
INFORMATION AND COMPUTATION 96, 1-54 (1992)

Optimal Placement of Identical Resources in a Tree*

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY D. GRIFFETH

Bell Communications Research, Morristown, New Jersey

LEONIDAS GUIBAS

Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts

The problem of placing a number t of identical resources at nodes of a tree so
as to minimize the total expected cost of servicing a set of t requests arriving ran-
domly at nodes is considered. The cost of servicing a particular set of requests is the
total distance in the tree between each request and its assigned resource. Distance
is measured by the number of edges along the unique path from the request to the
resource. Optimal placements can be found in time U(mt), where m is the number
of edges in the tree. Allowing resources to be split into fractional-sized pieces which
can be placed separately neither reduces the cost of an optimal placement .nor
provides an obvious way to find optimal placements significantly faster. Simple,
natural “fair” placements whose cost differs from optimality by at most the number
of edges in the tree are-described. For any iixed tree T, the cost of these placements
grows as O(4), where the constant implicit in the “0” notation depends on the
size and shape of T. In the case of balanced trees with k leaves, that constant is at
most a. The placement problem becomes somewhat simpler for a complete
(rooted) d-ary tree with a symmetric probability density function for request
arrivals, and in that case slightly stronger results are possible. For example, an
optimal placement can be found in time O(min{C, log, t} + t), where / is the height
of the tree, and the placement is symmetric and fair. 0 1992 Academic Press. Inc.

* This research was supported in part by the National Science Foundation under Grants
MCS77-02474, MCS77-15628, MCS78-01698, MCS80-03337, MCS-8116678, MCS-8200854,
DCR-8302391, DCR-8405478, and CCR-8915206, by the U.S. Army Research Oftice
under Contracts DAAG29-79-C-0155 and DAAG29-84-K-0058, by the Office of Naval
Research under Contracts NOOO14-79-C-0873, NOOO14-80-C-0221, NOOO14-82-K-0154,
NOOO14-85-K-0168, and NOOO14-89-J-1980, and by the Defense Advanced Research Projects
Agency (DARPA) under Contracts NOOO14-83-K-0125 and NOOO14-89-J-1988.

0890-5401/92 S3.00
Copyright 0 1992 by Academic Press, Inc.

All rights of reproduction in any form resewed.

2 FISCHER ET AL.

CONTENTS

1. Introduction.
2. Mathematical preliminaries. 2.1. Notation. 2.2. Convex functions and convolu-

tion. 2.3. Decreasing closure.
3. Problem formulation. 3.1. Basic definitions. 3.2. Matching to requests resources.

3.3. Min-cost flows. 3.4. Expected flow.
4. Optimal placements. 4.1. Optimizing flow on individual edges. 4.2. Subtrees with

zero resources. 4.3. Optimal placements in subtrees. 4.4. Whole placements.
5. Fair placements. 5.1. Fair placements. 5.2. Bounds on fair placements.
6. Placemenfs on symmetric trees. 6.1. Levels with zero placement. 6.2. Complete

trees. 6.3. Requests only at leaves.

1. INTRODUCTION

We consider the problem of placing some number t of identical resources
at nodes of a distributed network in such a way as to minimize the expected
cost of servicing a random set of t requests. Each request originates at a
randomly chosen node according to an underlying probability distribution,
so requests can be regarded as independent identically distributed random
variables over nodes. We often identify a request with the node at which it
originates.

Each request is serviced by assigning a distinct resource to it. The cost
of servicing a request is the distance from the request to its assigned
resource. Distance between two nodes is measured by the number of edges
along the shortest path that joins them. In this paper, we consider only tree
networks, so the shortest path is always unique.

This problem arises in several contexts. Suppose, for example, that the
resources are processors and that each request is to establish a virtual con-
nection with a processor which will be used for a very long period of time.
An important cost might be the total amount of communication traffic
introduced into the network over the duration of the connection, which
grows in proportion to the distance between a request and its assigned
processor. Because of the long holding times, it is probably reasonable to
expend considerable effort to find a good assignment of resources to
requests. Assuming each set of random requests is serviced optimally but
that processors cannot be moved from their initial positions, we can ask
where processors should be placed in the network so as to minimize the
expected communication costs.

For a similar example, suppose that the resources are copies of a read-
only file residing on separate disks and that requests are programs which
make such heavy use of the file that it is necessary to assign each a distinct
copy of the file to avoid unacceptable disk contention. One might then
want to minimize the amount of network traffic needed for all the

PLACEMENT OF RESOURCES IN A TREE 3

programs to communicate with their files, or equivalently, to minimize the
average communication delay incurred by the programs while waiting for
responses from the tiles. Again, we ask where the disks should be placed in
the network so as to minimize the expected cost.

Thus, we are considering the resource placement problem under the
following assumptions:

l Requests arrive randomly and independently at nodes.
l Resources are permanently assigned to nodes and cannot be moved

in response to a request.
l The underlying network is a tree.
l The cost of servicing a particular set of requests is the least total

distance between requests and their assigned resources taken over all
possible assignments of resources to requests.

l The cost of a particular placement of t resources is the expected
cost of servicing a set of t random requests.

A placement is optimal if its cost is the least among all placements of the
same number of resources. We give upper bounds on the costs of optimal
placements, and we give certain easily described placements which are close
to optimal. We also provide fast algorithms for finding optimal and near-
optimal placements.

All our results assume that the network is configured as a tree. In the
case of general connected networks, one can apply these results to a
spanning tree of the network, but of course the cost function then considers
only paths that lie in the tree. This may or may not be a useful cost
function depending on the way routes are constructed.

Our methods also allow us to obtain upper bounds for each edge of the
tree on the expected number of paths between requests and assigned
resources on which that edge appears. This can be used to determine the
capacities required on the links and nodes to handle communication traffic
between requests and their assigned resources.

Our results are intended to apply to networks with point-to-point
communication. For broadcast networks such as Ethernet, it is not clear
whether the strategy of configuring the network as a tree can be used to
advantage for resource-allocation problems. Also, our results apply only to
situations in which only one resource is required by each request. If it is
important to consider multiple resources-e.g., various different files-then
it might be necessary to consider the distances of the different resources
from each other as well as from the requests. In this case, an approach
more complicated than ours seems to be required.

We generalize the above to allow for the possibility that fractions of
resources, rather than whole resources, might be located at some nodes of

4 FISCHER ET AL.

the network tree. Each request is then for a unit quantity of resource, and
a given request can be satisfied by fractional resources located at several
different nodes. This situation is reasonable if, for instance, the resources
are large blocks of available data storage space, for it might be perfectly
permissible for a user to obtain parts of his needed storage from different
places.

The rest of the paper is organized as follows. In Section 2, we present
some mathematical preliminaries, in particular, some properties of convex,
piecewise linear functions. Our cost measures turn out to be functions of
this type. In Section 3, we show that our problem can be regarded as a
min-cost flow problem, sometimes known as the Hitchcock transportation
problem. In Section 4, we derive properties of optimal placements and
present an algorithm for finding an optimal placement which runs in time
O(M), where m is the number of edges in the tree and t the number of
resources. In Section 5, we bound the expected cost of optimal placements
by analyzing the cost of a natural placement which puts a number of
resources on each node equal to the expected number of requests at that
node. Surprisingly, this placement is not always optimal, although its cost
is never more than an amount m greater than the optimum. In Section 6,
we analyze the special case of a complete tree with a symmetric request
probability function.

A preliminary version of this paper appeared as (Fischer et al., 1981).
Further related results appear in (Lynch er al., 1986).

2. MATHEMATICAL PRELIMINARIES

In this section, we present some basic notation and prove a collection of
results which are applied in many places later in the paper. The results
give interesting properties for a certain class of convex, piecewise linear
functions. The cost measures we are interested in are functions of this type.
The reader may prefer to skip this section for now, returning to it later
when its results are required.

2.1. Notation
We use the following notation.

N denotes the natural numbers, including 0.
!R denotes the real numbers.
!R+ denotes the nonnegative real numbers.

2.2. Convex Functions and Convolution
Let t is a positive integer. Let F, be the set of functions f: [0, t] --f 'iH +

such that f is convex and piecewise linear with all singularities occurring at

PLACEMENTOFRESOURCESIN ATREE 3

integer values. In this subsection, we provide some definitions and basic
results involving functions in F,.

For f~ F,, let f’-(x) be the “left-hand” derivative off at XE (0, t] (i.e.
the limit of (f(x’) -f(x))/(x’ - x as x’ approaches x from below), and let)
f’+(x) be the “right-hand” derivative off at XE [0, t) (i.e. the limit of
(f(x’) -f(x))/(x’-x) as x’ approaches x from above). For completeness,
define f’-(O)= -cc andf’+(t)= +co. The following is obvious from the
definition of F,.

LEMMA 2.2.1. Let f E F, and u E [0, t]. Then

1. f’+(u) <f’+(u), and equality holds if u 4 N.

2. Ifu<o thenf’+(u)<f’-(u).
3. Zfrz~N anduE(n-l,n] thenf’+(u)=f’-(n).

4. IfneN anduc[n,n+l) thenf’+(u)=f’+(n).

DEFINITION 2.2.2. Let f E F,. x E [0, t] is the left (right) minimum off if
it minimizes f over the interval [0, t] and is the smallest (largest) value
having this property. We write x = leftmin(f) (x = rightmin(f)).

LEMMA 2.2.3. Let f E F, and u E [0, t]. If u E [leftmin(f), rightmin(f)],
then

f’-(U)<O<f’+(U). (1)

Moreover, if u = leftmin(f) then f’ - (u) < 0 and if u = rightmin(f) then
o< f’+(u).

Proof. Obvious. m

Let dE N. We use u to denote the vector (u,, ud) E (‘33 +)d, and we let
cu=c;=‘=, ui.

We define the “convolution” of two functions in I;,. The convolution of
fi and fi describes the “best” way to split up a given nonnegative amount
u of “resource” into two parts, u1 and uq, so as to minimize the sum of
fi(ul) and fi(uz). In our later applications, the functions fi andf,, as well
as their convolution, are cost functions.

DEFINITION 2.2.4. Let fi E F,,, f2 E F,,. We define f = fi * f2 (“the con-
volution”) by

f(u)= $$F,,, Cfi(Ul) +f*(dl
U2E co: 121 u,+u2=u

for u E [IO, ti + t,].

FISCHER ET AL.

LEMMA 2.2.5. Convolution is associative. In particular,

for UE LO, dtl,fi,fi,fd~F..
Proof: It suffices to show it for d = 3. Then the general result follows by

induction. The d = 3 case is immediate from the definition and the
associativity of addition. 1

DEFINITION 2.2.6. Let fi, f2, fde F,. We say that UE [0, tld is a
minimizing vector for (f,, fi, fd) if

VI * f2 * ‘. * fd) (c u) = ;$, fi(k),

It follows from the above that a minimizing vector u for (fi, fi, fd)

minimizes C fi(ui) over all v with C v = 1 u. The convolution
(fl *f2 * ... * fd)(u) is the minimum so achieved. We now characterize
minimizing vectors.

LEMMA 2.2.7. Let fi, fz, fdE F,. The vector u = (u,, u2, ud) is a
minimizing vector for (fi , f2, fd) iff there exists y such that

for all i, 1 <i<d.

Proof: (*) Let u be a minimizing vector for (fi , f2, fd), and sup-
pose to the contrary that no such y exists. Suppose f i - (u,) > fj + (Uj) for
some choice of i and j as illustrated in Fig. 1. Then the local perturbation

for sufficiently small E > 0 reduces 2 fi(ui) while leaving 1 u unchanged,
contradicting the assumption that u is a minimizing vector. Hence,

f: -(uj) < fj ‘(ui) for all i, j, so the interval

Cmax {fl-(u,)ly min {f;+(y)11 i i

is non-empty, and any y in that interval satisfies the conditions of the
lemma.

PLACEMENT OF RESOURCES IN A TREE

ui %

FIG. f. A nonminimizing vector.

(G) For the converse, suppose fly (ui) < y <f; + (u,) for all i,
1 < i < d. Let v be any vector in [0, tld with C v = C u. It follows from the
convexity of each fi that

Summing, we get

j, fi(ui) 2 i$, fita;) + Y ,it Cut- *i)= i fi(ui)’
i=l

Thus, u is a minimizing vector for (f,, fi, .,., fd) as desired. 1

Lemma 2.2.7 gives us an easy way of visualizing the convolution
fi *f2 * ... * fd using the “kinetic” approach introduced in (Guibas et al.,
1983). Regard each f, as describing a polygonal path in the plane, and
imagine d cars, one traveling along each such path. Car i starts at point
(0, f,(O)), 1 < i<d. Only one car moves at a time, and cars move with a
constant velocity along the x-axis. The goal is for the cars to keep the sum
of their y positions as small as possible. Clearly, the best strategy is for the
car on the path of least (or “most negative”) slope to move first until it
reaches a corner. Because each f, is convex and piecewise linear, once a car
starts moving, it can keep moving until it reaches a corner (where f,
changes slope).

The value of the convolution cfi * fi * ... * fd)(u) is just the sum of the
y positions of the cars at time U, and the positions of the cars at time u is
a minimizing vector for U. It follows from this description that the slope of
the convolution at u +! N is the same as the slope of the f, that corresponds
to the car that was moving at that time. Fig. 2 illustrates this notion of
“merging” in computing the convolution of two functions.

The construction above can be described more formally as follows. Let
fi, fdEFt. Let yi,.i=fi'(j) for in { 1, d} andje (0, t- 1). Because

8 FISCHER ET AL.

each fj is convex, each sequence ji = (vi. 0, y,. ,- 1) is nondecreasing. Let
[= (lo, i,, cd,- 1) be the nondecreasing sequence of slopes that results
from merging the sequences $, , jd. There is a natural one-to-one corre-
spondence between the elements in < and the elements in the sequences
P, 3 ..., jd, since c is just a reordering of those elements. We specify this
correspondence by functions c(and /I such that ik corresponds to ~~~~~~~~~~~

We define inductively a function f(u) and an indexed set of vectors v(”
for u E [IO, dt] as follows: f(0) = C fi(0), and v(O) = (0, 0, 0). Let k be a
nonnegative integer and assume that f(u’) and v@‘) are defined for all U’ in
the interval [0, k], where k<dt - 1, and let UE (k, k + 11. Define
f(u)=f(k)+[,.(u-k). Define ~‘~‘=v(~‘+I~~~,.(u-k), where I, is the
unit vector that is 0 in all components except for the j th component which
is 1.

LEMMA 2.2.8. Let f(u) and v”’ be as defined above.

1. Cv(‘)=u, and ifkEN, then vCk’~Nd.

2. Each v(” is a minimizing vector for (fi, f2, fd).

a I,: b c

fl * f2

FIG. 2. The convolution of two functions.

PLACEMENT OF RESOURCES IN A TREE 9

3. v$, = P(k) for all integers k E [0, dt].

4. f(u) = Cfi(dU’).

5. r=r,*j2*..:*r,.

Proof. Part 1 is immediate from the definition of v@‘.
For part 2, the vector v(O) = (0, 0, 0) is a minimizing vector. It is easily

shown for each u E (0, dt] that the vector v(‘) satisfies the conditions of
Lemma 2.2.7; hence, v(“) is a minimizing vector for (fi, f2, fd).

For part 3, an easy induction on k shows that

vf”’ = I {k’ < k (cr(k’) = i} 1

and

P(k) = 1 {k’ < k 1 cr(k’) = cl(k)} I.

The result follows immediately by taking i = a(k).
We show part 4 by induction on k’ = ru]. If k’ = ru] = 0 then u = 0 and

part 4 obviously holds.
Now suppose 0 <k’= rul<dt. Let k =k’- 1, let i=@(k), and let

z = p(k). Since ik = yi, ;, it follows that fi(z + (u - k)) =fi(z) + ck. (u-k).
Hence,

f(u)=f(k)+i,.(u-k)=f(k)+fi(z+(U-k))-.f,(z).

By the induction hypothesis, f(k) = cj f;(vjk’). Thus,

BY part 3, B(k)=&, so z= vtk). The result follows from the fact that
v!~)=v~~) forj#i, and J v!~‘=v!“‘*+(u-k)=z+(u-k).

Finally, part 5 follows immediately from parts 1, 2, and 4 and the defini-
tions of convolution and minimizing vector. 1

Lemma 2.2.8 says in particular that is is always possible to get minimizing
vectors for integer values with integral components.

COROLLARY. rff, , .f2, fd E I;;, then

Proof. From Lemma 2.2.8, it is clear that f is convex and has slope
discontinuities only at integer values. 1

10 FISCHER ET AL.

2.3. Decreasing Closure

Recall that the convolution (fi * f2 * . . * fd)(U) gives the minimum
value of C fi(ui) over all ways of partitioning u into d pieces ui, ud with
C ui = U. In our applications, however, we do not require that all of u be
“used,” so we wish instead to minimize Cfi(ui) subject only to the
constraint that C ui < U. Thus, we consider in this section an asymmetric
variant of the convolution.

DEFINITION 2.3.1. IffE F,, then define ,f, by

for u E [0, t]. We call f, the decreasing closure off:

LEMMA 2.3.2. Let fe F,. Then f G is a non-increasing function in F,.
Moreover,

f’ (‘) = i

f(u) for u 6 leftmin(f)
f (leftmin(f)) for u > leftmin(f).

Prooj Obvious. B

DEFINITION 2.3.3. In case f = fi * f2 * . . * fd, we call f ~ the decreasing
conuolution of (fi, fi, fd).

Note that f S E F;, by Lemma 2.3.2, assuming each fi E F,.

LEMMA 2.3.4. Let fi, fi, fdE F,. Then

for u E [0, dt].

Proof: Obvious. 1

The following is a key optimality definition, which is used later to
describe the “best” way of splitting up a set of resources when not all of
them must be used.

DEFINITION 2.3.5. Let fi, fi, fde F,, u E [0, dt]. We say that
u E [0, tld is optimal,for u and (f, , fI, fd) if 1 u < u and

(fi *fi * ... * fd) < t”) = i f;fi(ui)*
i= 1

PLACEMENTOFRESOURCESIN ATREE 11

The following lemma characterizes optimal vectors in terms of the rela-
tionship between the sum of their components and the minimum points of
the convolution.

LEMMA 2.3.6. Let f= f, *f2 * . . * fd. A vector u is optimal for u and
(f,, f2, fd) ifjf u is a minimizing vector for (,f,, fi, fd) and

min(u, leftmin(f)) 6 c u < min(u, rightmin(f)).

Proof: Let f,, fi, fdE F, and let f = fi * fp ... * fd. It suffices to
consider three cases.

Case 1. u < leftmin(f). Then f and f G are strictly decreasing and
equal on the interval [0, u], so u is optimal for u iff C u = u and u is a
minimizing vector for (fi , f2, fd).

Case 2. leftmin(f) < u 6 rightmin(f). Then f and f G are constant and
equal in the interval [leftmin(f), u], so u is optimal for u iff
C u E [leftmin(f), u] and u is a minimizing vector for (fi , f2, fd).

Case 3. u > rightmin(f). Then f is strictly increasing in the interval
[rightmin, u] and f $ (u) = f (leftmin(f)) = f (rightmin(f)), so u is optimal
for u iff C u E [leftmin(f), rightmin(f)] and u is a minimizing vector for
(fi 2 f*r ...? fd). I

Now we give a definition to describe the case where all the functions f,
are simultaneously minimized.

DEFINITION 2.3.7. Let fi, f2, ,.., fdE F,. A vector u is saturated for
(fi, f2, fd) provided that fip(ui)<O<f;+(ui) for all i, 1 di<d.

It is obvious from this definition that a saturated vector simultaneously
minimizes each of the f, and thus is a minimizing vector for (f,, f?, fd).

The following lemma gives some properties of saturated vectors.

LEMMA 2.3.8. Let u and v be vectors and let u, VE [0, dt].

1. If u is optimal for u and (fi , fi, fd), then either C u = u or else
u is saturated for (f, , fi, fd).

2. rf u is saturated for (f,, f2, fd), C u d Cv, and v is optimal for
v and (f,, f2, fd), then v is saturated for (fi, fi, fd).

Proof. 1. Let u be optimal for u. Then C u d u. If C u = u, we are
done, so assume C u < u. We show u is saturated.

Assume to the contrary that u is not saturated. Then some& is not mini-
mized by uj. But then perturbing uj by f some small E yields a new vector

12 FISCHER ET AL.

u’ such that C fi(u:) < C fi(ui) and C u’ < U. This contradicts the assumed
optimality of u.

2. Since u is saturated and z u <C v, u is optimal for C v. But v is
also optimal for u, so C f,(ui) = C fi(oi). Since u is saturated, it follows that
v is also. 1

The following lemma shows how minor perturbations (not crossing
integer boundaries) of optimal vectors remain optimal.

LEMMA 2.3.9. Let u be optimal for u and (f,, fi, fd). Let VE [0, t]”
and u E [0, dt] such that

(a) b,J 6 4 Q rki,
(b) LU-cnj<O-cv+-cul.

Then v is optimal for u and (fi, fz, fd).

ProoJ By Lemma 2.3.6, u is a minimizing vector for (fi, f2, fd), so
Lemma 2.2.7 yields y such that f ;-(ui) < y d f i’(ui) for all i, 1 d id d. But
then condition (a) implies that f; -(ui) < y <f i+(u,) for all i since either
U;E N and ui=ui or uj$ N and

Another use of Lemma 2.2.7 shows that v is a minimizing vector.
If u is saturated, then y can be taken equal to 0, so v is also saturated.

This suffices since condition (b) implies C v 6 D. On the other hand, if u is
not saturated, then Lemma 2.3.8 implies that C u = U, and condition (b)
implies that C v = u. Since u is optimal for U, y can be assumed to be 60.
Thus, v must be optimal for u and (f,, f2, fd). 1

A variation of Lemma 2.2.8 holds for the decreasing clusure of the
convolution.

LEMMA 2.3.10. Let f,, fi, fdEFt and let f =fi * fi *...*fd. Then
there is a sequence of uectors II(‘), II(‘), ufdr’ such that

1. Each uti’ has integral components and is optimal for i and
(fi 9 f2, “., fd).

2. u(‘+‘)=u(“+S’(‘), 1 <i<dt, where 6 ‘(” is a unit vector of aN o’s
except for at most one 1. Furthermore, if 6 ‘(j’ = (0, 0), then 6 ‘(A =
(0, 0) for all j 3 i.

Proof: The proof follows from Lemmas 2.3.2 and 2.2.8. After the
integer u where the global minimum of f, * f2 * ... * fd is passed,
(fi * f2 * “‘* fd)< stays constant. 1

PLACEMENTOFRESOURCESINATREE 13

The final iemma of this subsection deals with the symmetric case-where
all the component functions are the same. It says that if there are not
enough resources for the “average” number to reach the leftmin, then the
vector cannot be saturated.

LEMMA 2.3.11. Let f. = g E F, for all‘ i, 1 < i < d, Let u be optimal for u
and (.f,, fi, fd), and assume u/d < leftmin(g). Then u is not saturated for
(h, f2, ..,, fd), and C u = u.

Proof. Since x u <u, there is some i with U, <uJd. Since u/d<
ieftmin(f), it follows that u is not saturated. Lemma 23.8 implies the other
conclusion. 1

3. PROBLEM FORMULATION

In this section, we formulate the resource placement problem, first in
terms of matchings of resources to requests and then as a min-flow
problem. The latter formulation is used in the remainder of the paper.

3.1. Basic Definif ions

A tree T= (I’,, ET) is a finite undirected acyclic graph, where I’, is the
vertex (node) set and E, is the edge set. We abuse notation and write ,D E T
to mean p E V,. We let m T = (E,) be the number of edges in T, and we
use L, to denote the set of leaves (vertices of degree one). We often omit
subscripts when the meaning is clear from context.

We arbitrarily orient each edge e of T by distinguishing its two
endpoints-one is called “low(e),” the other is called “high(e),” and we
think of e as being directed from low(e) to high(e). The removal of e
divides T into two disconnected components: A(e) is the component con-
taining high(e) and B(e) is the component containing low(e). (It is
suggestive to read A as “above” and B as “below.“) We write R(e) (B(e))
to denote the subtree of T consisting of A(e) (B(e)) together with the
edge e.

A tree T is rooted if it has a distinguished node called the root and
denoted by root. If v, w E V and u # w, we say w is a descendant of v if v
lies on the unique path from w to root, and w is an immediate descendant
(also called a child) of v if v is adjacent to w on that path. We assume that
all edges are directed towards root, that is, for any edge e, high(e) is
closer to root than to low(e). A node v of a rooted tree is at 1eveZj if there
arej edges on the path from v to root. Thus, root is at level 0, and all
edges are directed from vertices with larger level numbers to vertices with
smaller numbers. A tree T is a compfete d-ary tree if it is rooted, every

14 FISCHER ET AL

non-leaf vertex has exactly d immediate descendants, and every leaf is at
the same level.

In dealing with rooted trees, one commonly uses the node Jo to name the
subtree consisting of p and all of its descendants. In this work, we find it
convenient to denote subtrees by edges rather than by nodes, using the
notation B(e) introduced above. This has the disadvantage that the entire
tree T cannot be so named, for T# B(e) for any e. Therefore, as a technical
convenience, we assume that every rooted tree T has an extra edge
“rootedge” such that low(rootedge)= root. Thus, &rootedge)
= T, and B(rootedge) is the subtree below and including root. The
other end of rootedge, high(rootedge), is a distinguished leaf of T
denoted by “top.” We treat top as a special case. It is henceforth not con-
sidered to be a leaf of T, nor is it a descendant of root, and we define its
level to be - 1. (In fact, for consistency, we define root to be a descendant
of top.) Thus, all edges are directed towards top, and a node p is at level
j if there are j+ 1 edges on the (directed) path from p to top.

A set of requests is described by a function r: I’+ N such that r(v) is the
number of requests originating at vertex v. If T is rooted, then we always
assume that no requests originate at top, thus, r(top) = 0. A placement of
resources is described by a function S: V -+ ‘N + such that S(V) is the number
of resources placed at vertex 1’. A placement s is whole provided that
S(V) E N for all v E V.’

For any tree T and function g: V, + ‘9I + , let

total(T,g)= 1 g(v).
L’S C’,

For the remainder of the paper, we fix a particular, arbitrary positive
integer t, which represents both the total number of requests and the
total number of resources. In particular, for every set r of requests and
every placement s that we consider, we assume that to tal(T, r) =
total(T, s) = t.

Finally, 4: V -+ ‘$3 + is a probability density function on T if d(v) E [0, 1]
for all v E V, and total(T, 9) = 1. If T is rooted, then we assume that
&top) = 0. The function d(v) is the probability that a random request
arrives at node v. We say that I$ is symmetric if T is rooted and 4 depends
only on the level of a vertex in T. (In other words, CJ~ is the same for all
vertices at the same level.)

’ Although we permit resources to be placed at top, it will turn out that in any optimal
placement, s(top) =O, for it will always reduce the cost of the placement to move any
resources from top to root. Thus, our restriction to trees containing a special rootedge
will lead to no loss of generality in our results.

PLACEMENT OF RESOURCES IN A TREE 15

3.2. Matching Requests to Resources

Our problem is to determine how to place resources in a tree T so as
to minimize the expected cost of matching requests to resources, where
requests arrive at vertices of the tree according to a probability density
function 4 on V. We first formulate this problem as a matching problem on
a tree.

Let T be a tree.* If r is a set of requests and s a placement for T, then
a matching for r, s on T is a function M: Vx V-+ ‘$I + such that

and

(2)

s(v)= c M(Pu,V). (3)
LIE P

The value M(p, v) gives the number of requests at node p satisfied by
resources from node v. A function satisfying conditions (1) and (2) will
exist whenever total(T, r)= total(T,s), which we always assume. The
cost of a matching M is defined by

cost(M) = c Mb, v) .d(pL, v), p, P E C’
where d(p, v) is the number of edges in the unique path from p to v in T.
A matching M is optimal for r, s if cost(M) is minimal over all matchings
for r, s.

EXAMPLE 3.2.1. Figure 3 illustrates the above definitions. Two different
matchings are given for identical request arrivals and resource placements.
A request arrival at a vertex is indicated by an r, a resource by an s. The
two s’s on the right-hand leaf indicate that two resources have been placed
there.

3.3. Min-Cost Flows

Given a matching M for r, s, it is natural to think of each request
“flowing” along the unique path in the tree to its matching resource. This
leads us to formulate a related min-cost flow problem, also known as the
Hitchcock transportation problem (cf. Papadimitriou and Steiglitz, 1982).

’ Neither this nor the following subsection requires the assumption that T be rooted. We
will restrict attention to rooted trees later, starting in Subsection 3.4.

16 FISCHER ET AL.

s r S r ss S r S r ss

An optimal matching of cost 7. A matching of cost 13.

FIG. 3. Two matchings of the same request arrivals and resource placements for the same
tree.

We show that the cost of an optimal matching for T, s is the same as the
cost of the flow in the related flow problem for Y, s, thus enabling us to
restrict attention to flows in the remaining sections of this paper.

A flow for r, s on T is a function f: Vx P’+ R f(p, v) specifies the
amount of “flow” along the edge {CL, v) moving out of p and into v.
(A negative value for f(p, v) indicates “flow” moving into p from v.) The
flow function satisfies three “conservation of flow” conditions:

a4-~fh v)-s(P)=09 (4)

f(/A v) = -.f(v, .a), (5)
fh v)=O if {K v} #E. (6)

Equation (4) says that the net flow at a node is zero. Equation (5) says
that the flow leaving node ~1 along edge (11, v} is the same as the flow
entering node v along the same edge. Equation (6) says that there is no
flow along nonedges.

Using our fixed orientation of edges, we can regard f as a function
E-P 9I by letting f(e) =f(low(e), high(e)). We say that flow along e is
forwards iff(e) > 0 and backwards otherwise. The cost of a flow, cost(f),
is simply C, If(e

Because T is a tree and the number of requests is equal to the number
of resources, the flow along e is exactly the difference between the number
of requests and the number of resources in B(e) (or equivalently, the dif-
ference between the number of resources and the number of requests in
A(e)). This is because conservation of flow ensures that flow is not lost,

PLACEMENTOFRESOURCESIN A TREE 17

and the only place for excess flow in B(e) to go is across the edge e. Hence,
there is a unique flow for Y, s on T, which is given by3

flow,+,(e)=total(B(e),r)-total(B(e),s)

=total(A(e),s)-total(d(e),r).
(7)

It is easily verified that flow, s as defined here satisfies Eqs. (4)-(6).
We now relate the costs of matchings to the cost of flows. Let M be a

matching over Y, s. The quantity CPGBCcJ CvcACe, M(p, v) gives the total
amount4 of requests in B(e) for which the path to the assigned resource
includes e. Similarly, ClrGACej CYEB,P) M(p, v) gives the total amount of
requests in A(e) whose corresponding path includes e. The following is a
direct consequence of Eqs. (2), (3) and (7).

LEMMA 3.3.1. Let M he a matching for r, s. Then

THEOREM 3.3.2. Let M be a matching for r, s. Then

cost(flow,.)< cost(M).

Proof: The proof is immediate from Lemma 3.3.1. m

We now show that the bound of Theorem 3.3.2 is tight.

THEOREM 3.3.3. Given T, r, s, there exists a matching M for r, s such that

cost(M)=cost(flow,,).

Moreover, if s is a whole placement, then M can be chosen so that
M(p, v) E N for all p, v E V.

Proof: We proceed by induction on the number #(r, s) of edges e for
which 1 flow,.(e)1 >O.

Basis: #(r, S) = 0. Then flow, Je) = 0 for every edge e. It follows
from Eq. (4) that r(p) = s(p) for all p. Hence, the function M defined
by Mb7 P) = r(p) and M(p, v) =0 when p # v is a matching, and
cost(M)=O= cost(flow,,) as desired.

’ Strictly speaking, we define flow,,(p, v) = flow,,,(e) if p = low(e) and v = high(e) for
some edge e, flow,,.(p,v)= -flow,,,(e) if p=high(e) and v= low(e) for some edge e,and
flow,,~(p,v)=O if {p, v)$E.

4 Recall that we do not require a matching to be integral,

18 FISCHER ET AL.

Znductiue step: #(r, s) > 0. We first show that there are nodes p, v such
that flow,,(p, v) >O, and for all p’, flow,,,(p', v) 2 0. In words, there is
a node v with inward flow along some edge and no outward flow. Suppose
this were not the case. Then from every node o with positive inward flow,
there would be another node o’ # o for which flow,., s(o, w’) > 0. Because
T is finite and a tree, a simple induction would show that
there must be an edge (0, w’} for which flow,,.(W, w’) > 0 and
flow, ,(o’, w) > 0. But this is impossible by Eq. (5).

Let c = flow, ,(p, v). By Eq. (4) and the fact that no flow leaves u,
s(u) > c. Define a new placement s’ by

s’(p) = s(p) + c,

s’(v) = s(v) - c,

s’(a) = s(a) for all u #p, v.

Note that if s is a whole placement, then c = flow,,,(e) E N for all edges
e, so also s’ is a whole placement.

Now consider flow,,,. It is easily seen that

flow&4 v) = 0,

flowr,,.(a, t)= flOW,,,JG, z) for all (a, r) # (cc, v).

It follows that cost(flow,..) = cost(flow,,,)-c and #(Y,s’) =
#(r,s)- 1.

By induction, there exists a matching M’ for r, s’ such that cost(M) =
cost(flow, ,,). Moreover, M’ is integer-valued if s’ is whole. We define a
new matching A4 which is like M’ except that A4 assigns a total of c units
of requests to v which M’ assigned instead to p. Let a(o) denote the
amount of requests from 0 that are to be reassigned. Since C, M’(o, p) =
s’(p) 2 c, c(can be chosen so that total(T, CI) = c, cc(a) < M’(a, p), and c(
is integer-valued if M’ and c are. Now define M:

Ma, p) = M’(a, P) - do),
M(o, v) = M’(a, v) + Lx(a),
M(a, z) = M’(a, 7) if T # {p, v}.

It is easily verified that CT M(o, z) = r(g) and x0 M(o, z) =s(r) for all 7
and that M is integer-valued if s is whole. Thus, M is a matching
for r, s. Moreover, since only c resources were reassigned, cost(M) G
cost(M')+c= cost(flow,,). It follows from Theorem 3.3.2 that
cost(M)= cost(flowr,,s) as desired. 1

PLACEMENT OF RESOURCES IN A TREE 19

It follows from these theorems that the cost of the optimal matching is
the same as the cost of a particular flow, flow, s.

3.4. Expected Flow

From now on in the paper, we assume that T is rooted. Let Q be a
probability density function on V and recall that (S(top) = 0. A random
r: I/--+%+ can be chosen as follows: for each i in turn, 1 6 i< t, q5 is used
to select a vertex (other than top). Then for each VE V, r(v) is the total
number of times v is selected.

For edge e and placement s, let

edgecost,,(s)=expected value of Iflow,,(e)l,

where r is chosen randomly according to 4 as just described. This gives the
amount of flow across the edge e “averaged” over request sets. Note that
the edgecost measure is independent of edge orientation.

In the course of our development, we will be interested in the total
edgecost on the subtrees B(e) of T consisting of the edges “below” and
including e, so we define

treecost,,&S)= 1 edgecostd,&).
C/E B(e)

We are of course also interested in the total edgecost over the whole of T.
Since T = 8(roo tedge), we define our whole tree measure,

cost,(s)= treecost...,,,,,,d(S).

Our central problem is to minimize cost,(s) over all placements s with
total(T, s) = t. To do so, we will be looking at some constrained mini-
mization problems, namely, restricting the placements over which we are
minimizing to those which place a fixed number u E [0, t] of resources in
the subtree B(e). Thus, we extend the definition of edgecost to the domain
[d, t] by defining

edgecost,,

=min(edgecost,,(s) 1 total(B(e),s)=u and total(T,s)=t).

It follows from Eq. (7) and the definition of edgecost that the function
edgecost,, is a continuous function of s, where s can be regarded as
a vector in a vector space with dimension 1 VI. Since the minimum is taken
over a closed and bounded set, this minimum exists.

Intuitively, edgecost,, is the smallest average flow across e that
can be achieved by any placement that puts u resources on the subtree B(e)
and (t - U) resources on the subtree A(e).

20 FISCHER ET AL.

In a similar way, we extend the definitions of treecost and cost to
the domain [0, t], as follows:

treecost,+

=min{treecost,,(s) (total(B(e),s)=u and total(T,s)=t),

and

Since treecost,, is a continuous function of s, and the minimum is
taken over a closed and bounded set, this minimum exists.

Removing the constraint on the number of resources to be placed in
B(e), we define global quantities:

minedgecost,,4= min edgecost,,(
UE w, II

mintreecost,m= min treecost,,(
u E co. r1

Use of the minimum operator is justified as before. Note that minces t,
is independent of the particular choice for root edge.

We say a placement s is optimal for 4 and t if tot al(r, s) = t and

cost,(s)=mincost,.

It is easy to see that such a placement exists, for any 4 and t.
An optimal whole placement for ~+5 and t is a placement s that is both

optimal and whole. An optimal whole placement obviously has minimal
cost among all whole placements, but it is not a priori obvious that a mini-
mal cost whole placement is always optimal. We show in Section 4 that
optimal whole placements always exist.

4. OPTIMAL PLACEMENTS

In this section, we develop some useful and interesting properties of
optimal placements. First, in Section 4.1, we ask whether the total cost can
be minimized by minimizing the flow on each edge individually. A simply
stated and elegant result is that the number of resources which minimizes
the flow on an edge e, when placed anywhere in the subtree below e, is
either L tp J or r tpl, where p is the probability of a request being in the sub-
tree. (The actual placement of the resources in this subtree clearly has no

PLACEMENT OFRESOURCES IN A TREE 21

effect on the flow on the edge.) However, Example 4.1.8 shows that it is not
always possible to minimize the flow on all edges simultaneously.

Next, in Section 4.2, we show that whenever the probability of at least
one request arriving in a subtree is less than 4, it is never advantageous to
place any resources at all in the subtree. This result is used in Section 6 to
improve the efficiency of an algorithm for finding optimal placements by
allowing the tree to be pruned.

In Section 4.3, we derive properties of the function tree c o s t e, +(u), the
least total expected flow in the subtree B(e) for any placement of u E [0, t]
resources on the vertices of B(e). This leads to a recursive expression for
the treecost as a function of u and permits us to show that the treecost can
always be achieved by a placement that puts an integral number of resour-
ces on each node. In other words, the ability to split resources and place
fractional amounts on nodes is of no help, as long as the requests come in
integral units. This same recursive decomposition also leads to an efftcient
algorithm for finding an optimal placement.

Finally, in Section 4.4, we show how to convert an optimal placement
which may put fractional numbers of resources on nodes into another
optimal placement which puts whole resources on each node and which is
“close” to the original fractional placement. Also, the whole placement can
be found quickly.

4.1. Optimizing Flow on Individual Edges

In this section, we show that the function edgecost,(which
expresses the expected flow on an edge e in terms of the number u of
resources placed in the subtree below e, is convex, piecewise linear, and has
all singularities at integers. Moreover, edgecos t,(u) is minimized by
taking u equal to the median of a certain binomial density function.

We begin by giving an explicit characterization of the edgecost function.

THEOREM 4.1.1. Let p= total(B(e), q5), UE [0, t]. Then

edgecost, = pi(l -p)‘-’ Iu- il.

Proof: In the ith term of the series, IU - iI is the absolute flow across e
that results when exactly i requests land in B(e), and (:) pi(1 -P)‘-~ is the
probability of that event occuring. 1

THEOREM 4.1.2. Let q5 be a probability density function, t E N - {0}, and
eE E. Then edgecost,E F,.

Proof. By Theorem4.1.1, edgecost, is the sum of functions
g,(u)=cilu-iI, iEN, O<igt, where c, does not depend on U. Each gi,

22 FISCHER ET AL.

restricted to the interval [0, t], is a convex, piecewise linear function from
[0, t] to % + with a singularity at u = i. The result follows because addition
preserves all required properties. 1

LEMMA 4.1.3. Let u, U’E [0, t]. Then ledgecost,(edgecost,
< lu-24’1.

ProoJ: It suffices to show the result for U’ = u + 1, so assume that
u’=u+ 1. Let p= total(B(e),d). Then by Theorem 4.1.1,

edgecost, - edgecost, f = 4 : p’(l-p)‘-‘lu+l-iI- i ‘. p’(l-p)‘--‘/u-i]
j=o 1 (> ,=o 1
u

=
z(>

T pi(l-p)r-i- i
0

; pi(l -p)‘-’
;=o 1 r=u+l ’

=2i :
0

p’ (1 -p)‘-‘- 1.
r=O 1

Since

-1<2 E 0 ” p’(l-p)‘-‘-1<2 2 0 : pi(l -p)f-f- 1= 1,
i-0 1 i=O 1

we have ledgecost,(edgecost,(u’)l < 1, as needed. 1

Let t E N - (O}, 0 <p < 1. Let x be a random variable whose value is the
number of successes in t independent trials, each of whose probability of
success is p. That is, the value of x is given by the binomial density function
with parameters t and p. Define medi an(t, p) as the smallest c E N such
that Pr[x 6 c] 2 1.

LEMMA 4.1.4. Let 4 be a probability density function on V, let
ZEN-(O), and let eE E. Then edgecost, is minimized at u=
median(t,p), wherep= total(B(e),+b). Moreouer, ifOdu<median(t,p)
then edgecost, > edgecost,(median(t, p)).

Proof Write f for edgecost,, and let nEN, Odn<t-1. By the
calculations in the proof of Lemma 4.1.3,

f(n+l)-f(n)=2 i f
0

pf(l-p)‘-‘-l
i=O z

=2Pr[x<n]- 1.

PLACEMENTOFRESOURCESINATREE 23

As a consequence of Theorem 4.1.2, f is minimized at an integer u which is
the smallest integer n E [0, t - l] with f(n + 1) -f(n) nonnegative, if such
an n exists, or at u = t otherwise. In the former case, u is the smallest
integer n E [0, t - 11 with 2Pr[x < n] - 1 nonnegative, or Pr[x < n] 2 i;
that is, u=median(t, p). If no such n exists, then Pr[x <n] < $ for all
n<t--1. But since Pr[xdt]=l we have u=t=median(t,p). In either
case, u = median(t, p) is the smallest integer minimizing f: Since f is
piecewise linear, it follows that ,f(u) >f(u) if u E % + and 0 < v < u. m

Two results of Jogdeo and Samuels (1968, Theorem 3.2 and
Corollary 3.1) give the following theorem. It is also implicit in some earlier
work by Uhlmann (1963, 1966).

THEOREM 4.15 Let t E N, t 3 1, and 0 fp 6 1. Then

median((L~PI, rfpl}.

Since rp is the mean number of successes in t independent trials with
success probability p, this theorem implies that for a binomial distribution,
the mean and median differ by less than one.

Lemma 4.1.4 shows that placing med ian(t, p) resources in B(e) mini-
mizes the expected flow on e, and Theorem 4.1.5 shows that the median lies
close to the mean. We now show that any minimizing u lies close to the
mean.

THEOREM 4.1.6. Let I$ be a probability density function on V, let
tEN- {0}, let eEE, and let p= total(B(e),b). Let u be any value in
[0, t] which minimizes edgecost,(Then

ProoJ By Lemma 4.1.4 and Theorem 4.1.5, u>, median(t,p) L LtpJ.
Now let q= total(A(e), 4) = 1 -p be the probability of a request in
A(e), and let u = t - u be the number of resources placed on A(e) when u
resources are placed on B(e). Let edgec os t:(u) be the expected absolute
value of the flow on e when u resources are placed on A(e). Then
edgecost:(edgecost,(so u is a value which minimizes
edgecost:. By interchanging the roles of A and B, we can apply
Lemma 4.1.4 and Theorem 4.1.5 again to conclude that v > median(t, q) >
L tqj. Hence,

u=t-o<t-LtqJ.

Since t-LtqJ=t--Lt(l-p)l=rtpl, we conclude that u G rtpl. 1

24 FISCHER ET AL.

A natural question is whether it is always possible to place resources in
such a way as to simultaneously minimize the flow on all edges, and
thereby obtain an optimal placement. The following examples show that
this is sometimes, but not always, possible.

Example 4.1.7 shows that it is sometimes possible to place resources in a
way that simultaneously minimizes the flow on all edges.

EXAMPLE 4.1.7. Let T be a complete binary tree having 7 vertices
(excluding top) with maximum level 2. Let d(v) = 4 for each vertex v E V
except for top. Let is N - (01, t = 7i and let s be the placement which puts
i resources on each vertex. Then s simultaneously minimizes the edgecost
over each edge, by Theorem 4.1.6, and so is an optimal placement.

Example 4.1.X shows that it is not always possible to place resources in
a way that simultaneously minimizes the flow on all edges.

EXAMPLE 4.1.8. This example gives a tree and request probabilities for
which no placement minimizes the expected flow on all edges
simultaneously. Let T be the 32-leaf complete binary tree shown in Fig. 4,
t = 16, 4(v) = & for each of the leftmost 16 leaves, d(v) = & for each of the
rightmost 16 leaves, and 4(v) = 0 for all other vertices.

By Theorem 4.1.6, the edgecost on edge e is minimized by placing 15
resources in the subtree below e. The same theorem implies that edgecost
on an edge adjacent to a leaf is minimized by placing either 0 or 1 resource
on the leaf; computation using the formula of Theorem [4.1.1] gives an
edgecost greater than 0.9 for a placement of 0 resource and less than 0.7 for
a placement of 1 resource for each leaf in the subtree below e. Thus, placing

e

<

4 = 15/256 per leaf r$ = l/256 per leaf
FIG. 4. A tree for which no placement minimizes the expected flow on all edges

simultaneously.

PLACEMENTOFRESOURCESIN A TREE 25

1 resource on the leaf minimizes the cost on the adjacent edge. But then
to minimize the cost on every leaf edge we would have to place all 16
resources in the subtree below e, thus increasing the cost on e.

4.2. Subtrees with Zero Resources

In this section, we show that if the probability is less than i of at least
one request arriving in a subtree, then no optimal placement puts even
a small fraction of a resource anywhere in that subtree. It follows
(cf. Section 6.1) that in a complete d-ary tree with a symmetric probability
density function, no optimal placement puts any resource below level
rh, ti.

THEOREM 4.2.1. Fix probability density function 4 and fix t E N - (0).
Let e E E satisfy (1 -p)‘> i, where p = total(B(e), 4). Let s be an optimal
placement for 4, t. Then s(v) = 0 for all v E B(e).

Proof. Assume not, and fix e, s exhibiting the contrary. Choose e’ below
e to be a lowest edge (i.e., closest to the leaves) for which x =s(low(e’))
>O. Define a new placement s’, where s’(low(e’))=O, s’(high(e’)) =
s(high(e’))+x, and s’(v)=s(v) otherwise. We show that cost(f)<
cost(s), contradicting the optimality of s.

From the definition of edgecost,., e’ is the only edge for which s and
s’ have different expected absolute flows, so cost(s) - co s t(s’) =
edgecost,(edgecost,.(Let p,, = total(B(e’), 4). Applying
Theorem 4.1.1 and using the fact that Ix- iI -i> -x, we obtain the
difference f xo : p;, (l-p,,)‘P’(lx-i(-i)

i-0 l

=x. (2(1 -pg)‘- 1).

Since (1 -~,,)‘a (1 -p)‘> 4, the difference is positive, giving the needed
contradiction. 1

4.3. Optimal Placements in Subtrees

We now characterize the function treec OS t,(u), which represents the
least total expected flow in the subtree B(e) for any placement of UE [0, t]
resources on the vertices of B(e). Like edgecost,, treecost, is convex,
piecewise linear, and has all its singularities at integers. However, the
points at which it achieves its minimum appear to be harder to charac-
terize.

26 FISCHER ET AL.

THEOREM 4.3.1. Let I$ be a probability density function, let t E N - (0 1,
and let e E E. Let e,, ed be the immediate descendant edges of low(e), and
let UE [0, t]. Then

treecost, = edgecost, + min c treecost,,((8) u:~uc u I=1

Proof: Recall that for any placement S, treecost, is the total
expected flow in the subtree B(e), and treecost, is the least such cost,
subject to the constraint that exactly u resources be placed in B(e). It
follows immediately from the definitions that for any placement S,

treecost,(s)=edgecost,(s)+ c treecost,(
r=l

where e,, e, are the immediate descendants of edge e. Since
edgecost, depends only on total(B(e), s), the theorem then follows
by minimizing over all placements with total(B(e), S) = u and
total(T, s) = t. 1

Theorem 4.1.2 shows that edgecost,EF,. We now show that
treecost,EF,, and we relate the shape of treecost, to that of the
component functions edgecost, and treecost, appearing in Eq.8.
Lemma 2.3.4 provides the induction step for the proof that treecos t, has
the same simple form as edgecost,.

THEOREM 4.3.2. For any fixed probability density function 4, an)
tEN-(O}, andanyeEE, treecost,EF,.

Proof We use induction on edges in the tree, working from the leaves
towards the root.

If e is a lowest edge, then it is the only edge in B(e). Thus,
treecost, = edgecost,E F, by Theorem 4.1.2.

Now assume the result holds for edges below e, and let e,, ed denote
the immediate descendant edges of e. Consider the expression for
treecost, given in Theorem4.3.1. The first term is in F, by
Theorem 4.1.2, the second term is in F, by Lemmas 2.3.2 and 2.3.4, and F,
is closed under addition. 1

The following is immediate from Theorems 4.3.1 and 4.3.2.

COROLLARY. Let 4, e, etc., be as in Theorem 4.3.1. Then

treecost,

= edgecost,+ (treecost, * treecost,, * ... * treecost,,).

restricted to the domain [0, t].

PLACEMENT OF RESOURCES IN A TREE 27

Lemma 2.2.8 and Theorem 4.3.1 lead immediately to a dynamic
programming algorithm for computing mincost, and for finding an
optimal placement given a (rooted) tree T and probability density function
4. Moreover, the placement found consists of whole resources only.
Namely, one computes and stores tree c o s t .(u) for each edge e and each
integer u E (0, 1, t}, working from the leaves of T towards the root. We
will show that each such value can be computed in amortized time O(1);
hence the total time is O(mt), where m is the number of edges in T.

The algorithm works in four phases. In the first phase, it computes
pe= total(B(e), 4) for all edges e, working up the tree from the leaves.
This takes time O(m).5

In the second phase, it computes edgeco s t r(u) for each edge e and
each UE {0, 1, t}. Given e, it first computes

for n=O, 1, t. This takes time O(t). Next it computes edgecost, in
time O(t) using Theorem4.1.1. Finally, it computes edgecost, for
n = 1, 2, . ..) t using the formula

II-1

edgecost,(n)=edgecost,(n- 1)+2 c
0

: pi(t -P~)~-‘-- 1
i=o c

and the values previously stored (cf. the proof of Lemma 4.1.4). This takes
time 0(1) for each value of n for a total of O(t). Thus, the total time spent
working on edge e is O(t), or O(mt) for the whole tree.

In the third phase, it computes tree cost,(u) for each edge e and each
24 E { 0, 1, . ..) t}. Again it works up from the leaves. Let e,, ed be the
immediate descendant edges of e, and assume treecos t,,(u’) has already
been computed for each 16 id d and each U’ E (0, t }. It now computes
integer vectors u(“) for each n = 0, 1, t such that C II(“) < n and

treecost, = edgecost,(: treecost,(ui”)).
i=l

By Lemma 2.3.10, these vectors can be constructed so that
uCo)=(O,O, 0), and u(“+‘)=u(“)+&(“+‘) where 15(~+ ‘) either is
(0, 0, *-*, 0) or a unit vector. The vector chdsen for u(“+ ‘) among these
possibilities is the one which minimizes the value of

d

C treecost,(
i= I

5 By “time” we mean the unit-cost time measure for a RAM (Aho et al., 1974)

28 FISCHER ET AL.

Thus, to compute u(“+ ‘) from u’“‘, one finds the k which yields the greatest
reduction in treecost,,(u that is, the k which minimizes the dif-
ference

treecost,,(I)- treecost,,(u

If the difference for that k is Q 0, then take 6’” + ‘) = I, = (0, 0, 1, 0, 0),
the unit vector with a 1 in the klh component and O’s elsewhere. Otherwise,
take &(“+I) = (0, 0, 0). In this way, uCn + i) can be found from u(n) in O(d)
steps, so the time to compute treecost, for each value of n is O(dt).

To total up the time used in the third phase, let d, be the number of
immediate descendant edges of e. Summing over all edges, the total time is
0(x, d,t). However, 2, d, = rn - 1 since each edge except for rootedge is
counted exactly once. Hence, the total time for the third phase, as well as
the time for phases l-3 combined, is again O(M).

We have not yet actually produced a placement. A fourth phase can be
used to find an optimal whole placement S. In this case, the algorithm
works from rootedge down towards the leaves. Let u be a number of
resources that minimizes treecost,,,,,,,,(and let s(top) = t-u.
Then the algorithm has u resources to place on B(rootedge), and induc-
tively, it has n E N resources to place on B(e). If low(e) is a leaf, then
s(low(e)) = n. Otherwise, let u ‘n’ be the vector computed above which
minimizes xi treecost,(u!“‘). Let s(low(e))=n-Cu(“‘, and recursively
place u!‘l resources on each B(ei), where as usual e,, e, are the
immediate descendant edges of e. This takes an additional time of only
WC, de) = O(m).

The above proves the following:

THEOREM 4.3.3. Given a tree T, a probability density function I$, and a
number tE N - (01, there is an algorithm for computing mincost, and,for
finding an optimal placement s of t resources on T in time O(mt), where m
is the number of edges in T. The placement thereby produced is a whole
placemen 1.

Example 4.3.4 shows the edgecost and treecost for each edge in a tree.

EXAMPLE 4.3.4. Let T be a complete binary tree having 15 vertices
(excluding top) with maximum level 3. The probability density function 4
has value & for each of the leftmost four leaves, and value & for each of
the rightmost four leaves. We assume t = 4. The tree is shown in Fig. 5.

Let e, and ez denote the two edges hanging off the root. By symmetry,
for each iE (1,2), all of the edges at the same level in tree B(e,) have the
same cost.

Table 1 gives values of edgec o s t,(u), for all edges of the tree and for
all values of u. Nonroot edges e are identified by the notation ei,, i2,

PLACEMENT OF RESOURCES IN A TREE 29

levels (1

. / . /
Q = 3/16 per leaf 4 = l/16 per leaf

FIG. 5. The tree of Example 4.3.4.

where il, i2, . . . is the path from the root to low(e). A star (*) in the path
indicates that the same table line applies to both the left and the right
branches.

Table 2 gives the treecosts. Note, for example, how the entry for edge e,
and u = 3 is calculated. It is obtained by adding the corresponding
edgecost, which is 0.632812, to the minimum sum of treecosts for the edge
e,, , with u1 resources and e, 2 , with u2 resources, where the sum u, + u2 is
no more than 3. In this case, one can take ui = 1 and u2 = 2, yielding
additional costs of 2.176788 and 2.085999, respectively. The total treecost
is then 0.632812 + 2.176788 + 2.085999 = 4.895599.

The optimal placement is obtained as in the algorithm. In this case, we
obtain a placement as shown by the circles in Fig. 5.

TABLE I

Edge e 0 1 2 3 4

Table of Edgecosts.

Values of u

rootedge 4.OoOoO0 3.OOOOoO 2.oooooO l.OOOOOO O.OOOOOO
el 3.OOOoOO 2.007812 1.109375 0.632812 l.OOOOOO
e2 I.000000 0.632812 1.109375 2.0078 12 3.OOOOOO
el, . 1.5OOOOO 0.805176 0.842773 1.539551 2.5OOOOO
e2, . 0.5OOOOO 0.672363 1.514648 2.500488 3.5OOOOO
el, . . . 0.75Oc0o 0.621613 1.297791 2.252472 3.250000
e2, . . . 0.250000 0.794952 1.751892 2.75003 1 3.750000

30 FISCHER ET AL.

TABLE II

Table of Treecosts.

Values of u

Edge P 0 1 2 3 4

rootedge 16.OOOOOO 13.184601 10.462952 8.895599 7.528412
e1 900OoOo 7.184601 5.462952 4.895599 5.171997
e2 3.GQoooo 2.632812 3.109375 4.007812 5.OoOooo
el,. 3.000000 2.176788 2.085999 2.782176 3.143225
e2. . 1.00m 1.172363 2.014648 3.000488 4.oooooo
el, . . * 0.750000 0.621613 1.297791 2.252472 3.250000
e2. ,, . 0.250000 0.794952 1.751892 2.750031 3.75ooOo

4.4. Whole Placements

Theorem 4.3.3 shows that for any tree T and probability density function
4 on request arrivals, there is an optimal whole placement. Thus, the ability
to reduce granularity of resources by splitting into fractional sized pieces
does not result in superior placements.

We now show the more general result that any optimal placement s of
t resources can be converted to an optimal whole placement s’, and this can
be done in a way so that

l the total amount placed by s’ on each subtree B(e) is the floor or
ceiling of the total amount placed by S, and

l the amount placed by s’ on each node is the floor or ceiling of the
amount placed by S.

(Note that neither of these properties implies’the other.) Moreover, s’ can
be found quickly from s. This result will let us prove theorems for general
placements and then convert them to whole placements while preserving
the properties of interest.

We begin by showing that any placement s can be “rounded” to yield a
whole placement s’ satisfying the above two properties. Then we show that
if s is optimal, then any placement s’ which is sufficiently close to s is also
optimal. The placement obtained from s by rounding is sufficiently close in
the sense which we now make precise.

Let s, s’ be placements on T, and let e E E. We say S’ is an e-neighbor of
S, written s D, s’, if the following two conditions hold.

1. For every e’ E B(e),

Ltotal(B(e'),s)j<total(B(e'),s') <rtotal(B(e'),s)l.

PLACEMENTOFRESOURCESIN A TREE 31

2. For every v in B(e), Ls(v)] 6 s’(v) 6 rs(v)l.

We say s’ is a neighbor of s, written s D s’, if s ~~~~~~~~~ s’. Note that these
relations are transitive, but need not be symmetric.

LEMMA 4.4.1. Let s, s’ be placements on T. Ifs D s’, then

L.e0p)jwt0p)d rdtom

Proof: We have

s(top)=t- total(B(rootedge),s)

and

s’(top)= t- total(B(rootedge), s’).

Since

Ltotal(B(rootedge),s)J

6 total(B(rootedge), s’) < rtotal(B(

and t is an integer, it follows that

Lt - total(B(rootedge), s)]

Gt- total(B(rootedge), s’)<rt-- total

i.e., Ls(top)J~s’(top)drs(top)l. I

rootedge), s)l

For any UE’%+ and be (0, l}, let round,(u) = Luj if b =O, and
round,(u) = rul if b = 1.

LEMMA 4.4.2. Let T be a tree and let s be a placement of t E N - (0)
resources on T. Let e be any edge of T, and let u = to tal(B(e), s). Finally,
let b E (0, 1 }. Then there exists a whole placement s’ oft resources such that
s D, s’ and total(B(e), s’) = round,(u). Moreover, s’ can be found from s
in time O(mg.,,,).6

ProoJ We use induction on the height of e, working from the leaves
towards the root.

If e is a lowest edge, then it is the only edge in B(e). Let v = low(e), and
define s’(v) = round,(s(v)).’ The properties of the lemma trivially hoId.

6 Recall that mg,,, is the number of edges in b(e).
’ Technically speaking, we should define S’ on all of T. However, the properties of interest

of s’ depend only on its values on the nodes of B(P), so we leave the remainder of .F’
unspecified.

32 FISCHER ET AL.

Now assume the result holds for edges below e. Let e,, ed denote the
immediate descendant edges of e, and let v = low(e). Let u0 = S(V) and let
ui = total(B(ei), s). With these definitions, u = C:‘=, ui.

We claim that there exist h,, hd6 (0, 1 $ such that

d

c round,,(u,) = round,(u).
i=O

(9)

This follows from the facts that

i round,(u,) 6 round,(u) < round,(u) < i round, (ui)
i=O i=O

and round,(u;)- round,(u,) = 1 if ui$ N, so complementing such a bi
changes the sum by + 1. We may assume without loss of generality that
b; = 0 if USE N since then roundI - round,(u,) = 0.

Let k= roundb(u), and let k, = roundb8(ui), i=O, 1, d. By induction,
for 1 6 id d, there exist placements s,! satisfying the statement of the lemma
for ei and bi, so in particular, total(B(ei), si) = ki. Let s’ coincide with s(
on B(e,), and let s’(v) = k,. We have s D,, s’ by construction and the induc-
tion hypothesis. Also

total(B(e),s’)=k,+ i kj= i round,,,(u,) = round,(u).
i=l i=O

Thus, s’ has the needed properties.
We now consider an algorithm to find s’ from S. The algorithm proceeds

in two phases. The first phase computes and stores total(B(e’), s) for
each edge e’ in b(e). This takes time O(ms(,,) by working up the tree from
the leaves.

The second phase works recursively starting at e and roundb(u). The
algorithm first finds b,, bd satisfying Eq. (9). It next sets

s’(v) = round,,,(s(v)).

Finally, it applies itself recursively to each of the pairs ei, b, to complete the
computation of s’. The total time is easily seen to be O(rn~,,,) once we
show how to compute the b’s in time O(d).

In fact, the b’s can be computed quite simply. Assume for the moment
that b=O and define $ ~, = U- round,(u). Then $-r E [0, 1). For
i=O 3 d, consider ~9’ = t,b-, - ui + roundbs (u,) for each 6’ E (0, 1).
Exactly one of the two values for 6’ puts $’ in the range [0, 1). Choose hi
to be that value, and let ll/i be the corresponding value of +‘. Then

PLACEMENT OF RESOURCES IN A TREE 33

$,=u--roundb(u)- i ui+ i round,,(ui)
I=0 i=O

= - round,(u)+ i round,,(u,).
I=0

Hence, $d~ N, but since also I,!I~E [0, 1) we have tiJ= 0. Thus, the his so
constructed satisfy Eq. (9). The case h = I is handled similarly. In either
case, it is clear that the time required is only O(d). 1

LEMMA 44.3. Let T be a tree and let s, s’ be placements oft E N - (0)
resources on T. Assume that s D s’. Ifs is an optimal placement oft resources
on T, then s’ is also an optimal placement.

Proof: We first show by induction that for every edge e in T,

treecost, = treecost,(total(B(e), s’)),

that is, s’ is optimal on every subtree for the number of resources which it
places there.

The base case is trivial since if e is a lowest edge, then there is only one
way of placing U’ = to tal(B(e), s’) resources on B(e).

Now assume the result holds for edges below e. Let e,, ed denote
the immediate descendant edges of e, and let v = low(e). Let u;=
total(B(e,),s) for I<i<d, and let U= total(B(e),s). Similarly, let
ul= total(B(ei),s’), and u’= total(B(e),s’). Note that for any i, if
U,E N, then ui=u,, and in any case, round,(u;) 6~; 6 round,(ui).
Similarly, round,(u-Cu)<u’-Cu’<round,(u--Cu).

Let f, = treecost,, 1 6 i d d, and let f = (fi * f2 * . . . a fd).
u = (241, ud) is optimal for u and (f,, fi, ..,, fd) since s is optimal. Thus,
by Lemma 23.9, II’ is optimal for U’ and (fi , fi, fd). This implies that

Cfil”l) =f < (u’).

By the induction hypothesis,
fh’) =.L44)

for 1 < id d. Hence,
treecost,(edgecost, +cf,(s’)

= edgecost, + 1 fi(u()

= edgecos t,(u’) +f< (u’)

= treecost, (by Theorem 4.3.1)

= treecost,(total(B(e), s’)).
The claim follows by induction.

34 FISCHER ET AL.

Thus, in particular, we see that

cost(S')=treecost~OOtedpe(S')

=treecost .o,t,dp,(total(B(rootedge), 0).

Now let u = U’ = t,

u,=total(B(rootedge),s),

and

u’ , =total(B(rootedge),s').

Let d= 1, fi=treecostrOotedge. Lemma 4.4.1 allows us to apply
Lemma 2.3.9 once again, which yields that u’ is optimal for u and (f,). This
implies that

But the right side of the preceding equation is just mincost. Putting these
equations together yields cost(s')=mincost, as needed. 1

The following main theorem says that ifs is optimal, then there exists an
optimal whole neighbor s’ that can be found quickly from S. Thus, the best
of the whole placements is also optimal among all placements, and the cost
of finding it is little more than the cost of finding any optimal placement.
In other words, restricting attention to whole placements imposes no
penalty in terms of the quality of the placement obtained and little in terms
of the time to find it.

THEOREM 4.4.4. Let T be a tree and let s be an optimal placement oft E
N - (0) resources on T. Then there exists an optimal whole placement s’ of
t resources such that s D s’. Moreover, s’ can be computed from s in time
O(IE,I 1.

Proof: This is an immediate consequence of Lemmas 4.4.2 and 4.4.3. [

In general, even if a placement s is not optimal, Lemma 4.4.2 gives us a
whole neighbor s’, but now we do not know that s’ is optimal. However,
just from the individual edge bounds, we can give an upper bound on the
cost of s’ in terms of the cost of s.

THEOREM 4.4.5. Let T be a tree and let s, s’ be placements of t E N - { 0]
resources on T. Zfsc-s’, then cost(s’)<cost(s)+ lETI.

PLACEMENT OF RESOURCES IN A TREE 35

ProoJ: Fix any edge e, and let u=total(B(e),s) and u’=
total(B(e), s’). Then LU J < U’ 6 rul, since s D s’. So IU - ~‘1 < 1. Lemma 4.1.3
implies that ledgecost, - edgecost,(u’)l 6 1. Summing over all the
edges yields the result. 1

5. FAIR PLACEMENTS

A very natural placement is to put a number of resources on each node
equal to the expected number of requests at that node. We call this the
“exact fair” placement. Rather surprisingly, the exact fair placement is not
always optimal, but we show that its cost is never more than lErj greater
than the cost of the optimal placement. We also show that its cost is only
O(G), where the constant implicit in the “big-oh” notation depends on the
tree T. This provides an upper bound on the cost of the optimal placement
as well.

5.1. Fair Placements

For any T, 4, t, and for each edge e E E, let pe = to tal(B(e), 4). Call
a placement s: V -+ % + fair if Ltp,J < total(B(e), S) < rtp,-j for every
edge e. If in fact to tal(B(e), s) = tpe for every edge e, then we say s is an
exact fair placement.

For any T, 4, and t, an exact fair placement exists and is unique, namely,
let s(v)= t#(v) f or v E V. Also, s is easily computed in time O(1 ETl). By
Lemma 4.4.2, it follows that there is a fair whole placement s’, and s’ can
also be found in time 0(I E, I). Note that in the special case that 4 is non-
zero only on leaves, then s and s’ are nonzero only on leaves.

The following theorem shows that optimality results for fair placements
carry over to fair whole placements.

THEOREM 51.1. Let T be an arbitrary tree, let 4 be an arbitrary
probability density function, and let t E N - (0). If there is an optimal fair
placement oft resources on T, then there is an optimal fair whole placement.

ProoJ The proof follows from Theorem 4.4.4. 1

Any placement that simultaneously minimizes the flow on each edge is
optimal, and by Theorem 4.1.6 it is also fair. However, the following
example shows that there does not always exist a placement which is both
optimal and fair, so it is also not always possible to place resources in a
way that simultaneously minimizes the flow on all edges.

EXAMPLE 5.1.2. Consider the complete binary tree with maximum level
6 in which the probability of a request at root is 0.04, the probability of

36 FISCHER ET AL.

a request at a leaf is 0.015, and the probability of a request elsewhere is 0.
Consider the case where f = 64. Then no fair placement is optimal.

Fair placements are constrained to place the following numbers of
resources in subtrees of level j:

.i Number of resources

0 64
1 300r 31
2 15 or 16
3 7 or 8
4 3 or4
5 1 or2
6 Oor 1

Calculating edgecosts using Theorem 4.1.1 shows that the choices which
give the smaller costs on the edges leaving the respective subtrees are 64,
31, 15, 8, 4, 2, and 1. It is not difficult to see that there are only two
reasonable candidates for an optimal fair placement:

(a) Place 31 resources in each level 1 subtree and 15 resources in
each level 2 subtree. At levels 3 and below, place the larger possible choice
in as many subtrees as possible, and the smaller possible choice in the
others.

(b) Place 31 resources in each level 1 subtree, 15 resources in two of
the level 2 subtrees, and 16 resources in the other two level 2 subtrees.
Again, at levels 3 and below, place the larger possible choice in as many
subtrees as possible, and the smaller possible choice in the others.

However, the placement in which one resource is located at every leaf
has a smaller cost than either fair placement (a) or (b).

The following theorem gives a special case in which fair placements are
optimal.

THEOREM 5.1.3. Let T be an arbitrary tree and let t E N - {O}. Suppose
4 is such that tp, E N for all edges e. Then the exact fair placement s of t
resources on T is optimal.

Proof Since to tal(B(e), s) = tp, E N, s is a whole placement, and by
Theorem 4.1.6 it simultaneously minimizes edgeco s t, for all edges e.
Hence, s is optimal. 1

Example 4.1.7 gives a special case of this theorem-a tree for which the
minimum cost for each edge is in N. Another special case of this theorem
is given by the following example.

PLACEMENTOF RESOURCES IN A TREE 37

EXAMPLE 5.1.4. Let T be a complete d-ary tree with dh leaves. Let
t = idh for iE N - {0}, and let 4 be the uniform distribution on the leaves.
The exact fair placement, which puts i resources on each leaf and 0 else-
where, is optimal.

Another case for which there exist optimal fair placements (and hence,
optimal fair whole placements) will be given later in Theorem 63.1. We
now show that fair placements are never too far from optimal.

THEOREM 5.1.5. Let s be any fair placement for an arbitrary tree T, an
arbitrary probability density function $, and arbitrary t E N - (0). Then
mincost <cost(s)<mincost +m, where m is the number of edges in T.

Proof: By Theorem 4.1.6, edgecost, is minimized at some u’, where
Ltp,J<u’<rtp,l andp, =total(B(e),d). Lets be a fair placement, and
let u= total(B(e),s). Since s is fair, LtpJ6udrtpl.

Thus, (u- u’j B 1. But then Lemma 4.1.3 implies that ledgecost,(
edgecost, 6 1. Thus, s incurs at most an extra cost of 1 per edge
over the optimal placement. 1

5.2. Bounds on Fair Placements

We now turn to the analysis of the exact fair placement on an arbitrary
tree T. For each edge e of T, we define a constant j?, inductively. If e
is a lowest edge, then /?, = 1. Otherwise, let e,, ed be the immediate
descendant edges of e. Then

Se=l+ J-- i fit,.
i= I

As before, let pe= total(B(e), 4).

THEOREM 5.2.1. Let T be an arbitrary tree, let t E N - {0}, let qS be a
probability density function, and let s be the exact fair placement for t and
~4 on T. Then

for c-a.

cost(s) 6 CBrootedgeJfProotedge

We will need several lemmas to establish this result. Lemmas 5.2.2 and
5.2.3 provide a rather surprising closed form for the summation given in
Theorem 4.1.1 for edgecost,(One would expect to see summations of
this form in other contexts as well, so that these lemmas may well have
broader application.

38 FISCHER ET AL.

LEMMA 5.2.2. Fort~N-COJ,sdt-1,06p61, itisthecasethat

s t
a p’(1 -p)‘+‘(tp-i) = tp

t-l
i

p”(1 -p)‘-- r,
i=O (1 s

Proof: Applying the identity i(:) = t(:: :) gives

t 0 t
i 0 t-l

pi(l-p)‘-‘(tp-i)=tp i p’(l-p)‘-j--t i-l ~~(l-p)~~~, (>
for 1 d i < t. Since (i) = (‘; ‘) + (:I i), this expression is in turn equal to

t-l
tP () i

pi(1 -p)‘-i+ tp
t-l

()

t-l
i-l p’(l-p)‘-‘-t i-l $(1-p)’ i

()

t-l

()
p’(1 -p)“- tp

f-l
= tp

i ()
i- 1 pi-l(l -p)t-(r-l).

Summing from 1 to s, we get

tp[i (tJ1)pi(iep)~-i- i (~I:)p”(*-p)‘~‘~-O].
i=l i=l

Changing the limits of summation gives

tp[i (t~l)p’(lp)’ -~-~~l(‘~l)p;(l-p)~~i]
i= I i=o

t-l

[(>
p"(l -p)'-" -

t-l
= tp

S (>
o pO(1 -p)‘-O . 1

Putting this all together gives

s

Eo
: pi(l -p)f-i(tp-i)

j=o 1

= 0 ; pO(l -pyytp-o)+ i : pi(1 -p)‘-‘(tp-i)
0 i=l ’

= tp(1 -p)‘+ tp
t-l K > s p”(l -p)‘-“-

t-l

(>
o POU -pro 1

t- 1
= tp (> S

p”(1 -p)‘+“. 1

PLACEMENTOF RESOURCESIN A TREE 39

LEMMA 52.3. Z~IEN-(O}, 06~~1, then

pi(1 -pyqtp- i\ = 2tp

Proof. Applying Lemma 5.2.2 to the summation for i from 0 to Lfp _I,
we get

I
c() : p’(1 -p)‘-‘ltp-iI
j-0 1

LVJJ f
= C (.)p’(l-p)“(fp-i)- t,

0
: p’(1 -py-‘(tp-i)

i-0 1 i=LrpJ+l 2
LPJ

=2 1 f p’(l-p)‘-‘(tp-i)- i “. pi(l-p)‘-‘(tp-i)
i=O 0 0 j=o 1

pLvJ(l -p)'-LwJ -

But by rearranging terms and applying the identity i(:) = t(:: i), we see
that the summation in the second term of the last line above is 0: I xo : p’(1 -p)‘-‘(Q-i)

i=o 1 f = c(j ! p’(l -p)f-i q- i ; pql -p)f-ii
j=o 1 i= 1 0

=fPi: ; P’(1 -PY- IP i
t-l pi-l(l -p)(‘-lI-~‘-ll

i=o 0 i= 1 (!
i- 1

= tp - tp = 0. 1

The next lemma provides tight upper and lower bounds on edgec OS t,,
for p bounded away from 0 and 1.

LEMMA 5.2.4. Let t E N, t B 3 and assume 16 tp < t - 1. Then

&l(t)/=< edgecost, < E2(t) /m,
where~~(t)=~(~-~~((1/((12t+l)(t-1))))and~,(t)=(l-t/(2t+1)~).

Proof: Using the form of Stirling’s formula (Feller, 1950):

~nn+li2e-nei12n+I)~‘<n~<~nn+I/2e-ne~12.~-’,

40 FISCHER ET AL.

we can bound (;):

t r+ I,‘2

f,(j) < t -=c
0

t
1+ Ii2

@j’+ Il’(t g-i)+ l/2 j Jgji+ l/1(t -j)(r-i)+ l/Z
s,(jL

where

,h(j)=exp --L.--l-L
(12t+l 12j 12(t-j))

and

g,(j)=exp J-----.-
(

1 1
12t > 12j+l 12(t-j)+ 1 ’

Define $,(j) so that

Then clearly f,(j) < +,(j) <g,(j).

From Theorem 4.1.1 and Lemma 5.2.3,

edgecost,

= (JmP(t- LtpJ
CGl(&,LZPJ

t - tp

(>

t -LWJ

x t-LtPJ *,(LtPJ)

=/y&F) (&)‘“l (+j$j)“” ti,cLtP,J.

PLACEMENT OF RESOURCES IN A TREE 41

Thus we need only show that

First, we examine t,G1(Ltp]). Sincef,(LtPd) < $,(Ltp]) <g,(LtpJ) we find
a lower bound for f, and an upper bound for g, for j an integer in the range
1 6j < t - 2. f,(j) is minimized at the endpoints of this interval, so taking

j= 1, we have

(1 1 1
f,(j)>exp ---- 12t+l 12 12(t-1) >

((1
= exp - ‘+A?.

12 12 (12t+l)(t-1) 1) .

Two terms of Taylor’s formula give

e -“=lvx+ ; e-v
0

for q E [0, x],

so

Thus,

e -“a 1 -x when x>O.

f,(j)a!-!-E. l

12 12 (12t+l)(t-1)
=2&,(t).

Similarly, g,(j) is maximized at j = t/2, so that

Three terms of Taylor’s formula give

so

Thus,

x2
e --y-xfy when x>O.

g,(j) 1
1 1 t

G - 2(2t+1)+8(2t+1)2 d 1 - -= (2t + 1)2 %(t).

FISCHER ET AL. 42

Hence,

Finally, let

SO

It suffices to show that h(tp-Ltpj) lies in the interval [i, 11, for then

We show in fact that hi [i. l] for all 6 E [0, l), t >, 3, and
1 6 Ltp _I < t - 2. By examining the derivative and the extreme values, we
see that h is a monotone decreasing function of 6, decreasing from a maxi-
mum of 1 when 6 = 0 to a minimum of

as 6 approaches 1. The first factor is increasing in Ltp J and is minimized
when Ltp _I is as small as possible, i.e., when Ltp J = 1. The second factor is
increasing in t - Ltp] and is minimized when t - Ltp_I is as small as
possible, i.e., when t - Ltp _I = 2. Hence, 1 > h(6) >, h(1) > i as desired. 1

Lemma 5.2.5 provides an upper bound on edge cost, for use in
Lemma 5.2.6.

LEMMA 5.2.5. For all trees T= (V, E) and all probability density
functions 4 on T, and for t E N - {O} and 0 6p < 1,

edgecost,(

Proojf: Using Lemma 5.2.4, we see that for Ltp] between 1 and t - 2,
inclusive,

edgecost, <

PLACEMENT OF RESOURCES IN A TREE 43

For Ltp _I = 0, Lemma 5.2.3 gives

edgecost, = 2tp

= 2tp(1 -p)‘.

Let p be the ratio of edgecost, to the desired bound, so

2fP(l -P)’

p=c2/&,JG
=J7ctp (1 -p)‘.

We wish to show that p d 1. Fixing t, we find that p is maximized when
p = l/(21 + 1). Substituting in, we get

&3-53

G&(1-$

IT
d y-e

J
~ l/3

= 0.898 . . . < 1.

Similarly, for Ltp J = t - 1, Lemma 5.2.3 gives

edgecost, = 2tp

= 2rpy 1 -p).

This time, the ratio of edgecost, to our bound gives

2fP’(l -P)

p=wJ;;l&
=fip+“2(1 -p).

Calculus shows p is maximized by taking p = (t - $)/(t + f-). Substituting in,
we get

pqqg-“2(l-$)

44 FISCHER ET AL.

If t = 1, this simplifies to

If I 2 2, we have

since both of these factors are less than 1.
Finally, if LtpJ=t, then p= 1, so edgecost,(tp)=O. 1

This last lemma is proved inductively and implies Theorem 5.2.1.

LEMMA 5.2.6. Let T be an arbitrary tree, let tE N - {0}, let C$ be a
probability density function, and let s be the exact fair placement for t and
I$ on T. Let e E E. Then

for c = 2/V:;;.

treecost,(c/l, 6,.

Proof: We use induction on edges in the tree, working from the leaves
towards the root.

If e is a lowest edge, then s(low(e))= tp, and /?,= 1, so treecost,
= edgecost, <cfiP by Lemma 5.2.5.

NOW, assume the result holds for edges below e. Let e,, ed denote the
immediate descendant edges of e, and let v = low(e). By the definitions,

treecost, = edgecost, + c treecost,(
,=l

By the induction hypothesis,

treecost, <cfi,, Jtpe,.

By Lemma 5.2.5,

edgecost, d c ,/tp,.

Hence, putting everything together, we have

treecost, d c fi + i (cpe, fi).
i=l

PLACEMENTOFRESOURCESIN A TREE 45

Applying Schwarz’s inequality’ to the second term, we get

treecost,(s)6c~+cJ’f(~)(~)

641 +Jm&h since C pe, 6 pe

COROLLARY. Let T be an arbitrary tree, let t E N - {0}, let 4 be a
probability density function, and let s be any fair placement on T for t and
I$. Then

costbf~ cB,,,tedgeJtProotedge + lETI

for c = J2Jn.

Proof. The proof is immediate from Theorems 5.2.1 and 5.1.5. 1

If T is a complete d-ary tree, then a simple inductive argument shows
that j?, = &, where k, is the number of leaves in B(e). Hence, we obtain
the following theorem as a corollary to Theorem 5.2.1.

THEOREM 5.2.7. Let T be a complete d-ary tree, ~,4 an arbitrary proba-
bility density function, and t E N - {O}. Let s be the exact fair placement for
t and I$ on T. Then

cost(s) G c ~kfprootedge
for c = fi and k the number of leaves of T,

We call s a centralized placement if s(v) = 0 everywhere except at root,
and s(roo t) = t. For such an s, and assuming ali requests appear at the
leaves with equal probability, we have cost(s) = t log, k. The ratio of
expected cost for a centralized placement to the exact fair placement is at
least

t log, k

CJG’

When t is small relative to @, then the centralized placement is superior.
However, for t=&?(k), the exact fair placement is better by a factor of
sZ(log, k) , and for t >> k, the ratio approaches 4.

Similar remarks apply to fair placements in general, using Theorems
5.1.5 and 5.2.7 to bound the cost of any fair placement by c Jkt + m, where
m is the number of edges of T, and observing that

kd- 1
m=yyIj-

for a complete d-ary tree.

* x:(x, .Y,) G cm) (Jr3

46 FISCHER ET AL.

6. PLACEMENTS ON SYMMETRIC TREES

Not surprisingly, the placement problem becomes somewhat simpler in
the case of a complete d-ary tree with a symmetric probability density func-
tion 4. In such a tree, we can use the following notation without ambiguity:

4(j) = f$(v) for all vertices v at level j.

pi= total(B(e), 4) for an edge e with low(e) at level j.

edgecost,= edgecost, for all edges e with low(e) at levelj.

treecost,= treecost, for all edges e with low(e) at levelj.

6.1. Levels with Zero Placement

In the special case of a complete tree T with a symmetric probability
density function 4, we can characterize levels below which it is suboptimal
to place any resources.

THEOREM 6.1.1. Let T be a complete d-ary tree with d 2 2, let 4 be a
symmetric probability density function, and let s be an optimal placement for
4 and t E N - (0). Assume further that t > 1 or d > 2. Then s(v) = 0 for every
vertex v at level j> rlog, t].

Proo$ Define p, as above. The number of nodes at level j is dj, so
pj d l/d’.

If t = 1, then d > 2 by assumption, so pj < : for j > 1. Theorem 4.2.1 gives
s(v) = 0 for all v of level 1 or greater as desired.

Now assume t > 1. From Theorem 4.2.1, it suffices to show that

I-
Let h satisfy dhp ’ < t 6 dh, i.e., h = rlog, tl. Then

so that it suffices to show the inequality

for x = dh. This follows since (1 - l/(dx))” is a monotone increasing
functionofxandd, bothxanddare >,2,and(1-1/(2.2))2=&>f. 1

PLACEMENT OF RESOURCES IN A TREE 47

f -1

levels (

\A A

0 A
FIG. 6. The case t= I and d=2

EXAMPLE 6.1.2. The case where t = 1 and d = 2 is somewhat peculiar.
The reader can verify that for all T with 2 levels, with d(v) = 0.5 for each
node v at level 1, and 0 elsewhere, the diagrams in Fig. 6 all represent
optimal placements. That is, in the first case,

s(v) =
1 for v = root,
0 otherwise,

while in the other two cases,

i

1
s(v)= o

for v the left (resp. right) child of the root,
otherwise.

These are the only values of d and t for which an optimal placement can
have nonzero values below level rlog, tl.

Theorem 6.1.1 lets us ignore certain levels when computing an optimal
placement for a complete d-ary tree with a symmetric probability density
function 4.

EXAMPLE 6.1.3. If h E N, k >, t = dh, and $ is symmetric and nonzero
only on leaves, then the placement with one resource on each of the t ver-
tices at level h is optimal: nothing is placed below this level, and an optimal
placement for the whole tree results from an optimal placement within
levels up to h. Since allocating exactly one resource to each of these vertices
minimizes edgeco s t, on all edges simultaneously, this placement is
optimal.

Let T be a tree with k leaves, and assume k 2 t. We will use the following
notation: Let T, = (V,, E,) denote the tree consisting of the vertices of T at
levels from - 1 to rlogd tl inclusive and the edges of T between them. The

48 FISCHER ET AL.

leaves L, of T, are the vertices at level [log, tl of T. Let 4, be defined on
the vertices v of L, with v= low(e) by

dt(V) = total(B(e), 9) =Prbg,,rl

and on v E V, - L, by d,(v) = 4(v).
By Theorem 6.1.1, no optimal placement will have S(V) # 0 for v below

level rlog, tl. And if s: I/ + ‘3 + is such that s(v) = 0 for all v E V at levels
below rlog, tl, then s , : V, -+ ‘$3 + can be defined from s simply by ignoring
the missing vertices.

Let
rlogdki

extracostCT'= icr,o;,l+, bw~~wkdl~.

This represents the expected cost of moving requests which appear at
vertices of T below the lowest level of T, to resources on level rlog, tl.

In the special case where 4 is nonzero only on leaves, d(i) = 0 for
i < [log, kl and 4(i) = l/d’ for i= rlog, kl, SO

extracost'T'= t~a-b3,kl-rhLi~l).
In any case, it is easy to see that

cost"'(s)= costCr"(s,)+ extracost"'.

(Superscripts distinguish the trees under consideration.)
The following theorem allows us to construct an optimal placement for

T with request probabilities 4 given an optimal placement for T, with
request probabilities dr, where t 6 k.

THEOREM 6.1.4. Zf k 3 t > 1, then

ProoJ: An optimal placement S, for T, can be augmented to a place-
ment s for T by letting S(V) = 0 for vertices at levels greater than [log, rl,
so that

Conversely, any optimal placement s for T can be restricted to a placement
S, for T,, as described above. The cost of placement s is

mincostCT

PLACEMENT OF RESOURCES IN A TREE 49

6.2. Complete Trees

In this subsection, we show that a complete d-ary tree in which the
request arrivals are symmetric has an optimal placement s which is also
symmetric in the sense that s places the same number of resources on every
node of a given level. Because of the symmetry, s can be completely
described by listing for each level the number of resources which it places
on every node of that level. Moreover, only one subtree of each level need
be examined in determining s, so the time needed, when the algorithm of
Theorem 4.3.3 is modified in the obvious way, drops to 0(td log, k), where
k is the number of leaves of the tree. We shall see in Theorem 6.2.2 that the
time can be reduced still further to O(min{P, log, t} + t).

Theorem 4.4.4 can also be modified to yield from s an optimal whole
placement s’ such that s D s’ at the cost of only O(min(e, log, t })
additional operations. Because this bound is in general much smaller than
the number of nodes in the tree, we must find an economical way of
describing s’.

We begin by presenting a refinement of the characterization of the
function treecos t for symmetric probability density functions 4.

THEOREM 62.1. Let T be a complete d-ary tree with maximum level e.
Let q5 be a symmetric probability density function, let t E N - (01, and let
h E N, with h < &. Then for all u E [0, t],

treecost,

= edgecost,

+dmin{treecosth+,(u’) 1 U’E (0, 1, Lu/dJ, u/d}}. (10)

Proof: d is clear. We show 2. Write f for treecost,,,, and define
fi = f for all i, 1 < i < d.

Let u be optimal for U. By Theorem 4.3.1,

treecost,(edgecost,(f(Ui).

We will prove the theorem by producing U’ E (0, 1, Lu/dJ, u/d} with
df(u')GCf(ui).

Let n be the left minimum off: (Recall the definition in Section 2.2.) We
consider two cases.

Case 1. u>dn. Choose u’=n. U’E (0, 1, La/d_]} and df(u’)<
C f(ui), since U’ minimizes f over the interval [0, t].

Case 2. u < dn. Then Lemma 2.3.11 implies that C ui = U. Choose
U’ = u/d. Then df (u’) = df (C ui/d) < C f (ui) by convexity off: 1

50 FISCHER ET AL.

COROLLARY. For any complete tree T, symmetric probability density
function cj, and t E N - (0 1, there is an optimal placement s of resources such
that s(v) = s(v’) for all pairs of vertices v, v’ at the same level.

Theorem 6.2.1 leads immediately to an algorithm for finding an optimal
placement which is also symmetric in the case of a complete tree and a
symmetric request function. Namely, proceed as in the algorithm of
Theorem4.3.3, but it is only necessary to compute edgecostj(u)
and treecostj(u) at level j for UE (0, 1, [t/d’]}. For each such u,
treecostj(u) is computed using Eq. (10). In doing the minimization,
values of treecost,+, h ave been computed previously for
u’ E (0, 1, [u/d]} since

To compute treecosti+,(u') for u’=u/d, one may interpolate between
treecost,,, (Lu/d_l) and treecost,, ,(ru/d]) since treecostj+, is
linear on the interval [Lu/dj, [u/d]]. By observing that the sequence of
minimizing u”s corresponding to successive values of u is (weakly)
monotonic, it is possible to compute all of the needed values at level j in
0(1 + t/d’) steps. Summing over all levels gives a total time of 0(e + t).

In case 8 > log, t (that is, k = d’ > t), from Theorem 6.1.4, it suffices to
find an optimal placement for 4, in T,. But T, has maximum level rlog, tl,
so the time required is only O(rlog, tl+ t). (One minor detail is worth
mentioning: it is necessary to compute the leaf probabilities for 4, in T,
within time O(rlog, tl+ t). This can be done without examining the CJ~
probabilities for levels of T below rlog, tl, by calculating the total prob-
ability for 4 above level [log, tl, and then dividing the excess equally
among the leaves of T,.)

This proves the following:

THEOREM 6.2.2. Given a complete d-ary tree T with maximum level /, a
symmetric probability density function q5, and a number t E N - (O}, there is
an algorithm for finding a symmetric optimal placement s of t resources on
T in time O(min{/, log, t} + t).

In the remainder of this subsection, we give results about optimal whole
placements in symmetric trees.

COROLLARY. For any complete tree T, symmetric probability density
function 4, and t E N - { 0 >, th ere is an optimal, whole placement s such that
Is(v)-s(v’)l < 1 for allp airs o ver ices v, v’ at the same level. f t

Proof: The proof is by the corollary to Theorem 6.2.1 and Lemma 4.4.2.
I

PLACEMENT OF RESOURCES IN A TREE 51

Let s be an optimal placement such that s(v) = s(v’) for all pairs of ver-
tices v, v’ at the same level. By Lemma 4.4.2, an optimal whole placement
s’ with SD s’ can be derived from s in time O(m). We can combine this
bound with the bound from Theorem 6.2.2 to get a bound for producing an
optimal whole placement for a complete tree with symmetric probability
function. However, this bound does not adequately exploit the symmetry.

It is possible to obtain s’ from s at the cost of only O(min(e, log, t})
additional operations. Because this bound is in general much smaller than
the number of nodes in the tree, we require more economical ways of
describing s and s’. First, s is easily described by listing, for each level up
to min{e, rlog, tl}, the number of resources which it places on every node
of that level.

Second, we need an economical way of describing s’. Suppose s places ui
resources on a subtree whose root v is at level j. Then s’ places either Lu,_l
or ruil resources on that subtree. Thus, s’ can be described by the
following pieces of information for each level j:

1. the numbers Lu,_l and rujl,
2. the number of subtrees rooted at level j on which s’ places Lu,_l

resources and the number on which s’ places ru,l resources,
3. for each of the two kinds of subtrees rooted at level j, the number

of resources which s’ places at the root of the subtree, which is either
bb4-l or rwi.

This information is sufficient to reconstruct s’ in time linear in the size
of s (when s is represented economically) and so is a reasonable representa-
tion of s’.

Using these economical representations, the construction described for
Lemma 4.4.2 produces s’ from s in time O(min{/, log, t}).

6.3. Requests Only at Leaves

In this subsection, we examine trees which are complete and have sym-
metric probability functions, and in addition have requests arriving only at
leaves. In this case, we see that the corollary to Theorem 6.2.1 can be
strengthened to yield a fair placement. Recall that Example 5.1.2 shows that
not all complete d-ary trees with symmetric probability density functions
have optimal placements that are fair, so that the assumption that requests
occur only at leaves is necessary.

THEOREM 6.3.1. Let T be a complete d-ary tree and let 4 be a symmetric
probability density function that is nonzero only on the leaves of T with level
not equal to - 1. Let t E N - (0). Then there exists an optimal placement s
of t resources on T which has s(v) = s(v)) for all v, v’ at the same level, such
that s is fair.

52 FISCHER ET AL.

Proof Let s be the symmetric optimal placement of t resources given
by the corollary to Theorem 6.2.1. Then to tal(B(e), S) is the same for
every edge of the same level j, so let uj denote that common value.,

We now show that s is fair, that is, that Lqi_l d ui d rtp,l. Suppose not.
Let g be the least value ofj for which this condition is violated. g > 0 since
u,=t andp,=l. Then

U gP1=duR+s(g-l),

where for any j, s(j) = s(v) for v a node at level j. We consider two cases.

Case 1. uR > rtp,]. Then

so the condition is violated for g - 1. This contradicts the choice of g.
Case 2. ug < Ltp, _I. Then

du,<dLtp,J6Ldtp,l=Ltp,~,J6u,~1

by the choice of g. Hence, s(g) > 0. Since ug < Ltp, J 6 median(t, p,), we
have

edgecost, > edgecost,(median(t,p,))

by Lemma 4.1.4, where ej is any edge at level g. But then s is not optimal,
for moving min{s(g), median(t, p,) - u,} > 0 resources from high(e,) to
low(e,) would reduce the cost.

We conclude that s is in fact a fair placement, as desired. 1

COROLLARY. Let T be a complete d-ary tree and let 4 be a symmetric
probability density function that is nonzero only on the leaves of T. Let
t E N - (0). Then there exists a fair whole placement s of t resources on T
which is optimal.

Proof: The proof follows from Theorems 6.3.1 and 5.1.1. m

The final example shows that fair whole placements might be optimal for
symmetric trees even when the placements are far from being symmetric.

EXAMPLE 6.3.2. Consider the placement shown in Fig. 7. It represents
an optimal whole placement of 11 resources in a complete binary tree with
symmetric probability density function in which requests arrive only at
leaves. The optimality can be verified using the algorithm of Theorem 4.3.3.

9 The level of an edge e is the level of low(r).

PLACEMENTOFRESOURCESINATREE 53

FIG. 7. An optimal placement of 11 resources with equally likely requests only at leaves.

ACKNOWLEDGMENTS

We thank Carl Spruill, Charles Blair, and Mike Paterson for contributing their ideas and
suggestions for some of the results in this paper, and we are grateful to Gene Stark and
Shmuel Zaks for careful readings of early drafts. We thank Ken Goldman for writing a
program to compute costs according to the algorithm of Section4.3. We also thank the
anonymous referees for many helpful comments.

RECEIVED July 31, 1987; FINAL MANUSCRIPT RECEIVED July 30, 1990

REFERENCES

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. (1974) “The Design and Analysis of
Computer Algorithms,” Addison-Wesley, Reading, MA.

FELLER, W. (1950), “An Introduction to Probability Theory and Its Applications,” Vol. 1, 3rd
Ed., Wiley, New York.

FISCHER, M. J., GRIFFETH, N. D., GUIBAS, L. J., AND LYNCH, N. A. (1981), Optimal place-
ment of identical resources in a distributed network, in “Proceedings, 2nd International
Conference on Distributed Computing Systems,” IEEE, France.

GUIBAS, L. J., RAMSHAW, L., AND STOFLI, J. (1983), A kinetic framework for computational
geometry, in “Proceedings, 24th IEEE Symposium on Foundations of Computer Science,”
pp. lO&lll.

54 FISCHER ET AL.

JOGDEQ, K., AND SAMUELS, S. M. (1968), Monotone convergence of binomial probabilities
and a generalization of Ramanujan’s, Ann. Math. Statist. 39(4), 1191-1195.

LYNCH, N. A., GRIFFETH, N. D,.. FISCHER, M. J., AND GUIBAS, L. J. (1986), Probabilistic
analysis of a network resource allocation algorithm, Inform. and Control 68, 47-85.

PAPADIMITRIOU, C. H.. AND STEIGLITZ. K. (1982). ‘Combinatorial Optimization: Algorithms
and Complexity,” PrenticeeHall, Englewood Cliffs, NJ.

UHLMANN, W. (1963), Ranggrossen als Schatzfunktionen, Metriku 7, 2340.
UHLMANN, W. (1966) Vergleich der Hypergeometrischen mit der Binomial-Verteilung,

Metrika 10, 145-158.

