean. We now show that any minimizing u lies close to the 
mean. 

THEOREM 4.1.6. Let I$ be a probability density function on V, let 
tEN- {0}, let eEE, and let p= total(B(e),b). Let u be any value in 
[0, t] which minimizes edgecost,( Then 

ProoJ By Lemma 4.1.4 and Theorem 4.1.5, u>, median(t,p) L LtpJ. 
Now let q= total(A(e), 4) = 1 -p be the probability of a request in 
A(e), and let u = t - u be the number of resources placed on A(e) when u 
resources are placed on B(e). Let edgec os t:(u) be the expected absolute 
value of the flow on e when u resources are placed on A(e). Then 
edgecost:( edgecost,( so u is a value which minimizes 
edgecost:. By interchanging the roles of A and B, we can apply 
Lemma 4.1.4 and Theorem 4.1.5 again to conclude that v > median(t, q) > 
L tqj. Hence, 

u=t-o<t-LtqJ. 

Since t-LtqJ=t--Lt(l-p)l=rtpl, we conclude that u G rtpl. 1 
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A natural question is whether it is always possible to place resources in 
such a way as to simultaneously minimize the flow on all edges, and 
thereby obtain an optimal placement. The following examples show that 
this is sometimes, but not always, possible. 

Example 4.1.7 shows that it is sometimes possible to place resources in a 
way that simultaneously minimizes the flow on all edges. 

EXAMPLE 4.1.7. Let T be a complete binary tree having 7 vertices 
(excluding top) with maximum level 2. Let d(v) = 4 for each vertex v E V 
except for top. Let is N - (01, t = 7i and let s be the placement which puts 
i resources on each vertex. Then s simultaneously minimizes the edgecost 
over each edge, by Theorem 4.1.6, and so is an optimal placement. 

Example 4.1.X shows that it is not always possible to place resources in 
a way that simultaneously minimizes the flow on all edges. 

EXAMPLE 4.1.8. This example gives a tree and request probabilities for 
which no placement minimizes the expected flow on all edges 
simultaneously. Let T be the 32-leaf complete binary tree shown in Fig. 4, 
t = 16, 4(v) = & for each of the leftmost 16 leaves, d(v) = & for each of the 
rightmost 16 leaves, and 4(v) = 0 for all other vertices. 

By Theorem 4.1.6, the edgecost on edge e is minimized by placing 15 
resources in the subtree below e. The same theorem implies that edgecost 
on an edge adjacent to a leaf is minimized by placing either 0 or 1 resource 
on the leaf; computation using the formula of Theorem [4.1.1] gives an 
edgecost greater than 0.9 for a placement of 0 resource and less than 0.7 for 
a placement of 1 resource for each leaf in the subtree below e. Thus, placing 

e 

< 

4 = 15/256 per leaf r$ = l/256 per leaf 
FIG. 4. A tree for which no placement minimizes the expected flow on all edges 

simultaneously. 
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1 resource on the leaf minimizes the cost on the adjacent edge. But then 
to minimize the cost on every leaf edge we would have to place all 16 
resources in the subtree below e, thus increasing the cost on e. 

4.2. Subtrees with Zero Resources 

In this section, we show that if the probability is less than i of at least 
one request arriving in a subtree, then no optimal placement puts even 
a small fraction of a resource anywhere in that subtree. It follows 
(cf. Section 6.1) that in a complete d-ary tree with a symmetric probability 
density function, no optimal placement puts any resource below level 
rh, ti. 

THEOREM 4.2.1. Fix probability density function 4 and fix t E N - (0). 
Let e E E satisfy (1 -p)‘> i, where p = total(B(e), 4). Let s be an optimal 
placement for 4, t. Then s(v) = 0 for all v E B(e). 

Proof. Assume not, and fix e, s exhibiting the contrary. Choose e’ below 
e to be a lowest edge (i.e., closest to the leaves) for which x =s(low(e’)) 
>O. Define a new placement s’, where s’(low(e’))=O, s’(high(e’)) = 
s(high(e’))+x, and s’(v)=s(v) otherwise. We show that cost(f)< 
cost(s), contradicting the optimality of s. 

From the definition of edgecost,., e’ is the only edge for which s and 
s’ have different expected absolute flows, so cost(s) - co s t(s’) = 
edgecost,( edgecost,.( Let p,, = total(B(e’), 4). Applying 
Theorem 4.1.1 and using the fact that Ix- iI -i> -x, we obtain the 
difference f xo : p;, (l-p,,)‘P’(lx-i(-i) 

i-0 l 

=x. (2( 1 -pg)‘- 1). 

Since (1 -~,,)‘a (1 -p)‘> 4, the difference is positive, giving the needed 
contradiction. 1 

4.3. Optimal Placements in Subtrees 

We now characterize the function treec OS t,(u), which represents the 
least total expected flow in the subtree B(e) for any placement of UE [0, t] 
resources on the vertices of B(e). Like edgecost,, treecost, is convex, 
piecewise linear, and has all its singularities at integers. However, the 
points at which it achieves its minimum appear to be harder to charac- 
terize. 



26 FISCHER ET AL. 

THEOREM 4.3.1. Let I$ be a probability density function, let t E N - (0 1, 
and let e E E. Let e,, . . . . ed be the immediate descendant edges of low(e), and 
let UE [0, t]. Then 

treecost, = edgecost, + min c treecost,,( (8) u:~uc u I=1 

Proof: Recall that for any placement S, treecost, is the total 
expected flow in the subtree B(e), and treecost, is the least such cost, 
subject to the constraint that exactly u resources be placed in B(e). It 
follows immediately from the definitions that for any placement S, 

treecost,(s)=edgecost,(s)+ c treecost,( 
r=l 

where e,, . . . . e, are the immediate descendants of edge e. Since 
edgecost, depends only on total(B(e), s), the theorem then follows 
by minimizing over all placements with total(B(e), S) = u and 
total( T, s) = t. 1 

Theorem 4.1.2 shows that edgecost,EF,. We now show that 
treecost,EF,, and we relate the shape of treecost, to that of the 
component functions edgecost, and treecost, appearing in Eq.8. 
Lemma 2.3.4 provides the induction step for the proof that treecos t, has 
the same simple form as edgecost,. 

THEOREM 4.3.2. For any fixed probability density function 4, an) 
tEN-(O}, andanyeEE, treecost,EF,. 

Proof We use induction on edges in the tree, working from the leaves 
towards the root. 

If e is a lowest edge, then it is the only edge in B(e). Thus, 
treecost, = edgecost,E F, by Theorem 4.1.2. 

Now assume the result holds for edges below e, and let e,, . . . . ed denote 
the immediate descendant edges of e. Consider the expression for 
treecost, given in Theorem4.3.1. The first term is in F, by 
Theorem 4.1.2, the second term is in F, by Lemmas 2.3.2 and 2.3.4, and F, 
is closed under addition. 1 

The following is immediate from Theorems 4.3.1 and 4.3.2. 

COROLLARY. Let 4, e, etc., be as in Theorem 4.3.1. Then 

treecost, 

= edgecost,+ (treecost, * treecost,, * ... * treecost,,). 

restricted to the domain [0, t]. 
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Lemma 2.2.8 and Theorem 4.3.1 lead immediately to a dynamic 
programming algorithm for computing mincost, and for finding an 
optimal placement given a (rooted) tree T and probability density function 
4. Moreover, the placement found consists of whole resources only. 
Namely, one computes and stores tree c o s t .( u) for each edge e and each 
integer u E (0, 1, . . . . t}, working from the leaves of T towards the root. We 
will show that each such value can be computed in amortized time O( 1); 
hence the total time is O(mt), where m is the number of edges in T. 

The algorithm works in four phases. In the first phase, it computes 
pe= total(B(e), 4) for all edges e, working up the tree from the leaves. 
This takes time O(m).5 

In the second phase, it computes edgeco s t r(u) for each edge e and 
each UE {0, 1, . . . . t}. Given e, it first computes 

for n=O, 1, . . . . t. This takes time O(t). Next it computes edgecost, in 
time O(t) using Theorem4.1.1. Finally, it computes edgecost, for 
n = 1, 2, . ..) t using the formula 

II-1 

edgecost,(n)=edgecost,(n- 1)+2 c 
0 

: pi(t -P~)~-‘-- 1 
i=o c 

and the values previously stored (cf. the proof of Lemma 4.1.4). This takes 
time 0( 1) for each value of n for a total of O(t). Thus, the total time spent 
working on edge e is O(t), or O(mt) for the whole tree. 

In the third phase, it computes tree cost,(u) for each edge e and each 
24 E { 0, 1, . ..) t}. Again it works up from the leaves. Let e,, . . . . ed be the 
immediate descendant edges of e, and assume treecos t,,( u’) has already 
been computed for each 16 id d and each U’ E (0, . . . . t }. It now computes 
integer vectors u(“) for each n = 0, 1, . . . . t such that C II(“) < n and 

treecost, = edgecost,( : treecost,(ui”)). 
i=l 

By Lemma 2.3.10, these vectors can be constructed so that 
uCo)=(O,O, . . . . 0), and u(“+‘)=u(“)+&(“+‘) where 15(~+ ‘) either is 
(0, 0, *-*, 0) or a unit vector. The vector chdsen for u(“+ ‘) among these 
possibilities is the one which minimizes the value of 

d 

C treecost,( 
i= I 

5 By “time” we mean the unit-cost time measure for a RAM (Aho et al., 1974) 



28 FISCHER ET AL. 

Thus, to compute u(“+ ‘) from u’“‘, one finds the k which yields the greatest 
reduction in treecost,,(u that is, the k which minimizes the dif- 
ference 

treecost,,( I)- treecost,,(u 

If the difference for that k is Q 0, then take 6’” + ‘) = I, = (0, . . . . 0, 1, 0, . . . . 0), 
the unit vector with a 1 in the klh component and O’s elsewhere. Otherwise, 
take &(“+I) = (0, 0, . . . . 0). In this way, uCn + i) can be found from u(n) in O(d) 
steps, so the time to compute treecost, for each value of n is O(dt). 

To total up the time used in the third phase, let d, be the number of 
immediate descendant edges of e. Summing over all edges, the total time is 
0(x, d,t). However, 2, d, = rn - 1 since each edge except for rootedge is 
counted exactly once. Hence, the total time for the third phase, as well as 
the time for phases l-3 combined, is again O(M). 

We have not yet actually produced a placement. A fourth phase can be 
used to find an optimal whole placement S. In this case, the algorithm 
works from rootedge down towards the leaves. Let u be a number of 
resources that minimizes treecost,,,,,,,,( and let s(top) = t-u. 
Then the algorithm has u resources to place on B( rootedge), and induc- 
tively, it has n E N resources to place on B(e). If low(e) is a leaf, then 
s(low(e)) = n. Otherwise, let u ‘n’ be the vector computed above which 
minimizes xi treecost,(u!“‘). Let s(low(e))=n-Cu(“‘, and recursively 
place u!‘l resources on each B(ei), where as usual e,, . . . . e, are the 
immediate descendant edges of e. This takes an additional time of only 
WC, de) = O(m). 

The above proves the following: 

THEOREM 4.3.3. Given a tree T, a probability density function I$, and a 
number tE N - (01, there is an algorithm for computing mincost, and,for 
finding an optimal placement s of t resources on T in time O(mt), where m 
is the number of edges in T. The placement thereby produced is a whole 
placemen 1. 

Example 4.3.4 shows the edgecost and treecost for each edge in a tree. 

EXAMPLE 4.3.4. Let T be a complete binary tree having 15 vertices 
(excluding top) with maximum level 3. The probability density function 4 
has value & for each of the leftmost four leaves, and value & for each of 
the rightmost four leaves. We assume t = 4. The tree is shown in Fig. 5. 

Let e, and ez denote the two edges hanging off the root. By symmetry, 
for each iE (1,2), all of the edges at the same level in tree B(e,) have the 
same cost. 

Table 1 gives values of edgec o s t,(u), for all edges of the tree and for 
all values of u. Nonroot edges e are identified by the notation ei,, i2, . . . . 
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levels ( 1 

. / . / 
Q = 3/16 per leaf 4 = l/16 per leaf 

FIG. 5. The tree of Example 4.3.4. 

where il, i2, . . . is the path from the root to low(e). A star (*) in the path 
indicates that the same table line applies to both the left and the right 
branches. 

Table 2 gives the treecosts. Note, for example, how the entry for edge e, 
and u = 3 is calculated. It is obtained by adding the corresponding 
edgecost, which is 0.632812, to the minimum sum of treecosts for the edge 
e,, , with u1 resources and e, 2 , with u2 resources, where the sum u, + u2 is 
no more than 3. In this case, one can take ui = 1 and u2 = 2, yielding 
additional costs of 2.176788 and 2.085999, respectively. The total treecost 
is then 0.632812 + 2.176788 + 2.085999 = 4.895599. 

The optimal placement is obtained as in the algorithm. In this case, we 
obtain a placement as shown by the circles in Fig. 5. 

TABLE I 

Edge e 0 1 2 3 4 

Table of Edgecosts. 

Values of u 

rootedge 4.OoOoO0 3.OOOOoO 2.oooooO l.OOOOOO O.OOOOOO 
el 3.OOOoOO 2.007812 1.109375 0.632812 l.OOOOOO 
e2 I.000000 0.632812 1.109375 2.0078 12 3.OOOOOO 
el, . 1.5OOOOO 0.805176 0.842773 1.539551 2.5OOOOO 
e2, . 0.5OOOOO 0.672363 1.514648 2.500488 3.5OOOOO 
el, . . . 0.75Oc0o 0.621613 1.297791 2.252472 3.250000 
e2, . . . 0.250000 0.794952 1.751892 2.75003 1 3.750000 
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TABLE II 

Table of Treecosts. 

Values of u 

Edge P 0 1 2 3 4 

rootedge 16.OOOOOO 13.184601 10.462952 8.895599 7.528412 
e1 900OoOo 7.184601 5.462952 4.895599 5.171997 
e2 3.GQoooo 2.632812 3.109375 4.007812 5.OoOooo 
el,. 3.000000 2.176788 2.085999 2.782176 3.143225 
e2. . 1.00m 1.172363 2.014648 3.000488 4.oooooo 
el, . . * 0.750000 0.621613 1.297791 2.252472 3.250000 
e2. ,, . 0.250000 0.794952 1.751892 2.750031 3.75ooOo 

4.4. Whole Placements 

Theorem 4.3.3 shows that for any tree T and probability density function 
4 on request arrivals, there is an optimal whole placement. Thus, the ability 
to reduce granularity of resources by splitting into fractional sized pieces 
does not result in superior placements. 

We now show the more general result that any optimal placement s of 
t resources can be converted to an optimal whole placement s’, and this can 
be done in a way so that 

l the total amount placed by s’ on each subtree B(e) is the floor or 
ceiling of the total amount placed by S, and 

l the amount placed by s’ on each node is the floor or ceiling of the 
amount placed by S. 

(Note that neither of these properties implies’the other.) Moreover, s’ can 
be found quickly from s. This result will let us prove theorems for general 
placements and then convert them to whole placements while preserving 
the properties of interest. 

We begin by showing that any placement s can be “rounded” to yield a 
whole placement s’ satisfying the above two properties. Then we show that 
if s is optimal, then any placement s’ which is sufficiently close to s is also 
optimal. The placement obtained from s by rounding is sufficiently close in 
the sense which we now make precise. 

Let s, s’ be placements on T, and let e E E. We say S’ is an e-neighbor of 
S, written s D, s’, if the following two conditions hold. 

1. For every e’ E B(e), 

Ltotal(B(e'),s)j<total(B(e'),s') <rtotal(B(e'),s)l. 
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2. For every v in B(e), Ls(v)] 6 s’(v) 6 rs(v)l. 

We say s’ is a neighbor of s, written s D s’, if s ~~~~~~~~~ s’. Note that these 
relations are transitive, but need not be symmetric. 

LEMMA 4.4.1. Let s, s’ be placements on T. Ifs D s’, then 

L.e0p)jwt0p)d rdtom 

Proof: We have 

s(top)=t- total(B(rootedge),s) 

and 

s’(top)= t- total(B(rootedge), s’). 

Since 

Ltotal(B(rootedge),s)J 

6 total(B(rootedge), s’) < rtotal(B( 

and t is an integer, it follows that 

Lt - total(B(rootedge), s)] 

Gt- total(B(rootedge), s’)<rt-- total 

i.e., Ls(top)J~s’(top)drs(top)l. I 

rootedge), s)l 

For any UE’%+ and be (0, l}, let round,(u) = Luj if b =O, and 
round,(u) = rul if b = 1. 

LEMMA 4.4.2. Let T be a tree and let s be a placement of t E N - (0) 
resources on T. Let e be any edge of T, and let u = to tal(B(e), s). Finally, 
let b E (0, 1 }. Then there exists a whole placement s’ oft resources such that 
s D, s’ and total(B(e), s’) = round,(u). Moreover, s’ can be found from s 
in time O(mg.,,,).6 

ProoJ We use induction on the height of e, working from the leaves 
towards the root. 

If e is a lowest edge, then it is the only edge in B(e). Let v = low(e), and 
define s’(v) = round,(s(v)).’ The properties of the lemma trivially hoId. 

6 Recall that mg,,, is the number of edges in b(e). 
’ Technically speaking, we should define S’ on all of T. However, the properties of interest 

of s’ depend only on its values on the nodes of B(P), so we leave the remainder of .F’ 
unspecified. 
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Now assume the result holds for edges below e. Let e,, . . . . ed denote the 
immediate descendant edges of e, and let v = low(e). Let u0 = S(V) and let 
ui = total(B(ei), s). With these definitions, u = C:‘=, ui. 

We claim that there exist h,, . . . . hd6 (0, 1 $ such that 

d 

c round,,(u,) = round,(u). 
i=O 

(9) 

This follows from the facts that 

i round,(u,) 6 round,(u) < round,(u) < i round, (ui) 
i=O i=O 

and round,(u;)- round,(u,) = 1 if ui$ N, so complementing such a bi 
changes the sum by + 1. We may assume without loss of generality that 
b; = 0 if USE N since then roundI - round,(u,) = 0. 

Let k= roundb(u), and let k, = roundb8(ui), i=O, 1, . . . . d. By induction, 
for 1 6 id d, there exist placements s,! satisfying the statement of the lemma 
for ei and bi, so in particular, total(B(ei), si) = ki. Let s’ coincide with s( 
on B(e,), and let s’(v) = k,. We have s D,, s’ by construction and the induc- 
tion hypothesis. Also 

total(B(e),s’)=k,+ i kj= i round,,,(u,) = round,(u). 
i=l i=O 

Thus, s’ has the needed properties. 
We now consider an algorithm to find s’ from S. The algorithm proceeds 

in two phases. The first phase computes and stores total(B(e’), s) for 
each edge e’ in b(e). This takes time O(ms(,,) by working up the tree from 
the leaves. 

The second phase works recursively starting at e and roundb(u). The 
algorithm first finds b,, . . . . bd satisfying Eq. (9). It next sets 

s’(v) = round,,,(s(v)). 

Finally, it applies itself recursively to each of the pairs ei, b, to complete the 
computation of s’. The total time is easily seen to be O(rn~,,,) once we 
show how to compute the b’s in time O(d). 

In fact, the b’s can be computed quite simply. Assume for the moment 
that b=O and define $ ~, = U- round,(u). Then $-r E [0, 1). For 
i=O 3 . . . . d, consider ~9’ = t,b-, - ui + roundbs (u,) for each 6’ E (0, 1). 
Exactly one of the two values for 6’ puts $’ in the range [0, 1). Choose hi 
to be that value, and let ll/i be the corresponding value of +‘. Then 
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$,=u--roundb(u)- i ui+ i round,,(ui) 
I=0 i=O 

= - round,(u)+ i round,,(u,). 
I=0 

Hence, $d~ N, but since also I,!I~E [0, 1) we have tiJ= 0. Thus, the his so 
constructed satisfy Eq. (9). The case h = I is handled similarly. In either 
case, it is clear that the time required is only O(d). 1 

LEMMA 44.3. Let T be a tree and let s, s’ be placements oft E N - (0) 
resources on T. Assume that s D s’. Ifs is an optimal placement oft resources 
on T, then s’ is also an optimal placement. 

Proof: We first show by induction that for every edge e in T, 

treecost, = treecost,(total(B(e), s’)), 

that is, s’ is optimal on every subtree for the number of resources which it 
places there. 

The base case is trivial since if e is a lowest edge, then there is only one 
way of placing U’ = to tal(B(e), s’) resources on B(e). 

Now assume the result holds for edges below e. Let e,, . . . . ed denote 
the immediate descendant edges of e, and let v = low(e). Let u;= 
total(B(e,),s) for I<i<d, and let U= total(B(e),s). Similarly, let 
ul= total(B(ei),s’), and u’= total(B(e),s’). Note that for any i, if 
U,E N, then ui=u,, and in any case, round,(u;) 6~; 6 round,(ui). 
Similarly, round,(u-Cu)<u’-Cu’<round,(u--Cu). 

Let f, = treecost,, 1 6 i d d, and let f = (fi * f2 * . . . a fd). 
u = (241, . . . . ud) is optimal for u and (f,, fi, ..,, fd) since s is optimal. Thus, 
by Lemma 23.9, II’ is optimal for U’ and ( fi , fi, . . . . fd). This implies that 

Cfil”l) =f < (u’). 

By the induction hypothesis, 
fh’) =.L44) 

for 1 < id d. Hence, 
treecost,( edgecost, +cf,(s’) 

= edgecost, + 1 fi(u() 

= edgecos t,(u’) +f< (u’) 

= treecost, (by Theorem 4.3.1) 

= treecost,(total(B(e), s’)). 
The claim follows by induction. 
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Thus, in particular, we see that 

cost(S')=treecost~OOtedpe(S') 

=treecost .o,t,dp,(total(B(rootedge), 0). 

Now let u = U’ = t, 

u,=total(B(rootedge),s), 

and 

u’ , =total(B(rootedge),s'). 

Let d= 1, fi=treecostrOotedge. Lemma 4.4.1 allows us to apply 
Lemma 2.3.9 once again, which yields that u’ is optimal for u and (f,). This 
implies that 

But the right side of the preceding equation is just mincost. Putting these 
equations together yields cost(s')=mincost, as needed. 1 

The following main theorem says that ifs is optimal, then there exists an 
optimal whole neighbor s’ that can be found quickly from S. Thus, the best 
of the whole placements is also optimal among all placements, and the cost 
of finding it is little more than the cost of finding any optimal placement. 
In other words, restricting attention to whole placements imposes no 
penalty in terms of the quality of the placement obtained and little in terms 
of the time to find it. 

THEOREM 4.4.4. Let T be a tree and let s be an optimal placement oft E 
N - (0) resources on T. Then there exists an optimal whole placement s’ of 
t resources such that s D s’. Moreover, s’ can be computed from s in time 
O(IE,I 1. 

Proof: This is an immediate consequence of Lemmas 4.4.2 and 4.4.3. [ 

In general, even if a placement s is not optimal, Lemma 4.4.2 gives us a 
whole neighbor s’, but now we do not know that s’ is optimal. However, 
just from the individual edge bounds, we can give an upper bound on the 
cost of s’ in terms of the cost of s. 

THEOREM 4.4.5. Let T be a tree and let s, s’ be placements of t E N - { 0 ] 
resources on T. Zfsc-s’, then cost(s’)<cost(s)+ lETI. 
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ProoJ: Fix any edge e, and let u=total(B(e),s) and u’= 
total(B(e), s’). Then LU J < U’ 6 rul, since s D s’. So IU - ~‘1 < 1. Lemma 4.1.3 
implies that ledgecost, - edgecost,(u’)l 6 1. Summing over all the 
edges yields the result. 1 

5. FAIR PLACEMENTS 

A very natural placement is to put a number of resources on each node 
equal to the expected number of requests at that node. We call this the 
“exact fair” placement. Rather surprisingly, the exact fair placement is not 
always optimal, but we show that its cost is never more than lErj greater 
than the cost of the optimal placement. We also show that its cost is only 
O(G), where the constant implicit in the “big-oh” notation depends on the 
tree T. This provides an upper bound on the cost of the optimal placement 
as well. 

5.1. Fair Placements 

For any T, 4, t, and for each edge e E E, let pe = to tal(B(e), 4). Call 
a placement s: V -+ % + fair if Ltp,J < total(B(e), S) < rtp,-j for every 
edge e. If in fact to tal(B(e), s) = tpe for every edge e, then we say s is an 
exact fair placement. 

For any T, 4, and t, an exact fair placement exists and is unique, namely, 
let s(v)= t#(v) f or v E V. Also, s is easily computed in time O( 1 ETl). By 
Lemma 4.4.2, it follows that there is a fair whole placement s’, and s’ can 
also be found in time 0( I E, I). Note that in the special case that 4 is non- 
zero only on leaves, then s and s’ are nonzero only on leaves. 

The following theorem shows that optimality results for fair placements 
carry over to fair whole placements. 

THEOREM 51.1. Let T be an arbitrary tree, let 4 be an arbitrary 
probability density function, and let t E N - (0). If there is an optimal fair 
placement oft resources on T, then there is an optimal fair whole placement. 

ProoJ The proof follows from Theorem 4.4.4. 1 

Any placement that simultaneously minimizes the flow on each edge is 
optimal, and by Theorem 4.1.6 it is also fair. However, the following 
example shows that there does not always exist a placement which is both 
optimal and fair, so it is also not always possible to place resources in a 
way that simultaneously minimizes the flow on all edges. 

EXAMPLE 5.1.2. Consider the complete binary tree with maximum level 
6 in which the probability of a request at root is 0.04, the probability of 



36 FISCHER ET AL. 

a request at a leaf is 0.015, and the probability of a request elsewhere is 0. 
Consider the case where f = 64. Then no fair placement is optimal. 

Fair placements are constrained to place the following numbers of 
resources in subtrees of level j: 

.i Number of resources 

0 64 
1 300r 31 
2 15 or 16 
3 7 or 8 
4 3 or4 
5 1 or2 
6 Oor 1 

Calculating edgecosts using Theorem 4.1.1 shows that the choices which 
give the smaller costs on the edges leaving the respective subtrees are 64, 
31, 15, 8, 4, 2, and 1. It is not difficult to see that there are only two 
reasonable candidates for an optimal fair placement: 

(a) Place 31 resources in each level 1 subtree and 15 resources in 
each level 2 subtree. At levels 3 and below, place the larger possible choice 
in as many subtrees as possible, and the smaller possible choice in the 
others. 

(b) Place 31 resources in each level 1 subtree, 15 resources in two of 
the level 2 subtrees, and 16 resources in the other two level 2 subtrees. 
Again, at levels 3 and below, place the larger possible choice in as many 
subtrees as possible, and the smaller possible choice in the others. 

However, the placement in which one resource is located at every leaf 
has a smaller cost than either fair placement (a) or (b). 

The following theorem gives a special case in which fair placements are 
optimal. 

THEOREM 5.1.3. Let T be an arbitrary tree and let t E N - {O}. Suppose 
4 is such that tp, E N for all edges e. Then the exact fair placement s of t 
resources on T is optimal. 

Proof Since to tal(B(e), s) = tp, E N, s is a whole placement, and by 
Theorem 4.1.6 it simultaneously minimizes edgeco s t, for all edges e. 
Hence, s is optimal. 1 

Example 4.1.7 gives a special case of this theorem-a tree for which the 
minimum cost for each edge is in N. Another special case of this theorem 
is given by the following example. 
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EXAMPLE 5.1.4. Let T be a complete d-ary tree with dh leaves. Let 
t = idh for iE N - {0}, and let 4 be the uniform distribution on the leaves. 
The exact fair placement, which puts i resources on each leaf and 0 else- 
where, is optimal. 

Another case for which there exist optimal fair placements (and hence, 
optimal fair whole placements) will be given later in Theorem 63.1. We 
now show that fair placements are never too far from optimal. 

THEOREM 5.1.5. Let s be any fair placement for an arbitrary tree T, an 
arbitrary probability density function $, and arbitrary t E N - (0). Then 
mincost <cost(s)<mincost +m, where m is the number of edges in T. 

Proof: By Theorem 4.1.6, edgecost, is minimized at some u’, where 
Ltp,J<u’<rtp,l andp, =total(B(e),d). Lets be a fair placement, and 
let u= total(B(e),s). Since s is fair, LtpJ6udrtpl. 

Thus, (u- u’j B 1. But then Lemma 4.1.3 implies that ledgecost,( 
edgecost, 6 1. Thus, s incurs at most an extra cost of 1 per edge 
over the optimal placement. 1 

5.2. Bounds on Fair Placements 

We now turn to the analysis of the exact fair placement on an arbitrary 
tree T. For each edge e of T, we define a constant j?, inductively. If e 
is a lowest edge, then /?, = 1. Otherwise, let e,, . . . . ed be the immediate 
descendant edges of e. Then 

Se=l+ J-- i fit,. 
i= I 

As before, let pe= total(B(e), 4). 

THEOREM 5.2.1. Let T be an arbitrary tree, let t E N - {0}, let qS be a 
probability density function, and let s be the exact fair placement for t and 
~4 on T. Then 

for c-a. 

cost(s) 6 CBrootedgeJfProotedge 

We will need several lemmas to establish this result. Lemmas 5.2.2 and 
5.2.3 provide a rather surprising closed form for the summation given in 
Theorem 4.1.1 for edgecost,( One would expect to see summations of 
this form in other contexts as well, so that these lemmas may well have 
broader application. 



38 FISCHER ET AL. 

LEMMA 5.2.2. Fort~N-COJ,sdt-1,06p61, itisthecasethat 

s t 
a p’(1 -p)‘+‘(tp-i) = tp 

t-l 
i 

p”( 1 -p)‘-- r, 
i=O ( 1 s 

Proof: Applying the identity i( :) = t(:: :) gives 

t 0 t 
i 0 t-l 

pi(l-p)‘-‘(tp-i)=tp i p’(l-p)‘-j--t i-l ~~(l-p)~~~, ( > 
for 1 d i < t. Since (i) = (‘; ‘) + ( :I i), this expression is in turn equal to 

t-l 
tP ( ) i 

pi(1 -p)‘-i+ tp 
t-l 

( ) 

t-l 
i-l p’(l-p)‘-‘-t i-l $(1-p)’ i 

( ) 

t-l 

( ) 
p’(1 -p)“- tp 

f-l 
= tp 

i ( ) 
i- 1 pi-l(l -p)t-(r-l). 

Summing from 1 to s, we get 

tp[ i (tJ1)pi(iep)~-i- i (~I:)p”(*-p)‘~‘~-O]. 
i=l i=l 

Changing the limits of summation gives 

tp[ i (t~l)p’(lp)’ -~-~~l(‘~l)p;(l-p)~~i] 
i= I i=o 

t-l 

[( > 
p"(l -p)'-" - 

t-l 
= tp 

S ( > 
o pO(1 -p)‘-O . 1 

Putting this all together gives 

s 

Eo 
: pi(l -p)f-i(tp-i) 

j=o 1 

= 0 ; pO(l -pyytp-o)+ i : pi(1 -p)‘-‘(tp-i) 
0 i=l ’ 

= tp(1 -p)‘+ tp 
t-l K > s p”(l -p)‘-“- 

t-l 

( > 
o POU -pro 1 

t- 1 
= tp ( > S 

p”( 1 -p)‘+“. 1 
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LEMMA 52.3. Z~IEN-(O}, 06~~1, then 

pi(1 -pyqtp- i\ = 2tp 

Proof. Applying Lemma 5.2.2 to the summation for i from 0 to Lfp _I, 
we get 

I 
c() : p’(1 -p)‘-‘ltp-iI 
j-0 1 

LVJJ f 
= C (.)p’(l-p)“(fp-i)- t, 

0 
: p’(1 -py-‘(tp-i) 

i-0 1 i=LrpJ+l 2 
LPJ 

=2 1 f p’(l-p)‘-‘(tp-i)- i “. pi(l-p)‘-‘(tp-i) 
i=O 0 0 j=o 1 

pLvJ(l -p)'-LwJ - 

But by rearranging terms and applying the identity i( :) = t(:: i), we see 
that the summation in the second term of the last line above is 0: I xo : p’(1 -p)‘-‘(Q-i) 

i=o 1 f = c(j ! p’(l -p)f-i q- i ; pql -p)f-ii 
j=o 1 i= 1 0 

=fPi: ; P’(1 -PY- IP i 
t-l pi-l(l -p)(‘-lI-~‘-ll 

i=o 0 i= 1 ( ! 
i- 1 

= tp - tp = 0. 1 

The next lemma provides tight upper and lower bounds on edgec OS t,, 
for p bounded away from 0 and 1. 

LEMMA 5.2.4. Let t E N, t B 3 and assume 16 tp < t - 1. Then 

&l(t)/=< edgecost, < E2(t) /m, 
where~~(t)=~(~-~~((1/((12t+l)(t-1))))and~,(t)=(l-t/(2t+1)~). 

Proof: Using the form of Stirling’s formula (Feller, 1950): 

~nn+li2e-nei12n+I)~‘<n~<~nn+I/2e-ne~12.~-’, 
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we can bound (;): 

t r+ I,‘2 

f,(j) < t -=c 
0 

t 
1+ Ii2 

@j’+ Il’(t g-i)+ l/2 j Jgji+ l/1( t -j)(r-i)+ l/Z 
s,(jL 

where 

,h(j)=exp --L.--l-L 
( 12t+l 12j 12(t-j) ) 

and 

g,(j)=exp J-----.- 
( 

1 1 
12t > 12j+l 12(t-j)+ 1 ’ 

Define $,(j) so that 

Then clearly f,(j) < +,(j) <g,(j). 

From Theorem 4.1.1 and Lemma 5.2.3, 

edgecost, 

= (JmP(t- LtpJ 
CGl(&,LZPJ 

t - tp 

( > 

t -LWJ 

x t-LtPJ *,(LtPJ) 

=/y&F) (&)‘“l (+j$j)“” ti,cLtP,J. 
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Thus we need only show that 

First, we examine t,G1(Ltp]). Sincef,(LtPd) < $,(Ltp]) <g,(LtpJ) we find 
a lower bound for f, and an upper bound for g, for j an integer in the range 
1 6j < t - 2. f,(j) is minimized at the endpoints of this interval, so taking 

j= 1, we have 

( 1 1 1 
f,(j)>exp ---- 12t+l 12 12(t-1) > 

(( 1 
= exp - ‘+A?. 

12 12 (12t+l)(t-1) 1) . 

Two terms of Taylor’s formula give 

e -“=lvx+ ; e-v 
0 

for q E [0, x], 

so 

Thus, 

e -“a 1 -x when x>O. 

f,(j)a!-!-E. l 

12 12 (12t+l)(t-1) 
=2&,(t). 

Similarly, g,(j) is maximized at j = t/2, so that 

Three terms of Taylor’s formula give 

so 

Thus, 

x2 
e --y-xfy when x>O. 

g,(j) 1 
1 1 t 

G - 2(2t+1)+8(2t+1)2 d 1 - -= (2t + 1 )2 %(t). 
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Hence, 

Finally, let 

SO 

It suffices to show that h(tp-Ltpj) lies in the interval [i, 11, for then 

We show in fact that hi [i. l] for all 6 E [0, l), t >, 3, and 
1 6 Ltp _I < t - 2. By examining the derivative and the extreme values, we 
see that h is a monotone decreasing function of 6, decreasing from a maxi- 
mum of 1 when 6 = 0 to a minimum of 

as 6 approaches 1. The first factor is increasing in Ltp J and is minimized 
when Ltp _I is as small as possible, i.e., when Ltp J = 1. The second factor is 
increasing in t - Ltp] and is minimized when t - Ltp_I is as small as 
possible, i.e., when t - Ltp _I = 2. Hence, 1 > h(6) >, h( 1) > i as desired. 1 

Lemma 5.2.5 provides an upper bound on edge cost, for use in 
Lemma 5.2.6. 

LEMMA 5.2.5. For all trees T= ( V, E) and all probability density 
functions 4 on T, and for t E N - {O} and 0 6p < 1, 

edgecost,( 

Proojf: Using Lemma 5.2.4, we see that for Ltp] between 1 and t - 2, 
inclusive, 

edgecost, < 
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For Ltp _I = 0, Lemma 5.2.3 gives 

edgecost, = 2tp 

= 2tp( 1 -p)‘. 

Let p be the ratio of edgecost, to the desired bound, so 

2fP(l -P)’ 

p=c2/&,JG 
=J7ctp (1 -p)‘. 

We wish to show that p d 1. Fixing t, we find that p is maximized when 
p = l/(21 + 1). Substituting in, we get 

&3-53 

G&(1-$ 

IT 
d y-e 

J 
~ l/3 

= 0.898 . . . < 1. 

Similarly, for Ltp J = t - 1, Lemma 5.2.3 gives 

edgecost, = 2tp 

= 2rpy 1 -p). 

This time, the ratio of edgecost, to our bound gives 

2fP’(l -P) 

p=wJ;;l& 
=fip+“2(1 -p). 

Calculus shows p is maximized by taking p = (t - $)/( t + f-). Substituting in, 
we get 

pqqg-“2(l-$) 
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If t = 1, this simplifies to 

If I 2 2, we have 

since both of these factors are less than 1. 
Finally, if LtpJ=t, then p= 1, so edgecost,(tp)=O. 1 

This last lemma is proved inductively and implies Theorem 5.2.1. 

LEMMA 5.2.6. Let T be an arbitrary tree, let tE N - {0}, let C$ be a 
probability density function, and let s be the exact fair placement for t and 
I$ on T. Let e E E. Then 

for c = 2/V:;;. 

treecost,( c/l, 6,. 

Proof: We use induction on edges in the tree, working from the leaves 
towards the root. 

If e is a lowest edge, then s(low(e))= tp, and /?,= 1, so treecost, 
= edgecost, <cfiP by Lemma 5.2.5. 

NOW, assume the result holds for edges below e. Let e,, . . . . ed denote the 
immediate descendant edges of e, and let v = low(e). By the definitions, 

treecost, = edgecost, + c treecost,( 
,=l 

By the induction hypothesis, 

treecost, <cfi,, Jtpe,. 

By Lemma 5.2.5, 

edgecost, d c ,/tp,. 

Hence, putting everything together, we have 

treecost, d c fi + i (cpe, fi). 
i=l 
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Applying Schwarz’s inequality’ to the second term, we get 

treecost,(s)6c~+cJ’f(~)(~) 

641 +Jm&h since C pe, 6 pe 

COROLLARY. Let T be an arbitrary tree, let t E N - {0}, let 4 be a 
probability density function, and let s be any fair placement on T for t and 
I$. Then 

costbf~ cB,,,tedgeJtProotedge + lETI 

for c = J2Jn. 

Proof. The proof is immediate from Theorems 5.2.1 and 5.1.5. 1 

If T is a complete d-ary tree, then a simple inductive argument shows 
that j?, = &, where k, is the number of leaves in B(e). Hence, we obtain 
the following theorem as a corollary to Theorem 5.2.1. 

THEOREM 5.2.7. Let T be a complete d-ary tree, ~,4 an arbitrary proba- 
bility density function, and t E N - {O}. Let s be the exact fair placement for 
t and I$ on T. Then 

cost(s) G c ~kfprootedge 
for c = fi and k the number of leaves of T, 

We call s a centralized placement if s(v) = 0 everywhere except at root, 
and s( roo t) = t. For such an s, and assuming ali requests appear at the 
leaves with equal probability, we have cost(s) = t log, k. The ratio of 
expected cost for a centralized placement to the exact fair placement is at 
least 

t log, k 

CJG’ 

When t is small relative to @, then the centralized placement is superior. 
However, for t=&?(k), the exact fair placement is better by a factor of 
sZ(log, k) , and for t >> k, the ratio approaches 4. 

Similar remarks apply to fair placements in general, using Theorems 
5.1.5 and 5.2.7 to bound the cost of any fair placement by c Jkt + m, where 
m is the number of edges of T, and observing that 

kd- 1 
m=yyIj- 

for a complete d-ary tree. 

* x:(x, .Y,) G cm) (Jr3 
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6. PLACEMENTS ON SYMMETRIC TREES 

Not surprisingly, the placement problem becomes somewhat simpler in 
the case of a complete d-ary tree with a symmetric probability density func- 
tion 4. In such a tree, we can use the following notation without ambiguity: 

4(j) = f$( v) for all vertices v at level j. 

pi= total(B(e), 4) for an edge e with low(e) at level j. 

edgecost,= edgecost, for all edges e with low(e) at levelj. 

treecost,= treecost, for all edges e with low(e) at levelj. 

6.1. Levels with Zero Placement 

In the special case of a complete tree T with a symmetric probability 
density function 4, we can characterize levels below which it is suboptimal 
to place any resources. 

THEOREM 6.1.1. Let T be a complete d-ary tree with d 2 2, let 4 be a 
symmetric probability density function, and let s be an optimal placement for 
4 and t E N - (0). Assume further that t > 1 or d > 2. Then s(v) = 0 for every 
vertex v at level j> rlog, t]. 

Proo$ Define p, as above. The number of nodes at level j is dj, so 
pj d l/d’. 

If t = 1, then d > 2 by assumption, so pj < : for j > 1. Theorem 4.2.1 gives 
s(v) = 0 for all v of level 1 or greater as desired. 

Now assume t > 1. From Theorem 4.2.1, it suffices to show that 

I- 
Let h satisfy dhp ’ < t 6 dh, i.e., h = rlog, tl. Then 

so that it suffices to show the inequality 

for x = dh. This follows since (1 - l/(dx))” is a monotone increasing 
functionofxandd, bothxanddare >,2,and(1-1/(2.2))2=&>f. 1 
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f -1 

levels ( 

\A A 

0 A 
FIG. 6. The case t= I and d=2 

EXAMPLE 6.1.2. The case where t = 1 and d = 2 is somewhat peculiar. 
The reader can verify that for all T with 2 levels, with d(v) = 0.5 for each 
node v at level 1, and 0 elsewhere, the diagrams in Fig. 6 all represent 
optimal placements. That is, in the first case, 

s(v) = 
1 for v = root, 
0 otherwise, 

while in the other two cases, 

i 

1 
s(v)= o 

for v the left (resp. right) child of the root, 
otherwise. 

These are the only values of d and t for which an optimal placement can 
have nonzero values below level rlog, tl. 

Theorem 6.1.1 lets us ignore certain levels when computing an optimal 
placement for a complete d-ary tree with a symmetric probability density 
function 4. 

EXAMPLE 6.1.3. If h E N, k >, t = dh, and $ is symmetric and nonzero 
only on leaves, then the placement with one resource on each of the t ver- 
tices at level h is optimal: nothing is placed below this level, and an optimal 
placement for the whole tree results from an optimal placement within 
levels up to h. Since allocating exactly one resource to each of these vertices 
minimizes edgeco s t, on all edges simultaneously, this placement is 
optimal. 

Let T be a tree with k leaves, and assume k 2 t. We will use the following 
notation: Let T, = (V,, E,) denote the tree consisting of the vertices of T at 
levels from - 1 to rlogd tl inclusive and the edges of T between them. The 
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leaves L, of T, are the vertices at level [log, tl of T. Let 4, be defined on 
the vertices v of L, with v= low(e) by 

dt(V) = total(B(e), 9) =Prbg,,rl 

and on v E V, - L, by d,(v) = 4(v). 
By Theorem 6.1.1, no optimal placement will have S(V) # 0 for v below 

level rlog, tl. And if s: I/ + ‘3 + is such that s(v) = 0 for all v E V at levels 
below rlog, tl, then s , : V, -+ ‘$3 + can be defined from s simply by ignoring 
the missing vertices. 

Let 
rlogdki 

extracostCT'= icr,o;,l+, bw~~wkdl~. 

This represents the expected cost of moving requests which appear at 
vertices of T below the lowest level of T, to resources on level rlog, tl. 

In the special case where 4 is nonzero only on leaves, d(i) = 0 for 
i < [log, kl and 4(i) = l/d’ for i= rlog, kl, SO 

extracost'T'= t~a-b3,kl-rhLi~l). 
In any case, it is easy to see that 

cost"'(s)= costCr"(s,)+ extracost"'. 

(Superscripts distinguish the trees under consideration.) 
The following theorem allows us to construct an optimal placement for 

T with request probabilities 4 given an optimal placement for T, with 
request probabilities dr, where t 6 k. 

THEOREM 6.1.4. Zf k 3 t > 1, then 

ProoJ: An optimal placement S, for T, can be augmented to a place- 
ment s for T by letting S(V) = 0 for vertices at levels greater than [log, rl, 
so that 

Conversely, any optimal placement s for T can be restricted to a placement 
S, for T,, as described above. The cost of placement s is 

mincostCT 
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6.2. Complete Trees 

In this subsection, we show that a complete d-ary tree in which the 
request arrivals are symmetric has an optimal placement s which is also 
symmetric in the sense that s places the same number of resources on every 
node of a given level. Because of the symmetry, s can be completely 
described by listing for each level the number of resources which it places 
on every node of that level. Moreover, only one subtree of each level need 
be examined in determining s, so the time needed, when the algorithm of 
Theorem 4.3.3 is modified in the obvious way, drops to 0( td log, k), where 
k is the number of leaves of the tree. We shall see in Theorem 6.2.2 that the 
time can be reduced still further to O(min{P, log, t} + t). 

Theorem 4.4.4 can also be modified to yield from s an optimal whole 
placement s’ such that s D s’ at the cost of only O(min(e, log, t } ) 
additional operations. Because this bound is in general much smaller than 
the number of nodes in the tree, we must find an economical way of 
describing s’. 

We begin by presenting a refinement of the characterization of the 
function treecos t for symmetric probability density functions 4. 

THEOREM 62.1. Let T be a complete d-ary tree with maximum level e. 
Let q5 be a symmetric probability density function, let t E N - (01, and let 
h E N, with h < &. Then for all u E [0, t], 

treecost, 

= edgecost, 

+dmin{treecosth+,(u’) 1 U’E (0, 1, . . . . Lu/dJ, u/d}}. (10) 

Proof: d is clear. We show 2. Write f for treecost,,,, and define 
fi = f for all i, 1 < i < d. 

Let u be optimal for U. By Theorem 4.3.1, 

treecost,( edgecost,( f(Ui). 

We will prove the theorem by producing U’ E (0, 1, . . . . Lu/dJ, u/d} with 
df(u')GCf(ui). 

Let n be the left minimum off: (Recall the definition in Section 2.2.) We 
consider two cases. 

Case 1. u>dn. Choose u’=n. U’E (0, 1, . . . . La/d_]} and df(u’)< 
C f(ui), since U’ minimizes f over the interval [0, t]. 

Case 2. u < dn. Then Lemma 2.3.11 implies that C ui = U. Choose 
U’ = u/d. Then df (u’) = df (C ui/d) < C f ( ui) by convexity off: 1 
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COROLLARY. For any complete tree T, symmetric probability density 
function cj, and t E N - (0 1, there is an optimal placement s of resources such 
that s(v) = s(v’) for all pairs of vertices v, v’ at the same level. 

Theorem 6.2.1 leads immediately to an algorithm for finding an optimal 
placement which is also symmetric in the case of a complete tree and a 
symmetric request function. Namely, proceed as in the algorithm of 
Theorem4.3.3, but it is only necessary to compute edgecostj(u) 
and treecostj(u) at level j for UE (0, 1, . . . . [t/d’]}. For each such u, 
treecostj(u) is computed using Eq. (10). In doing the minimization, 
values of treecost,+, h ave been computed previously for 
u’ E (0, 1, . . . . [u/d]} since 

To compute treecosti+,(u') for u’=u/d, one may interpolate between 
treecost,,, (Lu/d_l) and treecost,, ,(ru/d]) since treecostj+, is 
linear on the interval [Lu/dj, [u/d]]. By observing that the sequence of 
minimizing u”s corresponding to successive values of u is (weakly) 
monotonic, it is possible to compute all of the needed values at level j in 
0( 1 + t/d’) steps. Summing over all levels gives a total time of 0(e + t). 

In case 8 > log, t (that is, k = d’ > t), from Theorem 6.1.4, it suffices to 
find an optimal placement for 4, in T,. But T, has maximum level rlog, tl, 
so the time required is only O(rlog, tl+ t). (One minor detail is worth 
mentioning: it is necessary to compute the leaf probabilities for 4, in T, 
within time O(rlog, tl+ t). This can be done without examining the CJ~ 
probabilities for levels of T below rlog, tl, by calculating the total prob- 
ability for 4 above level [log, tl, and then dividing the excess equally 
among the leaves of T,.) 

This proves the following: 

THEOREM 6.2.2. Given a complete d-ary tree T with maximum level /, a 
symmetric probability density function q5, and a number t E N - (O}, there is 
an algorithm for finding a symmetric optimal placement s of t resources on 
T in time O(min{/, log, t} + t). 

In the remainder of this subsection, we give results about optimal whole 
placements in symmetric trees. 

COROLLARY. For any complete tree T, symmetric probability density 
function 4, and t E N - { 0 >, th ere is an optimal, whole placement s such that 
Is(v)-s(v’)l < 1 for allp airs o ver ices v, v’ at the same level. f t 

Proof: The proof is by the corollary to Theorem 6.2.1 and Lemma 4.4.2. 
I 
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Let s be an optimal placement such that s(v) = s(v’) for all pairs of ver- 
tices v, v’ at the same level. By Lemma 4.4.2, an optimal whole placement 
s’ with SD s’ can be derived from s in time O(m). We can combine this 
bound with the bound from Theorem 6.2.2 to get a bound for producing an 
optimal whole placement for a complete tree with symmetric probability 
function. However, this bound does not adequately exploit the symmetry. 

It is possible to obtain s’ from s at the cost of only O(min(e, log, t}) 
additional operations. Because this bound is in general much smaller than 
the number of nodes in the tree, we require more economical ways of 
describing s and s’. First, s is easily described by listing, for each level up 
to min{e, rlog, tl}, the number of resources which it places on every node 
of that level. 

Second, we need an economical way of describing s’. Suppose s places ui 
resources on a subtree whose root v is at level j. Then s’ places either Lu,_l 
or ruil resources on that subtree. Thus, s’ can be described by the 
following pieces of information for each level j: 

1. the numbers Lu,_l and rujl, 
2. the number of subtrees rooted at level j on which s’ places Lu,_l 

resources and the number on which s’ places ru,l resources, 
3. for each of the two kinds of subtrees rooted at level j, the number 

of resources which s’ places at the root of the subtree, which is either 
bb4-l or rwi. 

This information is sufficient to reconstruct s’ in time linear in the size 
of s (when s is represented economically) and so is a reasonable representa- 
tion of s’. 

Using these economical representations, the construction described for 
Lemma 4.4.2 produces s’ from s in time O(min{/, log, t}). 

6.3. Requests Only at Leaves 

In this subsection, we examine trees which are complete and have sym- 
metric probability functions, and in addition have requests arriving only at 
leaves. In this case, we see that the corollary to Theorem 6.2.1 can be 
strengthened to yield a fair placement. Recall that Example 5.1.2 shows that 
not all complete d-ary trees with symmetric probability density functions 
have optimal placements that are fair, so that the assumption that requests 
occur only at leaves is necessary. 

THEOREM 6.3.1. Let T be a complete d-ary tree and let 4 be a symmetric 
probability density function that is nonzero only on the leaves of T with level 
not equal to - 1. Let t E N - (0). Then there exists an optimal placement s 
of t resources on T which has s(v) = s(v)) for all v, v’ at the same level, such 
that s is fair. 
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Proof Let s be the symmetric optimal placement of t resources given 
by the corollary to Theorem 6.2.1. Then to tal( B(e), S) is the same for 
every edge of the same level j, so let uj denote that common value., 

We now show that s is fair, that is, that Lqi_l d ui d rtp,l. Suppose not. 
Let g be the least value ofj for which this condition is violated. g > 0 since 
u,=t andp,=l. Then 

U gP1=duR+s(g-l), 

where for any j, s(j) = s(v) for v a node at level j. We consider two cases. 

Case 1. uR > rtp,]. Then 

so the condition is violated for g - 1. This contradicts the choice of g. 
Case 2. ug < Ltp, _I. Then 

du,<dLtp,J6Ldtp,l=Ltp,~,J6u,~1 

by the choice of g. Hence, s(g) > 0. Since ug < Ltp, J 6 median(t, p,), we 
have 

edgecost, > edgecost,(median(t,p,)) 

by Lemma 4.1.4, where ej is any edge at level g. But then s is not optimal, 
for moving min{s(g), median(t, p,) - u,} > 0 resources from high(e,) to 
low(e,) would reduce the cost. 

We conclude that s is in fact a fair placement, as desired. 1 

COROLLARY. Let T be a complete d-ary tree and let 4 be a symmetric 
probability density function that is nonzero only on the leaves of T. Let 
t E N - (0). Then there exists a fair whole placement s of t resources on T 
which is optimal. 

Proof: The proof follows from Theorems 6.3.1 and 5.1.1. m 

The final example shows that fair whole placements might be optimal for 
symmetric trees even when the placements are far from being symmetric. 

EXAMPLE 6.3.2. Consider the placement shown in Fig. 7. It represents 
an optimal whole placement of 11 resources in a complete binary tree with 
symmetric probability density function in which requests arrive only at 
leaves. The optimality can be verified using the algorithm of Theorem 4.3.3. 

9 The level of an edge e is the level of low(r). 



PLACEMENTOFRESOURCESINATREE 53 

FIG. 7. An optimal placement of 11 resources with equally likely requests only at leaves. 
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