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ABSTRACT

A model of computation is introduced which permits
the analysis of both the time and space require­
ments of non-oblivious programs. Using this model,
it is demonstrated that any algorithm for sorting
n inputs which is based on comparisons of indivi­
dual inputs requires time-space product propor­
tional to n2 . Uniform and non-uniform sorting
algorithms are presented which show that this
lower bound is nearly tight.

1. Hotivation and Contraposition to Previous
Research

The traditional approach to studying the complexi­
ty of a problem has been to examine the amount of
some single resource (usually time or space) re­
quired to perform the computation. In an effort
to better understand the complexity of certain
problems, recent attention has been focused on
examining the trade off between the required time
and space. This paper adopts the latter strategy
in order to pursue the complexity of sorting.

The vast majority of time-space tradeoffs recently
demonstrated have been for "straight-line" (or
"oblivious") programs 1, 5, 7, 10, 11,13, 14, 15,
that is, programs in which the sequence of opera­
tions is independent of the actual values of the
inputs. In this model, "time" refers to the num­
ber of operations performed, and "space" to the
number of auxiliary (i.e., non-input and non­
output) registers used to store intermediate
results. (To distinguish this usage of space from
others which follow, this will be referred to as
"data space".) The problem of sorting has been
considered in this rontext by Tompa 15 , who
demonstrated that any oblivious algorithm which
sorts n inputs requires time-space product ~(n2).

Although oblivious sorting algorithms have been
studied extensively (see Knuth 6 , where they are
called "sorting networks"), most sorting algo­
rithms are non-oblivious; that is, they continual­
ly test and branch based on comparisons of input
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values. In order to truly understand the complexi~

of sorting, then, a model which admits non-oblivkus
algorithms should be adopted. Toward this end,
Munro and Paterson 9 considered non-oblivious
sorting algorithms which use auxiliary registers to
store selected inputs and can access other inputs
only through successive passes over all the inputs.
Although they count only data space (i.e., number
of auxiliary registers used), the authors make it
clear that "control space" (used, for instance, to
remember which inputs to fetch into registers on a
given pass) is also an issue in upper bounds. To
sort n inputs within their model, they demonstrate
that the product of the number of registers and the
number of passes is e(n). Since each pass requires
n moves of the input head, their result might be

interpreted as a lower bound of ~(n2) on the pro­
duct of time and data space. Adopting Cobham's
mode1 3 Tampa 16 in fact demonstrated a simi-
lar trade-off for sorting on any general string­
processing model, exploiting only the restriction
of "tape input" (i.e., the input head can move at
most one symbol left or right in one step).

Thus there are at least three time-space tradeoffs
for sorting already known 9 , 15, 16 Each of these
however imposes some artificial restriction on the
algorithms considered (either obliviousness or tape
input), and so they say more about the inadequacy
of these models for sorting-type problems than they
do about the inherent complexity of the problems
themselves. To see this, one must simply confer
the three references and observe that each of these
results applies as well to the problems of merging
two sorted lists of n elements, for which the stan­
dard (non-oblivious, random access input) algorithm
requires only O(n) time, no data space, and O(log ~

control space (for pointers).

In order to be compelling, then, the model of com­
putation used to study sorting-type problems
should be not only non-oblivious, but should also
permit random access input. In fact, the sale
restriction which is placed on the sorting algo­
rithms considered in this paper is that they be
"conservative": inputs are viewed as indivisible
elements drawn from some total order, and the only
operations allowed are simple comparisons. Time
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The model which has been used extensively to study
the time requirements of sorting-type problems is
the model of "tree programs" (see Knuth6). Pippen­
ger (personal communication) suggested a generali­
zation of tree programs which could be used to
study the space requirements of these problems as
well. These generalized tree programs were studied
initially in16 , where they were called "branching
programs". This section defines and compares tree
programs and branching programs, and presents some
simple properties of the latter.

A tree program is a directed tree with bounded out­
degree d whose internal vertices are labelled by
queries of the inputs, whose edges are labelled by
the (at most d) possible responses to those queries,
and whose leaves are labelled by vectors of outputs.
Given an input vector, the query at the root is
tested first, and control follows that edge emana­
ting from the root which is labelled by the correct
answer for the given input values. This leads to
the next query to be tested, and processing con­
tinues similarly. Each input vector thus deter­
mines a path from the root to some leaf which is
labelled with the correct output for the given in­
put. Figure 1 shows an example of a tree program
which merges two sorted lists (xl ,x2) and (Yl'Y2)

satisfying xl~x2 and Yl~Y2' using queries of the

form "Is x ~ 0 r > Y.?".
i J

The time required EY ~ tree program is the length
of the longest path followed by any input. The
time required !Q compute ~ function f is the
minimum, over all tree programs P which compute
f, of the time required by P.

will be taken as the number of comparisons, but an
appropriate notion of space is not immediately
apparent. This section concludes by giving an
informal motivation for the measure of space adop­
ted, to be formalized in the next section.

An algorithm in this model might have random access
read-only input registers xl, ... ,x

n
' auxiliary

data registers Y1"" 'Yk' random access write­

only output registers zl, ... ,zm' and control

registers to record information about the state of
the computation. Since the only operations a1lowOO
are comparisons, each data register can store only
input values; since there is random access to the
input registers themselves, the data registers can
be eliminated completely by using control space to
remember the k indices of inputs which would have
been stored in the k data registers. Of course,
such control space would have to be capable of

assuming n
k

possible values, for which it requires
klog

2
n bits; this corresponds to the intuition

that each of the k indices requires 10g2n bits.

This leads directly to the measure of (control)
space which will be adopted: suppose that the
program enters Q(n) distinct configurations over
all sequences of n inputs, where a configuration
reflects all aspects of the program's status ex­
cept the contents of the input and output regis­
ters. Then the program will be said to use
10g2Q(n) space. This space might be viewed as an

elaborate "program counter", for without at least
10g2Q(n) bits the program cannot distinguish which

configuration it is in, and therefore which com­
parisons to make next.

2. Branching Programs

Control space as defined is precisely Cobham's
notion of "capacity,,3; the difference is only in
the context. It is important to note the non­
effective nature of this concept: a space-effic­
ient encoding of the configuration might entail
time-consuming encoding and decoding procedures
in practice (an illustration is provided by
theorem 3), but such time considerations are ig­
nored in this model. Since the main emphasis of
this paper is on lower bounds, the model's non­
uniformity (a different program may be used for
each n) and non-effectiveness serve to strengthen
the results.

The next section formalizes the model of computa­
tion which has been motivated here. The model is
sufficiently realistic to differentiate between
the complexities of merging and sorting, as it
admits the O(n) time, O(log n) space merging algo­
rithm, while in section 3 it is used to demonsbrnte
the main technical result of the paper: any algo­
rithm for sorting n inputs which is based on com­
parisons of individual inputs requires time-space

product ~(n2). Section 4 presents algorithms (and
less effective upper bounds) for sorting
which demonstrate that the established tradeoff is
nearly tight. The last section discusses some
directions for further research.
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Tree programs give no indication of the space re­
quirements of problems and this motivates the
generalization to branching programs. A branching
program is a directed multigraph, with bounded out­
degree and a distinguished vertex of indegree 0
called the source, whose vertices of non-zero out­
degree are labelled by queries, and whose edges are
labelled by the possible responses to those queries
together with (possibly empty) vectors of outputs.
Beginning at the source, processing proceeds exact­
ly as in tree programs, with the addition that
whenever control traverses an edge it outputs the
associated output vector. Figure 2 shows an ex­
ample of a branching program which merges xl~x2

with Yl~Y2 using the same set of queries as the

tree program of figure 1. In fact, this branching
program is derived from the tree program by moving
outputs as high as possible in the tree and then
coalescing all identical subtrees.

The time required EY ~ branching program is the
length of the longest path followed by any input
from the source to a vertex of outdegree O. (If
some input causes control to go around a cycle, the
time is undefined.) The capacity required EY ~

branching program is 10g21vl , where

V = {vi some input causes control to reach vertex
v} •



It is reassuring to observe that branching pro­
grams share some of the same relationships of time
and space as the classical models:

Proposition 1: If Sand T are respectively
the capacity and time required by some branching

program, then S=O(T) and T~2S (provided T
is not undefined).

Notice that it is possible for a branching program
to have cycles and yet have a finite time require­
ment, as long as no input can cause control to go
completely around any cycle. Pippenger's original
suggestion was that branching programs be acyclic;
that suggestion is justified by the following nor­
mal form:

Proposition 2 (Pippenger): Let P be a branch­
ing program which uses time T and capacity S.
Then there is a branching program P' which,
using the same set of queries, computes the same
function as P in time T and capacity at most
S+10g2Ts2S, and has the property that its ver-

tices can be partitioned into T+l sets
V

l
,V2 , ... ,VT+

l
such that any edge emanating

Proposition 3: If sufficient capacity is avail­
able, the time requirements of branching pro­
grams and tree programs to compute a given func­
tion using the same set of queries are identical,
in the following strong sense: there is a tree
program which for each input x uses t

x
steps iff

there is a branching program which for each
input x uses t x steps.

Proof: In one direction the statement is triv·­
ial, since any tree program is also a branching
program. In the other direction, suppose there
is a branching program which uses t x steps on

input x. By proposition 2 there is an acyclic
version which also uses t

x
steps. From this

version a tree program can be constructed by
beginning at the source and splitting all ver­
tices of indegree greater than 1, and finally
pushing all outputs down to the leaves. n

One final elementary observation concerning branch­
ing programs demonstrates that they are indeed
generalizations of tree programs:

Masek8 investigated space requirements for a type
of branching program, but considered queries of
the form "What is the ith bit of the input?".
The remainder of this paper will not deal with
such general programs, but will consider instead
queries based on simple comparisons of inputs. In
the concluding section we return to questions con­
cerning the more general model.

This proposition aids in conceptualizing branching
programs~ as it shows that, for asymptotic consid­
erations, it suffices to study those that arise
from tree programs by coalescing identical subtrees.

A {~)-branching program (or a {~~)-tree progran)
is one which employs only queries of the form
!Ix ·x" where x and x. are inputs, and receives

i· j' i J
one of the two replies !Ix. <x." or "x. >x." .

1 J l J
({<,=,>}-programs and {=,#}-programs are defined
analogously.) It is important to observe that
since the action of a {<,>}-program is determined
solely by the ordering of the inputs, it is suf­
ficient to examine its behavior on the n! permu­
tations of (1,2, ... ,n).

termin~tes at a vertexfrom a vertex in

Proof: The first relationship follows from the
observation that the number of vertices reach­
able from a given vertex in a graph with out-

degree d and depth T is at most dT+l . The
second relationship follows from the observa­
tion that T is the number of vertices on a non­
self-intersecting path followed by some input,

whereas 2
S

is the number of vertices accessed
by any input. 0

The time (capacity) required to compute ~ function
f is the minimum, over all branching programs P
which compute f, of the time (capacity) required
by P. As discussed in section 1, the capacity S
required by branching programs is a lower bound to
within a constant factor on the space requirement
of any "reasonable" machine which solves the prob­
lem using the same set of queries, as any such

machine must assume at least 2
5

different con-
S

figurations, for which it requires 10gc(2)
r2(S) space.

3. A Time-Capacity Tradeoff for Sorting

The next section examines the time and capacity
requirements of {<,>}-branching programs for
sorting.

Given distinct inputs x
l

,x
2

, ... ,x
n

drawn from

some total order, the sorting problem is to output
a sequence rl,il,r2,i2, ... ,rn,in' where

(1) (r
l
,r

2
, ,r

n
) is any permutation of

(1,2, , n), and

in Vi +l .

Proof: Suppose P is a branching program which
uses time T and capacity S, and let

v=2 S be the number of reachable vertices of P.
P may have cycles, but no input can force P to
take more than T steps before halting. Define
an acyclic version P' of P as follows:
P' has T+l copies of the vertex set of P,
and the edges of P' are provided by the fol­
lowing rule: if some input causes control in
P to pass from vertex a to vertex b at
time i, then there is an edge in P' from copy
i of vertex a to copy i+l of vertex b. P' uses
time T and capacity at most
10g2(vT) = S + 10g2T s 2S, by proposition 1. n

(2) x.
1.

J

is the r.th smallest input, for all
J-
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induction
hypothesis

(In a more conventional version of sorting~

(r
l
,r2 , ... ,r

n
) might be required to be the identity

permutation of (l,Z, ... ,n). For the purpose of
establishing more general lower bounds, this re­
striction will not be assumed, nor even that the
same permutation is employed for all inputs).

This section is devoted to proving that any {<,>}­
branching program which sorts n inputs in time T

and capacity S requires ST=~(nZ). The proof pro­
ceeds through a sequence of 4 lemmas. Lemmas I
and Z establish some interesting combinatorial
relationships among certain sets of permutations
consistent with a given Hasse diagram. Lemmas 3
and 4 give lower bounds on the times required by
{<,>}-tree programs and {<,>}-branching programs,
respectively, which compute functions related to
sorting.

A Hasse diagram over {il,iZ, ... ,i
n

} is an acyclic

directed graph with n vertices which are labelled
distinctly with the elements il,iZ, ... ,in . A

permutation n=(n(i
l
),n(i

2
), ... ,n(i

n
» of

(il,iZ, ... ,i
n

) is said to be consistent with a

Hasse diagram H if n(j»n(k) whenever there is
a directed path of positive length from j to k
in H. Two elements j and k are said to be com­
parable in H if there is a directed path either
from j to k or from k to j in H. If H is a Hasse
diagram over {i

l
,i2 , ... ,i

n
} define

(1) P(H)={nln is a permutation of (il,iZ'·· .,in)

consistent with H}.
(2) C(H,i)={jlj is comparable to i in H}.
(3) H-i is the Hasse diagram on n-l vertices

which results from removing the vertex
labelled i and adding an edge (j,k) for
each pair of edges (j,i) and (i,k) in H.

The following lemma relates P(H-i) to P(H):

Lemma 1: Let H be a Hasse diagram on n vertices,
one of which has label i. Then

n· IP (H-i) I~ IC(H, i) I•IP (H) I.
Proof: A permutation n is said to be i-consis­
tent with H if, for all j#i and k#i, n(j»n(k)
whenever there is a directed path of positive
length from j to k in H. Since there are n
places to insert i into each permutation whose
inverse is in P(H-i) (ignoring the constraints
of H on i) the left hand side n· Ip(H-i) I is
the number of permutations which are i-consis­
tent with H. It remains to show that the right
hand side is an upper bound on this number.

D or D' must be empty, since jf.D and kED' im­
plies n(j»n(k) but there is a directed path
from k to j in H, which is impossible. Suppose
D'=¢, the case when D=¢ being dual. Let the
elements of D be jl,jZ'· .. ,jm' where

n(jl)<n(jZ)< ... <n(jm). Consider the following

scheme which "rotates" the values of 'IT at
jO(=i) ,jl,j2'··· ,jm:

r
n (j) , if j =j 0

rr' (j) = rr(j:_l)' if j=jh for l~h~m .

n(j) otherwise

Then TI' E P(H), since:

(a) By the definition of D, i is now in its
"correct" place.

(b) The only other pairs (j,k) which have
changed relative positions (i.e.,
n (j) >n (k) but n' (j) <n ' (k» satisfy
JED and kiC(H,i). In this case there can
be no directed path from j to k in R, since
if there were the directed path from i to j
in H would place k in C(H,i).

Thus, every i-consistent permutation n arises
from some TI' E peR) by choosing some
jl E C(H,i) and "reverse-rotating" those

jh E C(R,i) which have values n'(jh) between

n' (i) and n'(jl). The fact that IC(R,i)!· Ip(H)l

is an upper bound on the number of i-consistent
permutations follows from the observation that
this reverse-rotation process is well-defined. 0

Corollary: Let R be a Hasse diagram on n
vertices, k of which have labels jl,jZ'·· ·,jk·

, k
Then (n~k)! IP (H-j I-j 2-' · · -jk) I~ (h~ll C(H,jh) I) ·

IpeR) I·
Proof: by induction on k.

Basis (k=l): This is just lemma 1.

Induction (k>l):

(n~~)! Ip(H-j l-j2-···-j k)1

(n-l)! Ip«R· ) . . )1
n·[(n-l)-(k-l)]!· -J 1 -J 2-···-J k

k
~ n~~~C(H-j1,jh)I)·lp(H-jl) I

lennna 1

Suppose n is i-consistent with H. Consider the
set of elements each of which, together with i,
"disrespects" H; that is, the set DUD', where

D={j!n(i)<rr(j) but there is a directed
path from i to j in H},

D'={j ITI(i»TI(j) but there is a directed
path from j to i in H}.

Notice that DUD'~C(H,i). Notice also that either
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k
~ (TIIC(H,jh) !).(n.!P(H-j 1) \)

h=Z

k
~ (TIIC(H,jh) !)·lp(H)1

h=l

Let P(H,r1 :j1,rZ:j2, ... ,rk :jk)={n!nEP(H) and

n(jh)=rh for all l~h~k}.

o



Lemma 2: Let H be a Hasse diagram, k of whose
vertices have labels jl,j2, ... ,jk' Then

IP (H , r 1 : j 1 ~ r :: : j 2 ' ... , r k : j k) I :; IP (H- j 1- j 2- ... - j k) I •

Proof: This is most easily seen by exa~ining the
inverses of permutations in P(H,Ll:jl" .. ,rk:jk);

that is~ permutations with the value jh in the

rhth position. The removal of jl,j2" .. jk

from such permutations yields the inverse of a
permutation in P(H- j l-j2-' .. -jk)' and such

removal from distinct permutations cannot yield
identical permutat ions. [-]

Lemmas 1 and 2 lay the necessary foundation to
·prove an interesting result concerning {<,>}-tree
programs which compute a function related to sort­
ing. Given n distinct inputs x

l
,x

2
,· ",x

n
drawn

from some total order, the k-ranking problem is to
output a sequence r

l
,i

l
,r

2
,i

2
, ... ,rk,i

k
, where

(1) (r
l
,r

2
, ... ,r

k
) is any permutation of any

k elements from {1,2, ... ,n}, and

(2) x. is the r.th smallest input, for all
lj J-

l~j~k.

(Notice that a tree program which computes the
k-ranking problem may employ a different permuta-
tion (r 1,rJ , 2, ... ,r~ k) at each leaf ¢.)

¢, 't', 't',

Lemma 3: Let T be a {<,>}-tree program which
outputs 2k integers between 1 and n at each leaf,
and let peT) be the set of permutations of
(1,2, ... ,n) for which T correctly computes the
k-ranking problem. Then Ip(T) !:;(t+l)k(n-k)!,
where t is the length of the longest branch of T.

Proof: Let ¢ be any leaf which is reached by
some input, and suppose the sequence output at ¢ is

r¢,1,j¢,1,r¢,2,j¢,2'" .,r¢,k,j¢,k There is a

natural Hasse diagram H¢ associated with ¢ ;

namely, edge (i,j) is in H¢ iff on the branch

from the root of T to ¢ the response I!>" to query
"x. :x." was received (or equivalently the response

1 J
"<" to query lrx;:x;"). Notice the following two

.J ~

facts about H¢:

(1) IC(H¢,j ¢ ,h) I::;t+l, since there are at most t

comparisons made on the branch from the root
of T to ¢, and

(2) {PCB )I¢ is a reachable leaf of T} partitions
¢

the set of n! permutations of (1,2, ... ,n).

Then

IP(T)I=~aChableIP(R~,r~'l:j~'l,... ,r~'k:j~'k)1

~~aChableIP(R~-j~'1-j~'2-···-j~'k)1
lemma 2
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<:2.. fn-k)!(W le(R,j )1)'lp(H)~
¢reachable n! h=l ~ ¢,h ¢ J

corollary of lemma 1

c L [Cn-k)! (t+l)k'l P(R ) 0 fact (1)
~rc3chable l nl ¢ J

_(t+l/(n::-k)!.2.. Ip(H )1
- n! ¢reachable ¢

fact (2) [)

C~rollary: Let T be any {<,>}-tree program which
computes the k-ranking problem, and let P be an
arbitrary set of permutations of (1,2, ... ,n).

k
Then for any t, at least !PI-(t+l) (n-k)! permu-
tations in P each follow branches of length a r

1 eas t t+1 in T •

Pro~f: Suppose to the contrary that more than

(t+l)k(n-k)! permutations follow branches which
terminate after at most t comparisons. The re­
sult of cutting off all branches of T after t
comparisons is a tree program which violates
lemma 3. 0

We are finally in a position to prove a lower bound
on the time required by {<,>}-branching programs
to sort. For the remainder of this section it will
be assumed that branching programs are in the nor­
mal form described in proposition 2 of section 2.

Lemma~: Let T be any {<,>}-branching program
which sorts n inputs, and let V. be the total

J
number of vertices of distance at most j-l from
the source of T. Let t and k be arbitrary posi­
tive integers, and let i be any integer satisfy-

ing O-i c ~n--l)/(k-l~. Then after (n-2)+it

comparisons, at least n! - V( 2) . (t+l)k(n-k)!
n- +It

permutations of (1,2, ... ,n) have each output
only i(k-l) inputs together with their ranks.

Proof: by induction on i.

Basis (i=O): Every branch of any {<,>}-tree
program which computes the I-ranking problem
must have length at least n-l, since the Hasse
diagram associated with each leaf must be con­
nected. The basis then follows from proposi­
tion 3 of section 2.

Induction (i>O): Let P be the set of permuta­
tions each of which has output at most (i-I)­
(k-l) ranked inputs after (n-2)+(i-l)t compari­
sons. By the induction hypothesis,

k
IPI~n! - V(n_2)+(i_l)t(t+l) (n-k)!.

Consider the set of vertices v
l

,v
2

' ... ,v
m

at

the (n-l)+(i-l)t th comparison along each path,
and let p. be the~et of permutations in P

J
which arrive at v .. From the corollary to

J



Therefore, after only t additional comparisons
(n--2 + it in total), at least this many permuta­
tions will have output only (i-l)(k-l)+(k-l)=i(k-l)
indices and ranks. 0

lemma 3 and proposition 3 of section 2, at least

Ir.I-(t+l)k(n-k)! permutations in r. require
J J

t+l comparisons starting at v. to output the
J

next k indices and ranks. Then the total number
of permutations in P which require t+l addition­
al comparisons is at least

.2:: [I P j 1- (t+1) k (n-k) !J = Ipi - rn (t+1) k (n-k) !

J=l

"t! -V(n_2)+(i_l)t(t+1)k(n-k)~
m(t+l) (n-k)!

:> n! - V(n_2)+it(t+l)k(n-k)!

Theorem 1: Any {<,>}-branching program which
sorts n inputs in time T and capacity S requires

ST=st(n
2
).

Proof: Let k=S and i= L(n-l)! (S-I)J in lemma 4.

Then t can be chosen as large as desired, subject
to the constraint that at least 1 permutation

remains; that is, n!-VT(t+l)S(n-S)!>O. Choosing

t+l = L(n-S) !2J satisfies this, as

n!-VT(t+l)S(n-S) !2n!-2
S

L(n-S)!2J
S

(n-S)!

2n!-(n-S)S(n-S) !

>n!-n(n-l) ... (n-S+l)(n-S)!=O

Proof: The algorithm proceeds by making succes­
sive passes over the inputs, each time outputting
the next k smallest inputs. To this end it main­
tains approximately 3k registers which are used
to store the indices of inputs. Register R

O
contains the index of the largest input which has
been output, and RI,R2' ... '~ contain indices of

candidates for the next k smallest, sorted in
accordance with xR <x

R
<... <x~ . During each

o I --k

pass the inputs are considered in blocks of size
k, and for each such block,

1. the elements are sorted into registers
B

I
,B

2
, ... ,B

k
using any O(klogk) sorting

algorithm,

2. those B. which satisfy x
B

<x
R

are disregar~d,

1 i 0

as they have already been output, and

3. the remaining elements are merged with
RI,R2' ... '~ (possibly using an extra k

registers), disregarding all but the k small­
est which are returned to R

l
,R2 , ... ,~.

At the end of each pass, the contents of
R

l
,R

2
, ... ,~ are output, and R

O
is reassigned

the value in~. The space used is S=O(klogn),

and the time

T=O«n!k) (n!k) (klogk+k))=O(n
2

(l+logk)!k). 0

This section turns to upper bounds for sorting, in

order to demonstrate that the tradeoff ST=Sl(n
2

) is
nearly optimal.

Theorem 1 (Munro and Paterson9): There is an
algorithm which, given k and x

l
,x

2
, ... ,x

n
, where

l~ksn, outputs x
l

,x
2

' ... ,x
n

in sorted order in

simultaneous space S=O(klogn) and time

T=O(n
2

(1+logk)!k).

4, Upper Bounds on the Time to Sort in Limited

~?-~~.

oor

Then by lemma 4,

T2(n-l)+it

=(n-l)+LCn-l)!(S-l)J ( LCn-S)!2J-I)

2(n-I)+[Cn-s)!s] [Cn-S-3)!2]

2ST 2Cn-S) (n-S-3)+2S(n-l)=n
2
-3n+S

2
+S.

Corollary: Any {<,>}-branching program which

sorts n inputs requires ST==Sl(n
2
), where T is the

average time required when all n! permutations
are consiaered equally likely.

Proof: Choosing t+1= L(n-S)!~ in the proof of

theorem I shows that not I but n!(2
S
_I)!2

S
of

the n! permutations require at least half the
stated time. 0

Corollary: Any {<,=,>}-branching program which
sorts n (not necessarily distinct) inputs re-

quires ST=Sl(n2).

Proof: Removal of the "=" branches yields a
{<,>}-branching program which sorts n distinct
inputs. 0

This algorithm reveals the upper bound

ST=O(n2logn(1+logk))=O(n
2
logn(l+logS-loglogn))

=O(n2log 2n), which is not far from the lower
bound given in section 3. At the extreme k=l,
S=O(logn) and the upper bound is in fact

2ST=O(n logn). The next result demonstrates that
this tighter upper bound on the product of time
and space can also be achieved at the extreme
S=8(n). This is done by exhibiting branching pro­
grams which sort in simultaneous time O(nlogn) and
capacity O(n). Because of the non-effective nature
of branching programs, this result does not seem
to yield an implementable algorithm running in
time O(nlogn) and space O(n). However, it does
show that the branching model cannot be used to
disprove the existence of such algorithms.
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This program uses time T(n)~2T(n/2)+O(n)=O(nlogn)

and capacity S(n)sS(n/2)+O(n)=O(n). 0

Theorem 3 (Tompa16): There is a {<,=~>}-branch­
ing program which sorts n inputs in simultaneous
time O(nlogn) and capacity O(n).

Theorem 3 does not seem to yield an implementable
algorithm which uses O(nlogn) time and O(n) space,
since it is not clear how to decide in constant
time which comparison should be made next, even
though the branching program has all the informa­
tion it needs in the recursive SPLIT tables to
"know': which comparison to make.

Proof: Given inputs x
l
,x

2
, ... ,x

n
, the program

follows those steps:

1. Find the median m in time and capacity O(n),
using the result of 2. (Recall from proposi­
tion 1 of section 2 that any branching program
using linear time uses at most linear capacit~)

2. For each i from 1 to n, set

the restriction of tape input with a si,gle read
head.

There are also a number of questions relating speci­
fically to branching programs that do not appear
to yield such implications for general string-pro­
cessing models. For example, the set of allowable
queries might be extended from simple comparisons
to comparisons of linear functions of the inputs.
The observations of Cook and Tompa do not seem to
apply to such branching programs. However, the
resulting model would be a compelling one for
demonstrating time-space tradeoffs for problems
such as determining shortest paths and network
flows.

It is natural to ask whether the techniques presen­
ted can be extended directly to string-processing
models with random access input (the "decision
graphs" of Masek8), and whether they can be extended
to establish more dramatic results for branching
programs. Although there are natural problems
which appear to be candidates for such drmnatic
results, observations by Cook and Tompa (see 16)

show why proving w(n2logn) time-space lower bounds
or w(logn) space lower bounds for {=,#}- or
{<,=,>}-branching programs would yield w(nlogn)
time-space lower bounds or w(logn) space lower
bounds, respectively, for general string-processing
models with random access input. Is it possible
that the combinatorial focus of branching programs
will lend itself to the insights required to estab­
lish such general lower bounds? To appreciate this
challenge notice that the only techniques to date
for establishing w(nlogn) time-space lower bounds
for Turing machines with two read heads on a
single input tape have been diagonalization argu­
ments.

The method used in this paper to prove the time­
space tradeoff for sorting seems inapplicable to
problems with few outputs, as the main lemma used
(lemma 4) states that roughly n comparisons must
be made for every S outputs. However, because of
certain similarities to sorting, it seems reason­
able that the tradeoff ST=Q(n2) might hold for the
two decision problems (1) given n inputs, deter­
mine if they are all distinct, and (2) given two
sets each of size n, determine if they are dis­
joint. By applying Rein~old's reduction from sort­
ing to set disjointness l , these tradeoffs would
follow if the generalization of theorem 1 to a
less constructive variant of branching programs
holds: instead of actually producing outputs at
specific points along each path, the branching
program need only satisfy the condition that the
path followed by any input receives responses
sufficient to determine the sorted order.

-1 if x.<m
1

SPLIT(i) 0 if x.=m
1

+1 if x.>m
1

Questions for Further Research

(Of course, the branching program does not ex­
plicitly "compute" such tables: this informa­
tion is implicit in the vertex where control
resides. The SPLIT table is simply a conveni­
ent method of specifying a particular vertex).

3. Recursively sort and output the subset satis­
fying SPLIT(i)=-l.

4. Output m for each i satisfying SPLIT(i)=O.

5. Recursively sort and output the subset satis­
fying SPLIT(i)=+l, "reusing" the capacity
of step 3.

5.

Programs with the same upper bounds as theorems 2
and 3 are given in 16 for the problems of inter­
secting two sets, determining if two sets are
equal, and computing the frequency of occurrence
of each input. In that reference, it is in fact
shown that, for any l~k~n, the intersection of two
sets can be compuLed in simultaneous time

O(n2(1+logk)/k) and space o(klogk+logn) . Thus,
unlike the upper bound for sorting given in theorem
2, set intersection can be computed in O(logn)

2 2space and O«nloglogn) /logn)=o(n ) time, by
choosing k=logn/loglogn.

This paper has presented a time-space tradeoff for
sorting using a very general model which is non­
oblivious, has random access input, and places no
restrictions on the manner in which space is used.
Its only restriction is its "conservative" nature:
inputs are assumed to be indivisible entities Which
can only be compared. Similar results are not
known for general string-~rocessingmodels, except
for the results of Cobham which rely strongly on

Finally, there are problems which have been shown
to possess surprisingly good algorithms with re­
spectto simultaneous time and space requirements.
These include string-matching4 and computing the
median9 . It would be satisfying to establish cor­
responding lower bounds for {=,~}- and {<,=,>}­
branching programs, respectively. For example, is
it true that any linear time (or perhaps "real
time") {=,~}-branching program for string-matching
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requires (L~'Qn) car:acity (in the terms of 4. more
than a fixt'd nUlnl);.:>r of registers)?
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Figure 1: Tree program for merging xl 5 x
2

wi th Y1 ~ Y
2

•

Figure 2 Branching program for merging xl ~x2 wi th Y1 5y
2

.
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