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1. INTRODUCTION

In this paper we improve previous algorithms in (PSL), (LPS), (Doa), (Dob), and
(DSa), for achieving agreement among multiple processes. The context for this agreement is
a network of unreliable processes that have a means for conducting several synchronized
rounds of informatién exchange, after which they must all agree on some set of information.
We will assume. for simplicity that this set of information consists of a single bit. The

generalization to arbitrary messages is sraightforward.

The type of agreement we will study is called Byzantine Agreement (LSP), Unanimity
(Db), or Interactive Consistency (PSL). It results when, in the presence of undetected faulty
processes, all correctly operating processes are able to agree either on a value or on the
conclusion that the originator of the value is faulty. More explicitly, Byzantine Agreement is
achieved when

(I)  all correctly operating processes agree on the same value, and
(II) if the transmitter operates correctly, then all correctly operating processes agree

on its value.

Implicit in (I) and (II) is the idea that the agreement is synchronous in the sense that all
processes reach this agreement at the same time. In other words, there must be some real
time at which each of the processes has completed the execution of its algorithm for reaching

agreement, and this time must be known in advance.

Our algorithm will handle the worst case assumption that faulty processes are not

predictable and possibly even malicious. Even if the correctly operating processes cannot



identify the faulty processes, they must still reach Byzantine Agreement. The algorithm does

not depend in any way on anticipated behavior of faulty processes.

Previous best algorithms for reaching Byzantine Agreement were presented in (DSa)
and (DSb). These algorithms are polynomial and reach agreement with and without using
authentication, respectively. (Authentication here refers to any protocol that prevents
processes from changing the messages they relay or introducing new messages and claiming
to have received them from others. See (DSa) and (LSP) for further discussion.) In this
paper we will improve the algorithm without authentication, which requires 4t+4 rounds of
information exchange and Oo(n* log n) bits. The basic algorithm we present requires

2t+3 rounds and O(nt + t3 log t) bits.

L4

Fischer and Lynch (FL) were the first to show that a lower bound on the number of
rounds needed is t+1; their result was generalized by Dolevv and Strong (DSb) and
independently by Demillo, Lynch and Merritt (DLM). Exponential algorithms for reaching
agreemént in t+1 rounds were given in (PSL), (LPS), (Da), and (Db). The existence of a

polynomial algorithm without authentication using fewer than 2t+3 rounds remains open.

The algorithms discussed provide a method for a single process to send a single value to
all other processes. Generalizations to the cases in which the transmitter is not known in
advance or is not a member of the system (one of the participating processes) will be

discussed and the appropriate changes in the algorithm will be indicated.

We assume some reliable means of communication by which any correct process can

send a message to any other correct process. For example, this reliability might be achieved




by sending duplicate messages along many paths in a network. In any case, for this paper we
assume a completely connected, totally reliable communication network, and in counting the
total number of messages sent, we ignore any duplication or repetition inherent in this
communication medium. Note that we only count messages sent in accordance with the

algorithm.

All results obtained in this paper can be extended to networks which are not complete
using similar methods to those described in (Da) and (Db). The number of rounds and

likewise the number of messages will increase, but the algorithms will remain polynomial.

Algorithms for reaching Byzantine Agreement using authentication are relatively simple
(DSb) and require O(nt) messages. For Byzantine Agreement without authentication, a
much more sophisticated algorithm is needed. Byzantine Agreement is more difficult without
authentication because faulty processes can change intermediate values, and because no
process can identify with certainty all those that relayed a given message. Without
authentication, it was shown in (PSL) that n must be greater than 3t for Byzantine

Agreement to be possible.



2. BASIC NOTIONS AND ASSUMPTIONS

To clarify the relationships among the processes, we use notions suggested in (Db).
The transmitter sends its value to its receivers either directly or via others called relays. A
process can be a transmitter, a receiver or a relay according to its function in the network
with respect to é given message. A process is correct if it follows the specified algorithms; a
correct transmitter is a correct process that sends the same value to all its receivers. A fauity

process is a relay or a transmitter that is not correct.

We assume that each process knows the topology of the network and of each subnetwork on
which we will run the algorithm. Weaker assumptions will require a more complex and less

efficient algorithm along the lines discussed in (Da).

Although it is enough to assume that there exists an upper bound on the delay of
relaying a message through a correct process, we also assume that the algorithm is
synchronous in the sense that each process knows the beginning and ending times of each
round and these times are synchronous throughout the system. For further discussion of this

issue, see (L), and (Da).

An important and apparently necessary assumption (L) without authentication is that

the immediate sender of any message can be identified.

There is no solution if the upper bound on the number of faults exceeds one third of

the processes. To make the algorithm more efficient, we want it to run with respect to a




given upper bound and not the maximal upper bound. Thus we assume that the upper bound

t for the number of possible faults is a parameter of the algorithm that each process is given.

Observe that if the actual number of faulty processes is larger than the upper bound,
then the algorithm may fail to reach Byzantine Agreement without alerting any correct
process to that fact. This is not a problem with the specific algorithm we are going to
present, but inherent in the Byzantine assumptions. There is no way, in general, to know if
the transmitter had sent conflicting values, or whether all the evidence is coming out of faulty
processes. The proofs of necessary conditions for the existence of a solution in (PLS), (LSP),

(Da), and (Db), are based on this fact.

In Section 3 we present the basic algorithm for the case n=3t+1 with the transmitter
known. In Sections 4 and 5 we present a formal model and prove that the algorithm reaches
Byzantine Agreement. In Section 6 we will generalize the algorithm to any n>3t and to the
cases where the transmitter is not known in advance or not one of the processes. We also
indicate the changes required when the number of possible values sent is a function of the

number of processes.

3. THE ALGORITHM

In this section we will present the basic algorithm for acheiving Byzantine Agreement.
In the next sections we will present the precise model and the complete proof of correctness
of the algorithm. The algorithm presented here will handle the case n=3t+1, and will use

the assumption that the transmitter is known and the set of possible values is {0,1}. The



value O will also be the default in case the agreement algorithm concludes that the transmitter

is faulty.

At the beginning the transmitter sends a "'*"

message to all processes including itself to
indicate that its value is 1. If its value is O, it sends nothing during the first round. If the

processes agree that ""*'" was sent, then 1 will be the final decision; otherwise, the final

decision will be 0. Thus the algorithm is not symmetric in the two possible values.

In the algorithm we use two thresholds, LOW and HIGH, where LOW=t+1 and
HIGH=2t+1. If LOW processes support some assertion then at least one correct process
supports it. If HIGH processes support something then at least LOW correct ones support it.
These thresholds are used to govern the support offered by a correct process to assertions

made by another process.

The basic idea in the algorithm is to prevent the faulty processes from introducing
faulty values by asking for at least LOW (= t+1) confirmations of a fact before adding
additional support and by asking for HIGH confirmations of a fact before assuming that
there will be agreement on that fact. The LOW threshold will prevent a collusion of faulty
processes from introducing spurious information without injtial support from at least one
correct process. To prevent faulty processes from introducing additional support to critical
assertions too close to the end of the algorithm to be communicated to all correct processes,
each correct process will require a proof of progress before it supports outherwise
supportable assertions. Thus information released too late to correct processes will be

ignored.




During the algorithm two types of messages will be sent: a "*" message and messages
containing names of processes. The "*'" represents the assertion that the transmitter has

value 1, and a name represents the assertion that the named process has sent "'*".

At the begining of each round each process sends its messages to every process. Then it
receives messages from the others and decides what to send at the next round. The notion of
round as well as all the other notions we are using will be defined more precisely in the next

section.

Each process keeps a record of all messages it has received. Consider this collection as
held by one process p. Denote by W the set of processes that have sent to process p the
message X. We call W, the set of witnesses to message x. Process q is a direct witnéss to
process r if q had received "*" directly from r. In this case, if q is correct, it will send the

1n_n

message r and p will include q in W_. Process q is an indirect witness to x if it has a set of

+

witnesses to x of cardinality LOW, i.e. if IWXI > LOW for q.

Process p confirms x if the cardinality of the set of witnesses to x is at least HIGH.

Each process p has a set (possibly empty) of confirmed processes which we denote by C.

The last notion we need is initiation, which means sending "*". A process p initiates at
round q if either at round 1 it receives "*" from the transmitter, or by the end of round q the
cardinality of the set of confirmed processes C, not including the transmitter s, is at least

LOW+1f(q), where f(q) = max(0,Mq/21-2).

We assume that whenever a process broadcasts a message to all others, it also sends
one to itself, for purposes of recording its own messages. We also assume that correct

processes follow the algorithm and send each message exactly once.



We now give the following rules for correct operation for each process:
R1. At round 1 the transmitter s broadcasts its value v to all processes.
R2. At any round k > 1, each process broadcasts the names of all processes to which
it is either direct or indirect witness, and which it has not previously broadcast.
If it initiates at the end of the previous round, it also sends the "*' message
unless it has previously done so.
R3. If a process confirms HIGH processes it commits to 1.

R4. If after round 2t+3 1 is committed, then agree on 1; otherwise, agree on 0.

The correctness of this algorithm is somewhat subtle and is proved in the following
sections, for the proof we present a formal model in which we will define all the notions we
use. Using the formal model we will prove the correctness of the algorithm. However, the

following discussion should help to motivate the proof.

During the course of execution, processes from time to time initiate. This means that

they know that the transmitter has sent a "*"

to some correct process and that they are
proposing to commit (i.e., to accept). A process announces initiation by sending a ""*" to the

other processes.

Watt

A process receiving a becomes a witness to the initiation of the sending process. A

"indirect" witness to an initiation by hearing about it from at least

process can become an
LOW other processes, since then at least one of them must be correct. In either case, it

broadcasts that fact it to all processes, including itself. (The sending process will thus record

itself as a witness at the same time that all other processes record it as a witness.)




On receiving message "r'" from process q, process p records the fact that q claims to be
a witness to the initiation of r. When at least HIGH processes have claimed to be witnesses
to r, then r is confirmed. The confirming process then knows one of two things must be
true: either r is correct and has indeed initiated, or r is faulty, but nevertheless has told at’

least LOW correct processes that it has initiated.

A process initiates at the beginning of the second round if it receives a ""1" from the
transmitter during the first round. Thereafter, it can only initiate if it has confirmed
sufficiently many initiations by other processes. This threshold number for initiation is LOW
through round 4 and then increases by one every two rounds until it reaches HIGH-1. By
that time, either LOW correct processes will have initiated or it is no longer possible for a
correct process to initiate. In the former case, after three more rounds, every correct process
will commit. In the latter case, no correct process can commit. The delicate part of the
algorithm concerns these last two facts: initiating and committing are easy enough so that as
soon as LOW correct processes initiate, then an avalanche begins which results in all correct
processes initiating and committing a small number of rounds later. However, committing is
hard enough so that no process commits in the last three rounds except as a result of an

avalanche started earlier.
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4. THE MODEL

We model the method for reaching Byzantine Agreement on a synchronous system of

automata. Such a system S is described by the following:

*

N -- the set of n processes;

Q; -- the state sets of process i;

y; -- initial state for process i;

v0,, vl  -- initial states for the transmitter s, indicating the transmitter initial
state with values "0" or "1" respectively;

F; € Q, -- accepting states for process i;

q(r) e Qqx...xQ, -- vector state of the n processes in round r;

M; ; -- the set of possible messages that process i might send to process j;

By Q+M; ? i,jeN2 -- the message generation

Sj: QjXMl jx...an j"Qj’ jeN -- the state transition functions.

Let TSN,where|T| >n — t, and let ve{0,1}. (T is the set of correct processes and v is

the transmitter’s value).

A round of the computation takes place in two steps. First, each process i sends

messages from Mij to each process j. Second, each process changes state based on its old

state and the messages it receives. Faulty processes can send arbitrary messages, so there are

in general many possible computations that must satisfy the agreement and validity

conditions below. A sequence of state vectors q(1), q(2), ..., q(d+1) is a d-round

(T,v)-com putation if there exists messages m; j(r)eMi i for i,je N and 1<r<d, such that
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1. INITIALIZATION: If v=0, then qs(l)-—-vOS. If v=1, then qs(1)=vls. Each
qi(1)=‘i’ for i=s.

2. CORRECT MESSAGES: For each r, 1<r<d, and each ieT, jeN,
mi,j(l')=#i,j(qi(l'))-

3. CORRECT TRANSITIONS: For each r, 1<r<d, and each jeT,

q]'(l'+ 1)=3j(q]'(1'), ml’j(r),---,mN,j(l'))-

We say that system S reaches Byzantine A greement fn d rounds if for every TEN with
fTl>n-t, every ve{0,1}, and every d-round (T,v)-computation q(1),...,q(d+1), the final state
vector q(d+1) satisfies the following:

1.  AGREEMENT: If i,jeT, then q;(d+1)¢F; iff qj(d+1)eFj.

2. VALIDITY: If seT, then for all ieT, q;(d+1)¢F, iff q(D)=vl,.

Accepting states F; mean that process i will agree on 1. Any other state means agreement

on 0. The validity requirement means that, if the transmitter is correct, then each correct

process will agree on its value.
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5. BASIC SOLUTION

Now assume n=3t+1. We describe a system S.

Let I={*}uN be a set of message items. Messages are subsets of message items; thus

we take Mi ]=M=21.

Each process remembers all the message items it has ever received from any of the
processes. Formally, a data entity is a pair in D=IxN with first component a message item
and second component the name of the process from which it was received. A process state
q is a pair (data(q), round(q)), where data(q) €D and round(q) is a positive integer. Thus,
we take Qi=Q=2DxIN. Thus, the process state is determined by the data received from the
other processes, and the current round number. The initial states are i;=(¢,1), VOS=(¢,1),
and vls=({(*,s)},1). The transmitter’s initial state with value O is not different from the
initial state of the other processes. The initial state with value 1 will be used below to

generate ''*'"' messages from the transmitter to every process. The transition function is
8;(q,my,...,m;) = (data(q) U{(x,))eD | xem;},round(q) + 1).

Thus the state change adds the new information received at the current round and increments
the round number by one. Our assumption that the system is synchronous is used here to
require that each process update its state even when no information is received at some

round.

The heart of the algorithm is the message generation function. First, define thresholds

LOW=t+1 and HIGH=2t+1. Let qeQ, and let xeI. We define
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W;(@) = {jeN]|(x,j)edata(q)} ,
the witnesses to x, and we let wx(q)=[Wx(q)L We define
C(q) = {keN|w,(q) 2HIGH, and k#s} ,

the confirmed processes, and we let c(q)=|C(q)] Thus a process x, other than the
transmitter, is confirmed if there are HIGH processes that have sent x. Notice that if x is
confirmed for p, then every other process has at least LOW witnesses to x because at most t

are faulty.

A process initiates if it supports the fact that the transmitter started with value 1.
Recall that f(x) = max(0,l x/21-2). Process i initiates in q if
I1. ieW.(q),
I2.  ¢(q@)2LOW+f(round(q)), or
I3. seW.,(q) and round(q)=2.
Thus a proc'ess initiates in state q if it initiated previously, it has enough support for the fact
that the transmitter started with value 1 (without counting the transmitter itself), or it

ylt

received from the transmitter at the first round. (It may help to think of initiation as

taking place at the end of the round that led to state q.)

Process i commits in q if
| {keN| w (@) 2HIGH} | >HIGH .

This means that i has HIGH support for the fact that HIGH processes have sent "*".
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Now we can define the message generation function and the accepting states. We
define ﬂi,j(Q) to be the smallest set satisfying the following rules:
M1. (Initiation) If i initiates in q, then *E“i,j(Q);
M2. (Direct witness) W.(q)Sp; ;(Q)
M3. (Indirect witness) If wy (q) >LOW, then keui,j(q), keN.

Mgt

So, the message generation function produces a if the process initiates. It produces the

names of all the processes to which process i is a witness. Processor i is either a direct

1 g it

witness to j, meaning that it has directly received a from j; or it has reason to believe

g1t

that j sent (indirect witness) in the form of LOW witnesses to the fact.

Note that since all messages are remembered, process i need not send process j the same
message item twice. Thus the actual set of message items sent can be that generated by the

message generation function minus those message items sent before.

Finally, F;=F={qeQ | i commits in q}. So, the accepting states are all the states in

which a process confirms.

Theorem 1: System S reaches Byzantine Agreement in 2t+3 rounds.

The next section contains the proof of Theorem 1.
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6. PROOF OF CORRECTNESS

The following lemmas prove Theorem 1 and establish the correctness of the algorithm.
All refer to a fixed (T,v)-computation q(1),...,q(d+1), d=2t+3, with associated messages

mi,j(r), i,jeN, 1<r<d.

The following lemma is immediate from the definitions and is stated to focus attention on

the monotonicity of sets W and C.

Lemma 1: Let 1_<,r'5r5d+1, ieT. Wx(qi(r’))EWx(qi(r)) for all xel, and
C(qi(r'))QC(qi(r)). Thus if ieT initiates (commits) in qi(r'), then i initiates (commits) in

q;(1).

In Lemma 2 we prove that within two rounds after a correct process initiates it is confirmed

by all correct processes.
Lemma 2: If ieT-{s} initiates in q;(r), 1<r<d-1, then ie C(qj(r+2)) for all jeT.

Proof: Let k be arbitrary process in T,then ieW*(qk(r+1)) by Rule M1. Similarly,
keWi(qj(r+2)) by Rule M2, for all jeT. Hence, Wi(qj(r + 2)2T. The lemma follows since

M>HIGH. [

The next lemma proves that within two rounds after all the processes in T initiate, all T

commit.
Lemma 3: Let 0<r<d-2. If all ieT initiate in g;(r), then all ie T commit in g;(r+2).

Proof: Assume all i T initiate in q;(r). By Lemma 2, T-{s} is contained in C(qj(r+2)) for all

jeT. If s is not in T then c(qj(r+2))2 |T| >HIGH and we are done. If s is in T then
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ws(qj(r+2))2HIGH and c(qj(r+2))2HIGH-1. Thus even though only HIGH-1 processes

1!t

are confirmed, there is HIGH support for the fact that HIGH processes have sent and

each jeT commits. []
Lemma 4: Let i,j,keT, xel, and 1<r<d+1. Then ke W, (q;(r)) iff ke Wx(qj(r)).

The proof of Lemma 4 follows from an easy induction on r using the fact that correct
processes always broadcast their messages to every process. Notice that at round 1 only the

transmitter can possibly find itself as a witness.

The following lemma says that if one correct process has i confirmed at round r then all

correct processes will have i confirmed by round r+1.
Lemma 5: Let 1<r<d. If ieC(qy(r)) for some keT, then ie C(qj(r+1)) for all jeT.

Proof: For every keT, C(qy(1))=¢. Assumer 2> 2. Since ie C(qy(r)), there must be a set
ASTnW;(q,(r)) with |Al=LOW. By Lemma 4, for every jeT, ASWi(qj(r)). Thus, iemj’h(r)
for all j,heT by Rule M3. Hence, jeW;(q,(r + 1)) for each j,heT, so ie C(gy(r+1)) for each

heT. [0

Next we prove that if the transmitter s is correct and initiates at round 1, then all correct

processes commit at round 4.
Lemma 6: If seT and qs(1)=vls, then each ie T commits in g;(4).

Proof: By M2, SEW#(q]'(Z)) for every jeT. Therefore, by I3, each jeT initiates in q’-(2). By

Lemma 3, each je T commits in q}-(4). O
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The next Lemma states that within 4 rounds after LOW correct processes initiate all T

commit.

Lemma 7: Let O<r<d-3. If there is a set AST - {siwith |A]J=LOW, such that all icA

initiate in g;(r), then all je T commit in qj(r+4).
Proof: Let r’ be the least number such that all ic A initiate in qi(r'). By Lemma 2,

ASC(q;(r’ +2)) for all jeT. We now argue that every jeT initiates in q.(r'+2)). It will
] }

then follow by Lemma 3 that j commits in qj(r'+4), and hence also in qj(r+4) by Lemma 1.

If the transmitter is correct then the desired conclusion holds for every r by Lemma 6, so
assume the transmitter is faulty. At r'=1 no correct process initiates. If r'=2, then
c(qj(r'+2)) 2|Al=LOW=LOW+£(c'+2). If '>2, then there is some ke A such that k initiates
in qk(r') using Rule 12, so c(qk(r'))2LOW+f(r'). Since r’ is minimal, k is not in C(qk(r’)).
By Lemmas 1 and 5, C(q;(r’ + 2))2C(qy(r)) for all j¢T. By Lemma 2, ke C(q;(r"+2)).
Hence, c(q;(t'+2)) 2LOW+{(')+ 1=LOW+£(r'+2). Thus j initiates in g;(r'+2) by Rule I2

as desired. [J

We next note that no correct process can have LOW support for the fact that correct process
i has initiated unless i has in fact initiated. The proof of Lemma 8 is a straightforward

induction on r.

Lemma 8: Let 1<r<d, i,jeT. If i does not initiate in g;(r), then i is not in W.(qj(r+1)) and

wi(qj(r+ 2))<LOW.

Lemma 9 states that a correct process commits only after at least LOW correct processes

initiate.
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Lemma 9: Let r>2, ieT, and suppose i commits in q;(r). Then there is a set BET with

[Bl=LOW such that every jeB initiates in q;(r-1).

. Proof: ¢(q;(r))2HIGH, so there is a set BETnC(q;(r)) with Bl=LOW. Each jeB has

wj(qi(r))ZHIGH; hence, by Lemmas 8 and 1, j initiates in qj(r-l). |

Lemma 10 and Lemma 11 use the previous lemmas to complete the proof of Theorem 1.
First we prove that by the end of the computation, if one correct process commits then all

commit. Later we prove that the system reaches Byzantine Agreement.
Lemma 10: If any ieT commits in g;(d+1), then all do.

Proof: Assume ieT commits in g;(d+1). By Lemma 9, there is a set AST with Al=LOW

such that every je A initiates in qj(d).

The cases where t=0 or the transmitter is correct are covered by Lemma 6. So assume that

the transmitter is faulty and that t>0, which implies that d>4.

Now consider the least r for which such a set A exists. If r<d-3, we are done by Lemmas 7
and 1. Hence, suppose r>d-2=2t+1. We derive a contradiction. There must be ke A which
initiates in qk(r) using Rule 12. Then c(qk(r))2LOW+f(r)2LOW+t—1=HIGH-1; but the
transmitter s is faulty and is not in C(qy(r)). Therefore, as in the proof of Lemma 9, there is
a set A'sTn C(qy(r)) with IA'l=LOW such that every process jeA' initiates in qj(r-l),

contradicting the choice of r. [J

Lemma 10 proves the AGREEMENT part of the Byzantine Agreement. It remains to show

that if the transmitter is correct then all will reach an accepting state iff its value is 1.
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Lemma 11: Assume that seT and let ieT. (a) If qs(1)=v0s, then q;(d+1) is not in F,.

(b) If qs(1)=vls, then qi(d+1)eFi.

Proof: (a) Case qs(1)=VOS: Suppose i commits in g;(d+1). Then by Lemma 9, there is an
element jeT that initiates in qj(d). Consider the ieast r for which some jeT initiates in qj(r).
Clearly r>1 by the initial conditions. Moreover, j cannot be initiated by Rule I13. Hence, j
initiates by Rule I2, so c(qj(r))zLOW. Thus, there is a ksTnC(qj(r)), SO Wk(qj)ZHIGH.
But then it follows from Lemma 8 that k initiates in qk(r-l), contradicting the choice of r.

We conclude that q;(d+1) is not in F i

(b) Case qy( 1)=v1g: This case is covered by Lemma 6. O

We have shown that the appropriate state for agreement is reached at q(d+1) after d=2t+3

rounds of information exchange. This completes the proof of Theorem 1. [J
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7. COMPLEXITY ANALYSIS

Since [l=n+1, each message item can be encoded by O(log n) bits, and a message M
consisting of k message items can be encoded in length O(k log n). Since processes need
not repeat messages, each process sends a maximum of n+1 message- items to each other
process during the course of the algorithm. Thus an upper bound on the total number of bits

required by the algorithm is O(n? (n+1) log n) = O(t3 log t).

We summarize this discussion in the following theorem.

Theorem 2: Byzantine Agreement can be reached for 3t+1 processors in the presence of up
to t faults within 2t+3 rounds of information exchange using o(t3 log t) message bits for a

one bit agreement.
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8. GENERALIZATIONS

More than 3t+1 processes

The first generalization will be to the case where the number of processes n is greater
than 3t+1. One can run the above algorithm with all the processes, but then the number of
messages will be much larger than necessary. In order to reduce the total number of
messages sent during the exchanges of information, we designate 3t+1 active processes,
including the transmitter. The other processes are called passive. Passive processes do not
send messages. All processes are to ignore messages from or about passive processes.
Active processes follow the basic algorithm and send "*" messages to all processes and other
messages only to active processes. Passive processes agree on value 1 only if they receive
"*" from HIGH (=2t+1) active processes; otherwise, they agree on value 0. After 2t+3
rounds of information exchange, the active processes will have reached Byzantine Agreement
by Theorem 1. If the transmitter is correct and has value 1, then all correct active processes
initiate after round 1, so the correct passive processes will also agree on 1. If the transmitter
is correct and has value 0, then no correct active process initiates by the proof of Lemma 11,
so all correct passive processes will agree on 0. If the transmitter is faulty and some correct

passive process receives ''*"

messages from HIGH distinct active processes, then at least
LOW correct active processes initiated by the end of round 2t+2. Following the proof of
Lemma 10, it is easy to see that in this case at least LOW correct active processes initiated
by the end of round 2t, and by the proof of Lemma 7 every correct active process initiated
by the end of rouﬁd 2t+2. Thus in this case, all correct processes will agree on 1. Similarly,

if the transmitter is faulty and the correct active processes agree on 1, then so will the

correct passive processes. In any case we have Byzantine Agreement for all n processes and
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this agreement is reached within 2t+3 rounds of information exchange with the number of

message bits at most O(nt + t3 log t).
Transmitter may not be a process

We can assume about the transmitter only that it is a possibly faulty data source that
communicates a (binary) value to each of the n processes in the system before the algorithm
begins. Thus, the transmitter might be one of the n processes, or it might be a sensor or I/0O
device that all processes can read. In this formalization, the transmitter’s value is encoded by
each process’ start state. In the preceding sections the transmitter was identified with one of
the n processes that carry out the algorithm, and each other process started in the same state
regardless of the transmitter’s value. A solution for the version now under consideration can
be modified to solve the previous version by simply adding an initial round in which the
transmitter sends its value to each other process. The converse, however, is not in general
true, for an algorithm might make use of the fact that, at most, t-1 faulty processes remain
when the transmitter has been determined to be one of the faulty processes. Thus some

solution to the previous version may not provide a solution to the current version.

However, our basic solution can be modified to handle this current version. If the
transmitter is not one of the active processes, then the processes will not use its messages
during the algorithm. The algorithm is the same, with the special phase at the begining in
which the data source loads values into the various processes. The number of active
processes should be 3t+1, not counting the transmitter if it is not one of the processes. At
the crucial point in the proof of Lemma 10, we can no longer get by with HIGH-1 confirmed

processes. Instead we need HIGH. Thus we need f(d-3) = t and d = 2t+6. Thus the
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algorithm reaches Byzantine Agreement among the active processes after 2t+4 rounds of
information exchange (not counting the preloading round), with m=0(t3 log t) bits of

information exchanged.

Notice that the above variation handles also the case in which the transmitter is one of

the processes, but is not identified ahead of time to the individual active processes.

More than two possible values for agreement

Our last generalization is handling more than binary values. In this case each previous
message must be relativized to the value v. Active processes can run the basic algorithm with
respect to each value, and they will have accepting state for each value. At the end of the
algorithm, if a process commits to exactly one value, this value will be its decision; in any
other case it can decide that the transmitter is faulty and produce a previously agreed on

default value. The handling of the previously considered generalizations remains the same.

Let V be the set of possible values. The number of bits required to reach Byzantine
Agreement among the active processes is at most O(V}t3( log t+ log [V]). Note that if we
use authentication then the number of bits exchanged is not affected by the number of

possible values (DSb).
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9. DECISION ON TRANSMITTER FAULT

In practice we would like to reach Byzantine Agreement as quickly as possible, but we
would also like to identify faulty processes whenever possible. In this section we will sketch
some methods for discovering transmitter fault as a byproduct of the algorithms we have

presented.

Consider again the basic one bit case with a known transmitter and a set of 3t+1 active
processes. If one processor knows that the transmitter sent more than one value, then it
knows that the transmitter is faulty. But to impart this knowledge to the other processors
would seem to require something like another session of Byzantine Agreement. We will show
how to use the information already exchanged to reach agreement among all the correct

processes about faultiness of the transmitter in some cases.

Observe that not every transmitter fault can be detected. For example, if the
transmitter excludes only t processes from receiving its value at the first round and follows
the rest of the algorithm, then there is no way to tell whether it is the faulty one or the t

processes that did not received its value are faulty.

A correct transmitter sends the same value to every other process, and as we proved in
Lemma 6, within 3 more rounds all correct processes commit to the value if it is 1.
Committing to O can take place only at the end of the algorithm. A faulty transmitter might
send the "*" to only a few correct processes at round one, and by a slow propagation, the
correct processes might commit to 1 only at the last phase. The improvement we suggest

cannot change the number of rounds it will take to end the algorithm, because sometimes we
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need all the rounds to verify that no correct process will commit to something not yet known
to the rest. But the propagation is slow only while fewer than t+1 correct processes have
initiated. In this case at least t+1 correct processes did not receive the "*" message. We
will show below how correct processes will in this situation be able to commit to 0. If later
they also commit to 1, then all correct processes will be able to agree that the transmitter is

faulty.

Execute the basic algorithm for 1 and O at the same time, where the algorithm for 1
proceeds exactly as described in Section 5. Initiation messages will be "*1" and "*0." If a
process does not initiate for 1 at round 2, then it initiates for 0. The rest of the algorithm

remains the same.

In the algorithm for O all the 11 lemmas hold, if we exchange 1 with 0. Therefore, all
correct processes either agree on 0 or on 1, and if a correct process sends its value all agree
on its value. At the end of both algorithms, if a process commits in both to the same value,

then it should agree on that value; otherwise, it should agree that the transmitter is faulty.

Observe that this variation of the algorithm requires twice the number of bits and the
same number of phases. The interesting property of this algorithm is that if any process
commits to a value in any one of the subalgorithms after round 5, then the final agreement

will be that the transmitter is faulty.

Theorem 3: All correct processes commit to at least one of the two values O and 1 after
round 5. Therefore, if any correct process commits to any value after round 5, all correct

processes will decide that the transmitter is faulty.




26

Proof: There are two cases possible:

(1) t+1 correct processes receive 1 at round 1, and

(2) t+1 correct processes do not receive 1 at round 1.

In either case at least t+1 correct processes will initiate at léast one of the values at round 2.

By Lemma 7, all correct processes will commit to that value after round 5.

If any correct process commits to a value after round 5 it will then have committed to two
values. By Theorem 1, all correct processes will commit to both values by the end of the

algorithm. Thus the final decision will be "transmitter faulty. "[J
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10. CONCLUSION

We have presented a feasible (polynomial) solution to the problem of reaching
Byzantine Agreement without using authentication. Our basic solution handles a one bit
agreement for n processes when the upper bound on the number of possible faults is t, with n
= 3t+1. We generalized this solution to handle many possible values for many more
processes as long as n remains greater than 3t. We also described ways to handle
modifications to the model in which the transmitter is not one of the processes or is not

known to the other processes in advance.

We believe that our solution characterizes the best known method for reaching
Byzantine Agreement without authentication. However, we have not been able to establish a
lower bound on the number of rounds required that narrows the gap between the known
lower bound of t+1 and the 2t+3 rounds required by our algorithm. In fact the lower bound
of t+1 is in some sense tight because algorithms exist for Byzantine Agreement without
authentication that require only t+1 rounds at the cost of requiring exponentially many

messages. We leave open the question of a tradeoff between messages and rounds.

We have assumed complete and reliable communication among the processes. Note
that this may be achieved in an unreliable and incompletely connected network (Da) and that
if we are given an algorithm for reliable communication of a message using a number of
messages polynomial in the number of processes, then we can convert that algorithm to one

that achieves Byzantine Agreement in a polynomial number of messages.
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We have also assumed a complete synchronization of the rounds throughout the paper.
Some variations of our algorithm are more sensitive to changes in this assumption than
others; but all can stand a significant weakening and the kind of synchronization required can
be achieved by messages along the lines of (L) assuming some known upper bound on the

time required by a process to relay a message.

Finally, we offered an enhancement to the basic solution in which late activity in the

algorithm allows all processes to conclude that the transmitter is faulty. Somewhat
paradoxically, we can conclude from certain kinds of activity after round 6 that the final
decision will be "transmitter fault," but we must continue processing to the end of the
algorithm. This apparent paradox suggests as an area for further research the search for

algorithms that under some conditions stop early.
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