RAMBO: A Reconfigurable Atomic Memory Service for
Dynamic Networ ks*

Nancy Lynch! and Alex A. Shvartsman?!

! Laboratory for Computer Science, Massachuseits Institute of Technology,
200 Technology Square, NE43-365, Cambridge, MA 02139, USA.
2 Department of Computer Science and Engineering, University of Connecticut,
191 Auditorium Road, Unit 3155, Storrs, CT 06269, USA.

Abstract. This paper presents an agorithm that emulates atomic read/write
shared objects in a dynamic network setting. To ensure availability and fault-
tolerance, the objects are replicated. To ensure atomicity, reads and writes are per-
formed using quorum configurations, each of which consists of a set of members
plussetsof read-quorumsand write-quorums. The algorithmisreconfigurable: the
quorum configurations may change during computation, and such changes do not
cause violations of atomicity. Any quorum configuration may be installed at any
time. The algorithm tolerates processor stopping failure and messageloss. The al-
gorithm performsthree major tasks, all concurrently: reading and writing objects,
introducing new configurations, and “ garbage-collecting” obsolete configurations.
The algorithm guarantees atomicity for arbitrary patterns of asynchrony and fail-
ure. The algorithm satisfiesavariety of conditional performance properties, based
on timing and failure assumptions. In the "normal case", the latency of read and
write operationsis at most 8d, where d is the maximum message delay.

1 Introduction

This paper presents an algorithm that can be used to implement atomic read/write shared
memory in adynamic network setting, in which participants may join or fail during the
course of computation. Examples of such settings are mobile networks and peer-to-peer
networks. One use of this service might be to provide long-lived datain a dynamic and
volatile setting such as a military operation.

In order to achieve availability in the presence of failures, the objects are replicated.
In order to maintain memory consistency in the presence of small and transient changes,
the algorithm uses configurations, each of which consists of aset of members plus sets of
read-quorums and write-quorums. In order to accommodate larger and more permanent
changes, the algorithm supports reconfiguration, by which the set of members and the
sets of quorums are modified. Such changes do not cause violations of atomicity. Any
guorum configuration may beinstalled at any time.

* Thiswork was supported by the NSF ITR Grant 0121277. The work of thefirst author was also
supported by AFOSR under contract F49620-00-1-0097 and by NTT under contract MI1T9904-
12. The work of the second author was also supported by NSF CAREER Award 9984778 and
NSF Grant 9988304.

D. Malkhi (Ed.): DISC 2002, LNCS 2508, pp. 173£190] 2002.
© Springer-Verlag Berlin Heidelberg 2002

174 N. Lynch and A.A. Shvartsman

Wefirst provide aformal specification for reconfigurable atomic shared memory as
aglobal service. We call this service RamBo, which stands for “ Reconfigurable Atomic
Memory for Basic Objects’ (“Basic' means* Read/Write”). Therest of the paper presents
our algorithm and its analysis. The algorithm carries out three major activities, al con-
currently: reading and writing objects, introducing new configurations, and removing
(“garbage-collecting”) obsolete configurations. The algorithm is composed of a main
algorithm, which handles reading, writing, and garbage-collection, and a global recon-
figuration service, Recon, which providesthe main algorithm with aconsistent sequence
of configurations. Reconfiguration is loosely coupled to the main algorithm, in partic-
ular, several configurations may be known to the algorithm at one time, and read and
write operations can use them all.

The main algorithm performs read and write operations using a two-phase strategy.
The first phase gathers information from read-quorums of active configurations and the
second phase propagates information to write-quorums of active configurations. This
communicationiscarried out using background gossiping, which allowsthea gorithmto
maintain only asmall amount of protocol stateinformation. Each phaseisterminated by
afixed point condition that involves a quorum from each active configuration. Different
read and write operations may execute concurrently: the restricted semantics of reads
and writes permit the effects of this concurrency to be sorted out afterwards.

Themain algorithm also includes afacility for garbage-collecting old configurations
when their use is no longer necessary for maintaining consistency. Garbage-collection
a so usesatwo-phase strategy, wherethefirst phase communicateswith an old configura-
tion and the second phase communicates with anew configuration. A garbage-collection
operation ensures that both a read-quorum and a write-quorum of the old configuration
learn about the new configuration, and that the latest value from the old configuration is
conveyed to awrite-quorum of the new configuration.

The reconfiguration service is implemented by a distributed algorithm that uses
distributed consensus to agree on the successive configurations. Any member of the
latest configuration ¢ may propose a new configuration at any time; different proposals
are reconciled by an execution of consensus among the members of ¢. Consensusis, in
turn, implemented using a version of the Paxos algorithm [17], as described formally
in [8]. Although such consensus executions may be slow—in fact, in some situations,
they may not even terminate—they do not delay read and write operations.

We show atomicity for arbitrary patterns of asynchrony and failure. We anayze
performance conditionally, based on timing and failure assumptions. For example, as-
suming that gossip and garbage-collection occur periodicaly, that reconfiguration is
requested infrequently enough for garbage-collection to keep up, and that quorums of
active configurationsdo not fail, we show that read and write operations complete within
time 8d, where d is the maximum message latency.

Comparison with other approaches. Consensus agorithms can be used directly to
implement an atomic data service by allowing participants to agree on a global total
ordering of all operations [17]. In contrast, we use consensus to agree only on the
seguence of configurations and not on the individual operations. Also, in our algorithm,
the termination of consensus affects the termination of reconfiguration, but not of read
and write operations.

RamBo: A Reconfigurable Atomic Memory Service for Dynamic Networks 175

Group communication services (GCSs) [[1] can also be used to implement an atomic
dataservice, e.g., by implementing aglobal totally ordered broadcast service ontop of a
view-synchronous GCS [[11] using techniques of [[1612]. In most GCS implementations,
forming a new view takes a substantial amount of time, and client-level operations are
delayed during the view-formation period. In our algorithm, reads and writes can make
progress during reconfiguration. Also, in some standard GCS implementations, e.g., [5],
performance is degraded even if only one stopping failure occurs; our algorithm uses
guorums to tolerate small numbers of failures.

A dynamic primary configuration GCSwas introduced in [[7] and used to implement
atomic memory, using techniques of [3] within each configuration. That work restricts
the set of possible new configurations to those satisfying certain intersection properties
with respect to the previous configurations, whereas we impose no such restrictions.
Like other solutions based on GCSs, the algorithm of [[7] delays reads and writes during
reconfiguration.

Sngle reconfigurer implementations for atomic memory are considered in [19/10].
In these approaches, the failure of the reconfigurer disables future reconfiguration. Also,
in [I9/10], garbage-collection of an old configuration istightly coupled to the introduc-
tion of anew configuration, whereasin our new algorithm, garbage-collectioniscarried
out in the background, concurrently with other processing.

Other related wor k. Thefirst general schemefor emulating shared memory in message-
passing systems by using replication and accessing majorities of time-stamped replicas
wasgivenin [21]. An algorithm for majority-based emul ation of atomic read/write mem-
ory was presented in [3]. This algorithm introduced a two-phase paradigm in which the
first phase gathers information from a majority of participants, and the second phase
propagates information to a majority. A quorum system [[13]—a generalization of ma-
jority sets—isacollection of sets such that any two sets, called quorums, intersect [[12].
Quorum systems have been used to implement data replication protocols, e.g., [416/14].
Consensus algorithms have been used as building blocks in other work, e.g, [15].

Note. This paper is an extended abstract of afull report [20]. The full version includes
specifications of all components, complete proofs, and additional results.

2 DataTypes

We assume distinguished elements | and +, which are not in any of the basic types. For
any type A, we definetypes A, = AU{L}.and Ay = AU{L,+}.If Aisaposet,
we augment its ordering by assuming that L < a < £ for every a € A.

Weassumethefollowing datatypesand di stinguished elements: I, thetotally-ordered
set of locations. T, the set of tags, defined asN x I. M, the set of messages. X, the set
of object identifiers, partitioned into subsets X;, i € I; X; isthe set of identifiers for
objectsthat may be created at location i. For any x € X, (ig),. denotesthe uniques such
that x € X;. For each x € X, we define V,, the set of values that object = may take on,
and (vg), € V,, theinitial value of x.

We also assume: C, the set of configuration ids; we use the trivial partial order
on C, in which al elements are incomparable. For each = € X, (¢). € C, the
initial configuration id for x. For each ¢ € C: members(c), a finite subset of I,

176 N. Lynch and A.A. Shvartsman

read-quorums(c) and write-quorums(c), two sets of finite subsets of members(c).
We assume: (1) members((co)z) = {(i0)x}, that is, the initial configuration for = has
one member, the creator of . (2) For every ¢, every R € read-quorums(c), and every
W € write-quorums(c), RNW # ().

We define functions and sets for configurations: update, a binary function on C.,
defined by update(c,c’) = max(c,c’) if ¢ and ¢’ are comparable, update(c,c’) = ¢
otherwise. extend, abinary function on C'1, defined by exztend(c,c’) = ¢/ if c = L and
¢ € C,and extend(c, ¢’) = c otherwise. CMap, the set of configuration maps, defined
asN — Cy. Weextend the update and extend operators elementwise to binary opera-
tionson CMap. truncate,aunary functionon CMap, defined by truncate(ecm)(k) = L
if thereexists¢ < k suchthat em(¢) = L, truncate(cm)(k) = cm(k) otherwise. Trun-
cation removesall the configurationidsthat follow a_L. Truncated, the subset of CMap
such that em € Truncated if and only if truncate(cm) = em. Usable, the subset of
CMap such that em € Usable iff the pattern occurring in e¢m consists of a prefix of
finitely many =+s, followed by an element of C, followed by an infinite sequence of
elements of C'; inwhich all but finitely many elementsare L.

3 Reconfigurable Atomic Memory Service Specification

Our specification for the RAmMBO service consists of an external signature plus a set of
traces that embody RaMmBo's safety properties. No liveness properties are included; we
replace these with conditional latency bounds, which appear in Section8 The external
signature appears in Figure[l. We use I/O automata notation for all our specifications.

Input: Output:

join(rambo, J), ;, J afinitesubsetof I — {i}, z € X, join-ack(rambo), ;,z € X,i € I

i € I,suchthatif i = (ig), thenJ =0 read-ack(v)g,i, v € Vg, x € X, i €1
read, ;, © € X,i € 1 write-acky i, € X,4 € 1
write(v)z,i, v € Vo, z € X, 1 €T recon-ack(b).,i, b € {ok,nok},xz € X,i €I

recon(c, c')z,i, ¢, ¢’ € C,i € members(c),z € X,i € I report(c)g,;,c € C,c € X,i €1
fail;, 1€ I

Fig. 1. RamBo(z): External signature

The client at location ¢ requests to join the system for a particular object = by
performing a join(rambo, .J), ; input action. The set J represents the client’s guess at
a set of processes that have already joined the system for z. If ¢ = (ig)., the set J
is empty, because (i) is supposed to be the first process to join the system for z. If
the join attempt is successful, the RamBo service responds with a join-ack(rambo), ;
output action. The client at 7 initiates aread (resp., write) operation using aread; (resp.,
write;) input action, which the RamBo service acknowledges with a read-ack; (resp.,
write-ack;) output. The client initiates a reconfiguration using a recon; input, which is
acknowledged with arecon-ack; output. RaAMBo reportsanew configuration to the client
using areport; output. Finally, a stopping failure at location < is modelled using a fail;
input action. We model process“leaves’ asfailures.

RamBo: A Reconfigurable Atomic Memory Service for Dynamic Networks 177

The set of traces describing RamBo's safety properties consists of those that satisfy
an implication of the form “environment assumptions imply service guarantees’. The
environment assumptions are simple “well-formedness’ conditions:

W&ll-formedness: (1) For every z and i: (8) No join(rambo, %), ;, read,, ;, write(*) ;,
or recon(*, *), ; event is preceded by a fail; event. (b) At most one join(rambo, *),. ;
event occurs. (€) Any read, ;, write(x), ;, OF recon(x,*), ; event is preceded by a
join-ack(rambo), ; event. (d) Any read, ;, write(x), ;, OF recon(x, %), ; event is pre-
ceded by an -ack event for any preceding event of any of these kinds. (2) For every x
and ¢, at most one recon(x,), . event occurs. (Configuration ids that are proposed in
recon events are unique. Thisis not a serious restriction, because the same membership
and quorum sets may be associated with different configuration ids.) (3) For every ¢, ¢/,
z, and 4, if arecon(c, ¢’),,; event occurs, then it is preceded by areport(c), ;, event and
by ajoin-ack(rambo), ; event for every j € members(c’).
The safety guarantees provided by the service are as follows:

Well-formedness: For every x and i: (8) No join-ack(rambo), ;, read-ack(x) ,
write-ack, ;, recon-ack(x); ;, OF report(x), ; event is preceded by a fail; event. (b)
Any join-ack(rambo), ; (resp., read-ack(x), ;, write-ack, ;, recon-ack(x), ;) event has
apreceding join(rambo, %), ; (resp., read,, ;, write(x), ;, recon(x, %), ;) event with no
intervening invocation or response action for x and 4.

Atomi city@ If al the read and write operations that are invoked complete, then the read
and write operations for object = can be partially ordered by an ordering <, so that the
following conditions are satisfied: (1) No operation hasinfinitely many other operations
ordered beforeit. (2) The partial order isconsistent with the external order of invocations
and responses, that is, there do not exist read or write operations 7r; and 75 such that 4
completesbefore 5 starts, yet mo < 1. (3) All write operations are totally ordered and
every read operation is ordered with respect to all the writes. (4) Every read operation
ordered after any writes returns the value of the last write preceding it in the partial
order; any read operation ordered before all writes returns (vg)..

Therest of the paper presents our implementation of RamBo. Theimplementationis
adistributed agorithm in the asynchronous message-passing model. All processes may
communicate with each other. Processes may fail by stopping without warning.

Our implementation can be described formally as the composition of a separate
implementation for each z, so we describe the implementation for a generic z. We
suppress explicit mention of x, writing V', vg, co, and io as shorthand for V., (vo),
(co)z, @and (ip)., respectively.

! Atomicity is often defined in terms of an equivalence with a serial memory. The definition
given here implies this equivalence, as shown, for example, in Lemma 13.16 in [18]. Although
Lemma 13.16 of [18] is presented for a setting with only finitely many locations, nothing in
Lemma 13.16 or its proof depends on the finiteness of the set of locations.

178 N. Lynch and A.A. Shvartsman

4 Reconfiguration Service Specification

Our RamBo implementation for object - consistsof amain RV algorithm and areconfig-
urationservice, Recon. Herewe present the specificationfor Recon. Ourimplementation
of Recon isdescribed in Section[Zl

The external signature appearsin Figure2l Theclient of Recon at location i requests
tojoin the reconfiguration service by performing ajoin(recon); input action. The service
acknowledges this with a corresponding join-ack; output action. The client requests
reconfiguration using a recon; input, which is acknowledged with a recon-ack; output
action. The service reports a new configuration to the client using a report; output
action. Outputs of the form new-config(c, k); announce at location i that c is the k"
configuration id. These outputs are used for communication with the portion of the
RW agorithm running at location i. Recon announces consistent information, only
one configuration id for each index in the configuration id sequence. Recon delivers
information about each configuration to members of the new configuration and members
of theimmediately preceding configuration. Crashes are modeled using fail actions.

Input: Output:
join(recon);, 1 € T join-ack(recon);, i € T
recon(c, c')i, c,c’ € C,i € members(c) recon-ack(b);, b € {ok, nok},i € I
fail;, 1€ 1 report(c);, c € C,i € 1

new-config(c, k)i, c € C,k € NT,i €T

Fig. 2. Recon: External signature

The set of traces describing Recon’s safety properties is defined by environment
assumptions and service guarantees. The environment assumptions are simple well-
formedness conditions, consistent with those for RamBso:

Well-formedness: (1) For every i: (8) No join(recon); or recon(x, x); event is preceded

by afail; event. (b) At most one join(recon); event occurs. (€) Any recon(x, x); event

is preceded by a join-ack(recon); event. (d) Any recon(x,); event is preceded by an

-ack for any preceding recon(x, x); event. (2) For every ¢, a most onerecon(x, ¢).. event

occurs. (3) For every ¢, ¢/, z, and i, if arecon(c, ¢); event occurs, then it is preceded

by: (a) A report(c); event, and (b) A join-ack(recon); for every j € members(c’).
The safety guarantees are:

Well-formedness: For every i: (@) No join-ack(recon);, recon-ack(x);, report(x);, or
new-config(x, *); event is preceded by a fail; event. (b) Any join-ack(recon), (resp.,
recon-ack(c);) event hasapreceding join(recon); (resp., recon;) event with no interven-
ing invocation or response action for z and i.

Agreement: If new-config(c, k); and new-config(c’, k) ; both occur, then ¢ = ¢'.

Validity: If new-config(c, k); occurs, then it is preceded by a recon(x, ¢); for some ¢/
for which a matching recon-ack(nok);, does not occur.

No duplication: If new-config(c, k); and new-config(c, k'),» both occur, then k = &'.

RamBo: A Reconfigurable Atomic Memory Service for Dynamic Networks 179

5 Implementation of RamBo Using a Reconfiguration Service

Our RaMmBo implementation includes, for each i, a Joiner; automaton, which handles
joining, and a RW; automaton, which handles reading, writing, and “installing” new
configurations. These automata use asynchronous communication channels Channel; ;.
The RW automata also interact with an arbitrary implementation of Recon.

5.1 Joiner Automata

When Joiner; receives a join(rambo, J) request from its environment, it sends join
messages to the processesin J (with the hope that they are already participating, and so
can helpinitsattempt tojoin). Also, it submits join requeststo thelocal RW and Recon
components and waits for acknowledgments. The join messagesthat are sent by Joiner
automata are handled by RW automata at other locations.

5.2 Reader-Writer Automata

RW; processes each read or write operation using one or more configurations, which
it learns about from the Recon service. It also handles the garbage-collection of older
configurations. The signature and state of RW; appear in Figure 3l Figure (] presents
the transitions pertaining to joining the protocol and failing. Figure Bl presents those
pertaining to reading and writing, and Figure[d presents those pertaining to garbage-
collection.

Signature:
Input: Output: Internal:
read; join-ack(rw); query-fix;
write(v);, v € V read-ack(v);, v € V prop-fix;
new-config(c, k)i, ¢ € C,k € NT write-ack; ge(k)i, k€N
recv(join); s, 5 € I — {i} send(m);,j,me M,j €I ge-query-fix(k);, k € N
recv(m);,m € M,j €1 ge-prop-fix(k);, k € N
join(rw); gc-ack(k);, k € N
fail;
State:
status € {idle, joining, active}, op, arecord with fields: gc, arecord with fields:
initialy idle type € {read, write} phase € {idle, query, prop},
world, afinite subset of 7, initially @ phase € {idle, query, prop, initially idle
value € V, initidly vg done}, initialy idle pnum € N
tag € T, initidly (0, io) pnum € N acc, afinite subset of I
cmap € CMap, initidly cmap € CMap index € N
cmap(0) = co, acc, afinite subset of I
cmap(k) = Lfork > 1 value € V

pnuml € N, initidly 0
pnum2 € I — N,

initially everywhere 0
failed, aBoolean, initialy false

Fig. 3. RW;: Signature and state

State variables. The status variable keeps track of the progress of the component as
it joins the protocol. When status = idle, RW; does not respond to any inputs (except

180 N. Lynch and A.A. Shvartsman

for join) and does not perform any locally controlled actions. When status = joining,
RW; responds to inputs but still does not perform any locally controlled actions. When
status = active, the automaton participates fully in the protocol.

The world variableis used to keep track of all processesthat are known to havetried
to join the system. The value variable contains the current value of the local replica of
x, and tag holds the associated tag.

The ¢map variable contains information about configurations. If cmap(k) = L, it
means that RW; has not yet learned what the k" configuration id is. If cmap(k) =
c € C, it means that RW; has learned that the k" configuration id is ¢, and has not
yet garbage-collected it. If cmap (k) = =+, it meansthat RW; has garbage-collected the
kth configuration id. R1V; learns about configuration ids either directly from the Recon
service, or from other RW processes. The value of cmap isawaysin Usable, that is, +
for some finite prefix of N, followed by an element of C', followed by elementsof C'| ,
with only finitely many elements of C'. When RW; processes aread or write operation,
it uses al the configurations whose ids appear in its cmap, up to thefirst L.

The pnum1 variable and pnum?2 array are used to implement a handshake that
identifies “recent” messages. RW; uses pnum to count the total number of operation
phases (either query or propagation phases) that it hasinitiated overall, including phases
occurring in read, write, and garbage-collection operations. For every 7, including j = i,
RW, uses pnum?2(j) torecord the largest number of aphasethat i haslearned that j has
started, viaa message from j to i. Finally, two records, op and gc, are used to maintain
information about locally-initiated read, write, and garbage-collection operations.

Joining and failuretransitions. When ajoin(rw); input occurswhen status = idle, if ¢
istheobject’screator i, then status immediately becomesactive, whichmeansthat RW;
isready for full participation in the protocol. Otherwise, status becomes joining, which
means that RW; is receptive to inputs but not ready to perform any locally controlled
actions. In either case, RW; recordsitself asamember of itsown world. From this point
on, RW; adds to its world any process from which it receives a join message. (Recall
that these join messages are sent by Joiner automata.)

If status = joining, then status becomes active when RW; receives a message
from another RW process. (The code for this appearsin the recv transition definition in
FigureBl) At this point, process has acquired enough information to begin participating
fully. After status becomes active, process i can perform ajoin-ack(rw).

Information propagation transitions. Information is propagated between RW pro-
cesses in the background, via point-to-point channels that are accessed using the send
and recv actions. The algorithm uses one kind of message, which contains a tuple con-
sisting of the sender’s world, its latest known value and tag, its cmap, and two phase
numbers—the current phase number of the sender, pnum1, and the latest known phase
number of the receiver, from the pnum?2 array. These messages may be sent at any time,
to processesin the sender’s world.

When RW,; receives amessage, it setsits status to active, if it has not already done
s0. It addsincoming world information, in W, toits world set. It comparestheincoming
tagttoitsown tag. If t isstrictly greater, it representsamore recent version of the object;
inthiscase, RW; setsitstag tot and its value totheincoming value v. RW; also updates
its emap with the information in the incoming CMap, cm, using the update operator

RamBo: A Reconfigurable Atomic Memory Service for Dynamic Networks 181

Input join(rw); Output join-ack(rw);
Effect: Precondition:
if ~failed then —failed
if status = idle then status = active
if 2 = 70 then Effect:
status <— active none
else
status <— joining Input fail,
world <+ world U {i} Effect:

failed < true
Input recv(join); ;
Effect:
if —failed then
if status # idle then
world <+ world U {j}

Fig.4. RW;: Join-related and failure transitions

defined in Section[2l That is, for each k, if cmap(k) = L and em(k) € C, process
setsits cmap (k) to em(k). Also, if emap(k) € CL and em(k) = £, indicating that the
sender knows that configuration & has already been garbage-collected, then RW; setsits
emap(k) to £. RW; aso updates its pnum2(j) component for the sender j to reflect
new information about j's phase number, which appears in the pns component of the
message.

While RW; is conducting aphase of aread, write, or garbage-collection operation, it
verifiesthat the incoming messageis*“recent”, in the sense that the sender 5 sent it after
Jj received amessage from i that was sent after 7 began the current phase. RW; usesthe
phase numbers to perform this check: it checks that the incoming phase number pnr is
at least as large as the current operation phase number (op.pnum or gc.pnum). If the
message is recent, then R, usesit to update the op or gc record.

Read and write operations. A read or write operation is performed in two phases. a
query phase and a propagation phase. In each phase, RIV; obtainsrecent value, tag, and
cmap information from “enough” processes. This information is obtained by sending
and receiving messages, as described above.

When RW; starts a phase of aread or write, it sets op.cmap to a CMap whose con-
figurations are to be used to conduct the phase. Specifically, RW; uses truncate(cmap),
which is defined to include all the configuration ids in ¢cmap up to the first L. When
anew CMap cm is received during the phase, op.cmap is “extended” by adding all
newly-discovered configurationids, uptothefirst L in e¢m. If adding these new configu-
ration ids doesnot createa“gap”, that is, if the extended op.cmap isin Truncated, then
the phase continues using the extended op.cmap. On the other hand, if adding these new
configuration ids creates a gap, then RW; can infer that it has been using out-of-date
configurationids. Inthiscase, it restartsthe phase using the best currently known CMap,
which is obtained by computing truncate(cmap) for the latest local cmap.

In between restarts, while RW; isengaged in asingle attempt to complete a phase, it
never removes aconfiguration id from op.cmap. In particular, if process: learnsduring
a phase that a configuration id in op.cmap(k) has been garbage-collected, it does not
remove it from op.cmap, but continues to include it in conducting the phase.

182 N. Lynch and A.A. Shvartsman

Output send((W, v, t, cm, pns, pnr));,; Internal query-fix,
Precondition: Precondition:
~failed —failed
status = active status = active
j € world op.type € {read, write}
(W, v,t,ecm, pns, pnr) = op.phase = query
(world, value, tag, cmap, pnum1, pnum2(j)) Vk € N,c € C: (op.cmap(k) = c)
Effect: = (3R € read-quorums(c) :
none R C op.acc)
Effect:
Input recv((W, v, t,cm, pns, pnr)); ; if op.type = read then
Effect: op.value < value
if =failed then else
if status # idle then value < op.value
status < active tag < (tag.seq + 1,1)
world <+ world U W pnuml < pnuml + 1
if t > tag then (value, tag) + (v, t) op.pnum < pnuml
cmap < update(cmap, cm) op.phase < prop
pnum2(j) < max(pnum2(j), pns) op.cmap < truncate(cmap)
if op.phase € {query, prop} and pnr > op.pnum then op.acc < 0
op.cmap < extend(op.cmap, truncate(cm))
if op.cmap € Truncated then Internal prop-fix;
op.acc < op.acc U {j} Precondition:
else —failed
op.acc + status = active
op.cmap < truncate(cmap) op.type € {read, write}
if gc.phase € {query, prop} and pnr > gc.pnum then op.phase = prop
gc.acc + gc.acc U {5} Vk € N,c e C: (op.cmap(k) = ¢)
= (AW € write-quorums(c) :
Input new-config(c, k); W C op.acc)
Effect: Effect:
if —failed then op.phase = done
if status # idle then
cmap (k) < update(cmap(k), c) Output read-ack(v);
Precondition:
Input read; —failed)
Effect: status = active
if —failed then op.type = read
if status # idle then op.phase = done
pnuml < pnuml + 1 v = op.value
(op.pnum, op.type, op.phase, op.cmap, op.acc) Effect: .
< (pnuml,read, query, truncate(cmap), 0) op.phase = idle
Input write(v); Outpuf; _wrlte—acki
Effect: Precondition:
if —failed then —failed]
if status # idle then status = active
pnuml < pnuml + 1 op.type = write
(op.pnu’m7 op.type, op.phase, op.cmap, op.acc, op.phase = done
op.value) Effect:)
< (pnuml, write, query, truncate(cmap), 0, v) op.phase = idle

Fig.5. RW;: Read/write transitions

The query phase of aread or write operation terminates when a query fixed point is
reached. This happenswhen RW; determines that it has received recent responses from
some read-quorum of each configuration in its current op.cmap. Then ¢, defined to be
RW;'s tag at the query fixed point, isat least as great as the tag value that each process
in each of these read-quorums had at the start of the query phase.

If the operation is aread, then RV, determines at this point that its current value
is the value to be returned to its client. However, before returning, RW; performs the

RamBo: A Reconfigurable Atomic Memory Service for Dynamic Networks 183

propagation phase, whose purpose is to make sure that “enough” RW processes have
acquired tagsthat are at least ¢. Again, theinformation is propagated in the background,
and op.cmap is managed as described above. The propagation phase ends once a prop-
agation fixed point is reached, when RW; has received recent responses from some
write-quorum of each configuration in the current op.cmap. When this occurs, the tag
of each processin each of these write-quorumsis at least ¢.

Processing for awrite operation starting with write(v); is similar to that for aread.
The query phase is conducted exactly as for aread, but processing after the query fixed
point isdifferent: Supposet, processi’s tag at the query fixed point, isof theform (n, j).
Then RW; defines the tag for its write operation to be the pair (n + 1, 4¢) and setsits tag
to (n + 1,4) and its value to the new value v. Then it performs its propagation phase.
Now the purpose of the propagation phase isto ensure that “enough” processes acquire
tagsthat are at least as great as (n + 1,4). The propagation phase is conducted exactly
asfor aread.

Internal ge(k); Internal ge-prop-fix(k);
Precondition: Precondition:
—failed —failed
status = active status = active
gc.phase = idle gc.phase = prop
cmap (k) € C gc.inder = k
cmap(k+1) € C IW € write-quorums(cmap(k + 1)) :
k=0orcmap(k —1) =+ W C gc.acc
Effect: Effect:
pnuml < pnuml + 1 cmap(k) « £
(ge.pnum, gc.phase, gc.acc, ge.index)
— (pnuml, query, 0, k) Internal gc-ack(k);
Precondition:
Internal ge-query-fix(k); —failed
Precondition: status = active
—failed gc.inder = k
status = active cmap(k) = +
gc.phase = query Effect:
gc.indexr = k gc.phase = idle

3R € read-quorums(cmap(k)) :

IW € write-quorums(cmap(k)) : RUW C gc.acc
Effect:

pnuml < pnuml + 1

(gc.pnum, ge.phase, gc.acc) < (pnuml, prop,)

Fig.6. RW;: Garbage-collection transitions

New configurations and garbage collection. When RW; learns about a new config-
uration id via a new-config input action, it ssimply recordsit in its cmap. From time to
time, configuration ids get garbage-collected at ¢, in numerical order. The configuration
ids used in performing query and propagation phases of reads and writes are those in
truncate(cmap), that is, al configurations that have not been garbage-collected and
that appear before thefirst L.

There are two situations in which RW; may garbage-collect the configuration id
in cmap(k). First, RW; can garbage-collect cmap (k) if it learns that another process
has already garbage-collected it. This happens when RW; receives a message in which
em(k) = +. Second, RW; may acquire enough information to garbage-collect con-

184 N. Lynch and A.A. Shvartsman

figuration k& on its own. RWW; accomplishes this by performing a a two-phase garbage-
collection operation, with a structure similar to the read and write operations. RWW; may
initiate garbage-collection of configuration & when its cmap (k) and cmap(k + 1) are
both in C, and when any configurations with indices smaller than k — 1 have aready
been garbage-collected. Garbage-collection may proceed concurrently with a read or
write operation at the same node.

In the query phase of a garbage-collection operation, RW; communicates with a
read-quorum and awrite-quorum of configuration k. The query phase accomplishestwo
tasks: First, RW; ensures that all the processes in the read-quorum and write-quorum
learn about configurations & and k + 1, and also learn that all configurations smaller than
k have been garbage-collected. If such aprocess, j, is contacted afterwards by someone
who is using configuration &, j can tell that process about configuration k£ + 1. Second,
in the query phase, RW; collects tag and value information from the read-quorum and
write-quorum. Thisensuresthat, by the end of the query phase, RW,’s tag, t,iSat least as
great asthe tag that each of the quorum members had when it sent amessageto RW; for
the query phase. In the propagation phase, RWW; ensuresthat all the processesin awrite-
quorum of configuration k + 1 have acquired tagsthat are at least ¢. Note that, unlike a
read or write operation, a garbage-collection for & uses only two configurations—k in
the query phase and & + 1 in the propagation phase.

At any time while RW; is garbage-collecting configuration £, it may discover that
someone has aready garbage-collected k; it discoversthisby observingthat cmap (k) =
=+. When this happens, RW; may simply terminate its garbage-collection.

5.3 The CompleteAlgorithm

We assume point to point channels Channel; ;, onefor each i, j € I (including ¢ = 7).
Channel; ; isaccessed using send(m); ; input actions, by which a sender at location ¢
submits message m to the channel, and recv(m); ; output actions, by which areceiver at
location j receives m. Channels may lose and reorder messages, but cannot manufacture
new messages or duplicate messages. Formally, we model Channel; ; as a multiset,
where A send(m); ; input action adds one copy of m to the multiset and A recv(m); ;
output removes one copy of m. A lose input action allows any sub-multiset of messages
to be removed.

The complete implementation, which we call S, isthe composition of the Joiner;,
RW;, and Channel; ; automata, and any automaton whose traces satisfy the Recon
safety specification, with all actions that are not external actions of Ramo hidden.

6 Safety Proof

We show that S satisfiesthe safety guarantees of RAMBoO, asgivenin Section[3] assuming
the environment safety assumptions. An operation can be of typeread, write, or garbage-
collection. An operationsis uniquely identified by its starting event: read;, write(v);, or
ge(x); event.

We introduce the following history variables: (1) For every k € N: ¢(k) € C. This
is set when the first new-config(x, k). occurs, to the configuration id that appears asthe

RamBo: A Reconfigurable Atomic Memory Service for Dynamic Networks 185

first parameter of thisaction. (2) For every operation: tag(w) € T. Thisisset just after
7'S query-fix or gc-query-fix event, to the tag of the process running 7. (3) For every
read or write operation 7: (&) query-cmap(w), a CMap. Thisis set in the query-fix step
of 7, to the value of op.cmap in the pre-state. (b) prop-cmap(w), a CMap. Thisis set
in the prop-fix step of =, to the value of op.cmap in the pre-state.

For any read or write operation 7, we designate the following events:
(1) query-phase-start(w). This is defined in the query-fix step of , to be the unique
earlier event at which the collection of query results was started and not subsequently
restarted (that is, op.acc is set to () in the effects of the corresponding step, and op.acc
is not later reset to () following that event and prior to the query-fix step). Thisis either
aread, write, or recv event. (2) prop-phase-start(r). Thisis defined in the prop-fix step
of , to be the unique earlier event at which the collection of propagation results was
started and not subsequently restarted. Thisis either aquery-fix or recv event.

Now we present several lemmas describing information flow between operations.
All are stated for ageneric execution « satisfying the environment assumptions. Thefirst
lemma describesinformation flow between garbage-collection operations. We say that a
gc-prop-fix(k); eventisinitial if it isthefirst gc-prop-fix(k). eventin «, and agarbage-
collection operation is initial if its gc-prop-fix event is initial. The algorithm ensures
that garbage-collection of successive configurationsis sequential, in fact, for each &, the
initial gc-prop-fix(k) event precedes any attempt to garbage-collect & + 1. Sequential
garbage-collection impliesthat tags of garbage-collection operations are monotone with
respect to the configuration indices:

Lemma 1. Suppose ; and v, are garbage-collection operations for k£ and ¢, respec-
tively, where k& < ¢ and ;, isinitial. Suppose a gc-query-fix(¢) event for ~, occursin a.
Then tag (i) < tag(7e)-

Proof. By induction on ¢, for fixed k. For theinductive step, assumethat ¢ > k + 1 and
the result is true for ¢ — 1. A write-quorum of ¢(¢) is used in the propagation phase of
~¢—1 and aread-quorum of ¢(¢) isused in the query phase of ~y,. The quorum intersection
property for ¢(¢) guarantees propagation of tag information. m|

Thefollowing lemmadescribes situationsin which certain configurations must appear in
the query-cmap of aread or write operation . Firgt, if no garbage-collection operation
for k completes before the query-phase-start event of 7, then some configuration with
index < k must beincluded in query-cmap (7). Second, if some garbage-collection for
k completes beforethe query-phase-start event of 7, then some configuration with index
> k + 1 must beincluded in the query-cmap ().

Lemma2. Let m be a read or write operation whose query-fix event occurs
in a. (1) If no gc-prop-fix(k) event precedes the query-phase-start(w) event, then
query-cmap(m)(€) € C for some ¢ < k. (2) If some gc-prop-fix(k) event precedes
the query-phase-start(m) event, then query-cmap(m)(¢) € C for some ¢ > k + 1.

The next lemma describes propagation of tag information from a garbage-collection
operation to afollowing read or write operation.

186 N. Lynch and A.A. Shvartsman

Lemma 3. Let v be an initial garbage-collection operation for k. Let = be a read or
write operation whose query-fix event occursin «.. Suppose that the gc-prop-fix (k) event
of v precedesthe query-phase-start(7) event. Then tag() < tag(w), andif 7 isawrite
operation then tag(vy) < tag(m).

The next two lemmas describe relationships between reads and writes that execute se-
quentialy. The first lemma says that the smallest configuration index used in the prop-
agation phase of the first operation is less than or equal to the largest index used in
the query phase of the second operation. In other words, the second operation’s query
phase cannot use only configurations with indices that are less than any used in the first
operation’s propagation phase.

Lemma4. Assume 7; and m, are two read or write operations such that the prop-fix
event of 7, precedes the query-phase-start(ms) eventin a.
Then min({¢ : prop-cmap(m)(¢) € C}) < max({¢ : query-cmap(m2)(¢) € C}).

Proof. Suppose not. Let & = max({¢ : query-cmap(m)({) € C}). Then
some gc-prop-fix(k) event occurs before the prop-fix of m, and so before the
query-phase-start(ms) event. LemmalZ, Part 2, then impliesthat query-cmap(ms2)(¢) €
C for some /¢ > k + 1, which contradicts the choice of k. O

The second lemma describes propagation of tag information between sequential reads
and writes.

Lemma5. Suppose w; and 7o are two read or write operations, such that the prop-fix
event of 7, precedes the query-phase-start(ms) event in .. Then tag(m1) < tag(ms),
and if my isawritethen tag(m;) < tag(ms).

Proof. Let i, and io be the processes that run operations 7; and 7o, respectively. Let
cmy = prop-cmap(m) and ecme = query-cmap(me). If there exists k& such that
emy(k) € C and ema(k) € C, then the quorum intersection property for configu-
ration k£ implies the conclusions of the lemma. So we assume that no such & exists.
LemmaMlimplies that min({¢ : ecm1(¢) € C}) < max({¢ : ecma(¢) € C}). Sincethe
set of indices used in each phase consists of consecutive integers and the intervals have
no indices in common, it follows that k; < k2, where ky = max({{ : ¢cm1(¢) € C})
and ko = min({¢ : ecmo(€) € C}).

Since, for every k < ky — 1, query.cmap(ms)(k) ¢ C, Lemmal2 Part 1, implies
that, for every such k, a gc-prop-fix(k) event occurs before the query-phase-start(ms)
event. For each such k, define ~;, to be theinitial garbage-collection operation for k.

The propagation phase of 71 accesses awrite-quorum of ¢(k1), and the query phase
of v, accesses a read-quorum of ¢(kq). By the quorum intersection property, there is
some j in theintersection of these quorums. L et message m be the message sent from ;5
to¢; inthe propagation phase of 71, and let m’ be the message sent from j to the process
running -y, in its query phase. We claim that j sends m before it sends m/'. For if not,
then information about configuration &, + 1 would be conveyed by j to i;, who would
includeit in cm1, contradicting the choice of k1. Since j sends m before it sends m/, j
conveys tag information from m to ~y, , ensuring that tag(m1) < tag(yk,)-

RamBo: A Reconfigurable Atomic Memory Service for Dynamic Networks 187

Sincek; < ko —1, Lemmalllimpliesthat tag(vx,) < tag(yi,—1). Lemmadimplies
that tag(vk,—1) < tag(me), andif mo isawritethen tag(vk,—1) < tag(mse). Combining
all the inequalities then yields both conclusions. |

Theorem 1. Let 8 be atrace of S. If 8 satisfy the RaAMBO environment assumptions,
then (8 satisfies the RaMBo service guarantees (well-formedness and atomicity).

Proof. Let 3 be atrace of S that satisfies the RamMBo environment assumptions. We
arguethat § satisfiestheRamBo service guarantees. The proof that 5 satisfiestheRamBo
well-formedness guarantees is straightforward from the code. To show that § satisfies
atomicity (as defined in Section[3), assume that al read and write operations compl ete
in 3. Let o be an execution of S that satisfies the environment assumptions and whose
traceis 3. Define a partial order < on read and write operations in «: totally order the
writesin order of their tags, and order each read with respect to all the writes so that a
read with tag ¢ is ordered after all writes with tags < ¢ and before all writes with tags
> t. Then we claim that < satisfies the four conditions in the definition of atomicity.
The interesting condition is Condition 2; the other three are straightforward.

For Condition 2, supposefor the sake of contradiction that 7, and 75 areread or write
operations, m completes before m, starts, and o < . If w5 isawrite operation, then
since m; completes before 75, starts, LemmaBimpliesthat tag(ws) > tag(m). But the
fact that mo < 71 impliesthat tag(ms) < tag(m1), yielding acontradiction. On the other
hand, if 75 isaread operation, then since m; completesbefore m, starts, Lemmallimplies
that tag(ms) > tag(m). Butthefactthat 7o < 1 impliesthat tag(m2) < tag(m), again
yielding a contradiction.]

7 Implementation of the Reconfiguration Service

The Recon agorithm is considerably simpler than the RW agorithm. It consists of
a Recon,; automaton for each location 7, which interacts with a collection of global
consensus services Cons(k, c), one for each k > 1 and each ¢ € C, and with a point-
to-point communication service.

Cons(k, c) accepts inputs from members of configuration ¢, which it assumes to
be the £ — 15 configuration. These inputs are of the form init(c)..;, where ¢’ is a
proposed new configuration. The configuration that Cons(k, ¢) decides upon (using
decide(c’) .; outputs) is deemed to be the k' configuration. The validity property of
consensus implies that this decision is one of the proposed configurations.

Recon; isactivated by ajoin(recon); action, which is an output of Joiner;. Recon;
accepts reconfiguration requests from clients, and initiates consensus to help deter-
mine new configurations. It records the new configurations that the consensus services
determine. Recon; aso informs RW; about newly-determined configurations, and dis-
seminates information about newly-determined configurations to the members of those
configurations. It returns acknowledgments and configuration reportsto its client.

We implement Cons(k, ¢) using the Paxos consensus algorithm [[17], as described
formally in [8]. Our complete implementation of Recon, Reconmyp;, consists of the

188 N. Lynch and A.A. Shvartsman

Recon; automata, channelsconnecting all the Recon; automata, and theimplementations
of the Cons services. We use the same kinds of channels as for RamBo: point-to-point
channels that may lose and reorder messages, but not manufacture new messages or
duplicate messages. The complete RamBo system (for a particular object) consists of
Joiner, RW, and channel automata as described in Section[B, plus Recon ;. We call
the complete RaMBO system S'.

8 Conditional PerformanceAnalysis: Latency Bounds

We prove latency bounds for the full system S’. To handle timing, we convert al the
I/0O automatato general timed automata (GTAS) asdefined in [18], by allowing arbitrary
amounts of timeto passin any state. Fix d > 0, the normal message delay, and ¢ > 0.

RamBo allows sending of messages at arbitrary times. For the purpose of latency
analysis, werestrict RaAmB0o’ s sending pattern: We assumethat each automaton hasalocal
real-valued clock, and sends messages at the first possible time and at regular intervals
of d thereafter, as measured on the local clock. Also, non-send locally controlled events
occur just once, within time 0 on the local clock.

Our results also require restrictions on timing and failure behavior: We define an
admissible timed execution to be normal provided that all local clocks progress at rate
exactly 1, all messages that are sent are delivered within time d, and timing and failure
behavior for al consensus servicesis“normal”, as defined in [8] A

Next, wedefineareliability property for configurations. In general, in quorum-based
systems, operations that use quorums are guaranteed to terminate only if some quorums
do not fail. Because we use many configurations, we attempt to take into account which
configurationsmight bein use. We say that k isinstalled in atimed execution o provided
that either k£ = 0 or there exists ¢ € C such that (1) some init(x) . event occurs, and
(2) for every i € members(c), either decide(x)y, .; Of fail; occurs. (Thus, configuration
k — 1 is¢, and every non-failed member of ¢ has learned about configuration £.) We
say that « is e-configuration-viable, e > 0, provided that for every ¢ and k such that
some rec-cmap (k). = c in some state in «, there exist R € read-quorums(c) and
W € write-quorums(c) such that either (1) no processin R U W ever failsin «, or
(2) k + lisinstaled in a finite prefix o’ of « and no processin R U W failsin «
by time (time(a’) + e. (Quorums remain non-failed for at least time e after the next
configuration isinstalled.)

Thee-configuration-viability assumptionisuseful insituationswhereaconfiguration
isno longer needed for performing operations after time e after the next configuration is
installed. Thiscondition holdsin RamBo executionsin which certain timing assumptions
hold; the strength of those assumptions determinesthe val ue of e that must be considered.
We believe that such an assumption is reasonable for a reconfigurable system, because
it can be reconfigured when quorums appear to be in danger of failing.

We prove a bound of 2d on the time to join, and a bound of 11d + ¢ for the time
for reconfiguration, based on a bound of 10d + ¢ for consensus. We also establish a

2 This means that all messages are delivered within time d, local processing time is 0, and
information is gossiped at intervals of d.

RamBo: A Reconfigurable Atomic Memory Service for Dynamic Networks 189

situation in which a system is guaranteed to produce a positive response to a reconfig-
uration request. We prove a bound of 4d on the time for garbage-collection, assuming
that enough of the relevant processes remain non-failed. We prove a bound of 4d on
the latency for read and write operations in a “quiescent” situation, in which al joins
and configuration management events have stopped, and the configuration map of the
operation’sinitiator includes the latest configuration and has value + for all earlier con-
figurations. More generaly, we show that this bound holds even if this map contains
more than one configuration: since the configurations are used concurrently, the use of
multiple configurations does not slow the operation down.

We show that all participants succeed in exchanging information about configura-
tions, within a short time: if < and j have joined at least time e ago and do not fail, then
any information that 7 has about configurations is conveyed to j within time 2d. Using
thisresult, we show that, if reconfiguration requests are spaced sufficiently far apart, and
if quorums of configurations remain alive for sufficiently long, then garbage collection
keeps up with reconfiguration.

The main latency theorem bounds the time for read and write operations in the
“steady-state” case, where reconfigurations do not stop, but are spaced sufficiently far
apart. Fix e > 0.

Theorem 2. Let o be a normal admissible timed execution of S’ such that:

(1) If a recon(x,c); event occurs at time ¢t then for every j € members(c),
join-ack(rambo); occursby timet — e. (2) If join-ack(rambo); and join-ack(rambo);
both occur by timet, and neither ¢ nor j failsbytimet+e, thenbytimet+e, i € world;.
(3) For any recon(c, *); that occurs in «, the time since the corresponding report(c);
eventis > 12d + e. (4) « satisfies 11d-configuration-viability. (5) « contains decide
events for infinitely many configurations.

Supposethat aread; (resp., write(x);) event occursat timet, and join-ack, occursstrictly
beforetime ¢ — (e + 8d). Then the corresponding read-ack; (resp., write-ack(x),;) event
occursby timet + 8d.

Proof. The various spacing properties and bounds on time to disseminate information
imply that each phase of the read or write completeswith at most onerestart for learning
about anew configuration. Therefore, each phase takestime at most 4d, for atotal of 8d.
a

In the full paper we also present latency results anal ogous to those described above,
for executionsthat have normal timing and failure characteristics after some point inthe
execution. These results are similar to the previous results, but include dependence on
the time when normal behavior begins.

9 FutureWork

Infuturework, we plantoimplement the complete Rambo agorithmin LAN, WAN, and
mobile settings. We will extend our performance analysis and compare it with empirical
results. Wewill investigate ways of increasing the concurrency of garbage-collection and
of reducing the amount of communication. Finally, this work leaves open the question
of how to choose good configurations, for various kinds of platforms.

190

N. Lynch and A.A. Shvartsman

References

=

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

Communications of the ACM, special section on group communications, vol. 39, no. 4, 1996.
Y. Amir, D. Dolev, P. Melliar-Smith and L. Moser, “Robust and Efficient Replication Using
Group Communication” Tech. Rep. 94-20, Dept. of Computer Science, Hebrew Univ., 1994.
H. Attiya, A. Bar-Noy and D. Dolev, “ Sharing Memory Robustly in Message Passing Sys-
tems', J. of the ACM, val. 42, no. 1, pp. 124-142, 1996.

PA. Bernstein, V. Hadzilacos and N. Goodman, “Concurrency Control and Recovery in
Database Systems’, Addison-Wesley, Reading, MA, 1987.

F. Cristian and F. Schmuck, “Agreeing on Processor Group Membership in Asynchronous
Distributed Systems”, TR. CSE95-428, Dept. of Comp. Sci., Univ. of California San Diego.
S.B. Davidson, H. Garcia-Molinaand D. Skeen, “Consistency in Partitioned Networks', ACM
Computing Surveys, vol. 15, no. 3, pp. 341-370, 1985.

R. DePrisco, A. Fekete, N. Lynch, A. Shvartsman, “A Dynamic Primary Configuration Group
Communication Service”, 13th Int-1 Conference of Distributed Computing, 1999.

Roberto De Prisco, Nancy Lynch, Alex Shvartsman, Nicole Immorlica and Toh Ne Win “A
Formal Treatment of Lamport’s Paxos Algorithm”, manuscript, 2002.

C. Dwork, N. A. Lynch, L. J. Stockmeyer, “ Consensus in the presence of partial synchrony”,
J. of ACM, 35(2), pp. 288-323, 1988.

B. Englert and A.A. Shvartsman, Graceful Quorum Reconfiguration in a Robust Emulation
of Shared Memory, in Proc. International Conference on Distributed Computer Systems
(ICDCS' 2000), pp. 454-463, 2000.

A. Fekete, N. Lynch and A. Shvartsman “ Specifying and using a partitionabl e group commu-
nication service”, ACM Trans. on Computer Systems, vol. 19, no. 2, pp. 171-216, 2001.

H. GarciaMolinaand D. Barbara, “How to Assign Votes in a Distributed System," J. of the
ACM, vol. 32, no. 4, pp. 841-860, 1985.

D.K. Gifford, “Weighted Voting for Replicated Data’, in Proc. of 7th ACM Symp. on Oper.
Sys. Princ., pp. 150-162, 1979.

M.P. Herlihy, “ Dynamic Quorum Adjustment for Partitioned Data', ACM Trans. on Database
Systemns, 12(2), pp. 170-194, 1987.

R. Guerraoui and A. Schiper, “Consensus Service: A Modular Approach For Building Fault-
Tolerant Agreement Protocols in Distributed Systems', Proc. of the 26th International Sym-
posium on Fault-Tolerant Computing (FTCS-26), pp. 168-177, 1996.

|. Keidar and D. Dolev, “Efficient Message Ordering in Dynamic Networks’, in Proc. of 15th
Annual ACM Symp. on Princ. of Distr. Comput., pp. 68-76, 1996.

Leslie Lamport, "The Part-Time Parliament", ACM Transactions on Computer Systems, 16(2)
133-169, 1998.

N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1996.
N. Lynch and A. Shvartsman. Robust emulation of shared memory using dynamic quorum-
acknowledged broadcasts. 27th Int-I Symp. on Fault-Tolerant Comp., pp. 272-281, 1997.
Nancy Lynch and Alex Shvartsman. RAMBO: A Reconfigurable Atomic Memory Service
for Dynamic Networks. MIT-LCS-TR-856, 2002

E. Upfal and A. Wigderson, How to share memory in a distributed system, Journal of the
ACM, 34(1):116-127, 1987.

	Introduction
	Data Types
	Reconfigurable Atomic Memory Service Specification
	Reconfiguration Service Specification
	Implementation of {sc Rambo}{} Using a Reconfiguration Service
	Joiner Automata
	Reader-Writer Automata
	The Complete Algorithm

	Safety Proof
	Implementation of the Reconfiguration Service
	Conditional Performance Analysis: Latency Bounds
	Future Work

