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Abst rac t .  The timed automaton .model of [13, 12] is a general model for 
timing-based systems. A notion of timed action transducer is here defined as 
an automata-theoretic way of representing operations on timed automata. 
It is shown that two timed trace inclusion relations are substitutive with 
respect to operations that can be described by timed action transducers. 
Examples are given of operations that can be described in this way, and 
a preliminary proposal is given for an appropriate language of operators 
for describing timing-based systems. Finally, justification is given for the 
definition of implementation based on inclusion of timed trace sets; this is 
done in terms or a notion of feasibility which says that a timed automaton 
cannot prevent the passage of time. 

1 Introduction 

The timed automaton model of [13, 12] is a general model for timing-based systems. 
It is intended as a basis for formal reasoning about such systems, in particular, 
for verification of their correctness and for analysis of their complexity. In [13, t2], 
we develop a full range of simulation proof methods for t imed automata;  in this 
paper, we continue the development by studying prvcess algebras for the same model. 
Eventually, we envision using a combination of proof methods, perhaps even using 
several in the verification of single system, 

A timed automaton ' is  an automaton (or labelled transition system) with some 
additionM structure. There are three types of actions: time-passage actions~ visible 
actions and the special internal action T. All except the time-passage actions are 
thought of as occurring instantaneously. To specify times, a dense time domain is 
used, specificalty~ the nonnegative reals, and no lower bounds are imposed on the 
times between events. Two notions of external behavior are considered. First, as 
the finite behaviors, we take the finite timed traces, each of which consists of a 
finite sequence of timed visible actions together with a final time. Second, as the 
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infinite behaviors, we take the admissible timed traces, each of which consists of a 
sequence of timed visible actions that  can occur in an execution in which time grows 
unboundedly. 

The timed automaton model permits description of algorithms and systems at 
different levels of abstraction. We say that  a "low-level" timed automaton A imple- 
ments a "high-level" timed automaton B if the sets of finite and admissible timed 
traces of A are included in the corresponding sets of B. To justify this notion of 
implementation, we must argue that  the timed trace sets for A are not trivial. We 
can do this by classifying the visible actions of A as input actions or output actions, 
as in the I /O automaton model of [11]. We then require A to be input enabled, i.e., 
willing to accept each input action in each state, and I/O feasible, which means that  
each finite execution can be extended to an admissible execution via an execution 
fragment that  contains no input actions. If A is input enabled and I /O  feasible, then 
it can generate an admissible execution for any ."non-Zeno" pattern of inputs, as 
follows. A starts with an admissible execution containing no inputs. When an input 
arrives, A performs a transition labelled by that  input and continues from the re- 
sulting state with another admissible execution fragment containing no inputs until 
the next input arrives, etc. Thus, A must have a rich set of admissible timed traces. 

In the Lclassical' untimed case, bisimulation equivalences have been reasonably 
successful as a notion of implementation between transition systems [5, 15]. Conse- 
quently, bisimulation equivalences have also been put forward as a central notion in 
many studies on real-time process algebras [4, 9, 16, 17, 23]. However, we do not 
believe that  bisimulation equivalences will be very useful as implementation rela- 
tions in the timed case. The problem is that  bisimulation equivalences do not allow 
one to abstract in specifications from the often very complex timing behavior of 
implementations (see [9] for an example). 

Often, the design or verification of an algorithm includes several levels of abstrac- 
tion, each of which implements the one above it. Note that  it is only necessary to 
show that  the trace sets at the lowest level are nontrivial. Thus, only at the lowest 
level does one require the I /O classification with its accompanying properties of in- 
put enabledness and I /O feasibility. Fortunately, at this level, the two properties are 
generally quite easy to achieve, since they correspond to the receptive and non-Zeno 
nature of physical machines. 

Since we believe that  timed trace inclusion does form a good notion of imple- 
mentation, we are interested in identifying operations on timed automata  for which 
the timed trace inclusion relation is substitutive. This substitutivity is a prerequisite 
for the compositional verification of systems using timed automata.  It should also 
enable verification of systems using a combination of compositional methods and 
methods based on levels of abstraction. 

We represent operations by automaton-like objects that  we call action trans- 
ducers, rather than, for example, using SOS specifications [20]. The importance of 
transducers for process algebra and concurrency theory was first noted by Larsen 
and Xinxin [10], who introduced a certain type of transducer, which they called a 
context system, to study compositionality questions in the setting of process alge- 
bra. For an example of an action transducer, consider the operation III of interleaving 
parallel composition. It can be described by an automaton with a single State s and 
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transitions (one for each action a): 

S --+ 8 a n d  $ ....4 $. 
(I,,0 (~-,~) 

The left transition says that  if the first argument performs an a-action the composi- 
tion will also perform an a-action, while the right transition says that  if the second 
argument performs an a-action the composition will also perform an a-action. To- 
gether, the transitions say that  the automaton A ]1] B can do an a-step whenever 
one of its arguments can do so. In the SOS approach, the same operator ]H can be 
described by inference rules (one for each action a): 

x -~ x' y _~ ys 
and 

ill v 2, =' ili v = [ii v �9 Ht y'" 

The two styles of describing operators, SOS and action transducers, are quite similar. 
However, action transducers are more convenient for our purposes. First, al- 

though it is easy to see how SOS specifications determine automata,  it is less clear 
how to regard them as defining operations on automata. For action transducers, this 
correspondence is more direct. Second, as noted by Larsen and Xinxin [i0], action 
transducers are a convenient tool for studying compositionality questions, and their 
use tends to simplify proofs. Third, action transducers can easily be defined to allow 
multiple start states. Multiple start states have turned out to be useful in untimed 
automaton formalisms for concurrency such as the I /O automaton model, and we 
would like to include them. We do not know how to handle start states in the setting 
of SOS. 

A major result of our paper is that  the timed trace inclusion relation is substitu- 
tive with respect to all operations that  can be described by our action transducers, 
provided they satisfy a number of conditions that  concern the handling of internal 
and time-passage steps. 

A condition that  is required of our action transducers for timed automata is that  
time passes uniformly (i.e., at the same rate) for the transducer and all active holes, 
and it does not pass at all for the inactive holes. This uniformity condition (along 
with some other technical constra2nts) is used in our proof of substitutivity. We note 
that  this time uniformity condition is not necessary for substitutivity to hold. For 
instance, the timed trace inclusion relation is substitutive for a %peedup" operation 
that  doubles the rate at which its timed automaton argument operates. However, 
we do not have a clean generalization of the uniformity condition that  applies to the 
speedup operation and still guarantees substitutivity. 

Having proved substitutivity for a general class of operations, we describe many 
examples of specific operations that  fall into this class. In our view, an appropriate 
language for describing timing-based systems should consist of a small number of 
basic operations, both timed and untimed, out of which more complex operations 
can be built. The basic and derived operations together should be sufficient to de- 
scribe most interesting timing-based systems. As a starting point, we believe that  
such a language ought to include the basic untimed operations that  are already 
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well understood and generally accepted. Nicollin and Sifakis [18] describe a simple 
and general construction to transform any untimed operation into a timed one that  
behaves essentially the same and moreover does not use or constrain the time. By 
applying this construction to the well-known untimed operations, we obtain a col- 
lection of corresponding timed operations that  we believe should be included in a 
real-time process language. 

The untimed operations alone are not enough, however; a real-time process lan- 
guage also must include operations that  constrain time explicitly. Of the many pos- 
sibilities, we would like to identify only one or two that  can be used for constructing 
all the others. For this purpose, we tentatively propose a timer operation, derived 
from Alur and Dill [2]. Using only this timer operation and untimed operations, we 
can construct the timeout construct of Timed CSP [21, 7], and the execution delay 
operation of ATP [17]. Also, because this timer operation is derived from [2], we are 
able to use it to define a minor variant of Alur and Dill's w-automata. Moreover, 
we can also use it to define the timed automata of Merritt, Modugno and Turtle 
[14]. All of this provides evidence that  our timer (or something very similar) may be 
appropriate to use as the sole timed operation in a real-time process language. 

The decidability and closure properties of Alur-Dill automata suggest that  they 
can be regarded as a real-time analog of classical finite automata. In the untimed 
setting, a crucial characteristic of algebras like CCS is t h a t  they can easily describe 
finite automata. Thus by analogy, a natural requirement for a real-time process lan- 
guage is that  it can easily describe Alur-Dill automata.  Nicollin, Sifakis and Yovine 
[19] give a translation from ATP into Alur-Dill automata,  but do not investigate the 
reverse translation. In fact it appears that,  besides our language, only the BPArpSI- 
language of Baeten and Bergstra [4] is sufficiently expressive to allow for a direct 
encoding of Alur-Dill automata. 

As discussed earlier, the appropriateness of the timed trace inclusion relation as 
a notion of implementation depends upon the lowest level implementation satisfying 
the input enabling and I /O feasibility properties. In the final section of our paper, we 
address the question of how to ensure that  these properties hold. Although the input 
enabling condition can be required explicitly, I /O feasibility will typically require a 
proof. Since we envision the lowest level implementation being described in terms of 
operators from our real-time language, the way we would like to prove I /O feasibility 
is by proving it for the basic components and arguing that  it is preserved by each 
of the operators. But examples (e.g., one studied in [1]) show that  I /O feasibility 
is not preserved, e.g., by parallel composition. Therefore, we propose a condition, 
which we call strong I/O feasibility, which implies I /O feasibility, is preserved by 
operations expressed appropriately as timed action transducers,  and appears to be 
satisfied by "low-level" automata,  i.e., those that  are close to physical machines. 
This condition can be used as the basis of a proof method for demonstrating I /O 
feasibility of implementations. 

We present our definitions and results for timed systems by first presenting re- 
lated definitions and results for untimed systems, and then building upon those 
wherever we can. 

In summary, the main contributions of the paper are: (1) the definitions of action 
transducers and timed action transducers, (2) the substitutivity results for traces and 
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t imed traces, (3) the notion of strong I / O  feasibility, (4) the presentation of a large 
number  of interesting operators,  t imed and untimed, as action transducers,  and (5) 
a preliminary proposal for a process language for t imed systems. We see these all as 
pieces of a unified proof methodology for t imed systems. 

2 T h e  U n t i m e d  S e t t i n g  

We begin by describing action transducers for the untimed setting. Later,  the con- 
cepts needed for the t imed setting will be defined in terms of corresponding concepts 
for the untimed setting. 

2.1 A u t o m a t a  a n d  T r a c e s  

An (untimed) automaton A consists of: 

- a set states(A) of states, 
- a nonempty  set start(A) C states(A) of start states, 
- a set acts(A) of actions tha t  includes the internal action T, and 
- a set steps(A) C states(A) • acts(A) • states(A) of steps. 

We let s, s ' ,  u, ul,.. range over states, and a,.. over actions. The set ext(A) of external 

actions is defined by ext(A) ~ acts(A) - {~-}. We write s '  -~A s as a shorthand for 
(s', a ,s)  E steps(A). We will suppress the subscript A where no confusion is likely. 
An execution fragment of A is a finite or infinite al ternating sequence soalsla2s2 " "  
of states and actions of A, beginning with a state, and if it is finite also ending with 

a state, such tha t  for all i, s{ ~1~ 1 s{+l. An execution of A is an execution fragment 

tha t  begins with a s tar t  state. 
For cl = soalsla~.s2 ""  an execution trace(c~) is defined as the sequence obtained 

from ala2 ""  by removing all T'S. A finite or infinite sequence fl of actions is a trace 
of A if A has an execution a with fl = trace (a).  We write traces* (A), traces ~ (A) and 
traces(A) for the sets of finite, infinite and all traces of A, respectively. These notions 

induce three preorders on automata:  we define A <. B ~ traees*(A) C traces*(B), 
A <~, B ~ traces~(A) C_ traces~(B), and A < S ~ traces(A) C traces(B). 

2.2 A c t i o n  T r a n s d u c e r s  

We now define a notion of action transducer, as an explicit representation of certain 
extensional operations on automata .  We consider operations with a possibly infinite 
set of arguments.  As placeholders for these arguments,  an action transducer contains 
a set of colors. Sometimes we will find it useful to make several copies of an argument  
automaton.~ 4 To this end a transducer is equipped with a set of holes, and a 

3 The idea of copying arguments of transducers is not present in the work of Larsen and 
Xinxin [10]. 

4 Note that, since we always start copies of an argument automaton from a start state, 
our copying operations are different from those of Bloom, Istrail and Meyer [6], which 
also allow copying from intermediate states. As a consequencej the trace preorder is 
substitutive for our operations, whereas it is not substitutive in general for the operations 

of [6]. 
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mapping that  associates a color to each hole. The idea is that  we plug into each 
hole the argument automaton for which the color of the hole serves as placeholder. 
As a useful analogy one can consider the way in which a term with free variables 
determines an operation on terms: here the variables play the role of colors, and 
the occurrences of variables serve as holes. As the rest of its "static" description, a 
transducer has an associated global set of actions, and, for each color, a local set 
of actions. The "dynamic" part of a transducer is essentially an automaton: a set 
of states, a nonempty set of start states, and a step relation. The elements of the 
step relation are 4-tuples of source state, action, trigger and target state. Here the 
trigger is a function that tells, for each hole, whether the argument automaton in 
that hole is supposed to idle, or whether it has to participate in the step, and if so 
by which action. Finally, each state of the transducer has an associated set of active 
holes, and these are the only ones that can participate in the steps from that  state. 
Formally, an (action) transducer T consists of: 

- a set states(T) of states, 
- a nonempty set start(T) C states(T) of start states, 
- a set holes(T) of holes, 
- for each state s, a set activeT(s) C holes(T) of holes that  are active in s, 

- a set colors(T) of colors, 
- a map c-inapT : holes(T) -~ colors(T), the coloring of the holes, 
- a set acts(T) of actions that  includes T, 
-- for each color m, a set actsT(m) of actions that  includes % 
- a set steps(T) C states(T)x acts(T)xtriggers(T)xstates(T), where triggers(T) 

is the set of maps y : holes(T) --~ (Urn actsT(m) U {.l_}) such that ,  for all i, 
~(i) e aetsT(e:mapT(i)) U {_L}. We require that  if (s' ,a,y,s) e steps(T) and 
y(i) r then i e activeT(s'). 

We define the sets of ezternal actions of T by ezt(T) a__ acts(T) - {~-}, and, for each 

m, e~tT(m) ~ actsT(m) -- {~-}. We write s' ~ T  s instead of (s',a,~7, s ) e steps(T). 

We call s ~ the source of the step, s the target, a the action, and y the trigger. 
Often we will suppress the subscript T. We often represent a trigger 7/ by the set 
{(i,a) IT(i) = a # •  An execution fragment of T is a finite or infinite alternating 
sequence c~ = soal~71sla2~2s2"" of states, actions and triggers of T, beginning with 

a state, and if it is finite also ending with a state, such that  for all i, sl ~.~1 s~+l. An 
r / i+l  

execution of T is an execution fragment that begins with a start state. 
We view action transducers as a generalization of automata.  Thus we will fre- 

quently identify an action transducer having an empty set of holes with its underlying 

automaton. 

2.3 C o m b i n i n g  T r a n s d u c e r s  a n d  A u t o m a t a  

We now define the meaning of a transducer as an operation on automata.  5 First, 
define an automaton assignment for T to be a function ~ that  maps each color m 

s In fact, it is often useful to interpret transducers in a more general (and somewhat more 
complex) way, as operations on transducers. 
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of T to an automaton in such a way that  acts(~(m)) = actsT(m). Suppose ~ is 
an automaton assignment for T, and let Z be the composition ~ o c-inapT (so Z 
associates an automaton to each hole). Then T(~) is the automaton A given by: 

- states(A)= { ( s , z ) [ s  e states(T) and z maps holes i of T to states of Z(i)}, 
- start(A) = {(s, z)[ s e start(T) and z maps holes i of T to start states of Z(i)}, 
- acts(A) = acts(T), and 
- steps(A) is the least relation such that  

s' s ^ Vi: [if = •  t h e n  z'(i) = z(i) else z'(i) ~(i)z(,) z(i)] 

(s', z') : . a  (s, z). 

2.4 S u b s t i t u t l v i t y  

Now we state our substitutivity result for untimed action transducers. A relation 
R on a class of automata  A is substitutive for an action transducer T if for all 
automaton assignments ~, ~ for T with range A, 

Vm E colors(T): ~(m) R ~'(m) =r T(r R T(~'). 

An action transducer T is r-respecting if it satisfies the following constraints: 

1. For each state s and for each hole i that  is active in s, T contains a clearing step, 

i.e., a step s ((;,-~)} s. 

2. If s ~ ~ s and y(i) = % then s ~ ~ s is a clearing step for s ~ and i. 

3. Only finitely many holes participate in each step, i.e., if s' -~ s then {iIT(i) r 

is finite. 

T h e o r e m  1. The relations <, and < on automata are substitutive for all T-respecting 
action transducers. 

In the full paper we give an example to show that  <~, is not substitutive, even 
for T-respecting action transducers. The converse of Theorem 1 does not hold: there 
are many examples of non-r-respecting action transducers for which _<, and < are 
substitutive. 

2.5 E x a m p l e s  

We give examples of operations that  can be expressed as action transducers; these 
examples include variants of most of the usual operations considered in (untimed) 
process algebras ([8, 15, 5]). 

We first describe a number of conventions so that ,  in most cases, we do not have 
to specify the static part of transducers explicitly. Since we only use the ability to 
make copies of arguments in one of our operations, we adopt the convention that ,  
unless otherwise specified, the sets of holes and colors are equal, and the coloring 
function is the identity, of ten,  the set of holes will be an initial fragment { 1 , . . . ,  n} 
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of the natural numbers. All action transducers that  we define are parametrized by 
the actions sets of their arguments. By default, there are no restrictions on these 
action sets. The global action set of a transducer can be obtained by taking the set 
of all actions that  occur in steps of the transducer. Finally, the set Of active holes 
of a State will be implicitly defined as the set of holes that  participate in one of the 
steps starting from that  state. 

In our language, it is convenient to allow each external action to be structured 
as a nonempty finite set of labels. Sometimes, for uniformity, it will be convenient to 

identify ~- with the empty set. For each transducer T we define labels(T) a__ U ezt(T). 
Similarly we define, for each color m of T, labelsT(m) ~ U eztT(m). Often we will 
denote the singleton set {l} by the symbol l. 

The simplest action transducer is 5TOPn .  It is parametrized by a set H of 
actions, has no holes, no colors, no steps, just a single state, which is also start state. 

Transducer SKIP denotes the process that  terminates successfully. The transducer 
starts in state Sl, does action {~/} and then stops in state sz. 

Sl ~ s2 

Here ~/is a speciaJ label denoting successful termination. In accordance with this 
terminology, our language has been designed in such a way that no further transitions 
are possible after a transition whose label contains ~/. Also, ~/does not occur in the 
process language itself. 

For any nonempty set a of labels with ~ / r  a, transducer a starts in state sl,  
performs action a U {~/} and then stops in state s2. 

Sl aU~/} s2 

Transducer ";" describes the binary operation of sequential composition. This 
operation runs its first argument up to successful termination and then runs its 
second argument. The transducer has two states sl ,  sg., of which sl is the start  state, 
and steps (with $ denoting T): 

s, sl for C r a e  acts;(1) 

sl ~--%~(} s~. for X/ e a e acts;(1) {(1,~)} 

s2 ~ s2 for a E acts;(2) {C2,~)} 

Parametrized by an index set I ,  the ezternal choice operation [] waits for the first 
external action of any of its arguments and then runs that  argument. The transducer 
has distinct states sl, for each i E I ,  plus an additional state s, which is the only 
start  state. The steps are: 

s {(i,-~)} s for i E I 

s ~ s i f o r i 6 I A a 6  ezta(i) {(,,~)} 

sd {C~)} s~ for i E I A a E actsD(i) 
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Parametr ized by an index set I ,  t ransducer U takes the disjoint union of au toma ta  
indexed by I .  Operationally it behaves as the internal choice operation R of CSP 
[8]: the operation runs one, nondeterministically chosen argument.  6 For each i C I ,  
the transducer has a distinct state si, which is also a s tar t  state, and steps: 

si .-~ s i f o r i S I A a 6  actsu(i) {(,,~)} 

Transducer 1[, which is parametrized by a finite index set I ,  describes the opera- 
tion of parallel composition. The transducer has a single state s, which is the start  
state,  and steps: 

iV s ~ s f o r i  E I ((~,iV)} 

s -~ s for $ r a C Ujeilabelsii(j)A 

v i :  [~(~) = •  ^a  n labels , ( i )  = 0] V [~(i) = a n labelsll(i) e e~t , ( i ) ]  

We require tha t  X/is either in the label set of all arguments or in the label set of 
none of them. 

The postfix hiding operation \ L  hides all labels from the set L by removing them 
from the actions. The steps are (with 0 denoting T): 

s ~ s for a ~ acts\L(1) {(1,~)} 

For each function f on labels such that  f(l)  = ~/implies tha t  I = X/, we introduce 
a unary relabeling operation "f" tha t  renames actions of its argument  according to 
f .  The steps are (with f lifted to sets of labels and 0 denoting r ) :  

f(--~) s for a C actsf (1) s {(1,~)} 

Transducer ^ describes the binary interrupt operation of CSP. The transducer 
runs its first argument  until the second argument performs an external action; af- 
ter tha t  the first argument is disabled and the second argument  takes over. The 
transducer has two states sl ,  s2, of which sl is the start  state, and steps: 

s~ ( ( ~ ) }  s~ for a e acts^(1) 

Y 
Sl --~ Sl {(2,~-)} 

a 
s~ { ( ~ ) }  s2 for a ~ ezt^(~) 

s2 ~ s2 f o r a ~  acts^(2) {(2,,~)} 

In order to guarantee that  after a ~/-step no other transitions are possible, we require 
tha t  ~ / ~  labels^(1 ). 

s We have tried to use CSP notation where possible. However, here we have not followed 
CSP since we found it confusing to use an intersection-like symbol for the operation of 
disjoint union. 
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Now we describe a construct tha t  exploits the  ability of transducers to copy 
their arguments.  The construct is inspired by the process creation mechanism of the 
object-orlented language P O O L - T  [3]. Transducer CREATE(C,/ , . )  is parametrlzed 
by a set C of classes and a nonempty subset I C C of initial classes. The transducer 
takes colors from C. Initially the transducer s tarts  up a single instance of one of 
the initial classes. Then, each time some process does an action containing a label 
n e w ( X ) ,  for some class X ,  a new instance of X is created. Formally, the states of 
CREATE are finite multisets over C, i.e., functions M : C ~ N that  are 0 almost 
everywhere. The set of s tart  states of the transducer is { { X } I X  e I } ,  it takes holes 
from the set C x  N +, and the color of hole ( X , j )  is X.  The steps are (with ~ denoting 
r) :  

M "-{"~C-~ ))rG~ M U {Ylnew(r) E a} for M(X) > j A a E actSCREATE(X) {((x,j),,,)} 

The CREATE construct adds a lot of expressive power to our language, and plays 
a role similar to the recursion constructs in process algebras such as ACP [5], CCS 
[15] and CSP [8]. By an example we show how this construct allows us to specify 
arbi t rary  au tomata  inside our language up to isomorphism. As a useful notation, 

define 

a. X ~ a U {new(X)} ; STOP 

for X a class and a a nonempty set of non-new labels. Now the expression 7 

SWITCH ~= CREATE({OFF, ON}, {OFF}, 
O F F  ~ sw_on . O N  

O N  ~ sw_on . O N  [] sw_off  . O F F  ) 

denotes a finite au tomaton  tha t  describes an automat ic  switch off mechanism. The  
system allows a lamp to be switched on at any time; once it has been switched on, it 
can be switched off (automatically).  In Section 3 we will come back to this example 
and show how we can add real-time constraints to make it more interesting. 

Using the CREATE operation with a single a rgument ,  we can define the looping 
operation ~o, which restarts its argument  upon each successful termination.  

(A)" =" CREATE({X}, {X} ,  .f(A)), 

where f relabels ~ / t o  n e w ( X )  and leaves all other labels unchanged. 

Note tha t  all of the operations described in this subsection are r-respecting.  
Therefore, it follows from Theorem 1 tha t  the preorders <_. and _< are substitutive 
for all these operations. 

7 We warn the reader that, even though the notation we use here is very close to the 
standard notation in process algebra for systems of recursion equations, the operational 
semantics is quite different in the case of nonlinear systems. 
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3 The Timed Setting 

3.1 T i m e d  A u t o m a t a  

We use a slight variant of the timed automaton model from [12].8 A timed automaton 
A is an automaton whose set of actions is a superset of R +, the set of positive reals. 
Actions from R + are referred to as time-passage actions. We let d, d l , . . ,  range over 
time-passage actions and, more generally, over the set R of real numbers. The set 

of visible actions is defined by vis(A) a__ ezt(A) - R +. We assume tha t  a t imed 
au tomaton  satisfies the following axioms: 

S l  If  s I ~ s" and s" a_~ s, then s' ~+g' 
$2 If s '  ~ s then there exists a t rajectory from s' to s of length d. 

Here a trajectory from s' to s of length d is a function w : [0,d] -~ states(A) such 

that  w(O) = s', w(d) = s, and w(dl) d2y_,dl w(d2) for all dl,d2 e [0,d] with dl < d2. 

3.2 T i m e d  T r a c e s  

Suppose fl = aoala2 . . .  is a trace of a t imed au tomaton  A. For each i, we define the 

time of occurrence t~ of event a~ by: 

to = 0  

t~+l = i f  a~ E R + t h e n  ~ + a~ e lse  t~ 

The limit time os fl, notation fl.ltime, is the smallest element of R>-~ {oo } larger than 
or equal to (i.e., the supremum of) all the t~. The timed trace t-trace(fl) associated 

with fl is defined by: 

t-trace( ) (((a0, t0)( l,  l)(as, ")F(vis(A) • R->~  .Itime) 

So t-trace(fl) records the visible events of fl paired with their t ime of occurrence, as 
well as the limit t ime of the sequence. The above definitions are lifted to executions in 

the obvious way. For a an execution of A, a.ltime ~= trace(a).ltime and t-trace(s) = 
t.trace(trace(a)). Execution a is admissible if a.ltime = oo. 

A pair p is a timed trace of A if it is the t imed trace of some finite or admis- 
sible execution of A. Thus, we explicitly exclude the t imed traces tha t  originate 
from Zeno executions, i.e., infinite executions with a finite limit time. We write 
t-traces(A) for the set of all t imed traces of A, t-traces*(A) for the set of finite 
t imed traces, i.e., those that  originate from a finite execution, and t-traces~176 for 
the admissible t imed traces, i.e., those tha t  originate from an admissible execution. 

These notions induce three preorders on t imed automata:  A <t B ~ t-traces(A) C 
t-traces(B), A <_~, B ~= t-traees*(A) C t-traces*(B), and A <too B ~ t-traces~176 C 
t-traces~176 The kernels of these preorders are denoted by =-t, -,-t and =oo,-t re- 

spectively. 

s The difference is just the explicit indication of the amount of elapsed time in the time- 
passage action instead of using a .now function that associates the current time to a 

state. 
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3.3 Timed Action Transducers 

A timed action transducer T is a transducer with R + C acts(T)  and, for all colors 

m, R + _ C actsT(m). The sets of visible actions are defined by vis(T)  = ~ ez t (T)  - R + 

and, for all m, visT(m) ~= ezt~(m) - R +. We assume tha t  T satisfies the following 
axioms. 

T 1  If s ~ .~d s then 7/(i) = d for all i E aetiveT(s~). 

(As a consequence of axiom T1 ,  the trigger of a d step is fully determined. This 

justifies our convention below to write s ~ ~ s instead of s ~ ~ s). 
Y 

T 2  If s I -~ s and ~/(i) = d, then a = d. 

T 3  If s '  -~ s then active~,(s') = activeT(s). 

We also assume that  T satisfies the axioms S1 and S2 for t imed au toma ta  (with 
triggers added implicitly according to the convention above). 

An automaton assignment ~ for a t imed action transducer T is called timed if it 
maps each color to a t imed automaton.  

L e m m a 2 .  Suppose T is a timed action transducer and ~ is a timed automaton 
assignment for T. Then T(~) is a timed automaton. 

3.4 S u b s t i t u t i v i t y  

A t imed action transducer T is geno respecting if for each execution soalyls l  a2~12 " "  
of T in which the sum of the t ime passage actions in ala2 . . .  grows to oo, and for 
each hole i, either the sum of the time passage actions in ~/l( i)z/2(i) '"  grows to oo 
as well, or there exists an index n such tha t  ~}m(i) = 1  for all m ~> n. 

Transducers tha t  are not Zeno respecting can turn a Zeno execution of an ar- 
gument into a non-Zeno execution, by deactivating the argument  infinitely often 
while advancing time. Since t imed trace inclusion does not preserve Zeno traces, 
this means tha t  _<t will in general not be substitutive for such transducers.  However, 
we do have the following result. 

T h e o r e m 3 .  The relations <9. and <t on timed automata are substitutive for all 
Zeno- and r-respecting timed action transducers. 

3.5 Examples 

We give examples of operations that can be expressed as timed action transducers. 

Timed Transducers from Untimed Transducers An important collection of 
timed transducers can be obtained from untimed transducers. In this subsection we 
present a simple but important construction, essentially due to Nicollin and Sifakis 
[18], that transforms an untimed action transducer into a timed one, by inserting 
arbitrary time-passage steps. Suppose T is an (untimed) action transducer whose 
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sets of actions are disjoint with R +. Then the structure patient(T) is obtained from 
T by adding R + to all the action sets, and also adding, for each state s of T and 
e a c h d E  R + , a s t e p  

d 
S ---> S, where, for all i,~l(i ) = if i e activeT(s) t h e n  d else _L. 

It  is straightforward to check that  patient(T) is indeed a t imed action transducer.  
If T is T-respecting then patient(T) is not T-respecting in general. For instance, 

the transducer [] for external choice over an infinite index set of Section 2.5 is T- 
respecting, but its patient t imed version is not. The following simple lemma charac- 
terizes the situations in which the patient operation preserves the proper ty  of being 
T-respecting. 

L e m m a 4 .  Suppose T is a T-respecting action transducer whose sets of actions are 
disjoint with R +. Then patient(T) is Zeno respecting. Moreover, patient(T) is T- 
respecting iff in each state of T only finitely many holes are active. 

Except  for external choice over an infinite index set, all the patient t imed versions 
of the transducers of Section 2.5 are T-respecting, by Lemma 4. Thus, by Theorem 
3, the t imed trace preorders <t. and <t are substitutive for the patient variants of 
all the transducers of Section 2.5 except for infinitary external choice. 

The t imed transducers obtained by the patient construction turn out to be quite 
useful, so in the subsequent sections we will adopt  the convention that  T means 
patient(T) for any of the transducers of Section 2.5. 

T i m e r s  We consider a set X of timer variables, ranged over by x, y, . . . .  The set of 
timer constraints r is defined inductively by: 

r 1 6 2  

Note tha t  constraints such as true, 5 < 4, x > d, x E [2,5) can be defined as 
abbreviations. 

A time assignment ~ : X ~ R >~ assigns a nonnegative real value to each t imer 
variable. We say tha t  a t ime assignment ~ for satisfies a t imer constraint r notat ion 

~ r iff r evaluates to true using the values given by ~. We say tha t  r is a tautology 
iff for all t ime assignments ~, ~ ~ ~b. We say that  r is satisfiable iff there exists a 
t ime assignment ~ such tha t  ~ ~ r We denote by ~b[d/z] the formula obtained from 
r by replacing all occurrences of z by d. 

The transducer TIMER~ models the behavior of a t imer called x. The argument 
d E R >~ U {cr gives a bound beyond which t ime cannot proceed. ~ The s tate  set 
of the transducer is R >~ x (R >~ U {co}) and the initial s tate is (0, d). There is just  
one argument,  tha t  is, one hole and one color. The argument can reset t imer z at 

s For simplicity, we do not consider timers with strict bounds. Such timers can be defined 
by parametrizing the transducer with an additional boolean that tells whether the time 
bound is strict or not. Alternatively, one can follow a suggestion of Abadi and Lamport 
[1], and introduce, as additional elements of the time domain, the set of all 'infinitesimally 
shifted' real numbers r - ,  where t < r -  iff t < r, for any reals t and r. 
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any moment via a label z := 0; similarly the upper bound can be modified via a 
label z :< d. Besides assigning values to the timer, an automaton can use timer 
constraints as labels to test the values of the various timers in whose scope it occurs. 
TIMER~ has, for instance, a step 

(10.5,10), (1, 10) {(1,~.5)}a'5 (9.5, 10), but not a step (1, 10) {(1,9-'~.s)} 

because that  would violate the time bound. If a = {sw_off,9 < =,= < 10, z :< oo} 
and b = {sw_off}, then TIMER~ also has a step 

b (1, o~) (9.5, 10) b (9.5,oo), but not a step (1, 10) {(1,-~)} {0,~)} 

since a contains a constraint 9 < x. 
In order to define the step relation formally it is convenient to define some auxil- 

iary functions. For x a timer, dl, d2 E R + and a a set of labels, v4(x, dl, a) is obtained 
from a by first removing all labels x := 0 and x :< d (for all d) then replacing each 
time constraint r in a by r and finally removing all tautologies from the result, 
We say A(x, dl, a) is satisfiable if all time constraints contained in it are satisfiable. 
We also define 

])(:c, dl, a) ~ = if  z :-- 0 E a t h e n  0 else dl, 

B(x, d2, a) ~ if  {dlx :g d E a} - 0 t h e n  d2 else min{dlx :< d E a}. 

Now the steps of TIMER~ can be defined by (with 0 denoting r):  

a (dl + d, d2) for dl + d < d2, (d~, d2) {(~)} 

b (])(z, dl a), S(z,  d2, a)) for b = M(x, dl, a) satisfiable. (dl, d2) ((1,-~)} 

The reader can easily check that  TIMER,~ is Zeno- and r-respecting. Thus relations 
<t, and _<t are substitutive for this transducer. 

Our definition of a timer is similar to the one proposed by Alur and Dill [2] for 
their timed w-automata. However, instead of a Biichi style acceptance criterion we 
use bounds to specify urgency, i.e., properties that  say that  certain actions must 
occur at a certain time. We suppose that  for some applications, it will be useful 
to have a more general definition. One can, for instance, extend the set of time 
constraints with formulas like x 4- y < 1, or allow for assignments of the form 
x := y 4- 4, or introduce operations that  ask the timer to emit its current time. 
The important point here is that  explicit timers constitute an important and useful 
construct in real-time process algebra. Our specific choice of operations is just an 
example, subject to modification. 
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A T i m e d  P r o c e s s  A l g e b r a  We think that a reasonable proposal for a timed pro- 
cess algebra might include only (1) the timed transducers obtained by applying the 
patient operation to the untimed transducers discussed earlier, and (2) the timers 
described above. A justification for this is that  these are sufficient to implement all 
the other timed operators we have thought of. In this section, we give some of these 
derivations. 

Using a single timer, we can define the process WAIT d of Timed CSP [21, 7], 
which waits time d and then terminates successfully. 

WAITd ~ TIMER~(:~ = d) 

More generally, we can specify a process that  terminates successfully after waiting 
some nondeterministically chosen time from the closed interval [dl, d2]. 

WAIT [dz,d2] ~ TIMER~(x  > dl) 

Using a timer with deadline 0, we can restrict any automaton to its behavior at time 
0. We define 

A ~ TIMERS(A) 

The above construction is useful for defining the timeout construct of Timed CSP. 
For a given delay d this operator is defined, as in [7], by 

d z~ 
A 1> B = (A [] (WAIT d ; abort ; B) ) \ {abor t}  

If, at time d, A has not performed any visible action, an interrupt occurs and au- 
tomaton B is started. Note that  we need the auxiliary label abort (not in the label 
set of A and B) to force the choice between A and B at time d. 

The execution delay operator of ATP [17] is given by: 

FAll(B) -" (TIMER~((A ^ ({abort, x = d} ; B)) l lV)) \{abort ,  cancel} 

where C ={cance l ,  x :< oo} ;STOP [] {abort, x :< oo} ; SKIP 

lAId(B) behaves as A until time d; at time d, A is interrupted and B is started. 
However, if A performs a special label cancel, then the interrupt is cancelled and 
A can continue to run forever. The auxiliary process C takes care that  once A has 
done cancel, it can no longer be interrupted by B. Also C removes deadline d after 
a cancel or abort action. We assume that  A and B do not have abort in their label 
set, nor any label referring to timer x. For simplicity we also assume that  A does 
not contain the termination symbol ~/. The labels cancel and abort are hidden so 
that  they cannot communicate with any other action. A minor difference between 
our execution delay operator and the one from ATP is that  ours allows machine A 
to perform visible actions at time d. 

As an illustration of the use of the timed operators presented thus far, we specify 
a timed version of the automatic switch-off mechanism we described in Section 2.5. 
The system allows a lamp to be switched on at any time; then between 9 and 10 
time units after the last time the lamp has been switched on, it will be switched of[. 

T _ S W I T C H  ~ TIMER~o(CREATE({OFF, ON} ,  { O F F } ,  
O F F  ~ {sw_on,x  := 0, x :< 10} . O N  

O N  H {sw_on, x := 0 } .  O N  [] {sw_o.O',9 < x < 10,~ :_< oo} .  O F F  )) 



451 

C o u n t e r e x a m p l e s  Although the converse of Theorem 3 does not hold, our result 
appears to be quite sharp: for many examples of timed transducers that are not T- 
respecting~ the timed trace preorders are indeed not substitutive. The best example 
is the CCS-like choice operator + that plays a dominant role in many real-time 
process calculi (TCCS [16], the timed extension of CCS proposed in [23], ATP [17], 
and ACPp [4]). This operator can be viewed as the patient version of the choice 
operator from CCS. Relation < .  is not substitutive for -t- because 

WAIT 2 + WAIT 1.5 2~, (WAIT 1 ; WAIT 1) + WAIT 1.5 

The first process will always terminate at time 1.5, whereas the second process will 
always terminate at time 2. 

4 Nontrlviality of Implementations 

As explained in the Introduction, we exclude trivial implementations by distinguish- 
ing input and output actions and requiring implementations to be input enabled and 
I/O feasible. In a process algebraic setting, a natural way to prove the property r a 
input enabled ^ I/O feasible, is to describe a timed automaton purely in terms of 
operators that preserve some property r that implies r In this section we describe 
such a r fie, a property that implies input enabledness and I /O feasibility and that 
is preserved by an interesting class of operators. 

We begin by defining timed I/O automata and I/O feasibility. 

4.1 T i m e d  I / O  A u t o m a t a  

A timed I/O automaton A is an timed automaton together with a set inp(A) 
vis(A) of input actions. We require that input actions always be enabled~ i.e,  for 
each state s and for each a E inp(A) there is a step s -~A s t. 

We define the set out(A) of output actions by out(A) ~- vis(A) - inp(A), and the 
set loc(A) of locally controlled actions by loc(A) ~= out(A)U{r). A step s' -~ s is said 
to be under control of A if a E loc(A). By t-AUT(A) we denote the timed automaton 
that underlies timed I /O automaton A. Conversely, for each timed automaton A and 
IN  C vis(A) a set of actions that are enabled in each state of A, IO~N(A) denotes 
the corresponding timed I /O automaton. 

Timed I /O automata constitute a variant of the I /O automata model of Lynch 
and Tuttle [11] within our timed setting. 1~ 

4.2 I/O Feasibility 

A timed I /O automaton is I /O feasible if each finite execution can be extended 
to an admissible execution via an execution fragment that does not contain input 
actions. I /O feasibility strengthens the notion of feasibility used in [13, 12], which 
simply requires that each finite execution can be extended to an admissible one. 

10 They do not include the class structure, used in I/O automata to model fairness. 
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This means that  all the results of [13, 12] for feasible automata  are valid for I /O  
feasible automata.  However, the requirement of feasibility is too weak to exclude 
trivial implementations, because it may be that a feasible implementation can only 
produce an admissible execution in case the environment provides certains inputs. 
Thus if the environment does not offer these inputs, a Zeno execution is produced. To 
illustrate the problem, we consider as a specification the timed switch of the previous 
section, with as additional "feature" that  it can break down at any moment and stop 
functioning: 

IO{ . . . . . .  b~_dow~}( T_EWITCH ^ (br_down ; (sw_on [] br_down)~ 

This specification is implemented by the following feasible timed I /O  automaton: 

. . . .  ^ (br_do n ;(s _on [] br_do n) )) 

But this is an undesirable implementation because, first, the machine will never 
turn the switch off, even if no breakdown occurs, and moreover, the machine will 
not allow time to advance unless there is an immediate breakdown. The notion of 
I /O  feasibility excludes this type of implementation. 

4.3 T i m e d  I / O  T r a n s d u c e r s  

An I /O automaton should always be willing to engage in input actions, because 
these are thought of as being under the control of the environment. When defining 
operations on I /O automata,  it is natural to require, as a dual property, that  the 
environment (i.e., the operation) cannot block output actions, as these are under 
the control of the automata.  In the untimed setting the nonblocking condition for 
outputs can be motivated technically because it is needed to obtain substitutivity of 
the quiescent and fair trace preorders [22]. Interestingly, the nonblocking condition 
also has a technical motivation in the timed case, but a different one: it is needed 
to preserve I /O feasibility. To illustrate this, we consider a trivial example of two 
I / O  feasible timed I /O  automata,  A and B, whose parallel composition is not I /O  

feasible. 
A = IO~((WAIT l ; t iek)  ~') B = IO~(STOP(t~ck} )  

Machine A describes a perfect clock that  perform a tick action after each unit of 
time. Machine B does nothing except allow time to pass. Both machines are trivially 
input enabled (since there are no i n p u t s ) a n d  I /O feasible. Still, in the parallel 
composition AI[B, time cannot proceed past 1, because B refuses to synchronize 
with the output  action of A. Time deadlocks like this can be avoided if we do not 
allow for contexts (environments) that can block output  actions. This leads us to 
the following definition. 

A timed I/O transducer T is a timed transducer together with a set inp(T) C 
vis(T) and, for each m, a set inpT(m) C_ vis~.(m). Analogous to the automaton case, 

we define derived sets out(T) ~ vis(T) - inp(T), loc(T) ~ out(T) U {~-}, and, for 

each m, outT(m) ~ visT(m) -- inpT(m) and locT(m) ~ outT(m) U {~-}. We require 

- Input enabling. For all states s and for all a E inp(T), T has a step s ~* s I, such 

that ,  for all i, ~/(i) e inpT(e-mapT(i)) U {_L}. 
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- No output blocking. For all states s, all active holes i of s, and all actions a E 

outT(c-mapT(i)), T has a step s b s', with b 6 loc(T), rl(i ) a ,  and, for all 

i' r i, ~l(i') E inpr(e-mapr(i ')) U {_L}. 

By t -TRANS(T)  we denote the timed action transducer that  underlies timed I /O  

transducer T. We say that  a step s' -~ s is under control of T if a E loc(T) and for 

all i, r/(i) E inpr(c-mapT(i)) U {2}. 

The conditions of input enabling and no output blocking for timed action trans- 
ducers are direct translations of similar constraints presented in [22]. An important 
example of a timed I /O transducer can be obtained by taking the patient version 
of the composition operation of the I /O automaton model [11]. In fact, this oper- 
ation can be viewed as a special case of of our parallel composition operator with 
additional requirements on the action sets of the arguments. These requirements 
are: (i) all visible actions are singletons, (2) the sets of output actions of different 
arguments are disjoint. The input actions of the composition are then defined as the 
union of the input actions of the arguments minus the union of the output actions 
of the arguments. 

Suppose T is a timed I /O transducer. A timed I /O automaton assignment for T 
is a function ff that  maps each color m of T to a timed I / 0  automaton in such a way 
that  inp(i(m)) = inpr(m). Let T be a timed I /O transducer and let r be a timed 
I /O automaton assignment for T. Then we define T(~) to be the structure A given 

by t-AUT(A) ~ t -TRANS(T) ( t -TRANS o i )  and inp(A) ~= inp(T). 

L e m m a S .  Let T be a timed I /O transducer and let ~ be a timed I /O automaton 
assignment f o r  T. Then T(C) is a timed I /O automaton. 

4 . 4  Feas ib i l i ty  R e v i s i t e d  

It turns out that  I /O feasibility is not preserved by parallel composition. Consider 
the following two timed I /O automata, n 

F A S T _ S W I T C H  
O F F  

ON 

~- IO{.,._o.} (CREATE({OFF, ON}, {OFF}, 
ST_On. ON 
ST_On. ON [] ST_Off . O F F  )) 

F A S T _ U S E R  
O F F  ~-. 

ON 

The first expression denotes 

IO{,,~_off } (CREATE( {OFF ,  ON}, {OFF}, 
sw_on . O N  [] sw_off . OFF 
s,~_o.ff . O F F  )) 

a fast version of the timed switch of Section 3: each 

time the switch gets turned on the machine turns it off immediately. The second 
expression describes a fast user of this switch, who initially turns the switch on, and 
then, each time it goes off, immediately turns it on again. Both systems are I /O  

i i  A similar example is given by Abadi and Lamport [1]. 
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feasible, but their parallel composition is not. The problem arises from the ability of 
both systems to respond immediately to a given input. One way to avoid this problem 
is to introduce a system delay constant, as in in Timed CSP: a minimum amount 
of time that  has to pass between each pair of locally controlled actions. However, 
this seems too drastic and artificial to us, and the extra constants would probably 
complicate the task of analyzing system timing behavior. Fortunately, system delays 
are not needed to preserve I /O feasibility. Instead the following conditions suffice. 

A timed I /O automaton A is strongly I /O feasible if it is I /O feasible and time 
grows unboundedly in any execution that  contains infinitely many steps that  are 
under control of A. This generalizes to transducers as follows. A timed I /O transducer 
T is I /O feasible if each finite execution can be extended to an admissible execution 
via an execution fragment that contains only time-passage steps and steps that  are 
under the control of the transducer. T is strongly I /O feasible if in addition: 

1. In any execution that  contains infinitely many steps that  are under control of 
T, time grows unboundedly. 

2. In any execution for which the union over all states of their sets of active holes 
is infinite, time grows unboundedly. 

The second condition is needed to exclude situations in which, each time an input 
arrives, a new machine is activated to produce an immediate output. We have the 
following result: 

T h e o r e m  6. Suppose T is a strongly I /O feasible timed I / 0  transducer and ~ is 
a timed I /O automaton assignment for T that maps each color of T to a strongly 
I /O feasible timed I /O automaton. Then T(~) is a strongly I /O feasible timed I /O 
automaton. 

Note that  the timer construct proposed above is not strongly I /O feasible, because 
it does not permit time to pass beyond its upper bound. However, the timed I /O 
transducer for parallel composition is strongly I /O feasible. 

As a topic for future research it remains to find a collection of strongly I /O  
feasible I /O transducers that  is sufficiently expressive to describe implementations of 
real-time systems. Ideally, these action transducers would be defined in terms of the 
action transducers of Section 3. Process algebraic and/or  assertional proof techniques 
could then be applied to prove that  a system described in terms of feasible I /O 
transducers implements a system described in terms of the higher-level primitives of 

Section 3. 
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