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two versions, permissive and strict. Both problems provide for synchronization
of n initially unsynchronized processors in a synchronous network, in the

absence of a common clock and in the presence of a limited number of faulty

processors. Solutions are given which take the same number of rounds as
Byzantine agreement but transmit at most r times as many bits, where r is
the number of rounds. Additional solutions are provided which use one
(permissive) or two (strict) additional rounds and send only a constant times
the number of bits used by a chosen Byzantine agreement algorithm.

Categories and Subject Descriptors: C.2.4 {Computer—Communication
Networks]: Distributed Systems; D.1.3 [Programming Techniques]: Concurrent
Programming; D.4.1 [Operating Systems]: Process Management—synchroni-
zation; D.4.5 [Operating Systems]: Reliability—fault tolerance; D.4.7 [Operat-
ing Systems]: Organization and Design—distributed systems; real-time systems
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General Terms: reliability.

Additional Key Words and Phrases: agreement, Byzantine generals problem,
firing squad problem.

1. INTRODUCTION

We consider a problem of synchronizing a collection of processors, some
of which might be faulty. We assume that the processors are connected by
a complete, synchronous network. Although communication is synchronous,
we will not assume the global availability of a “current time.” A solution
to this synchronization problem, which we call the ‘““Byzantine firing squad”
problem, would be useful in the following types of situations.

a. Real-time processing. It might be necessary for several processors
to carry out some external action simultaneously, perhaps after the
occurrence of a particular unpredictable event. For example, several
processors on board an aircraft might be responsible for causing
several actuators to perform a specific action in concert, in response
to a signal from the pilot. The signal might arrive at the different
processors at different times. A Byzantine firing squad algorithm
could be used to synchronize the processors’ actions.

b. Distributed initiation. Most synchronous parallel distributed
“algorithms assume that all processors begin their protocols together.
If we would like to use such algorithms in a network in which there
is no common notion of time, we need to cause the processors
participating in the algorithm to synchronize their start times. A
preliminary Byzantine firing squad algorithm could be used to accom-
plish this.

¢. Distributed termination. In certain algorithms (e.g., synchronous
probabilistic agreement [1] and approximate agreement [7]),
individual processors might complete their parts of the algorithm at
different times. If it is necessary to guarantee simultaneous termina-
tion, a Byzantine firing squad algorithm could be run after the main
algorithm.

This synchronization problem can be considered to be a combination of
two well-known problems: the firing squad synchronization problem and
the Byzantine generals problem. Accordingly, we call the new problem the
By:zantine firing squad problem.

The firing squad synchronization problem was first proposed in about
1957 by John Myhill and described by Edward Moore in 1962 [19]. In the
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original problem, a finite but unknown number of finite-state machines
connected in a line are to be programmed so that they all go to a particular
state (*“fire””) simultaneously after a “start” signal is given by one of the
machines at the end of the line, the “general.” Over the years, this problem
has been generalized and widely studied (see the bibliography in Nishitani
and Honda [20]). In our problem, the finite-state machines are replaced by
automata connected by a complete network. This would make the problem
trivial if we did not introduce the possibility of faulty behavior.

The Byzantine generals problem was first proposed by Pease, Shostak,
and Lamport [21], although it did not receive that name until a later work
appeared [18]. For a recent bibliography of work on the problem, see
Fischer [12]. The Byzantine generals problem can be paraphrased as follows.
The general must broadcast a value to the remaining processors, even though
some processors might be faulty. If the general is a reliable processor, then
all reliable processors must correctly determine the value. Even if the general
is faulty, all reliable processors must agree on some (arbitrary) value. (A
reliable processor always behaves according to a given protocol, while a
faulty processor can behave in an arbitrary way.) We will assume that all
processors are acting as generals, broadcasting a local value to the others,
so that at the end of the algorithm all reliable processors agree on a vector
of values. Thus, Byzantine agreement for broadcasting a local value of each
processor is reached if and only if the algorithm always terminates and the
following conditions hold at termination:

" (A1) Agreement: All reliable processors agree on the same vector of
values.
(A2) Validity: If processor i is reliable, then the ith component of the
agreed upon vector is the value that i broadcast.

A Byzantine agreement algorithm is called f-resilient if Byzantine agree-
ment is reached for any number of faulty processors not exceeding f. For
the remainder of the paper we will use f for the maximum number of faulty
processors which can be tolerated and n for the total number of processors.

The Byzantine firing squad problem combines the firing squad problem
with the Byzantine generals problem. Initially, all the (reliable) processors
are “quiescent” (not communicating). At an unpredictable time, we can
require the system to begin the firing protocol. This is done by sending
START signals (from an external source) to some of the processors (possibly
at different times). Within a finite number of rounds, all of the reliable
processors must simultaneously “fire,” even though a limited number of
processors might exhibit “Byzantine” failure.

Section 2 gives a more formal description of two versions, permissive
and strict, of the Byzantine firing squad problem. The versions differ in the
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number of START signals which the external source must send to force
firing. Section 3 presents a family of solutions to these Byzantine firing
squad problems; each solution is based on a chosen Byzantine agreement
algorithm. These solutions take no more rounds than the chosen algorithm
and require sending at most r times as many bits, where r is the maximum
number of rounds used by the Byzantine agreement algorithm. We show
in Section 4 how to reduce the factor r to a constant with the addition of
only one preliminary round for the permissive case and two preliminary
rounds for the strict case.

We hope that our solutions will seem simple and clear to the reader, but
this should not imply that the algorithms are easily obtained. Indeed, a
direct solution to the problem is not immediately obvious. Instead, we solve
the problem by reducing it to the problem of Byzantine agreement. That
is, we describe an “‘algorithm schema” that converts an arbitrary Byzantine
agreement algorithm to an algorithm for the Byzantine firing squad problem.
We encourage the reader to consider the problem carefully before examining
the solutions in Sections 3 and 4.

2. THE DEFINITION OF THE PROBLEM

We model a synchronous system by a state transition system. We will not
burden the reader with a lot of notational detail, but trust that the following
description is sufficient to construct the formal state transition system that
we have in mind.

A synchronous system consists of a set of processors, an initial state for
each processor, and transition functions which determine the protocols of
the processors. In each transition (also referred to as a round ), a processor
receives a message from every processor and from an external source, sends
a message to every processor and goes to a new state. Each processor has
a set of firing states distinct from its initial state.

The reliable processors always send the messages specified by their
protocols, but the faulty processors can send any messages. In particular,
we do not assume a secure authentication capability is available. (In a
system with authentication, a processor can sign a message in an unforgeable
way so that all other processors can reliably determine the original sender
of the message [9].) The Byzantine firing squad problem with authentication
is examined by Coan, Dolev, Dwork, and Stockmeyer [5].

In a synchronous system, information can be conveyed by the absence
of a signal as well as by an explicit signal. We distinguish a particular
message, called the null message () to represent the absence of an explicit
signal; all other messages are simply called signals. A processor is said to
be quiescent at a certain state if, in any transition from that state in which
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it receives only null messages, it sends only null messages and remains in
the same state. If a processor is not quiescent, then it is awake.

We require that all reliable processors be quiescent in their initial states.
Initial quiescence guarantees that no signals will be sent by any reliable
processor until the external source of a faulty processor sends a signal to
some reliable processor.

For the Byzantine firing squad problem, the only signal which is ever
sent by the external source is a specialw signal, which is used to
initiate the firing protocol. (Only the external source can send START.) A
processor fires the first time it enters a firing state. (We only consider a
single firing, but it should be obvious how to modify our solution for
multiple firings.)

The Byzantine firing squad problem admits several variations depending
on how we wish to force firing. We might want firing to occur if just a single
START signal (from the external source) is received by any reliable pro-
cessor. Note that this implies that a faulty processor can cause firing by
pretending to be a reliable processor which has received a START signal.
On the other hand, if we prohibit firing until some reliable processor has
received a START signal, then a single START signal is not sufficient to
guarantee firing, since a lone processor cannot (in general) convince the
others that it is reliable. We term these two variations permissive and strict.
(An algorithm which solves one of these does not solve the other.)

A computation in which at most f processors exhibit faulty behavior (by
sending messages which contradict their protocols) is called f-correct. An
f-resilient permissive Byzantine firing squad algorithm must satisfy the follow-
ing conditions for every f-correct computation:

(C1) Agreement: If any reliable processor fires in some round, then all
reliable processors fire in that round. :

(C2) Permissive Validity: If any reliable processor receives a START
signal, then some reliable processor eventually ﬁres;jf

An f-resilien(‘y}trichvzantine firing squad algorithm will satisfy (C1) and

the following additional condition for every f-correct computation:

(C2') Strict Validity: (a) If at least f+ 1 reliable processors receive a
START signal, then some reliable processor eventually fires. (b)
If any reliable processor fires, then some reliable processor pre-
viously received a START signal.

We wish to measure the efficiency of communication of our algorithms.
It is not useful to measure the direct costs incurred by faulty processors,
since such costs might be unbounded. For the firing squad problems, we
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also wish to avoid charging for “preliminary rounds” that are caused by
faulty processors.

Let &f be an algorithm and C be a computation of . (A computation
records all of the states of the processors and all of the messages sent during
each round of an execution of an algorithm.) I %S a Byzantine agreement
algorithm, then the{starting poingyis the beginning of the algorithm; if of is
a\permissive Byzantine firing.squad algorithm, then theistarting poing occurs
at the first reception of a @R l},message by a reliable processor; if o is

%

_an f resilient strict ‘Byzantine firthg squad algonthm%n the starting point
occurs when the. ( f+ l)st reliable Processor | receives a. START signal. (Note
that for the ﬁnné’"s"c‘jﬁ“éd algorithms, there can be computatlons in which
the starting point is undefined.) We define start(C) to be the number of
~rounds from the beginning of the algorithm until the starting point is reached,
if this is defined. If &« is a Byzantine agreement algorithm, then C terminates
when all reliable processors halt, while if & is a Byzantine firing squad
algorithm, then C terminates when all reliable processors fire. If termination
is reached in C, then finish(C) is the number of rounds from the beginning
of the algorithm until termination, otherwise finish(C) is undefined. We
define length(C) to be finish(C) — start(C) when start(C) and finish(C)
are both defined, and to be 0 otherwise. If f is f-resilient, we define
MaxRounds(sf) to be the maximum value of length(C) for all f-correct
computations C of .

There does not seem to be a generally accepted method for measuring
communication costs of distributed systems in absolute terms, perhaps
because order results are sufficient for most analysis. We choose a measure
which leads to a simple analysis and a cleanly stated result. Any “reason-
able,” coding-independent measure would give similar results. Our measure
is made on a round-by-round basis, both because many Byzantine agreement
algorithms use longer and longer messages for succeeding rounds and
because we need to combine messages from different rounds in our simula-
tion. On the other hand, we ignore differences between individual processors
or communication links. (Some Byzantine agreement algorithms optimize
by running the algorithm on only a subset of processors when f is small.
Our measure ignores this optimization.)

Let & be an f-resilient algorithm with MaxRounds(s{) = r, and let C be
a computation of . The round in which termination is reached is called
round r, and the preceding rounds are called round r — 1, round r — 2, and
so on. (This is convenient for the firing squad algorithms because it allows
us to use equal labels for rounds which occur the same number of rounds
before firing in different computations. For firing squad algorithms, the
firing point is a more reasonable origin for a time scale than the beginning
of the computation.) We also label points in the conversation by round
numbers. To be precise, we use “at round r” to refer to the point in the
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computation just before the round r message is sent. Over all f-correct
computations of &, let M;(sf) be the set of messages sent by reliable
processors in round i. Then the (worst case) number of bits sent in round z
of A is my(sf) = n?log,|M,(s4)|, for i in {1, ..., MaxRounds()}. [The n’
factor represents a charge for each of the n’ messages sent in each round,
even including messages sent by faulty processors. However, we do not
charge for messages not in M;() which might be sent by a faulty processor
in round i.] Finally, we let Bits(&) = Y.._, m;(&f). Note that Bits is a measure
of bits of information and thus is independent of any particular coding used
for the messages [15].

3. TIME-EFFICIENT SOLUTIONS OF THE
BYZANTINE FIRING SQUAD PROBLEMS

Our solutions are based on an\arbitrary Byzantine agreement algorithm

(which satisfies the restriction specified below). Our algorithms inherit most
of the characteristics of the chosen agreement algorithm, so that behavior
can be tailored as desired (e.g., minimizing MaxRounds or Bits). Also, the
resiliency of the derived Byzantine firing squad algorithm is identical to
that of the Byzantine agreement algorithm. Since it is known that n > 3f is
sufficient for Byzantine agreement [18], the Byzantine firing squad problem
can also be solved whenever n > 3f. It has also been shown by Coan, Dolev,
Dwork, and Stockmeyer [5] (by reducing Lamport’s weak Byzantine agree-
ment problem [17] to the Byzantine firing squad problem) and by Fischer,
Lynch and Mernttx[l4]" directly), that the Byzantine firing squad problem

TAll of the determmlstlc Byzantlne agreement algorithms that we know of

satisfy the following condition:
(A3) MaxRounds(sf) is finite.

Dolev, Reischuk and Strong [8] define a Byzantine agreement algorithm to
be “immediate” if all processors reach agreement in the same round and
to be “eventual” otherwise. Either type of algorithm can satisfy (A3) as
long as there is some fixed limit on the number of rounds (over all input
vectors and patterns of faulty behavior) for all processors to reach
agreement.

If (A3) holds for &4 we say « is a bounded Byzantine agreement algorithm.
In the remainder of the paper, we choose a fixed bounded Byzantine
agreement algorithm & and let r be equal to MaxRounds(s{). It is easy to
modify any such algorithm so that all its computations take exactly r rounds.
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For convenience of exposition, we assume that </ has been modified in this
way, if necessary.
- We use & to construct new algorithms Bp(«f) and Bs(f) which solve
.. . . N L .
the permissive.and_strict Byzantine firing squad problems, respectively.
When & is understood from context, we simply refer to Bp and %Bs. Also,
since Bp and B are; very similar, it is convenient to use % to refer to them
jointly. In algorlthm@juehablipmccsmmau.ﬁ ithin at most
_r_rounds after the fifst reliable processor w@gnﬂw In
algorithm 9 all reliable processors fire in at most r rounds after f+ 1
reliable processors have received a START signal.

We begin by describing algorithms B5(sf) and Bs(sf) which satisfy all
the required conditions for a slightly more general model in which the
processors are not required to be quiescent initially. (This model might
admit simpler solutions to the Byzantine firing squad problems, but we will
use it only to construct a speciﬁc algorithm which We can modify for use

gz

\E’X‘é”éﬂ"y m soﬁfét at any time, at most r are in progress. At each
round ¢, each processor begins participating in a simulation of algorithm
& in which it sends a value which is coded to mean 0: ““Not Ready,” or 1:
“Ready.”” A processor is initially not Ready, becomes Ready upon the receipt
of a START signal, and remains Ready thereafter. At round ¢+ r this
simulation terminates, and a vector of values is computed. For B5, all
reliable processors fire if the vector is not all zero. For %%, they fire if there
are at least f + 1 nonzero elements.

THEOREM 1. Let o be an f-resilient bounded Byzantine agreement
algorithm. Then algorithms Bp(A) and B's(A) are f-resilient and satisfy
conditions (C1) and (C2), and (C1) and (C2'), respectively. Also,
MaxRounds(B'(A)) = MaxRounds( L), and Bits(B'(A)) =
MaxRounds() x Bits(), where B’ stands for B's and for B.

Proor. The f-resiliency of B and B follows directly from the f-
resiliency of /. By assumption, & satisfies (Al), (A2), and (A3). By (Al),
all reliable processors use the same vector to make their firing decisions in
each round, so (C1) is satisfied (for both %85 and B%). By (A2), this vector
‘will be nonzero for the simulation beginning with the round in which the
first reliable processor receives a START signal, so (C2) is satisfied for B,
since all simulations take r rounds, MaxRounds(8%) = MaxRounds(s{).

Algorithm % satisfies (C2'b), since if no reliable processor ever receives
a START signal, then no vector can be computed with more than f 1’s (by

" (A2)), so no reliable processor will fire. Condition (C2'a) is also satisfied

since if f + 1 reliable processors have received START signals by round ¢,
then a vector will be computed by round t + r which has at least f + 1 1’s,
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causing some reliable processor to fire and implying MaxRounds(R5(A)) <
MaxRounds ().

Recall that M;(s) is the set of messages sent in round i of algorithm .«/.
In any round, %' is simulating at most r staggered copies of «, so the
set of messages sent in any round of B’ is a subset of M, (&) x - -+ x
M,(sf), and the number of bits sent is at most n”log,(|M (&) x - - - x
M,()]) = n* Y _, log,|M;(f)| = Bits(sf). Therefore, Bits(B'(H)) <
MaxRounds(B') X Bits(d) = MaxRounds(s{) X Bits(«), for both B
and A5. O

We now show how to modify the @' algorithms to obtain & algorithms
which meet the condition of initial quiescence required by our model. The
difficulty is that when a reliable processor receives its first signal, some
simulations might already be in progress. However, a great deal can be
inferred about these computations.

Consider the specific computation of algorithm & in which all processors
are reliable and each sends value 0. We call this computation the zero
computation and refer to the messages that are sent as zero messages. These
computations and their messages are completely defined and precompu-
table.

Any one-to-one encoding of meanings to messages can be used without
affecting the behavior of an algorithm. We choose to code a special meaning
into the null message. A null message is interpreted to consist of zero
messages for each of the r simulations in progress. Now consider the
particular computation of algorithm %' using this coding in which all
processes are reliable and no START signal is received from the external
source. After r rounds, all processors begin sending null messages and
continue to do so throughout the remainder of the computation. Thus, just
after r rounds, all processors are in quiescent states, according to our
definition. We therefore define the % algorithms to be identical to the &’
algorithms except that the initial states of the processors are chosen to be

- the states reached using algorithm #’ after r rounds of the particular

computation described above.

THEOREM 2. Let f be an f-resilient bounded Byzantine agreement
algorithm. Then algorithms Bp(d) are f-resilient solutions to the permissive
and strict Byzantine firing squad problems, respectively. Furthermore,
we have MaxRounds(B(HA)) = MaxRounds(sf), and Bits(B(A)) =
MaxRounds(A) x Bits(4), where B stands for Bp and for RBs.

Proor. By construction, all processors are quiescent in their initial
states, so the initial condition required by the model is satisfied for both

Bp and Bg. The remaining conditions follow directly from Theorem
1. O
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4. COMMUNICATION-EFFICIENT SOLUTIONS
TO THE BYZANTINE FIRING SQUAD PROBLEMS

The solutions presented in the preceding section send up to r times as many
bits as the chosen Byzantine agreement algorithm. Since it is known that
r> f [13], this is a significant increase in communication cost. We will
show how to reduce the increase in cost to a constant factor. Our method
requires at most one additional round for the permissive problem and two
additional rounds for the strict problem.

We wish to define new algorithms, $p(«f) and €s(«), which are similar
to Bp(A) and Bs(A), respectively, but send smaller messages than the A
algorithms. We begin by defining auxiliary algorithms €5(«) and €s()
which are identical to Bp(«) and Bs( ) except in the way that Ready is
defined and the condition under which firing occurs. The €' algorithms
also use some preliminary messages to establish the Ready condition. We
will show that all reliable processors become ready within a two-round
interval. Reliable processors can thus deduce that the firing round will occur
within a small, predictable interval. (Simulations which begin before any
reliable processor becomes Ready cannot fire.) We take advantage of this
by modifying the 4’ algorithms to give € algorithms which simulate only
a fixed number of executions of algorithm &«

In €, a processor becomes Ready upon receiving any signal, rather than
only upon receiving a START signal as in %Bp. The firing condition is
changed to ““fire if there are at least f + 1 nonzero elements in the computed
vector.” The first time a reliable processor receives a signal and becomes
Ready, it sends a special GO signal to every other processor. The GO signals
are used to make sure that all reliable processors awaken within a two-round
period.

In €%, a processor sends the GO signal to every processor after receiving
either a START signal or GO signals from f+ 1 other processors (which
implies that some reliable processor has received a START signal). Thus a
GO signal is a claim that a START signal has been received by at least one
reliable processor. A reliable processor sends GO signals only the first time
such a condition occurs and sends only null messages otherwise until it
becomes Ready. A reliable processor becomes Ready only after receiving
GO signals from at least 2f + 1 processors (perhaps including itself). The
firing condition for %% is the same as for €%: “Fire if there are at least
f + 1 nonzero elements in the computed vector.”

THEOREM 3. Let of be an f-resilient bounded Byzantine agreement
algorithm. Then €'»(A) and €'5(A) are f-resilient and satisfy conditions (C1)
and (C2), and (C1) and (C2), respectively. Furthermore,
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MaxRounds(€5(sf)) = MaxRounds(4)+1 and MaxRounds(€5(A)) =
MaxRounds() + 2.

Proor. Since €% and 6% simulate & and all processors use the same
firing condition, both are f-resilient and (C1) is satisfied for both.

Let ¢ be the round in which the first reliable processor receives a START
message in €%. Then at least f+ 1 reliable processors will be Ready by
round ¢ + 1, and all reliable processors will fire no later thanround ¢ + r + 1.
Thus, €% satisfies (C2) and MaxRounds(€p(sf)) = MaxRounds() + 1.

Let ¢ be the round in which the (f + 1)st reliable processor receives a
START message in €%. Then by round ¢ + 1 every reliable processor will
have received GO signals from at least f + 1 reliable processors, and by
round t + 2 every reliable processor will be Ready. (Here we use the fact
that & is a Byzantine agreement algorithm which implies n > 3f and thus
at least n — f = 2f + 1 processors will have sent GO signals.) Thus, firing
will occur by round ¢+r+2, and €5 satisfies (C2'a) and
MaxRounds(Bs(£)) = MaxRounds( ) + 2. Finally, if no reliable pro-
cessor receives a START signal, then no reliable processor will send a GO
signal and no reliable processor will become Ready, hence firing will not
occur and (C2'b) is satisfied. !

We now show how to construct € and %' by reducing the number of
simulations of &f. We take advantage of the fact that all reliable processors
become Ready within a period of at most two rounds, which is shown by
the following lemma.

LEMMA 4. In either €’ or €%, if a reliable processor first becomes Ready
in round t, then every reliable processor becomes Ready in eitherround tort + 1.

ProoF. In €5, all reliable processors which do not become Ready in
round t will receive a GO signal and become Ready in round ¢+ 1. In €5,
since some reliable processor received 2f + 1 GO signals by round ¢, every
reliable processor must have received f + 1 GO signals by round ¢ Thus,
every reliable processor will send a GO signal in round ¢ if not before, and
every reliable processor will be Ready no later than round ¢ + 1. U

Let us denote the simulation which will terminate in round ¢ + r (and

~ hence conceptually began in round ¢) by S,. If simulation S, would cause

firing if carried to completion (i.e., the computed vector would have more
than f nonzero values), then we say that S, will fire. In our revision of €/,
a processor will not send the messages of all r simulations that are used in
€'. If processor p does send the messages of simulation S,, then we say -
that p participates in simulation S,.
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Suppose processor p becomes Ready in round ¢ Then, by Lemma 4, p
can deduce that S, will fire since all reliable processors will be Ready no
later than round ¢ + 1. Also, by Lemma 4, S,_, will not fire since no reliable
processor can have been Ready in that round, implying that at most f s

will be in the vector computed. Computations S, ,, S,_,, S;, and S, are

the only ones which p needs to consider.
Algorithm € is identical to algorithm %’ except that if processor p becomes
Ready in round ¢ then p will participate only in simulations S,_,, S,_,, S,,

and S..,. Also, p will ignore the result of S,_, and only act (fire or not) on
the results of S,_,, S,, and S,,,.

THEOREM 5. Let of be an f-resilient bounded Byzantine agreement
algorithm. Then algorithm €p(of) and €s(A) are J-resilient solutions to the
permissive and strict Byzantine firing squad problems. For €p,, Max-
Rounds(€p(4)) = MaxRounds(sf) + 1 and for €, MaxRounds(6s(A)) <
MaxRounds(s{) + 2. If n > 1, then both Bits(%p(4)) and Bits(6€,(sA£)) are
O(Bits(A)).

Proor. Let C be a computation of either €, or %5 and suppose that
round ¢ is the first round in which a reliable processor becomes Ready. By
Lemma 4, all reliable processors become Ready in either round ¢ or 7 + 1.
Call the former early and the latter late. .

Early processors will participate in simulations Si=2, Si—1, Si, and S,.,.
However, since they will not act on the result of S,_,, the messages which
are input to these simulations are irrelevant. Late processors will participate
in simulations S,_;, S,, S,_,, and S..,. Since all reliable processors partici-
pate in simulations S,_;, S,, and S,,,, thé resulting vectors that they compute
must satisfy conditions (A1) and (A2). Since either S, or S,., will fire, this
implies that (C1) is satisfied by both %, and %5 and that both € algorithms
are f-resilient.

Since all reliable processors are Ready by round ¢ + 1, S;+1 1s guaranteed
to fire. By the definition of Ready for €,, condition (C2) is satisfied by ép,
and firing will occur within r + 1 rounds after a reliable processor receives
a START signal (or any other signal), so MaxRounds(%€p) <
MaxRounds(sf) + 1.

Let ¢’ be the round in which the starting point is reached for €s. Then
"=t — 2 since all processors will be ready within two rounds after f+ 1
reliable processors have received START signals. But if ' = ¢ — 2, then S,
will fire. In any case, S, will fire, so MaxRounds(%s) <
MaxRounds(s{) + 2 and condition (C2'a) holds. On the other hand, if no
reliable processor receives a START signal, then no reliable processor will

send a GO signal and hence no reliable processor will become Ready, so
(C2'b) holds.
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For both %p and €5 each processor participates in at most four simulations
of algorithm &/. For the moment we ignore GO messages. A typical message
will be of the form M, () X - - - X My3(sf), where we let M;(f) = {T} if
i <1ori>r However, the early and late processors will have values of k
differing by one for the same round. In addition, since firing can occur in
either round t + r or ¢ + r + 1, our definition of the set of messages which
a reliable processor can send in a round has the form

M(k) = M () X+ + + X Mys(A) U Mie_ () X -+ - X Myio( )
U My () X+ -+ X My ().

Now let G = {GO, J}. Reliable processors only send GO messages in
rounds t and t + 1 of %p. Depending on whether S, or S, fires, round ¢
will be called either round 1 or round 2, so G needs to be added only to
M(%p), M,(€p), and M;(%p). Thus we have M (%6p) < M(i—1) for
4<i=r+1and M(%p)<c Gx M(i—1)for1=i=3. Asimilar analysis
for €5 shows that M;(6s) s M(i—2) for S=i=r+2 and M(%s) <
G x M(i —2) for 1 = i = 4. Now since |M(k)| < |[My_5(&£) X - - + X M3,
we have Bits(¥p) =3n”+ 6 Bits(f) and Bits(€s) = 4n* + 6 - Bits(sA), ’
where the values “3” and “4” come from the GO messages. As a consequence
of our definition of Bits and the fact that some communication must take
place to reach agreement even when f =0, we have Bits(sf) = n* when
n>1. Therefore, Bits(€p) is O(Bits(sf)) and Bits(€s) is
O(Bits(A)). O

5. CONCLUSIONS

We have described and solved a new problem in distributed computing,
which we call the Byzantine firing squad problem. It is an abstraction of
synchronization problems that arise in several ways in distributed comput-
ing, such as real-time processing and synchronizing starting and termination
of algorithms. It is an abstract problem of interest in its own right and
deserves further study.

Our solutions are presented in-a way that we believe is particularly easy
to understand, via simple reductions from other distributed algorithms, in
this case Byzantine agreement algorithms. If the reader has attempted to
solve the problem directly, without using such a reduction, he has probably
found the task to be not entirely straightforward. The separation of concerns
provided by reducing the problems to Byzantine agreement has made the
problem much simpler. In general, we believe that the idea of reducing
certain distributed problems to others can provide a powerful means of
organizing the field of distributed algorithms. A partial list of other papers
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about distributed consensus problems that use this approach include Bracha
[2], Coan’s main thesis result [3, 4], Dwork, Lynch, and Stockmeyer [10],
Dwork and Skeen [11], Lamport, Shostak, and Pease [18], Srikanth and
Toueg [22], and Turpin and Coan [23].

There is additional work to be done. It would be interesting, for example,
to examine solutions to this and related problems in “partially synchronous”
models of distributed computing, e.g., models in which processors do not
have a common notion of rounds but rather have real-time clocks (possibly
with small drift rates) and in which messages can take variable amounts of
time. Is it possible to convert Byzantine agreement algorithms for partially
synchronous models to Byzantine firing squad algorithms for the same
models? Some particular partially synchronous models have been con-
sidered in Coan, Dolev, Dwork, and Stockmeyer [5], but there are others
still to be studied. '
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