Compositionality for Probabilistic Automata

2% 3% % x

Nancy Lynch'*, Roberto Segala?**, and Frits Vaandrager

! MIT Laboratory for Computer Science
Cambridge, MA 02139, USA
lynch@theory.lcs.mit.edu

2 Dipartimento di Informatica, Universita di Verona
Strada Le Grazie 15, 37134 Verona, Italy
roberto.segala@univr.it
3 Nijmegen Institute for Computing and Information Sciences
University of Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
fvaan@cs.kun.nl

Abstract. We establish that on the domain of probabilistic automata,
the trace distribution preorder coincides with the simulation preorder.

1 Introduction

Probabilistic automata [9, 10, 12] constitute a mathematical framework for mod-
eling and analyzing probabilistic systems, specifically, systems of asynchronously
interacting components that may make nondeterministic and probabilistic choices.
They have been applied successfully to distributed algorithms [3,7, 1] and prac-
tical communication protocols [13].

An important part of a system modeling framework is a notion of external
behavior of system components. Such a notion can be used to define imple-
mentation and equivalence relationships between components. For example, the
external behavior of a nondeterministic automaton can be defined as its set of
traces—the sequences of external actions that arise during its executions [5].
Implementation and equivalence of nondeterministic automata can be defined
in terms of inclusion and equality of sets of traces. By analogy, Segala [9] has
proposed defining the external behavior of a probabilistic automaton as its set of
trace distributions, and defining implementation and equivalence in terms of in-
clusion and equality of sets of trace distributions. Stoelinga and Vaandrager have
proposed a simple testing scenario for probabilistic automata, and have proved
that the equivalence notion induced by their scenario coincides with Segala’s
trace distribution equivalence [14].
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However, a problem with these notions is that trace distribution inclusion
and equivalence are not compositional. To address this problem, Segala [9] de-
fined more refined notions of implementation and equivalence. In particular, he
defined the trace distribution precongruence, <pc, as the coarsest precongruence
included in the trace distribution inclusion relation. This yields compositionality
by construction, but does not provide insight into the nature of the <p¢ relation.
Segala also provided a characterization of <p¢ in terms of the set of trace dis-
tributions observable in a certain principal contert—a rudimentary probabilistic
automaton that makes very limited nondeterministic and probabilistic choices.
However, this indirect characterization still does not provide much insight into
the structure of <p¢, for example, it does not explain its branching structure.

In this paper, we provide an explicit characterization of the trace distribution
precongruence, <p¢, for probabilistic automata, that completely explains its
branching structure. Namely, we show that P; <pc P2 if and only if there
exists a weak probabilistic (forward) simulation relation from Py to Pa. Moreover,
we provide a similar characterization of <p¢ for nondeterministic automata
in terms of the existence of a weak (non-probabilistic) simulation relation. It
was previously known that simulation relations are sound for <p¢ [9], for both
nondeterministic and probabilistic automata; we show the surprising fact that
they are also complete. That is, we show that, for both nondeterministic and
probabilistic automata, probabilistic contexts can observe all the distinctions
that can be expressed using simulation relations.

Sections 2 and 3 contain basic definitions and results for nondeterministic and
probabilistic automata, respectively, and for the preorders we consider. These
sections contain no new material, but recall definitions and theorems from the
literature. For a more leisurely introduction see [5,12]. Sections 4 and 5 con-
tain our characterization results for nondeterministic and probabilistic automata.
Section 6 contains our conclusions.

A full version of this paper, including all proofs, appears in [4].

2 Definitions for Nondeterministic Automata

A (nondeterministic) automaton is a tuple A = (Q,q, E, H, D), where Q is a
set of states, ¢ € Q) is a start state, E is a set of external actions, H is a set
of internal (hidden) actions with ENH =0, and D C Q@ x (FUH) xQ is a
transition relation. We denote EUH by A and we refer to it as the set of actions.
We denote a transition (¢,a,q’) of D by ¢ = ¢'. We write ¢ — ¢’ if ¢ = ¢ for
some a, and we write ¢ — if ¢ — ¢’ for some ¢’. We assume finite branching: for
each state ¢ the number of pairs (a,q’) such that ¢ % ¢ is finite. We denote the
elements of an automaton A by Q4, Ga, Ea, Ha, Da, A, 4. Often we use the
name A for a generic automaton; then we usually omit the subscripts, writing
simply Q, ¢, E, H, D, A, and %. We extend this convention to allow indices
and primes as well; thus, the set of states of automaton A is denoted by Q..
An ezxecution fragment of an automaton A is a finite or infinite sequence
o = qoaiqia2qs - - - of alternating states and actions, starting with a state and,



if the sequence is finite, ending in a state, where each (¢;, a;t+1,¢;+1) € D. State
qo, the first state of a, is denoted by fstate(a). If « is a finite sequence, then the
last state of « is denoted by Istate(a). An exzecution is an execution fragment
whose first state is the start state g. We let frags(A) denote the set of execution
fragments of A and frags™(A) the set of finite execution fragments. Similarly,
we let execs(A) denote the set of executions of A and ezecs*(A) the set of finite
executions.

Execution fragment « is a prefiz of execution fragment o', denoted by a <
o, if sequence « is a prefix of sequence o’. Finite execution fragment a; =
qoa1q1 - - - arqx and execution fragment ay can be concatenated if fstate(as) = gx.
In this case the concatenation of a; and ais, a; — aw, is the execution fragment
qoa1qi - - - aga. Given an execution fragment a and a finite prefix o/, a > o/
(read « after o) is defined to be the unique execution fragment o such that
a=ao " d.

The trace of an execution fragment « of an automaton A, written trace 4 (),
or just trace(a) when A is clear from context, is the sequence obtained by re-
stricting a to the set of external actions of A. For a set S of executions of A,
traces 4(S), or just traces(S) when A is clear from context, is the set of traces
of the executions in S. We say that (3 is a trace of A if there is an execution «
of A with trace(a) = 3. Let traces(A) denote the set of traces of A. We define
the trace preorder relation on automata as follows: A; <7 A, iff £; = E5 and
traces( A1) C traces(As). We use =7 to denote the kernel of <r.

If a € A, then ¢= ¢ iff there exists an execution fragment « such that
fstate(a) = q, Istate(a) = ¢’, and trace(a) = trace(a). (Here and elsewhere, we
abuse notation slightly by extending the trace function to arbitrary sequences.)
We call ¢ =% ¢/ a weak transition. We let tr range over either transitions or weak
transitions. For a transition tr = (¢, a,q’), we denote ¢ by source(tr) and ¢’ by
target(tr).

Composition: Automata A; and Ay are compatible if Hi N Ay = Ay N Hy = ().
The composition of compatible automata A; and Az, denoted by A;||Az, is the
automaton A = (Q1 X Qa, (q1,d2), E1 U Ey, Hy U Hy, D) where D is the set of
triples (g, a, ¢') such that, for 7 € {1,2}:

a€ A; = (m(q),a,mi(q)) € D; and a & A; = m;(q) = mi(q).

Let o be an execution fragment of A;||A2, i € {1,2}. Then 7;(a), the it
projection of «, is the sequence obtained from « by projecting each state onto its
it" component, and removing each action not in A; together with its following
state. Sometimes we denote this projection by a[A;.

Proposition 1. Let Ay and As be automata, with A1 <t As. Then, for each
automaton C compatible with both A1 and Az, A1||C <1 As||C.

Simulation relations: We define two kinds of simulation relations: a forward
simulation, which provides a step-by-step correspondence, and a weak forward
simulation, which is insensitive to the occurrence of internal steps.



Namely, relation R C Q1 X Q2 is a forward simulation (resp., weak forward
simulation) from A; to As iff 1 = F5 and both of the following hold:

1. ¢1 R ¢.
2. If 4 R g2 and 1 % ¢, then there exists ¢, such that ¢o > ¢4 (resp.,
92 = ¢3) and g R gj.

We write A; <p A (resp., A1 <ur Az) when there is a forward simulation
(resp., a weak forward simulation) from .4; to As.

Proposition 2. Let A; and As be automata. Then:

1. IfA1 SF AQ then Al SwF .AQ.
2. If HH = Hy =0, then Ay <p Ay iff A1 <ur As.
3. IfA1 <wF Ao then A1 <7 As.

Proof. Standard; for instance, see [6].

Tree-structured automata: An automaton is tree-structured if each state is reached
via a unique execution. The unfolding of automaton A, denoted by Unfold(A),
is the tree-structured automaton B obtained from A by unfolding its transition
graph into a tree. Formally, Qg = execs*(A), gg = qu, Ep = Ea, Hg = H4,
and Dp = {(a, a, aaq) | (Istate(a),a,q) € D4}.

Proposition 3. A=p Unfold(A).

Proof. See [6]. It is easy to check that the relation R, where a R ¢ iff Istate(a) =
q, is a forward simulation from Unfold(A) to A and that the inverse relation of
R is a forward simulation from A to Unfold(.A).

Proposition 4. A = Unfold(A).

Proof. By Proposition 3 and Proposition 2, Parts 1 and 3.

3 Definitions for Probabilistic Automata

A discrete probability measure over a set X is a measure p on (X, 2%) such that
w(X) = 1. A discrete sub-probability measure over X is a measure y on (X, 2%)
such that u(X) < 1. We denote the set of discrete probability measures and
discrete sub-probability measures over X by Disc(X) and SubDisc(X), respec-
tively. We denote the support of a discrete measure p, i.e., the set of elements
that have non-zero measure, by supp(p). We let §(q) denote the Dirac measure
for g, the discrete probability measure that assigns probability 1 to {¢}. Finally,
if X is finite, then U(X) denotes the uniform distribution over X, the measure
that assigns probability 1/|X| to each element of X.

A probabilistic automaton (PA) is a tuple P = (Q,q, E, H, D), where all
components are exactly as for nondeterministic automata, except that D, the
transition relation, is a subset of @ x (EU H) x Disc(Q). We define A as before.



We denote transition (g,a,u) by ¢ % pu. We assume finite branching: for each
state ¢ the number of pairs (a, ) such that ¢ % pu is finite. Given a transition
tr = (g, a, u) we denote g by source(tr) and p by target(ir).

Thus, a probabilistic automaton differs from a nondeterministic automaton
in that a transition leads to a probability measure over states rather than to a
single state. A nondeterministic automaton is a special case of a probabilistic
automaton, where the last component of each transition is a Dirac measure. Con-
versely, we can associate a nondeterministic automaton with each probabilistic
automaton by replacing transition relation D by the relation D’ given by

(¢;0,¢") € D' < 3pu: (g,a,1) € DA p(q') > 0.

Using this correspondence, notions such as execution fragments and traces carry
over from nondeterministic automata to probabilistic automata.

A scheduler for a PA P is a function o : frags®(P) — SubDisc(D) such
that tr € supp(o(«)) implies source(tr) = Istate(a). A scheduler o is said to be
deterministic if for each finite execution fragment «, either o(a)(D) = 0 or else
o(a) = 6(tr) for some tr € D.

A scheduler o and a state gg induce a measure p on the o-field generated by
cones of execution fragments as follows. If @« = gpa1q; - - - arqx is a finite execution
fragment, then the cone of « is defined by C, = {&’ € frags(P) | o < o/}, and
the measure of Cy, is defined by

1(Ca) = ]___[ Z o(qoar -+ aigi)((¢i, @i1, ') 1 (i1)

i1€{0,k—1} \(gi,ait+1,u')ED

Standard measure theoretical arguments ensure that u is well defined. We call the
measure u a probabilistic execution fragment of P and we say that u is generated
by o and ¢qo. We call state g the first state of p and denote it by fstate(u). If
fstate(u) is the start state g, then u is called a probabilistic execution.

The trace function is a measurable function from the o-field generated by
cones of execution fragments to the o-field generated by cones of traces. Given a
probabilistic execution fragment p, we define the trace distribution of u, tdist(u),
to be the image measure of p under trace. We denote the set of trace distributions
of probabilistic executions of a PA P by tdists(P). We define the trace distribu-
tion preorder relation on probabilistic automata by: Py <p Py iff E1 = Fy and
tdists(Py) C tdists(Pa).

Combined transitions: Let {q % u;}ier be a collection of transitions of P, and
let {pi}icr be a collection of probabilities such that ), ; p; = 1. Then the triple
(q,0,),cr pipsi) is called a combined transition of P.

Consider a probabilistic execution fragment p that assigns probability 1 to
the set of all finite execution fragments with trace a. Let p/ be the measure
defined by p/(¢q) = p({« | lstate(a) = ¢}). Then fstate(p) = ' is a weak com-
bined transition of P. If i can be generated by a deterministic scheduler, then
fstate(p) = u' is a weak transition.



Proposition 5. Let {tr;}icr be a collection of weak combined transitions of a
PA P, all starting in the same state q, and all labeled by the same action a,
and let {p;}icr be probabilities such that ) ;. p; = 1. Then ), ; pitr; is a weak
combined transition of P labeled by a.

Proof. See [9] or [11].

Composition: Two PAs, P; and Po, are compatible if Hy N As = Ay N Hy =
(). The composition of two compatible PAs Py, P, denoted by P;|P2, is the
PA P = (Q1 x Q2,(q1,32), E1 U E2, Hy U Hy, D) where D is the set of triples
(q,a, 1 x pz2) such that, for ¢ € {1,2}:

a€A; = (mi(qQ),a,ui) € Dy and a ¢ A; = p; = 6(mi(q)).

The trace distribution preorder is not preserved by composition [10,11].
Thus, we define the trace distribution precongruence, <pc, to be the coarsest
precongruence included in the trace distribution preorder <p. This relation has
a simple characterization:

Proposition 6. Let P; and Py be PAs. Then Py <pc P2 iff for every PA C
that is compatible with both P1 and Pa, P1||C <p P2||C.

Simulation relations: The definitions of forward simulation and weak forward
simulation in Section 2 can be extended naturally to PAs [10]. However, Segala
has shown [8] that the resulting simulations are not complete for <pc, and
has defined new candidate simulations. These new simulations relate states to
probability distributions on states.

In order to define formally the new simulations we need three new concepts.
First we show how to lift a relation between sets to a relation between dis-
tributions over sets [2]. Let R C X x Y. The lifting of R is a relation R’ C
Disc(X) x Disc(Y') such that px R’ py iff there is a function w : X x Y — [0, 1]
that satisfies:

1. If w(z,y) > 0 then = R y.
2. Foreachz € X, }_ oy w(z,y) = px ().
3. Foreachy €Y, >  vw(z,y)=py(y).

We abuse notation and denote the lifting of a relation R by R as well.
Next we define a flattening operation that converts a measure p contained
in Disc(Disc(X)) into a measure flatten(u) in Disc(X). Namely, we define

flatten(p) = > plp)p -

pE supp (k)

Finally, we lift the notion of a transition to a hyper-transition [11] that begins
and ends with a probability distributions over states. Thus, let P be a PA and
let p € Disc(Q). For each ¢ € supp(p), let ¢ 4 ftq be a combined transition of
P. Let p’ be qusupp(#) 1(q)ptg- Then p % ' is called a hyper-transition of P.



Also, for each ¢ € supp(u), let ¢= py be a weak combined transition of P. Let
i be qusupp(u) (@) tq- Then p= ' is called a weak hyper-transition of P.
We now define simulations for probabilistic automata. A relation R C Q1 X
Disc(Q2) is a probabilistic forward simulation (resp., weak probabilistic forward
simulation) from PA P; to PA Py iff E1 = E5 and both of the following hold:

L @1 Ro(q2).

2. For each pair qi,ue such that ¢; R po and each transition ¢ — y there
exists a distribution p5 € Disc(Disc(Q2)) such that pf R ph and such that
po % flatten(uh) (vesp., pg =2 flatten(uh)) is a hyper-transition (resp., a
weak hyper-transition) of Ds.

We write P1 <pp P2 (resp., P1 <upr P2) whenever there is a probabilistic
forward simulation (resp., a weak probabilistic forward simulation) from P; to
Ps. Note that a forward simulation between nondeterministic automata is a
probabilistic forward simulation between the two automata viewed as PAs:

Proposition 7. Let Ay and As be nondeterministic automata. Then:

1. Ay <p As implies Ay <pr Az, and
2. Ay <ur As implies A1 <ypr As.

Proposition 8. Let P; and P2 be PAs. Then:

1. prl SPF PQ then Pl SwPF 7)2.
2. If Hy = Hy = 0 then Py <pp P2 iff P <wpr Pa.
3. If P1 <wpr P2 then P1 <pc Pa.

Proof. See [9].

Tree-structured probabilistic automata: The unfolding of a probabilistic automa-
ton P, denoted by Unfold(P), is the tree-structured probabilistic automaton
Q obtained from P by unfolding its transition graph into a tree. Formally,

Qo = ezecs*(P), go = Gp, Eq = Ep, Hg = Hp, and Dg = {(a,a,p) |
Fw (Istate(), a, ') € Dp,Yqi'(q) = plaag)}.

Proposition 9. P =pp Unfold(P).

Proof. Tt is easy to check that the relation R where @ R 6(q) iff Istate(a) = ¢ is
a probabilistic forward simulation from Unfold(P) to P and that the “inverse”
of R is a probabilistic forward simulation from P to Unfold(P).

Proposition 10. P =pc Unfold(P).

Proof. By Proposition 9, and Proposition 8, Parts 1 and 3.



4 Characterizations of <pc: Nondeterministic Automata

In this section, we prove our characterization theorems for <p¢ for nondeter-
ministic automata: Theorem 1 characterizes <p¢ in terms of <g, for automata
without internal actions, and Theorem 2 characterizes <p¢ in terms of <,p,
for arbitrary nondeterministic automata. In each case, we prove the result first
for tree-structured automata and then extend it to the non-tree-structured case
via unfolding. The interesting direction for these results is the completeness di-
rection, showing that A; <pc Ao implies the existence of a simulation relation
from A; to As.

Our proofs of completeness for nondeterministic automata use the simple
characterization in Proposition 6, applied to a special context for 4; that we call
the dual probabilistic automaton of A;. Informally speaking, the dual probabilis-
tic automaton of a nondeterministic automaton A is a probabilistic automaton
C whose traces contain information about states and transitions of A. C’s states
and start state are the same as those of A. For every state ¢ of A, C has a
self-loop transition labeled by g. Also, if Tr is the (nonempty) set of transitions
from ¢ in A, then from state ¢, C has a uniform transition labeled by ch to
{target(tr) | tr € Tr}.

Definition 1. The dual probabilistic automaton of an automaton A is a PA C
such that

— Qc=Qua, dc = qa,
- EC :Q.AU{Ch}7 HC = @7
— Dec={(g,ch,U({d' | ¢ —=ad'})) | a =4} U{(e,¢0:9) | ¢ € Qa}.

Since C and A share no actions, C cannot ensure that its traces faithfully
emulate the behavior of A. However, an appropriate scheduler can synchronize
the two automata and ensure such an emulation.

4.1 Automata Without Internal Actions
We first consider tree-structured automata.

Proposition 11. Let Ay, As be tree-structured nondeterministic automata with-
out internal actions, such that Ay <pc As. Then A; <pg As.

Proof. Assume that A; <pc As. Let C be the dual probabilistic automaton of
Aj1. Without loss of generality, we assume that the set of actions of C is disjoint
from those of A; and As. This implies that C is compatible with both A; and
As.

Consider the scheduler o1 for A;||C that starts by scheduling the self-loop
transition labelled by the start state of C, leading to state (g1, q1), which is of
the form (g, q). Then o7 repeats the following as long as ¢ —1:

1. Schedule the ch transition of C, thus choosing a new state ¢’ of Aj.



2. Schedule (g, a,q") in A;, where a is uniquely determined by the selected state
¢’ (rvecall that A; is a tree).

3. Schedule the self-loop transition of C labeled by ¢/, resulting in the state
(¢’,¢'), which is again of the form (g, q).

Scheduler o7 induces a trace distribution pur. Observe that pr satisfies the fol-
lowing three properties, for all finite traces 8 and for all states g:

pr(Cq) =1 (1)

g—1 = pr(Csgen) = br(Caq) (2)

pr(Cpgen) >0 = Z 11 (Cagehaq’) = pr(Cpgen) (3)
a,q'lg>1¢/

Since A; <pc¢ Az, Proposition 6 implies that ur is also a trace distribution
of A2||C. That is, there exists a probabilistic execution u of Az||C, induced by
some scheduler oo, whose trace distribution is ur. Now we define a relation R:
q1 R qo if and only if there exists an execution a of A3||C such that:

1. Istate(a) = (g2, q1),
2. u(Cq) >0, and
3. o2(«) assigns a non-zero probability to a transition labeled by ¢;.

We claim that R is a forward simulation from A; to As. For the start condition,
we must show that ¢3 R @». Define execution « to be the trivial execution
consisting of the start state (g2, q1). Conditions 1 and 2 are clearly satisfied. For
Condition 3, observe that, by Equation (1), ur(Cg ) = 1. Therefore, since there
are no internal actions in Az or C, the only action that can be scheduled initially
by o is 1. Therefore, o2 () assigns probability 1 to the unique transition whose
label is ¢1, as needed.

For the step condition, assume ¢; R go, and let ¢; 5 q1. By definition of
R, there exists a finite execution « of As||C, with last state (g2, ¢1), such that
1(Cy) > 0 and o2(«r) assigns a non-zero probability to a transition labeled by
q1. Therefore, the sequence o' = aqi1(qa,¢1) is an execution of As||C such that
1(Cor) > 0. Therefore, pr[Cgq,] > 0, where § = trace(c). Since g; enables at
least one transition in A;, Equation (2) implies that ur(Cgag,cen) = pr(Caqgy )-
Then since Ay and C have no internal actions, oo must schedule action ch from
o' with probability 1.

Since action ch leads to state ¢} of C with non-zero probability, which enables
only actions ¢; and ch, by Equation (3), o2 schedules at least one transition
labeled by a, followed by a transition labeled by ¢j. Observe that the transition
labeled by a is a transition of As. Let (g2, a, g5) be such a transition. Then, the
sequence o' = o’ ch(qa2, ¢} )a(dh, 1) is an execution of As||C such that u(Cyr) > 0
and such that o3(c”’) assigns a non-zero probability to a transition labeled by
q;- This shows that ¢/ R ¢4 and completes the proof since we have found a state
gy such that gz 5 ¢4 and ¢} R gj.



Now we present our main result, for general (non-tree-structured) nondeter-
ministic automata without internal actions.

Theorem 1. Let Ay, As be nondeterministic automata without internal ac-
tions. Then A1 <pc As if and only if A1 <p As.

Proof. First we prove soundness of forward simulations:

A; <p A2 = (Proposition 7, Part 1)
Ay <prp A2 = (Proposition 8, Part 1)
Ay <upr A2 = (Proposition 8, Part 3)
A1 <pc Az .

Completeness is established by:

A1 <pc Az = (Proposition 10)
Unfold(A1) <pc A1 <pc Az <pc Unfold(As) = (<pc is transitive)
Unfold( A1) <pc Unfold(Az) = (Proposition 11)
Unfold(A1) <p Unfold(Az) = (Proposition 3)

A1 <p Unfold(A;1) <p Unfold(A2) <p Az = (< is transitive)

A <p Az .

4.2 Automata With Internal Actions

Next we extend the results of Section 4.1 to automata that include internal
actions. The proofs are analogous to those in Section 4.1, and use the same dual
probabilistic automaton. The difference is that, in several places in the proof
of Proposition 12, we need to reason about multi-step extensions of executions
instead of single-step extensions. Again, we begin with tree-structured automata.

Proposition 12. Let A1, Ay be tree-structured nondeterministic automata such

that Ay <pc Asz. Then A; <,r As.

Proof. Assume that A; <pc As. Let C be the dual probabilistic automaton of
A1, and define scheduler o7 exactly as in the proof of Proposition 11. Equa-
tions (1), (2) and (3) hold in this case as well. We redefine relation R: ¢1 R g2
iff there exists an execution « of As||C such that:

1. Istate(a) = (g2, q1),

2. u(Cq) >0, and

3. there exists an execution fragment, o/, of Ay||C, such that trace(¢/) = q1
and p(Cp—qr) > 0.

We claim that R is a weak forward simulation from A; to As. For the start
condition, we show that 1 R 2. Define « to be the trivial execution consisting of
the start state (gz, q1); this clearly satisfies Conditions 1 and 2. For Condition 3,
observe that, by Equation (1), u7(Cg, ) = 1. The inverse image under the trace
mapping for Az||C, of Cjz,, is a union of cones of the form C,., where o' is



an execution of As||C with trace gi; therefore, there exists such an o' with
1(Cyr) > 0. Since the first state of & is (G2, §1), « "’ = &'. Thus, u(Cp~4) > 0,
as needed.

For the step condition, assume ¢; R ¢2, and let ¢; —=; ¢}. By definition
of R, there exists a finite execution « of As||C, with last state (gz2,q1), such
that u(Cy) > 0 and there exists an execution fragment, o, of Az||C, such that
trace(a) = g1 and p(Cy~or) > 0. Let S = trace(a); then trace(a ™ o) = B¢,
and so pur(Cgq, ) > 0. Since ¢ enables at least one transition in 4, Equation (2)
implies that p7(Cgq,cn) = tr(Cpq, ). Thus there exists an execution fragment
o' of A2]|C with trace ch such that pu(Co~qr~q) > 0. Furthermore, since the
transition of C labeled by ch leads to state ¢; with non-zero probability, we can
assume that the last state of o’ is of the form (¢”, ¢}) for some state ¢”.

Since pr(Cagy en) > 0, Equation (3) applies. Furthermore, since from the last
state of o’ the only external actions of C that are enabled are ch and ¢f, there
exists an execution fragment o with trace aq] (a is uniquely determined by ¢}
since A; is tree-structured), such that u(Co~ar~ar—~ar) > 0.

Now we split o’ into o’ ™ of’, where trace(a)’”) = a. Then the last state
of of is of the form (¢, q;). We claim that ¢; R ¢". Indeed, the execu-

tion @ o T o T of ends with state (¢, ¢}) (Condition 1) and satisfies

(Co~ar~ar~ar) > 0 (Condition 2). Furthermore, a4’ is an execution frag-
ment that satisfies Condition 3.
It remains to show that ¢ =% ¢"’. For this, it suffices to observe that the

—~ I ~

execution fragment (o/ ™ o” 7 of’)[ A2 has trace a, first state g2, and last state
"
q".

Theorem 2. Let Ay, As be nondeterministic automata. Then A1 <pc As if
and only if A1 <,r As.

Proof. Analogous to the proof of Theorem 1.

5 Characterizations of <pc: Probabilistic Automata

Finally, we present our characterization theorems for <pc for probabilistic au-
tomata: Theorem 3 characterizes <p¢ in terms of <pp, for PAs without internal
actions, and Theorem 4 characterizes <p¢ in terms of <, pp, for arbitrary PAs.
Again, we give the results first for tree-structured automata and extend them
by unfolding.

Our proofs of completeness for PAs are analogous to those for nondetermin-
istic automata. We define a new kind of dual probabilistic automaton C for a PA
P, which is slightly different from the one for nondeterministic automata. The
main differences are that the new C keeps track, in its state, of transitions as
well as states of the given PA P, and that the new C has separate transitions
representing nondeterministic and probabilistic choices within P. Specifically,
the states of C include a distinguished start state, all the states of P, and all
the transitions of P. C has a special transition from its own start state gc to
the start state of P, gp, labeled by gp. Also, from every state ¢ of P, C has



a uniform transition labeled by ch to the set of transitions of P that start in
state ¢. Finally, for every transition tr of P, and every state ¢ in the support of
target(tr), C has a transition labeled by ¢ from tr to q.

Definition 2. The dual probabilistic automaton of a PA P is a PA C such that

— Qe ={qc}uQpUDp,

— E¢=QpU{ch}, He =0,

= De ={(qc,qr,qr)}V
{(q, ch,U({tr € Dp | source(tr) =q})) | g € Qp}U
{(tr,q,q) | tr € Dp,q € supp(target(tr))}.

Proposition 13. Let P1, P be tree-structured probabilistic automata without
internal actions, such that Py <pc Pa. Then P1 <pr Pa.

Proof. (Sketch:) Assume that P; <pc Pa. Let C be the dual probabilistic au-
tomaton of P;. Consider the scheduler oy for P;||C that starts by scheduling
the transition of C from the start state of C to the start state of Py, leading to
state (q1,q1), which is of the form (g, q). Then o1 repeats the following as long
as q —1:

1. Schedule the ch transition of C, thus choosing a transition ¢r of P;.

2. Schedule transition ¢r of Py, leading P; to a new state ¢'.

3. Schedule the transition of C labeled by the state ¢/, resulting in the state

(¢’,q"), which is again of the form (q, q).

Scheduler o; induces a trace distribution pr. Since P; <pc P2, Proposition 6
implies that pr is also a trace distribution of Ps||C. That is, there exists a
probabilistic execution p of Ps||C, induced by some scheduler oq, whose trace
distribution is pp.

For each state ¢1 in @1, let Oy, be the set of finite executions of As||C whose
last transition is labeled by ¢1. For each state g2 of Pa, let Oy, 4, be the set of
finite executions in @y, whose last state is the pair (¢2,¢1). Now define relation
R: g1 R po iff for each state g2 of Qo,

(o) = Zcen MO
H2(q2) = ZQGqu W(Ca)

We claim that R is a probabilistic forward simulation from P; to Ps. The proof
of this claim appears in [4].

(4)

Theorem 3. Let P1, Py be probabilistic automata without internal actions.
Then P1 <pc Po if and only if P1 <pr Ps.

Proposition 14. Let Py, Py be tree-structured probabilistic automata such that
P1 <pc Pa2. Then P1 <ypr Pa.

Proof. (Sketch:) We use the same dual automaton C. Define scheduler o7 and
relation R exactly as in the proof of Proposition 13. Now R is a weak probabilistic
forward simulation, as shown in [4].

Theorem 4. Let Py, Py be probabilistic automata. Then Py <pc Po if and only
if P1 <wpF Po.



6 Concluding Remarks

We have characterized the trace distribution precongruence for nondeterministic
and probabilistic automata, with and without internal actions, in terms of four
kinds of simulation relations, <p, <,r, <pp, and <,pp. In particular, this
shows that probabilistic contexts are capable of observing all the distinctions
that can be expressed using these simulation relations. Some technical improve-
ments are possible. For example, our finite branching restriction can be relaxed
to countable branching, simply by replacing uniform distributions in the dual
automata by other distributions such as exponential distributions.

For future work, it would be interesting to try to restrict the class of sched-
ulers used for defining the trace distribution precongruence, so that fewer dis-
tinctions are observable by probabilistic contexts. It remains to define such re-
strictions and to provide explicit chacterizations of the resulting new notions of
<pc, for instance in terms of button pushing scenarios.
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