
Errata for:
RAMBO: A Robust, Reconfigurable

Atomic Memory Service for Dynamic Networks

Seth Gilbert
NUS, Singapore

seth.gilbert@comp.nus.edu.sg

Nancy A. Lynch
MIT, Cambridge, USA

lynch@theory.lcs.mit.edu

Alexander A. Shvartsman
U. of Connecticut,
Storrs, CT, USA

aas@cse.uconn.edu

Overview
We have discovered several small typos in Figure 6 of “RAMBO: A Robust, Reconfigurable Atomic Memory Service for
Dynamic Networks” (Distributed Computing, Volume 23, Number 4, pages 225–272). In this errata sheet, we correct the
typos, and explain the relevant changes.

Specifically, due to typos in the preparation of the manuscript, there was a bug in the “handshake” mechanism by which
the processes synchronized their phases. Fixing these typos required fixing the indentation on one line, and inserting two
omitted lines of pseudocode. The basic behavior of the algorithm remains unchanged, and the fixes have led to no changes
in the analysis of the algorithm.

Details
This note refers specifically to mistakes in Figure 6 on p. 240 of the original manuscript. We have reproduced below a
corrected version of Figure 6. There are three corrections to note:

• Line 36 was omitted in the original manuscript. After pnum-local is updated in line 35, the operational phase number
op.pnum should be updated.

• Line 62 was incorrectly indented in the original manuscript, implying that it is executed only when op.type = read .
In fact, line 62 should be executed in all cases.

• Line 63 was omitted in the original manuscript. After pnum-local is updated in line 62, the operational phase number
op.pnum should be updated.

In addition, these changes led to changes in the line numbering, which are reflected in the revised text.

Discussion
The RAMBO algorithm performs read and write operations in two phases: a query phase and a propagation phase. In each
phase, certain information is sent to a “quorum,” and the phase completes when the initiator has received a response from
every node in some “quorum.” (Note that since RAMBO is reconfigurable, the exact definition of a sufficient quorum depends
on the set of active configurations and is implemented as a fixed point; however these details are not relevant for the current
discussion.)

1



The initiator of a phase must ensure that the responses it has received are in fact part of the current phase. Notably, the
initiator should not accidently count a response from an earlier phase. (Such a “late response” from an earlier phase does not
indicate that the sender has received a message sent by the initiatoras part of the phase.)

In RAMBO, this phase structure is enforced by a simple “handshake” protocol. When a process initiates a phase, it
chooses a unique phase number—larger than all previous phase numbers—and attaches that phase number to its messages
that are associated with that phase. When a response includes a phase number at least as large the phase number associated
with that operation (Figure 6, line 30), then the initiator can be certain that the response is part of that phase. (See Section
5.2 for a more detailed discussion of this phase number mechanism.)

The mistakes in Figure 6 were associated with this handshake mechanism. Notably, in two cases (lines 36 and 63), the
initiator incremented the phase number correctly (i.e., pnum-local ), but omitted to update the operation, i.e., to add the
updated phase number to the operation record op. In the other case (line 62), the phase number was only incremented in one
case of an if clause, rather than in all cases.

Thus, any implementation of the RAMBO algorithm must be careful to increment the phase number correctly whenever
a phase is begun.

Transitions:
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Input readi
Effect:

if status /∈ {idle, failed} then
pnum-local ← pnum-local + 1
op.pnum ← pnum-local
op.type ← read
op.phase ← query
op.cmap ← cmap
op.acc ← ∅

Input write(v)i
Effect:

if status /∈ {idle, failed} then
pnum-local ← pnum-local + 1
op.pnum ← pnum-local
op.type ← write
op.phase ← query
op.cmap ← cmap
op.acc ← ∅
op.value ← v

Input recv(〈world′, v, t, cm, snder-phase, rcver-phase〉)j,i
Effect:

if status /∈ {idle, failed} then
status ← active
world ← world ∪ world ′

if t > tag then (value, tag)← (v, t)
cmap ← update(cmap, cm)
pnum-vector(j)← max(pnum-vector(j), snder-phase)
if op.phase ∈ {query, prop} and rcver-phase ≥ op.pnum then

op.cmap ← extend(op.cmap, cm)
if op.cmap ∈ Usable then

op.acc ← op.acc ∪ {j}
else

pnum-local ← pnum-local + 1
op.pnum ← pnum-local
op.acc ← ∅
op.cmap ← cmap

else if gc.phase ∈ {query, prop} and rcver-phase ≥ gc.pnum
gc.acc ← gc.acc ∪ {j}

Output send(〈world ′, v, t, cm, snder-phase, rcver-phase〉)i,j
Precondition:

status = active
j ∈ world
〈world ′, v, t, cm, snder-phase, rcver-phase〉 =
〈world , value, tag, cmap, pnum-local , pnum-vector(j)〉

Effect: None

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

Internal query-fixi
Precondition:

status = active
op.type ∈ {read ,write}
op.phase = query
∀k ∈ N, c ∈ C : (op.cmap(k) = c)
⇒ (∃R ∈ read-quorums(c) : R ⊆ op.acc)

Effect:
if op.type = read then

op.value ← value
else

value ← op.value
tag ← 〈tag.seq + 1, i〉

pnum-local ← pnum-local + 1
op.pnum ← pnum-local
op.phase ← prop
op.cmap ← cmap
op.acc ← ∅

Internal prop-fixi
Precondition:

status = active
op.type ∈ {read ,write}
op.phase = prop
∀k ∈ N, c ∈ C : (op.cmap(k) = c)
⇒ (∃W ∈ write-quorums(c) : W ⊆ op.acc)

Effect:
op.phase = done

Output read-ack(v)i
Precondition:

status = active
op.type = read
op.phase = done
v = op.value

Effect:
op.phase ← idle

Output write-acki
Precondition:

status = active
op.type = write
op.phase = done

Effect:
op.phase ← idle

Figure 6: Reader-Writer i: Read/write transitions

2


