
INFORMATION AND CONTROL 68, 47--85 (1986)

Probabilistic Analysis of a Network Resource
Allocation Algorithm*

NANCY A. LYNCH

Massachusetts Institute of Technology,
Cambridge, Massachusetts

NANCY D. GRIFFETH

Georgia Institute of Technology,
Atlanta, Georgia

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

AND

LEONIDAS J. GUIBAS

Stanford University, Stanford, California, and DEC/SRC
Palo Alto, California

A distributed algorithm is presented, for allocating a large number of identical
resources (such as airline tickets) to requests which can arrive anywhere in a dis-
tributed network. Resources, once allocated, are never returned. The algorithm
searches sequentially, exhausting certain neighborhoods of the request origin before
proceeding to search at greater distances. Choice of search direction is made non-
deterministically. Analysis of expected response time is simplified by assuming that
the search direction is chosen probabilistically, that messages require constant time,
that the network is a tree with all leaves at the same distance from the root, and
that requests and resources occur only at leaves. It is shown that the response time
is approximated by the number of messages of one type that are sent during the
execution of the algorithm, and that this number of messages is a nondecreasing
function of the interarrival time for requests. Therefore, the worst case occurs when

*This work was supported in part by the Office of Naval Research Contract
N00014-82-K4)I54, by the Office of Army Research Contracts DAAG29-79-C4)155 and
DAAG29-84K-0058, by the Army Institute Research in Management Information and Com-
puter Systems Contract DAAK70--79-D4~87, by the National Science Foundation Grants
MCS-7924370, MCS-8116678, MCS-8200854, MCS-8200854, MCS-8306854, and
DCR-8302391, and by the Defense Advanced Research Projects Agency (DARPA) Grant
N00014-83-K~3125.

47
0019-9958/86 $3.00

Copyright © 1986 by Academic Press. Inc.
643/68/1-3-4 All rights of reproduction in any form reserved.

48 LYNCH ET AL.

requests come in so far apart that they are processed sequentially. The expected
time for the sequential case of the algorithm is analyzed by standard techniques.
This time is shown to be bounded by a constant, independent of the size of the
network. It follows that the expected response time for the algorithm is bounded in
the same way. © 1986 Academic Press, Inc.

1. INTRODUCTION

We consider the problem of allocating a number of identical resources to
requests arriving at the sites of a distributed network. We assume that the
network is configured as a tree. The nodes of the tree are processors and
the edges are communication lines connecting the processors. Processes at
a node may communicate only over the tree edges, with processes at other
nodes. Resource allocation is managed by a collection of communicating
resource allocation processes, one at each node. We will henceforth refer
only to the node, identifying it with both the processor and the resource
allocation process at the node.

From time to time, a request arrives at a node (potentially any node of
the network) from the outside world. One of the resources should even-
tually be granted to the request, subject to the following conditions:

1. No resource is granted more than once. (Once granted, a resource
is not returned. Thus, there is no legitimate reason to grant it more than
o n c e .)

2. At most one resource is granted to each request.

3. A node grants resources only to those requests which arrive at
that node.

4. If the number of requests is no greater than the number of resour-
ces, then each request eventually receives a resource.

5. If the number of resources is no greater than the number of
requests, then each resource is eventually granted to a request.

For convenience in describing allocation of specific resources to specific
requests, we assume that each resource and request has a unique identifier.

The execution model for this distributed network is event-based. Two
types of events may occur at a node: (1) a request may arrive from the out-
side world, and (2) a message may arrive from a neighbor in the tree. Each
event triggers an indivisible step at the node. This step may include chang-
ing state, sending messages to other nodes, and granting resources to
requests. (We ignore the time involved in this local processing when we
measure the response time, considering only the communication time.) We
assume that the communication lines are reliable, that is, each message is

PROBABILISTIC ANALYSIS NETWORK 49

delivered exactly once. However, we do not make any assumptions about
he order of message arrivals.

There are many interesting approaches to solving this resource allocation
problem. In a centralized approach, all resources are controlled by a single
central node. When a request arrives at a possibly different node, a "buyer"
is commissioned, who travels, via messages, to the central node to obtain a
resource. The buyer then carries the resource back to the node where the
request originated, so that the resource can be granted to the requesI at
that location.

An alternative approach is to decentralize control of the resources, giving
each node of the network control of some of them. In this approach, the
buyers must search for the resources. An important choice to be made in
designing an efficient search strategy is the choice between sending only
one buyer to search for resources for each request and sending several
buyers in parallel to search different parts of the tree. The former search
strategy, which we call the sequential search strategy, avoids a number of
problems arising from the parallel strategy, such as what to do about other
buyers when one of them has found a resource. The next choice, if the
sequential search strategy is used, is the choice of direction to search the
tree. A good choice would involve guessing which nodes are most likely to
have free resources when the buyer arrives at them.

Other strategies involve combining a decentralized search strategy with a
dynamic resource redistribution strategy, letting resources search for
requests (rather than vice versa), or giving nodes control of fractions of
resources rather than whole resources.

One complexity measure which is useful for evaluating different strategies
is the expected response time. This is a measure upon which any of the
design choices could have a major impact. For example, the response time
when using a centralized strategy must depend strongly on the network
size. However, the decentralized strategies have the potential of depending
on this size to a lesser extent.

In the first half of this paper, we present an algorithm for solving this
resource allocation problem. Our algorithm is a decentralized solution in
which each node controls some whole number of resources. A sequential
search strategy is used, in which the direction to be searched is chosen non-
deterministically. Certain neighborhoods of the node at which a request
originates are exhausted before the search proceeds to more distant
neighborhoods.

In order to gain some insight into the expected response time for our
algorithm, we simulated its behavior, in some special cases. The nondeter-
ministic choice of search direction was resolved by using a probabilistic
choice, where the probabilities for the different directions depended on the
initial placement of resources in those directions. We assumed an exponen-

50 LYNCH ET AL.

tial distribution for time of arrival of requests, a uniform distribution for
arrival location, and a normal probability distribution for message delivery
time. We also assumed that all leaves of the network tree were at the same
distance from the root, and that requests and resources occurred only at
leaves. We first noted that expected response time was extremely good,
with an upper bound that seemed to be independent of the size of the
network. This was in marked contrast to a centralized algorithm. Next, we
made a surprising observation: the expected response time appeared to be
a nondecreasing function of the expected interarrival time for requests. If
true, this observation would imply that the worst case for the algorithm
was actually the case where requests come in so far apart that they are
processed one at a time. This observation contradicted our preliminary
intuitions about the algorithm: we had thought that the worst cases would
arise when there was greatest competition among requests searching for
resources.

Using these observations as hints, we were able to carry out a substantial
amount of analysis of the algorithm's behavior, and this analysis comprises
the second half of this paper. Namely, we prove an upper bound on the
expected response time for a special case in which, among other restric-
tions, all leaves of the network tree are at the same distance from the root,
and requests and resources occur only at leaves. First, we show that the
response time can be bounded in terms of the number of messages of one
type that are sent during the execution of the algorithm. Then we show
that this number of messages is a nondecreasing function of the interarrival
time for requests. Therefore, the worst case occurs when requests come in
so far apart that they are processed sequentially. We analyze the expected
time for the sequential case, showing it to be bounded by a constant,
independent of the size of the network. It follows that the expected
response time for the algorithm is also bounded by a constant.

Although the expected response time for our algorithm is very good, we
do not claim that it is optimal. In fact, there are some simple changes that
one would expect to yield improvements. Unfortunately, with these
changes, the algorithm can no longer be analyzed using the same techni-
ques; thus, we are not really certain that they are improvements at all.

There are several contributions in this paper. First, we think that the
algorithm itself is interesting. Second, we have identified an interesting
criterion for the performance of a distributed algorithm: that the perfor-
mance be independent of the size of the network. Satisfying this criterion
seems to require an appropriate, decentralized style of programming.
Third, the analysis is decomposed in an interesting way: a sequential ver-
sion is analyzed using traditional methods, and the performance of the con-
current algorithm is shown to be bounded in terms of the sequential
algorithm. It is likely that this kind of decomposition will prove to be

PROBABILISTIC ANALYSIS NETWORK 51

useful for analysis of other distributed algorithms. For instance, a similar
decomposition was used in the proof of correctness of a systolic stack
(Guibas, and Liang, 1982).

The contents of the rest of the paper are as follows. Section 2 contains
the algorithm, and Section 3 contains arguments for its correctness. Sec-
tions 4-6 contain the analysis of the algorithm. Section 4 proves the
monotonicity result, which implies that the sequential case of the algorithm
is worst. Section 5 analyzes the sequential case. Section 6 pulls together the
results of Sections 4 and 5, thus giving a general upper bound. Finally, Sec-
tion 7 describes some remaining questions.

2. THE ALGORITHM

In this section, we present our algorithm. We begin with an informal
decription, followed by a more formal presentation.

2.1. Informal Description

We assume that the network is a rooted tree. Our algorithm is a decen-
tralized algorithm with a sequential searching strategy. Requests send
buyers to search for resources. When a buyer finds a resource, it "captures"
it. Each captured resource travels back to the origin of this buyer (or
possibly some other buyer, if there is interference between the processing of
concurrent requests), so that the grant can occur where the request
originated.

When a request or buyer arrives at any node, any free resource at the
node is captured. If there are no free resources there, a buyer is sent to a
neighboring node, determined as follows. Each node keeps track of the
latest estimate it knows, for the number of resources remaining in each of
its subtrees. Each node sends a message informing its parent of each new
request which has originated within the child's subtree. The estimate which
a node keeps for the number of resources remaining in a subtree, is
calculated from the initial placement of resources in that subtree, the num-
ber of requests which are known to have originated within that subtree,
and the number of buyers which the node has already sent into that sub-
tree. In order to decide on the direction in which to send a buyer, a node
uses the following rules. First, it never sends a buyer out of its subtree if it
estimates that its subtree still contains a resource. Second, it only sends a
buyer downward to a child if it estimates that the child's subtree contains a
resource. Third, if there is a choice of child to which to send the buyer, the
node makes a nondeterministic choice. (Later, we will constrain this
decision to a probabilistic choice using a particular random choice

52 LYNCH ET AL.

function. This constraint will be important for the complexity analysis, but
is not needed for the correctness of the algorithm.)

It is easy to see that any subtree which a node considers to contain no
resources, actually contains no resources. Thus, no buyer is ever sent out of
a subtree actually containing a resource. On the other hand, the perceived
information about he availability of a resource in a child's subtree can be
an overestimate, in case of interference among concurrent requests.

EXAMPLE. Suppose that request A enters at the node shown below, and
its buyer travels upward until it reaches an ancestor that perceives the
availability of a resource in one of its subtrees. Then the buyer travels
downward toward that resource. Shortly before A's buyer reaches the
resource, another request B arrives at the node shown. Suppose B's buyer
reaches the resource and captures it before A's buyer does. When (or
before) A's buyer finally arrives at the resource's location, it will encounter
the information that the resource is no longer there. Then A's buyer will be
sent upward, backtracking in its search for a resource (see Fig. !).

Although such interference can cause backtracking, the buyer will even-
tually find a resource if one exists. This is because no buyer ever leaves a
subtree actually containing a resource. Several optimizations are incor-
porated into the algorithm, as follows:

1. Buyers, unlike requests, need not be uniquely identified. Instead,
each node keeps track of the number of buyers received and sent and the
net flow of buyers over each of its incident edges. Captured resources then
travel in such a way as to negate net flow of buyers, and a buyer will even-
tually leave a subtree which does not contain a resource.

2. Buyers can travel "discontinuously." Assume node v sends a buyer
to a child node w, thinking that there is an available resource in w's sub-
tree. Assume that, soon thereafter, v receives a message from w, informing v
of an arrival of a new request in w's subtree, and implying that v's previous
supposition of an available resource was false. Then v knows that w will

FIGURE 1

A B

PROBABILISTIC ANALYSIS NETWORK 53

eventually send some buyer back up to v, at which time v should send the
buyer in another direction. Since v knows this will eventually occur, v need
not actually wait for the buyer to arrive from w; it can create a new buyer
and send it in anticipation of the later return of the first buyer. Since the
first buyer will not find any free resources in the subtree, this extra
parallelism does no harm. In fact, with this optimization, it is no longer
necessary for w to return the buyer at all, since v must ignore it when it
returns to it in any case.

3. If each node knows how many resources were initially placed in
each of its children's subtrees, then it is not even necessary for explicit
buyers to be sent upward at all! All that is necessary is for nodes to send
"ARRIVAL" messages upward to their parents, informing them of the
arrival of new requests in their subtree. The parent is able to deduce the
number of resources which the child would like to have sent down (i.e., the
number of buyers emanating from the child's subtree), from the initial
number of resources in the subtree, the number of arrivals in the subtree,
and the number of buyers already sent down into the subtree. We will say
more in a moment about how this deduction is made.

If information about newly-arrived requests (in the form of "ARRIVAL"
messages) only flows upward in the tree, there is no way that a child can
deduce that its parent would like it to send a resource upward. Thus, it is
still necessary to send explicit buyers downward. Let us designate these
explicit downward buyer messages as "BUYER" messages. Thus, the
algorithm only uses two kinds of messages to search for resources:
"ARRIVAL" messages flow upward to inform parents about new requests,
and "BUYER" messages flow downward to inform a child that its parent
would like the child to send up a resource.

The precise deduction which a parent can make about the number of
buyers emanating from a child's subtree is as follows:

Let a be the number of "ARRIVAL" messages which have been received
by the parent from the child. Let b be the number of "BUYER" messages
which have been sent by the parent to the child. Let p be the number of
resources initially placed in the child's subtree. Then the number of buyers
perceived as emanating from a child's subtree is max(a+b-p, 0). This
number is called the estimate of "virtual buyers" emanating from the sub-
tree.

That is, if the total number of "ARRIVAL" and "BUYER" messages
indicated above is no greater than the initial placement, no buyers are per-
ceived as emanating from the subtree. On the other hand, if this total is
greater, then the excess is perceived to be the number of buyers.

Analogously, the child node deduces an estimate of the number of "vir-
tual buyers" it has sent out of its subtree, as follows. Let a be the number

54 LYNCH ET AL.

of "ARRIVAL" messages which the child has sent to its parent. Let b be
the number of "BUYER" messages which have been received by the child
from its parent. Let p be the number of resources initially placed in the
child's subtree. Then the number of buyers the child perceives that it has
sent out of its subtree (also called the estimate of "virtual buyers" sent out
of the subtree)=max(a+b-p, 0). Because of message delays, the child
and the parent may differ on their estimates of the number of virtual
buyers.

In order to make the actual grants to specific requests, it seems necessary
that each specific identified resource "travel" to a point of request origin, in
order to get properly paired with a request. This travel requires a third
kind of message to be sent around, namely, a specific "captured resource."
The algorithm which sends resources around is particularly simple-resour-
ces are just sent in such a way as to negate the net flow of buyers. This part
of the algorithm executes concurrently with, but has no effect on, the
searching part.

2.2 Formal Description

In this subsection, we present a program implementing the algorithm
described above. A sketch of a correctness proof is presented in the next
section. Primarily, the proof consists of showing the correctness of the
invariant assertions made at various points in the program. The reader
may wish to examine the proof while reading the program.

We assume that the network is described by a rooted tree T. For unifor-
mity, let the root of T have an outgoing upward edge. (Messages sent
along this edge will never be received by anyone.) We can then write a
single program for all the nodes of T, including the root.

Let V denote the set of vertices of T. Let RESOURCES(v) denote the
resources placed at vertex v, f o r each v~ V, and let PLACE(v)=
I RESOURCES(v)1 for all v. Let REQUESTS(v) denote the requests arriv-
ing at v. We assume that all the sets RESOURCES(v) and REQUESTS(v)
are finite. Let PARENT(v), CHILDREN(v), DESCENDANTS(v), and
NEIGHBORS(v) denote the designated vertices and sets of vertices, for
vertex v.

The kinds of messages used are "ARRIVAL," "BUYER," and messages
corresponding to specific captured resources.

PROGRAM FOR NODE v, v ~ /,I. In the program for node v, we use
RESOURCES as a shorthand for RESOURCES(v), and similarly for the
other notation above.

It is convenient to think of the state of v as consisting of "independent
variables" and "dependent variables." The independent variables are just

PROBABILISTIC ANALYSIS NETWORK 55

the usual kind of variables, which can be read and assigned. The dependent
variables are virtual variables whose values are defined in terms of the
independent variables. These values can be read, but not modified. We can
think of the reading of a dependent variable as shorthand for a read of
several independent variables, together with a calculation of the function
giving the dependency.

INDEPENDENT VARIABLES. REQUESTS, for the set of requests that
originated at v,

ACTIVE, for the set of requests that originated at v, which are still
unsatisfied,

FREE, for the set of resources in RESOURCES that have not yet
been "captured" by requests,

GRANT, for a single captured resource on its way back to a request,

ARRIVALS(w), w~NEIGHBORS, for the number of "ARRIVAL"
messages received from each of v's children, and sent to v's parent, respec-
tively:

BUYERS(w), w ENEIGHBORS, for the number of "BUYER"
messages sent to v's children and received from v's parent, respectively,

NETGRANTS(w), w~NEIGHBORS , for the net flow of captured
resources out of v to each of its neighbors,

NEXT, a temporary variable which can hold a vertex.

INITIALIZATION OF INDEPENDENT VARIABLES. REQUESTS = AC-
TIVE = ~ , FREE = RESOURCES, and all other variables are 0.

DEPENDENT VARIABLES AND THEIR DEPENDENCIES. CAPTURED, for
the set of resources in RESOURCES which have been captured;

Dependency 'CAPTURED = RESOURCES - FREE.

SATISFIED, for the set of requests in REQUESTS which have been
satisfied,

Dependency:SATISFIED = REQUESTS - ACTIVE.

NETBUYERS(w), w ~ NEIGHBORS, for the net flow of buyers and
virtual buyers into v from each neighbor (Recall the definition of "virtual
buyers" from the last subsection.),

Dependency: If w = PARENT then NETBUYERS(w) =
min(PLACE(DESCENDANTS) - ARRIVALS(w), BUYERS(w)).
If w ~ C H I L D R E N , then NETBUYERS(w)= - r a i n (P L A C E
(DESCENDANTS(w)) - ARRIVALS(w),BUYERS(w)).

5 6 L Y N C H E T A L .

These two equations can be understood as follows. Consider, for exam-
ple, the first equation, for w=PARENT. If PLACE(DESCEN-
DANTS)-ARRIVALS(w)<BUYERS(w), it means that the placement
originally given for v's subtree is not adequate for handling the requests
(arrivals) which have originated in v's subtree, together with the "BUYER"
messages sent down from w. Therefore, all the resources in v's subtree are
allocated to requests, either within or outside of v's subtree. Whether the
net flow of buyers should be regarded as into or outward from v's subtree
then depends solely on the sign of PLACE(DESCEN-
DANTS)-ARRIVALS(w), without regard t o the number of "BUYER"
messages received from w. That is, if PLACE(DESCEN-
DANTS) <~ ARRIVALS(w), then the sign is negative and the net flow of
buyers is outward from v's subtree, while otherwise it is inward; in either
case, its magnitude is equal to IPLACE(DESCENDANTS)-
ARRIVALS(w)J. On the other hand, if PLACE(DESCENDANTS)-
ARRIVALS(w)/> BUYERS(w), then the placement originally given for v's
subtree is adequate for handling both the requests which have originated in
v's subtree, together with the "BUYER" messages sent down from w.
Therefore, the net flow of buyers is inward, and its amount is just equal to
BUYERS(w), without regard to the other two values. The second equation
is similar, with appropriate changes of sign.

Another way to understand the equations is as follows. Again, consider
the first equation, for w=PARENT. Then NETBUYERS(w)=
BUYERS(w)- VIRTBUYERS(w), where the latter quantity is the number
of virtual buyers which v estimates it has sent to its parent. Using the
expression which was derived in the preceding subsection for the number of
virtual buyers, we see that NETBUYERS(w)=BUYERS(w)-
max(ARRIVALS(w) + BUYERS(w)- PLACE(DESCENDANTS),0). This
is equal to rain(PLACE(DESCENDANTS) - ARRIVALS(w),
BUYERS(w)), as needed. Again, the other calculation is similar.

The remaining dependent variables are:

NETBUYERS, for the total of all the NETBUYERS(w),

Dependency:NETBUYERS = ~ NETBUYERS(w).
w E N E I G H B O R S

NETFLOW, for the net flow of buyers into v,

Dependency:NETFLOW =]REQUESTSI + NETBUYERS.

NETGRANTS, for the net flow of grants out of v,

Dependency:NETGRANTS = ~ NETGRANTS(w).
w E N E I G H B O R S

PROBABILISTIC ANALYSIS NETWORK 59

anything more. However, if v thinks that the new request can be serviced in
its subtree, then it has some further work to do, in the second portion of
the algorithm.
The second portion of the algorithm manages the disposition of any excess
flow of requests into the node. We must first check that the number of
excess requests after the initial processing of a single message can only be 0
or 1. That is, we must verify that ICAPTUREDJ~<NETFLOW~<
I CAPTURED] + 1 between Parts 1 and 2 of the code.

A quick check of the cases shows that the only way this could fail to be
true is if M = "ARRIVAL" from a child s, and the result of processing M
causes NETBUYERS(s) to remain unchanged, while NET-
BUYERS(PARENT) decreases. In this case, we can deduce some
relationships among the values of v's local variables at the beginning of the
node step.

For every t ~ CHILDREN, it must be the case just before execution of
Part 1 that

- -NETBUYERS(t) = m i n (P L A C E (D E S C E N D A N T S (t)) - A R R I -
VALS(t),BUYERS(t)),

so that

- -NETBUYERS(t) ~< PLACE(DESCENDANTS(t)) - ARRIVALS(t).

That is,

NETBUYERS(t) ~> ARRIVALS(t) - PLACE(DESCENDANTS(t)) .

Since NETBUYERS(s) remains unchanged, then it must be the case that

- -NETBUYERS(s) :# PLACE(DESCENDANTS(s)) - ARRI-
VALS(s).

(If they were equal, then P L A C E (D E S C E N D A N T S) (s)) - A R R I -
VALS(s) = ra in(PLACE(DESCENDANTS(s)) - ARRIVALS(s),
BUYERS(s)), and an increase to ARRIVALS(s) would cause a change to
the minimum, thereby changing NETBUYERS(s).)

Therefore, NETBUYERS(s) :/: ARRIVALS(s) - PLACE(DESCEN-
DANTS(s)), and so

NETBUYERS(s) > ARRIVALS(s) - PLACE(DESCENDANTS(s)) .

Since NETBUYERS(PARENT) decreases, it means that NET-
BUYERS(PARENT) = P L A C E (D E S C E N D A N T S) - ARRIVALS
(PARENT).

Now consider N E T F L O W = IREQUESTSJ +NETBUYERS. The right
side is equal to

6 0 L Y N C H ET AL.

I REQUESTSI + NETBUYERS(PARENT) + NETBUYERS(s)

+ ~ NETBUYERS(w).
t ~ CHILDREN, t # s

By previous results, this is, in turn, strictly greater than

JREQUESTS] + PLACE(DESCENDANTS) - ARRIVALS
(PARENT) + ARRIVALS(s) - PLACE(DESCENDANTS(s)) +
~2t ~ CHILDREN., * ,ARRIVALS(t) - PLACE(DESCENDANTS(t)) .

By the ARRIVAL invariant, this is equal to

PLACE(DESCENDANTS) - PLACE(DESCENDANTS(s)) -
~2t ~ CHILDREN, * ~ PLACE(DESCENDANTS (t)) = PLACE@).

Thus, N E T F L O W > PLACE(v). However, the original invariant says
that N E T F L O W = I CAPTURED[, and ICAPTUREDI is never permitted
to be greater than PLACE(v), a contradiction.

We have thus shown that [CAPTURED[~<N ETF LO W ~ t CAP-
TUREDI + 1 at the point where that claim is made. Thus, there is at most
one excess request that requires disposition. In the case where there is an
excess request, node v must service that request in its subtree. There are
two possibilities: either v can service the request locally, or it cannot. If
FREE # ~ , then a free resource is captured to service the excess request. If
not, then a "BUYER" message must be sent down into some subtree. We
must show that, in the event FREE = ~ , it is possible to send such a
"BUYER" message. That is, we must check that S # ~ at the place where
that claim is made.

Assume not. We will make some deductions about the values of the
variables at the point where that claim is made. At that point, we know
that FREE = ~ , so that PLACE(v) = [CAPTUREDI. We also know that

NETBUYERS(PARENT) ~< PLACE(DESCENDANTS) -
ARRIVALS(PARENT),

by definition of NETBUYERS. Then

N E T F L O W = IREQUESTSI + NETBUYERS(PARENT) +
Y~s~CmLDRENNETBUYERS(s) ~ [REQUESTSI + PLACE
(DESCENDANTS) - ARRIVALS(PARENT) + Y~s~CnrLORZN
NETBUYERS(s).

Because S = j~, it follows that

P L A C E (D E S C E N D A N T S (s)) - ARRIVALS(s) ~ BUYERS(s) for
each s s CHILDREN.

Therefore,

NETBUYERS(s) = - (P L A C E (D E S C E N D A N T S (s)) - ARRIVALS(s)).

PROBABILISTIC ANALYSIS NETWORK 61

Thus, the right-hand side of the next-to-last inequality is equal to

]REQUESTS] + PLACE(DESCENDANTS) - ARRIVALS(PARENT)
- Zs ~ CHILOREN (PLACE(DESCENDANTS(s)) - ARRIVALS(s)).

This expression is, in turn, equal to

PLACE(DESCENDANTS) - 52s ~ CmLDREN PLACE(DESCENDANTS(s))
= PLACE(v) --]CAPTURED [.

Thus, NETFLOW<~]CAPTURED I, a contradiction. Thus, we have
shown that it is always possible to service an excess request.

Next, we must show that N E T F L O W = [CAPTUREDI between Parts 2
and 3 of the code. This means that after servicing any excess request, there
is no remaining request to be serviced. Previous to Part 2,
{ CAPTURED I <~ N E T F L O W <~]CAPTURED I + 1. If N E T F L O W was
equal to I CAPTUREDI + 1, then the body of the conditional was
executed. If the first case of the conditional held (i.e. the case for
F R E E ¢ ~) , then]CAPTURED] is increased by 1, so the invariant is
restored. Otherwise, a "BUYER" message was sent to a child, s, for
which PLACE(DESCENDANTS(s)) - ARRIVALS(s) > BUYERS(s). This
caused NETBUYERS(s) to increase by 1, thereby increasing the value of
N E T F L O W and restoring the invariant.

The third portion of the algorithm manages the travel of captured
resources back to requests. First, note that there can be only one captured
resource assigned to GRANT at any node in a single step, since the two
assignments to GRANT cannot both be executed during a single step. If
the message is a captured resource, then no progress is done until the
clause contains the second grant. Otherwise, this clause is skipped. We
must argue that such a neighbor exists in this case.

Assume not. Then NETBUYERS(s)~<NETGRANTS(s) for all
s c NEIGHBORS. Now, N E T F L O W = I CAPTURED I, so that

J CAPTURED] =] REQUESTS I + NETBUYERS

~< I REQUESTS t + NETGRANTS

=] REQUESTS I + I CAPTURED] -] SATISFIED I - 1

= I ACTIVE I + I CAPTURED I - 1.

Therefore, 1 ~<]ACTIVE I, a contradiction.

Thus, we have checked that the key assertions hold and the code can be
executed at all points. We have claimed (and tried to argue) that the
algorithm follows the strategy of the preceding section, in setting up a flow
of buyers from requests to resources. Eventually, the values of all the NET-
BUYERS(w) variables will stabilize, and the values taken on by

62 LYNCH ET AL.

corresponding NETBUYERS(w) variables at either end of a single edge
will be negations of each other. (We use the fact that there are only finitely
many requests here. Eventually, no further requests will arrive, so no
additional "ARRIVAL" messages will be sent. There is a bound on how
many "BUYER" messages will be sent downward along any edge.
Therefore, there are only finitely many total "ARRIVAL" and "BUYER"
messages which get sent, so that eventually, they will all be delivered.)
Similarly, all the REQUESTS variables will eventually stabilize.

Finally, we must consider the travel of captured resources to request
origins. Define a new variable, MESSAGES(w), at node v, where
w~NEIGHBORS(v). Its value is defined to be the number of captured
resource messages which have been sent from w to v but have not yet
arrived, (Of course, neither v nor w actually "knows" the value of this
variable.) For any time, t, after the NETBUYERS(w) and REQUEST
values have stabilized, any node v, and any w eNEIGHBORS(v), let
A(v ,w , t) be the value of NETBUYERS(w) -NETGRANTS(w)+
MESSAGES(w) at v at time t. Note that A(v, w, t) = - A (w , v, t) in all
cases. Let SUM(t) denote)-',v,~]A(v, w, t)l. We claim that any event which
involves the receipt of a captured resource message does not change
SUM(t), while any event which involves the sending of a captured resource
message decreases SUM(t). Therefore, captured resource messages will not
be sent forever: they will eventually subside, at which time they must have
found a matching request.

First, consider an event involving the receipt of a captured resource, by
v, from w. The only term in the sum which is affected is A(v, w, t). The
receipt of the messages causes v's values of MESSAGES(w) and
NETGRANTS(w) both to decrease by 1, so that A(v, w, t) is unchanged.
Therefore, SUM(t) is unchanged. Second, consider an event involving the
sending of a captured resource, by v, to w. The only terms in the sum which
are affected are A(v, w, t) and A(w, v, t). At time t just prior to the sending
event, it must be that v's value of NETBUYERS(w) -
NETGRANTS(w)>0, which implies that A(v, w, t)>0 . The result of
sending the message is to increase NETGRANTS(w), which means that
A(v, w, t) gets decreased by 1. Therefore, [A(v, w, t)l gets decreased by 1.
Thus, also, IA(w, v, t)l gets decreased by 1, so that SUM(t) gets decreased
by2. II

4. MONOTONICITY ANALYSIS

The rest of the paper is devoted to an analysis of the time requirements
of the algorithm. Specifically, we measure the sum of the times between
requests and their corresponding grants. For the purpose of carrying out

PROBABILISTIC ANALYSIS NETWORK 63

the analysis, certain restrictions will be made. These restrictions will be
introduced as needed.

We begin with some basic definitions. Next, we introduce two restric-
tions which are needed throughout the analysis. Then we define and
categorize the complexity measures of interest. We then prove a basic com-
binatorial result, and use it to prove the monotonicity of the number of
"BUYER" messages as a function of interarrival time. Finally, we show
that the expected running time of the algorithm is bounded by the expected
time for the sequential case of the algorithm.

4.1. Definitions

Let N denote the set of natural numbers, including 0. Let R + denote the
set of nonnegative reals. If f is a numerical function with domain V, then
exend f to subsets of V by f (W) = Z w wf(V).

Let T be a rooted tree. We write vertices> and leavesr to denote the
indicated sets of vertices of T. Let rootT denote the root. If v e vertices> we
write descr(v) for the set of vertices of T which are descendants of v
(including v itself), parentr(v) for v's parent in T, childrenr(v) for v's
children, and neighborsr(v) for childrenT(v)~ (parent~-(v)}.

If v is a vertex of T, let height~(v) denote the maximum distance from v
to a leaf in its subtree. If e is an edge in T, then define heightr(e) to be the
same as heightr(v), where v is e's upper endpoint. Let heighty denote
height r(root r).

A placement for T is a function p: vertices r --* N, representing the number
of resources at each vertex. We write total(p) for p(verticesT), the total
number of resources in the entire tree. We say that p is nonnull provided
total(p) > 0.

A weighted tree T is an undirected, rooted tree with an associated
probability density function, ~v, on the leaves of T, such that q~r(v)> 0 for
all leaves v. (This assumption is made for technical reasons, so that we can
normalize probability functions without danger of dividing by 0.) If T is a
weighted tree, v~internal r, and S is a nonempty subset of childrenr(V),
then let random r.s denote the probability function which returns s E S with
probability ¢pr(descr(s))/~or(descv(S)). Thus, randomy.s returns s with
probability proportional to the sum of the probability function values for
the descendants of s.

4.2. Initial Restrictions

For the remainder of Section 4, we assume that the following two restric-
tions hold.

RESTRICTION 1. T is a weighted tree, and the nondeterministic choice
step in Part (2) of the algorithm uses a call to randomr, s.

643/68/1-3-5

64 LYNCH ET AL.

RESTRICTION 2. Delivery time for messages is always exactly 1.

Restriction 1 describes a particular method of choosing among alter-
native search directions. This method does not use all the information
available during execution, but only the "static" probability distribution
information available at the beginning of execution. One might expect a
more adaptive choice method to work better; however, we do not know
how to analyze such strategies.

Restriction 2 has the effect of restricting the executions under con-
sideration; for example, all messages between any two nodes are
pipelined--they arrive in the order in which they are sent. While we would
like to understand the behavior of the algorithm in the presence of variable
message delivery times, such analysis appears to be more difficult.

4.3. Cost Measures and Preliminary Results

A request pattern r is a finite sequence of elements of ve r t i ces rxR +
whose second components are monotone nondecreasing. A request pattern
represents the sequence of requests that occur, their locations and times. If
r is a request sequence, then length(r) denotes its length.

A choice sequence c for v ~ internalr is an infinite sequence of elements of
children r(v), with infinitely many occurrences of each child. If ~g = {c~} is a
collection of choice sequences, one for each v e internal r, then cg can be
used in place of probabilistic choices in an execution of the algorithm, as
follows. Each internal node, v, makes choices among its children by choos-
ing the first unused element of c, satisfying the inequality
PLACE(descT(s))>ARRIVALS(s)+BUYERS(s) . That is, v chooses a
child, s, for which v thinks there are still remaining resources in s's subtree.

Let p be a placement for T. Let r be a request pattern, and c~ = {c~ } a
collection of choice sequences, one for each v ~ internalr. Then costT.p(r, cg)
is defined to be the total time from requests to corresponding grants, if
requests arrive according to r and cg is used in place of probabilistic
choices. (With suitable conventions for handling events which happen at
the same time, the execution, and hence the cost, is uniquely defined for
fixed r and Z.)

The cost measure defined above can be broken up into two pieces, as
follows. Let searchcostT.p(r, off) be the total of the times from requests to
corresponding captures of resources, if r and cg are used as above. Let
returncostr, p(r, ~g) be the total of the times from captures to corresponding
grants of resources.

Now we incorporate a probabilistie construction of cg into the cost
measure. If r is a request pattern, let costr.p(r) denote the expected value of
costr.p(r, Cg), where c6 is constructed using q~T. (That is, for each
ve in terna l r , the sequence cv is constructed by successive choices from

PROBABILISTIC ANALYSIS NETWORK 65

among childrenr(v), choosing s with probability q~r(descr(S))/
q~r(descr(S)), where S=childrenr(V). Among the sequences thereby
generated are some for which it is not the case that each child occurs
infinitely often. However, these sequences form a set of measure O, so that
we can ignore them in calculating the expected cost measure.) We claim
that costr, p(r) is exactly the expected total time from requests to grants,
provided the algorithm is run in the normal way, using probabilistic
choices. That is, the two strategies of constructing choice sequences
independently of the algorithm and carrying out the probabilistic choices
on-line give identical results.

Let f denote an arbitrary probability density function whose domain
consists of positive reals. Extend the domain of the function costr, p to the
set of such functions by defining costr, p(f) to be the expected value of
costr, p(r), where r is of length total(p), with its successive locations chosen
independently using the distribution ~0r, and its successive interarrival
times chosen using f That is, at the time the algorithm begins, and at the
time of each request, the probability that the next arrival occurs exactly t
units later is f(t). We will be primarily interested in this cost, costr.p(f).

We define searchcostr, p(r), searchcostT, p(f), etc., analogously to our
earlier definitions.

The following claim is true for all domains for which the definitions are
valid.

LEMMA 2. cOStT, p = searchcostT, p + returncostT, p.

Proof Straightforward. |

Next, we will relate the given cost measures to ~the total numbers of
various kinds of messages sent during the execution of the algorithm. Note
that during the execution of an algorithm, the estimates of "BUYER" and
virtual buyer messages sent along an edge can be different at the two ends
of the edge. However, after the entire execution of the algorithm is com-
pleted, the discrepancy disappears, so that the following definitions are
unambiguous. Let bnumT, p(r, cg) denote the total number of "BUYER"
messages sent on all edges during the execution of the algorithm on r using
cg. Let vbnumT, p(r, cg) denote the total number of virtual buyer messages
sent on all edges during the execution of the algorithm on r using cg. Let
gnumT, p(r, cg) denote the total number of captured resource messages sent
on all edges during the execution of the algorithm on r using cg. As before,
define bnumr, p(r), bnumr, p(f), etc.

Because of the fact that message delivery time is assumed to be exactly 1,
there are some relationships between the measures describing time costs
and the measures describing numbers of messages. The following lemma

66 LYNCH ET AL.

describes a set of relationships among the various measures. Note that all
the statements are true over all possible domains of definition.

LEMMA 3.

(b)
(c)
(d)

Proof

(a) searchcostr, p ~< bnumT, p + vbnumv.p.

returncost r,p = gnum T, p.

gnum T, p ~< bnum T, p + vbnum w,p.

cost T,p ~< 2[bnumv, p + vbnum T,p].

(a) This inequality is true because buyers continue to make
progress up and down the edges of the tree; all time used by the algorithm
is occupied by the transmission of appropriate buyer and virtual buyer
messages. The reason that we have an inequality rather than an equation
here is that buyers are permitted to travel "discontinuously," as described
in Section 3.

(b) This equation is true because captured resources travel con-
tinuously via captured resource messages.

(c) We must show that each captured resource message always
moves in such a way as to "negate" a buyer or virtual buyer message. This
is a bit tricky to argue, because of the discrepancies between estimates at
opposite ends of an edge. A captured resource only moves over an edge if
the net flow of buyers into the node on that edge, as estimated at the near
endpoint, is positive. By moving over that edge, the captured resource
negates an incoming buyer or virtual buyer along that edge, as estimated at
the near endpoint. Because of the assumption that all messages take exactly
time 1, by the time the captured resource reaches the far endpoint, the
negated buyer or virtual buyer is also counted in the estimate of outgoing
buyers and virtual buyers at the opposite endpoint. The arrival of the cap-
tured resource at the far endpoint can thus be regarded as negating an out-
going buyer or virtual buyer at the far endpoint as well.

(d) Straightforward by Lemma 2 and (a)-(c). |

Now, we introduce an additional restriction, to remain in force for the
remainder of Section 4.

RESTRICTION 3. T has all leaves at the same distance from the root, and r
and p are nonzero only at leaves.

As usual, the following lemma is intended to hold for all valid domains
of definition.

LEMMA 4. bnumr, p = vbnumr, p.

PROBABILISTIC ANALYSIS NETWORK 67

Proof We sketch the argument for fixed r and cg. For a particular edge
e, let ae denote the number of request arrivals below e, be denote the num-
ber of "BUYER" messages sent downward along e, and Pe denote the num-
ber of resources placed below e, in the execution for r and cg. Since
all resources get matched to requests, we must have ae+be>~pe, so
that the number of virtual buyers sent over edge e is exactly

max(ae + be -Pc, O) = ae + be -Pc.
Now consider all the edges at any particular height h in the tree. Since all

resources and requests are at the leaves, and the branches are all of equal
length, it is clear that

ae = total(p) = ~ Pc"
heightT(e) ~ h heightT(e) ~ h

Therefore,

b e = 2 (a e - t - b e - P e) "
heightT(e) = h heightT(e) -- h

That is, the numbers of buyers and virtual buyers sent over edges of
height h are equal. Since this is true for all h, the result follows. |

THEOREM 5. c o s t r , p ~ < 4 (b n u m r , p)

Proof Immediate from Lemma 3 and Restriction 3. |

Thus, in order to obtain an upper bound on costr, p(f) , it suffices to
prove a bound for bnumr, p(f).

4.4. A Combinatorial Result

This subsection contains a key combinatorial result which will be used in
the subsequent analysis. We model the behavior of the algorithm at a single
node v. The children of v are modelled as a set of bins for resources. (Here,
we do not concern ourselves about the tree structure beyond the children.)
Let c be a choice sequence for v. Each bin s is initialized to contain a num-
ber p(s) of resources.

The arrival of messages at v is described by a script S. A script is a finite
sequence of symbols, each of which is either a bin number s or an "X." A
bin number represents the arrival of an "ARRIVAL" message from the
specified child. The symbol X represents the arrival of a "BUYER" message
from v's parent,

The processing of script S on c and p, is as follows. The elements of S are
processed sequentially. If S(i) is:

68 L Y N C H ET AL.

s £ b i n s . then
i f bin s i s n0nempty,
t~en subtract 1 from the number of resources in s
else if some bin is nonempty then

[SELECT the first unused element of c describing a nonempty bin, t;
s u b t r a c t 1 from the number of r e s o u r c e s in t]

X, then
i f some bin is nonempty then

[SELECT the f i r s t unused element of c describing a nonempty bin, t;
subtract ! from the number of resources in t]

Define SELECT(S, c, p, i) to be the number of times bin i is SELECTed
during the course of processing S on c and p. (Note that a bin is only said
to be SELECTed when the choice sequence is used to choose it, and not
when it is explicitly chosen by the script.) Define choice(S, c,p, j) to be
equal to k provided that when S(j) is processed on c and p, the kth
element of c is used to select a bin. (If no element of c is used, then
choice(S, c. p, j) is undefined.) It follows that SELECT(S, c, p, i)=
}{j: e(choice(S, c, p , j)) = i} l,

For any script S, let binsequence(S) denote the subsequence of S con-
sisting of bin numbers. Script S is said to dominate script S' provided that:
(a) T = T', where T=binsequence(S) and T'=binsequence(S'), (b) the
total number of X's in S is at least as great as the total number of X's in S',
and (e) for each i, the number of X's in S preceding T(i) is at least as great
as the number of X's in S' preceding T'(i). The main result of this section is
that, if S dominates S', then SELECT(S, c, p, i) >~ SELECT(S', c, p, i) for
all c, p, and i.

We say that an interchange of two consecutive elements of a script S is
legal provided that the first element of the pair is an X. We say that a script
S' is reachable from a script S if S can be transformed to S' by a series of
legal interchanges. Note that S dominates all scripts S' reachable from S;
moreover, if S dominates S', then S' can be augmented with some suffix of
X's, to a script which is reachable from S.

LEMMA 6. For any scripts S and S' such that S' is reachable from S, and
for any choice sequence c, placement function p and bin i,

SELECT(S, c, p, i) >~ SELECT(S', c, p, i).

Proof We prove this lemma by showing that if S' is reachable from S
by a single legal interchange, then the inequality holds. The lemma follows
by induction on the number of legal interchanges.

Fix S, c, and p. Assume that S' is obtained from S by interchanging
S(j) = X with S(j + 1). If S(j + 1) = X, then S = S', so the result is obvious.
So assume S(j + 1)= s e bins. There are three cases.

PROBABILISTIC ANALYSIS NETWORK 69

Case 1. Bin s is empty after processing S (1) ' " S (j - 1) on c and p.
Then choices using c are made for both S and S' at both steps j and
j + 1. Thus, choice(S, c,p, j)= choice(S', c,p,j) and choice(S, c ,p , j+ 1)=
choice(S', c,p , j+ 1). The number of resources remaining in each bin after
step j + 1 is the same for S and S', and therefore processing continues iden-
tically for S and S' after that point. Thus, SELECT(S,c ,p , i)=
SELECT(S' , c, p, i).

Case2. Bin s contains more than one resource after processing
S (1) . . . S (j - 1) on c andp, or else c(choice(S, c,p,j)) is not bin s. (That is,
the bin selected by the choice made at step j is not bin s.) Then the effect of
the pair of steps j and j + 1 is the same for both S and S': a resource is
removed from bin s and a resource is removed from bin c(choice(S, c, p,j)).
(When processing S, the choice from c occurs first, while when processing
S', the explicit removal from s occurs first, but the net effect is the same.)
Subsequent processing of the two scripts will be identical, and once again,
SELECT(S, c, p, i) = SELECT(S' , c, p, i).

Case 3. Bin s contains exactly one resource after processing
S(1) . . . S (j - 1) , and c(choice(S, c,p,j))=s. (That is, the bin selected by
the choice made at step j is s.) In this case, the processing of S uses choices
from c at both steps j and j + 1, because the choice of s at step j removes
the last resource from bin s, and so a choice must also be made at step
j + 1. The processing of S' does not need a choice at step j, although it is
forced to choose by the X at step j + 1. Thus, in both cases, step j removes
the last resource from bin s, while step j + 1 makes a choice using c. Then
choice(S, c ,p , j+ 1)=choice(S ' , c ,p , j+ 1); that is, the same entry in c is
used at step j + 1 in both cases. The combined effect of steps j and j + 1 on
the bins is the same for the two scripts. Subsequent processing is again
identical, so SELECT(S, c, p, i) = SELECT(S' , c, p, i) for bin i ~ s, and
SELECT(S, c, p, s) = SELECT(S', c, p, s) + 1 > SELECT(S', c, p, s). |

We can now state the main result of this section.

COROLLARY 7. For any scripts S and S' such that S dominates S', and
for any choice sequence c, placement function p and bin i,

SELECT(S, c, p, i) ~> SELECT(S' , c, p, i).

Proof Let T be an augmentation of S' by a suffix of X's, such that T is
reachable from S. Then Lemma 6 implies that SELECT(S, c,p, i)>~
SELECT(T, c,p, i). But the latter term is obviously at least as great as
SELECT(S' , c,p, i). |

70 LYNCH ET AL.

4.5. Expansions

In this subsection, we show that the number of "BUYER" messages sent
is a monotone nondecreasing function of the interarrival time of the arrival
distribution. We do this by comparing particular pairs of executions.

For n~N, let In] denote {1,.. . ,n). If a ~ R and r=(vi , ti)i~tk], is a
request pattern, then ar, the expansion of r by a, is the request pattern
(vi, at~)~[k]. That is, ar represents the request pattern in which the suc-
cessive requests occur at the same locations as in r, but in which the times
are expanded by the constant factor a.

We will compare executions for request pattern r and request pattern ar,
using the same choice sequence. We require a technical restriction, just to
avoid the complications of having to consider multiple events occurring at
the same node at the same time, in either execution. A request pattern r is
said to be a-isolated provided that no two requests occur in r at the same
time, and provided that the following holds: If tl and t2 are two times at
which requests arrive in r, where tl ¢ tz, and if k is an integer, then the
following are true: (a) tl - t2 ¢ 2k, and (b) tl - t2 ~ (2/a) k.

The next lemma is crucial to our analysis. Its truth was first observed
empirically, and then proved analytically. It says that the number of
"BUYER" messages sent during an execution cannot increase if the request
pattern is expanded by a constant which is greater than or equal to 1.

LEMMA 8. I f a>~l, and r is a-isolated, then bnumr.p(r, Cg)~<
bnum r,p(ar, c~).

Proof Fix T, p, and cg. Let bsent(r,e, t) denote the number of
"BUYER" messages sent along edge e, in the execution for r (using T, p,
and oK), up to and including time t. Let brec(r, v, t) denote the number of
"BUYER" messages received by vertex v, in the execution for r, up to and
including time t. Let arec(r, e, t) denote the number of "ARRIVAL"
messages received along edge e, in the execution for r, up to and including
time t. We will show the following:

Claim. bsent(r, e, t + heightr(e)) ~< bsent(ar, e, at + heightr(e)) for all r,
e, and t.

This is a stronger claim than required for the lemma, since it shows an
inequality not only for the total number of "BUYER" messages, but for the
number along each edge, up to corresponding time.

FACT 1. arec(r, e, t + he ight r (e))= arec(ar, e, at + heightr(e)).

This is so because the number of requests arriving in request sequence r
by time t is the same as the number arriving in request sequence ar by time
at, and messages just flow up the tree at a steady rate.

PROBABILISTIC ANALYSIS NETWORK 71

The rest of the proof proceeds by induction on heightr(e), starting with
height r(e) = height:r, and working downward towards the leaves:

Base:he igh t r(e) = height r.

In this case, e's upper endpoint is root r. The actions of r o o t r are com-
pletely determined by the "ARRIVAL" messages it receives, which are the
same at corresponding times in the two executions, by Fact 1. The claim
follows.

Induct ive step. heightr(e) < heightr. Let v be the upper endpoint of edge
e, and the lower endpoint of edge e'.

FACT 2. brec(r, v, t + heightr(v)) ~< brec(ar, v, at + heightr(v)).

This is so because brec(r, v, t + height r(v)) -- bsent(r, e', t +
h e i g h t r (v) - I) because all messages take exactly time 1, = bsent(r,e ' ,
t - 2 + h e i g h t r (e ')) , <~bsent(ar , e ' , a (t - 2) + h e i g h t r (e ')) by inductive
hypothesis, = bsent(ar, e', a (t - 2) + 1 + height r(v)), = brec(ar, v, a (t - 2) +
2 + height r(V)) ~< brec(ar, v, at + heightr(v)), since a(t - 2) + 2 ~< at.

Now let us consider the situation from v's viewpoint. Node v is compar-
ing two executions, the first for r and the second for ar. All v sees is its
incoming "ARRIVAL" and "BUYER" messages, and v uses the same
choice sequence in both cases. At corresponding times in the two
executions (i.e., t + heightr(v) in the first execution vs at + heightr(v) in the
second execution), the same number of "ARRIVAL" messages have been
received along each edge (by Fact 1), and an inequality holds for the num-
ber of "BUYER" messages which have been received (by FACT 2). We will
show the needed inequality for the number of "BUYER" messages sent by
v along each edge, up to corresponding times.

Fix any time t. We compare the first execution up to time t + heightr(v)
with the second execution up to time a t + heightr(v). We claim that this
situation is modelled by the combinatorial problem presented in the
preceding subsection. First, we represent v's inputs in each of the two
executions by a script, i.e., a sequence of X's and "bins" the latter of which
are identified with children of v. An J(models the arrival of a "BUYER, "
while s ~ bins model the receipt of an "ARRIVAL" message from s. (The
fact that r is a-isolated means that no two of v's inputs occur at the same
time in the same execution, so a unique sequence can be obtained in each
case.) Let S and S' be the scripts for the first and second executions,
respectively (up to the indicated times). The claims in the preceding
paragraph imply that S' dominates S.

We claim that the processing described for the combinatorial problem

72 LYNCH ET AL.

models the processing carried out at v during execution of the algorithm. In
particular, a SELECT of a bin s, if it occurs, models the sending of a
"BUYER" message to s and associated reduction of v's estimate of the
number of resources remaining in s's subtree. With the given correspon-
dence between the combinatorial problem and the executions, the con-
clusion of Corollary 7 translates immediately into the claim. I

LEMMA 9. I f a>~ 1, and r is a-isolated, then bnumr, p(r)<~ bnumT.p(ar).

Proof By Lemma 8, taking expectations, i

Define bnumr, p(a,f) to be the expected value of bnumr, p(ar), where r is
chosen according to ~Pr and f The next theorem states that the expected
number of "BUYER" messages is a monotone nondecreasing function of
the interarrival time of the request distribution.

THEOREM 10. (a) I f a>~ 1, then bnumr, p(f)<..bnumr, p(a,f).

(b) IfO<a<~b, then bnumr.p(a,f)<~ bnumr, p(b,f).

Proof (a) If a request sequence is chosen according to ~0r and f, then
with probability 1, it will be a-isolated. The result then follows from
Lemma 9, by taking expectations over r.

(b) Let g be the probability density function defined by g(at)=f(t) .
Since b/a>~l, we can apply Part (a) to b/a and g, obtaining
bnumr, p(g) ~< bnumT, p(b/a, g). But bnumT, p(g) = bnumr, p(a,f) and
bnumT, p(b/a, g) = bnumr, p(b,f), yielding the result. II

4.6. Summary of Monotonicity Analysis

In this section, we have made the following restrictions, repeated here for
convenience.

RESTRICTION 1. T is a weighted tree, and the nondeterministic choice
step in Part (2) of the algorithm uses a call to randomr, s.

RESTRICTION 2. Delivery time for messages is always exactly 1.

RESTRICTION 3. T has all leaves at the same distance from the root, and r
and p are nonzero only at leaves.

The major results we have proved in this section are that the expected
response time is closely approximated by the expected number of
"BUYER" messages (Theorem 5) and that the expected number of
"BUYER" messages is a monotonic function of the interarrival time
(Theorem 10). We can combine these two results, obtaining the following:

PROBABILISTIC ANALYSIS NETVdORK 73

THEOREM l 1. costT.p(f) ~< 41im a ~ oobnumT, p(a,f).

Proof. Consider what happens to the value of bnumT.p(a,f) as a
increases. This value is monotonically nondecreasing, by Theorem 10. Also,
it is bounded above, because no execution causes more "BUYER"
messages to be sent on any edge than the number of resources initially
placed below that edge. Therefore, the limit exists. The result follows
immediately from Theorems 5 and 10. |

That is, the expected cost of the algorithm for any probability function f
is bounded in terms of the limiting case of the algorithm, as the interarrival
time approaches infinity. But note that as the interarrival time approaches
infinity, the algorithm gravitates towards a purely sequential
algori thm--one in which each request gets satisfied before the next one
arrives. This kind of sequential algorithm is amenable to analysis of a more
traditional kind, the subject of the next section of this paper. It seems quite
surprising that the sequential case is the worst case. Our initial expectation
was that cases where considerable interference between requests occurs
would be the worst case. The monotonicity theorem indicates that that is
not so. Of course, we have made a few assumptions in this section, most
significantly the equal lengths of branches. It is quite likely that the sequen-
tial case will not be the worst case for an algorithm using more general tree
topologies. The analysis in this more general case so far seems quite intrac-
table, however.

5. SEQUENTIAL ANALYSIS

In this section, we analyze the sequential case of the algorithm. In the
next section, we combine the results into an upper bound for the entire
algorithm. Once again, we allow arbitrary weighted trees T, and allow r
and p to be nonzero anywhere.

5.1. A Simplified Problem and Algorithm

The sequential case of the algorithm offers considerable simplification
over the concurrent cases. There is no interference at all, since each request
arrives after previous requests have been satisfied. This means that all the
estimates of remaining resources are completely accurate. In fact, the result
is equivalent to that of an algorithm in which all information is known
globally.

The behavior of the algorithm in the sequential case can be modelled by
repeated calls to the following sequential program, FIND. The program
takes a weighted tree, a nonnull placement, and a vertex (the vertex at

74 LYNCH ET AL.

which a request occurs) as input, and returns a vertex (the vertex at which
the resource to be granted is located).

FIND(T,p,v)

Case
p(v) > 0 : return v
p(descl(v)) = 0 : return FIND(T,p,parentT(v))
p(v) = 0 and p(deSCT(V)) > O:

IS := {w C chJldrenT(v): p(de~cr[w)) > O}
return FIND(T,p, randomLs)]

endcese

Thus, a request is satisfied, as before, in the smallest containing subtree
which contains a resource; where there is a choice, the probability function
is used.

LEMMA 12. I f p is nonnull and v~verticesr, then FIND(T,p, v) even-
tually halts and returns a vertex, v, with p(v) > O.

Proof Straightforward. |

We next want to prove a lemma which will be useful in the later analysis.
The content of the lemma is as follows. Let random r denote the probability
function which returns s~leavesr with probability q)T(s). Assume T is a
weighted tree and p is a placement which is nonzero only at leaves. Con-
sider the following two experiments:

(1) Call FIND(T,p, rootr), and

(2) Call FIND(T,p, randomr).

We claim that the "results" of these two experiments are the same. That
is, for each w e vertices> the probability that experiment (1) returns w is
exactly the same as the probability that experiment (2) returns w. It will
follow from the next lemma that this is so.

Some notation is helpful here. The result of FIND on a particular set of
arguments can be expressed as a probability distribution of vertices. Let
c~r,p, denote the probability distribution of results for FIND(T, p, v). That
is, FIND(T, p, v) returns w with probability eT, p.v(w).

LEMMA 13. Let T be a weighted tree, p a nonnull placement for T.
Assume that p is nonzero only at leaves. Then the following are true:

(a) I f v~internalT, then ~T,p,v~--~w~ehildrenT(v) [[~pr(descr(W)) /
~or(descr(v))] o~r,p, ~3.

(b) I f v e verticesr, then ~r,p,~ = Y'.w~de=~v)E[q~r(w)/
(p r(descr(v))] 0~r. p, ,,].

P R O B A B I L I S T I C A N A L Y S I S N E T W O R K 75

Proof In the proof, we assume T and p are fixed and write a~ in place
of c~r,p, v, etc.

(a) We consider cases.

Case 1.p(descr(v))=0. Then since the algorithm immediately calls
FIND on parentr(v), we see that c~ = 0CparentT(v) , Similarly, for all children w
of v, we have e w = % tr(v)" Since ~ w e c h i l d r e n r (v) [(P T (d e S C T (W)) /

q~r(descr(v))3 = 1, the result follows.

Case 2. p(descr(v)) > 0. Since we are assuming that v Einternalr, we
know that p(v)=0. Let S = {wechildrenv(v):p(descv(w)) >O}. Then
S ¢ ~ . The third case in the algorithm holds, and we have that
~ = 2 ~ s [[qo(descr(w))/q) r(descr(S))] c%]. Now,

[[qor(deSCT(W))/(pr(descr(v))] c%,]
w ~ childrenT(v)

= ~ [[~or(deSCT(W))/~oT(descT(v))] C~w]
w ~ S

+ ~ [[qor(descr(w))/q°r(descr(v))] ~] .
ws childrenT(v) S

By the remark above, this sum is equal to

~ [~o v(desc r(S))/q) r(desc r(v))]

+ Y, [[~ov(descr(w))/q)r(deSCT(V))] ew].
w E children/-(v) -- S

If w~chi ldrenv(v)-S , we know that p(descv(w))=O, so that
~w = ~ p a r e n t r (w) = O~v' S o the sum above is equal to

~ [q~ v(desc v(S)) / ~o r(desc r(v)) l

+ c% Y' [q0 r(desc r(w))/q) r(desc v(v))l,
w~childrenr(v) S

= e, [~o T(desc r(S))/q) T(desc r(V))]

+ ~[(¢p r (descr(v)) - q) r(descv(S)))/q)r(descv(v))],

(b) We proceed by induction on the height of v:

Base: v ~ leavesr.,

76 L Y N C H E T A L .

Then the only w in descr(v) is v itself, so the sum on the right is
just[~or(v)/~pr(v)] c~o, = c%, as needed.

Inductive step. v ~ internal r. Then

7v = ~ [[~or(descr(w))/~or(descr(v))] aw] by part (a),
w c e h i l d r e n T (v)

= ~ [[(Pr(descv(w))/cPr(deser(v))]
w ~ e h i l d r e n T (v)

x ~ [[¢pr(s)/~ov(descr(w))] ~]] , by inductive hypothesis,
s E descT(W)

= ~, ~ [[q)r(s)/q)r(descr(v))] es],
w e c h i l d r e n T (v) s ~ descz{ w)

= ~ [[~Or(S)/q)r(descr(v))] ~,],
s a descT(v)

as needed. |

Part (b) of this lemma, with v = root r , proves equivalence of the two
experiments described prior to the lemma.

We can restrict attention to "request sequences" in place of request pat-
terns, in the sequential case of the algorithm. Assume that T is a weighted
tree, and p is a placement for T. A request sequence r is a sequence of
elements of verticesr, representing a sequence of request arrival locations.
Similarly, a resource sequence r is a sequence of elements of vertices r,
representing a sequence of resource locations. In either case, let length(r)
denote the number of elements in a sequence. A resource sequence, s, is
compatible with a placement p provided that [s- l (v)[~p(v) for each
v e verticesr. (That is, the resource sequence grants at most the number of
resources placed at each vertex.) If r is a request sequence and p is a
placement with total(p)~> length(r), then a matching of r and p is a pair
m=(r , s) , where s is a resource sequence compatible with p and
length(r)=length(s). A matching describes the successive locations of
resources which are used to satisfy a sequence of requests.

Next, we define a probabilistic program which takes as inputs a request
sequence r and a placement p with total(p),-->length(r), and returns a
matching of r and p. The procedure simply uses FIND repeatedly.

MATCH(T,p,r)

For i =] to l e n g t h (r) do
I s (i) := F I N D (T , p , r (i))
p (s (i)) := p (s (i)) - t]

PROBABILISTIC ANALYSIS NETWORK 77

THEOREM 14. Let r be a request sequence, p a placement with
total(p) ~>length(r). Then MATCH(T, p, r) will eventually halt and return a
matching of r and p.

Proof Straightforward. |

This algorithm is designed to behave exactly as the sequential case of our
general algorithm.

5.2. Cost Measures

Let distr(u, v) denote the tree distance between u and v. If m -=- (r, s) is a
matching, then seqcostr.p(m)=Zidistr(r(i) ,s(i)) . Thus, the "sequential
cost" is just the sum of the tree distances between successive requests and
their corresponding resources.

If r is a request sequence with length(r)~<total(p), then define
seqcostr,p(r) to be the expected value of seqcostr, p(m), where m is construc-
ted using MATCH(T,p, r). Let seqcostr, p denote the expected value of
seqcostr.p(r), where r is of length total(p), with its successive locations
chosen independently according to ~0r. In the remainder of this section, we
analyze seqcostr, p.

5.3. A Useful Recurrence

In this subsection, we present a solution to a system of recurrence
equations. This solution will be useful in later subsections. Let c e R +.
Define Go: N x R + ~ R + by the equations:

G,(0, t) = 0 and

G,.(k, t)= max { G c (k - 1, tl) + Go(k - 1, t2): tl + t2 ~ t} + &af t , for k~> 1.

LEMMA 15. For all k >~O, the following are true:

(a) The function mapping t to G,(k, t) is concave downward and
monotone nondecreasing.

(b) Ifk>~ 1 then Gc(k, t) = 2 G c (k - 1, t /2)+ckaftt .

Proof We proceed by induction on k. The base, k---0, is trivial. For
the inductive step, let k~>l. If t l+t2~<t , then G c (k - l , t l)+
G o (k - 1, t2) <<, 2 G c (k - 1, (t~ + t2)/2), since the inductive hypothesis states
that the function mapping t to G c (k - 1 , t) is concave. This is in
turn ~< 2Go(k - 1, t/2), by monotonicity. Therefore, Gc(k, t) =
2 G o (k - l , t /2)+ck~t t , showing (b). Since each term is concave and
monotone, the sum is also, showing (a). |

THEOREM 16. Go(k, t) ~ < (3 w f 2 + 4) c ~ 7.

78 L Y N C H E T A L .

i

Proof By Lemma15, Gc(k, t)=O if k = 0 , a n d = 2 G c (k - l , t / 2) +
c k ~ t if k ~> 1. Expanding this recurrence, we see that

Gc(k , t)=c I ~ 2 i (k - i) t ~] forallk>~0,
i ~ O, . . . ,k- - 1

i = O, ..,, k - - 1

Let x = 1/./-2, n = 2 k. Then

i = 0, ..., k - - 1

= (c~'}~/~/x/~) [(1 + kx k + 1 _ _ (k --}- 1) Xk)/(1 -- X)2],

= (c,,/'t%fn)/(,~-2(1- 1/x/2) 2 [1 ql-kxk+l--(k -~- 1) x k] ,

= (c x ~ x ~) (3 x ~ + 4)[1 + k x ~'*~ - (k + 1) x~],

= (cx~x~) (3 ~ + 4)I-1 + (kx - k - 1) xk],

~< (c x ~ x ~) (3 x ~ +4) s i n c e k x - k - 1 <0,

= (c ~) (3 x / 2 + 4). |

5.4. Recursive Analysis

Now, we require Restriction 3 and a new assumption, Restriction4.
These are to remain in force for the remainder of Section 5.

RESTRICTION 3. T has all leaves at the same distance from the root, and r
and p are nonzero only at leaves.

RESTRICTION 4. T is a complete binary tree.

If T is a weighted tree, then a weighted subtree T' of T consists of a sub-
tree of T together with a probability function ~oT, given by
~oT,(v) = ~or(v)/~oT(verticesr,). That is, the weights of the subtrees are just
normalized restrictions of the weights of T. If T is a weighted binary tree,
let leftT and rightr denote the designated weighted subtrees of T.

If T has height at least 1, then let T1 and T2 denote leftT and rightr,
respectively. Let Pl and P2 denote Pl T1 and Pl 7'2, respectively. If r is a
request sequence, let overflow T,p(r) denote I I r - l (vertices r~)[-
p(verticesr,)[, the difference between the number of requests that arrive in
the left subtree and the number of resources placed there. Let overfloWT, p
denote the expected value of overfloWT, p(r), where r is a sequence of length
total(p) chosen using (Pr.

PROBABILISTIC ANALYSIS NETWORK 79

The following is a key lemma which provides a recursive breakdown for
the sequential cost. It says that the expected cost of matching breaks down
into costs of matching within the two subtrees, plus a charge for the
requests that overflow into the opposite subtree.

LEMMA 17. Assume heightT~> 1. Then seqcostr, p ~< seqcostrl.pl +
seqcost r2, p2 + 2height roverflow r,p.

Proof For any particular request sequence r, there is some particular
number, overflowr.p(r), of requests that do not get satisfied within their
own subtree, but rather overflow into the opposite subtree to find a
resource. To be specific, assume that it is the left subtree from which any
excess requests overflow. Let r I be the subsequence of r consisting of
requests arriving in T1, truncated to length p(T1). Let r 2 be the sub-
sequence of r consisting of requests arriving in T> Recall that seqcostr, p is
the expectation of the search cost for enough requests to exhaust all resour-
ces present.

Before the time at which the left subtree overflows, the algorithm
MATCH(T, p, r) runs exactly like MATCH(T1, p~, q) within the left sub-
tree. Requests originating within T 1 become matched to exactly the same
resources in both executions.

We now consider the right subtree. Requests which originate within the
right subtree are handled in the algorithm MATCH(T, p, r) exactly as they
are in the algorithm for T2 and P2. However, there are also overflow
requests from the left subtree, which enter T~ at its root rather than at its
leaves. By Lemma 13, whenever such a request arrives, its probability of
being matched to any particular resource is exactly the same as if the
request had entered at a random leaf of 7"2. All the requests remain
independent, and these additional requests are just enough to exhaust the
resources in T2.

Now assume that the request sequences r are chosen at random
according to ~o r. They result in subsequences rl and r 2 which are chosen at
random according to q~r~ and q~r2, respectively.

We claim that seqcostT, p, the expected cost taken over all r, is bounded
by

seqcostrl,p~, the expected cost taken over random sequences in
the left subtree + seqcostr2,p2, the expected cost taken over ran-
dom sequences in the right subtree +2 heightT overfloWr,p.

The third term allows for the expected overflow of requests, and assigns
them the maximum cost, 2 height>

Consider the first term. (The second term is analogous.) The first term
allows for the expected cost incurred by an execution of MATCH on a ran-

643/68/1-3-6

80 LYNCH ET AL.

dom sequence of requests within TI. In case T 1 has its resources exhausted
by requests originating within that subtree, this term measures exactly the
expected cost for the matching of the first requests in T1 to all the resources
in T~. This term ignores the cost incurred by any excess requests
originating within T1 which do not get matched within T~. However, that
is not a problem, since those costs are counted by the third term.

In case T1 does not have its resources exhausted by requests originating
within T j, this term is actually greater than needed to measure the expec-
ted cost of matching all requests originating in T~; in fact, it is enough to
measure this cost of matching these requests, interspersed with enough
other random requests (arriving at the leaves of T~) to use up all the
resources in T~. We have already argued that these requests behave as if
they were interspersed with other random requests, because requests arriv-
ing at the root match in the same way as if they arrived at random leaves.
In this case, the first term does not account for the cost of matching those
requests which enter T~ at its root. However, that is not a problem since
that cost is covered by the third term. |

5.5. d-Fairness

We need to make another restriction on the algorithm, for the purpose
of analysis. In particular, it is reasonable that the behavior of the algorithm
should be best when the resources are distributed in the tree in some
relationship with the probability distribution governing arrival of requests.
(The paper by Fischer, Griffeth, Guibas, and Lynch, 1981, considers
optimal placements of resources in a tree network.)

For de R +, we say that a placement, p, is d-fair provided that the
following is true. Let u, vEverticesT, where uedescr(v). Let
q91 = ¢pr(descv(v)) and q~2 = q~v(descr(u)). Then I p (d e s c T (u)) -

(q)2/~ol)p(deSCr(V))l <~dx/(~o2/~o~)p(descr(V)). That is, for each subtree,
the number of resources placed in each of its subtrees is approximately
proportional to the probability of arrivals in that subtree, and the dif-
ference is proportional to the "standard deviation." For any T, if t and d
are sufficiently large, then techniques in (Fischer, Griffeth, Guibas, and
Lynch, 1981) can be used to produce d-fair placements of t resources in T.

From now on in Section 5, we assume the following:

RESTRICTION 5. p is d-fair (for some arbitrary but f ixed d).

The next lemma says that restrictions of d-fair placements are also d-fair.

LEMMA 18. Let p be a d-fair placement for T. Let T' be any subtree of T,
and p' = p I vertices r,, the restriction of p to vertices r,- Then p' is d-fair for
7"

PROBABILISTIC ANALYSIS NETWORK 81

Proof Let u, v~verticesr,, with u~descr,(v). Let q91=~or(descr(v)) ,
(P2 = q~r(descr(u)), (P'I = (pr,(descr,(v)), and (p~ = q~r,(descr(u)). Then q/l =
qh/q~r(verticesr) and q~=q~2/~0r(verticesr,), by definition. Therefore,
~0'(2)/~p'(1) = qo2/q~l.

Note that p ' (descr(u))=p(descr(u)) , and p'(descr,(v))=p(descr(v)).
Thus,

[p'(descr,(u)) - (~ol/(P'l) p'(descr,(v))l

= [p(descr(u)) - (~o2/qol) p(descr(v))[,

<~ d~/(q~2/q~l) p(descr(v)) since p is d-fair,

= dx/(cp'2/~o'l)p'(descr,(v)) as needed. |

The final lemma of this subsection bounds the expected overflow for d-
fair placements.

LEMMA 19. overfloWr.p ~< (6 + d) x/~r(verticesr~) total(p).

Proof rlr-l(verticesr,)[- p(verticesr,)l ~< [[r l(verticesrl)] -
q~r(verticesT~)total(p)l + I~Pr(verticesr,) t o t a l (p) l - p(verticesrl)].

The expected value of the first of these quantities, taken over r, is
bounded by 6~/q~r(verticesr~)total(p), using Lemma 3.1.5 of (Fischer,
Griffeth, Guibas, and Lynch, 1981).

The second quantity is bounded by dx/~0r(verticesv~) total(p), since p is
d-fair. |

5.6. Sequential Analysis

Let sizer denote the number of vertices in T. We now give the main
result of Section 5, that seqcostr.p is O(~/sizertotal(p)). This says, for
example, that if total(p) is proportional to sizer, then the total cost is
proportional to total(p). This implies that the average cost per request is
just a constant, independent of the size of the network.

In order to prove this theorem, we require the followng restrictions,
repeated here for convenience.

RESTRICTION 3. T has all leaves at the same distance from the root, and r
and p are nonzero only at leaves.

RESTRICTION 4. T is a complete binary tree.

THEOREM 20. seqcostr, p is O,~/sizertotal(p)). (More specifically,
seqcost r, p ~< (3,,f2 + 4)((6 + d) ,,f2) ~/2h'ightvtotal(p).)

82 LYNCH ET AL.

Proof By Theorem 16, it suffices to show that seqcostr, p <~
Gc(heightr, total(p)), where c = (6 + d) x/~. We proceed by induction on
height T.

Base: height r--- 0

Then T has a single vertex, and seqcostv,p = 0. The inequality is immediate.

Inductive step. heightr>~ 1. Then

seqcost r,p

~< seqcost ri,p~ + seqcost r:,p2 + 2 height r overfloWr, p,

by Lemma 17,

~< seqcost T~,pi + seqcost r2,p2 + 2height V(6 + d)x/tp r(vertices T ~) total(p)

by Lemma 19.

A similar inequality holds for T 2 in place of T1 within the square root.
Since at least one of q~r(verticesr0, ~0r(verticesT2) is no more than ½, it
follows that

seqcost T,p ~< seqcost r,.p~ + seqcost r2.p2 + 2 height r(6 + d) x/(1/2) total(p),

= seqcost rl.p, + seqcost r2,p2 + (6 + d) x/2 height r ~ .

By Lemma 18, we can apply the inductive hypothesis, which implies that
the right-hand side of this inequality is at most equal to

Gc(heightT- 1, total(p1))+ Gc(heightT- 1, total(p2))

+ (6 + d) x/~ height r

The definition of Gc implies that this latter expression is at most equal to
Gc(heightr, total(p)), as needed. |

6. THE FINAL ANALYSIS

In this section, we combine the monotonicity analysis and the sequential
analysis, to obtain an upper bound for the expected cost for the algorithm.

6.1. Relationship Between the Costs

Now we require the following restrictions.

RESTRICTION 1. T is a weighted tree, and the nondeterministic choice
step in Part (2) of the algorithm uses a call to randomr, s.

PROBABILISTIC ANALYSIS NETWORK 83

RESTRICTION 2. Delivery time for messages is always exactly 1.

With these restrictions, there is a close relationship between the costs of
our general algorithm and the cost of the sequential algorithm MATCH.

LEMMA 21. seqcostr,p = l ima . ~(bnumT.,p(a,f) + vbnumr, p(a,f)).

Proof There is an absolute upper bound on the time for our algorithm
to satisfy a single request, in the absence of concurrent requests. Thus, as a
increases, the probability that there are any concurrent requests
approaches 0.

Therefore, the limiting case of the general algorithm behaves like
MATCH. There is no backtracking, so the total search time just reduces to
the sum of the distances from requests to the resources which satisfy them.
This sum is just the total number of buyer and virtual buyer messages. [

Now let us add one more restriction:

RESTRICTION 3. T has all leaves at the same distance from the root, and r
and p are nonzero only at leaves.

With this added restriction, we can prove a variant of the preceding
lemma.

LEMMA 22. seqcostr, p = 2lima_ ~(bnumr, p(a,f)).

Proof By Lemmas21 and 4. |

This immediately implies the following bound on the cost of the general
algorithm.

LEMMA 23. costT,p(f)~<2seqcostT.p.

Proof By Theorem 11 and Lemma 22. |

6.2. The Main Theorem

Now we are ready to present the main result, the upper bound for the
expected cost for the general algorithm. In order to apply the results of
both the monotonicity analysis and the sequential analysis, we must
assume the restrictions made for both cases. More specifically, we assume
all of Restrictions 1-5:

RESTRICTION 1. T is a weighted tree, and the nondeterministic choice step
in Part (2) of the algorithm uses a call to randomv, s.

RESTRICTION 2. Delivery time for messages is always exactly 1.

84 LYNCH ET AL.

RESTRICTION 3. T has all leaves at the same distance from the root, and r
and p are nonzero only at leaves.

RESTRICTION 4. T & a complete binary tree.

RESTRICTION 5. p is d-fair (for some arbitrary but f ixed d).

THEOREM 24. Let f be a probability function. Then costT,p(f) is

O(x/size rtotal(p)). (more specifically, costr, p(f) <~ 2(3 v/2 + 4)
((6 + d)xf2) x/2heignt~total(p).)

Proof. By Lemma 23 and Theorem 20. |

In particular, provided that total(p) is proportional to sizer, the expec-
ted average time taken by this algorithm to satisfy a single request is con-
stant, independent of the size of the network.

Remark. It is possible to prove a variant of Theorem 24, for the case in
which the placement p is chosen at random using ~0r (just as the request
locations are chosen), rather than being d-fair. We sketch the ideas briefly.

First, we must extend the cost definitions to include expectations taken
over placements of a partictdar length. Thus, we define costT, t (f) to be the
expected value of costT,p(f) for p with total (p) = t. Analogous definitions
are made for seqcostr,, and overflowT, t. Lemma23 then implies that
costT.,(f)<<.2seqcostr.t. It is also easy to see that overflowr, t-~<
dx/~pr(verticesv~) t, for some constant d.

Next, we prove a consequence of Lemrna 17 which says that seqcostr. , ~<
Exp(t~,t2)witht~ + ,z =, (seqcostr~,t~ + seqcost T2,t2) + 2 height r overflowT.t. (Here,
the expectation is taken over pairs which are obtained by using q~r to
assign resources to T 1 or T2.) This obviously implies that seqcostv, t~<
max~,~,,2)w~th,1 + ,2 = ~ (seqcost T,.,~ + seqcost ~,,2) + 2 height r overflow ~.~.

Now we prove a variant of Theorem 20 which says that seqcostT, t is
O (~ . More specifically, we show that seqcostr, t~<Gc(heightr, t),
where c = dx/~. This is easily done by induction as before, using the new
lemmas just described. Combining these results, we see that costT, t (f) is
o).

7. REMAINING QUESTIONS

There are several directions for remaining research. First, we would like
to extend the analysis of the general algorithm. We would like to loosen
our restrictions on tree shape, message delivery time, and locations for
resources and requests. If we do this, is it possible to carry out an analysis

PROBABILISTIC ANALYSIS NETWORK 85

similar to the one in this paper? In particular, can the concurrent cases of
the algorithm still be bounded in some way in terms of the sequential case?

We would also like to extend the analysis of the sequential algorithm
MATCH. Here, we would like to loosen restrictions on tree shape and on
locations for resources and requests. There are some apparent
improvements in the algorithm, for example, adjusting the probabilities for
the choice among children in response to knowledge of the number of
resources remaining in each subtree. While this seems like an improvement,
the resulting algorithm seems harder to analyze (since the recursive decom-
position does not appear to work). Can any simple modifications be shown
to be improvements?

We would like to compare the performance of this algorithm to that of
alternative algorithms which solve the same problem. We have already
observed that this algorithm performs much better than the centralized
algorithm, which locates all resources at the root. How does it compare to
algorithms which allow requests to search for resources in parallel rather
than sequentially? What about algorithms which rebalance resources? Are
there other interesting ideas for algorithms for this problem?

Finally, the general analysis strategy is quite attractive. Proving a
monotonicity result which bounds the concurrent cases of an algorithm
interms of the sequential case, and then analyzing the sequential case by
traditional techniques, appears quite tractable. The use of this strategy for
our algorithm appears to depend on many special properties of the
algorithm and on restrictions on the execution. Is the strategy more
generally useful? For what type of algorithms can it be used?

RECEIVED December 13, 1982; ACCEPTED September 19, 1983

REFERENCES

F~sc~n~R, M., GRIFFETn, N., GUIBAS, L., AND LYNCH, N. (1981), Optimal pla.cement of iden-
tical resources in a distributed network, in "Proc. 2nd International Conference on Dis-
tributed Computing"; Inform. and Control,

GUIBAS, L. J., AND LIANG, F. M. (1982), Systolic stacks, queues, and counters, in
"Proc. 2nd MIT VLSI Conference."

