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Abstract This paper presents the time-bounded task-PIOA modeling framework,
an extension of the probabilistic input/output automata (PIOA) framework that
can be used for modeling and verifying security protocols. Time-bounded task-
PIOAs can describe probabilistic and nondeterministic behavior, as well as time-
bounded computation. Together, these features support modeling of important
aspects of security protocols, including secrecy requirements and limitations on the
computational power of adversarial parties. They also support security protocol
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verification using methods that are compatible with less formal approaches used in
the computational cryptography research community. We illustrate the use of our
framework by outlining a proof of functional correctness and security properties for
a well-known oblivious transfer protocol.

Keywords Security protocols · Time-bounded task-PIOAs ·
Probabilistic input/output automata · Oblivious transfer

1 Introduction

Modeling frameworks for interacting abstract state machines, such as I/O Automata,
have long been used successfully for proving correctness of distributed algorithms,
using proof techniques based on invariant assertions, levels of abstraction and com-
position. Security protocols are special cases of distributed algorithms—ones that
use cryptographic primitives such as encryption and signature, and that guarantee
properties such as secrecy and authentication. Thus, one should expect that the same
kinds of models and techniques will be useful for proving properties of security
protocols. However, making this approach work requires additions to the traditional
frameworks, including mechanisms for modeling secrecy requirements, and for
describing limitations on the knowledge and computational power of adversarial
parties.

In this paper, we describe a modeling framework, the time-bounded task-PIOA
framework, that extends Segala’s probabilistic I/O automata (PIOA) framework
(Segala 1995; Segala and Lynch 1995; Lynch et al. 2007) and supports description
of security-related features. Time-bounded task-PIOAs directly model probabilistic
and nondeterministic behavior, partial-information scheduling, and time-bounded
computation. We define an approximate implementation relation for time-bounded
task-PIOAs, ≤neg,pt, which captures the notion of computational indistinguishabil-
ity—the idea that a polynomial-time-bounded observer cannot (except with negligi-
ble probability) distinguish the behavior of one automaton from that of another. We
show that ≤neg,pt is transitive and compositional. We also define a type of probabilistic
simulation relation—a kind of step-by-step correspondence between task-PIOAs—
that can be used to prove ≤neg,pt. We believe these features will be useful for
formal modeling and verification of many security protocols, using methods that are
compatible with the informal approaches used in the computational cryptography
research community.

We illustrate the use of our framework by outlining the correctness proof of a
well-known two-party oblivious transfer (OT) protocol (Even et al. 1985; Goldreich
et al. 1987). Our modeling involves two systems of automata.

– The real system consists of two automata representing the protocol parties
and one automaton representing an adversarial communication service. This
adversary has access to all messages sent during execution of the protocol.

– The ideal system consists of an ideal oblivious transfer functionality automaton,
which specifies the allowed input/output behavior for oblivious transfer, and a
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simulator automaton, which interacts with the functionality and tries to mimic
the behavior of the real system (e.g., messages between the protocol parties).

Correctness of this OT protocol is formulated as the statement that the real
system implements the ideal system in the sense of ≤neg,pt. That is, every possible
behavior of the real protocol can be simulated by the abstract system contain-
ing the ideal functionality for OT. This property represents the standard crypto-
graphic requirement that for any real-life adversary, there exists an ideal adversary
(a simulator) such that the behavior of the system consisting of the protocol together
with the real-life adversary is indistinguishable by an external observer from the
system consisting of the ideal functionality and the ideal adversary. In particular,
the above property guarantees functional correctness: the input/output behavior of
the protocol conforms to what is specified by the OT functionality. It also guarantees
security, since access to protocol messages does not give the real adversary any
significant new knowledge or power (compared to the simulator which has no such
access).

In order to prove that the oblivious transfer protocol implements the ideal system,
we define a series of intermediate system models, and prove that each consecutive
pair of models satisfies ≤neg,pt. (Here the transitivity of ≤neg,pt is used.) This approach
decomposes the security proof into several stages, each of which addresses some
particular aspects of the protocol. In particular, reasoning about cryptographic
primitives and limitations in computational power is isolated to a single stage in the
proof, where a system using difficult-to-compute hard-core bits of trap-door functions
is shown to implement a system using random bits. For this interesting step, we
reformulate the standard notion of hard-core bits in terms of ≤neg,pt, and prove that
our reformulation is equivalent to the standard definition. The proof for this stage
then uses this reformulated definition of hard-core bits plus composition results for
≤neg,pt. Other stages are proved using probabilistic simulation relations.

1.1 Background

Security protocol verification is an active research area. Traditionally, security
protocols have been verified using one of two approaches, often called formal
and computational. In the formal approach, cryptographic operations are modeled
symbolically, and security of a protocol is expressed in terms of absolute guarantees
when the protocol is run against a Dolev–Yao adversary (Dolev and Yao 1983),
which is incapable of breaking the cryptographic primitives. This approach lends
itself to rigorous proofs using familiar methods; however, it neglects important
computational issues that could render protocols invalid in practice. In contrast, in
the computational approach, cryptographic operations are modeled as algorithms
operating on bit strings, and security is expressed in terms of probabilistic guarantees
when protocols are run against resource-bounded adversaries. This approach treats
computational issues realistically, but it does not easily support rigorous proofs.
For example, resource-bounded protocol components are commonly modeled as
(probabilistic) interactive Turing machines (ITMs Goldwasser et al. 1989; Canetti
2001), but rigorous proofs in terms of ITMs are infeasible, because ITMs provide
only a very low-level mechanism for representing computer programs. Another
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research direction, represented by (Abadi and Rogaway 2002; Micciancio and
Warinschi 2004; Canetti and Herzog 2006) for instance, connects the formal to
the computational approach, by proving general theorems asserting that, under
certain circumstances, proofs carried out using the formal approach can be modified
systematically to work also in the computational setting.

A recent trend in security verification is to combine formal and computational
analysis in one framework by defining computational restrictions on abstract ma-
chines (e.g., Lincoln et al. 1998; Pfitzmann and Waidner 2000; Backes et al. 2003,
2004b; Barthe et al. 2004; Ramanathan et al. 2004; Blanchet 2005). Our work follows
this general approach, though with its own unique set of modeling choices, as we
explain throughout this paper.

Our mathematical starting point is Segala’s probabilistic input/output automata
(PIOA) modeling framework (Segala 1995; Segala and Lynch 1995; Lynch et al.
2007), which was originally developed for analyzing probabilistic distributed algo-
rithms (e.g., Pogosyants et al. 2000; Stoelinga and Vaandrager 1999). PIOAs are
abstract machines that may perform both probabilistic and nondeterministic choices;
nondeterministic choice is used to select the next transition, and probabilistic choice
is used to determine the resulting state. Nondeterminism is an essential feature of
any framework for analyzing distributed algorithms, for several reasons:

– Nondeterminism makes it possible to define algorithms in a general form, leaving
inessential choices (such as the order of certain events) unspecified. A proof of
functional correctness for a nondeterministic algorithm carries over automati-
cally to any algorithm obtained by resolving the nondeterministic choices in any
particular way.

– Nondeterminism is needed in automata that are used as high-level specifications
of allowed system behavior. Such specifications should express only restrictions
that are really necessary, with options expressed using nondeterministic choices.

– Nondeterminism makes it possible to avoid mathematical clutter, in the form of
unnecessary restrictions, in algorithm descriptions, theorems, and proofs. The
resulting simplicity makes the entire verification enterprise easier.

– Nondeterminism is unavoidable anyway in systems of asynchronously interacting
components. Even if all individual system components are purely probabilistic,
when they are combined into a larger system, nondeterminism arises because the
order in which components perform their steps is unspecified.

However, in order to state and prove probabilistic properties for distributed
algorithms, one needs a way of resolving the nondeterministic choices. Segala does
this by combining a PIOA with a perfect-information scheduler, which can use
full knowledge about the past execution in selecting the next transition. But this
scheduling mechanism is too powerful to use with security protocols: for example, a
scheduler’s choice of the next transition may depend on “secret” information hidden
in the states of honest protocol participants, and thus may reveal information about
secrets to corrupted participants.

For this reason, we define a less powerful scheduling mechanism for PIOAs:
actions are grouped into tasks, and scheduling is carried out using arbitrary task
schedule sequences. The combination of a PIOA and a task classification is called
a Task-PIOA (Canetti et al. 2006a, b). We think of a task schedule as simply a way
of representing the order in which different system activities happen to occur. We
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consider this order to be determined accidentally, for example, by variations in
speeds of different system components, or by unpredictable network delays, rather
than by a purposeful scheduler entity. At first, it may seem that completely nonadap-
tive task sequences are insufficient to describe adversarial scheduling patterns of the
sort that occur in security protocols. However, we model such patterns in a different
way, which we explain in Section 3.1.2.

Task-PIOAs support familiar methods of abstraction and composition. They
also include an implementation relation, ≤0, between automata, based on trace
distributions, and probabilistic simulation relations that can be used to prove ≤0

relationships.
Finally, we augment the task-PIOA framework with notions of time bounds,

expressed in terms of bit-string encodings of automata constituents—states, actions,
etc. This yields the time-bounded task-PIOA framework, which allows us to define
generic notions such as polynomial-time-bounded task-PIOAs and the approximate
implementation relation ≤neg,pt. Computational indistinguishability assumptions,
which are crucial for stating and proving the correctness of many cryptographic
protocols, can be expressed in terms of ≤neg,pt. We will present an example of
computational indistinguishability in Section 5.

Our task-PIOA framework, and our models and proofs for oblivious trans-
fer, have evolved somewhat over the past two years. In our initial technical re-
port (Canetti et al. 2006c), we used a version of task-PIOAs that is considerably
more restrictive than the one presented here, because it imposes more consistency
conditions on the tasks. An effect of these restrictions is that the automata have little
power to modify their behavior dynamically, based on what has occurred so far in
an execution. In fact, these restrictions meant that we were unable to model certain
types of conditionally-branching adversaries that occur in security protocols, as was
pointed out to us by Silvio Micali. This led us to generalize the framework to its
current form, which appears in this paper and also in Canetti et al. (2005, 2006a, b).

On the other hand, the original technical report (Canetti et al. 2006c) completely
analyzed four separate cases for the oblivious transfer algorithm, based on which
protocol parties are assumed to be corrupted. Our newer version of the OT proof,
in Canetti et al. (2005), analyzes only the most interesting of the four cases—the case
where the Receiver protocol party is corrupted.

1.2 Comparison with some related work

Our formulation of computational security and our analysis of oblivious transfer
follow the general style of results by Canetti on Universally Composable (UC)
Security (Canetti 2001) and by Pfitzmann and Waidner on Universal Reactive
Simulatability (RSIM; Pfitzmann and Waidner 2001). These, in turn, evolved from
less-formal presentations in the computational cryptography community (Goldreich
et al. 1987; Goldwasser et al. 1989).

The RSIM work imposes computational restrictions on abstract machines for the
purpose of analyzing security protocols (Pfitzmann and Waidner 2000, 2001; Backes
et al. 2004b). RSIM abstract machines are interrupt-driven state machines that inter-
act via a system of ports and buffers, and computational restrictions are expressed
by relating these machines to probabilistic polynomial time (PPT) interactive Turing
machines. A fixed distributed protocol, in which machines activate each other by
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generating explicit clock signals, is used for scheduling among the machines. This
mechanism is similar to the ones typically used for ITMs (Goldwasser et al. 1989;
Canetti 2001).

The models in Pfitzmann and Waidner (2000, 2001), Backes et al. (2004b) exhibit
little or no nondeterminism: individual machines are purely probabilistic up to
occurrences of inputs. Therefore, any closed collection of machines (i.e., with no
further inputs) generates a unique probabilistic run, provided the machines are ac-
tivated according to the scheduling algorithm mentioned above. In comparison, our
framework makes extensive use of nondeterminism, allowing individual machines
to make nondeterministic choices in a way that remains unknown to the adversary.
We then quantify over arbitrary (though non-adaptive) task schedules. As discussed
in Canetti et al. (2007b), this new treatment of the underlying concurrency leads
to a notion of security that is incomparable to existing ones. Moreover, the use
of traditional proof methods such as invariants and simulation relations are more
prominent in our approach. For instance, we define a new type of simulation relation,
tailored for task-based scheduling, and we give formal proofs that our simulation
relations are sound for proving implementation relationships.

Another similar line of work is the probabilistic polynomial-time process calculus
(PPC) of Mitchell et al. (Lincoln et al. 1998; Mateus et al. 2003; Ramanathan et al.
2004). In this work, a process-algebraic language is used to specify protocols and
their components. The terms of the algebra are restricted so that they can represent
only probabilistic polynomial time (PPT) protocols. Security properties are specified
using an asymptotic observational equivalence on process terms, which captures the
notion of computational indistinguishability of the functions represented by these
terms.

The PPC work follows the style of traditional concurrency theory: for example,
the abstract machines underlying this process language are composable, and support
equivalence proofs based on probabilistic bisimulation relations. Also, this work
does allow nondeterministic choices, both within and among components. These
nondeterministic choices are resolved by probabilistic schedulers of several different
kinds, including special Markov chains and probability distributions on the set of en-
abled actions. Various restrictions, such as environment-independence and history-
independence, are imposed on these schedulers in order to support computational
security arguments.

Again, a main difference between our framework and PPC lies in the scheduling
semantics. Schedulers for PPC are typically state-dependent, compared with our
oblivious task schedules. Moreover, PPC schedulers do not resolve nondeterministic
choices involving internal transitions. This is because the operational semantics for
PPC is usually defined in such a way that internal computations are prioritized over
external communications. If nondeterministic choices between internal transitions
appear, they are taken with equal probability. As a result, when two PPC processes
are related using an implementation relation, the same external scheduler can be
used. In our case, task schedules also specify the ordering of internal events, which
means that different task schedules must be used in order to match two different
processes.

Overall, our work differs from RSIM and PPC in our particular choices of
underlying machine model and scheduling mechanism, as well as the description of
computational restrictions. We differ also in our emphasis on a particular modeling
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and proof methodology, derived from the one typically used for distributed algo-
rithms: we use nondeterminism extensively as a means of abstraction, decompose
our system descriptions using composition and levels of abstraction, and carry out
proofs using invariants and simulation relations.

In other related work, security analysis is sometimes carried out, often infor-
mally, in terms of a sequence of games (Shoup 2004; Bellare and Rogaway 2004;
Blanchet 2006; Halevi 2005). These games are similar to our levels of abstraction
(cf. Section 7).

1.3 Overview of the paper

Sections 2 and 3 review the PIOA and Task-PIOA frameworks, respectively, illus-
trating them with examples taken from the oblivious transfer case study. Section 4
defines time-bounded task-PIOAs, and the approximate implementation relation
≤neg,pt. Section 5 illustrates our treatment of computational indistinguishability
assumptions, by presenting our definition, based on ≤neg,pt, of hard-core predicates
for trap-door functions. Section 6 explains how we model cryptographic protocols
and their requirements, illustrating this method with the OT protocol. Section 7
outlines our proofs for OT. Conclusions follow in Section 8.

Full definitions, results, and proofs for basic PIOAs and task-PIOAs appear in
Canetti et al. (2006b), which is the full version of Canetti et al. (2006a). Complete
details for time-bounded task-PIOAs, ≤neg,pt, hard-core predicates, and the oblivious
transfer case study appear in the report (Canetti et al. 2005). Our earlier version of
task-PIOAs, with its full proof for OT, appears in Canetti et al. (2006c).

2 Probabilistic I/O automata

In this section, we summarize basic definitions and results for PIOAs; full definitions,
results, and proofs appear in Canetti et al. (2006a, b). We illustrate the definitions
with examples extracted from the oblivious transfer case study.

2.1 Mathematical notation

We write N for the set of natural numbers and R≥0 for the sets of nonnegative real
numbers. If X is any set, then we denote the set of finite sequences and infinite
sequences of elements from X by X∗ and Xω, respectively. If ρ is a sequence then
we use |ρ| to denote the length of ρ. We use λ to denote the empty sequence (over
any set). If ρ ∈ X∗ and ρ ′ ∈ X∗ ∪ Xω, then we write ρ ◦ ρ ′ for the concatenation of
the sequences ρ and ρ ′. Sometimes, when no confusion seems likely, we omit the ◦
symbol, writing just ρρ ′.

2.2 Probability measures

In this section, we review basic definitions for probability measures. A σ -field over a
set X is a set F ⊆ 2X that contains the empty set and is closed under complement and
countable union. A pair (X,F) where F is a σ -field over X, is called a measurable
space. A measure on a measurable space (X,F) is a function μ : F → [0,∞] that
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is countably additive: for each countable family {Xi}i of pairwise disjoint elements
of F , μ(∪i Xi) = ∑

i μ(Xi). A probability measure on (X,F) is a measure on (X,F)

such that μ(X) = 1.
A discrete probability measure on a set X is a probability measure μ on (X, 2X),

such that, for each C ⊆ X, μ(C) = ∑
c∈C μ({c}). We define Disc(X) to be, the set of

discrete probability measures on X. In the sequel, we often omit the set notation
when we denote the measure of a singleton set. For a discrete probability measure μ

on a set X, supp(μ) denotes the support of μ, that is, the set of elements x ∈ X such
that μ(x) �= 0. Given set X and element x ∈ X, the Dirac measure δ(x) is the discrete
probability measure on X that assigns probability 1 to x.

If {ρi}i∈I is a countable family of measures on (X,FX), and {pi}i∈I is a family of
non-negative values, then the expression

∑
i∈I piρi denotes a measure ρ on (X,FX)

such that, for each C ∈ FX , ρ(C) = ∑
i∈I piρi(C). Given two discrete measures μ1, μ2

on (X, 2X) and (Y, 2Y), respectively, we denote by μ1 × μ2 the product measure, that
is, the measure on (X × Y, 2X×Y) such that μ1 × μ2(x, y) = μ1(x) × μ2(y) for each
x ∈ X, y ∈ Y.

A function f : X → Y is said to be measurable from (X,FX) → (Y,FY) if the
inverse image of each element of FY is an element of FX , that is, for each C ∈ FY ,
f −1(C) ∈ FX . In such a case, given a measure μ on (X,FX), the function f (μ)

defined on FY by f (μ)(C) = μ( f −1(C)) for each C ∈ Y is a measure on (Y,FY) and
is called the image measure of μ under f .

2.3 Operations involving probability measures

Now we define three operations involving probability measures: flattening, lifting,
and expansion. We will use the operation of expansion in Section 3.5 to define a
probabilistic simulation relation. The operations flattening and lifting are auxiliary
operations used to define expansion. All of these have previously been defined, for
example, in Lynch et al. (2007).

The first operation, which we call flattening, takes a discrete probability measure
over probability measures and “flattens” it into a single probability measure.

Definition 1 Let η be a discrete probability measure on Disc(X). Then the flattening
of η, denoted by f latten(η), is the discrete probability measure on X defined by
f latten(η) = ∑

μ∈Disc(X) η(μ)μ.

The second operation, which we call lifting, takes a relation R between two
domains X and Y and “lifts” it to a relation between discrete measures over X and
Y. Informally speaking, a measure μ1 on X is related to a measure μ2 on Y if μ2

can be obtained by “redistributing” the probabilities masses assigned by μ1, in such
a way that relation R is respected.

Definition 2 The lifting of R, denoted by L(R), is the relation from Disc(X) to
Disc(Y) defined by: μ1 L(R) μ2 iff there exists a weighting function w : X × Y →
R≥0 such that the following hold:

1. For each x ∈ X and y ∈ Y, w(x, y) > 0 implies x R y.
2. For each x ∈ X,

∑
y w(x, y) = μ1(x).

3. For each y ∈ Y,
∑

x w(x, y) = μ2(y).
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Finally, we define our third operation, called expansion. Expansion is defined in
terms of flattening and lifting and is used directly in our new definition of simulation
relations. The expansion operation takes a relation between discrete measures on
two domains X and Y, and returns a relation of the same kind that relates two
measures whenever they can be decomposed into two L(R)-related measures.

Definition 3 Let R be a relation from Disc(X) to Disc(Y). The expansion of R,
denoted by E(R), is a relation from Disc(X) to Disc(Y). It is defined by: μ1 E(R) μ2

iff there exist two discrete measures η1 and η2 on Disc(X) and Disc(Y), respectively,
such that the following hold:

1. μ1 = f latten(η1).
2. μ2 = f latten(η2).
3. η1 L(R) η2.

Informally speaking, we enlarge R by adding pairs of measures that can be
“decomposed” into weighted sums of measures, in such a way that the weights
can be “redistributed” in an R-respecting manner. This is used in our definition of
a simulation relation, in Section 3.5. Specific examples for the usage of expansion
appear in Section 3.6 and in Section 7.3 where we discuss the verification of the step
condition of the simulation relation in our OT proof.

2.4 Probabilistic I/O automata

Here we review the definitions of probabilistic I/O automata, their executions and
traces, and their composition and hiding operations.

Definition 4 A Probabilistic I/O Automaton (PIOA) P is a tuple (Q, q̄, I, O,

H, D), where:

– Q is a countable set of states, with start state q̄ ∈ Q.
– I, O and H are countable, pairwise disjoint sets of actions, referred to as input,

output and internal actions, respectively. The set A := I ∪ O ∪ H is called the
action alphabet of P . The set of external actions of P is E := I ∪ O, and the set
of locally controlled actions is L := O ∪ H.

– D ⊆ Q × (I ∪ O ∪ H) × Disc(Q) is a transition relation, where Disc(Q) is the set
of discrete probability measures on Q.

An action a is enabled in a state q if (q, a, μ) ∈ D for some μ. If I = ∅, then P is
closed. We assume that P satisfies the following properties:

– Input enabling: For every q ∈ Q and a ∈ I, a is enabled in q.
– Transition determinism: For every q ∈ Q and a ∈ A, there is at most one μ ∈

Disc(Q) such that (q, a, μ) ∈ D.

Definition 5 An execution fragment of P is a finite or infinite sequence α =
q0 a1 q1 a2 . . . of alternating states and actions, such that:

1. If α is finite, it ends with a state.
2. For every non-final i, there is a transition (qi, ai+1, μ) ∈ D with qi+1 ∈ supp(μ).
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We write f state(α) for q0, and if α is finite, we write lstate(α) for its last state. We
use Frags(P) (resp., Frags∗(P)) to denote the set of all (resp., all finite) execution
fragments of P . An execution of P is an execution fragment α with f state(α) = q̄.
Execs(P) (resp., Execs∗(P)) denotes the set of all (resp., all finite) executions of P .
The trace of an execution fragment α, written trace(α), is the restriction of α to the
external actions of P . We say that β is a trace of P if there is α ∈ Execs(P) with
trace(α) = β.

A PIOA, together with a scheduler that chooses the sequence of actions to
be performed, gives rise to a unique probabilistic execution, and thereby, to a
unique probability distribution on traces. For a formal definition of probabilistic
execution we refer the reader to our paper on the basic framework for task-PIOAs
(Canetti et al. 2006a, b). In that paper, we show that a scheduler ρ and a finite
execution fragment α induce a measure on the σ -field generated by cones of
execution fragments, where the cone Cα′ of a finite execution fragment α′ is the set
of execution fragments that have α′ as a prefix. The construction of the σ -field is
standard and is presented in that paper. It is also shown that the measure generated
by ρ and α is a probability measure.

Traditionally, the schedulers used for PIOAs have been perfect-information
schedulers, which can use full knowledge about the past execution in selecting the
next transition. Next, we define composition of PIOAs:

Definition 6 Two PIOAs Pi = (Qi, q̄i, Ii, Oi, Hi, Di), i ∈ {1, 2}, are said to be com-
patible if Ai ∩ Hj = Oi ∩ O j = ∅ whenever i �= j. That is, the two automata do
not share any output actions, and no internal action of either is an action of the
other. In that case, we define their composition P1‖P2 to be the PIOA (Q1 ×
Q2, (q̄1, q̄2), (I1 ∪ I2) \ (O1 ∪ O2), O1 ∪ O2, H1 ∪ H2, D), where D is the set of
triples ((q1, q2), a, μ1 × μ2) such that:

1. a is enabled in some qi.
2. For i ∈ {1, 2}, if a ∈ Ai then (qi, a, μi) ∈ Di, and otherwise μi = δ(qi).

Our definition of composition can be generalized to any finite number of PIOAs.
Note that if an input of one PIOA is an output of another, then it becomes an output
action of the composed automaton. A hiding operator is also available for PIOAs:

Definition 7 Given P = (Q, q̄, I, O, H, D) and S ⊆ O, hide(P, S) is defined to be
(Q, q̄, I, O \ S, H ∪ S, D).

2.5 Examples

In this subsection, we give four examples of PIOAs, all derived from our oblivious
transfer (OT) case study. In order to give a sense of how the examples relate to our
analysis of OT, we first describe our case study briefly.

2.5.1 OT case study

We show that the OT protocol of Even et al. (1985), Goldreich et al. (1987) satisfies
its correctness and security requirements by using the formal framework presented
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in this paper (Canetti et al. 2005, 2006c). An outline of this proof is presented in
Section 7. We assume honest-but-curious adversaries, that follow protocol instruc-
tions even if they are corrupted. The proof shows that no computationally-bounded
environment can distinguish whether it is interacting with the protocol running in the
presence of a computationally-bounded adversary, or with an “ideal” system.This
indistinguishability notion is captured by the relation ≤neg,pt.

In the OT problem, two input bits (x(0), x(1)) are submitted to a Transmitter and
a single input bit i to a Receiver. After engaging in an OT protocol, Receiver should
output only the single bit x(i). Receiver should not learn the other bit x(1 − i), and
Transmitter should not learn i; moreover, an eavesdropping adversary should not, by
observing the protocol messages, be able to learn anything about the inputs or the
progress of the protocol.

An informal description of the protocol is as follows. First Transmitter selects
a random trap-door permutation f , together with its inverse f −1, and sends f to
Receiver. Then, using its input bit i and two randomly selected elements (y(0), y(1)),
Receiver computes the pair (z(0), z(1)) = ( f 1−i(y(0)), f i(y(1))), and sends it to
Transmitter. Finally, using its input bits (x(0), x(1)), Transmitter computes the pair
(b(0), b(1)) = (x(0) ⊕ B( f −1(z(0))), x(1) ⊕ B( f −1(z(1)))) and sends it to Receiver,
who can now recover x(i) as B(y(i)) ⊕ b(i).

The following examples are automata that we use in formalizing the OT require-
ments and the protocol itself.

2.5.2 Random sources

Our first example is a random source PIOA Src(D, μ), which simply chooses and
outputs a single value, obtained from a given probability measure μ over a given
domain D. We use such random sources to encapsulate random choices made by the
two parties in our OT protocol model.

Src(D, μ) has no input actions. It has one internal action, chooserand, by which
it chooses a random number, and a set of output actions, {rand(d)|d ∈ D}, by which
it outputs a chosen value. We assume that Src(D, μ) performs chooserand exactly
once, but may output the chosen value any number of times.

Figure 1 contains a specification of a random source PIOA Src(D, μ) using
precondition-effects (guarded command) notation. We first present the PIOA’s
signature, that is, its list of actions, classified as input, output, or internal. We next
describe the state, in terms of state variables; in this case, we have only one state
variable, chosenval, representing the chosen random value. This variable is initialized
to the special value ⊥, which indicates that no value has yet been chosen. Finally, we
present transition definitions, each of which describes the transitions associated with a
particular kind of action. Internal action chooserand is enabled to occur in any state
in which chosenval = ⊥; its effect is to set chosenval to a value chosen randomly,
according to measure μ. Output action rand(d) is enabled when d = chosenval; it
has no effect on the state, which means that it may happen any number of times.1

1In Canetti et al. (2006c), the rand(d) transition definition has an additional precondition, saying
that chosenval �= ⊥. This is unnecessary, however, because the rand(d) action itself is defined, in
the signature, only if d ∈ D. We have eliminated other such redundant conditions elsewhere in this
paper.
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Fig. 1 Code for random
source PIOA Src(D, μ)

The Src(D, μ) PIOA makes probabilistic choices, in the effects of its chooserand
transitions. Nondeterminism appears in the form of uncertainty as to how many times
the rand output is performed.

2.5.3 Oblivious transfer functionality

Our next example is a PIOA Funct, which we use in Sections 6.1 and 6.4 to
specify functional correctness and security requirements for oblivious transfer. The
specification, and the protocol, distinguish two endpoints of the protocol, which we
call the Transmitter end and the Receiver end; these correspond to the two parties
that engage in the protocol.

Code for Funct is provided in Fig. 2. Funct has two kinds of inputs, one at the
Transmitter end and one at the Receiver end. The Transmitter inputs are of the form
in(x)Trans, where x is a pair of input bits; for technical convenience, we have written
this pair as a mapping from the index set {0, 1} to the set of possible bit values {0, 1}.
Input in(x)Trans represents the arrival of the bit pair x at the Transmitter endpoint,

Fig. 2 Code for oblivious
transfer functionality Funct
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from the external environment. The Receiver inputs are of the form in(i)Rec, where i
is simply a bit, in {0, 1}.

Funct also has one kind of output, out(w)Rec, which occurs at the Receiver
endpoint, where parameter w is simply a bit. This output w should be one of the two
Transmitter input bits, either x(0) or x(1), depending on the value of the Receiver
input i: if inputs in(x)Trans and in(i)Rec occur, the output bit w should be x(i). In other
words, functional correctness for OT means that the Receiver end of the protocol
should output just one of the Transmitter’s input bits—the one specified by the
Receiver’s input.

The state of Funct consists of values for two variables, xval and ival, which simply
keep track of the two kinds of inputs. Each kind of input should normally occur only
once, so the PIOA ignores any subsequent input arrivals of either kind. As in the Src
PIOA, outputs may occur any number of times. Output out(w)Rec is enabled if both
the Transmitter input x and the Receiver input i have already occurred, and w is the
correct bit, calculated by applying the mapping x to the index i: w = xval(ival).

Funct makes no probabilistic choices. Nondeterminism appears in the order in
which the inputs occur, and in how many times the various kinds of inputs and
outputs occur. Our definition differs slightly from the one in Canetti et al. (2002),
which imposes more sequential behavior: There, the Receiver input is considered
only if the Transmitter input occurred first. Here, nondeterminism provides a natural
way to express the notion that the two inputs may occur in either order, and the
output is produced only after both inputs have been received.

2.5.4 Oblivious transfer protocol parties

Finally, we present two PIOAs representing the Transmitter and Receiver parties of
the OT protocol. They assume:

– D, a fixed domain of values, and
– Tdpp, a set of trap-door permutation pairs for D, and Tdp, the corresponding set

of trap-door permutations.
– B, a hard-core predicate for Tdpp.

A trap-door permutation of D is a permutation that is easy to compute but hard to
invert without knowledge of special “trap-door” information (see Goldreich 2001
for the standard definition). We use Tdp to denote the set of trap-door permutations
for D, and Tdpp to denote the set of pairs p = ( f, f −1), where f ∈ Tdp; that is,
Tdpp is the set of pairs consisting of a trap-door permutation and its inverse. For
p ∈ Tdpp, we sometimes write p.f unct and p.inv to indicate f and f −1, respectively.
A hard-core predicate B for the trap-door permutation f is a mapping from D to
{0, 1}, which satisfies the following condition: when B is applied to f −1(z), where z is
randomly chosen, the result is indistinguishable (except with negligible probability)
from a uniformly chosen random value. Again, see Goldreich (2001) for the standard
definition. Also see Section 5 for a reformulation of this definition in our style, which
is useful in our OT proof.

Informally speaking, the protocol works as follows. The Transmitter uses a
random source to choose a random trap-door permutation pair p = ( f, f −1). Then,
it sends a round 1 message to the Receiver, containing just the function f , but not the
inverse f −1. The Receiver chooses a random pair y of elements of D, again using a
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random source. After it has chosen y, and has received its own input i and the round
1 message, the Receiver computes a new pair z of elements of D; this computation
involves applying f to the element of the pair with index i, but leaving the other
element unchanged. That is, z = ( f (y(0)), y(1)) if x = 0, and z = (y(0), f (y(1)) if
x = 1. Then, the Receiver sends a round 2 message to the Transmitter, containing z.

Once the Transmitter has received its own input x and the round 2 message, it
computes a pair b of bits. In doing this, it treats the two indices of the pairs identically:
for each i ∈ {0, 1}, it computes B( f −1(z(i))) and exclusive-or’s (⊕) the result with x(i).
Then, it sends a round 3 message to the Receiver, containing the pair b . Finally, once
the Receiver has received the round 3 message, it extracts the desired bit w by a
simple calculation, wval := b(ival) ⊕ B(yval(ival)), and outputs w.

We model this protocol using two separate PIOAs, one for the Transmitter and
one for the Receiver. The code for the Transmitter, Trans(D, Tdp), appears in Fig. 3.

Fig. 3 Code for the Transmitter, Trans(D, Tdp)



Discrete Event Dyn Syst

The input actions for Trans are the x inputs from the external environment, the
rand inputs from a random source of trap-door permutation pairs, and the receive
actions for round 2 messages. The output actions are the send actions for round
1 and 3 messages. The only internal action is the f ix-bval action, by which the
Transmitter computes the b pair. The state records the input pair (in xval), the trap-
door permutation pair (in pval), and the z and b pairs (in zval and bval, respectively).

An in(x)Trans transition simply records the input x in xval, if it is the first time
such an input has arrived. Likewise, a rand(p)pval transition records the trap-door
permutation pair p, assumed to be arriving from a random source, in pval. A
send(1, f ) transition sends a round 1 message containing p.f unct; this may happen

Fig. 4 Code for the Receiver, Rec(D, Tdp)
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any number of times. A receive(2, z) transition records a z pair that arrives in a round
2 message, in zval. A f ix-bval transition computes the pair b and stores the result
in bval. This calculation is the same for both indices i, and involves applying p.inv

to z(i), applying the hard-core predicate B, and xor’ing the result with the input x(i).
Finally, a send(3, b) transition sends a round 3 message containing the calculated b .

The Trans PIOA makes no probabilistic choices on its own, though it receives
the results of such choices from an external random source, by means of rand(p)pval

actions. On the other hand, Trans does exhibit some nondeterminism: for example,
it may send a round 1 message at any time after receiving p, before or after receiving
the x input. In contrast, in traditional presentations of such protocols, the inputs
are usually assumed to arrive at the start, before the protocol computations and
communications begin; however, this restriction is not essential. Trans may also send
its messages any number of times.

The code for the Receiver, Rec(D, Tdp) appears in Fig. 4. The input actions are
the i inputs from the external environment, the rand inputs from a random source of
D pairs, and the receive actions for round 1 and 3 messages. The outputs are the send
actions for round 2 messages, and the final out(w) outputs. The only internal action
is the f ix-zval action, by which the Receiver computes the z pair from the y pair.
The state records the input (in ival), the received trap-door function (in fval), the y
and z pairs (in yval and zval), and the output (in wval).

An in(i)Rec transition records the input i in ival, and a rand(y)yval records the
random input y in yval. A receive(1, f ) transition records the trap-door permutation
f that arrives in a round 1 message, in fval. A f ix-zval transition computes the
z pair from the y pair; this calculation involves applying f to y(i) but leaving
y(1 − i) unchanged. A send(2, z) transition sends a round 2 message. A receive(3, b)

transition receive a b value that arrives in a round 2 message, and uses it to calculate
the output w value, which is stored in wval. Finally, an out(w) transition outputs
the computed w value. The Receiver PIOA makes no probabilistic choices, but does
make nondeterministic choices with respect to how many times it sends its messages.

3 Task-PIOAs

PIOAs, as presented in Section 2, may exhibit scheduling nondeterminism. In order
to state and prove probabilistic properties, we must resolve all such nondeterminism.
However, the perfect-information schedulers that have previously been used to
resolve nondeterministic choices in PIOAs are too powerful for computational
analysis of security protocols; for example, a scheduler’s choice of the next action
may depend on information hidden in the states of honest protocol participants, and
thus may reveal information about the secrets to corrupted participants. To avoid
this problem, we resolve nondeterminism using a more restrictive, non-adaptive task
schedule mechanism.

In this section, we define task-PIOAs, which are simply PIOAs plus a classification
of actions into tasks. We use tasks as units of scheduling: we define task schedules, and
describe how a task schedule resolves nondeterministic choices, thereby generating
a probabilistic execution. Also in this section, we define a simple perfect implementa-
tion relationship between task-PIOAs, and a type of probabilistic simulation relation
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for task-PIOAs that can be used to prove that one task-PIOA perfectly implements
another. We illustrate our definitions with examples from the OT case study. Full
definitions, results, and proofs for task-PIOAs appear in Canetti et al. (2006a, b).

3.1 Basic definitions

Definition 8 A task-PIOA T is a pair (P, R), where P = (Q, q̄, I, O, H, D) is a
PIOA (satisfying the transition determinism and input enabling properties), and
R is an equivalence relation on the locally-controlled actions L = O ∪ H. The
equivalence classes of R are called tasks, and we say that a task T is enabled in state
q if some a ∈ T is enabled in q. Unless otherwise stated, we will use terminology
inherited from the PIOA setting.

A task is typically a set of related actions that perform the “same kind of activity”
in a protocol. For example, in a protocol with several rounds of message exchange, all
the actions that send a round 1 message (with possibly different message contents)
would constitute a task. Similarly, if a protocol involves a step in which a random
choice is made from a particular domain, we could group all the actions that make a
random choice from that domain (yielding possibly different values) into a task. In
the security context, tasks allow us to formalize a notion of a scheduler that cannot
use sensitive information hidden in the states of components. Specific examples of
tasks are given in Section 3.3, where we show how we group the actions of the PIOAs
presented in Section 2.5 to obtain task-PIOAs.

We require that every task-PIOA T satisfies the following axiom:

– Action determinism: For every state q ∈ Q and every task T ∈ R, there is at most
one action a ∈ T that is enabled in q.

By virtue of this axiom and the transition determinism for PIOAs, tasks can be
used to resolve all nondeterminism. That is, from a given state, specifying a task
is sufficient to determine the next action, and therefore (by transition determinism),
the next transition.

Definition 9 A task schedule for T = (P, R) is a finite or infinite sequence ρ =
T1 T2 . . . of tasks in R.

Thus, a task schedule is non-adaptive, in the sense that it does not depend on
dynamic information generated during execution. Because of the action-determinism
assumption for task-PIOAs and the transition-determinism assumption for PIOAs,
ρ can be used to generate a unique probabilistic execution, and hence, a unique trace
distribution, of P . One can do this by repeatedly scheduling tasks, each of which
determines at most one transition of P . This is captured formally as an “apply”
operation: given a task sequence T1 T2 . . . and an execution fragment α,

1. If T1 is enabled in lstate(α), then, due to action- and transition-determinism,
there is a unique transition from lstate(α) with an action label in T1, and the
result of “applying” T1 to α is α extended with that unique transition;

2. If T1 is not enabled in lstate(α), then the result of “applying” T1 to α is α itself;
3. Repeat with remaining Ti’s.
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This construction can be generalized from a single execution fragment α to a discrete
probability measure ε on execution fragments.2 See Canetti et al. (2006a, b) for
details.

In the special case where ε is the Dirac measure on the start state (i.e., δ(q̄)), the
result of applying any task schedule ρ to δ(q̄) is said to be a probabilistic execution of
T . This can be viewed as a probabilistic tree generated by running P from its start
state q̄ and resolving nondeterministic choices according to ρ. The trace distribution
induced by ρ, tdist(ρ), is the image measure of apply(δ(q̄), ρ) under the measurable
function trace (see Definition 5). A trace distribution of T is tdist(ρ) for any ρ, We
extend the tdist() notation to discrete measures on executions of T . Given a discrete
probability measure ε on executions, we define the trace distribution of ε, denoted
tdist(ε), to be the image measure of ε under trace. Finally, we define tdists(T ), the
set of trace distributions of T , to be {tdist(ρ) | ρ is a task schedule for T }.

Note that, although our task schedules are non-adaptive, they are arbitrary, rather
than being determined by a fixed policy as in Canetti (2001), Pfitzmann and Waidner
(2001), Backes et al. (2004b).

3.1.1 Local schedulers

In Canetti et al. (2006a, b), we introduced a second mechanism for resolving
nondeterminism, in addition to task schedules: local schedulers. Local schedulers
resolve nondeterminism within system components, based on local information only.
These allow us to remove the action determinism assumption, thus adding flexibility
in automaton descriptions.

3.1.2 Adversarial scheduling

The standard scheduling mechanism in the security protocol community is an ad-
versarial scheduler—a resource-bounded algorithmic entity that determines the next
move adaptively, based on its own view of the computation so far. Our non-adaptive
task schedules do not directly capture the adaptivity of adversarial schedulers.
However, we model them in a different way, by separating scheduling concerns into
two parts:

– We model an adaptive adversarial scheduler as a system component, such as
a message delivery service that can eavesdrop on the communications and
control the order of message delivery based on what it hears. Such a service has
access to partial information about the execution: it sees information that other
components communicate to it during execution, but not “secret information”
that remain within these components’ states. The adversary’s choices may be
essential to the analysis of the protocol.

– On the other hand, we resolve basic scheduling choices by a task sched-
ule sequence, chosen nondeterministically in advance. These choices are less

2The notion of a discrete probability measure on execution fragments is explained informally in
Section 2.4.
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important; for example, in the OT protocol, both the Transmitter and Receiver
make random choices, but it is inconsequential which does so first.

3.2 Composition and hiding operations

Task-PIOAs compose easily to yield another task-PIOA.

Definition 10 Given compatible task-PIOAs T1 = (P1, R1) and T2 = (P2, R2), we
define their composition T1‖T2 to be the task-PIOA (P1‖P2, R1 ∪ R2), that is, the
composition of the underlying PIOAs combined with the union of the sets of tasks of
the two component task-PIOAs.

It is easy to check that action determinism is preserved under composition of
PIOAs. Moreover, compatibility requires disjoint sets of locally controlled actions,
therefore R1 ∪ R2 is an equivalence relation. This guarantees the composition T1‖T2

is a well-defined task-PIOA.
A composite task-PIOA may be scheduled using the same task schedule mecha-

nism as for the component task-PIOAs. The difference is simply that the schedules of
a composition include tasks of both component task-PIOAs, interleaved in arbitrary
order. The hiding operation for task-PIOAs hides all specified output actions:

Definition 11 Given task-PIOA T = (P, R) and a set S ⊆ O of output actions,
hide(T , S) is defined to be (hide(P, S), R).

3.3 Examples

When defining a task-PIOA based on a given PIOA, one may have options in
defining the tasks, in particular, with respect to the granularity of the defined tasks.
At one extreme, we might classify each action in a task by itself; at the other, we could
make tasks as large as possible, subject to the action determinism requirement. We
generally follow an intermediate strategy of grouping together actions that appear to
represent the “same kind of activity”. We illustrate this in the following examples.

3.3.1 Random sources

To convert the PIOA Src(D, μ) defined in Section 2.5.2 into a task-PIOA, we define
two tasks: one consisting of the single internal action chooserand, and the other
consisting of all the output actions, {rand(d) | d ∈ D}. Thus, a task schedule decides
when to attempt to output a random element, but does not decide which element
d is to be output. The choice of which d to output (if the rand task is enabled) is
determined, not by the task, but by the value of the chosenval state variable. The
task schedule does not need to “know” the value of d in order to schedule the rand
task. Moreover, since our task schedules are non-adaptive, the task schedule cannot
choose when to attempt to output the random element based on the particular value
of d that resides in chosenval, or on any other dynamically-determined information.
This means that our task schedules cannot leak dynamically-determined “secrets”,
such as the value of d, as traditional perfect-information schedulers can.
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3.3.2 Functionality

To convert Funct defined in Section 2.5.3 into a task-PIOA, we group the output
actions into a single task, {out(w)Rec | w ∈ {0, 1}}. The idea is that the task schedule
should decide when to try to output, but should not decide which bit w to output;
moreover, its choice of when to try to output is not based on any dynamically-
determined information such as the values of x, i, or w.

3.3.3 Protocol parties

For Trans(D, Tdp), we define three tasks, corresponding to the three kinds of
activities it performs, that is, sending the round 1 message, computing b, and sending
the round 3 message:

– {send(1, f )Trans | f ∈ Tdp}.
– { f ix-bvalTrans}.
– {send(3, b)Trans | b ∈ ({0, 1} → {0, 1})}.
Likewise, for Rec(D, Tdp), we define three tasks, for sending the round 2 message,
computing z, and outputting w:

– {send(2, z)Rec | z ∈ ({0, 1} → D)}.
– { f ix-zvalRec}.
– {out(w)Rec} | w ∈ {0, 1}}.

3.4 Perfect implementation relation

An implementation relation between two automata expresses the idea that every
behavior of one of the automata, in any environment, is also a behavior of the second,
in the same environment. This notion makes sense only if the two automata interact
with their environment via the same interface:

Definition 12 Two task-PIOAs T1 and T2 are comparable if I1 = I2 and O1 = O2,
that is, if they have the same input actions and the same output actions.

We define the notion of an environment for a task-PIOA:

Definition 13 If T and E are task-PIOAs, then E is said to be an environment for T
if T and E are compatible and T ‖E is closed.

Thus, an environment for T is an automaton that may be composed with T and
that provides all of T ’s inputs.

Definition 14 If T1 and T2 are comparable task-PIOAs, then we say that T1 perfectly
implements T2, written as T1 ≤0 T2, provided that tdists(T1‖E) ⊆ tdists(T2‖E) for
every task-PIOA E that is an environment for both T1 and T2. Equivalently, given any
task schedule ρ1 for T1‖E , there is a task schedule ρ2 for T2‖E such that tdist(ρ1) =
tdist(ρ2); that is, the two schedules yield the same trace distribution.
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The relation ≤0 is called perfect implementation because it specifies exact equality
of corresponding trace distributions (see the explanation that follows Definition 9).
Later, in Sections 4.4 and 4.5, we will define approximate implementation relations.

Transitivity of ≤0 is easy to see. A compositionality theorem for ≤0 is proved
in Canetti et al. (2006a, b):

Theorem 1 Suppose that T1 and T2 are comparable task-PIOAs such that T1 ≤0 T2,
and T3 is a task-PIOA that is compatible with each of T1 and T2. Then T1‖T3 ≤0 T2‖T3.

We also have a theorem for hiding:

Theorem 2 Suppose that T1 and T2 are comparable task-PIOAs such that T1 ≤0 T2,
Suppose that S is a set of output actions of both T1 and T2. Then hide(T1,S) ≤0

hide(T2,S).

3.5 Simulation relations

Simulation relations provide sufficient conditions for proving that one automaton
implements another, according to some precise notion of implementation. Typically,
simulation relations reduce the proof obligations for implementation into conditions
relating the start states and conditions relating individual steps. Checking these
individual conditions is generally much easier, and more systematic, than reasoning
about entire executions.

In Canetti et al. (2006a, b), we defined a new type of probabilistic simulation
relation for task-PIOAs, extending the ones presented by Segala for PIOAs in Segala
(1995), Segala and Lynch (1995), Lynch et al. (2007). We proved that the new simu-
lation relations are sound for proving perfect implementation (≤0). Here, we provide
an overview. Our definition uses the notion of expansion defined in Section 2.2.

We need two other auxiliary definitions. The first expresses consistency between a
probability measure over finite executions and a task schedule: informally speaking,
a measure ε over finite executions is said to be consistent with a task schedule ρ if ε

assigns non-zero probability only to those executions that are possible under the task
schedule ρ. When matching the behaviors of two automata in a simulation relation,
we use this condition to reduce proof obligations.

Definition 15 Let T = (P, R) be a closed task-PIOA, ε a discrete probability mea-
sure over finite executions of P , and ρ a finite task schedule for T . Then we say that
ε is consistent with ρ provided that supp(ε) ⊆ supp(apply(δ(q̄), ρ)).

For the second definition, suppose we have a mapping c that, given a finite task
schedule ρ and a task T of a task-PIOA T1, yields a task schedule of another task-
PIOA T2. The idea is that c(ρ, T) describes how T2 matches task T, in situations
where it has already matched the task schedule ρ. Using c, we define a new function
f ull(c), which is a mapping operation over a given task schedule. Given a task
schedule ρ, f ull(c) iterates c on all the elements of ρ, thus producing a “full” task
schedule of T2 that matches all of ρ.
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Definition 16 Let T1 = (P1, R1) and T2 = (P2, R2) be two task-PIOAs, and let c :
(R1

∗ × R1) → R2
∗ be a function that assigns a finite task schedule of T2 to each finite

task schedule of T1 and task of T1. Define f ull(c) : R1
∗ → R2

∗ recursively as follows:
f ull(c)(λ) := λ, and f ull(c)(ρT) := (f ull(c)(ρ)) ◦ (c(ρ, T)) [that is, the concatenation
of f ull(c)(ρ) and c(ρ, T)].

We can now define our probabilistic simulation relations for task-PIOAs. Note
that our simulation relations are relations on probability measures on executions,
rather than relations on states. We relate measures because of certain cases that
arise in our OT proof, namely, cases where related random choices are made at
different points during execution in the two related automata. See Section 3.6 for an
example. Moreover, since we use oblivious task-based scheduling (instead of perfect-
information scheduling), a typical implementation proof involves the construction
of matching task schedules that preserve trace distributions. Therefore, it is more
natural to reason with measures on executions, rather than measures on states.

Definition 17 Let T1 = (P1, R1) and T2 = (P2, R2) be two comparable closed task-
PIOAs. Let R be a relation from Disc(Execs∗(P1)) to Disc(Execs∗(P2)), such that, if
ε1 R ε2, then tdist(ε1) = tdist(ε2). Then R is a simulation from T1 to T2 if there exists
c : (R1

∗ × R1) → R2
∗ such that the following properties hold:

1. Start condition: δ(q̄1) R δ(q̄2).
2. Step condition: If ε1 R ε2, ρ ∈ R1

∗, ε1 is consistent with ρ, ε2 is consistent
with f ull(c)(ρ), and T ∈ R1, then ε′

1 E(R) ε′
2 where ε′

1 = apply(ε1, T) and ε′
2 =

apply(ε2, c(ρ, T)).

Thus, the relationship between T1 and T2 is formulated using a relation R between
measures ε1 and ε2 on executions of the two automata. We require a priori that
R relate ε1 and ε2 only if they “look the same” when viewed externally, that is, if
they yield the same probability measure on traces. The rest of the definition asserts
a simple correspondence between initial states, and a step condition that is based
on a correspondence rule c for task schedules. The following theorem says that, for
closed task-PIOAs, the existence of a simulation relation implies inclusion of sets
of trace distributions. The main soundness result for (not-necessarily-closed) task-
PIOAs then follows as a corollary, showing that the existence of simulation relations
for all environments implies perfect implementation.

Theorem 3 Let T1 and T2 be two comparable closed task-PIOAs. If there is a
simulation relation R from T1 to T2, then tdists(T1) ⊆ tdists(T2).

Corollary 1 Let T1 and T2 be two comparable task-PIOAs. Suppose that, for every
environment E for both T1 and T2, there is a simulation relation R from T1 | E to T2 | E .
Then T1 ≤0 T2.
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Finally, the following corollary captures a special case of the simulation relation
Definition 17. Any relation that satisfies the hypotheses of Corollary 2 is guaranteed
to be a simulation relation. This is used directly in proving the correctness of the OT
protocol.

Corollary 2 Let T1 = (P1, R1) and T2 = (P2, R2) be two comparable closed task-
PIOAs. Let R be a relation from Disc(Execs∗(P1)) to Disc(Execs∗(P2)), satisfying
the condition: if ε1 R ε2 then tdist(ε1) = tdist(ε2). Let c : (R1

∗ × R1) → R2
∗. Suppose

further that the following conditions hold:

1. Start condition: δ(q̄1) R δ(q̄2).
2. Step condition: If ε1 R ε2, ρ1 ∈ R1

∗, ε1 is consistent with ρ1, ε2 is consistent with
f ull(c)(ρ1), and T ∈ R1, then there exist

– A probability measure p on a countable index set I,
– Probability measures ε′

1 j, j ∈ I, on finite executions of P1, and
– Probability measures ε′

2 j, j ∈ I, on finite executions of P2,

such that:

– For each j ∈ I, ε′
1 j R ε′

2 j,
–

∑
j∈I p( j)(ε′

1 j) = apply(ε1, T), and
–

∑
j∈I p( j)(ε′

2 j) = apply(ε2, c(ρ1, T)).

Then R is a simulation relation from T1 to T2 using c.

3.6 Oblivious transfer example

We refer the reader to Canetti et al. (2006a, b) for a small example, which is
derived from our first version of the OT case study (Canetti et al. 2006c), in the
case where only the Transmitter is corrupted. (It does not appear in the more recent
version (Canetti et al. 2005), since that includes only the case where the Receiver is
corrupted.) This example illustrates the use of a simulation relation that corresponds
probability measures on executions of two task-PIOAs, rather than just individual
executions.3

Briefly, the example consists of two closed task-PIOAs, Trap-door and Rand.
Rand performs two steps, first choosing a number z uniformly at random from a
fixed finite set of integers, and then outputting it; thus, it is essentially a special case
of our random source automaton. Trap-door performs three steps, first choosing a
random number y, then applying a known permutation f to y, obtaining z, and finally
outputting z.

We use a simulation relation R to show that every trace distribution of Trap-
door is also a trace distribution of Rand. In defining R, it appears most natural to
correspond the steps that define z in both automata; that is, the internal step of Trap-
door that computes z should correspond to the internal step of Rand that chooses z

3The TR version (Canetti et al. 2006b) repairs a small bug in the mapping definition in Canetti et al.
(2006a).
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randomly. This means that the internal step of Trap-door that chooses y randomly
should correspond to the empty sequence of steps of Rand. To express this action
correspondence in terms of simulation relations, we had to correspond the point
between the random choice of y and the computation of z in Trap-door to the initial
state of Rand. Essentially, a probability distribution describing possible values of y,
in Trap-door, is related to a single state of Rand. Our new simulation relation notion
is flexible enough to handle this type of correspondence; the earlier notions, in Segala
(1995), Segala and Lynch (1995), Lynch et al. (2007), were not.

4 Time-bounded task-PIOAs

A key assumption in computational cryptography is that certain problems cannot be
solved with non-negligible probability by entities with bounded computational re-
sources. This assumption is used to prove that protocols are secure against resource-
bounded adversarial parties. Thus, any framework that can express such proofs needs
mechanisms for expressing computational restrictions. As defined so far, task-PIOAs
do not have any such mechanisms; in this section, we describe additions to task-
PIOAs in order to describe computational resource bounds.

We consider two different kinds of restrictions: (1) static bounds on the size of
the representation of a task-PIOA, and on what it can do in a single step, and (2)
dynamic bounds on the number of steps that the task-PIOA performs. In nearly all
work on computational cryptography, these static and dynamic bounds are combined
into a single overall bound. For instance, interactive Turing machines representing
protocol components are typically assumed to be polynomial-time-bounded, which
means that the total amount of work they do, during the entire protocol lifetime,
is bounded by a polynomial. Since each individual ITM step is assumed to have tiny
granularity, accessing a small number of tape squares and making small local changes,
the significant restriction here is on the total number of steps an ITM performs.
However, task-PIOAs are more abstract than ITMs, and may perform steps with
larger granularity. This means that it is necessary to bound the amount of work that
can be done in each step, as well as the number of steps. We believe it is meaningful to
consider these two bounds separately, since they express different sorts of limitations.
For example, in modeling long-lived security protocols (Cachin and Maurer 1997;
Müller-Quade and Unruh 2007), it seems clear that limitations on what a machine can
do in one step, or in a bounded amount of time, are quite different from limitations
on the total lifetime of the machine.

To capture (1), the restrictions on representation and individual steps, we define
the notion of a time-bounded task-PIOA. Such a machine has bounded-length bit-
string representations of all of its constituents, and imposes time bounds on Turing
machines that manipulate these representations, for example, decoding them and
computing the next action and next state. To capture (2), the restrictions on the
number of steps, we simply consider bounded-length schedules.

Basic bound definitions appear in Section 4.1, followed by extensions in Section 4.2
to capture generic notions such as “polynomial time”. In Sections 4.4 and 4.5, we
present new approximate implementation notions that take the bounds into account.
Finally, our definition of simulation relations is revised, so that it can be used to prove
approximate simulation. We omit proofs—the details appear in Canetti et al. (2005).
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4.1 Basic definitions

Now we define time-bounded task-PIOAs. We assume a standard, globally known
bit-string representation for actions and tasks of task-PIOAs.

Definition 18 A task-PIOA T is said to be p-time-bounded, where p ∈ R≥0,
provided:

1. Automaton parts: Every state and transition has a bit-string representation, and
the length of the representation of every automaton part is at most p.

2. Decoding: There is a deterministic Turing machine that decides whether a given
representation of a candidate automaton part is indeed such an automaton part,
and this machine runs in time at most p. And similarly for deciding whether an
action is in a task, or whether two actions are in the same task.

3. Determining the next action: There is a deterministic Turing machine that, given
a state and a task of T , determines the next action (or indicates “no action”), in
time at most p.

4. Determining the next state: There is a probabilistic Turing machine that, given a
state and an action of T , determines the next state of T , in time at most p.

Furthermore, each of these Turing machines can be described using a bit string of
length at most p, according to some standard encoding of Turing machines.

Composing two compatible time-bounded task-PIOAs yields another time-
bounded task-PIOA with a bound that is linear in the sum of the original bounds.

Lemma 1 There exists a universal constant ccomp such that the following holds.
Suppose T1 is a p1-time-bounded task-PIOA and T2 is a p2-time-bounded task-PIOA,
where p1, p2 ≥ 1. Then T1‖T2 is a ccomp(p1 + p2)-time-bounded task-PIOA.

Proof By a detailed analysis of Turing machine algorithms to carry out the various
computations. See Canetti et al. (2005). ��

Similarly, hiding changes the bound by a linear in the time needed to recognize
the hidden actions:

Definition 19 Suppose S is a set of actions of a time-bounded task-PIOA and
p ∈ R≥0. We say that S is p-time recognizable if there is a probabilistic Turing
machine M that, given the representation of a candidate action a, decides if a ∈ S.
Furthermore, the machine M runs in time less than p and can be described by less
than p bits, according to some standard encoding of Turing machines.

Lemma 2 There exists a universal constant chide such that the following holds. Suppose
T is a p-time-bounded task-PIOA, where p ∈ R≥0, p ≥ 1. Let S be a p′-time recogniz-
able subset of the set of output actions of T . Then hide(T , S) is a chide(p + p′)-time-
bounded task-PIOA.
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We fix the constants ccomp and chide from now on in the paper. Finally, we define
our bound for the number of steps:

Definition 20 Let ρ be a task schedule of task-PIOA T and let q ∈ N be given. Then
ρ is q-bounded if |ρ| ≤ q, that is, if ρ consists of at most q tasks.

4.2 Task-PIOA families

Security protocols are often parameterized by a security parameter k ∈ N, which
represents, for example, the length of a key used for encryption and decryption. For
such a parameterized protocol, typical security claims say that the success probability
of any resource-bounded adversarial entity in breaking the protocol diminishes
quickly as k increases. To express such claims, we define families of task-PIOAs
indexed by a security parameter:

Definition 21 A task-PIOA family T is an indexed set {Tk}k∈N of task-PIOAs.

Time bounds can also be expressed in terms of the security parameter.

Definition 22 Given a function p : N → R≥0, we say that task-PIOA family T is

p-time-bounded if every Tk is p(k)-time-bounded. T is polynomial-time-bounded
provided that T is p-time-bounded for some polynomial p.

Most terminology for individual task-PIOAs can be carried over to task-PIOA
families in a “pointwise” manner. For example, a task-PIOA family is said to be
closed provided that every Tk is closed. Compatibility, parallel composition, and
hiding for task-PIOA families are also defined pointwise. Results for composition
and hiding for time-bounded task-PIOA families carry over easily from those for
individual time-bounded task-PIOAs.

Lemma 3 Suppose T 1 and T 2 are two compatible task-PIOA families, T 1 is p1-
time-bounded, and T 2 is p2-time-bounded, where p1, p2 : N → R≥0. Then T 1‖T 2 is
a ccomp(p1 + p2)-time-bounded task-PIOA family.

Corollary 3 Suppose T 1 and T 2 are two compatible, polynomial-time-bounded task-
PIOA families. Then T 1‖T 2 is a polynomial-time-bounded task-PIOA family.

Lemma 4 Suppose T is a p-time-bounded task-PIOA family, and p′ is a function,
where p, p′ : N → R≥0. Suppose that S = {Sk}k∈N is a family of sets of actions, where
each Sk is a p′(k)-time recognizable set of output actions for Tk. Then hide(T , S) is a
chide(p + p′)-time-bounded task-PIOA family.



Discrete Event Dyn Syst

Corollary 4 Suppose T is a polynomial-time-bounded task-PIOA family. Suppose
that S = {Sk}k∈N is a polynomial-time-recognizable family of sets of actions,4 where
each Sk is set of output actions for Tk. Then hide(T , S) is a polynomial-time-bounded
task-PIOA family.

Finally, we define time bounds for task schedule families.

Definition 23 Given a task-PIOA family T and a function q : N → R≥0, a family ρ

of task schedules for T is said to be q-bounded if ρk is q(k)-bounded for every k.

4.2.1 Another way of expressing resource bounds

In some of the computational security literature, resource bounds for machines are
expressed, not in terms of a security parameter, but in terms of the lengths of machine
inputs (Canetti 2001; Backes et al. 2004b; Goldreich 2001; Küsters 2006). In fact,
since the machines in question are interactive, the inputs that are considered for
this purpose are sometimes allowed to arrive dynamically, during the execution
of the protocol. This way of expressing resource bounds seems to be inspired by
traditional Turing-machine-based complexity theory, wherein a Turing machine’s
resource bounds are expressed as functions of the lengths of its (initial) inputs.
However, in interactive Turing machine settings, and in security settings in particular,
this type of bound on the runtime becomes somewhat problematic. Thus, we express
our bounds here simply in terms of the security parameter k.

4.3 Examples

For the rest of the paper, we fix a family D = {Dk}k∈N of finite domains; for
concreteness, let Dk be the set of bit strings of length k. Also, we fix a family
Tdp = {Tdpk}k∈N of sets of trap-door permutations such that the domain of every

f ∈ Tdpk is Dk, and we define Tdpp = {Tdppk}k∈N to be the corresponding family
of trap-door permutation pairs.

We model the OT protocol using a family of Transmitter automata, Trans =
Trans(Dk, Tdpk)k∈N, and a family of Receiver automata, Rec = Rec(Dk, Tdpk)k∈N,
where Trans and Rec are as defined in Sections 2.5.4 and 3.3.3. It is not hard to see
that both Trans and Rec are polynomial-time-bounded.

4.4 An approximate implementation relation

In Section 3.4, we defined a perfect implementation relation, ≤0, between two task-
PIOAs. This correspondence is called “perfect” because it involves exact equality
of trace distributions of the two task-PIOAs. However, for security protocols, it
is also natural to consider approximate implementation relations. This is because

4That is, there is a polynomial p′ such that, for every k ∈ N, Sk is a p′(k)-time-recognizable set.
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small discrepancies between the behaviors of related systems may result from low-
probability events such as an adversary guessing a secret key.

Here, we define a new approximate implementation relation ≤ε,p,q1,q2 . This
relation allows discrepancies in the correspondence, and also takes into account
time bounds of the various automata involved. We begin by defining the acceptance
probability for closed task-PIOAs that have a special accept output action:

Definition 24 Let T be a closed task-PIOA with a special output action accept and
let ρ be a task schedule for T . Then the acceptance probability for T and ρ is defined
to be:

Paccept(T , ρ) := Pr[β ← tdist(ρ) : β contains accept],
where β ← tdist(ρ) means that β is drawn randomly from tdist(ρ).

That is, Paccept(T , ρ) is the probability that a trace chosen randomly from the trace
distribution generated by ρ contains the accept output action. From now on, we
assume that every environment task-PIOA has accept as an output. The approximate
implementation relation ≤ε,p,q1,q2 is defined as follows:

Definition 25 Let T1 and T2 be comparable task-PIOAs and let ε, p ∈ R≥0 and
q1, q2 ∈ N be given. We define T1 ≤ε,p,q1,q2 T2 as follows: given any p-time-bounded
environment E for both T1 and T2, and any q1-bounded task schedule ρ1 for T1‖E ,
there is a q2-bounded task schedule ρ2 for T2‖E such that |Paccept(T1‖E, ρ1) −
Paccept(T2‖E, ρ2)| ≤ ε.

In other words, from the perspective of a p-time-bounded environment, T1 and T2

“look almost the same,” provided T2 can use at most q2 steps to emulate q1 steps of
T1. The relation ≤ε,p,q1,q2 is transitive and preserved under composition and hiding,
with certain adjustments to errors and time bounds.

Lemma 5 Suppose T1, T2 and T3 are three comparable task-PIOAs such that
T1 ≤ε12,p,q1,q2 T2 and T2 ≤ε23,p,q2,q3 T3, where ε, p ∈ R≥0 and q1, q2, q3 ∈ N. Then
T1 ≤ε12+ε23,p,q1,q3 T3.

Lemma 6 Suppose ε, p, p3 ∈ R≥0, and q1, q2 ∈ N. Suppose that T1, T2 are comparable
task-PIOAs such that T1 ≤ε,ccomp(p+p3),q1,q2 T2. Suppose that T3 is a p3-time-bounded
task-PIOA that is compatible with both T1 and T2. Then T1‖T3 ≤ε,p,q1,q2 T2‖T3.

Lemma 7 Suppose ε, p ∈ R≥0, and q1, q2 ∈ N. Suppose that T1, T2 are comparable
task-PIOAs such that T1 ≤ε,p,q1,q2 T2. Suppose also that S is a set of output actions of
both T1 and T2. Then hide(T1, S) ≤ε,p,q1,q2 hide(T2, S).

We extend the relation ≤ε,p,q1,q2 to task-PIOA families in the obvious way (i.e.,
pointwise).

Definition 26 Let T 1 = {(T1)k}k∈N and T 2 = {(T2)k}k∈N be (pointwise) comparable
task-PIOA families and let ε, p : N → R≥0 and q1, q2 : N → N be given. We say that
T 1 ≤ε,p,q1,q2 T 2 provided that (T1)k ≤ε(k),p(k),q1(k),q2(k) (T2)k for every k.
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The three preceding results carry over to task-PIOA families:

Lemma 8 Suppose T 1, T 2 and T 3 are three comparable task-PIOA families such that
T 1 ≤ε12,p,q1,q2 T 2 and T 2 ≤ε23,p,q2,q3 T 3, where ε12, ε23, p : N → R≥0 and q1, q2, q3 :
N → N.

Then T 1 ≤ε12+ε23,p,q1,q3 T 3.

Lemma 9 Suppose ε, p, p3 : N → R≥0, and q1, q2 : N → N. Suppose T 1 and T 2 are
comparable task-PIOA families such that T 1 ≤ε,ccomp(p+p3),q1,q2 T 2. Suppose that T 3 is
a p3-time-bounded task-PIOA family that is compatible with both T 1 and T 2.

Then T 1‖T 3 ≤ε,p,q1,q2 T 2‖T 3.

Lemma 10 Suppose ε, p : N → R≥0, and q1, q2 : N → N. Suppose that T 1 and T 2 are
comparable task-PIOA families such that T 1 ≤ε,p,q1,q2 T 2. Suppose also that S is a
family of sets of output actions for both T 1 and T 2.

Then hide(T 1, S) ≤ε,p,q1,q2 hide(T 2, S).

4.5 The relation ≤neg,pt

Now we restrict attention to polynomial time bounds, for both individual steps
and for schedule lengths, and to negligible error. This yields a generic version of
approximate implementation, ≤neg,pt. We use this relation in our analysis of security
properties for oblivious transfer.

Definition 27 A function ε : N → R≥0 is said to be negligible if, for every constant
c ∈ R≥0, there exists k0 ∈ N such that ε(k) < 1

kc for all k ≥ k0. In other words, ε

diminishes more quickly than the reciprocal of any polynomial.

Definition 28 Suppose T 1 and T 2 are comparable task-PIOA families. We say that
T 1 ≤neg,pt T 2 if, for all polynomials p and q1, there exist a polynomial q2 and a
negligible function ε such that T 1 ≤ε,p,q1,q2 T 2.

We show that ≤neg,pt is transitive and preserved under composition and hiding; for
composition, we need to assume polynomial time bounds for one of the task-PIOA
families.

Theorem 4 Suppose T 1, T 2 and T 3 are three comparable task-PIOA families such

that T 1 ≤neg,pt T 2 and T 2 ≤neg,pt T 3. Then T 1 ≤neg,pt T 3.

Theorem 5 Suppose T 1 and T 2 are comparable task-PIOA families such that
T 1 ≤neg,pt T 2, and suppose T 3 is a polynomial-time-bounded task-PIOA family that
is compatible with both T 1 and T 2. Then T 1‖T 3 ≤neg,pt T 2‖T 3.

Theorem 6 Suppose that T 1 and T 2 are comparable task-PIOA families such that
T 1 ≤neg,pt T 2. Suppose that S is a family of sets of output actions for both T 1 and T 2.
Then hide(T 1, S) ≤neg,pt hide(T 2, S).
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4.6 Simulation relations, revisited

In Section 3.5, we defined simulation relations for ordinary task-PIOAs, without
resource bounds. These simulation relations were shown to be sound for proving
that one task-PIOA perfectly implements another, according to the relation ≤0.
However, we would like also to use these simulation relations in a setting with time
bounds, and in particular, to show that one time-bounded task-PIOA implements
another according to the relation ≤neg,pt. In order to do this, we require an additional
assumption about the lengths of matching task schedules:

Definition 29 Suppose that R is a simulation relation from T1 to T2 using task
mapping c, and b ∈ N. Then R is said to be b-bounded if c(ρ1, T) is b -bounded for
every ρ1 and T.

Then we have the following theorem:

Theorem 7 Suppose that T 1 and T 2 are comparable closed task-PIOA families,
b ∈ N. Suppose that for every polynomial p, every k, and every p(k)-bounded
environment Ek for (T 1)k and (T 2)k, there exists a b-bounded simulation relation Rk

from (T 1)k‖Ek to (T 2)k‖Ek. Then T 1 ≤neg,pt T 2.

Proof In Canetti et al. (2006b), soundness of simulation relations is proved as
follows. Given a simulation relation R from closed task-PIOA T1 to closed task-
PIOA T2, and a task schedule ρ1 = T1 T2 . . . for T1, we construct a task schedule
ρ2 for T2 by concatenating sequences returned by c; that is,

ρ2 := c(λ, T1) . . . c(T1 . . . Tn, Tn+1) . . .

We then prove that tdist(ρ1) = tdist(ρ2). Note that, if R is b -bounded, then the length
of ρ2 is at most b · |ρ1|.

Now let polynomials p and q1 be given as in the definition of ≤neg,pt. Let q2 be
b · q1 and ε be the constant-0 function. Using the proof outlined above, it is easy to
check that q2 and ε satisfy the requirements for ≤neg,pt. ��

5 Hard-core predicates

In this section, we discuss a well-known concept in cryptography—a hard-core pred-
icate for trap-door functions—that we use in our oblivious transfer protocol model
and proof. The standard definition of a hard-core predicate involves a comparison
between the results of two probabilistic experiments. We reformulate this definition
in terms of time-bounded task-PIOAs, using our approximate implementation rela-
tion ≤neg,pt, and show that the reformulation is equivalent to the standard definition.
Then, to demonstrate how our new definition can be used in security protocol proofs,
we present a simple example, showing that a hard-core predicate retains its security
properties if it is used twice. This example is derived from Canetti et al. (2006c),
where we used it in the proof for the corrupted-Transmitter case. In Section 7, we
will describe how our new definition is used in the corrupted-Receiver case of our
latest OT proof (Canetti et al. 2005).
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5.1 Definitions

In the traditional definition, a function B : ⋃
k∈N Dk → {0, 1} is said to be a hard-core

predicate for a trap-door permutation family Tdp if, whenever f and z are chosen
randomly from Tdpk and Dk, respectively, the bit B( f −1(z)) “appears random” to a
probabilistic-polynomial-time observer, even if f and z are given to the observer as
inputs. This captures the idea that f −1(z) cannot be computed efficiently from f and
z. The following is a slight reformulation of Definition 2.5.1 of Goldreich (2001).

Definition 30 A hard-core predicate for D and Tdp is a predicate B : ⋃
k∈N Dk →

{0, 1}, such that (1) B is polynomial-time computable and (2) For every (non-
uniformly) probabilistic polynomial-time predicate G = {Gk}k∈N,5 there is a negli-
gible function ε such that, for all k,

Pr[ f ← Tdpk;
z ← Dk;
b ← B( f −1(z)) :
Gk( f, z, b) = 1 ]

−
Pr[ f ← Tdpk;

z ← Dk;
b ← {0, 1} :
Gk( f, z, b) = 1 ]

≤ ε(k).

Note that, when A is a finite set, the notation x ← A means that x is selected from
A randomly according to the uniform distribution, and independently of any other
variable.

Our reformulated definition uses ≤neg,pt to express the idea that B( f −1(z)) “ap-
pears random”. We define two Task-PIOA families, SH (for “System providing a
Hard-core bit”) and SHR (for “System in which the Hard-core bit is replaced by a
Random bit”). The former outputs random elements f and z from Tdpk and Dk,
and the bit B( f −1(z)). The latter does the same except B( f −1(z)) is replaced by a
random element from {0, 1}. Then B is said to be a hard-core predicate for D and
Tdp if SH ≤neg,pt SHR.

The SH family is actually defined as hide(Srctdp‖Srcyval‖H, {randyval(∗)}), where

1. Srctdp is the family {Srctdp(Tdpk, μk)}k∈N, with μk being the uniform distribution
on Tdpk;

2. Srcyval is the family {Srcyval(Dk, μ
′
k)}k∈N, with μ′

k being the uniform distribution
on Dk; and

3. H is the family {Hk}k∈N, where each Hk automaton is defined as H(Dk, Tdpk, B),
and H(D, Tdp, B) is defined in Fig. 5.

Hk obtains the permutation f from Srctdp(Tdpk, μk) and the element y ∈ Dk from
Srcyval(Dk, μ

′
k), and outputs z := f (y) via action randzval and b := B(y) via action

randbval . Since f is a permutation, computing the value z as f (y) is equivalent to
choosing z randomly in Dk (as it is done in Definition 30).

5This is defined to be a family of predicates that can be evaluated by a non-uniform family (Mk)k∈N
of probabilistic polynomial-time-bounded Turing machines, that is, by a family of Turing machines
for which there exist polynomials p and q such that each Mk executes in time at most p(k) and has a
standard representation of length at most q(k). An equivalent requirement is that the predicates are
computable by a family of Boolean circuits where the kth circuit in the family is of size at most p(k).
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Fig. 5 Hard-core predicate
automaton, H(D, Tdp, B)

The SHR family is defined a Srctdp‖Srczval‖Srcbval , where

1. Srctdp is as in SH;
2. Srczval = {Srczval(Dk, μ

′
k)}k∈N; and

3. Srcbval = {Srcbval({0, 1}, ν)}k∈N, with ν being the uniform distribution on {0, 1}.

The SH and SHR families are depicted in Fig. 6. There, the automata labeled with
“ $” represent the random source automata. We use these families to reformulate
Definition 30.

Definition 31 A hard-core predicate for D and Tdp is a polynomial-time-
computable predicate B : ⋃

k∈N Dk → {0, 1}, such that SH ≤neg,pt SHR, where SH
and SHR are defined as above.
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Fig. 6 SH and SHR

Observe that this definition makes use of the asymmetry of the ≤neg,pt relation, as
it is not the case that SHR ≤neg,pt SH. For example, SH cannot execute a randtdp(∗)

action before executing a randzval(∗) action, whereas this may happen in SHR.
We claim that these two definitions of hard-core bits are equivalent.

Theorem 8 B is a hard-core predicate for D and Tdp according to Definition 30 if
and only if it is a hard-core predicate for D and Tdp according to Definition 31.

The proof of Theorem 8 is rather technical and appears in Canetti et al. (2005).

5.2 Example

Our new definition of hard-core predicates, Definition 31, seems to be well suited for
use in modeling and analyzing security protocols. For a simple example to illustrate
how this definition can be exploited, we show here that a hard-core predicate
can be applied twice, and a probabilistic polynomial-time environment still cannot
distinguish the resulting outputs from random values. We used this fact in the earlier
version of our OT proof (Canetti et al. 2006c), in a situation where the Transmitter
applies the hard-core predicate to both f −1(z(0)) and f −1(z(1)), where f is the
chosen trap-door permutation.

We show that, if B is a hard-core predicate, then no probabilistic-polynomial-
time environment can distinguish the distribution ( f, z(0), z(1), B( f −1(z(0))),

B( f −1(z(1)))) from the distribution ( f, z(0), z(1), b(0), b(1)), where f is a randomly-
chosen trap-door permutation, z(0) and z(1) are randomly-chosen elements of Dk,
and b(0) and b(1) are randomly-chosen bits. We do this by defining two task-PIOA
families, SH2 and SHR2, that produce the two distributions, and showing that
SH2 ≤neg,pt SHR2. Task-PIOA family SH2 is defined as

hide(Srctdp‖Srcyval0‖Srcyval1‖H0‖H1, {rand(∗)yval0, rand(∗)yval1}),
where Srctdp is as in the definition of SH, Srcyval0 and Srcyval1 are isomorphic to
Srcyval in SH, and H0 and H1 are two instances of H (with appropriate renaming
of actions). Task-PIOA family SHR2 is defined as

(Srctdp‖Srczval0‖Srczval1‖Srcbval0‖Srcbval1),

where Srctdp is as in SH2, Srczval0 and Srczval1 are isomorphic to Srczval in SHR, and
Srcbval0 and Srcbval1 are isomorphic to Srcbval in SHR.

Theorem 9 If B is a hard-core predicate, then SH2 ≤neg,pt SHR2.
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Proof Theorem 8 implies that SH ≤neg,pt SHR. To prove that SH2 ≤neg,pt SHR2,
we introduce a new task-PIOA family Int, which is intermediate between SH2 and
SHR2. Int is defined as

hide(Srctdp‖Srcyval0‖H0‖Srczval1‖Srcbval1, {rand(∗)yval0}),

where Srctdp is exactly as in SH2 and SHR2; Srcyval0 and H0 are as in SH2; and
Srczval1 and Srcbval1 are as in SHR2. Thus, Int generates bval0 using the hard-core
predicate B, as in SH2, and generates bval1 randomly, as in SHR2.

To see that SH2 ≤neg,pt Int, note that Definition 31 implies that

hide(Srctdp‖Srcyval1‖H1, {rand(∗)yval1}) ≤neg,pt Srctdp‖Srczval1‖Srcbval1,

because these two systems are simple renamings of SH and SHR. Now let I be the
task-PIOA family hide(Srcyval0‖H0, {rand(∗)yval0}. It is easy to see, from the code for
the two components of I, that I is polynomial-time-bounded. Then by Theorem 5,

hide(Srctdp‖Srcyval1‖H1, {rand(∗)yval1})‖I ≤neg,pt Srctdp‖Srczval1‖Srcbval1‖I.

Since the left-hand side of this relation is SH2 and the right-hand side is Int, this
implies SH2 ≤neg,pt Int.

Similarly, Int ≤neg,pt SHR2. Since SH2 ≤neg,pt Int and Int ≤neg,pt SHR2, transi-
tivity of ≤neg,pt (Theorem 4) implies that SH2 ≤neg,pt SHR2. ��

The proof of Theorem 9 differs from corresponding proofs usually presented
in the computational cryptography community. A traditional proof proceeds by
contradiction, showing that, if an adversary can distinguish SH2 from SHR2, then a
related adversary can distinguish SH from SHR, which contradicts a computational
assumption. Here we use a direct argument: we exhibit an interface (which plays
the role of the reduction in the traditional approach), and we use the composition
property of the ≤neg,pt relation. We believe that such positive arguments provide
more insight into the way the different assumptions are used.

6 Computational security

So far in the paper, we have defined time-bounded task-PIOAs, our basic model for
resource-bounded concurrent computation. We have illustrated their use in mod-
eling hard-core predicates for trap-door functions. In this section, we explain how
we use time-bounded task-PIOAs to define the security of cryptographic protocols,
illustrating with our oblivious transfer example.

Our method follows the general outline of Canetti (2001), Pfitzmann and Waidner
(2001), which are standard references for simulation-based security in the computa-
tional cryptography community. We first specify the functionality that the protocol is
supposed to realize. Then we define the protocol, which consists of protocol parties
and auxiliary services, and the class of adversaries with which the protocol must
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contend. Together, the protocol and an adversary comprise the real system. Finally,
we define what it means for a protocol to securely realize its specified functionality.

6.1 The functionality

We represent the functionality for a security protocol as a single task-PIOA. It
represents a “trusted party” that receives protocol inputs and returns protocol
outputs at endpoints corresponding to the protocol parties. See Canetti (2001) for
many examples of classical cryptographic functionalities.

For OT, the functionality we use is the task-PIOA Funct given in Sections 2.5.3
and 3.3.2. Recall that it behaves as follows: It waits for two bits (x(0), x(1)) rep-
resenting the inputs for the Transmitter, and one bit i representing the input for
the Receiver. Then it outputs the bit x(i) at the Receiver end, and nothing at the
Transmitter end.

This definition of Funct is designed for the special case in which neither party is
corrupted. For the case we prove in Canetti et al. (2005), in which only the Receiver
is corrupted, Funct must be modified slightly, by renaming the out(w)Rec outputs to
out′(w)Rec. The prime symbol is added here so that, instead of passing directly from
Funct to the external environment, the output can pass indirectly, via an adversarial
component called the simulator. We will discuss the simulator in Section 6.4.

The only other interesting case of the proof is the one in which only the Transmit-
ter is corrupted. For this case, Funct would again have to be redefined. In particular, it
would need additional input and output actions for synchronizing with the simulator,
so that all possible trace distributions generated by the protocol can indeed be
simulated. It remains to carry out the detailed analysis for this case; so far, we have
analyzed it only for our more restrictive, earlier task-PIOA model (Canetti et al.
2006c).

6.2 The protocol

The protocol consists of task-PIOAs representing protocol parties and any auxiliary
services they require, such as random sources. Since the definitions of protocols are
typically parameterized by a security parameter k, we define a protocol as a task-
PIOA family π = {πk}k∈N, where πk is the composition of task-PIOAs representing
the different protocol parties and auxiliary services for parameter k.

For oblivious transfer, the protocol parties for k are Trans(Dk, Tdpk) and
Rec(Dk, Tdpk), as discussed in Section 4.3. Also πk includes two random source
automata: Srcpval(Tdppk, μk), which provides a random pair of Dk values to
Rec(Dk, Tdpk), and Srcyval(Dk × Dk, νk), which provides a random trap-door per-
mutation pair to Trans(Dk, Tdpk). Here μk is the uniform distribution on Tdppk

and νk is the uniform distribution on Dk × Dk.
Recall that the protocol executes as follows. First Trans selects a random trap-

door permutation f from Tdpk, together with its inverse f −1, and sends f to
Rec. Then, using its input bit i and two randomly selected elements (y(0), y(1))

of Dk, Rec computes the pair (z(0), z(1)) = ( f 1−i(y(0)), f i(y(1))), and sends it to
Trans. Finally, using its input bits (x(0), x(1)), Trans computes the pair (b(0), b(1)) =
(x(0) ⊕ B( f −1(z(0))), x(1) ⊕ B( f −1(z(1)))) and sends it to Rec, who can now recover
x(i) as B(y(i)) ⊕ b(i).
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6.3 The adversary

To analyze the security of a protocol π , we consider π in combination with an
adversarial communication service. Depending on the context, adversaries may have
different capabilities: they may have passive or active access to the network, may
be able to corrupt parties (either statically or dynamically), may assume partial or
full control of the parties, etc. Various scenarios are discussed in Canetti (2001).
We specify a particular class of adversaries by defining appropriate restrictions
on the signature and transition relation of adversary task-PIOAs. By composing
an adversary task-PIOA Advk with a protocol task-PIOA πk, we obtain a real
system, RSk.

For the OT protocol, we consider polynomial-time-bounded families of adver-
saries. The adversaries have passive access to protocol messages: they receive and
deliver messages (possibly delaying, reordering, duplicating, or losing them), but do
not modify messages or compose new ones. They may corrupt parties only statically
(at the start of execution). They are “honest-but-curious”, which means that they
obtain access to all internal information of the corrupted parties, but the parties
continue to follow the protocol definition.

In this paper and in Canetti et al. (2005), we discuss only one case, in which only
the Receiver is corrupted. In this case, the adversary gains access to the input and
output of Rec [that is, i and x(i)], and to its random choices [that is, y(0) and y(1))].
However, as noted above, Rec continues to follow the protocol definition, so we
model it formally as a component distinct from the adversary.

In somewhat more detail, the adversary Advk acts as a message system connecting
Transk and Reck: it has inputs corresponding to the send actions of Transk and Reck,
and outputs corresponding to the receive actions. Advk does not corrupt or compose
messages, but may delay, reorder, duplicate, or lose them. In addition, because the
Receiver is corrupted, Advk has inputs of the form in(i)Rec by which it overhears
the Receiver’s inputs. Advk also has inputs of the form out′(w)Rec and corresponding
outputs of the form out(w)Rec; using these, Advk acts as a relay, receiving output
information at the Receiver end and conveying it, with possible delays, to the
external environment.6 Advk also overhears the outputs of Srcyval , which provides
the Receiver’s random choice of y. Finally, Advk may have arbitrary other input,
output, and internal actions.

The components of real system RSk and their interactions are depicted in Fig. 7.
Incoming and outgoing arrows at the top of the diagram are assumed to connect to
an external environment. Notice, in particular, the use of the primes for relaying
outputs: the out′(w)Rec actions are outputs of Reck and inputs of Advk, and the
out(w)Rec actions are outputs of Advk to the external environment. Formally, these
components are all combined using the composition operation for task-PIOAs, and
then all output actions except the ones at the environment interface are hidden.

6Actually, we could have allowed the adversary to relay Receiver inputs also, rather than simply
overhearing them. This modeling approach was taken, for example, in Backes et al. (2004b).



Discrete Event Dyn Syst

Fig. 7 RS when only Receiver
corrupted

6.3.1 Adversarial scheduling

Recall our remark about adversarial scheduling in Section 3.1. The adversaries we
consider for OT are allowed to determine their next moves adaptively, based on
their view of the computation so far. In particular, Advk may determine the order
in which it delivers messages, based on the messages that have been sent so far,
and based on Receiver inputs, outputs, and random choices. Similarly, based on the
same information, Advk may determine what additional internal and output actions
it performs, and when.

6.4 Computational security

In order to prove that a protocol securely realizes a functionality, we show that,
for every adversary family Adv of the considered class, there is another task-
PIOA family Sim, called a simulator family, that can mimic the behavior of Adv by
interacting only with the functionality. This implies that the protocol does not reveal
to the adversary any information that it does not need to reveal—that is, anything
not revealed by the functionality itself.

The quality of emulation is evaluated from the viewpoint of the environment,
which is also a task-PIOA family. Thus, security of the protocol says that no
environment can efficiently decide whether it is interacting with the real system
(i.e., the composition of the protocol and the adversarial communication system) or
with the composition of the functionality and the simulator. We call this latter
composition the ideal system. We formalize this indistinguishability condition by the
following definition.

Definition 32 Let π , F and A be a protocol family, a functionality and a class of
adversary families, respectively. Let F denote the family in which every Fk equals F.
Then we say that π securely emulates F with respect to A provided that the following
holds: for every real-system family RS (constructed from π and some polynomial-
time-bounded adversary family Adv ∈ A), there exists an ideal-system family IS
(constructed from F and some polynomial-time-bounded simulator family Sim) such
that RS ≤neg,pt IS.
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Fig. 8 IS when only Receiver
corrupted

In Definition 32, quantification over environments is encapsulated within the
definition of ≤neg,pt: RS ≤neg,pt IS says that, for every polynomial time-bounded
environment family Env and every polynomial-bounded task schedule for RS‖Env,
there is a polynomial-bounded task schedule for IS‖Env such that the acceptance
probabilities in these two systems differ by a negligible amount.

For oblivious transfer, the components of Ideal System ISk and their interactions
are depicted in Fig. 8. Incoming and outgoing arrows at the top of the diagram are
assumed to connect to the environment. Again, these components are combined
using the composition operation for task-PIOAs, and then all output actions except
the ones at the environment interface are hidden.

Based on the definition of secure emulation, correctness theorems for security
protocols take the following form:

Theorem (Secure emulation) Protocol family π securely emulates functionality F
with respect to adversary family A.

The theorem above expresses both functional correctness and security. Functional
correctness is captured by the requirement that the inputs and (direct and relayed)
outputs between the protocol and the environment in the real system execution
are consistent with those allowed by the functionality. For oblivious transfer, this
means that, in a real system execution, the inputs in(x)Trans and in(i)Rec, as well as
the output out(w)Rec, are consistent with those allowed by the functionality; in other
words, if an output bit is produced at the Receiver endpoint, then it is the correct bit.
Security is captured by the fact that the adversary’s interactions with the environment
via its additional inputs and outputs can be emulated successfully by a simulator,
who interacts only with the functionality. For oblivious transfer, this means that the
adversary is unable to output the non-chosen bit, x(1 − i), from its interaction with
the real system, except with probability negligibly better than chance.

We have proved composition theorems for secure emulation; that is, if we are
given a collection of protocols, each of which securely emulates a corresponding func-
tionality, then the composition of the protocols securely emulates the composition
of the functionalities (Canetti et al. 2007a). Our proofs are based on composition
theorems for the ≤neg,pt relation on time-bounded task-PIOAs. Similar theorems
have been proved in other frameworks (Canetti 2001; Backes et al. 2004a; Mateus
et al. 2003).
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7 Levels-of-abstraction proofs

In order to prove a secure emulation theorem (see Section 6.4) for the OT protocol
and the adversaries of Section 6, we must define an ideal-system family IS such
that RS ≤neg,pt IS. To that end, we build a structured simulator family SSim from
any adversary family Adv. We define the needed ideal-system family as SIS, where
SISk = Funct‖SSimk.

To show that RS ≤neg,pt SIS, we define two intermediate system families, Int1 and
Int2, and decompose the proof into three subgoals: RS ≤neg,pt Int1, Int1 ≤neg,pt Int2,
and Int2 ≤neg,pt SIS. Transitivity of ≤neg,pt (Theorem 4) then yields RS ≤neg,pt SIS,
as needed. All arguments involving computational indistinguishability and other
cryptographic issues are isolated within the proof of the second subgoal. The other
two subgoals are proved using simulation relations.

7.1 Simulator strategy

We construct the structured simulator family SSim from the given adversary family
Adv, following the standard informal construction used in computational cryptogra-
phy (Canetti et al. 2002; Goldreich 2004). For every index k, SSimk is the composition
of Advk with an abstract version of πk based on a task-PIOA T R(Dk, Tdpk).
T R(Dk, Tdpk) works as follows: First, it selects and sends a random element f ∈
Tdpk, as Trans would. Then, after Advk has delivered f , T R emulates Rec: it chooses
a random pair (y(0), y(1)) of elements of Dk, and sends a round 2 message containing
( f 1−i(y(0)), f i(y(1))). Next, T R computes the pair (b(0), b(1)) and sends it in a round
3 message. Specifically, T R computes b(i) as B(y(i)) ⊕ x(i) and b(1 − i) as a random
bit. Note that this requires that T R learn x(i), which is the chosen Transmitter input.
Although T R does not have direct access to this input, T R obtains x(i) as output
from Funct at the Receiver end. Detailed code for T R(D, Tdp) appears in Figs. 9
and 10. Figure 11 shows the components of SIS and their interactions.

Observe that, if Adv is polynomial-time-bounded, then so is SSim. Also, if we
define SIS by SISk = Funct‖SSimk, then SIS is an ideal system family.

7.2 Intermediate systems

The Int1k system is the same as SISk, except that TR is replaced by TR1, which
differs from TR as follows: (1) It has an extra input in(x)Trans, which provides the
Transmitter input. (2) It computes the round 3 message differently: the bit b(i) is
computed as in TR, but the bit b(1 − i) is computed using the hard-core predicate
B, as B( f −1(z(1 − i))) ⊕ x(1 − i). The Int2k system is the same as SISk except that it
includes a random source automaton Srccval1 that produces a random bit cval1, and
also TR is replaced by TR2, which is essentially the same as TR1 except that b(1 − i)
is computed as cval1 ⊕ x(1 − i).

7.3 Simulation relation proofs

Our proofs that RS ≤neg,pt Int1 and Int2 ≤neg,pt SIS use simulation relations, specifi-
cally, Theorem 7.
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Fig. 9 Code for TR(D, Tdp), Part I

To prove that RS ≤neg,pt Int1, we fix any polynomial p, any k ∈ N, and any p(k)-
bounded environment Envk for RSk and Int1k. We show that there is a 2-bounded
simulation relation Rk from RSk‖Envk to Int1k‖Envk. Then Theorem 7 implies that
RS ≤neg,pt Int1.

The simulation relation Rk relates states to states, rather than measures on
executions to measures on executions. Thus, it does not utilize the full generality of
our new simulation relation notion—Segala’s original simulation relation would be
sufficient here. Relation Rk is defined in terms of a list of simple equations between
state variables of RSk‖Envk and Int1k‖Envk. In particular, Rk is the identity on the
states of Advk and Envk.

To show that Rk is in fact a simulation relation, we first define the c mapping
between task schedules. All the tasks in RSk‖Envk correspond to essentially the
same tasks in Int1k‖Envk, with one exception: the f ix-bval task in RSk‖Envk, by
which Trans in the RS system determines the value of bval, having already received
its own input and a round 2 message. This task is mapped to a sequence of two
tasks in Int1k‖Envk: the out′ task, by which Funct outputs its result to the simulator
component in the Int1 system, followed by the f ix-bval task of that simulator. This
correspondence reflects the fact that the simulator in Int1 does not have access to the
Transmitter input, as Trans does in RS; instead, it obtains the needed portion of that
input—the chosen bit—as output from Funct.

Actually verifying the step condition, once we have Rk and the c mapping, is a
long and tedious, but mostly straightforward case analysis. One point worth noting
is how the expansion operation is used in the proof. Consider, for example, a step
involving communication between Advk and Envk. As a result of this step, either or
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Fig. 10 Code for TR(D, Tdp), Part II

both of these components may choose their next states probabilistically. Since the
state of Advk is assumed to be the same in both systems before the step, and likewise
for Envk, the same probability distribution of new states for these two components
results when the step is performed in the two systems. Use of expansion allows
us to split up the resulting probability distributions, by relating states in the two
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Fig. 11 SIS when only
Receiver corrupted

systems in which the choices result in the same outcome. Technically, this expansion
is formalized using Corollary 2 of Section 3.5, where the index set I represents the
set of possible outcomes of the random choices of Advk and Envk.

To prove that Int2 ≤neg,pt SIS, we again fix p, k, and Envk. This time we show that
there is a 1-bounded simulation relation Sk from Int2k‖Envk to SISk‖Envk. In this
case, the only difference between the two systems is that b(1 − i), the non-selected
bit, is chosen randomly in SISk (using bval1), but is defined as the ⊕ of a random
bit (cval1) and the actual Transmitter input bit, in Int2k. Informally speaking, this
difference should not matter, since the resulting bit is randomly chosen in both cases.

Formally, the simulation relation Sk has a somewhat more complicated structure
than Rk, relating probability measures on states in the two systems. In addition to
a list of simple equations between state variables, Sk includes conditions relating a
measure on values for cval1 to one for bval1.

7.4 Computational indistinguishability proof

The middle stage of our proof, showing that Int1 ≤neg,pt Int2, uses a computational
argument based on our definition of a hard-core predicate in Section 5. The only
difference between Int1 and Int2 is that a single use of B( f −1(z(1 − i))) in Int1 is
replaced by a random bit in Int2. But this is precisely the difference between the SH
and SHR systems discussed in Section 5. Definition 31 says that SH ≤neg,pt SHR;
now we exploit this fact in showing that Int1 ≤neg,pt Int2.

In order to do this, we build an interface task-PIOA family Ifc that represents the
common parts of Int1 and Int2. Then, we prove two claims.

1. Int1 ≤neg,pt SH‖Ifc‖Adv and SHR‖Ifc‖Adv ≤neg,pt Int2.
We prove this by exhibiting simple, constant-bounded simulation relations be-
tween these systems.

2. SH‖Ifc‖Adv ≤neg,pt SHR‖Ifc‖Adv. For this, we use our definition, Definition 31,
of hard-core predicates, the fact that both Ifc and Adv are polynomial-time-
bounded, and the composition property of ≤neg,pt (Theorem 5).

8 Conclusions

In this paper, we have described the time-bounded task-PIOA framework, an
automata-theoretic framework that is intended for modeling and analyzing security
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protocols. This framework extends the well-known probabilistic I/O automata frame-
work (Segala 1995; Segala and Lynch 1995), by adding a new task mechanism for
resolving nondeterministic choices and new ways of expressing bounds on com-
putational resources. Time-bounded task-PIOAs have a simple theory, including
composition and hiding operations and associated theorems, notions of perfect
implementation (≤0) and approximate implementation (≤neg,pt), and probabilistic
simulation relations that are sound for proving implementation relations.

We have described how our framework can be used to express some standard
security notions, such as protocols, the adversaries with which they must contend,
and the functional correctness and computational security properties they must
satisfy. We have shown (via an example) how time-bounded task-PIOAs can be used
to reformulate definitions of cryptographic primitives, and how such reformulated
definitions can be used in proofs of computational security.

We have illustrated the use of our framework by modeling and analyzing
functional correctness and computational security for an oblivious transfer proto-
col (Even et al. 1985; Goldreich et al. 1987). Our proofs are decomposed into a series
of stages, each showing an implementation relation, ≤neg,pt, between two systems.
Most of these implementation relations are proved using simulation relations to
match corresponding events and probabilities in the two systems. Others are proved
using reduction arguments involving an underlying computational indistinguishabil-
ity assumption, reformulated in terms of ≤neg,pt. This paper is based on more detailed
developments in Canetti et al. (2005, 2006a, b, c).

In a related line of work (Canetti et al. 2007a), we have established general
security protocol composition theorems, in the style of Canetti (2001), Pfitzmann
and Waidner (2001). Following Pfitzmann and Waidner (2001), we would also like to
develop systematic ways of modeling common patterns of adversarial behavior and
systematic ways of proving security properties of protocols that interact with these
adversaries.

We believe that the model and techniques presented here will provide a good basis
for analyzing a wide range of cryptographic protocols, especially those that depend
on computational assumptions and achieve computational security. It remains to
demonstrate this by applying the model and methods to many more case studies. We
plan to apply our methods to more complex protocols, including protocols that use
a combination of cryptographic primitives and protocols that work against different
types of adversaries. We would also like to apply the model and methods to study
security protocols that have not yet been the subject of much formal study, such as
timing-based and long-lived security protocols.
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