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Abstract. We present a formal, mathematical foundation for modeling and reasoning about
the behavior of synchronous, stochastic Spiking Neural Networks (SNNs), which have been
widely used in studies of neural computation. Our approach follows paradigms established in
the field of concurrency theory.
Our SNN model is based on directed graphs of neurons, classified as input, output, and
internal neurons. We focus here on basic SNNs, in which a neuron’s only state is a Boolean
value indicating whether or not the neuron is currently firing. We also define the external
behavior of an SNN, in terms of probability distributions on its external firing patterns. We
define two operators on SNNs: a composition operator, which supports modeling of SNNs as
combinations of smaller SNNs, and a hiding operator, which reclassifies some output behavior
of an SNN as internal. We prove results showing how the external behavior of a network built
using these operators is related to the external behavior of its component networks. Finally,
we definition the notion of a problem to be solved by an SNN, and show how the composition
and hiding operators affect the problems that are solved by the networks.
We illustrate our definitions with three examples: a Boolean circuit constructed from gates,
an Attention network constructed from a Winner-Take-All network and a Filter network,
and a toy example involving combining two networks in a cyclic fashion.
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1 Introduction

Understanding computation in biological neural networks like the human brain is a central challenge
of modern neuroscience and artificial intelligence. One approach to this challenge uses algorithmic
methods from theoretical computer science. That means defining formal computational models for
brain networks, identifying abstract problems that can be solved by such networks, and defining
and analyzing algorithms that solve these problems. Work along these general lines includes that
of Valiant, Navlakha, Papadimitriou, and their collaborators (see, for example, [3, 31,38]).

For the past few years, we and our collaborators have been working on an algorithmic theory of
brain networks, based on synchronous, stochastic Spiking Neural Network (SNN) models. SNNs are
a model for neural computation that includes many important biologically-plausible features, yet
is still simple enough to study theoretically. An SNN is a directed graph of neurons, in which each
neuron fires in discrete spikes, in response to a sufficiently high membrane potential. The potential is
induced by spikes from neighboring neurons, which can be either excitatory or inhibitory, increasing
or decreasing the incoming potential. In our SNNs, the neurons operate in synchronous rounds, and
make firing decisions stochastically. Inspired by tasks that are solved in actual brains, we have been
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defining and studying abstract problems to be solved by our SNNs. So far, we have developed models
and networks for the Winner-Take-All problem from computational neuroscience [15, 17, 30, 34],
problems of neural coding and similarity detection [6, 16], problems of spatial representation of
temporal information [7, 40], and problems involving learning [1, 2, 14, 39]. We are continuing to
study many other problems and networks, including both static networks and networks that learn.

In our work so far, we have defined formal models in each paper, as needed. Here we define
a more general computational model for SNNs that we hope will provide a useful foundation for
formal modeling of many networks and formal reasoning about their behavior. Note that this model
is not the most general one that will be needed, but we believe that it will prove to be a useful
first step. In particular, in the basic version of the SNN model defined here, a neuron’s only state
is a Boolean value indicating whether or not the neuron is currently firing. This is sufficient to
model some algorithms, such as the simple two-inhibitor Winner-Take-All network in [17]. Other
algorithmic work uses variants of the basic model with more elaborate state such as limited local
history, or flags that enable certain behavior such as learning [14, 34]; we expect that the results
of this paper should be extendable to these variants as well, but this remains to be worked out.
We also define an external behavior notion for SNNs, in terms of probability distributions on its
external firing patterns. This can be used for stating requirements to be satisfied by the networks.

We then define a composition operator for SNNs, which supports modeling of SNNs as com-
binations of smaller SNNs. We prove that our external behavior notion is compositional, in the
sense that the external behavior of a composed network depends only on the external behaviors
of the component networks and not their internal operation. We also define a hiding operator that
reclassifies some output behavior of an SNN as internal, and show that the behavior of a network
obtained by hiding depends only on that of the original network. A common use of hiding is after
composition, when some of the interactions between the composed networks might be suppressed
in the external behavior.

Finally, we give a formal definition of a problem to be solved by an SNN, and give basic results
showing how the composition and hiding operators affect the problems that are solved by the
networks. We illustrate our definitions with three examples: a Boolean circuit constructed from
neurons that act as logical gates, an Attention network constructed from aWinner-Take-All network
and a Filter network, and a toy example involving combining two networks in a cyclic fashion.

Related work: The general approach of this paper—defining formal models and operators and
proving that the operators respect network behavior—is based on the paradigms of the research
area of concurrency theory [5]. Our particular definitions are inspired by prior work on Input/Output
Automata models [8, 18–23,33], including timed, hybrid and probabilistic variants.

Our focus on SNNs was partly inspired by research of Maass, et al. [24–26] on the computa-
tional power of SNNs. Maass explored how features like randomness [27], temporal coding [28],
and dynamic edge weights [11] affect the computational power and efficiency of neural network
models. Maass’s work differs from ours in that he mostly considers asynchronous models that allow
fine-grained control of spike timing—models with significantly different computing power from ours.

An early synchronous neural network model is the perceptron model, based on a neuron model
invented by McCulloch and Pitts [29]. The neurons are modeled as deterministic linear threshold
elements, without any stochastic behavior as in our neurons. These elements are assembled into
feedforward, layered networks, whereas our networks are arbitrary directed graphs. Another dif-
ference with respect to our basic model is that, in perceptron networks, real values can be passed
along edges between layers, whereas we use a binary activation function. Perceptron networks are
generally used to implement supervised algorithms for learning to recognize patterns.
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Work by Valiant, Navlakha, Papadimitriou, and collaborators [3, 31, 38], is based on a variety
of synchronous neural network models. These models are not presented as general compositional
models in the style of concurrency theory. However, they appear to be compatible with (extended
versions of) our model. Some differences between these models and our basic model are: Valiant [38]
includes elaborate state changes, rather than just simple binary firing decisions; Papadimitriou [31]
and Navlakha [3] assume built-in Winner-Take-All mechanisms; and Valiant and Papadimitriou
focus on learning.

In recent work, Berggren and his group are developing a hardware implementation of a Spik-
ing Neural Network model using nanowires [35, 36]. They have developed a simulator for their
implementation, based on the basic SNN model presented in this paper [12].

Paper organization: Section 2 contains our definitions for Spiking Neural Networks and their exter-
nal behavior. Section 3 contains our definitions for the composition operator for SNNs. Section 4
focuses on the special case of acyclic composition, in which connections between SNNs go in only
one direction; we prove a compositionality theory for this case. Section 5 extends these ideas to the
more general case of composition that allows connections in both directions. Section 6 introduces
the hiding operator for SNNs. Section 7 introduces our notion of a problem to be solved by an SNN.
We conclude in Section 8.

Acknowledgments: We thank our co-authors on our papers based on SNNs, especially Merav Parter,
Lili Su, Brabeeba Wang, Yael Hitron, C. J. Chang, and Frederik Mallmann-Trenn, for providing
many concrete examples that inspired our general model. We also thank Victor Luchangco and
Jesus Lares for reading and contributing comments on earlier drafts of this paper.

2 The Spiking Neural Network Model

Here we present our model definitions. We first specify the structure of our networks—the neurons
and connections between them. Then we describe how the networks execute; this involves defining
individual (non-probabilistic) executions and then defining probabilistic behavior. Next we define
the external behavior of a network. We illustrate with two fundamental examples: a Boolean circuit
and a Winner-Take-All network.

2.1 Network structure

Assume a universal set U of neuron names. A firing pattern for a set V ⊆ U of neuron names is a
mapping from V to {0, 1}. Here, 1 represents “firing” and 0 represents “not firing”.

A Spiking Neural Network, which we generally refer to as just a network, N , consists of:

– N , a subset of U , partitioned into input neurons Nin, output neurons Nout, and internal neurons
Nint. We sometimes writeNext as shorthand forNin∪Nout, andNlc as shorthand forNout∪Nint.
(Here, lc stands for “locally controlled”, which means “not input”). Each neuron u ∈ Nlc has
an associated bias, bias(u) ∈ R; this can be any real number, positive, negative, or 0.

– E, a set of ordered pairs of neurons, i.e., directed edges between neurons, representing synapses.
We permit self-loops. Each edge e = (u, v) has a weight, weight(e) = weight(u, v), which is a
nonzero (positive or negative) real number.

– F0, an initial firing pattern for the set Nlc of non-input neurons; that is, F0 : Nlc → {0, 1}.

We assume that input neurons have no incoming edges, not even self-loops. Output neurons may
have incoming or outgoing edges, or both.
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Example: Consider the Winner-Take-All network in Figure 2. The set N of neuron names consists of
Nin = {x1, . . . , xn}, Nout = {y1, . . . , yn}, and Nint = {a1, a2}. We have bias(a1) = .5γ, bias(a2) =
1.5γ, and for every i, bias(yi) = 3γ, for some positive real γ. E includes an edge from each xi to
its corresponding yi, an edge in each direction between every a neuron and every y neuron, and
a self-loop on each y neuron. Weights of the edges are as depicted in the figure. The initial firing
pattern F0 gives arbitrary Boolean values for the a and y neurons (technically, each F0 yields a
different network). The initial values of the x neurons are unspecified, indicating that this network
can be used with any inputs.

2.2 Executions and probabilistic executions

We describe how a network operates, beginning with its ordinary, non-probabilistic executions and
then adding probabilistic considerations.

Executions and traces We begin by defining a “configuration” of a network, which describes the
current states of all neurons. Namely, a configuration of a neural network N is a firing pattern for
N , the set of all the neurons in the network. We consider several related definitions:

– An input configuration is a firing pattern for the input neurons, Nin.
– An output configuration is a firing pattern for the output neurons, Nout.
– An internal configuration is a firing pattern for the internal neurons, Nint.
– An external configuration is a firing pattern for the input and output neurons, Next.
– A non-input configuration is a firing pattern for the internal and output neurons, Nlc.

We define projections of configurations onto subsets of N . Thus, if C is a configuration and M is
any subset of N , then C⌈M is the firing pattern for M obtained by projecting C onto the neurons
in M . In particular, we have C⌈Nin for the projection of C on the input neurons, C⌈Nout for the
output neurons, C⌈Nint for the internal neurons, C⌈Next for the external neurons, and C⌈Nlc for
the non-input neurons. More generally, we can define the projection of any firing pattern F for a
set M ⊆ N of neurons onto any subset M ′ ⊆ M .

An initial configuration is a configuration C such that C⌈Nlc = F0. That is, the values for the
locally-controlled neurons are as specified by the given initial firing pattern. The values for the
input neurons are arbitrary. We consider them to be controlled somehow, from outside the network.
For example, they may be output neurons of another network, or may represent sensory inputs to
the network.

Now we define formally how a network N executes; we assume that it operates in synchronous
rounds. Namely, an execution α of N is a (finite or infinite) sequence of configurations, C0, C1, . . . ,
where C0 is an initial configuration.3 We define the length of a finite execution α = C0, C1, ..., Ct,
length(α), to be t. As a special case, if α consists of just the initial configuration C0, then
length(α) = 0. The length of an infinite execution is defined to be ∞.

We define projections of executions onto subsets of the neurons ofN . Namely, if α = C0, C1, . . . is
an execution ofN andM is any subset ofN , then α⌈M is defined to be the sequence C0⌈M,C1⌈M, . . ..
We define an M -execution of N to be α⌈M for any execution α of N . We define an input execu-
tion to be an M -execution where M = Nin, and similarly for output execution, internal execution,
external execution, and locally-controlled execution (or lc-execution).

3 We place no other restrictions on the general notion of an execution because our basic model does not
impose any restriction on possible transitions.
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To focus on the external behavior of the network, we define the notion of a “trace”. Namely, for
an execution α, we write trace(α) as an alternative notation for α⌈Next, the projection of α on the
external neurons. We define a trace of N to be the trace of any execution α of N .

Example: Again, consider the Winner-Take-All network. Suppose that F0, the initial firing pattern,
assigns 0 to all the a neurons and y neurons, that is, none of these fire initially. Then the executions
of the network are just all the sequences of configurations in which the starting configuration has
values of 0 for all the a and y neurons. The values of the x neurons are arbitrary.

Probabilistic executions We define a unique “probabilistic execution” for any particular infinite
input execution βin. First, we say that an infinite execution α of the network is consistent with βin

provided that α⌈Nin = βin. Also, a finite execution α is consistent with βin provided that α⌈Nin is
a prefix of βin. Note that all of the (finite and infinite) executions that are consistent with βin have
the same initial configuration C0. This configuration is constructed from the first configuration of
βin and the initial non-input firing pattern for the network, F0.

The probabilistic execution for βin is defined as a probability distribution P on the sample space
Ω of infinite executions that are consistent with βin. The σ-algebra of measurable sets is generated
from the “cones”, each of which is the set of infinite executions in Ω that extend a particular finite
execution. Formally, if α is a finite execution that is consistent with βin, then A(α), the cone of α,
is the set of infinite executions that are consistent with βin and extend α. The other measurable
sets in the σ-algebra are obtained by starting with these cones and closing under countable union,
countable intersection, and complement.

Now we define the probabilities for the measurable sets. We start by explicitly defining the
probabilities for the cones, P (A(α)). Based on these, we can derive the probabilities of the other
measurable sets in a unique way, using general measure extension theorems. For example, Segala
presents a similar construction for probabilistic executions in his PhD thesis, Chapter 4 [32].

We compute the probabilities P (A(α)) recursively based on the length of α (we assume here
that α is consistent with βin):

1. α is of length 0.

Then α consists of just the initial configuration C0; define P (A(α)) = 1.

2. α is of length t, t > 0.

Let α′ be the length-(t − 1) prefix of α. We determine the probability q of extending α′ to α.
Then the probability P (A(α)) is simply P (A(α′))× q.

Let C be the final configuration of α and C ′ the final configuration of α′. Then for each neuron
u ∈ Nlc separately, we use C ′ and the weights of u’s incoming edges to compute a potential
and then a firing probability for neuron u. Specifically, for each u, we first calculate a potential,
potu, defined as

potu =
∑

(v,u)∈E

C ′(v)weight(v, u)− bias(u).

We then convert potu to a firing probability pu using a standard sigmoid function:

pu =
1

1 + e−potu/λ
,
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where λ is a positive real number “temperature” parameter.4 We combine all those probabilities
to compute the probability of generating C from C ′: for each u ∈ Nlc such that C(u) = 1, use
the calculated probability pu, and for each u ∈ Nlc for which C(u) = 0, use 1−pu. The product∏

u∈Nlc:C(u)=1

pu ×
∏

u∈Nlc:C(u)=0

(1− pu)

is the probability of generating C from C ′, which is the probability q of extending α′ to α.

Example: Continuing with the Winner-Take-All network in Figure 2, suppose again that F0 assigns
0 to all the non-input neurons. Consider this network with the input configuration that assigns 1
to x1 and 0 to all the other xi neurons. Suppose that γ = λ = 1. We compute the probability that
y1 fires. The potential for neuron y1 is 1× 3− 3 = 0, and the firing probability calculated from this
using the standard sigmoid function is .50. For any other y neurons, we get potential 0×3−3 = −3,
yielding a firing probability of .05.

We will often consider conditional probabilities of the form P (A(α1)|A(α2)). Because we use
a sigmoid function, we know that P (A(α2)) cannot be 0, and so this conditional probability is
well-defined.5 The following lemma is straightforward.

Lemma 1. Let α1 and α2 be finite executions of N that are consistent with βin.

1. If neither α1 nor α2 is an extension of the other, that is, if they are incomparable, then
P (A(α1)|A(α2)) = 0.

2. If α1 is an extension of α2, then P (A(α1)|A(α2)) =
P (A(α1))
P (A(α2))

.

Lemma 1 shows how we can compute the conditional probabilities from the absolute probabili-
ties. Conversely, we can compute the absolute probabilities from the conditional ones, as follows.

Lemma 2. Let α be a length-t execution of N , t > 0, and suppose that α is consistent with βin.
Let αi, 0 ≤ i ≤ t be the successive prefixes of α (so that α0 consists of the initial configuration C0

and αt = α). Then

P (A(α)) = P (A(α1)|A(α0))× P (A(α2)|A(α1)) · · · × P (A(αt)|A(αt−1)).

Notice in the above expression, we did not start with a term for P (A(α0)). This is not needed because
we are considering only executions in which α0 is obtained from βin and the initial assignment F0.
So P (A(α0)) = 1. Also note that each of the conditional terms is simply a one-step transition
probability, which can be calculated using the potential as described above.

Since we can compute the conditional and absolute probabilities from each other, either can be
used to characterize the probabilistic execution.
4 This function is called the sigmoid function because of its S-shape, monotonically mapping the real line
to the interval [0, 1]. Although we assume a standard sigmoid function, the results of this paper would
also work with other S-shaped functions.

5 One useful property of standard sigmoid functions is that the probabilities are never exactly 0 or 1, so
we don’t need to worry about 0-probability sets when conditioning.
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Tree representation: The probabilistic execution for βin can be visualized as an infinite tree of
configurations, where the tree nodes at level t represent the configurations that might occur at
time t (with the given input execution βin). The configuration at the root of the tree is the initial
configuration C0. Each infinite branch of the tree represents an infinite execution of the network,
and finite initial portions of branches represent finite executions. Note that the same configuration
can appear many times at different vertices of the tree.

If α is a finite branch in the tree, then P (A(α)) is the probability that an infinite execution will
be in the “cone” of executions that begin with α. We can associate the probability P (A(α)) with
the node at the end of the finite branch—this is simply the probability of reaching the node during
probabilistic operation of the network, using the inputs from βin.

Probabilities for projected executions We extend the A(α) notation so that it applies to
projections of finite executions, not just complete finite executions. Namely, suppose that M is any
subset of the neurons N of N , and γ is a finite M -execution of N . Then we say that γ is consistent
with βin provided that γ⌈M ∩ Nin = βin⌈M ∩ Nin. (This definition is equivalent to our earlier
definition of consistency in Section 2.2, for the special case where M = N .) In this case, we write
A(γ) for the set consisting of all infinite executions α of N that are consistent with βin such that
γ is a prefix of α⌈M . We have:

Lemma 3. Let M be any subset of the neurons N of N , and let γ be a finite M -execution of N
that is consistent with βin. Then, letting α range over the set of finite executions that are consistent
with βin and such that α⌈M = γ:

1.
A(γ) =

⋃
α

A(α).

2.
P (A(γ)) =

∑
α

P (A(α)).

As an important special case, we consider M = Next, so that γ is specialized to a finite external
execution β of N ; that is, we consider projections on the external neurons. Then our definition says
that β is consistent with βin provided that β⌈Nin = βin. In this case, we get:

Lemma 4. Let β be a finite trace of N that is consistent with βin. Then, letting α range over the
set of finite executions that are consistent with βin and such that trace(α) = β:

1.
A(β) =

⋃
α

A(α).

2.
P (A(β)) =

∑
α

P (A(α)).

We remark that the probabilities for finite executions and traces depend only on their projections
on the locally-controlled neurons, since the input execution is always βin.

Lemma 5. 1. Suppose that α is a finite execution of N that is consistent with βin. Then A(α) =
A(α⌈Nlc) and P (A(α)) = P (A(α⌈Nlc)).
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2. Suppose that β is a finite trace of N that is consistent with βin. Then A(β) = A(β⌈Nout) and
P (A(β)) = P (A(β⌈Nout)).

Now we give some simple lemmas involving the probabilities for finite executions and related
finite traces. In the following lemma, the conditional probability statements follow directly from
the subset statements.

Lemma 6. Let α be a finite execution of N that is consistent with βin. Suppose that α′ is a prefix
of α. Let β = trace(α) = α⌈Next and β′ = trace(α′) = α′⌈Next. Then α′, β, and β′ are also
consistent with βin, and

1. A(α) ⊆ A(β), and P (A(α)|A(β)) = P (A(α))
P (A(β)) .

2. A(α) ⊆ A(α′), and P (A(α)|A(α′)) = P (A(α))
P (A(α′)) .

3. A(α) ⊆ A(β′), and P (A(α)|A(β′)) = P (A(α))
P (A(β′)) .

4. A(α′) ⊆ A(β′), and P (A(α′)|A(β′)) = P (A(α′))
P (A(β′)) .

5. A(β) ⊆ A(β′), and P (A(β)|A(β′)) = P (A(β))
P (A(β′)) .

Consequences of the previous lemmas include the following, which is used in Section 5.2.

Lemma 7. Let α, α′, β, and β′ be as in Lemma 6. Then

1. P (A(α)|A(β′)) = P (A(α)|A(β))× P (A(β)|A(β′)).
2. P (A(α)|A(β′)) = P (A(α)|A(α′))× P (A(α′)|A(β′)).

We also give a lemma about repeated conditioning, as for probabilistic executions:

Lemma 8. Let β be a length-t trace of N , t > 0, and suppose that β is consistent with βin. Let βi,
0 ≤ i ≤ t, be the successive prefixes of β (so that β0 consists of the initial configuration C0 projected
on Next and βt = β). Then

P (A(β)) = P (A(β1)|A(β0))× P (A(β2)|A(β1) · · · × P (A(βt)|A(βt−1)).

As before, we do not need a separate term for P (A(β0)), because we are considering only traces in
which β0 is obtained from βin and the initial assignment F0. So P (A(β0)) = 1.

Probabilistic traces The previous definitions allow us to define a unique “probabilistic trace” for
any particular infinite input execution βin. The probabilistic trace for βin is defined as a new prob-
ability distribution Q, this one on the sample space Ω′ of infinite traces β that are consistent with
βin. All of these traces have the same initial configuration, constructed from the first configuration
of βin and the initial output firing pattern for the network, F0⌈Nout.

The basic measurable sets are the sets of infinite traces in Ω′ that extend a particular finite
trace. Formally, if β is a particular finite trace that is consistent with βin, then B(β), the “cone” of
β, is the set of infinite traces β that are consistent with βin and extend β. Equivalently, B(β) is just
the set traces(A(β)). Again, the other measurable sets in the σ-algebra are obtained by starting
with these cones and closing under countable union, countable intersection, and complement.

We define the probabilities for the cones, Q(B(β)), based on the corresponding probabilities for
the probabilistic execution for βin. Namely, if β is a finite trace of N that is consistent with βin,
then we define Q(B(β)) to be simply P (A(β)). As before, we can use these probabilities to derive
the probabilities of the other measurable sets in a unique way, using general measure extension
theorems as in [32].
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2.3 External behavior of a network

So far we have talked about individual probabilistic traces, each of which depends on a fixed input
execution βin. Now we define a notion of external behavior of a network, which is intended to
capture its visible behavior for all possible inputs. In Sections 4 and 5, we will show that our notion
of external behavior is compositional, which means that the external behavior of the composition
of two networks, N 1×N 2, is uniquely determined by the external behavior of N 1 and the external
behavior of N 2.

Our definition of external behavior is based on the entire collection of probabilities for the
cones of all finite traces. Namely, the external behavior Beh(N ) is the mapping f that maps each
infinite input execution βin of N to the collection of probabilities {P (A(β))} determined by the
probabilistic execution for βin. Here, β ranges over the set of finite traces of N that are consistent
with βin.

6 In terms of probabilistic traces, this is the same as the collection {Q(B(β))}, where β
has the same range.

Alternative behavior definitions: Other definitions of external behavior are possible. Any such def-
inition would have to assign some “behavior object” to each network N .

In general, we define two external behavior notions Beh1 and Beh2 to be equivalent provided
that the following holds. Suppose that N and N ′ are two networks with the same input neurons
and the same output neurons. Then Beh1(N ) = Beh1(N ′) if and only if Beh2(N ) = Beh2(N ′).

Here we define one alternative behavior notion, based on one-step conditional probabilities. This
will be useful in our proofs for compositionality in Section 5. Namely, we define Beh2(N ) to be the
mapping f2 that maps each infinite input execution βin to the collection of conditional probabilities
{P (A(β)|A(β′))} based on the probabilistic execution for βin. Here, β ranges over the set of finite
traces of N with length > 0 that are consistent with βin, and β′ is the one-step prefix of β.

Lemma 9. The two behavior notions Beh and Beh2 are equivalent.

Proof. Suppose that N and N ′ are two networks with the same input neurons and the same output
neurons. We show that Beh and Beh2 are equivalent by arguing the two directions separately:

1. If Beh(N ) = Beh(N ′) then Beh2(N ) = Beh2(N ′).
This follows because the conditional probability P (A(β)|A(β′)) is determined by the uncondi-
tional probabilities P (A(β)) and P (A(β′)); see Lemma 6.

2. If Beh2(N ) = Beh2(N ′) then Beh(N ) = Beh(N ′).
This follows because the unconditional probability P (A(β)) is determined by the conditional
probabilities, see Lemma 8.

⊓⊔

2.4 Examples

In this subsection we give two fundamental examples to illustrate our definitions so far: some
simple Boolean gate networks, and a network implementing the “Winner-Take-All” mechanism
from computational neuroscience [9, 10,37].

6 Formally, this “collection” is the mapping from finite traces β that are consistent with βin to the proba-
bilities P (A(β)). Thus, in terms of data types, Beh(N ) is a nested mapping: a mapping from the set of
input executions to the set of mappings from the set of finite traces consistent with βin to the set [0, 1].
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Simple Boolean gate networks Figure 1 depicts the structure of simple Spiking Neural Networks
in our model that represent and-gates, or-gates, and not-gates. For completeness, we also include
an SNN representing the identity computation.

(a) Identity (b) k-input And

(c) k-input Or (d) Not

Fig. 1: Networks representing simple Boolean gates; here L = λ ln( 1−δ
δ ), where δ is the error prob-

ability.

We describe the operation of each of these types of networks, in turn. Fix a positive real number
λ for the temperature parameter of the sigmoid function. Fix an error probability δ, 0 < δ < 1. For
each network below, let the initial firing pattern F0 assign 0 to each locally controlled neuron.

Throughout this section, we use the abbreviation L for the quantity λ ln( 1−δ
δ ); note that L may

be any real number, but we focus on the case where δ ≤ 1
2 , which makes L non-negative. We use

the following identities repeatedly:

eL/λ =
1− δ

δ
,

1

1 + eL/λ
= δ, and

1

1 + e−L/λ
= 1− δ.

Identity network: The Identity network has one input neuron x and one output neuron y, connected
by an edge with weight w. The output neuron y has bias b. Here we define b = L and w = 2L.

With these settings, we get potential w − b = 2L − L = L and (expanding L, plugging into
the sigmoid function, and using the calculations above) output firing probability 1− δ, in the case
where the input fires. Similarly, we get potential −b = −L and output firing probability δ, in the
case where the input does not fire. Combining these two claims, consider the firing state of x at
time 0. Whether it is 0 or 1, the probability that y’s firing state at time 1 is the same as x’s firing
state at time 0 is exactly 1− δ.
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Now consider what happens with an arbitrary infinite input execution βin, rather than just one
input, that is, consider the probabilistic execution for βin. Let β be a finite trace of length t ≥ 1
that is consistent with βin; by our assumption about F0, β must include an initial firing state of 0
for the output neuron y. Suppose further that β has the property that, for every t′, 1 ≤ t′ ≤ t, the
firing state of y at time t′ is equal to the firing state of x at time t′ − 1. Then by repeated use of
the argument above, we get that P (A(β)) = (1− δ)t.

Now suppose, as above, that β is a length t trace, t ≥ 1, that is consistent with βin. But now
suppose that, in β, the firing state of y at time t is equal to the firing state of x at time t− 1, but
the firing states of y for all earlier times are arbitrary. Let β′ denote the one-step prefix of β. Then
we can show that P (A(β)|A(β′)) = 1− δ. It follows that, for every time t ≥ 1, the probability that
the firing state of y at time t is equal to the firing state of x at time t− 1 is 1− δ. This uses the law
of Total Probability, considering all the possible length t− 1 traces that are consistent with βin.

We also describe the external behavior Beh for this network. Namely, for each βin, we must
specify the collection of probabilities P (A(β)), where β ranges over the set of finite traces of the
network that are consistent with βin. In this case, for each such β of length t, the probability
P (A(β)) is simply (1−δ)aδt−a, where a is the number of positions t′, 1 ≤ t′ ≤ t, for which y’s firing
state in β at time t′ is equal to x’s firing state in β at time t′ − 1.

k-input And network: The And network has k input neurons, x1, x2, . . . , xk, and one output neuron
y. Each input neuron is connected to the output neuron by an edge with weight w. The output
neuron has bias b. The Identity network is a special case of this network, where k = 1.

The idea here is to treat this as a threshold problem, and set b and w so that being over or
under the threshold gives output firing state 1 or 0, respectively, in each case with probability at
least 1 − δ. For a k-input And network, the output neuron y should fire with probability at least
1− δ if all k input neurons fire, and with probability at most δ if at most k − 1 input neurons fire.

The settings for b and w generalize those for the Identity network. Namely, define b = (2k− 1)L
and w = 2b

2k−1 = 2L. When all k input neurons fire, the potential is kw − b = L, and (expanding
L and plugging into the sigmoid function) the output firing probability is 1− δ. When k − 1 input
neurons fire, the potential is (k − 1)w − b = −L, and the output firing probability is δ. If fewer
than k−1 fire, the potential and the output firing probability are smaller. Similar claims about the
external behavior Beh for multi-round computations to those we argued for the Identity network
also hold for the And network.

k-input Or network: The Or network has the same structure as the And network. The Or network
also generalizes the Identity network, which is the same as the 1-input Or network. Now the output
neuron y should fire with probability at least 1 − δ if at least one of the input neurons fires, and
with probability at most δ if no input neurons fire. This time we set b = L and w = 2L. When one
input neuron fires, the potential is w− b = L and the output firing probability is 1− δ. When more
than one fire, then the potential and the firing probability are greater. When no input neurons fire,
the potential is −b = −L, and the output firing probability is δ. Again, similar claims about the
external behavior for multi-round computations hold for the Or network.

Not network: The Not network has one input x, one output y, and one internal neuron a, which
acts as an inhibitor for the output neuron.7 The network contains two edges, one from x to a with

7 We often classify neurons into two categories: excitatory neurons, all of whose outgoing edges have positive
weights, and inhibitory neurons, whose outgoing edges have negative weights. However, this classification
is not needed for the results in this paper.
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weight w, and one from a to y with weight w′. The internal neuron a has bias b and the output
neuron y has bias b′.

The assembly consisting of the input and internal neurons acts like the Identity network, with
settings of b and w as before: b = L and w = 2L. So, for example, if we consider just x’s firing state
at time 0, the probability that a’s firing state at time 1 is the same is exactly 1− δ.

Let b′, the bias of the output neuron, be −L, and let w′, the weight of the outgoing edge of the
inhibitor, be −2L. Then if the internal neuron a fires at time 1, then the output neuron y fires at
time 2 with probability δ, and if a does not fire at time 1, then y fires at time 2 with probability
1−δ. This yields probability 1−δ of correct inhibition, which then yields probabiity at least (1−δ)2

that the output at time 2 gives the correct answer for the Not network.
Similar claims about multi-round computations as before also hold for the Not network, except

that the Not network has a delay of 2 instead of 1. More precisely, consider an arbitrary infinite
input execution βin, and consider the probabilistic execution for βin. Let β be a finite trace of
length t ≥ 2 that is consistent with βin. Then we know that β must begin with a firing state of 0
for y; suppose also that the firing state of y at time 1 is 1. Suppose further that β has the property
that, for every t′, 2 ≤ t′ ≤ t, the firing state of y at time t′ is unequal to the firing state of x at
time t′ − 2. Then we claim that P (A(β)) ≥ (1 − δ)2(t−1)+1 = (1 − δ)2t−1. This is because, with
probability 1− δ, the firing state of y at time 1 is equal to 1, and for each of the following times t′,
2 ≤ t′ ≤ t, with probability at least (1− δ)2, the firing state of y at time t′ is unequal to the firing
state of x at time t′ − 2.

Winner-Take-All network Our next example is a simple Winner-Take-All (WTA) network for
n inputs and n corresponding outputs. It is based on a network presented in [17]. Assume that
some nonempty subset of the input neurons fire, in a stable manner. The output firing behavior is
supposed to converge to a configuration in which exactly one of the outputs, corresponding to one
of the firing inputs, fires. We would like this convergence to occur quickly, in some fairly short time
tc. And we would like the resulting configuration to remain stable for a fairly long time ts. Figure 2
depicts the structure of the network. There should be edges between every pair (xi, yi) with weight
3γ, but these would be messy to draw.

In terms of the notation in this paper, consider any infinite input execution βin in which all the
input configurations are the same and at least one input neuron is firing. Consider the probabilistic
execution for βin. In [17], we prove that, in this probabilistic execution, for certain values of tc and
ts, the probability of convergence within time tc to an output configuration that remains stable for
time ts is at least 1− δ.

The formal theorem statement is as follows. Here, γ is the weighting factor used in the biases
and edge weights in the network, δ is a bound on the failure probability, and c1 and c2 are particular
small constants.

Theorem 1. Assume γ ≥ c1 log(
nts
δ ). Then starting from any configuration, with probability ≥

1−δ, the network converges, within time tc ≤ c2 log n log( 1δ ), to a single firing output corresponding
to a firing input, and remains stable for time ts. c1 and c2 are universal constants, independent of
n, ts, and δ.

In terms of our model, the desirable executions are determined by what happens in their prefixes
ending with time tc+ts−1. The correctness condition is that, within this prefix, there is a consecutive
sequence of ts times in which the output neurons exhibit an unchanging firing pattern in which
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Fig. 2: A basic Winner-Take-All network.

exactly one output yi fires, and we have xi = 1 in the input configuration. Note that this is a
statement about external behavior (traces) only. Correctness can be expressed formally in terms of
the probabilities of the cones starting with these desirable traces.

The proof appears in [17]. The basic idea is that, when more than one output is firing, both
inhibitors are triggered to fire. When they both fire, they cause each firing output to continue firing
with probability 1

2 . This serves to reduce the number of firing outputs at a predictable rate. Once
only a single output fires, only one inhibitor continues to fire; its effect is sufficient to prevent other
non-firing outputs from beginning to fire, but not sufficient to stop the firing output from firing.
All this, of course, is probabilistic.

Note that the network is symmetric with respect to the n outputs. Therefore, we can refine the
theorem above to assert that, for any particular output neuron yi that corresponds to a firing input
neuron xi, the probability that yi is the eventual firing output neuron is at least 1−δ

n .

3 Composition of Spiking Neural Networks

In this section, we define composition of networks. We focus on composing two networks, but the
ideas extend in a straightforward way to any finite number of networks. Alternatively, we can
describe multi-network composition by repeated use of two-network composition.

3.1 Composition of two networks

Networks that are composed must satisfy some basic, natural compatibility requirements. These
are analogous to those used for I/O automata and similar models [8,13,23], except that instead of
input and output actions, we consider input and output neurons. Namely, two networks N 1 and
N 2 are said to be compatible provided that:
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1. No internal neuron of N 1 is a neuron of N 2.
2. No internal neuron of N 2 is a neuron of N 1.
3. No neuron is an output neuron of both N 1 and N 2.

On the other hand, the two networks may have common input neurons, and output neurons of one
network may also be input neurons of the other network.8

Lemma 10. If N 1 and N 2 are compatible, then they do not have any edges in common.

Proof. Suppose for contradiction that they have a common edge, from a neuron u to a neuron v.
Then both u and v belong to both networks. Since v is shared, it must be an input neuron of at
least one of the networks, by compatibility. But then that network has an edge leading to one of
its input neurons, which is forbidden by our network definition. ⊓⊔

Assuming N 1 and N 2 are compatible, we define their composition N = N 1 ×N 2 as follows:

– N , the set of neurons of N , is the union of N1 and N2, which are the sets of neurons of N 1

and N 2 respectively. Note that common neurons are included only once in the set N .
In network N , each neuron retains its classification as input/output/internal from its sub-
network, except that a neuron that is an input of one sub-network and output of the other gets
classified as an output neuron of N . In particular, an output neuron of one sub-network that is
also an input neuron of the other sub-network remains an output neuron of N .9

Each non-input neuron in N inherits its bias from its original sub-network. This definition of
bias is unambiguous: if a neuron belongs to both sub-networks, it must be an input of at least
one of them, and input neurons do not have biases.

– E, the set of edges of N , is defined as follows. If e is an edge from neuron u to neuron v in
either N 1 or N 2, then we include e also in N ; these are the only edges in N .
Each edge inherits its weight from its original sub-network. This definition of weight is unam-
biguous, by Lemma 10.
Thus, if the source neuron u is an input of both sub-networks, then in N , u has edges to all the
nodes to which it has edges in N 1 and N 2. If u is an output of one sub-network, say N 1, and
an input of the other, N 2, then in N , it has all the incoming and outgoing edges it has in N 1

as well as the outgoing edges it has in N 2.
On the other hand, the target neuron v cannot be an input of both networks since it has an
incoming edge in one of them. So v must be an output of one, say N 1, and an input of the
other, N 2. Then in N , v has all the incoming and outgoing edges it had in N 1 as well as the
outgoing edges it has in N 2.

– F0, the initial non-input firing pattern of N , gets inherited directly from the two sub-networks’
initial non-input firing patterns. Since the two sub-networks have no non-input neurons in
common, this is well-defined.

The probabilistic executions and probabilistic traces of the new network N are defined in the
usual way, as in Section 2. In Sections 4 and 5, we show how to relate these to the probabilistic
executions and probabilistic traces of N 1 and N 2.

8 In the brain setting, common input neurons for two different networks seem to make sense: a neuron
might have two different sets of outgoing edges (synapses), leading to different sets of neurons in the two
networks.

9 In Section 6, we will introduce a hiding operator that reclassifies some output neurons as internal neurons.
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Here are some basic lemmas analogous to those in Section 2.2. For these lemmas, fix N =
N 1×N 2 and a particular input execution βin of N , which yields a particular probabilistic execution
P . Recall that we use the notation N j for the set of neurons of N j , j ∈ {1, 2}.

Lemma 11. Let α be a finite execution of N that is consistent with βin. Suppose that α′ is a prefix
of α. Let β = trace(α) = α⌈Next and β′ = trace(α′) = α′⌈Next.

Let j ∈ {1, 2}. Let αj = α⌈N j, α′j = α′⌈N j, βj = β⌈N j, and β′j = β′⌈N j. Then αj, α′j, βj,
and β′j are also consistent with βin, and

1. A(αj) ⊆ A(βj), and P (A(αj)|A(βj)) = P (A(αj))
P (A(βj)) .

2. A(αj) ⊆ A(α′j), and P (A(αj)|A(α′j)) = P (A(αj))
P (A(α′j)) .

3. A(αj) ⊆ A(β′j), and P (A(αj)|A(β′j)) = P (A(αj))
P (A(β′j)) .

4. A(α′j) ⊆ A(β′j), and P (A(α′j)|A(β′j)) = P (A(α′j))
P (A(β′j)) .

5. A(βj) ⊆ A(β′j), and P (A(βj)|A(β′j)) = P (A(βj))
P (A(β′j)) .

As before, the previous lemmas directly imply other properties, such as:

Lemma 12. Let αj, α′j, βj, and β′j be as in Lemma 11. Then

1. P (A(αj)|A(β′j)) = P (A(αj)|A(βj))× P (A(βj)|A(β′j)).
2. P (A(αj)|A(β′j)) = P (A(αj)|A(α′j))× P (A(α′j)|A(β′j)).

Now we consider projections on the locally-controlled neurons of one of the networks. We have:

Lemma 13. Let α be a finite execution of N that is consistent with βin. Let α
′ be a prefix of α

and β′ = trace(α′). Let j ∈ {1, 2}. Then

1. P (A(α⌈N j
lc)|A(α′⌈N j)) =

P (A(α⌈Nj
lc)∩A(α′⌈Nj)

P (A(α′⌈Nj)) .

2. P (A(α⌈N j
lc)|A(β′⌈N j)) =

P (A(α⌈Nj
lc)∩A(β′⌈Nj)

P (A(β′⌈Nj)) .

3. P (A(α⌈N j
lc)|A(β′⌈N j)) = P (A(α⌈N j

lc)|A(α′⌈N j))× P (A(α′⌈N j)|A(β′⌈N j)).

Proof. Parts 1 and 2 are just the definitions of conditional probability, specialized to these sets. For
Part 3, note that A(α⌈N j

lc)∩A(β′⌈N j) = A(α⌈N j
lc)∩A(α′⌈N j), because α⌈N j

lc already determines

all the firing states for neurons in N j
lc. Thus, we have that

P (A(α⌈N j
lc)|A(β′⌈N j)) =

P (A(α⌈N j
lc) ∩A(β′⌈N j)

P (A(β′⌈N j))

by Part 2, which is equal to
P (A(α⌈N j

lc) ∩A(α′⌈N j))

P (A(β′⌈N j))
,

which is in turn equal to

P (A(α⌈N j
lc) ∩A(α′⌈N j))

P (A(α′⌈N j))
× P (A(α′⌈N j))

P (A(β′⌈N j))
.

Part 1 and Lemma 11 then imply that this is equal to

P (A(α⌈N j
lc)|A(α′⌈N j))× P (A(α′⌈N j)|A(β′⌈N j)),

as needed. ⊓⊔
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A special case: acyclic composition: An important special case of composition is acyclic composition,
in which edges connect in only one direction, say from network N 1 to network N 2. Formally, we
say that a composition is acyclic provided that it satisfies the additional compatibility restriction
N1

in ∩N2
out = ∅, that is, output neurons of N 2 cannot be input neurons of N 1.

Thus, N 1 may have inputs only from the “outside world”, whereas its outputs can connect to
N 1, N 2, and the outside world. N 2 may have inputs from the outside world and from N 1, and its
outputs can connect only to N 2 and the outside world.

3.2 Examples

Here we give three examples. The first two use acyclic composition, and the third is a toy example
that involves cycles.

Boolean circuits Figure 3 contains a circuit that is a composition of four Boolean gate circuits
of the types described in Section 2.4: two And networks, one Or network, and a Not network. We
compose these networks into a larger network that is intended to compute an Xor function.

Fig. 3: Composing four Boolean gate circuits into an Xor network

In terms of the binary composition operator, we can compose the four networks in three stages:

1. Compose one of the And networks and the Not network to get a network with two input
neurons, two output neurons, and one internal neuron, by identifying the output neuron of the
And network with the input neuron of the Not network. Note that the composed network has
two output neurons because the And neuron remains an output—the composition operator does
not reclassify it as an internal neuron. The composed network is intended to compute the Nand
of the two inputs (as well as the And).

2. Compose the network produced in Stage 1 with the Or network to get a 2-input-neuron, 3-
output-neuron, 1-internal-neuron network, by identifying the corresponding inputs in the two
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networks. The resulting network has output neurons corresponding to the Nand and the Or of
the two inputs (in addition to the And output neuron).

3. Finally, compose the Nand network and the Or network with the second And network, by
identifying the Nand output neuron and the Or output neuron with the two input neurons of
the And network. The resulting network has an output neuron corresponding to the Xor of the
two original inputs (in addition to outputs for the first And, the Nand, and the Or networks).

To state a simple guarantee for this composed circuit, let us assume that the inputs fire consis-
tently, in an unchanged firing pattern. Then, working from the previously-shown guarantees of the
individual networks, we can say that the probability that the final output neuron y produces its
required Xor value at time 4 is at least (1− δ)5. We revisit this example later, in Section 4.2.

Attention using Winner-Take-All Figure 4 depicts the composition of our WTA network from
Section 2.4 with a 2n-input n output Filter network. The Filter network is, in turn, a composition
of n disjoint And gates. The composition is acyclic since information can flow from WTA to Filter
but not vice versa.

Fig. 4: An Attention network built from a WTA network and a Filter network

The Filter network is designed to fire any of its outputs, zi, right after the corresponding wi

input fires, provided that its yi input (which is an output of the WTA network) also fires. In this
way, the WTA network is used to select particular outputs of the Filter network to fire—those
that are “reinforced” by the inputs from the WTA.

Assume that the WTA and Filter networks are composed, and the WTA inputs fire stably,
with at least one input firing. Then, as we described in Section 2.4, with probability at least
1 − δ, the WTA network soon stabilizes to an output configuration with a single firing output yi,
which is equally likely to be any of the n outputs whose corresponding input is firing. That output
configuration should persist for a long time. (Specific bounds are given in Theorem 1.)
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After the WTA stabilizes, it reinforces only a particular input wi for the Filter. From that point
on, the Filter’s zi outputs should mirror its wi inputs, and no other z outputs should fire. The
probability of such mirroring should be at least (1− δ′)nts , if δ′ denotes the failure probability for
an And gate. (Recall from Example 2.4 that ts is the length of the stable period for the WTA’s
outputs.) In this way, the composition can be viewed as an Attention circuit, which pays attention
to just a single input stream.

Note that the composed network behaves on two different time scales: the WTA takes some
time to converge, but after that, the responses to the selected intput stream will be essentially
immediate.

A toy example for cyclic composition Now we give a toy example, consisting of two networks,
N 1 and N 2, that affect each other’s behavior. Throughout this section, we use the abbreviation L
for the quantity λ ln( 1−δ

δ ), as in Section 2.4. We assume that δ is “sufficiently small”.
Figure 5 shows a network N 1 with one input neuron x1, one output neuron x2, and one internal

neuron a1. It has edges from x1 to a1, from a1 to x2, and from x2 to itself (a self-loop). The biases
of a1 and x2 are L and the weights on all edges are 2L.

Fig. 5: A cyclic composition

Network N 1 behaves so that, at any time t ≥ 1, the firing probability for the internal neuron
a1 is exactly 1 − δ if x1 fires at time t − 1, and is exactly δ if x1 does not fire at time t − 1. This
is the same as for the output neuron of the Identity network in Section 2.4. The firing probability
of the output neuron x2 of N 1 depends on the firing states of both a1 and x2 at time t − 1. This
probability is:

– δ, if neither a1 nor x2 fires at time t− 1.
– 1− δ, if exactly one of a1 and x2 fires at time t− 1.

– 1− δ3

(1−δ)3+δ3 if both a1 and x2 fire at time t− 1.

It follows that, if input x1 fires at some time t, then output x2 is likely to fire at time t + 2 (with
probability at least (1− δ)2). Without any additional input firing, and ignoring the low-likelihood
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spurious firing of a1, the firing of x2 is sustained only by the self-loop. This means that the firing
probability of x2 decreases steadily over time, by a factor of (1 − δ) at each time. Eventually, the
firing should “die out”.

Network N 2 is similar, replacing x1, a1, and x2 by x2, a2, and x1, respectively. However, we
omit the self-loop edge on x1. The biases are L and the weights on the two edges are 2L. Network
N 2 behaves so that, at any time t ≥ 1, the firing probability for the internal neuron a2 is exactly
1− δ if x2 fires at time t− 1, and is exactly δ if x2 does not fire at time t− 1. Likewise, the firing
probability for the output neuron x1 is exactly 1− δ if a2 fires at time t−1 and δ if a2 does not fire.
Thus, if input x2 fires at some time t, then output x1 is likely to fire at time t+2 (with probability
at least (1− δ)2). However, in this case, the firing of x1 is not sustained.

Now consider the composition N = N 1 × N 2, identifying the output x2 of N 1 with the input
x2 of N 2, and the output x1 of N 2 with the input x1 of N 1. The behavior of N depends on the
initial firing pattern. Assume that neither a1 nor a2 fires initially; we consider the behavior for the
various starting firing patterns for x1 and x2. We consider two cases: If neither x1 nor x2 fires at
time 0, then with “high probability”, none of the four neurons will fire for a long time. On the other
hand, If one or both of x1 and x2 fire at time 0, then with “high probability”, they will trigger all
the neurons to fire and continue to fire for a long time. We give some details in Section 5.4.

3.3 Compositionality definitions

In Section 2.3, we defined a specific external behavior notion Beh for our networks, and an equivalent
alternative notion Beh2. Recall that, in general, a behavior definition B assigns some “behavior
object” B(N ) to every network N . Here we define compositionality for general behavior notions.
Later in the paper, in Sections 4 and 5, we will prove that our particular behavior notions are
compositional.

In general, we define an external behavior notion B to be compositional provided that the
following holds: Consider any four networks N 1, N 2, N ′1, and N ′2, where N 1 and N ′1 have the
same sets of input and output neurons, N 2 and N ′2 have the same sets of input and output neurons,
N 1 and N 2 are compatible, and N ′1 and N ′2 are compatible. Suppose that B(N 1) = B(N ′1) and
B(N 2) = B(N ′2). Then B(N 1 ×N 2) = B(N ′1 ×N ′2). Said another way:

Lemma 14. An external behavior notion B is compositional if and only if, for all compatible pairs
of networks N 1 and N 2, B(N 1 ×N 2) is uniquely determined by B(N 1) and B(N 2).

Now we show that, in general, if two external behavior notions are equivalent and one is com-
positional, then so is the other. This will provide us with a method that will be helpful in Section 5
for showing compositionality.

Theorem 2. If B and B′ are two equivalent external behavior notions for spiking neural networks,
and B is compositional, then also B′ is compositional.

Proof. Suppose that B and B′ are two external behavior notions and B is compositional. We show
that B′ is compositional. For this, consider any four networks N 1, N 2, N ′1, and N ′2, where N 1

and N ′1 have the same sets of input and output neurons, N 2 and N ′2 have the same sets of input
and output neurons, N 1 and N 2 are compatible, and N ′1 and N ′2 are compatible. Suppose that
B′(N 1) = B′(N ′1) and B′(N 2) = B′(N ′2). We must show that B′(N 1 ×N 2) = B′(N ′1 ×N ′2).

Since B and B′ are equivalent and B′(N 1) = B′(N ′1), we have that B(N 1) = B(N ′1). Likewise,
since B′(N 2) = B′(N ′2), we have that B(N 2) = B(N ′2). Since B is assumed to be compositional,
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this implies that B(N 1 × N 2) = B(N ′1 × N ′2). Then since B and B′ are equivalent, we get that
B′(N 1 ×N 2) = B′(N ′1 ×N ′2), as needed. ⊓⊔

4 Theorems for Acyclic Composition

Our general composition results appear in Section 5. Those are a bit complicated, mainly because
of the possibility of connections in both directions between the sub-networks. Acyclic composition
is an important special case of general composition; many interesting examples satisfy the acyclic
restriction. Since this case can be analyzed more easily, we present this first.

Throughout this section, we fix the notation N = N 1 ×N 2, and assume that N1
in ∩N2

out = ∅,
that is, there are no edges from N 2 to N 1.

In this section, and from now on in the paper, we will generally avoid writing the cone notation
A(). Thus, we will abbreviate P (A(α)) and P (A(β)) as just P (α) and P (β). We hope that this
makes it easier to read complex formulas and does not cause any confusion.

4.1 Compositionality

We have not formally defined “compositionality” for the special case of acyclic composition. So here,
we will simply show (Lemma 17) how to express Beh(N ) as a function of Beh(N 1) and Beh(N 2).
Thus (Theorem 3), Beh(N ) is uniquely determined by Beh(N 1) and Beh(N 2).

Specifically, we fix any particular input execution βin of N , which generates a particular proba-
bility distribution P on infinite executions of N . We consider an arbitrary finite trace β of N that
is consistent with βin. We show how to express P (β) in terms of probability distributions P 1 and
P 2 on infinite executions of N 1 and N 2, respectively. These distributions P 1 and P 2 are defined
from certain input executions of N 1 and N 2, respectively.

We begin by deriving a simple expression for P (β), for an arbitrary finite trace β of N that is
consistent with βin, in terms of the same probability distribution P on projections of β.

Lemma 15. Let β be a finite trace of N that is consistent with βin. Then

P (β) = P (β⌈N1
out)× P ((β⌈N2

out)|(β⌈N2
in)).

Proof. Since β⌈Nin is fixed, we have that

P (β) = P (β⌈Nout) = P ((β⌈(N1
out ∪N2

out)).

This last expression is equal to

P (β⌈N1
out)× P ((β⌈N2

out)|(β⌈N1
out))

by basic conditional probability reasoning. We have that

P ((β⌈N2
out)|(β⌈N1

out)) = P ((β⌈N2
out)|(β⌈(N1

out ∩N2
in))),

because the behavior of N 2 does not depend on the firing states of neurons in N1
out −N2

in. (That
is, the firing behavior of the neurons in N2

out is independent of the behavior of the neurons in
N1

out −N2
in, conditioned on the behavior of the neurons in N1

out ∩N2
in.) The right-hand side of this

equation is equal to
P ((β⌈N2

out)|(β⌈(N2
in)))
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because N2
in consists of N1

out ∩N2
in plus some neurons in Nin, whose firing states are fixed in βin.

Substituting yields
P (β) = P (β⌈N1

out)× P ((β⌈N2
out)|(β⌈N2

in)),

as needed. ⊓⊔

Thus, Lemma 15 assumes an arbitrary input execution βin of N , which generates a probability
distribution P . This lemma expresses P (β), for an arbitrary β, in terms of the P -probabilities of
other finite traces. However, we are not quite there: Our main goal here is to express P (β) in terms of
probability distributions P 1 and P 2 that are generated by N 1 and N 2, respectively, from particular
infinite input executions for those respective sub-networks. We define these input executions and
distributions as follows.

– Input execution β1
in and distribution P 1 for N 1:

Define the infinite input execution β1
in of N 1 to be βin⌈N1

in, that is, the projection of the given
input execution on the inputs of N 1. Then define P 1 to be the probability distribution that is
generated by N 1 from input execution β1

in.
– Input execution β2

in and distribution P 2 for N 2:
This is more complicated, since the input to N 2 depends not only on the external input βin,
but also on the output produced by N 1. Define the infinite input execution β2

in of N 2 as follows.
First, note that N2

in ⊆ Nin ∪ N1
out, that is, every input of N 2 is either an input of N or an

output of N 1. Define the firing patterns of the neurons in N2
in ∩Nin using βin, that is, define

β2
in⌈(N2

in∩Nin) = βin⌈N2
in. And for the firing patterns of the neurons in N2

in∩N1
out, use β, that

is, define β2
in⌈(N2

in ∩ N1
out) = β⌈(N2

in ∩ N1
out) for times 0, . . . , length(β) and the default 0 for

all later times. (This choice for later times is arbitrary—we just chose 0s to be concrete.) Then
define P 2 to be the probability distribution that is generated by N 2 from input execution β2

in.

Note that, in the second case above, the choice of the input execution β2
in depends on the

particular trace β for which we are trying to express the P -probability. This is allowed because
the external behavior Beh(N 2) is defined to specify a probability distribution for every individual
infinite input execution of N 2.10

The next lemma restates the result of Lemma 15 in terms of the new probability distributions P 1

and P 2. The key idea is that the probability P 2 is essentially a conditional probability distribution,
giving probabilities for N 2’s outputs, conditioned on its inputs being consistent with β.

Lemma 16. Let β be a finite trace of N that is consistent with βin. Then

P (β) = P 1(β⌈N1
out)× P 2(β⌈N2

out).

Proof. Fix β, a finite trace of of N that is consistent with βin. By Lemma 15, we know that:

P (β) = P (β⌈N1
out)× P ((β⌈N2

out)|(β⌈N2
in)).

10 To elaborate: According to our approach throughout this paper, we get a probability distribution of
traces of N 2 by fixing an infinite input execution of N 2. The question here is, which input to choose?
The infinite input βin for the entire system N provides part of the answer, for inputs of N 2 that are
also inputs of N . The other part is obtained from β projected on the inputs of N 2 that are outputs of
N 1. Technically, we have to pad out β somehow, since we need an infinite input execution, but it doesn’t
matter how we do this, since the probability that N 2 produces outputs consistent with β depends only
on the portion of the input up to length(β).
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It suffices to show that these two terms are equal to the corresponding terms in this lemma, that
is, that

P (β⌈N1
out) = P 1(β⌈N1

out)

and

P ((β⌈N2
out)|(β⌈N2

in)) = P 2(β⌈N2
out).

These two statements follow directly by unwinding the definitions of P 1 and P 2, respectively.
Specifically, for the first statement, we consider P (β⌈N1

out), the probability that the composed
network N generates an execution that, when projected on outputs of N 1, starts with β⌈N1

out. We
note that this probability is entirely determined by the sub-network N 1, based on βin projected on
the inputs of N 1. But this is just the definition of P 1(β⌈N1

out).
Likewise, though a bit more subtly, for the second statement, we consider P ((β⌈N2

out)|(β⌈N2
in)),

which is the conditional probability that the composed network generates an execution that, when
projected on outputs of N 2, starts with β⌈N2

out, conditioned on the event that the inputs to N 2

start with β⌈N2
in. This time, the probability is entirely determined by the sub-network N 2, based

on β projected on the inputs of N 2.11 But this is just the definition of P 2(β⌈N2
out). ⊓⊔

The next lemma has a slightly simpler statement than Lemma 16.

Lemma 17. Let β be a finite trace of N that is consistent with βin. Then

P (β) = P 1(β⌈N1)× P 2(β⌈N2).

Proof. This follows from Lemma 16 because in each term on the right-hand-side of the equation in
this lemma, the probability depends on the output traces only—the input traces are fixed. Formally,
this uses Lemma 5. ⊓⊔

Finally, Lemma 17 yields a kind of compositionality theorem for acyclic composition:

Theorem 3. Beh(N ) is determined by Beh(N 1) and Beh(N 2).

We prove a more general compositionality result in Section 5.

4.2 Examples

We revisit our two examples of acyclic composition from Sections 3.2 and 3.2, this time analyzing
their behavior more precisely.

Boolean circuits Let N be the seven-neuron Boolean circuit from Section 3.2. Express N as the
composition N 1 ×N 2, where

– N 1 is the network resulting from the first two stages in the order of compositions described in
Section 3.2. This computes Nand and Or of the two inputs.

– N 2 is the final And network.

11 Notice that this probability is entirely determined by the finite input β⌈N2
in—the firing states of the

input neurons of N 2 after time length(β) do not matter.
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Fix βin to be any infinite input execution of N with stable inputs, and let P be the probabilistic
execution of N for βin. In P , we should expect to have stable, correct outputs for a long while
starting from time 4, because the depth of the entire network is 4. Here we consider just the
situation at precisely time 4, that is, we consider the probabilities P (β) for finite traces β of length
exactly 4. Specifically, we would like to use Lemma 16 to help us show that the probability of a
correct Xor output at time 4 is at least (1− δ)5.

We work compositionally. In particular, we assume that, in the probabilistic execution of N 1 for
βin, or any other stable input sequence, the probability of correct (Nand,Or) outputs at time 3 is at
least (1− δ)4. We also assume that, in the probabilistic execution of N 2 on any input sequence, the
probability that the output at time 4 is the And of its two inputs at time 3 is at least 1−δ. We could
prove these bounds for our two specific networks N 1 and N 2, but to emphasize the compositional
reasoning, we ignore the internal workings of the two sub-networks and simply state the bounds
here. We use these bounds to get our result about the composed network N .

So define B to be the set of traces β of N of length 4 such that β gives a correct Xor output
at time 4, as well as correct (Nand, Or) outputs at time 3. (These traces may differ in their firing
states for the And neuron at any time, and also in their firing states for the Not and Or neurons at
times other than those specified.) We will argue that P (B) ≥ (1 − δ)5, which implies our desired
result.

We have that P (B) =
∑

β∈B P (β). By Lemma 16, this is equal to∑
β∈B

P 1(β⌈N1
out)× P 2(β⌈N2

out).

Here, P 1 and P 2 are defined as in Section 4.1, based on β1
in = βin, and for each particular β, based

on β2
in equal to β⌈N2

in, extended to an infinite sequence by adding 0’s. Note that the choice of input
sequence β2

in for N 2 is uniquely determined by β⌈N1
out.

We break this expression up into the double summation:∑
β1

(
∑
β2

P 1(β1⌈N1
out)× P 2(β2⌈N2

out))

Here, β1 ranges over traces of N 1 that are consistent with βin and yield correct (Nand, Or) outputs
at time 3. And for each particular β1, β2 ranges over traces of N 2 that are consistent with the
input sequence β2

in determined from β1⌈N1
out = β⌈N1

out, and whose output at time 4 is the Xor of
its inputs at time 3. This is equal to (collecting terms for each β1):∑

β1

P 1(β1⌈N1
out)

∑
β2

P 2(β2⌈N2
out).

Now, for any particular β1, we know that:∑
β2

P 2(β2⌈N2
out) ≥ (1− δ),

by our assumptions about the behavior of N 2. So the overall expression is at least∑
β1

P 1(β1⌈N1
out)(1− δ) = (1− δ)

∑
β1

P 1(β1⌈N1
out).
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We also know that ∑
β1

P 1(β1⌈N1
out) ≥ (1− δ)4,

by our assumption about the behavior of N 1. So the overall expression is at least (1− δ)(1− δ)4 =
(1− δ)5, as needed.

Attention using WTA We consider the composition of theWTA network and the Filter network,
as described in Section 3.2. Now let N 1 denote the WTA network, N 2 the Filter network, and N
their composition. We assume that the WTA network satisfies Theorem 1, with particular values
of δ, tc, ts, γ, c1 and c2. We assume that each And network within Filter is correct at each time
with probability at least 1− δ′.

Fix βin to be any infinite input execution of N with stable xi inputs such that at least one xi is
firing. The wi inputs are unconstrained. Let P be the probabilistic execution of N generated from
βin. We want to prove that, according to P , with probability at least (1 − δ)(1 − δ′)nts , there is
some t ≤ tc such that: (a) the y outputs stabilize by time t to one steadily-firing output yi, which
persists through time t+ ts−1, and (b) for this particular i, starting from time t+1 and continuing
for a total of ts times, the zi outputs correctly mirror the wi inputs at the previous time, and all
the other z neurons do not fire.

Again, we work compositionally. We assume that, in the probabilistic execution of the WTA
network N 1 on βin⌈Nin, the probability of correct, stable outputs as in Theorem 1 is at least 1− δ.
We also assume that, in the probabilistic execution of N 2 on any input sequence, conditioned on
any finite execution prefix, the probability of correct mirroring of inputs for the next t times is at
least (1 − δ′)nts . These assumptions could be proved for our two networks, but we simply assume
them here.

Now define B to be the set of traces β of N of length tc + ts − 1 such that all the desired
conditions hold in β, that is, there is some t ≤ tc such that in β, (a) the y outputs stabilize by time
t to one steadily-firing output yi, which persists through time t+ ts − 1, and (b) for this particular
i, starting from time t + 1 and continuing for a total of ts times, the zi outputs correctly mirror
the wi inputs at the previous time, and all the other z neurons do not fire. We will argue that
P (B) ≥ (1 − δ)(1 − δ′)nts . We follow the same pattern as in the Boolean circuit network example
in Section 4.2.

We have that P (B) =
∑

β∈B P (β). By Lemma 16, this is equal to∑
β∈B

P 1(β⌈N1
out)× P 2(β⌈N2

out).

Here, P 1 and P 2 are defined as in Section 4.1, based on β1
in = βin⌈N1

in and for each particular
β, based on β2

in equal to β⌈N2
in, extended to an infinite sequence by adding 0’s. Note that β2

in is
uniquely determined by β⌈(Nin ∪N1

out).
This expression is equal to:∑

β1

(
∑
β2

P 1(β1⌈N1
out)× P 2(β2⌈N2

out)).

Here, β1 ranges over traces of N 1 that are consistent with βin and for which there is some t ≤ tc
such that in β1, the y outputs stabilize by time t to one steadily-firing output yi, which persists
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through time t+ ts − 1. And for each particular β1, β2 ranges over traces of N 2 that are consistent
with the input sequence β2

in determined from βin and β1⌈N1
out = β⌈N1

out, and that satisfy the
following correctness condition for N 2: for the first t and associated i that witness the correctness
condition for β1, at times t + 1, . . . , t + ts, the zi outputs correctly mirror the wi inputs at the
previous time, and all the other z neurons do not fire.

This is equal to (collecting terms for each β1):∑
β1

P 1(β1⌈N1
out)

∑
β2

P 2(β2⌈N2
out).

Now, for any particular β1, we know that:∑
β2

P 2(β2⌈N2
out) ≥ (1− δ′)nts ,

by our assumptions about the behavior of N 2. So the overall expression is at least∑
β1

P 1(β1⌈N1
out)(1− δ′)nts = (1− δ′)nts

∑
β1

P 1(β1⌈N1
out).

We also know that ∑
β1

P 1(β1⌈N1
out) ≥ (1− δ),

by our assumption about the behavior of N 1. So the overall expression is at least (1− δ)(1− δ′)nts ,
as needed.

5 Theorems for General Composition

For general composition, the simple approach in Section 4 does not work. There, we were able to
prove results such as Lemma 15, which decompose the behavior of the entire network N in terms of
the behavior of the two sub-networks N 1 and N 2. This worked because the dependencies between
the behaviors go only one way, from N 1 to N 2. In the general case, the dependencies go both ways,
potentially leading to circularities.

Fortunately, since we are working in a synchronous model, we can break the circularities in
another way, using discrete time. Namely, the behavior of each sub-network at time t depends only
on the behavior of the other network at times up to t−1. We exploit this limitation on dependencies
to prove decomposition lemmas such as Lemma 19, leading to our main compositionality theorem,
Theorem 5.

For this section, fix N = N 1 ×N 2. We continue to avoid writing the cone notation A().

5.1 Composition results for executions and traces

For this subsection and the following, fix a particular input execution βin for N , which yields a
particular probabilistic execution P . The main result of this subsection is Lemma 19. It says that
the probability of a certain finite execution α of the entire network N , conditioned on its trace
β, is simply the product of the probabilities of the two projections of α on the two sub-networks,
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each conditioned on its projected trace. In other words, once we fix all the external behavior of the
network, including the part of the behavior involved in interaction between the two sub-networks,
the internal states of the neurons within the two sub-networks are determined independently. We
begin with a straightforward lemma that treats the two sub-networks asymmetrically.

Lemma 18. Let α be a finite execution of N that is consistent with βin, and let β = trace(α).
Then

P (α|β) = P ((α⌈N1
int)|β)× P ((α⌈N2

int)|(α⌈N1
int), β).

Proof. Standard conditional probability. ⊓⊔

And now we remove the asymmetry, by identifying the portions of β on which the internal
behavior of the two sub-networks actually depends.

Lemma 19. Let α be a finite execution of N that is consistent with βin, and let β = trace(α).
Then

P (α|β) = P ((α⌈N1)|(β⌈N1))× P ((α⌈N2)|(β⌈N2)).

Proof. Lemma 18 says that

P (α|β) = P ((α⌈N1
int)|β)× P ((α⌈N2

int)|(α⌈N1
int), β).

It suffices to show both of the following:

1. P ((α⌈N1
int)|β) = P ((α⌈N1)|(β⌈N1)).

For this, note that
P ((α⌈N1

int)|β) = P ((α⌈N1)|β),

because β already includes the firing patterns for all the neurons in N1 −N1
int = N1

ext. And

P ((α⌈N1)|β) = P ((α⌈N1)|(β⌈N1)),

because the firing behavior of neurons in N1 is independent of the behavor of the neurons in
N −N1, conditioned on β. Putting these two facts together yields the needed equality.

2. P ((α⌈N2
int)|(α⌈N1

int), β) = P ((α⌈N2)|(β⌈N2)).
For this, note that

P ((α⌈N2
int)|(α⌈N1

int), β) = P ((α⌈N2)|(α⌈N1
int), β),

because β already includes the firing patterns for all the neurons in N2 −N2
int = N2

ext. And

P ((α⌈N2)|(α⌈N1
int), β) = P ((α⌈N2)|β),

because the firing behavior of neurons in N2 is independent of the behavior of the neurons in
N1

int, conditioned on β. Finally,

P ((α⌈N2)|β) = P ((α⌈N2)|(β⌈N2)),

because of locality—the neurons in N2 are the only ones that α⌈N2 depends on. Putting these
three facts together yields the needed equality.

⊓⊔
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5.2 Composition results for one-step extensions

In this subsection, we describe how to break circularities in dependencies using discrete time, as a
key step toward our general compositionality result. In particular, we prove two lemmas showing how
one-step extensions of executions and traces of N can be expressed in terms of one-step extensions
of executions and traces of N 1 and N 2.

Our first lemma is about extending a finite execution, either to a particular longer execution,
or just to any execution with a particular longer trace.

Lemma 20. 1. Let α be a finite execution of N of length > 0 that is consistent with βin. Let α
′

be the one-step prefix of α. Then:

P (α|α′) = P ((α⌈N1
lc)|(α′⌈N1))× P ((α⌈N2

lc)|(α′⌈N2)).

2. Let β be a finite trace of N of length > 0 that is consistent with βin. Let α
′ be a finite execution

of N such that trace(α′) is the one-step prefix of β. Then:

P (β|α′) = P ((β⌈N1
out)|(α′⌈N1))× P ((β⌈N2

out)|(α′⌈N2)).

Proof. 1. The non-input neurons of N are those in Nlc = N1
lc∪N2

lc. The firing states of all of these
neurons in the final configuration of α are determined independently. Thus, we have

P (α|α′) = P ((α⌈N1
lc)|α′)× P ((α⌈N2

lc)|α′).

Furthermore, the final firing states for the neurons in N1
lc depend only on the immediately

previous states of the neurons in N1, and similarly for N2
lc and N2, so this last expression is

equal to
P ((α⌈N1

lc)|(α′⌈N1))× P ((α⌈N2
lc)|(α′⌈N2)),

as needed.
2. The output neurons of N are those in Nout = N1

out ∪ N2
out. The firing states of all of these

neurons in the final configuration of β are determined independently. Thus, we have

P (β|α′) = P ((β⌈N1
out)|α′)× P ((β⌈N2

out)|α′).

Furthermore, the final firing states for the neurons in N1
out depend only on the immediately

previous states of the neurons in N1, and similarly for N2
out and N2, so this last expression is

equal to
P ((β⌈N1

out)|(α′⌈N1))× P ((β⌈N2
out)|(α′⌈N2)),

as needed.
⊓⊔

The second lemma is about extending a finite trace, either to an execution or to a longer trace.
This is a bit more difficult because we are conditioning only on traces, which do not include the
internal behavior of the two sub-networks.

Lemma 21. 1. Let α be a finite execution of N of length > 0 that is consistent with βin. Let β
′

be the one-step prefix of trace(α). Then:

P (α|β′) = P ((α⌈N1
lc)|(β′⌈N1))× P ((α⌈N2

lc)|(β′⌈N2)).
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2. Let β be a finite trace of N of length > 0 that is consistent with βin. Let β′ be the one-step
prefix of β. Then:

P (β|β′) = P ((β⌈N1
out)|(β′⌈N1))× P ((β⌈N2

out)|(β′⌈N2)).

Proof. 1. Fix α and β′ as described. Let α′ be the one-step prefix of α. By Lemma 7, we have:

P (α|β′) = P (α|α′)× P (α′|β′).

Lemma 20 implies that

P (α|α′) = P ((α⌈N1
lc)|(α′⌈N1))× P ((α⌈N2

lc)|(α′⌈N2)).

Lemma 19 implies that

P (α′|β′) = P ((α′⌈N1)|(β′⌈N1))× P ((α′⌈N2)|(β′⌈N2)).

Substituting, we get that:

P (α|β′) = P ((α⌈N1
lc)|(α′⌈N1))×P ((α⌈N2

lc)|(α′⌈N2))×P ((α′⌈N1)|(β′⌈N1))×P ((α′⌈N2)|(β′⌈N2)).

Rearranging terms and using Lemma 13, Part 3, we see that the right-hand side is equal to

P ((α⌈N1
lc)|(β′⌈N1))× P ((α⌈N2

lc)|(β′⌈N2)),

as needed.
2. Fix β and β′ as described. Let B denote the set of executions α of N such that trace(α) = β,

i.e., such that α⌈Next = β. Note that what varies among the different executions in B is just
the firing patterns of the neurons in Nint = N1

int ∪N2
int. Then P (β|β′) can be expanded as∑

α∈B

P (α|β′).

By Part 1, this is equal to∑
α∈B

(P ((α⌈N1
lc)|(β′⌈N1))× P ((α⌈N2

lc)|(β′⌈N2)).

Now define B1 to be the set of executions α1 of N 1 such that trace(α1) = β⌈N1. Note that all
that varies among these α1 is the firing patterns of the neurons in N1

int. Analogously, define B2

to be the set of executions α2 of N 2 such that trace(α2) = β⌈N2. All that varies among these
α2 is the firing patterns of the neurons in N2

int.
Now we project the B executions onto N1 and N2, and we get that the expression above is
equal to: ∑

α1∈B1,α2∈B2

(P (α1|(β′⌈N1))× P (α2|(β′⌈N2))).

This sum can be split into the product of sums:∑
α1∈B1

P (α1|(β′⌈N1))×
∑

α2∈B2

P (α2|(β′⌈N2)).

This is, in turn, equal to

P ((β⌈N1
out)|(β′⌈N1))× P ((β⌈N2

out)|(β′⌈N2)),

as needed.
⊓⊔
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5.3 Compositionality

Finally we are ready to prove that our behavior notion Beh is compositional. In view of Theorem 2, it
suffices to show that our auxiliary behavior notion Beh2 is compositional. And in view of Lemma 14,
it suffices to show that Beh2(N ) is uniquely determined by Beh2(N 1) and Beh2(N 2), which we
do in Lemma 24. To accomplish this, we show (in Lemma 23) how to express Beh2(N ) in terms of
Beh2(N 1) and Beh2(N 2).

Recall that the definition of Beh2(N ) specifies, for each infinite input execution βin of N , a
collection of conditional probabilities, one for each finite trace β of N of length > 0 that is consistent
with βin. Fix any such input execution, βin, which generates a particular probabilistic execution P
of N . Then consider an arbitrary finite trace β of N of length t > 0 that is consistent with βin.
Let β′ be the length t− 1 prefix of β. We show how to express P (β|β′) in terms of the conditional
probabilities that arise from probability distributions P 1 and P 2 on infinite executions of N 1 and
N 2, respectively. These distributions P 1 and P 2 are defined from certain input executions of N 1

and N 2, respectively. We define these input executions and distributions as follows.

– Input execution β1
in and distribution P 1 for N 1:

Define the infinite input execution β1
in of N 1 as follows. First, note that N1

in ⊆ Nin∪N2
out, that

is, every input of N 1 is either an input of N or an output of N 2. Define the firing patterns
of the neurons in N1

in ∩Nin using βin, that is, define β1
in⌈(N1

in ∩Nin) = βin⌈N1
in. And for the

firing patterns of the input neurons in N1
in ∩ N2

out, use β′, that is, define β1
in⌈(N1

in ∩ N2
out) =

β′⌈(N1
in ∩ N2

out) for times 0, . . . , t − 1, and the default 0 for times ≥ t. Define P 1 to be the
probability distribution that is generated by N 1 from input execution β1

in.
– Input execution β2

in and distribution P 2 for N 1:
Analogous, interchanging 1 and 2.

Lemma 22. Define β, β′, P 1, and P 2 as above. Then:

P (β|β′) = P 1((β⌈N1
out)|(β′⌈N1))× P 2((β⌈N2

out)|(β′⌈N2)).

Proof. Lemma 21, Part 2, tells us that:

P (β|β′) = P ((β⌈N1
out)|(β′⌈N1))× P ((β⌈N2

out)|(β′⌈N2)).

So it suffices to show that

P ((β⌈N1
out)|(β′⌈N1)) = P 1((β⌈N1

out)|(β′⌈N1)),

and similarly for N 2.
The two expressions for N 1 look very similar; their equivalence follows by unwinding definitions.

First, the left-hand expression is based on P , which is generated by the execution of the entire
network N for input βin. Thus, βin defines the inputs of N 1 that are also inputs of N , but not those
that are outputs of N 2—the latter emerge from P . Then we consider the conditional probability
P ((β⌈N1

out)|(β′⌈N1)), which means that we now assume that the external behavior of N 1 through
time t − 1 is β′, and consider the (conditional) probability that the firing pattern produced by P
for the outputs of N 1 at time t coincides with what is given in β.

On the other hand, the right-hand expression is based on P 1, which is generated by the ex-
ecution of just the sub-network N 1 for input β1

in. Then we consider the conditional probability
P 1((β⌈N1

out)|(β′⌈N1)), which means that we again assume that the external behavior of N 1 through
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time t− 1 is β′, and now consider the (conditional) probability that the firing pattern produced by
P 1 for the outputs of N 1 at time t coincides with what is given in β.

Note that in P , we may have different input sequences to N 1 starting from time t, depending on
what is produced by network N for input βin. In P 1, those inputs are always 0, as in the definition
of β1

in. This difference does not matter, because we are concerned only with the outputs of N 1

through time t, and these outputs depend only on inputs to N 1 through time t− 1.
It follows that these two conditional probabilities are the same. ⊓⊔

Lemma 22 is a nice statement of how the probabilities decompose, and we generalize this in
Lemma 25. However, it is not quite in the right form to prove compositionality of Beh2. This is
because the expressions on the right-hand-side calculate conditional probabilities for β⌈N1

out and
β⌈N2

out, which describe behavior of only output neurons of the two networks, whereas Beh2 is
defined in terms of probabilities for traces that include inputs as well as outputs. So, we need a
technical modification of the lemma.

Specifically, define γ1 to be the length-t trace of N 1 such that γ1⌈N1
out = β⌈N1

out and γ1⌈N1
in

is a prefix of β1
in. That is, γ1 pastes together the output from β⌈N1

out with the input used in the
definition of P 1. Note that β′⌈N1 is the one-step prefix of γ1. Define γ2 analogously.

Now we can state a lemma that expresses conditional probabilities for N with input βin in terms
of conditional probabilities for N 1 with input β1

in and N 2 with input β2
in.

Lemma 23. Define β, β′, P 1, P 2, γ1, and γ2 as above. Then:

P (β|β′) = P 1(γ1|(β′⌈N1))× P 2(γ2|(β′⌈N2)).

Proof. By Lemma 22, we have that

P (β|β′) = P 1((β⌈N1
out)|(β′⌈N1))× P 2((β⌈N2

out)|(β′⌈N2)).

So it suffices to show that the corresponding terms are the same, that is, that:

P 1((β⌈N1
out)|(β′⌈N1)) = P 1(γ1|(β′⌈N1)),

and similarly for N 2. The first case follows because the definition of P 1 fixes the firing patterns for
the neurons in N1

in through time t, in a way that is consistent with γ1, and the traces γ1 and β
agree on the neurons in N1

out. Similarly for the second case. ⊓⊔

Now we can conclude compositionality:

Lemma 24. For all compatible pairs of networks N 1 and N 2, Beh2(N ) is determined by Beh2(N 1)
and Beh2(N 2).

Proof. Follows directly from Lemma 23. ⊓⊔

Theorem 4. Beh2 is compositional.

Proof. By Lemmas 24 and 14. ⊓⊔

Theorem 5. Beh is compositional.

Proof. By Theorems 4 and 2. ⊓⊔
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We end this section with a generalization of Lemma 22 that applies to all four combinations
of executions and traces. The proof is similar to that for Lemma 22, based on earlier Lemmas 20
and 21. We will use this in Section 5.4.

Lemma 25. Let α be a finite execution of N of length > 0 that is consistent with βin. Let α
′ be

its one-step prefix. Let β = trace(α) and β′ = trace(α′). Let P1 and P2 be as defined earlier in this
section. Then

1. P (α|α′) = P 1((α⌈N1
lc)|(α′⌈N1))× P 2((α⌈N2

lc)|(α′⌈N2)).
2. P (β|α′) = P 1((β⌈N1

out)|(α′⌈N1))× P 2((β⌈N2
out)|(α′⌈N2)).

3. P (α|β′) = P 1((α⌈N1
lc)|(β′⌈N1))× P 2((α⌈N2

lc)|(β′⌈N2)).
4. P (β|β′) = P 1((β⌈N1

out)|(β′⌈N1))× P 2((β⌈N2
out)|(β′⌈N2)).

5.4 Examples

Toy example for cyclic composition We consider the toy cyclic composition example from
Section 3.2. We analyze just one case in detail, namely, where x1 fires at time 0 and x2 does not.
We prove that, with probability at least (1− δ)7, both x1 and x2 fire at time 4.

The input firing sequence βin is trivial here, since the composed networkN has no input neurons.
For this example, we assume that, in the initial configuration, x1 fires and the other three neurons
do not fire. With these restrictions, we have a single probability distribution P for infinite executions
of N . We argue compositionally, in terms of executions.

So let E be the set of executions of length 4 in which both x1 and x2 fire at time 4. We will
show that P (E) ≥ (1− δ)7. For this, we define several other sets of executions. Each set is included
in the previous one.

– E0, the set of executions of length 0 consisting of just the initial configuration, in which x1 is
firing and the other neurons are not firing.

– E1, the set of executions of length 1 whose one-step prefix is in E0 and in which, in the last
configuration, a1 is firing.

– E2, the set of executions of length 2 whose one-step prefix is in E1 and in which, in the last
configuration, x2 is firing.

– E3, the set of executions of length 3 whose one-step prefix is in E2 and in which, in the last
configuration, x2 and a2 are both firing.

– E4, the set of executions of length 4 whose one-step prefix is in E3 and in which, in the last
configuration, x1, x2 and a2 are all firing.

Then we can see that

P (E) ≥ P (E4) = P (E4|E3)P (E3|E2)P (E2|E1)P (E1|E0)P (E0) = P (E4|E3)P (E3|E2)P (E2|E1)P (E1|E0).

We need lower bounds for the four conditional probabilities. For example, consider P (E4|E3).
Let α′ be any execution in E3; we will argue that P (E4|α′) ≥ (1 − δ)3, and use Total Probability
to conclude that P (E4|E3) ≥ (1− δ)3. We have:

P (E4|α′) =
∑
α

P (α|α′),
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where α ranges over the length-4 executions in E4 that extend α′. By Lemma 25, we may break
this down in terms of the two sub-networks and write:

P (α|α′) = P 1((α⌈N1
lc)|(α′⌈N1))× P 2((α⌈N2

lc)|(α′⌈N2)),

where P 1 and P 2 are defined from β′ = trace(α′) as in Section 5.3.
We can rewrite

∑
α P (α|α′) as∑
α1

∑
α2

P 1((α1⌈N1
lc)|(α′⌈N1))× P 2((α2⌈N2

lc)|(α′⌈N2)),

where α1 ranges over all one-step extensions of α′⌈N1 such that x2 fires in the final configuration,
and α2 ranges over all one-step extensions of α′⌈N2 in which x1 and a2 both fire in the final
configuration. This summation is equal to∑

α1

P 1((α1⌈N1
lc)|(α′⌈N1))×

∑
α2

P 2((α2⌈N2
lc)|(α′⌈N2)).

The first term is ≥ (1− δ) because we care only that x2 fires in the final configuration, and we have
assumed that it fires in the previous configuration. The second term is ≥ (1− δ)2, because we care
that both x1 and a2 fire in the final configuration, and we have assumed that a2 and x2 fire in the
previous configuration. So we have:

P (E4|α′) =
∑
α1

P 1((α1⌈N1
lc)|(α′⌈N1))×

∑
α2

P 2((α2⌈N2
lc)|(α′⌈N2)) ≥ (1− δ)(1− δ)2 = (1− δ)3.

Thus, we have shown that P (E4|E3) ≥ (1 − δ)3, Similar arguments can be used to show that
P (E3|E2) ≥ (1− δ)2, P (E2|E1) ≥ (1− δ), and P (E1|E0) ≥ (1− δ). Combining all the terms we get
that P (E4) ≥ (1− δ)7, as needed.

6 Hiding for Spiking Neural Networks

Now we define our second operator for SNNs, the hiding operator. This operator is designed to “hide”
some previously externally-visible behavior so it becomes invisible outside the network. Formally,
the hiding operator simply reclassifies some output neurons as internal. The hiding operator can
be used in conjunction with a composition operator; for example, we often want to compose two
networks and then hide the neurons that were used to communicate between them.

6.1 Hiding definition

Given a network N and a subset V of the output neurons Nout of N , we define a new network
N ′ = hide(N , V ) to be exactly the same as N except that all the outputs in V are now reclassified
as internal neurons. That is, all parts of the definition of N ′ and N are identical except that
N ′

out = Nout − V and N ′
int = Nint ∪ V . The effect of the hiding operator is to make the hidden

neurons ineligible for combining with other neurons in further composition operations.
We give a result in the style of Lemma 24, here saying that the external behavior of hide(N , V )

is determined by the external behavior of N and V .
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Theorem 6. For every network N and subset V ⊆ Nout, Beh(hide(N , V )) is determined by
Beh(N) and V .

Proof. Let N ′ = hide(N , V ). Fix any infinite input execution βin for N ′, and let P ′ denote the
probabilistic execution of N ′ generated from βin. Consider any finite trace β of N ′ that is consistent
with βin. We must express P ′(β) in terms of the probability distribution of traces generated by N
on some input execution.

To do this, note that the executions of N are identical to those of N ′—only the classification of
neurons in V is different. In particular, the input execution βin is also an input execution of N . Let
P denote the probabilistic execution generated of N generated from βin. Then P ′, the probabilistic
execution of N ′, is identical to P , the probabilistic execution of N . So we can write P ′(β) = P (β).

This is not quite what we need, because β is not actually a trace ofN—it excludes firing patterns
for neurons in V . But we can define B to be the set of traces γ of N such that γ⌈(N ′

ext) = β, that
is, B is the set of traces of N that project to yield β but allow any firing behavior for the neurons
in V . Then we have

P ′(β) =
∑
γ∈B

P (γ).

This is enough to show the needed dependency. ⊓⊔

6.2 Examples

Boolean circuits Let N be the 5-gate Nand circuit from Section 3.2. Let V be the singleton set
consisting of just the And neuron within the circuit. We consider the network N ′ = hide(N , V ),
which is the same as the Nand circuit except that the And neuron is now regarded as internal.
Thus, N ′ has two internal neurons: the And neuron, and the internal neuron a of N . Fix βin to
be any infinite input execution (for both N and N ′) with stable inputs, and let P and P ′ be the
probabilistic executions of N and N ′, respectively, generated from βin.

In P ′, we should expect to have stable correct Nand outputs for a long time starting from time
3. Here we consider just finite traces β of length exactly 3, and focus on the output at exactly time
3. Thus, we consider the probabilities P ′(β) for finite traces β of length exactly 3, and we would
like to show that the probability of a correct Nand output at time 3 is at least (1− δ)3. We use the
connection between P and P ′ to help us show this.

Namely, we assume that, in P , the probability of both a correct And output at time 1 and
a correct Nand output at time 3 is at least (1 − δ)3. This could be proved for the Nand circuit
separately, but we simply assume it here.

Now define event B to be the set of traces β of N ′ of length 3 such that β gives a correct
Nand output at time 3. Our assumption about P implies that P (B) ≥ (1 − δ)3. We argue that
P ′(B) ≥ (1− δ)3, which implies our desired result.

We have that P ′(B) =
∑

β∈B P ′(β). We know that P ′(β) = P (β) for each trace β of N ′.

Therefore, we have that P ′(B) =
∑

β∈B P (β) = P (B). Since we have that P (B) ≥ (1 − δ)3, it

follows that P ′(B) ≥ (1− δ)3, as needed.

7 Problems for Spiking Neural Networks

In this section, we define a formal notion of a problem to be solved by a stochastic Spiking Neural
Network. Problems are stated in terms of the input/output behavior that should be exhibited by
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a network. Namely, for every input, a problem specifies a set of possibilities, each of which is a
probability distribution on outputs. We define what it means for an SNN to solve a problem. We
prove that this notion of “solves” respects our composition and hiding operators.

7.1 Problems and solving problems

We define a problem R for a pair (Nin, Nout) of disjoint sets of neurons to be a mapping that assigns,
to each infinite sequence βin of firing patterns for Nin, a nonempty set R(βin) of possibilities. Each
possibility R ∈ R(βin) is a mapping that specifies, for every finite sequence β of firing patterns for
Nin ∪ Nout that is consistent with βin, a probability R(β). Thus, the problem R assigns to each
input a set of “possible” probability distributions on outputs.

The probabilities assigned by a particular possibility R must satisfy certain constraints, designed
to guarantee that they generate an actual probability distribution on the set of infinite sequences
of firing patterns for Nin ∪Nout. Namely, we require that R assign probability 1 to some particular
β of length 0, and that the probabilities assigned to the one-step extensions of any β must add up
to the probability of β.

Now suppose that N is a network with input and output neurons Nin and Nout, and R is a
problem for (Nin, Nout). Then we say that that N solves R provided that, for any infinite input
execution βin for N , there is some possibility R ∈ R(βin) for which the following holds: Let P
denote the probabilistic execution of N for βin. Then for every finite trace β of N , P (β) = R(β).
In other words, R is exactly the trace distribution derived from the probabilistic execution of N
for input βin.

7.2 Composition of problems

We would like a theorem of the following form: If N 1 solves problem R1 and N 2 solves problem R2,
then the composition of networks N = N 1 ×N 2 solves the composition of problems R = R1 ×R2.
For this, we must first define the composition of two problems, R = R1 ×R2.

So let R1 be a problem for the pair (N1
in, N

1
out) and R2 a problem for the pair (N2

in, N
2
out).

Assume that R1 and R2 are compatible, in the sense that N1
out ∩N2

out = ∅. Then the composition
R is defined to be a problem for the pair (Nin, Nout), where Nout = N1

out ∪ N2
out and Nin =

N1
in ∪ N2

in − Nout. The composed problem R should be defined as a mapping that assigns, to
each infinite sequence βin of firing patterns for Nin, a nonempty set R(βin) of possibilities. Each
possibility R ∈ R(βin) should be a mapping that specifies, for every finite sequence β of firing
patterns for Nin ∪Nout that is consistent with βin, a probability R(β).

We define the R mapping by considering each βin separately; so fix any βin. We describe how
to define the set R(βin) of possibilities for βin.

To define R(βin), we start by selecting (in an arbitrary way) a single possibility R1(β1
in) ∈

R1(β1
in) for each firing pattern β1

in for N1
in, and likewise a single possibility R2(β2

in) ∈ R2(β2
in) for

each firing pattern β2
in for N2

in.
12 We use this entire collection of choices for R1(β1

in) and R2(β2
in),

for all values of β1
in and β2

in, to construct a single, particular possibility R for βin. Then we define
R(βin) to be the set of all possibilities for βin that can be constructed in this way, based on all
choices for the possibilities R1(β1

in) and R2(β2
in).

12 Unwinding the definitions a bit, possibility R1(β1
in) is a mapping from sequences of firing patterns that

are consistent with β1
in to probabilities, and analogously for R2(β2

in).
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So fix the possibilities R1(β1
in) ∈ R1(β1

in) and R2(β2
in) ∈ R2(β2

in) arbitrarily, as just described.
Constructing the possibility R for βin requires us to define R(β) for every finite sequence β of firing
patterns of Nin ∪Nout that is consistent with βin. We do this recursively. For the base, consider β
of length 0, where β is consistent with βin. Let β

1
in be the infinite sequence of all-0 firing patterns

for N1
in, and β2

in be the infinite sequence of all-0 firing patterns for N2
in. Then we define R(β) = 1 if

R1(β1
in)(β⌈N1

out) = 1 and R2(β2
in)(β⌈N2

out) = 1,

and 0 otherwise. That is, we assign probability 1 to the length-0 sequence β that is consistent with
βin, and in which the output firing states are the same as those to which R1(β1

in) and R2(β2
in)

assign probability 1.
For the recursive step, consider β of length ≥ 1, where β is consistent with βin, and let β′ be

the one-step prefix of β. We define R(β) in terms of R(β′). Namely, let β1
in be the infinite sequence

of firing patterns for N1
in that are constructed from the following: (a) for neurons in N1

in ∩ Nin,
use βin⌈N1

in, and (b) for neurons in N1
in ∩ N2

out, use β′⌈(N1
in ∩ N2

out) for times 0, . . . , t − 1, and
the default 0 for times ≥ t, Define β2

in analogously. Then define R(β) = R(β′) × T 1 × T 2, where
T 1 is the conditional probability R1(β1

in)((β⌈N1
out)|(β′⌈N1)) and T 2 is the conditional probability

R2(β2
in)((β⌈N2

out)|(β′⌈N2)).13

Theorem 7. If N 1 solves problem R1 and N 2 solves problem R2, then the composition of networks
N = N 1 ×N 2 solves the composition of problems R = R1 ×R2.

Proof. Since N 1 solves R1, we know that, for every infinite input execution β1
in for N 1, there is

a possibility in R1(β1
in) that is identical to the trace distribution derived from the probabilistic

execution of N 1 for β1
in. Denote this possibility by R1(β1

in). Likewise, since N 2 solves R2, we know
that, for every infinite input execution β2

in for N 2, there is a possibility in R2(β2
in) that is identical

to the trace distribution derived from the probabilistic execution of N 2 for input β2
in. Denote this

possibility by R2(β2
in). To show that N solves R, we must show that, for every infinite input

execution βin for N , there is some possibility R ∈ R(βin) such that R is identical to the trace
distribution derived from the probabilistic execution of N for input βin.

So fix an input execution βin for N , and define P to be the trace distribution generated by N
for input βin. Also define distribution R for βin using the recursive approach in the definition of
composition of problems, but now based on the particular selections R1 and R2 just defined. We
claim that P = R. To show this, we must show that, for any finite trace β of N that is consistent
with βin, P (β) = R(β). We do this by induction on the length of β.

For the base, consider β of length 0. The definition of P (β) yields 1 if β is the initial output
configuration of N and 0 otherwise. The initial output configuration is the unique configuration
C for which C⌈N1

out = F 1
0 ⌈N1

out and C⌈N2
out = F 2

0 ⌈N2
out (here using the general notation for

initial firing patterns). On the other hand, the definition of R(β) yields 1 if β is the unique output
configuration of N for which R1(β1

in)(β⌈N1
out) = 1 and R2(β2

in)(β⌈N2
out) = 1, where β1

in and β2
in are

infinite sequences of all-0 firing patterns, and 0 for other output configurations. By definition of R1

and R2, this is, again, just the initial output configuration of N . This implies that P (β) = R(β).
For the inductive step, consider β of length ≥ 1, and let β′ be the one-step prefix of β. By the

inductive hypothesis, we may assume that P (β′) = R(β′). We must show that P (β) = R(β).

13 Again unwinding the definitions, R1(β1
in) is the possibility chosen for input β1

in. The conditional proba-
bility R1(β1

in)((β⌈N1
out)|(β′⌈N1)) describes the probability that N 1 extends β′⌈N1 to yield the outputs

specified by β. Analogously for T 2.
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Fix β1
in and β2

in as in the recursive definition of R(β). Then by the definition of R(β), we have

R(β) = R(β′)×R1(β1
in)((β⌈N1

out)|(β′⌈N1))×R2(β2
in)((β⌈N2

out)|(β′⌈N2)).

Also, for the same β1
in and β2

in, fix P 1 and P 2 to be the probabilistic traces for N 1 and N 2,
respectively. Then by Lemma 22 and Lemma 6, we have

P (β) = P (β′)× P 1((β⌈N1
out)|(β′⌈N1))× P 2((β⌈N2

out)|(β′⌈N2)).

The assumption that N 1 solves R1 with the particular possibility R1(β1
in) implies that the two

conditional distributions P 1 and R1(β1
in) are identical, so

P 1((β⌈N1
out)|(β′⌈N1)) = R1(β1

in)((β⌈N1
out)|(β′⌈N1)).

Similarly, P 2 and R2(β2
in) are identical, so

P 2((β⌈N2
out)|(β′⌈N2)) = R2(β2

in)((β⌈N2
out)|(β′⌈N2)).

Since all three pairs of corresponding terms in the two equations are equal, we conclude that their
products are equal, that is, P (β) = R(β), as needed. ⊓⊔

7.3 Hiding of problems

Next, we define a hiding operator on problems, analogous to the hiding operator on networks.
Namely, given a problem R for (Nin, Nout), and a subset V of the output neurons Nout of R, we
define a new “hidden” problem R′ = hide(R, V ) for (N ′

in, N
′
out), where N ′

out = Nout − V and
N ′

in = Nin. The hidden problem R′ should be defined as a mapping that assigns, to each infinite
sequence βin of firing patterns for N ′, a nonempty set R′(βin) of possibilities. Each possibility
R′ ∈ R′(βin) should be a mapping that specifies, for every finite sequence β of firing patterns for
N ′

in ∪N ′
out that is consistent with βin, a probability R′(β).

We define this mapping by considering each βin separately; so fix any βin. To define the set
R′(βin), we start by selecting (in an arbitrary way) a single possibility R ∈ R(βin) We use R to
define the possibility R′ for N ′ and input βin. Since there may be many ways to define R, R′ may
wind up containing many different possibilities.

Constructing the possibility R′ requires us to define R′(β) for every finite sequence β of firing
patterns of N ′

in ∪ N ′
out that is consistent with βin. This construction is much simpler than that

for composition: Let B denote the set of finite sequences γ of firing patterns for Next such that
γ⌈(N ′

in ∪N ′
out) = β. Then define

R′(β) =
∑
γ∈B

R(γ).

Theorem 8. If network N solves problem R, and V ∈ Nout, then network N ′ = hide(N , V ) solves
problem R′ = hide(R, V ).

Proof. Since N solves R, we know that, for every infinite input execution βin for N , there is a
possibility in R(βin) that is identical to the trace distribution derived from execution of N for
input βin. Denote this possibility by R(βin). To show that N ′ solves R′, we must show that, for
every input execution βin for N ′, there is some possibility in R′(βin) that is identical to the trace
distribution derived from the probabilistic execution of N ′ for input βin.
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So fix an input execution βin for N ′. Define P ′ to be the trace distribution generated by N ′ for
input βin. Also define distribution R′ for βin as in the definition of hiding of problems, now based
on the particular selection R(βin) just defined. We claim that P ′ = R′. This means that for any
finite trace β of N ′ that is consistent with βin, P

′(β) = R′(β).
To see this, let B denote the set of finite sequences γ of firing patterns for Nin ∪Nout such that

γ⌈(N ′
in∪N ′

out) = β. Then P ′(β) =
∑

γ∈B P (γ) and R′(β) =
∑

γ∈B R(βin)(γ). SinceN solvesR with
the particular possibility R(βin), it follows that for each such γ, P (γ) = R(βin)(γ). Consequently,
the two summations are equal, as needed. ⊓⊔

7.4 Examples

In this section, we define three problems satisfying our formal definition of problems. They are the
Winner-Take-All (WTA) problem, the Filter problem, and an Attention problem that can be solved
by combining solutions to the WTA and Filter problems.

The Winner-Take-All problem We define the Winner-Take-All problem formally using nota-
tion that corresponds to the statement of Theorem 1: we write it as WTA(n, δ, tc, ts), using four
parameters from the theorem statement. The problem definition allows considerable freedom, in
the choice of which output ends up firing, in the time when the stable interval begins, and in what
happens outside the stable interval.

The set Nin is {x1, . . . , xn}, and Nout is {y1, . . . , yn}. For each infinite sequence βin of firing
patterns for Nin, the WTA problem specifies a set of probability distributions on sequences of firing
patterns for Nin ∪Nout that are consistent with βin.

So consider any particular βin. If the firing pattern for Nin in βin is not stable or does not
have at least one firing neuron, then we allow all distributions that are consistent with βin. Now
consider the case where βin is stable with at least one firing neuron. Then the possibilities for βin

are exactly the distributions that satisfy the following condition: With probability ≥ 1 − δ, there
is some t ≤ tc such that the y outputs stabilize by time t to one steadily-firing output yi, and this
firing pattern persists through time t + ts − 1. Notice that these distributions may differ in many
ways, for example, they may give equal probabilities to each output choice, or may favor some over
others. They may exhibit different times, or probability distributions of times, for when the stable
interval begins. They may exhibit different types of behavior before and after the stable interval.

We argue that our WTA network from Section 2.4 solves the formal problem WTA(n, δ, tc, ts).
Specifically, we consider our network with the weighting factor γ satisfying the inequality γ ≥
c1 log(

nts
δ ), and with tc ≈ c2 log n log( 1δ ). And we allow initial firing patterns for the internal and

output neurons to be arbitrary; so technically, we are talking about a class of networks, not a single
network. Then Theorem 1 implies that each of these networks solves the WTA(n, δ, tc, ts) problem.

The Filter problem We define the Filter problem as Filter(n, δ). The setNin is {wi, yi|1 ≤ i ≤ n}
and the set Nout is {zi|1 ≤ i ≤ n}. The Filter problem is intended to say that, for every i, 1 ≤ i ≤ n,
the output neuron zi should fire at any time t ≥ 1 exactly if both the corresponding inputs wi and
yi fired at time t− 1. Thus, it acts like n And networks.

Formally, for each infinite sequence βin of firing patterns for Nin, the Filter(n, δ) problem
specifies a set of probability distributions on sequences of firing patterns for Nin ∪ Nout that are
consistent with βin.
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So consider any particular βin. Then the possibilities for βin are exactly the distributions that
satisfy the following condition, here expressed in terms of conditional probabilities (which could
be translated into absolute probabilities): Let β be any finite sequence over Nin ∪ Nout of length
t ≥ 1 that is consistent with βin, and let Ct be the final configuration of β. Let β′ be the the
one-step prefix of β, and Ct−1 be the final configuration of β′. Suppose that, for every i, 1 ≤ i ≤ n,
Ct(zi) = Ct−1(wi) ∧ Ct−1(yi). That is, β extends β′ with correct outputs at the final time t.
Then P (β|β′) ≥ 1− δ. The differences among these distributions may involve different conditional
probabilities (for example, different for different outputs), as long as they satisfy the given inequality.

Our simple Filter network of Section 3.2 solves the formal Filter problem, with δ = 1−(1−δ′)n,
where δ′ is the failure probability for a single And gate at a single time, according to notation used
in Section 3.2.

The Attention problem We define the Attention problem formally as

Attention(n, δ, tc, ts) = WTA(n, δ′, tc, ts)× Filter(n, δ′′).

Here δ, δ′, and δ′′ are related so that (1− δ) = (1− δ′)(1− δ′′)ts . The set Nin is {xi, wi|1 ≤ i ≤ n},
and Nout is {yi, zi|1 ≤ i ≤ n}.

By the definition of composition of problems, the guarantees of Attention(n, δ, tc, ts) combine
those of WTA(n, δ′, tc, ts) and Filter(n, δ′′). That is, for any input sequence βin in which the
x inputs are stable, Attention(n, δ, tc, ts) specifies that, with probability at least (1 − δ′), the y
outputs converge to a single firing output corresponding to some firing x input within time tc, and
this configuration persists for time ts. Attention(n, δ, tc, ts) also specifies that, with probability at
least (1−δ′′)ts , the z outputs always exhibit correct And behavior with respect to the previous time’s
y and w firing behavior. Together, these two properties imply that, assuming stable x inputs, with
probability at least (1− δ) = (1− δ′)(1− δ′′)ts , the Attention network produces stable behavior of
the part of the y outputs, and moreover, during the stable interval, the network produces z outputs
that correctly mirror the w inputs corresponding to the chosen y output.

Theorem 7 implies that any compatible solutions to WTA(n, δ′, tc, ts) and Filter(n, δ′′) can
be composed to yield a solution to the composed problem Attention(n, δ, tc, ts). In particular, the
solutions to these problems that we presented in Sections 2.4 and 3.2 can be composed in this way.

We can also define a version of the Attention problem in which we hide the y outputs, for-
mally, hide(Attention(n, δ, tc, ts), {y1, . . . , yn}). The guarantees specified by this problem are sim-
ilar to those of the Attention(n, δ, tc, ts) problem, except that the behavior of the y neurons is
not mentioned explicitly. Essentially, this problem says that, with probability at least (1 − δ) =
(1−δ′)(1−δ′′)ts , the network correctly mirrors the inputs corresponding to some y output, through-
out the stable interval. The same composition of solutions as above, with hiding of the y outputs,
solves this version of the problem.

8 Conclusions

In this paper, we have presented a formal, mathematical foundation for modeling and reasoning
about the behavior of synchronous, stochastic Spiking Neural Networks. This foundation is based
on a simple version of the SNN model in which a neuron’s only state is a Boolean value indicat-
ing whether the neuron is currently firing. We have provided definitions for networks and their
externally-visible behavior. We have defined composition and hiding operators for building new
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SNNs from others, and have proved fundamental theorems saying that these operators preserve
externally-visible behavior. We have also defined a formal notion of a problem to be solved by an
SNN, and have given basic results showing how the composition and hiding operators affect the
problems that are solved by networks.

Future work will include using this formal foundation as a basis for describing and verifying
properties of particular SNNs. We have already carried out rather formal proofs for some of our
brain network algorithms (see, e.g., [17]). However, these have been done in terms of models that
were specially-tailored to the problem at hand, and not in terms of a general modeling framework;
we believe that working in terms of a general framework will contribute toward building a coherent
general theory for SNN algorithms. A good starting point for such applications might be a study
of brain-like mechanisms for focusing attention, based on simpler mechanisms such as our Winner-
Take-All and Filter networks.

In the basic SNN model used in this paper, each neuron has a state that is just a Boolean
indicating whether or not it is currently firing. We plan to extend the definitions and results to
allow a neuron to have more elaborate state. For example, as in [34], a neuron’s state might include
history of its recent incoming potential or recent firing behavior. Also, as in [14], we may want
to allow a neuron’s state to include some Boolean flags that may turn the neuron on or off for
performing certain activities, such as learning; in the neuroscience literature, such mechanisms
are known as “eligibility traces” [4]. It remains to carefully extend the definitions and results in
this paper to these more elaborate cases; this paper should provide a useful blueprint for these
extensions. With such model extensions in hand, it will be interesting to revisit work by Valiant,
Navlakha, Papadimitriou, and their collaborators, such as [3,31,38]), trying to recast it in terms of
our general concurrency theory framework.
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