
Compositionality for Probabilistic Automata

Nancy Lynch1⋆, Roberto Segala2⋆⋆, and Frits Vaandrager3⋆ ⋆ ⋆

1 MIT Laboratory for Computer Science
Cambridge, MA 02139, USA
lynch@theory.lcs.mit.edu

2 Dipartimento di Informatica, Università di Verona
Strada Le Grazie 15, 37134 Verona, Italy

roberto.segala@univr.it
3 Nijmegen Institute for Computing and Information Sciences

University of Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

fvaan@cs.kun.nl

Abstract. We establish that on the domain of probabilistic automata,
the trace distribution preorder coincides with the simulation preorder.

1 Introduction

Probabilistic automata [9, 10, 12] constitute a mathematical framework for mod-
eling and analyzing probabilistic systems, specifically, systems of asynchronously
interacting components that may make nondeterministic and probabilistic choices.
They have been applied successfully to distributed algorithms [3, 7, 1] and prac-
tical communication protocols [13].

An important part of a system modeling framework is a notion of external
behavior of system components. Such a notion can be used to define imple-
mentation and equivalence relationships between components. For example, the
external behavior of a nondeterministic automaton can be defined as its set of
traces—the sequences of external actions that arise during its executions [5].
Implementation and equivalence of nondeterministic automata can be defined
in terms of inclusion and equality of sets of traces. By analogy, Segala [9] has
proposed defining the external behavior of a probabilistic automaton as its set of
trace distributions , and defining implementation and equivalence in terms of in-
clusion and equality of sets of trace distributions. Stoelinga and Vaandrager have
proposed a simple testing scenario for probabilistic automata, and have proved
that the equivalence notion induced by their scenario coincides with Segala’s
trace distribution equivalence [14].

⋆ Supported by AFOSR contract #F49620-00-1-0097, NSF grant #CCR-0121277, and
DARPA/AFOSR MURI #F49620-02-1-0325.

⋆⋆ Supported by MURST projects MEFISTO and CoVer.
⋆ ⋆ ⋆ Supported by PROGRESS project TES4999: Verification of Hard and Softly Timed

Systems (HaaST) and DFG/NWO bilateral cooperation project 600.050.011.01 Val-
idation of Stochastic Systems (VOSS).

However, a problem with these notions is that trace distribution inclusion
and equivalence are not compositional. To address this problem, Segala [9] de-
fined more refined notions of implementation and equivalence. In particular, he
defined the trace distribution precongruence, ≤DC , as the coarsest precongruence
included in the trace distribution inclusion relation. This yields compositionality
by construction, but does not provide insight into the nature of the ≤DC relation.
Segala also provided a characterization of ≤DC in terms of the set of trace dis-
tributions observable in a certain principal context—a rudimentary probabilistic
automaton that makes very limited nondeterministic and probabilistic choices.
However, this indirect characterization still does not provide much insight into
the structure of ≤DC , for example, it does not explain its branching structure.

In this paper, we provide an explicit characterization of the trace distribution
precongruence, ≤DC , for probabilistic automata, that completely explains its
branching structure. Namely, we show that P1 ≤DC P2 if and only if there
exists a weak probabilistic (forward) simulation relation from P1 to P2. Moreover,
we provide a similar characterization of ≤DC for nondeterministic automata
in terms of the existence of a weak (non-probabilistic) simulation relation. It
was previously known that simulation relations are sound for ≤DC [9], for both
nondeterministic and probabilistic automata; we show the surprising fact that
they are also complete. That is, we show that, for both nondeterministic and
probabilistic automata, probabilistic contexts can observe all the distinctions
that can be expressed using simulation relations.

Sections 2 and 3 contain basic definitions and results for nondeterministic and
probabilistic automata, respectively, and for the preorders we consider. These
sections contain no new material, but recall definitions and theorems from the
literature. For a more leisurely introduction see [5, 12]. Sections 4 and 5 con-
tain our characterization results for nondeterministic and probabilistic automata.
Section 6 contains our conclusions.

A full version of this paper, including all proofs, appears in [4].

2 Definitions for Nondeterministic Automata

A (nondeterministic) automaton is a tuple A = (Q, q̄, E, H, D), where Q is a
set of states, q̄ ∈ Q is a start state, E is a set of external actions, H is a set
of internal (hidden) actions with E ∩ H = ∅, and D ⊆ Q × (E ∪ H) × Q is a
transition relation. We denote E∪H by A and we refer to it as the set of actions.
We denote a transition (q, a, q′) of D by q

a
→ q′. We write q → q′ if q

a
→ q′ for

some a, and we write q → if q → q′ for some q′. We assume finite branching: for
each state q the number of pairs (a, q′) such that q

a
→ q′ is finite. We denote the

elements of an automaton A by QA, q̄A, EA, HA, DA, AA,
a
→A. Often we use the

name A for a generic automaton; then we usually omit the subscripts, writing
simply Q, q̄, E, H , D, A, and

a
→. We extend this convention to allow indices

and primes as well; thus, the set of states of automaton A′
i is denoted by Q′

i.
An execution fragment of an automaton A is a finite or infinite sequence

α = q0a1q1a2q2 · · · of alternating states and actions, starting with a state and,

if the sequence is finite, ending in a state, where each (qi, ai+1, qi+1) ∈ D. State
q0, the first state of α, is denoted by fstate(α). If α is a finite sequence, then the
last state of α is denoted by lstate(α). An execution is an execution fragment
whose first state is the start state q̄. We let frags(A) denote the set of execution
fragments of A and frags∗(A) the set of finite execution fragments. Similarly,
we let execs(A) denote the set of executions of A and execs∗(A) the set of finite
executions.

Execution fragment α is a prefix of execution fragment α′, denoted by α ≤
α′, if sequence α is a prefix of sequence α′. Finite execution fragment α1 =
q0a1q1 · · ·akqk and execution fragment α2 can be concatenated if fstate(α2) = qk.
In this case the concatenation of α1 and α2, α1

⌢ α2, is the execution fragment
q0a1q1 · · ·akα2. Given an execution fragment α and a finite prefix α′, α ⊲ α′

(read α after α′) is defined to be the unique execution fragment α′′ such that
α = α′ ⌢ α′′.

The trace of an execution fragment α of an automaton A, written traceA(α),
or just trace(α) when A is clear from context, is the sequence obtained by re-
stricting α to the set of external actions of A. For a set S of executions of A,
tracesA(S), or just traces(S) when A is clear from context, is the set of traces
of the executions in S. We say that β is a trace of A if there is an execution α
of A with trace(α) = β. Let traces(A) denote the set of traces of A. We define
the trace preorder relation on automata as follows: A1 ≤T A2 iff E1 = E2 and
traces(A1) ⊆ traces(A2). We use ≡T to denote the kernel of ≤T .

If a ∈ A, then q a=⇒ q′ iff there exists an execution fragment α such that
fstate(α) = q, lstate(α) = q′, and trace(α) = trace(a). (Here and elsewhere, we
abuse notation slightly by extending the trace function to arbitrary sequences.)
We call q a=⇒ q′ a weak transition. We let tr range over either transitions or weak
transitions. For a transition tr = (q, a, q′), we denote q by source(tr) and q′ by
target(tr).

Composition: Automata A1 and A2 are compatible if H1 ∩ A2 = A1 ∩ H2 = ∅.
The composition of compatible automata A1 and A2, denoted by A1‖A2, is the

automaton A
∆
= (Q1 × Q2, (q̄1, q̄2), E1 ∪ E2, H1 ∪ H2, D) where D is the set of

triples (q, a, q′) such that, for i ∈ {1, 2}:

a ∈ Ai ⇒ (πi(q), a, πi(q
′)) ∈ Di and a /∈ Ai ⇒ πi(q) = πi(q

′).

Let α be an execution fragment of A1‖A2, i ∈ {1, 2}. Then πi(α), the ith

projection of α, is the sequence obtained from α by projecting each state onto its
ith component, and removing each action not in Ai together with its following
state. Sometimes we denote this projection by α⌈Ai.

Proposition 1. Let A1 and A2 be automata, with A1 ≤T A2. Then, for each
automaton C compatible with both A1 and A2, A1‖C ≤T A2‖C.

Simulation relations: We define two kinds of simulation relations: a forward
simulation, which provides a step-by-step correspondence, and a weak forward
simulation, which is insensitive to the occurrence of internal steps.

Namely, relation R ⊆ Q1 × Q2 is a forward simulation (resp., weak forward
simulation) from A1 to A2 iff E1 = E2 and both of the following hold:

1. q̄1 R q̄2.
2. If q1 R q2 and q1

a
→ q′1, then there exists q′2 such that q2

a
→ q′2 (resp.,

q2
a=⇒ q′2) and q′1 R q′2.

We write A1 ≤F A2 (resp., A1 ≤wF A2) when there is a forward simulation
(resp., a weak forward simulation) from A1 to A2.

Proposition 2. Let A1 and A2 be automata. Then:

1. If A1 ≤F A2 then A1 ≤wF A2.
2. If H1 = H2 = ∅, then A1 ≤F A2 iff A1 ≤wF A2.
3. If A1 ≤wF A2 then A1 ≤T A2.

Proof. Standard; for instance, see [6].

Tree-structured automata: An automaton is tree-structured if each state is reached
via a unique execution. The unfolding of automaton A, denoted by Unfold(A),
is the tree-structured automaton B obtained from A by unfolding its transition
graph into a tree. Formally, QB = execs∗(A), q̄B = q̄A, EB = EA, HB = HA,
and DB = {(α, a, αaq) | (lstate(α), a, q) ∈ DA}.

Proposition 3. A ≡F Unfold(A).

Proof. See [6]. It is easy to check that the relation R, where α R q iff lstate(α) =
q, is a forward simulation from Unfold(A) to A and that the inverse relation of
R is a forward simulation from A to Unfold(A).

Proposition 4. A ≡T Unfold(A).

Proof. By Proposition 3 and Proposition 2, Parts 1 and 3.

3 Definitions for Probabilistic Automata

A discrete probability measure over a set X is a measure µ on (X, 2X) such that
µ(X) = 1. A discrete sub-probability measure over X is a measure µ on (X, 2X)
such that µ(X) ≤ 1. We denote the set of discrete probability measures and
discrete sub-probability measures over X by Disc(X) and SubDisc(X), respec-
tively. We denote the support of a discrete measure µ, i.e., the set of elements
that have non-zero measure, by supp(µ). We let δ(q) denote the Dirac measure
for q, the discrete probability measure that assigns probability 1 to {q}. Finally,
if X is finite, then U(X) denotes the uniform distribution over X , the measure
that assigns probability 1/|X | to each element of X .

A probabilistic automaton (PA) is a tuple P = (Q, q̄, E, H, D), where all
components are exactly as for nondeterministic automata, except that D, the
transition relation, is a subset of Q× (E ∪H)×Disc(Q). We define A as before.

We denote transition (q, a, µ) by q
a
→ µ. We assume finite branching: for each

state q the number of pairs (a, µ) such that q
a
→ µ is finite. Given a transition

tr = (q, a, µ) we denote q by source(tr) and µ by target(tr).
Thus, a probabilistic automaton differs from a nondeterministic automaton

in that a transition leads to a probability measure over states rather than to a
single state. A nondeterministic automaton is a special case of a probabilistic
automaton, where the last component of each transition is a Dirac measure. Con-
versely, we can associate a nondeterministic automaton with each probabilistic
automaton by replacing transition relation D by the relation D′ given by

(q, a, q′) ∈ D′ ⇔ ∃µ : (q, a, µ) ∈ D ∧ µ(q′) > 0.

Using this correspondence, notions such as execution fragments and traces carry
over from nondeterministic automata to probabilistic automata.

A scheduler for a PA P is a function σ : frags∗(P) → SubDisc(D) such
that tr ∈ supp(σ(α)) implies source(tr) = lstate(α). A scheduler σ is said to be
deterministic if for each finite execution fragment α, either σ(α)(D) = 0 or else
σ(α) = δ(tr) for some tr ∈ D.

A scheduler σ and a state q0 induce a measure µ on the σ-field generated by
cones of execution fragments as follows. If α = q0a1q1 · · · akqk is a finite execution
fragment, then the cone of α is defined by Cα = {α′ ∈ frags(P) | α ≤ α′}, and
the measure of Cα is defined by

µ(Cα) =
∏

i∈{0,k−1}





∑

(qi,ai+1,µ′)∈D

σ(q0a1 · · · aiqi)((qi, ai+1, µ
′))µ′(qi+1)



 .

Standard measure theoretical arguments ensure that µ is well defined. We call the
measure µ a probabilistic execution fragment of P and we say that µ is generated
by σ and q0. We call state q0 the first state of µ and denote it by fstate(µ). If
fstate(µ) is the start state q̄, then µ is called a probabilistic execution.

The trace function is a measurable function from the σ-field generated by
cones of execution fragments to the σ-field generated by cones of traces. Given a
probabilistic execution fragment µ, we define the trace distribution of µ, tdist(µ),
to be the image measure of µ under trace. We denote the set of trace distributions
of probabilistic executions of a PA P by tdists(P). We define the trace distribu-
tion preorder relation on probabilistic automata by: P1 ≤D P2 iff E1 = E2 and
tdists(P1) ⊆ tdists(P2).

Combined transitions: Let {q
a
→ µi}i∈I be a collection of transitions of P , and

let {pi}i∈I be a collection of probabilities such that
∑

i∈I pi = 1. Then the triple
(q, a,

∑

i∈I piµi) is called a combined transition of P .
Consider a probabilistic execution fragment µ that assigns probability 1 to

the set of all finite execution fragments with trace a. Let µ′ be the measure
defined by µ′(q) = µ({α | lstate(α) = q}). Then fstate(µ) a=⇒ µ′ is a weak com-
bined transition of P . If µ can be generated by a deterministic scheduler, then
fstate(µ) a=⇒ µ′ is a weak transition.

Proposition 5. Let {tr i}i∈I be a collection of weak combined transitions of a
PA P, all starting in the same state q, and all labeled by the same action a,
and let {pi}i∈I be probabilities such that

∑

i∈I pi = 1. Then
∑

i∈I pitr i is a weak
combined transition of P labeled by a.

Proof. See [9] or [11].

Composition: Two PAs, P1 and P2, are compatible if H1 ∩ A2 = A1 ∩ H2 =
∅. The composition of two compatible PAs P1,P2, denoted by P1‖P2, is the
PA P = (Q1 × Q2, (q̄1, q̄2), E1 ∪ E2, H1 ∪ H2, D) where D is the set of triples
(q, a, µ1 × µ2) such that, for i ∈ {1, 2}:

a ∈ Ai ⇒ (πi(q), a, µi) ∈ Di and a /∈ Ai ⇒ µi = δ(πi(q)).

The trace distribution preorder is not preserved by composition [10, 11].
Thus, we define the trace distribution precongruence, ≤DC , to be the coarsest
precongruence included in the trace distribution preorder ≤D. This relation has
a simple characterization:

Proposition 6. Let P1 and P2 be PAs. Then P1 ≤DC P2 iff for every PA C
that is compatible with both P1 and P2, P1‖C ≤D P2‖C.

Simulation relations: The definitions of forward simulation and weak forward
simulation in Section 2 can be extended naturally to PAs [10]. However, Segala
has shown [8] that the resulting simulations are not complete for ≤DC , and
has defined new candidate simulations. These new simulations relate states to
probability distributions on states.

In order to define formally the new simulations we need three new concepts.
First we show how to lift a relation between sets to a relation between dis-
tributions over sets [2]. Let R ⊆ X × Y . The lifting of R is a relation R′ ⊆
Disc(X)×Disc(Y) such that µX R′ µY iff there is a function w : X ×Y → [0, 1]
that satisfies:

1. If w(x, y) > 0 then x R y.
2. For each x ∈ X ,

∑

y∈Y w(x, y) = µX(x).
3. For each y ∈ Y ,

∑

x∈X w(x, y) = µY (y).

We abuse notation and denote the lifting of a relation R by R as well.
Next we define a flattening operation that converts a measure µ contained

in Disc(Disc(X)) into a measure flatten(µ) in Disc(X). Namely, we define

flatten(µ) =
∑

ρ∈supp(µ)

µ(ρ)ρ .

Finally, we lift the notion of a transition to a hyper-transition [11] that begins
and ends with a probability distributions over states. Thus, let P be a PA and
let µ ∈ Disc(Q). For each q ∈ supp(µ), let q

a
→ µq be a combined transition of

P . Let µ′ be
∑

q∈supp(µ) µ(q)µq. Then µ
a
→ µ′ is called a hyper-transition of P .

Also, for each q ∈ supp(µ), let q a=⇒ µq be a weak combined transition of P . Let
µ′ be

∑

q∈supp(µ) µ(q)µq. Then µ a=⇒ µ′ is called a weak hyper-transition of P .

We now define simulations for probabilistic automata. A relation R ⊆ Q1 ×
Disc(Q2) is a probabilistic forward simulation (resp., weak probabilistic forward
simulation) from PA P1 to PA P2 iff E1 = E2 and both of the following hold:

1. q̄1 R δ(q̄2).

2. For each pair q1, µ2 such that q1 R µ2 and each transition q1
a
→ µ′

1 there
exists a distribution µ′

2 ∈ Disc(Disc(Q2)) such that µ′
1 R µ′

2 and such that

µ2
a
→ flatten(µ′

2) (resp., µ2
a=⇒ flatten(µ′

2)) is a hyper-transition (resp., a
weak hyper-transition) of D2.

We write P1 ≤PF P2 (resp., P1 ≤wPF P2) whenever there is a probabilistic
forward simulation (resp., a weak probabilistic forward simulation) from P1 to
P2. Note that a forward simulation between nondeterministic automata is a
probabilistic forward simulation between the two automata viewed as PAs:

Proposition 7. Let A1 and A2 be nondeterministic automata. Then:

1. A1 ≤F A2 implies A1 ≤PF A2, and

2. A1 ≤wF A2 implies A1 ≤wPF A2.

Proposition 8. Let P1 and P2 be PAs. Then:

1. If P1 ≤PF P2 then P1 ≤wPF P2.

2. If H1 = H2 = ∅ then P1 ≤PF P2 iff P1 ≤wPF P2.

3. If P1 ≤wPF P2 then P1 ≤DC P2.

Proof. See [9].

Tree-structured probabilistic automata: The unfolding of a probabilistic automa-
ton P , denoted by Unfold(P), is the tree-structured probabilistic automaton
Q obtained from P by unfolding its transition graph into a tree. Formally,
QQ = execs∗(P), q̄Q = q̄P , EQ = EP , HQ = HP , and DQ = {(α, a, µ) |
∃µ′(lstate(α), a, µ′) ∈ DP , ∀qµ

′(q) = µ(αaq)}.

Proposition 9. P ≡PF Unfold(P).

Proof. It is easy to check that the relation R where α R δ(q) iff lstate(α) = q is
a probabilistic forward simulation from Unfold(P) to P and that the “inverse”
of R is a probabilistic forward simulation from P to Unfold(P).

Proposition 10. P ≡DC Unfold(P).

Proof. By Proposition 9, and Proposition 8, Parts 1 and 3.

4 Characterizations of ≤DC: Nondeterministic Automata

In this section, we prove our characterization theorems for ≤DC for nondeter-
ministic automata: Theorem 1 characterizes ≤DC in terms of ≤F , for automata
without internal actions, and Theorem 2 characterizes ≤DC in terms of ≤wF ,
for arbitrary nondeterministic automata. In each case, we prove the result first
for tree-structured automata and then extend it to the non-tree-structured case
via unfolding. The interesting direction for these results is the completeness di-
rection, showing that A1 ≤DC A2 implies the existence of a simulation relation
from A1 to A2.

Our proofs of completeness for nondeterministic automata use the simple
characterization in Proposition 6, applied to a special context for A1 that we call
the dual probabilistic automaton of A1. Informally speaking, the dual probabilis-
tic automaton of a nondeterministic automaton A is a probabilistic automaton
C whose traces contain information about states and transitions of A. C’s states
and start state are the same as those of A. For every state q of A, C has a
self-loop transition labeled by q. Also, if Tr is the (nonempty) set of transitions
from q in A, then from state q, C has a uniform transition labeled by ch to
{target(tr) | tr ∈ Tr}.

Definition 1. The dual probabilistic automaton of an automaton A is a PA C
such that

– QC = QA, q̄C = q̄A,
– EC = QA ∪ {ch}, HC = ∅,
– DC = {(q, ch,U({q′ | q →A q′})) | q →A} ∪ {(q, q, q) | q ∈ QA}.

Since C and A share no actions, C cannot ensure that its traces faithfully
emulate the behavior of A. However, an appropriate scheduler can synchronize
the two automata and ensure such an emulation.

4.1 Automata Without Internal Actions

We first consider tree-structured automata.

Proposition 11. Let A1, A2 be tree-structured nondeterministic automata with-
out internal actions, such that A1 ≤DC A2. Then A1 ≤F A2.

Proof. Assume that A1 ≤DC A2. Let C be the dual probabilistic automaton of
A1. Without loss of generality, we assume that the set of actions of C is disjoint
from those of A1 and A2. This implies that C is compatible with both A1 and
A2.

Consider the scheduler σ1 for A1‖C that starts by scheduling the self-loop
transition labelled by the start state of C, leading to state (q̄1, q̄1), which is of
the form (q, q). Then σ1 repeats the following as long as q →1:

1. Schedule the ch transition of C, thus choosing a new state q′ of A1.

2. Schedule (q, a, q′) in A1, where a is uniquely determined by the selected state
q′ (recall that A1 is a tree).

3. Schedule the self-loop transition of C labeled by q′, resulting in the state
(q′, q′), which is again of the form (q, q).

Scheduler σ1 induces a trace distribution µT . Observe that µT satisfies the fol-
lowing three properties, for all finite traces β and for all states q:

µT (Cq̄1
) = 1 (1)

q →1 ⇒ µT (Cβqch) = µT (Cβq) (2)

µT (Cβqch) > 0 ⇒
∑

a,q′|q
a
→1q′

µT (Cβqchaq′) = µT (Cβqch) (3)

Since A1 ≤DC A2, Proposition 6 implies that µT is also a trace distribution
of A2‖C. That is, there exists a probabilistic execution µ of A2‖C, induced by
some scheduler σ2, whose trace distribution is µT . Now we define a relation R:
q1 R q2 if and only if there exists an execution α of A2‖C such that:

1. lstate(α) = (q2, q1),
2. µ(Cα) > 0, and
3. σ2(α) assigns a non-zero probability to a transition labeled by q1.

We claim that R is a forward simulation from A1 to A2. For the start condition,
we must show that q̄1 R q̄2. Define execution α to be the trivial execution
consisting of the start state (q̄2, q̄1). Conditions 1 and 2 are clearly satisfied. For
Condition 3, observe that, by Equation (1), µT (Cq̄1

) = 1. Therefore, since there
are no internal actions in A2 or C, the only action that can be scheduled initially
by σ2 is q̄1. Therefore, σ2(α) assigns probability 1 to the unique transition whose
label is q̄1, as needed.

For the step condition, assume q1 R q2, and let q1
a
→1 q′1. By definition of

R, there exists a finite execution α of A2‖C, with last state (q2, q1), such that
µ(Cα) > 0 and σ2(α) assigns a non-zero probability to a transition labeled by
q1. Therefore, the sequence α′ = αq1(q2, q1) is an execution of A2‖C such that
µ(Cα′) > 0. Therefore, µT [Cβq1

] > 0, where β = trace(α). Since q1 enables at
least one transition in A1, Equation (2) implies that µT (Cβq1ch) = µT (Cβq1

).
Then since A2 and C have no internal actions, σ2 must schedule action ch from
α′ with probability 1.

Since action ch leads to state q′1 of C with non-zero probability, which enables
only actions q′1 and ch, by Equation (3), σ2 schedules at least one transition
labeled by a, followed by a transition labeled by q′1. Observe that the transition
labeled by a is a transition of A2. Let (q2, a, q′2) be such a transition. Then, the
sequence α′′ = α′ch(q2, q

′
1)a(q′2, q

′
1) is an execution of A2‖C such that µ(Cα′′) > 0

and such that σ2(α
′′) assigns a non-zero probability to a transition labeled by

q′1. This shows that q′1 R q′2 and completes the proof since we have found a state

q′2 such that q2
a
→2 q′2 and q′1 R q′2.

Now we present our main result, for general (non-tree-structured) nondeter-
ministic automata without internal actions.

Theorem 1. Let A1, A2 be nondeterministic automata without internal ac-
tions. Then A1 ≤DC A2 if and only if A1 ≤F A2.

Proof. First we prove soundness of forward simulations:

A1 ≤F A2 ⇒ (Proposition 7, Part 1)
A1 ≤PF A2 ⇒ (Proposition 8, Part 1)
A1 ≤wPF A2 ⇒ (Proposition 8, Part 3)
A1 ≤DC A2 .

Completeness is established by:

A1 ≤DC A2 ⇒ (Proposition 10)
Unfold(A1) ≤DC A1 ≤DC A2 ≤DC Unfold(A2) ⇒ (≤DC is transitive)
Unfold(A1) ≤DC Unfold(A2) ⇒ (Proposition 11)
Unfold(A1) ≤F Unfold(A2) ⇒ (Proposition 3)
A1 ≤F Unfold(A1) ≤F Unfold(A2) ≤F A2 ⇒ (≤F is transitive)
A1 ≤F A2 .

4.2 Automata With Internal Actions

Next we extend the results of Section 4.1 to automata that include internal
actions. The proofs are analogous to those in Section 4.1, and use the same dual
probabilistic automaton. The difference is that, in several places in the proof
of Proposition 12, we need to reason about multi-step extensions of executions
instead of single-step extensions. Again, we begin with tree-structured automata.

Proposition 12. Let A1, A2 be tree-structured nondeterministic automata such
that A1 ≤DC A2. Then A1 ≤wF A2.

Proof. Assume that A1 ≤DC A2. Let C be the dual probabilistic automaton of
A1, and define scheduler σ1 exactly as in the proof of Proposition 11. Equa-
tions (1), (2) and (3) hold in this case as well. We redefine relation R: q1 R q2

iff there exists an execution α of A2‖C such that:

1. lstate(α) = (q2, q1),
2. µ(Cα) > 0, and
3. there exists an execution fragment, α′, of A2‖C, such that trace(α′) = q1

and µ(Cα⌢α′) > 0.

We claim that R is a weak forward simulation from A1 to A2. For the start
condition, we show that q̄1 R q̄2. Define α to be the trivial execution consisting of
the start state (q̄2, q̄1); this clearly satisfies Conditions 1 and 2. For Condition 3,
observe that, by Equation (1), µT (Cq̄1

) = 1. The inverse image under the trace
mapping for A2‖C, of Cq̄1

, is a union of cones of the form Cα′ , where α′ is

an execution of A2‖C with trace q̄1; therefore, there exists such an α′ with
µ(Cα′) > 0. Since the first state of α′ is (q̄2, q̄1), α⌢α′ = α′. Thus, µ(Cα⌢α′) > 0,
as needed.

For the step condition, assume q1 R q2, and let q1
a
→1 q′1. By definition

of R, there exists a finite execution α of A2‖C, with last state (q2, q1), such
that µ(Cα) > 0 and there exists an execution fragment, α′, of A2‖C, such that
trace(α′) = q1 and µ(Cα⌢α′) > 0. Let β = trace(α); then trace(α ⌢ α′) = βq1,
and so µT (Cβq1

) > 0. Since q1 enables at least one transition in A1, Equation (2)
implies that µT (Cβq1ch) = µT (Cβq1

). Thus there exists an execution fragment
α′′ of A2‖C with trace ch such that µ(Cα⌢α′⌢α′′) > 0. Furthermore, since the
transition of C labeled by ch leads to state q′1 with non-zero probability, we can
assume that the last state of α′′ is of the form (q′′, q′1) for some state q′′.

Since µT (Cβq1ch) > 0, Equation (3) applies. Furthermore, since from the last
state of α′′ the only external actions of C that are enabled are ch and q′1, there
exists an execution fragment α′′′ with trace aq′1 (a is uniquely determined by q′1
since A1 is tree-structured), such that µ(Cα⌢α′⌢α′′⌢α′′′) > 0.

Now we split α′′′ into α′′′
1

⌢ α′′′
2 , where trace(α′′′

1) = a. Then the last state
of α′′′

1 is of the form (q′′′, q′1). We claim that q′1 R q′′′. Indeed, the execu-
tion α ⌢ α′ ⌢ α′′ ⌢ α′′′

1 ends with state (q′′′, q′1) (Condition 1) and satisfies
µ(Cα⌢α′⌢α′′⌢α′′′

1
) > 0 (Condition 2). Furthermore, α′′′

2 is an execution frag-
ment that satisfies Condition 3.

It remains to show that q2
a=⇒ q′′′. For this, it suffices to observe that the

execution fragment (α′ ⌢ α′′ ⌢ α′′′
1)⌈A2 has trace a, first state q2, and last state

q′′′.

Theorem 2. Let A1, A2 be nondeterministic automata. Then A1 ≤DC A2 if
and only if A1 ≤wF A2.

Proof. Analogous to the proof of Theorem 1.

5 Characterizations of ≤DC: Probabilistic Automata

Finally, we present our characterization theorems for ≤DC for probabilistic au-
tomata: Theorem 3 characterizes ≤DC in terms of ≤PF , for PAs without internal
actions, and Theorem 4 characterizes ≤DC in terms of ≤wPF , for arbitrary PAs.
Again, we give the results first for tree-structured automata and extend them
by unfolding.

Our proofs of completeness for PAs are analogous to those for nondetermin-
istic automata. We define a new kind of dual probabilistic automaton C for a PA
P , which is slightly different from the one for nondeterministic automata. The
main differences are that the new C keeps track, in its state, of transitions as
well as states of the given PA P , and that the new C has separate transitions
representing nondeterministic and probabilistic choices within P . Specifically,
the states of C include a distinguished start state, all the states of P , and all
the transitions of P . C has a special transition from its own start state q̄C to
the start state of P , q̄P , labeled by q̄P . Also, from every state q of P , C has

a uniform transition labeled by ch to the set of transitions of P that start in
state q. Finally, for every transition tr of P , and every state q in the support of
target(tr), C has a transition labeled by q from tr to q.

Definition 2. The dual probabilistic automaton of a PA P is a PA C such that

– QC = {q̄C} ∪ QP ∪ DP ,
– EC = QP ∪ {ch}, HC = ∅,
– DC = {(q̄C , q̄P , q̄P)}∪

{(q, ch,U({tr ∈ DP | source(tr) = q})) | q ∈ QP}∪
{(tr , q, q) | tr ∈ DP , q ∈ supp(target(tr))}.

Proposition 13. Let P1, P2 be tree-structured probabilistic automata without
internal actions, such that P1 ≤DC P2. Then P1 ≤PF P2.

Proof. (Sketch:) Assume that P1 ≤DC P2. Let C be the dual probabilistic au-
tomaton of P1. Consider the scheduler σ1 for P1‖C that starts by scheduling
the transition of C from the start state of C to the start state of P1, leading to
state (q̄1, q̄1), which is of the form (q, q). Then σ1 repeats the following as long
as q →1:

1. Schedule the ch transition of C, thus choosing a transition tr of P1.
2. Schedule transition tr of P1, leading P1 to a new state q′.
3. Schedule the transition of C labeled by the state q′, resulting in the state

(q′, q′), which is again of the form (q, q).

Scheduler σ1 induces a trace distribution µT . Since P1 ≤DC P2, Proposition 6
implies that µT is also a trace distribution of P2‖C. That is, there exists a
probabilistic execution µ of P2‖C, induced by some scheduler σ2, whose trace
distribution is µT .

For each state q1 in Q1, let Θq1
be the set of finite executions of A2‖C whose

last transition is labeled by q1. For each state q2 of P2, let Θq1,q2
be the set of

finite executions in Θq1
whose last state is the pair (q2, q1). Now define relation

R: q1 R µ2 iff for each state q2 of Q2,

µ2(q2) =

∑

α∈Θq1,q2
µ(Cα)

∑

α∈Θq1
µ(Cα)

. (4)

We claim that R is a probabilistic forward simulation from P1 to P2. The proof
of this claim appears in [4].

Theorem 3. Let P1, P2 be probabilistic automata without internal actions.
Then P1 ≤DC P2 if and only if P1 ≤PF P2.

Proposition 14. Let P1, P2 be tree-structured probabilistic automata such that
P1 ≤DC P2. Then P1 ≤wPF P2.

Proof. (Sketch:) We use the same dual automaton C. Define scheduler σ1 and
relation R exactly as in the proof of Proposition 13. Now R is a weak probabilistic
forward simulation, as shown in [4].

Theorem 4. Let P1, P2 be probabilistic automata. Then P1 ≤DC P2 if and only
if P1 ≤wPF P2.

6 Concluding Remarks

We have characterized the trace distribution precongruence for nondeterministic
and probabilistic automata, with and without internal actions, in terms of four
kinds of simulation relations, ≤F , ≤wF , ≤PF , and ≤wPF . In particular, this
shows that probabilistic contexts are capable of observing all the distinctions
that can be expressed using these simulation relations. Some technical improve-
ments are possible. For example, our finite branching restriction can be relaxed
to countable branching, simply by replacing uniform distributions in the dual
automata by other distributions such as exponential distributions.

For future work, it would be interesting to try to restrict the class of sched-
ulers used for defining the trace distribution precongruence, so that fewer dis-
tinctions are observable by probabilistic contexts. It remains to define such re-
strictions and to provide explicit chacterizations of the resulting new notions of
≤DC , for instance in terms of button pushing scenarios.

References

1. S. Aggarwal. Time optimal self-stabilizing spanning tree algorithms. Master’s
thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, May 1994. Available as Technical Report MIT/LCS/TR-
632.

2. K.G. Larsen B. Jonsson. Specification and refinement of probabilistic processes.
In Proceedings 6th Annual Symposium on Logic in Computer Science, Amsterdam,
pages 266–277. IEEE Press, 1991.

3. N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized dis-
tributed algorithms. In Proceedings of the 13th Annual ACM Symposium on the

Principles of Distributed Computing, pages 314–323, Los Angeles, CA, August
1994.

4. N.A. Lynch, R. Segala, and F.W. Vaandrager. Compositionality for probabilistic
automata. Technical Report MIT-LCS-TR-907, MIT, Laboratory for Computer
Science, 2003.

5. N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI

Quarterly, 2(3):219–246, September 1989.
6. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations, I: Untimed

systems. Information and Computation, 121(2):214–233, September 1995.
7. A. Pogosyants, R. Segala, and N.A. Lynch. Verification of the randomized con-

sensus algorithm of Aspnes and Herlihy: a case study. Distributed Computing,
13(3):155–186, 2000.

8. R. Segala. Compositional trace–based semantics for probabilistic automata. In
Proc. CONCUR’95, volume 962 of Lecture Notes in Computer Science, pages 234–
248, 1995.

9. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-

tems. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, June 1995. Available as Technical Report
MIT/LCS/TR-676.

10. R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995.

11. M.I.A. Stoelinga. Alea jacta est: Verification of Probabilistic, Real-Time and Para-

metric Systems. PhD thesis, University of Nijmegen, April 2002.
12. M.I.A. Stoelinga. An introduction to probabilistic automata. Bulletin of the Eu-

ropean Association for Theoretical Computer Science, 78:176–198, October 2002.
13. M.I.A. Stoelinga and F.W. Vaandrager. Root contention in IEEE 1394. In J.-P.

Katoen, editor, Proceedings 5th International AMAST Workshop on Formal Meth-

ods for Real-Time and Probabilistic Systems, Bamberg, Germany, volume 1601 of
Lecture Notes in Computer Science, pages 53–74. Springer-Verlag, 1999.

14. M.I.A. Stoelinga and F.W. Vaandrager. A testing scenario for probabilistic au-
tomata. In J.C.M. Baeten, J.K. Lenstra, J. Parrow, and G.J. Woeginger, editors,
Proceedings 30th ICALP, volume 2719 of Lecture Notes in Computer Science, pages
407–418. Springer-Verlag, 2003.

