
A c t i o n T r a n s d u c e r s a n d T i m e d A u t o m a t a *

Frits Vaandrager 1 ** and Nancy Lynch 2

1 Department of Software Technology, CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

frltsvOcwi.nl
2 MIT Laboratory for Computer Science

Cambridge, MA 02139, USA
)ynch�9

Abst rac t . The timed automaton .model of [13, 12] is a general model for
timing-based systems. A notion of timed action transducer is here defined as
an automata-theoretic way of representing operations on timed automata.
It is shown that two timed trace inclusion relations are substitutive with
respect to operations that can be described by timed action transducers.
Examples are given of operations that can be described in this way, and
a preliminary proposal is given for an appropriate language of operators
for describing timing-based systems. Finally, justification is given for the
definition of implementation based on inclusion of timed trace sets; this is
done in terms or a notion of feasibility which says that a timed automaton
cannot prevent the passage of time.

1 Introduction

The timed automaton model of [13, 12] is a general model for timing-based systems.
It is intended as a basis for formal reasoning about such systems, in particular,
for verification of their correctness and for analysis of their complexity. In [13, t2],
we develop a full range of simulation proof methods for t imed automata; in this
paper, we continue the development by studying prvcess algebras for the same model.
Eventually, we envision using a combination of proof methods, perhaps even using
several in the verification of single system,

A timed automaton ' is an automaton (or labelled transition system) with some
additionM structure. There are three types of actions: time-passage actions~ visible
actions and the special internal action T. All except the time-passage actions are
thought of as occurring instantaneously. To specify times, a dense time domain is
used, specificalty~ the nonnegative reals, and no lower bounds are imposed on the
times between events. Two notions of external behavior are considered. First, as
the finite behaviors, we take the finite timed traces, each of which consists of a
finite sequence of timed visible actions together with a final time. Second, as the

* This work was supported by ONR contracts N00014-85-K-0168 and N00014-91-J-1988,
by NSF grant CCR-8915206, and by DARPA contract N0O014-89-J-1988.

** Most of the work on this paper was done while the first author was employed by the
Ecole des Mines, CMA, Sophia Antipolis, France.

437

infinite behaviors, we take the admissible timed traces, each of which consists of a
sequence of timed visible actions that can occur in an execution in which time grows
unboundedly.

The timed automaton model permits description of algorithms and systems at
different levels of abstraction. We say that a "low-level" timed automaton A imple-
ments a "high-level" timed automaton B if the sets of finite and admissible timed
traces of A are included in the corresponding sets of B. To justify this notion of
implementation, we must argue that the timed trace sets for A are not trivial. We
can do this by classifying the visible actions of A as input actions or output actions,
as in the I /O automaton model of [11]. We then require A to be input enabled, i.e.,
willing to accept each input action in each state, and I/O feasible, which means that
each finite execution can be extended to an admissible execution via an execution
fragment that contains no input actions. If A is input enabled and I /O feasible, then
it can generate an admissible execution for any ."non-Zeno" pattern of inputs, as
follows. A starts with an admissible execution containing no inputs. When an input
arrives, A performs a transition labelled by that input and continues from the re-
sulting state with another admissible execution fragment containing no inputs until
the next input arrives, etc. Thus, A must have a rich set of admissible timed traces.

In the Lclassical' untimed case, bisimulation equivalences have been reasonably
successful as a notion of implementation between transition systems [5, 15]. Conse-
quently, bisimulation equivalences have also been put forward as a central notion in
many studies on real-time process algebras [4, 9, 16, 17, 23]. However, we do not
believe that bisimulation equivalences will be very useful as implementation rela-
tions in the timed case. The problem is that bisimulation equivalences do not allow
one to abstract in specifications from the often very complex timing behavior of
implementations (see [9] for an example).

Often, the design or verification of an algorithm includes several levels of abstrac-
tion, each of which implements the one above it. Note that it is only necessary to
show that the trace sets at the lowest level are nontrivial. Thus, only at the lowest
level does one require the I /O classification with its accompanying properties of in-
put enabledness and I /O feasibility. Fortunately, at this level, the two properties are
generally quite easy to achieve, since they correspond to the receptive and non-Zeno
nature of physical machines.

Since we believe that timed trace inclusion does form a good notion of imple-
mentation, we are interested in identifying operations on timed automata for which
the timed trace inclusion relation is substitutive. This substitutivity is a prerequisite
for the compositional verification of systems using timed automata. It should also
enable verification of systems using a combination of compositional methods and
methods based on levels of abstraction.

We represent operations by automaton-like objects that we call action trans-
ducers, rather than, for example, using SOS specifications [20]. The importance of
transducers for process algebra and concurrency theory was first noted by Larsen
and Xinxin [10], who introduced a certain type of transducer, which they called a
context system, to study compositionality questions in the setting of process alge-
bra. For an example of an action transducer, consider the operation III of interleaving
parallel composition. It can be described by an automaton with a single State s and

438

transitions (one for each action a):

S --+ 8 a n d $4 $.
(I,,0 (~-,~)

The left transition says that if the first argument performs an a-action the composi-
tion will also perform an a-action, while the right transition says that if the second
argument performs an a-action the composition will also perform an a-action. To-
gether, the transitions say that the automaton A]1] B can do an a-step whenever
one of its arguments can do so. In the SOS approach, the same operator]H can be
described by inference rules (one for each action a):

x -~ x' y _~ ys
and

ill v 2, =' ili v = [ii v �9 Ht y'"

The two styles of describing operators, SOS and action transducers, are quite similar.
However, action transducers are more convenient for our purposes. First, al-

though it is easy to see how SOS specifications determine automata, it is less clear
how to regard them as defining operations on automata. For action transducers, this
correspondence is more direct. Second, as noted by Larsen and Xinxin [i0], action
transducers are a convenient tool for studying compositionality questions, and their
use tends to simplify proofs. Third, action transducers can easily be defined to allow
multiple start states. Multiple start states have turned out to be useful in untimed
automaton formalisms for concurrency such as the I /O automaton model, and we
would like to include them. We do not know how to handle start states in the setting
of SOS.

A major result of our paper is that the timed trace inclusion relation is substitu-
tive with respect to all operations that can be described by our action transducers,
provided they satisfy a number of conditions that concern the handling of internal
and time-passage steps.

A condition that is required of our action transducers for timed automata is that
time passes uniformly (i.e., at the same rate) for the transducer and all active holes,
and it does not pass at all for the inactive holes. This uniformity condition (along
with some other technical constra2nts) is used in our proof of substitutivity. We note
that this time uniformity condition is not necessary for substitutivity to hold. For
instance, the timed trace inclusion relation is substitutive for a %peedup" operation
that doubles the rate at which its timed automaton argument operates. However,
we do not have a clean generalization of the uniformity condition that applies to the
speedup operation and still guarantees substitutivity.

Having proved substitutivity for a general class of operations, we describe many
examples of specific operations that fall into this class. In our view, an appropriate
language for describing timing-based systems should consist of a small number of
basic operations, both timed and untimed, out of which more complex operations
can be built. The basic and derived operations together should be sufficient to de-
scribe most interesting timing-based systems. As a starting point, we believe that
such a language ought to include the basic untimed operations that are already

439

well understood and generally accepted. Nicollin and Sifakis [18] describe a simple
and general construction to transform any untimed operation into a timed one that
behaves essentially the same and moreover does not use or constrain the time. By
applying this construction to the well-known untimed operations, we obtain a col-
lection of corresponding timed operations that we believe should be included in a
real-time process language.

The untimed operations alone are not enough, however; a real-time process lan-
guage also must include operations that constrain time explicitly. Of the many pos-
sibilities, we would like to identify only one or two that can be used for constructing
all the others. For this purpose, we tentatively propose a timer operation, derived
from Alur and Dill [2]. Using only this timer operation and untimed operations, we
can construct the timeout construct of Timed CSP [21, 7], and the execution delay
operation of ATP [17]. Also, because this timer operation is derived from [2], we are
able to use it to define a minor variant of Alur and Dill's w-automata. Moreover,
we can also use it to define the timed automata of Merritt, Modugno and Turtle
[14]. All of this provides evidence that our timer (or something very similar) may be
appropriate to use as the sole timed operation in a real-time process language.

The decidability and closure properties of Alur-Dill automata suggest that they
can be regarded as a real-time analog of classical finite automata. In the untimed
setting, a crucial characteristic of algebras like CCS is t h a t they can easily describe
finite automata. Thus by analogy, a natural requirement for a real-time process lan-
guage is that it can easily describe Alur-Dill automata. Nicollin, Sifakis and Yovine
[19] give a translation from ATP into Alur-Dill automata, but do not investigate the
reverse translation. In fact it appears that, besides our language, only the BPArpSI-
language of Baeten and Bergstra [4] is sufficiently expressive to allow for a direct
encoding of Alur-Dill automata.

As discussed earlier, the appropriateness of the timed trace inclusion relation as
a notion of implementation depends upon the lowest level implementation satisfying
the input enabling and I /O feasibility properties. In the final section of our paper, we
address the question of how to ensure that these properties hold. Although the input
enabling condition can be required explicitly, I /O feasibility will typically require a
proof. Since we envision the lowest level implementation being described in terms of
operators from our real-time language, the way we would like to prove I /O feasibility
is by proving it for the basic components and arguing that it is preserved by each
of the operators. But examples (e.g., one studied in [1]) show that I /O feasibility
is not preserved, e.g., by parallel composition. Therefore, we propose a condition,
which we call strong I/O feasibility, which implies I /O feasibility, is preserved by
operations expressed appropriately as timed action transducers, and appears to be
satisfied by "low-level" automata, i.e., those that are close to physical machines.
This condition can be used as the basis of a proof method for demonstrating I /O
feasibility of implementations.

We present our definitions and results for timed systems by first presenting re-
lated definitions and results for untimed systems, and then building upon those
wherever we can.

In summary, the main contributions of the paper are: (1) the definitions of action
transducers and timed action transducers, (2) the substitutivity results for traces and

440

t imed traces, (3) the notion of strong I / O feasibility, (4) the presentation of a large
number of interesting operators, t imed and untimed, as action transducers, and (5)
a preliminary proposal for a process language for t imed systems. We see these all as
pieces of a unified proof methodology for t imed systems.

2 T h e U n t i m e d S e t t i n g

We begin by describing action transducers for the untimed setting. Later, the con-
cepts needed for the t imed setting will be defined in terms of corresponding concepts
for the untimed setting.

2.1 A u t o m a t a a n d T r a c e s

An (untimed) automaton A consists of:

- a set states(A) of states,
- a nonempty set start(A) C states(A) of start states,
- a set acts(A) of actions tha t includes the internal action T, and
- a set steps(A) C states(A) • acts(A) • states(A) of steps.

We let s, s ' , u, ul,.. range over states, and a,.. over actions. The set ext(A) of external

actions is defined by ext(A) ~ acts(A) - {~-}. We write s ' -~A s as a shorthand for
(s', a ,s) E steps(A). We will suppress the subscript A where no confusion is likely.
An execution fragment of A is a finite or infinite al ternating sequence soalsla2s2 " "
of states and actions of A, beginning with a state, and if it is finite also ending with

a state, such tha t for all i, s{ ~1~ 1 s{+l. An execution of A is an execution fragment

tha t begins with a s tar t state.
For cl = soalsla~.s2 "" an execution trace(c~) is defined as the sequence obtained

from ala2 "" by removing all T'S. A finite or infinite sequence fl of actions is a trace
of A if A has an execution a with fl = trace (a). We write traces* (A), traces ~ (A) and
traces(A) for the sets of finite, infinite and all traces of A, respectively. These notions

induce three preorders on automata: we define A <. B ~ traees*(A) C traces*(B),
A <~, B ~ traces~(A) C_ traces~(B), and A < S ~ traces(A) C traces(B).

2.2 A c t i o n T r a n s d u c e r s

We now define a notion of action transducer, as an explicit representation of certain
extensional operations on automata . We consider operations with a possibly infinite
set of arguments. As placeholders for these arguments, an action transducer contains
a set of colors. Sometimes we will find it useful to make several copies of an argument
automaton.~ 4 To this end a transducer is equipped with a set of holes, and a

3 The idea of copying arguments of transducers is not present in the work of Larsen and
Xinxin [10].

4 Note that, since we always start copies of an argument automaton from a start state,
our copying operations are different from those of Bloom, Istrail and Meyer [6], which
also allow copying from intermediate states. As a consequencej the trace preorder is
substitutive for our operations, whereas it is not substitutive in general for the operations

of [6].

441

mapping that associates a color to each hole. The idea is that we plug into each
hole the argument automaton for which the color of the hole serves as placeholder.
As a useful analogy one can consider the way in which a term with free variables
determines an operation on terms: here the variables play the role of colors, and
the occurrences of variables serve as holes. As the rest of its "static" description, a
transducer has an associated global set of actions, and, for each color, a local set
of actions. The "dynamic" part of a transducer is essentially an automaton: a set
of states, a nonempty set of start states, and a step relation. The elements of the
step relation are 4-tuples of source state, action, trigger and target state. Here the
trigger is a function that tells, for each hole, whether the argument automaton in
that hole is supposed to idle, or whether it has to participate in the step, and if so
by which action. Finally, each state of the transducer has an associated set of active
holes, and these are the only ones that can participate in the steps from that state.
Formally, an (action) transducer T consists of:

- a set states(T) of states,
- a nonempty set start(T) C states(T) of start states,
- a set holes(T) of holes,
- for each state s, a set activeT(s) C holes(T) of holes that are active in s,

- a set colors(T) of colors,
- a map c-inapT : holes(T) -~ colors(T), the coloring of the holes,
- a set acts(T) of actions that includes T,
-- for each color m, a set actsT(m) of actions that includes %
- a set steps(T) C states(T)x acts(T)xtriggers(T)xstates(T), where triggers(T)

is the set of maps y : holes(T) --~ (Urn actsT(m) U {.l_}) such that , for all i,
~(i) e aetsT(e:mapT(i)) U {_L}. We require that if (s' ,a,y,s) e steps(T) and
y(i) r then i e activeT(s').

We define the sets of ezternal actions of T by ezt(T) a__ acts(T) - {~-}, and, for each

m, e~tT(m) ~ actsT(m) -- {~-}. We write s' ~ T s instead of (s',a,~7, s) e steps(T).

We call s ~ the source of the step, s the target, a the action, and y the trigger.
Often we will suppress the subscript T. We often represent a trigger 7/ by the set
{(i,a) IT(i) = a # • An execution fragment of T is a finite or infinite alternating
sequence c~ = soal~71sla2~2s2"" of states, actions and triggers of T, beginning with

a state, and if it is finite also ending with a state, such that for all i, sl ~.~1 s~+l. An
r / i+l

execution of T is an execution fragment that begins with a start state.
We view action transducers as a generalization of automata. Thus we will fre-

quently identify an action transducer having an empty set of holes with its underlying

automaton.

2.3 C o m b i n i n g T r a n s d u c e r s a n d A u t o m a t a

We now define the meaning of a transducer as an operation on automata. 5 First,
define an automaton assignment for T to be a function ~ that maps each color m

s In fact, it is often useful to interpret transducers in a more general (and somewhat more
complex) way, as operations on transducers.

442

of T to an automaton in such a way that acts(~(m)) = actsT(m). Suppose ~ is
an automaton assignment for T, and let Z be the composition ~ o c-inapT (so Z
associates an automaton to each hole). Then T(~) is the automaton A given by:

- states(A)= { (s , z) [s e states(T) and z maps holes i of T to states of Z(i)},
- start(A) = {(s, z)[s e start(T) and z maps holes i of T to start states of Z(i)},
- acts(A) = acts(T), and
- steps(A) is the least relation such that

s' s ^ Vi: [if = • t h e n z'(i) = z(i) else z'(i) ~(i)z(,) z(i)]

(s', z') : . a (s, z).

2.4 S u b s t i t u t l v i t y

Now we state our substitutivity result for untimed action transducers. A relation
R on a class of automata A is substitutive for an action transducer T if for all
automaton assignments ~, ~ for T with range A,

Vm E colors(T): ~(m) R ~'(m) =r T(r R T(~').

An action transducer T is r-respecting if it satisfies the following constraints:

1. For each state s and for each hole i that is active in s, T contains a clearing step,

i.e., a step s ((;,-~)} s.

2. If s ~ ~ s and y(i) = % then s ~ ~ s is a clearing step for s ~ and i.

3. Only finitely many holes participate in each step, i.e., if s' -~ s then {iIT(i) r

is finite.

T h e o r e m 1. The relations <, and < on automata are substitutive for all T-respecting
action transducers.

In the full paper we give an example to show that <~, is not substitutive, even
for T-respecting action transducers. The converse of Theorem 1 does not hold: there
are many examples of non-r-respecting action transducers for which _<, and < are
substitutive.

2.5 E x a m p l e s

We give examples of operations that can be expressed as action transducers; these
examples include variants of most of the usual operations considered in (untimed)
process algebras ([8, 15, 5]).

We first describe a number of conventions so that , in most cases, we do not have
to specify the static part of transducers explicitly. Since we only use the ability to
make copies of arguments in one of our operations, we adopt the convention that ,
unless otherwise specified, the sets of holes and colors are equal, and the coloring
function is the identity, of ten, the set of holes will be an initial fragment { 1 , . . . , n}

443

of the natural numbers. All action transducers that we define are parametrized by
the actions sets of their arguments. By default, there are no restrictions on these
action sets. The global action set of a transducer can be obtained by taking the set
of all actions that occur in steps of the transducer. Finally, the set Of active holes
of a State will be implicitly defined as the set of holes that participate in one of the
steps starting from that state.

In our language, it is convenient to allow each external action to be structured
as a nonempty finite set of labels. Sometimes, for uniformity, it will be convenient to

identify ~- with the empty set. For each transducer T we define labels(T) a__ U ezt(T).
Similarly we define, for each color m of T, labelsT(m) ~ U eztT(m). Often we will
denote the singleton set {l} by the symbol l.

The simplest action transducer is 5TOPn . It is parametrized by a set H of
actions, has no holes, no colors, no steps, just a single state, which is also start state.

Transducer SKIP denotes the process that terminates successfully. The transducer
starts in state Sl, does action {~/} and then stops in state sz.

Sl ~ s2

Here ~/is a speciaJ label denoting successful termination. In accordance with this
terminology, our language has been designed in such a way that no further transitions
are possible after a transition whose label contains ~/. Also, ~/does not occur in the
process language itself.

For any nonempty set a of labels with ~ / r a, transducer a starts in state sl,
performs action a U {~/} and then stops in state s2.

Sl aU~/} s2

Transducer ";" describes the binary operation of sequential composition. This
operation runs its first argument up to successful termination and then runs its
second argument. The transducer has two states sl , sg., of which sl is the start state,
and steps (with $ denoting T):

s, sl for C r a e acts;(1)

sl ~--%~(} s~. for X/ e a e acts;(1) {(1,~)}

s2 ~ s2 for a E acts;(2) {C2,~)}

Parametrized by an index set I , the ezternal choice operation [] waits for the first
external action of any of its arguments and then runs that argument. The transducer
has distinct states sl, for each i E I , plus an additional state s, which is the only
start state. The steps are:

s {(i,-~)} s for i E I

s ~ s i f o r i 6 I A a 6 ezta(i) {(,,~)}

sd {C~)} s~ for i E I A a E actsD(i)

444

Parametr ized by an index set I , t ransducer U takes the disjoint union of au toma ta
indexed by I . Operationally it behaves as the internal choice operation R of CSP
[8]: the operation runs one, nondeterministically chosen argument. 6 For each i C I ,
the transducer has a distinct state si, which is also a s tar t state, and steps:

si .-~ s i f o r i S I A a 6 actsu(i) {(,,~)}

Transducer 1[, which is parametrized by a finite index set I , describes the opera-
tion of parallel composition. The transducer has a single state s, which is the start
state, and steps:

iV s ~ s f o r i E I ((~,iV)}

s -~ s for $ r a C Ujeilabelsii(j)A

v i : [~(~) = • ^a n labels , (i) = 0] V [~(i) = a n labelsll(i) e e~t , (i)]

We require tha t X/is either in the label set of all arguments or in the label set of
none of them.

The postfix hiding operation \ L hides all labels from the set L by removing them
from the actions. The steps are (with 0 denoting T):

s ~ s for a ~ acts\L(1) {(1,~)}

For each function f on labels such that f(l) = ~/implies tha t I = X/, we introduce
a unary relabeling operation "f" tha t renames actions of its argument according to
f . The steps are (with f lifted to sets of labels and 0 denoting r) :

f(--~) s for a C actsf (1) s {(1,~)}

Transducer ^ describes the binary interrupt operation of CSP. The transducer
runs its first argument until the second argument performs an external action; af-
ter tha t the first argument is disabled and the second argument takes over. The
transducer has two states sl , s2, of which sl is the start state, and steps:

s~ ((~) } s~ for a e acts^(1)

Y
Sl --~ Sl {(2,~-)}

a
s~ { (~) } s2 for a ~ ezt^(~)

s2 ~ s2 f o r a ~ acts^(2) {(2,,~)}

In order to guarantee that after a ~/-step no other transitions are possible, we require
tha t ~ / ~ labels^(1).

s We have tried to use CSP notation where possible. However, here we have not followed
CSP since we found it confusing to use an intersection-like symbol for the operation of
disjoint union.

445

Now we describe a construct tha t exploits the ability of transducers to copy
their arguments. The construct is inspired by the process creation mechanism of the
object-orlented language P O O L - T [3]. Transducer CREATE(C,/ , .) is parametrlzed
by a set C of classes and a nonempty subset I C C of initial classes. The transducer
takes colors from C. Initially the transducer s tarts up a single instance of one of
the initial classes. Then, each time some process does an action containing a label
n e w (X) , for some class X , a new instance of X is created. Formally, the states of
CREATE are finite multisets over C, i.e., functions M : C ~ N that are 0 almost
everywhere. The set of s tart states of the transducer is { { X } I X e I } , it takes holes
from the set C x N +, and the color of hole (X , j) is X. The steps are (with ~ denoting
r) :

M "-{"~C-~))rG~ M U {Ylnew(r) E a} for M(X) > j A a E actSCREATE(X) {((x,j),,,)}

The CREATE construct adds a lot of expressive power to our language, and plays
a role similar to the recursion constructs in process algebras such as ACP [5], CCS
[15] and CSP [8]. By an example we show how this construct allows us to specify
arbi t rary au tomata inside our language up to isomorphism. As a useful notation,

define

a. X ~ a U {new(X)} ; STOP

for X a class and a a nonempty set of non-new labels. Now the expression 7

SWITCH ~= CREATE({OFF, ON}, {OFF},
O F F ~ sw_on . O N

O N ~ sw_on . O N [] sw_off . O F F)

denotes a finite au tomaton tha t describes an automat ic switch off mechanism. The
system allows a lamp to be switched on at any time; once it has been switched on, it
can be switched off (automatically). In Section 3 we will come back to this example
and show how we can add real-time constraints to make it more interesting.

Using the CREATE operation with a single a rgument , we can define the looping
operation ~o, which restarts its argument upon each successful termination.

(A)" =" CREATE({X}, {X} , .f(A)),

where f relabels ~ / t o n e w (X) and leaves all other labels unchanged.

Note tha t all of the operations described in this subsection are r-respecting.
Therefore, it follows from Theorem 1 tha t the preorders <_. and _< are substitutive
for all these operations.

7 We warn the reader that, even though the notation we use here is very close to the
standard notation in process algebra for systems of recursion equations, the operational
semantics is quite different in the case of nonlinear systems.

446

3 The Timed Setting

3.1 T i m e d A u t o m a t a

We use a slight variant of the timed automaton model from [12].8 A timed automaton
A is an automaton whose set of actions is a superset of R +, the set of positive reals.
Actions from R + are referred to as time-passage actions. We let d, d l , . . , range over
time-passage actions and, more generally, over the set R of real numbers. The set

of visible actions is defined by vis(A) a__ ezt(A) - R +. We assume tha t a t imed
au tomaton satisfies the following axioms:

S l If s I ~ s" and s" a_~ s, then s' ~+g'
$2 If s ' ~ s then there exists a t rajectory from s' to s of length d.

Here a trajectory from s' to s of length d is a function w : [0,d] -~ states(A) such

that w(O) = s', w(d) = s, and w(dl) d2y_,dl w(d2) for all dl,d2 e [0,d] with dl < d2.

3.2 T i m e d T r a c e s

Suppose fl = aoala2 . . . is a trace of a t imed au tomaton A. For each i, we define the

time of occurrence t~ of event a~ by:

to = 0

t~+l = i f a~ E R + t h e n ~ + a~ e lse t~

The limit time os fl, notation fl.ltime, is the smallest element of R>-~ {oo } larger than
or equal to (i.e., the supremum of) all the t~. The timed trace t-trace(fl) associated

with fl is defined by:

t-trace() (((a0, t0)(l, l)(as, ")F(vis(A) • R->~ .Itime)

So t-trace(fl) records the visible events of fl paired with their t ime of occurrence, as
well as the limit t ime of the sequence. The above definitions are lifted to executions in

the obvious way. For a an execution of A, a.ltime ~= trace(a).ltime and t-trace(s) =
t.trace(trace(a)). Execution a is admissible if a.ltime = oo.

A pair p is a timed trace of A if it is the t imed trace of some finite or admis-
sible execution of A. Thus, we explicitly exclude the t imed traces tha t originate
from Zeno executions, i.e., infinite executions with a finite limit time. We write
t-traces(A) for the set of all t imed traces of A, t-traces*(A) for the set of finite
t imed traces, i.e., those that originate from a finite execution, and t-traces~176 for
the admissible t imed traces, i.e., those tha t originate from an admissible execution.

These notions induce three preorders on t imed automata: A <t B ~ t-traces(A) C
t-traces(B), A <_~, B ~= t-traees*(A) C t-traces*(B), and A <too B ~ t-traces~176 C
t-traces~176 The kernels of these preorders are denoted by =-t, -,-t and =oo,-t re-

spectively.

s The difference is just the explicit indication of the amount of elapsed time in the time-
passage action instead of using a .now function that associates the current time to a

state.

447

3.3 Timed Action Transducers

A timed action transducer T is a transducer with R + C acts(T) and, for all colors

m, R + _ C actsT(m). The sets of visible actions are defined by vis(T) = ~ ez t (T) - R +

and, for all m, visT(m) ~= ezt~(m) - R +. We assume tha t T satisfies the following
axioms.

T 1 If s ~ .~d s then 7/(i) = d for all i E aetiveT(s~).

(As a consequence of axiom T1 , the trigger of a d step is fully determined. This

justifies our convention below to write s ~ ~ s instead of s ~ ~ s).
Y

T 2 If s I -~ s and ~/(i) = d, then a = d.

T 3 If s ' -~ s then active~,(s') = activeT(s).

We also assume that T satisfies the axioms S1 and S2 for t imed au toma ta (with
triggers added implicitly according to the convention above).

An automaton assignment ~ for a t imed action transducer T is called timed if it
maps each color to a t imed automaton.

L e m m a 2 . Suppose T is a timed action transducer and ~ is a timed automaton
assignment for T. Then T(~) is a timed automaton.

3.4 S u b s t i t u t i v i t y

A t imed action transducer T is geno respecting if for each execution soalyls l a2~12 " "
of T in which the sum of the t ime passage actions in ala2 . . . grows to oo, and for
each hole i, either the sum of the time passage actions in ~/l(i)z/2(i) '" grows to oo
as well, or there exists an index n such tha t ~}m(i) = 1 for all m ~> n.

Transducers tha t are not Zeno respecting can turn a Zeno execution of an ar-
gument into a non-Zeno execution, by deactivating the argument infinitely often
while advancing time. Since t imed trace inclusion does not preserve Zeno traces,
this means tha t _<t will in general not be substitutive for such transducers. However,
we do have the following result.

T h e o r e m 3 . The relations <9. and <t on timed automata are substitutive for all
Zeno- and r-respecting timed action transducers.

3.5 Examples

We give examples of operations that can be expressed as timed action transducers.

Timed Transducers from Untimed Transducers An important collection of
timed transducers can be obtained from untimed transducers. In this subsection we
present a simple but important construction, essentially due to Nicollin and Sifakis
[18], that transforms an untimed action transducer into a timed one, by inserting
arbitrary time-passage steps. Suppose T is an (untimed) action transducer whose

448

sets of actions are disjoint with R +. Then the structure patient(T) is obtained from
T by adding R + to all the action sets, and also adding, for each state s of T and
e a c h d E R + , a s t e p

d
S ---> S, where, for all i,~l(i) = if i e activeT(s) t h e n d else _L.

It is straightforward to check that patient(T) is indeed a t imed action transducer.
If T is T-respecting then patient(T) is not T-respecting in general. For instance,

the transducer [] for external choice over an infinite index set of Section 2.5 is T-
respecting, but its patient t imed version is not. The following simple lemma charac-
terizes the situations in which the patient operation preserves the proper ty of being
T-respecting.

L e m m a 4 . Suppose T is a T-respecting action transducer whose sets of actions are
disjoint with R +. Then patient(T) is Zeno respecting. Moreover, patient(T) is T-
respecting iff in each state of T only finitely many holes are active.

Except for external choice over an infinite index set, all the patient t imed versions
of the transducers of Section 2.5 are T-respecting, by Lemma 4. Thus, by Theorem
3, the t imed trace preorders <t. and <t are substitutive for the patient variants of
all the transducers of Section 2.5 except for infinitary external choice.

The t imed transducers obtained by the patient construction turn out to be quite
useful, so in the subsequent sections we will adopt the convention that T means
patient(T) for any of the transducers of Section 2.5.

T i m e r s We consider a set X of timer variables, ranged over by x, y, The set of
timer constraints r is defined inductively by:

r 1 6 2

Note tha t constraints such as true, 5 < 4, x > d, x E [2,5) can be defined as
abbreviations.

A time assignment ~ : X ~ R >~ assigns a nonnegative real value to each t imer
variable. We say tha t a t ime assignment ~ for satisfies a t imer constraint r notat ion

~ r iff r evaluates to true using the values given by ~. We say tha t r is a tautology
iff for all t ime assignments ~, ~ ~ ~b. We say that r is satisfiable iff there exists a
t ime assignment ~ such tha t ~ ~ r We denote by ~b[d/z] the formula obtained from
r by replacing all occurrences of z by d.

The transducer TIMER~ models the behavior of a t imer called x. The argument
d E R >~ U {cr gives a bound beyond which t ime cannot proceed. ~ The s tate set
of the transducer is R >~ x (R >~ U {co}) and the initial s tate is (0, d). There is just
one argument, tha t is, one hole and one color. The argument can reset t imer z at

s For simplicity, we do not consider timers with strict bounds. Such timers can be defined
by parametrizing the transducer with an additional boolean that tells whether the time
bound is strict or not. Alternatively, one can follow a suggestion of Abadi and Lamport
[1], and introduce, as additional elements of the time domain, the set of all 'infinitesimally
shifted' real numbers r - , where t < r - iff t < r, for any reals t and r.

449

any moment via a label z := 0; similarly the upper bound can be modified via a
label z :< d. Besides assigning values to the timer, an automaton can use timer
constraints as labels to test the values of the various timers in whose scope it occurs.
TIMER~ has, for instance, a step

(10.5,10), (1, 10) {(1,~.5)}a'5 (9.5, 10), but not a step (1, 10) {(1,9-'~.s)}

because that would violate the time bound. If a = {sw_off,9 < =,= < 10, z :< oo}
and b = {sw_off}, then TIMER~ also has a step

b (1, o~) (9.5, 10) b (9.5,oo), but not a step (1, 10) {(1,-~)} {0,~)}

since a contains a constraint 9 < x.
In order to define the step relation formally it is convenient to define some auxil-

iary functions. For x a timer, dl, d2 E R + and a a set of labels, v4(x, dl, a) is obtained
from a by first removing all labels x := 0 and x :< d (for all d) then replacing each
time constraint r in a by r and finally removing all tautologies from the result,
We say A(x, dl, a) is satisfiable if all time constraints contained in it are satisfiable.
We also define

])(:c, dl, a) ~ = if z :-- 0 E a t h e n 0 else dl,

B(x, d2, a) ~ if {dlx :g d E a} - 0 t h e n d2 else min{dlx :< d E a}.

Now the steps of TIMER~ can be defined by (with 0 denoting r):

a (dl + d, d2) for dl + d < d2, (d~, d2) {(~)}

b (])(z, dl a), S(z, d2, a)) for b = M(x, dl, a) satisfiable. (dl, d2) ((1,-~)}

The reader can easily check that TIMER,~ is Zeno- and r-respecting. Thus relations
<t, and _<t are substitutive for this transducer.

Our definition of a timer is similar to the one proposed by Alur and Dill [2] for
their timed w-automata. However, instead of a Biichi style acceptance criterion we
use bounds to specify urgency, i.e., properties that say that certain actions must
occur at a certain time. We suppose that for some applications, it will be useful
to have a more general definition. One can, for instance, extend the set of time
constraints with formulas like x 4- y < 1, or allow for assignments of the form
x := y 4- 4, or introduce operations that ask the timer to emit its current time.
The important point here is that explicit timers constitute an important and useful
construct in real-time process algebra. Our specific choice of operations is just an
example, subject to modification.

450

A T i m e d P r o c e s s A l g e b r a We think that a reasonable proposal for a timed pro-
cess algebra might include only (1) the timed transducers obtained by applying the
patient operation to the untimed transducers discussed earlier, and (2) the timers
described above. A justification for this is that these are sufficient to implement all
the other timed operators we have thought of. In this section, we give some of these
derivations.

Using a single timer, we can define the process WAIT d of Timed CSP [21, 7],
which waits time d and then terminates successfully.

WAITd ~ TIMER~(:~ = d)

More generally, we can specify a process that terminates successfully after waiting
some nondeterministically chosen time from the closed interval [dl, d2].

WAIT [dz,d2] ~ TIMER~(x > dl)

Using a timer with deadline 0, we can restrict any automaton to its behavior at time
0. We define

A ~ TIMERS(A)

The above construction is useful for defining the timeout construct of Timed CSP.
For a given delay d this operator is defined, as in [7], by

d z~
A 1> B = (A [] (WAIT d ; abort ; B)) \ {abor t}

If, at time d, A has not performed any visible action, an interrupt occurs and au-
tomaton B is started. Note that we need the auxiliary label abort (not in the label
set of A and B) to force the choice between A and B at time d.

The execution delay operator of ATP [17] is given by:

FAll(B) -" (TIMER~((A ^ ({abort, x = d} ; B)) l lV)) \{abort , cancel}

where C ={cance l , x :< oo} ;STOP [] {abort, x :< oo} ; SKIP

lAId(B) behaves as A until time d; at time d, A is interrupted and B is started.
However, if A performs a special label cancel, then the interrupt is cancelled and
A can continue to run forever. The auxiliary process C takes care that once A has
done cancel, it can no longer be interrupted by B. Also C removes deadline d after
a cancel or abort action. We assume that A and B do not have abort in their label
set, nor any label referring to timer x. For simplicity we also assume that A does
not contain the termination symbol ~/. The labels cancel and abort are hidden so
that they cannot communicate with any other action. A minor difference between
our execution delay operator and the one from ATP is that ours allows machine A
to perform visible actions at time d.

As an illustration of the use of the timed operators presented thus far, we specify
a timed version of the automatic switch-off mechanism we described in Section 2.5.
The system allows a lamp to be switched on at any time; then between 9 and 10
time units after the last time the lamp has been switched on, it will be switched of[.

T _ S W I T C H ~ TIMER~o(CREATE({OFF, ON} , { O F F } ,
O F F ~ {sw_on,x := 0, x :< 10} . O N

O N H {sw_on, x := 0 } . O N [] {sw_o.O',9 < x < 10,~ :_< oo} . O F F))

451

C o u n t e r e x a m p l e s Although the converse of Theorem 3 does not hold, our result
appears to be quite sharp: for many examples of timed transducers that are not T-
respecting~ the timed trace preorders are indeed not substitutive. The best example
is the CCS-like choice operator + that plays a dominant role in many real-time
process calculi (TCCS [16], the timed extension of CCS proposed in [23], ATP [17],
and ACPp [4]). This operator can be viewed as the patient version of the choice
operator from CCS. Relation < . is not substitutive for -t- because

WAIT 2 + WAIT 1.5 2~, (WAIT 1 ; WAIT 1) + WAIT 1.5

The first process will always terminate at time 1.5, whereas the second process will
always terminate at time 2.

4 Nontrlviality of Implementations

As explained in the Introduction, we exclude trivial implementations by distinguish-
ing input and output actions and requiring implementations to be input enabled and
I/O feasible. In a process algebraic setting, a natural way to prove the property r a
input enabled ^ I/O feasible, is to describe a timed automaton purely in terms of
operators that preserve some property r that implies r In this section we describe
such a r fie, a property that implies input enabledness and I /O feasibility and that
is preserved by an interesting class of operators.

We begin by defining timed I/O automata and I/O feasibility.

4.1 T i m e d I / O A u t o m a t a

A timed I/O automaton A is an timed automaton together with a set inp(A)
vis(A) of input actions. We require that input actions always be enabled~ i.e, for
each state s and for each a E inp(A) there is a step s -~A s t.

We define the set out(A) of output actions by out(A) ~- vis(A) - inp(A), and the
set loc(A) of locally controlled actions by loc(A) ~= out(A)U{r). A step s' -~ s is said
to be under control of A if a E loc(A). By t-AUT(A) we denote the timed automaton
that underlies timed I /O automaton A. Conversely, for each timed automaton A and
IN C vis(A) a set of actions that are enabled in each state of A, IO~N(A) denotes
the corresponding timed I /O automaton.

Timed I /O automata constitute a variant of the I /O automata model of Lynch
and Tuttle [11] within our timed setting. 1~

4.2 I/O Feasibility

A timed I /O automaton is I /O feasible if each finite execution can be extended
to an admissible execution via an execution fragment that does not contain input
actions. I /O feasibility strengthens the notion of feasibility used in [13, 12], which
simply requires that each finite execution can be extended to an admissible one.

10 They do not include the class structure, used in I/O automata to model fairness.

452

This means that all the results of [13, 12] for feasible automata are valid for I /O
feasible automata. However, the requirement of feasibility is too weak to exclude
trivial implementations, because it may be that a feasible implementation can only
produce an admissible execution in case the environment provides certains inputs.
Thus if the environment does not offer these inputs, a Zeno execution is produced. To
illustrate the problem, we consider as a specification the timed switch of the previous
section, with as additional "feature" that it can break down at any moment and stop
functioning:

IO{ b~_dow~}(T_EWITCH ^ (br_down ; (sw_on [] br_down)~

This specification is implemented by the following feasible timed I /O automaton:

. . . . ^ (br_do n ;(s _on [] br_do n)))

But this is an undesirable implementation because, first, the machine will never
turn the switch off, even if no breakdown occurs, and moreover, the machine will
not allow time to advance unless there is an immediate breakdown. The notion of
I /O feasibility excludes this type of implementation.

4.3 T i m e d I / O T r a n s d u c e r s

An I /O automaton should always be willing to engage in input actions, because
these are thought of as being under the control of the environment. When defining
operations on I /O automata, it is natural to require, as a dual property, that the
environment (i.e., the operation) cannot block output actions, as these are under
the control of the automata. In the untimed setting the nonblocking condition for
outputs can be motivated technically because it is needed to obtain substitutivity of
the quiescent and fair trace preorders [22]. Interestingly, the nonblocking condition
also has a technical motivation in the timed case, but a different one: it is needed
to preserve I /O feasibility. To illustrate this, we consider a trivial example of two
I / O feasible timed I /O automata, A and B, whose parallel composition is not I /O

feasible.
A = IO~((WAIT l ; t iek) ~') B = IO~(STOP(t~ck})

Machine A describes a perfect clock that perform a tick action after each unit of
time. Machine B does nothing except allow time to pass. Both machines are trivially
input enabled (since there are no i n p u t s) a n d I /O feasible. Still, in the parallel
composition AI[B, time cannot proceed past 1, because B refuses to synchronize
with the output action of A. Time deadlocks like this can be avoided if we do not
allow for contexts (environments) that can block output actions. This leads us to
the following definition.

A timed I/O transducer T is a timed transducer together with a set inp(T) C
vis(T) and, for each m, a set inpT(m) C_ vis~.(m). Analogous to the automaton case,

we define derived sets out(T) ~ vis(T) - inp(T), loc(T) ~ out(T) U {~-}, and, for

each m, outT(m) ~ visT(m) -- inpT(m) and locT(m) ~ outT(m) U {~-}. We require

- Input enabling. For all states s and for all a E inp(T), T has a step s ~* s I, such

that , for all i, ~/(i) e inpT(e-mapT(i)) U {_L}.

453

- No output blocking. For all states s, all active holes i of s, and all actions a E

outT(c-mapT(i)), T has a step s b s', with b 6 loc(T), rl(i) a , and, for all

i' r i, ~l(i') E inpr(e-mapr(i ')) U {_L}.

By t -TRANS(T) we denote the timed action transducer that underlies timed I /O

transducer T. We say that a step s' -~ s is under control of T if a E loc(T) and for

all i, r/(i) E inpr(c-mapT(i)) U {2}.

The conditions of input enabling and no output blocking for timed action trans-
ducers are direct translations of similar constraints presented in [22]. An important
example of a timed I /O transducer can be obtained by taking the patient version
of the composition operation of the I /O automaton model [11]. In fact, this oper-
ation can be viewed as a special case of of our parallel composition operator with
additional requirements on the action sets of the arguments. These requirements
are: (i) all visible actions are singletons, (2) the sets of output actions of different
arguments are disjoint. The input actions of the composition are then defined as the
union of the input actions of the arguments minus the union of the output actions
of the arguments.

Suppose T is a timed I /O transducer. A timed I /O automaton assignment for T
is a function ff that maps each color m of T to a timed I / 0 automaton in such a way
that inp(i(m)) = inpr(m). Let T be a timed I /O transducer and let r be a timed
I /O automaton assignment for T. Then we define T(~) to be the structure A given

by t-AUT(A) ~ t -TRANS(T) (t -TRANS o i) and inp(A) ~= inp(T).

L e m m a S . Let T be a timed I /O transducer and let ~ be a timed I /O automaton
assignment f o r T. Then T(C) is a timed I /O automaton.

4 . 4 Feas ib i l i ty R e v i s i t e d

It turns out that I /O feasibility is not preserved by parallel composition. Consider
the following two timed I /O automata, n

F A S T _ S W I T C H
O F F

ON

~- IO{.,._o.} (CREATE({OFF, ON}, {OFF},
ST_On. ON
ST_On. ON [] ST_Off . O F F))

F A S T _ U S E R
O F F ~-.

ON

The first expression denotes

IO{,,~_off } (CREATE({OFF , ON}, {OFF},
sw_on . O N [] sw_off . OFF
s,~_o.ff . O F F))

a fast version of the timed switch of Section 3: each

time the switch gets turned on the machine turns it off immediately. The second
expression describes a fast user of this switch, who initially turns the switch on, and
then, each time it goes off, immediately turns it on again. Both systems are I /O

i i A similar example is given by Abadi and Lamport [1].

454

feasible, but their parallel composition is not. The problem arises from the ability of
both systems to respond immediately to a given input. One way to avoid this problem
is to introduce a system delay constant, as in in Timed CSP: a minimum amount
of time that has to pass between each pair of locally controlled actions. However,
this seems too drastic and artificial to us, and the extra constants would probably
complicate the task of analyzing system timing behavior. Fortunately, system delays
are not needed to preserve I /O feasibility. Instead the following conditions suffice.

A timed I /O automaton A is strongly I /O feasible if it is I /O feasible and time
grows unboundedly in any execution that contains infinitely many steps that are
under control of A. This generalizes to transducers as follows. A timed I /O transducer
T is I /O feasible if each finite execution can be extended to an admissible execution
via an execution fragment that contains only time-passage steps and steps that are
under the control of the transducer. T is strongly I /O feasible if in addition:

1. In any execution that contains infinitely many steps that are under control of
T, time grows unboundedly.

2. In any execution for which the union over all states of their sets of active holes
is infinite, time grows unboundedly.

The second condition is needed to exclude situations in which, each time an input
arrives, a new machine is activated to produce an immediate output. We have the
following result:

T h e o r e m 6. Suppose T is a strongly I /O feasible timed I / 0 transducer and ~ is
a timed I /O automaton assignment for T that maps each color of T to a strongly
I /O feasible timed I /O automaton. Then T(~) is a strongly I /O feasible timed I /O
automaton.

Note that the timer construct proposed above is not strongly I /O feasible, because
it does not permit time to pass beyond its upper bound. However, the timed I /O
transducer for parallel composition is strongly I /O feasible.

As a topic for future research it remains to find a collection of strongly I /O
feasible I /O transducers that is sufficiently expressive to describe implementations of
real-time systems. Ideally, these action transducers would be defined in terms of the
action transducers of Section 3. Process algebraic and/or assertional proof techniques
could then be applied to prove that a system described in terms of feasible I /O
transducers implements a system described in terms of the higher-level primitives of

Section 3.

R e f e r e n c e s

1. M. Abadi and L. Lamport. An old-fashioned recipe for real time. In Proceedings of the
REX Workshop "Real-Time: Theory in Practice", LNCS 600. Springer-Verlag, 1992.
To appear.

2. R. Alur and D.L. Dill. Automata for modeling real-time systems. In Proceedings 17 ~
ICALP, LNCS 443, pages 322-335. Springer-Verlag, July 1990.

3. P. America. POOL-T - - A parallel object-oriented language. In A. Yonezawa and
M. Tokoro, editors, Object-Oriented Concurrent Systems. MIT Press, 1986.

455

4. J.C.M. Baeten and 5.A. Bergstra. Real time process algebra. Journal of Formal Aspects
of Computing Science, 3(2):142-188, 1991.

5. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.

6. B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can't be traced: preliminary report.
In Conference Record of the 15 ~u ACM Symposium on Principles of Programming Lan-
guages, pages 229-239, 1988.

7. J. Davies and S. Schneider. An introduction to Timed CSP. Technical Monograph
PRG-75, Oxford University Computing Laboratory, Programming Research Group,
August 1989.

8. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, En-
glewood Cliffs, 1985.

9. A.S. Klusener. Abstraction in real time process algebra. Report CS-R9144, CWI,
Amsterdam, October 1991.

10. K.G. Larsen and L. Xinx_in. Compositionality through an operational semantics of
contexts. In Proceedings 17 ~ ICALP, LNCS 443, pages 526-539. Springer-Verlag,
July 1990.

11. N.A. Lynch and M.R. R-httle. Hierarchical correctness proofs for distributed algorithms.
In Proceedings of the 6 ~u Annual ACM Symposium on Principles of Distributed Com-
puting, pages 137-151, August 1987. A full version is available as MIT Technical Report
MIT/LCS/TR-387.

12. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations - part II:
Timing-based systems, 1992. In preparation.

13. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for timing based
systems. Proceedings of the REX Workshop "Real-Time: Theory in Practice n, LNCS
600. Springer-Verlag, 1992. To appear.

14. M. Merrill, F. Modugno, and M. Turtle. Time constrained automata. In Proceedings
CONCUR 91, LNCS 527, pages 408-423. Springer-Verlag, 1991.

15. R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood
Cliffs, 1989.

16. F. Moller and C. Torts. A temporal calculus of communicating systems. In Proceedings
CONCUR 90, LNCS 458, pages 401-415. Springer-Verlag, 1990.

17. X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and application
(revised version). Technical Report RT-C26, LGI-IMAG, Grenoble, France, November
1991.

18. X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In
Proceedings CAV 91, LNCS 575, pages 376-398. Springer-Verlag, 1992.

19. X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid sys-
tems. Proceedings of the REX Workshop "Real-Time: Theory in Practice", LNCS 600.
Springer-Verlag, 1992. To appear.

20. G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,
Computer Science Department, Aarhus University, 1981.

21. G.M. Reed and A.W. Roscoe. A timed model for communicating sequential processes.
Theoretical Computer Science, 58:249-261, 1988.

22. F.W. Vaandrager. On the relationship between process algebra and input/output au-
tomata. In Proceedings 6 ~u Annual Symposium on Logic in Computer Science, pages
387-398. IEEE Computer Society Press, 1991.

23. Wang Yi. Real-time behaviour of asynchronous agents. In Proceedings CONCUR 90,
LNCS 458, pages 502-520. Springer-Verlag, 1990.

This article was processed using the ISTEX macro package with LLNCS style

