NOTICE: THIS MATERIAL MAY BE

PROTECTED BY COPYRIGHT LAW.

(TITLE 17 U.S. CODE)

CONCURRENCY CONTROL
FOR RESILIENT NESTED
TRANSACTIONS

Nancy A. Lynch

ABSTRACT

Concurrency control theory is extended to handle nested transactions with
failures. The theory is used to present a rigorous correctness proof of a
variant of Moss’ locking algorithm for implementing nested transactions.
The proof has an interesting structure using many levels of abstraction.

1. INTRODUCTION

In the past few yearé, there has been considerable research on concur-
rency control, including both systems design and theoretical study. The
problem is roughly as follows. Data in a large (centralized or distributed)

Advances in Computing Research, Volume 3, pages 335-373
Copyright © 1986 by JAI Press Inc.

All rights of reproduction in any form reserved.
ISBN: 0-89232-611-5

335

336 NANCY A. LYNCH '

database is assumed to be accessible to users via transactions, each of

which is a sequential program which can carry out many steps accessing

individual data objects. It is important that the transactions appear to
execute ‘‘atomically” (i.e., without intervening steps of other trans-
actions). However, it is also desirable to permit as much concurrent
operation of different transactions as possible, for efficiency. Thus it is
not generally feasible to insist that transactions run completely serially. A
notion of equivalence for executions is defined, where two executions are
equivalent provided they “look the same” to all transactions and to all
data objects. The serializable executions are just those which are
equivalent to serial executions. One goal of concurrency control design is
to ensure that all executions of transactions be serializable.

Several characterization theorems have been proved for serializability;
generally, they amount to the absence of cycles in some relation describ-
ing the dependencies among the steps of the transactions. A very large
number of concurrency control algorithms have been devised. Typical
algorithms are those based on two-phase locking [3], and those based on
timestamps [6]. Although many of these algorithms are very different
from each other, they can all be shown to be correct concurrency control
algorithms. The correctness proofs depend on the absence-of-cycles
characterizations for serializability.

More recently, it has been suggested [7, 8, 10] that some additional
structure on transactions might be useful for programming distributed
databases, and even for programming more general distributed systems.
The suggested structure permits transactions to be nested. Thus a trans-
action is not necessarily a sequential program, but rather can consist of
(sequential or concurrent) subtransactions. The intention is that the
subtransactions are to be serialized with respect to each other, but the
order of serialization need not be completely specified by the writer of
the transaction. This flexibility allows more concurrency in the im-
plementation than would be possible with a single-level transaction
structure consisting of sequential transactions. The general structure
allows transactions to be nested to any depth, with only the leaves of the
nesting tree actually performing accesses to data.

Transactions are often used not only as a unit of concurrency, but also
as a unit of recovery. In a nested transaction structure, it is natural to try
to localize the effects of failures within the closest possible level of nest-
ing in the transaction nesting tree. One is naturally led to a style of pro-
gramming which permits a transaction to create children, and to tolerate
the reported failure of some of its children, using the information about
the occurrence of the failures to decide on its further activity. The
intention is that failed transactions are to have no effect on the data or on
other transactions. This style of programming is a generalization of the

~a . . P .1y .

e A a2 e o e e om

P

PN PAN e eed SN epend

a1

o ™ T Y

CH

of
mng
to
ns-
2nt
L is

are

all
are
118

ity;
ib-

rge

cal
on
ent
ol
les

nal
ted

the

Concurrency Control for Resilient Nested Transactions 337

“recovery block™ style of [9] to the domain of concurrent programming.
Indeed, this style seems to be especially suitable for programming dis-
tributed systems, since many types of failures of pieces of programs are
likely to occur in such systems.

Reed [10] has designed an algorithm which uses multiple versions of
data to implement nested transactions. Moss [8] has abstracted away
from Reed’s specific implementation of nested transactions, presenting a
general description of the nested transaction model. He has also
developed an alternative implementation of the nested transaction
model, based on two-phase locking. This model and implementation are
fundamental to the Argus distributed computing language, now under
development by Liskov’s group at MIT [7].

The basic correctness criteria for nested transactions seem to be clear
enough, intuitively, to allow implementors a sufficient understanding of
the requirements for their implementation. However, some subtle issues
of correctness have arisen in connection with the behavior of failed
subtransactions. For example, the Argus group has decided that a pleas-
ant property for an implementation to have is that all transactions,
including even “orphans” (subtransactions of failed transactions), should
see “consistent” views of the data (i.e., views that could occur during an
execution in which they are not orphans). The implementation goes to
considerable lengths to try to ensure this property, but it is difficult for
the implementors to be sure that they have succeeded. ‘

It seems clear that some basic groundwork is needed before such
properties can be proved. Namely, the theory already developed for
concurrency control of single-level transaction systems without failures
needs to be generalized to incorporate considerations of nesting and
failures. The model needs to be formal, in order to allow careful
specification of all the correctness requirements—the simple and intuitive
ones, as well as the rather subtle ones. :

This paper begins to develop this groundwork. First, a simple “action
tree” structure is defined, which describes the ancestor relationships
among executing transactions and also describes the views which
different transactions have of the data. A generalization of serializability
to the domain of nested transactions with failures is defined. A charac- -
terization is given for this generalization of serializability, in terms of
absence of cycles in an appropriate dependency relation on transactions.
A slightly simplified version of Moss’ algorithm is presented in detail, and
a correctness proof is given.) _

The correctness proof is complete, detailed, and rigorous. Its style
appears to be quite interesting in its own right. Producing such a proof

‘was a very difficult task; the main issues that made it so difficult were the

nesting of transactions and the possible failures of subtransactions. The

338 NANCY A. LYNCH

initial attempts to develop such a proof led to extremely complicated,
nonmodular constructions. Gradually, after we had tried for many
months to organize the proof, the uniform general proof structure
presented in this paper began to emerge. This structure allows the proof
" to be decomposed in a very natural way. Without this structure, it is
doubtful that we would have been able to complete a proof at all. (We

know of few comparably successful complete proofs for difficult dis-

tributed algorithms.)

The proof is based on certain algebras, which we call “event-state”
algebras. An event-state algebra is an abstract description of a comput-
ing system and the protocol that governs its behavior. The elements of
the algebra are states of the computing system. An operation of the
algebra is an “event” of the system (i.e., a computation step); it trans-
forms a state to another state. The operations are only partially defined,
in correspondence with the fact that a step might not be applicable to all
states. The rules that specify when an operation is defined correspond to
the algorithm or protocol that controls the execution of the system.

Another important concept for our proof is the notion of a mapping
" between algebras. It is useful to describe a computing system on several
different levels of abstraction (i.e., as several distinct algebras). A map-
ping from an algebra & to another algebra % is a “simulation” of % by
& provided that every valid computation of & is mapped to a valid
computation of %. Thus # is, in a sense, an “‘implementation” of %.

The approach taken in this paper to a correctness proof of Moss’
algorithm is the following. The system governed by the algorithm is
described by a succession of algebras, each one describing more specific
details about the algorithm and its implementation. In the highest level
algebra, the only precondition for the applicability of a step (an opera-
tion) is that it preserve global correctness. This algebra is quite far from
the algorithm itself. As a matter of fact, this algebra represents *“‘what
needs to be achieved” by the system. Successive algebras get closer to
the algorithm, that is, to “how it is achieved”. Showing the existence of a
simulation mapping between each pair of successive levels is the heart of
the correctness proof. ’

One novel aspect of the simulations we use, different from the usual
notions of “abstraction” mappings, is that our simulations map single
lower level states to sets of higher level states, rather than just single
higher level states. (We call them “‘possibilities” mappings.) This extra
flexibility seems quite convenient for many implementations, allowing the
lower level algebra sometimes to contain less detail than the higher level
algebra. For example, it might be easy to prove correctness of an
algorithm which maintains lots of auxiliary data. The correctness of an
algorithm which contains less detail could be proved, in our model, by

CH

ted,
any
ure
‘oof
t1s
dis-
ite”
nut-
3 of
the
\ns-
1ed,

y all
ito

ing

eral.

\ap-
alid

0ss
118
sific
vel
>ra-
‘om
hat
r to
of a
t of

sual
1gle
1gle
ctra
the
wvel

an
D an

Concurrency Control for Resilient Nested Transactions 339

showing that it simulates the algorithm which maintains the auxiliary
data. .

While possibilities mappings are convenient for proving correctness of
ordinary centralized algorithms, they produce their greatest payoff for
distributed algorithms. Namely, a distributed algorithm is described as a
special case of an event-state algebra, a “distributed algebra.” A dis-
tributed algebra has a set of “‘components.” The state set for the algebra
is just a Cartesian product of local states, one for each component. The
events are partitioned among the set of components, according to which
a component is assumed to “perform” the event. Event domains and
transitions are defined componentwise. To show that a distributed al-
gebra simulates some other “abstract” algebra, it suffices to define an
appropriate possibilities mapping from the global states of the dis-
tributed algebra to sets of states of the abstract algebra. It turns out to be
extremely natural to .describe such a mapping by first describing a
possibilities mapping from the local state of each component to sets of
abstract states. The image of a local state under this mapping just
represents the set of possible global states consistent with the knowledge
of the particular component. The possibilities for the entire distributed
algebra are simply obtained by taking the intersection of the possibilities
consistent with the knowledge of all the components.

It appears that this technique extends to give natural proofs of many

| algorithms, especially distributed algorithms, and thus warrants further

investigation. Goree [4] presents a slightly more general development of
the technique than is presented in this paper, but more remains to be
done.

The concurrency control definitions given in this paper express the
most fundamental correctness requirements, but not subtle conditions
such as correctness of orphans’ views. Issues of fairness and eventual
progress are not addressed, but rather only safety properties, serializabil-
ity in particular. Future work involves extending the framework presen-
ted here to allow expression of these other properties and to allow
correctness proofs for the difficult algorithms which guarantee these
properties. Some further work in these directions has already been
carried out: Goree [4] gives a definition for correctness of orphans’ views
and has given a correctness proof for a complicated algorithm used in the
implementation of Argus to maintain correctness of orphans’ views in the
face of transaction aborts. ‘

A related recent paper [1] also addresses the problem of proving
correctness of algorithms implementing nested transactions. However,
that paper does not address issues of failure and recovery, which are
primary considerations of the present paper. Also, the kind of nesting
they consider appears to be somewhat different from ours: it appears to

340 NANCY A. LYNCH

be designed primarily for describing levels of data abstraction. Finally,
the proof techniques of [1] are quite different from ours.

Although our variant of Moss’ algorithm is described completely in
this paper, we urge the interested reader to read Moss’ presentation in
[8]. His presentation gives useful background and context for the al-
gorithm, as well as a much more intuitive description of the algorithm
than is presented here.

2. EVENT-STATE ALGEBRAS

In this section, we describe the event-state algebra framework. This
framework is used in the later sections to organize the formal correctness
proof for Moss’ algorithm. The algorithm is described in a series of five
levels, each of which is described as an event-state algebra.

The reader who is mainly interested in the formal model for nested
transactions, and in Moss’ algorithm, rather than in proofs of concurrent
algorithms, can safely skim the contents of this section.

2.1. Algebras and Simulations

We begin with the basic algebra definitions. An event-state algebra
A ={(A, o,II), consists of a set A of states, an element o € A, the initial
state, and a set II of partial unary operations (the events). In this paper,
we will usually refer to an event-state algebra as simply an algebra.

Next, we give standard definitions for computability concepts. For any
event , we let domain(m) denote the set of states for which 7 is defined.
Let a be a state, and let ®=(m,..., m) be any finite sequence
of events chosen from Il. Then @ is said to be wvalid from a pro-
vided b= m(m_(...(m(a))...)) is defined (i.e., provided that
mi—1(...(m(a))...) is in domain(m), for all i, 1 =i= k). In this case, b
is called the result of ® applied to a. An infinite sequence of events is
said to be valid from a provided all its finite prefixes are valid from a.
We say that ® is valid provided it is valid from o, and the result of @ is
defined to be the result of ® applied to o. We write at b provided there
is some finite ®, valid from a, for which b is the result of @ applied to a.
b is computable provided ot b.

In order to decompose our proof into levels of abstraction, we require
a definition of “simulation” of an algebra « =(A, o,II) by another
algebra o' = (A’, o/, IT'). In this paper, we present a very weak definition.
An interpretation of & by ' is a mapping h:II'=>ITU{A}. (Here, A
represents a null event.) We extend h to a homomorphism mapping
event sequences of &' to event sequences of & in the obvious way

CH
1y,
in

al-
hm

“his
1e88
five

sted |

ent

2bra
itial
per,

any
1ed.
TICE
Sro-
that
e, b
ts 18
1a.
®is
1ere
0 a.

uire

ther

10n.

ding
way

Concurrency Control for Resilient Nested Transactions 341

(deleting occurrences of A). An interpretation h is a simulation of & by
A’ provided that h(®') is a valid event sequence for «f whenever @' is a
valid event sequence for &'

We note that these definitions do not rule out certain trivial situations.
We have not imposed the general requirement that o include a
representation of every event in o/. We have also not imposed any
requirements that events of &' be defined on large domains. Thus our
techniques are not powerful enough to prove that &' does everything
which is required to implement & correctly; rather, we assume that &' is
given, and we are to prove that everything it does is correct for &f. We
believe that the more powerful techniques required to ensure the
stronger properties require extra machinery and a more sophisticated
general theory than we wish to present here.

The first lemma gives a basic composition result. This lemma justifies
our composition of simulation results for adjacent levels to prove a
simulation result for nonadjacent levels.

LemMmA 1. Assume that o, ', and " are algebras, that h is a
simulation of o by ' and h' is a simulation of ' by A". Then hoh' is a
simulation of s{ by A".

Proor. Straightforward. [

2.2. Possibilities Mappings

Our basic method for proving correctness is showing that simulations
exist between adjacent members of a sequence of algebras. Therefore,
we need a tool that can be used to show that a mapping is a simulation.
In this subsection, we give a sufficient condition for a mapping h from &'
to 4 to be a simulation. The condition involves defining a cor-
respondence between states of the two algebras, in addition to events. It
turns out to be most convenient, for the reasons discussed in the
Introduction, to allow the state mapping to map a single state of &' to a
set of states of s rather than just to a single state. The states in such a set
are called “possibilities” (i.e., the “possible” states corresponding to a
given state). If we think of &' as a “‘concrete” algebra and «f as a more
“abstract” algebra, then we see that a possibilities mapping allows single
““concrete” states to be mapped to sets of ‘““abstract’ states rather than to
just single abstract states.

Let h: AUIl'— P(A) UTTU{A} be- such that h(a’)e P(A) for all
a’'e A, and h restricted to IT' is an interpretation, that is, h(#') e ITU{A}
for all o’ €IT'. (Here, P denotes the power set.) Then h is a possibilities

342 | NANCY A. LYNCH
mapping from ' to o provided the following are true:
(@) o< h(a).

Assume a and a' are computable in o and &, respectively, and
ac h(a'). Assume 7 € IT'. Assume a’ € domain(7') and b= #'(a’).

(b) If h(#)= well, then a € domain(m).
() If h(#) = mwell, then w{a)ec h(b").
(d) If h(a') = A, then a € h(b").

Property (a) says that the initial state of &/ is among the possibilities for
the initial state of &'. Property (b) says that an event is only performed in
o' when its image event can be performed in . Properties (c) and (d)
say that events performed in &' preserve possibilities. Figure 1 should be
helpful in understanding (b) and (c). A similar diagram can be drawn to
illustrate (d). ,

The following lemmas show that any possibilities mapping is a simula-
tion.

LemMMa 2. Let h be a possibilities mapping from i’ to . If @' is a
valid event sequence for ' and h(®') =, then ® is a valid event
sequence for s4. In addition, if @' is finite, a’ is the result of ®' and a is the
result of ®, then a € h(a'). '

Proor. By induction on the length of ®'. [

LEMMA 3. Any possibilities mapping from s{' to 4 is a simulation of A
by . '

Proor. Immediate by Lemma 2. [l

— b’

]
m

Figure 1. A property of possibilities maps.

ey Ay e DA e N Ay T e e ™

MO 0 et ™=t Ay i e A H

nd

for
in

(d)

be .

to

la-

s a
ent

the

fA

Concurrency Control for Resilient Nested Transactions 343

2.3. Distributed Algebras

Next, we define a special kind of event-state algebra, called a “dis-
tributed algebra.” A distributed algebra is one which can be decomposed
into components in a simple way: the states are Cartesian products of
states for the components, each event is assumed to be originated by
some particular component (although it can affect other components),

~and the definability and effects of events are locally determined. Such an
algebra provides a natural structure for describing distributed algorithms.

Processors in a network and message systems are typical examples of
components in such a decomposition.

An algebra o = (A, o, I} is said to be distributed over a finite index set
[using d, provided that A is the Cartesian product of sets A;, ic I, disa
mapping, d: II— I, giving the “doer” of each event, and the followmg
two conditions are satisfied.

e (Local Domain) Let i=d(m). If a, be A and a;=b,, then ac
domain(w) if and only if b € domain(mw).

® (Local Changes) If a, be domain(w), a' = m(a), b’ = m(b), and
a; = b;, then a;= b,

The local domain property says that the state of the doer of an event
determines the definability of that event. The local change property says
that the changes caused by an event are defined componentwise. Note
that in the local change property, the component i need not necessarily
be the doer of 7; we permit other components to be affected by 7, but
assume that the effect is uniquely determined by = and the state of the
component. Strictly speaking, we could have omitted mention of both of

these properties in this paper, since they are not needed to prove the one

simple result we obtain (Lemma 4) about distributed algebras. However,
the properties seem to describe the locality structure of distributed
algorithms quite accurately, and so we present them in anticipation of
further study.

It happens that there is a particularly natural way to define a pos-
sibilities mapping from a distributed algebra to another algebra. Namely,
we define a “local mapping” from the local state of each component of
the distributed algebra to a set of abstract states. The result of this
mapping should be thought of as the set of possible abstract states, as far
as a particular component can tell from its local knowledge. The map-
ping from a global state of the distributed algebra can then be defined to
yield the intersection of the images of all the component states. The
conditions we require for local mappings are chosen to be sufficient to
guarantee that the derived global mapping is a possibilities mapping.

344 NANCY A. LYNCH

Let o' =(A’, o', II') be an algebra, distributed over I using d. Let
o = (A, o,II) be an algebra. Let h be an interpretation from &' to .
For each i € I, let h;: A’— P(A) be such that h; depends on A only; that
is if a;= b;, then h;(a) = hi(b). Then we say that h and h;, ie I, form a
Icoal mapping from o' to o provided the following conditions are
satisfied.

(a) Foralliel, oe h(o).

Fix any i e I (for properties (b)-(d)). Assume a and a' are computable
in & and &', respectively, and ae€ h(a’). Assume = €ll, d(«') =i.
Assume a’ € domain(7') and b’ = #/(a’).

(b) If h(#)= well, then a € domain(m).

Fix (for properties (c) and (d)) any je I. (This j can be the same as or
different from i.)

(c) Assume h(#) = well and a € hi(a’). Then w(a) € h(d').
(d) Assume h(7')= A and a € hj(a’). Then a € h(d').

That is, (a) says that the initial state of & is in the set of possibilities for
each component’s initial state. Property (b) says that an event is only
performed in &' when its doer knows that its image event can be
performed in . Properties (c) and (d) consider the situation from the
point of view of an arbitrary component j. Property (c) says that an event
with doer i preserves possibilities at component j. Property (d) is analo-
gous to (c) for events whose images are null events.

Figure 2 illustrates property (b), and Figure 3 illustrates property (c).

The following lemma shows that local mappings yield possibilities
mappings.

LemMa 4. Let o and o' =(A’, o',II') be algebras, where A’ is

»o
’ b

Figure 2. A property of local mappings.

C

p«

et

1at

Ie

e

or

is

Concurrency Control for Resilient Nested Transactions 345

1
' b
m

Figure 3. Another property of local mappings.

distributed over I. Assume that h and h;, i € I, form a local mapping from
A’ to A. Extend h to A’ NIT' by defining h(a’) = MNicr hi(a’). Then h is a
possibilities mapping from s{' to o (and therefore a simulation of s{ by s{').

PrOOF. We check the four properties of the possibilities mapping
definition. .

(@) To see that o € h(cd’), it suffices to show that o e k(o) for all

1€ I. But this is exactly the statement of property (a) of the local
mapping definition.

Now we assume the hypotheses supplied for parts (b)—(d) of the
possibilities mapping definition. Assume also that d(#') = i.

(b) Since a <€ h(a), it is obvious that a € h(a’). Property (b) of the
~ local mapping definition implies that a € domain(). :
(¢c) In order to show that mr(a)e h(b'), it suffices to fix an arbitrary
j€1I and show that m(a)e h(b"). Since ae€ h(a’), the needed
property follows from (c) of the local mapping definition.
(d) It suffices to show that a € h(b') for any je I. This follows as in
the preceding argument from (d) of the local mapping
definition. [J

If the definitions in this section are to be used in correctness proofs for
the widest possible class of algorithms, they will probably need to be
generalized. In particular, it seems appropriate to permit single events of
a more concrete algebra to interpret sequences of events of a more
abstract algebra. (See Goree [4] for definitions and uses for this general-
ization.) Also, allowing each algebra to have a set of initial states rather
than just a single initial state would probably be useful. Since we do not
need these generalizations here, we do not make these extensions.

346 NANCY A. LYNCH
3. ACTION TREES

In this section, we provide the basic definitions needed to describe
properties of nested transactions. The definitions in this section describe
a particular data structure, called an “‘action tree,” which provides a
natural representation of nested transactions, the relationships between
them, and their views of data. We define “serializability” in terms of
action trees. We also prove several very basic lemmas about the
definitions. .

We caution the reader that there are many definitions in this section,
and he should not try to remember them all. Rather, we suggest that he
read the definitions once for familiarity, and then use the section for later
reference.

In the rest of the paper, we often refer to transactions as just “actions,”
for brevity. This departure from the usual conventions of database theory
has been made for consistency with the Argus work.

3.1. Objects and Actions

. The system is assumed to contain a set of data objects, upon which the
nested actions operate. We begin with some definitions for objects. Let
obj be a universal set of data objects. For each x € obj, let values(x)
denote the set of values x can assume, including a distinguished initial
value init(x). A value assignment is a total mapping f from obj to
values(obj), having the property that f(x) € values(x) for all x € obj.

Next, we give basic definitions for actions. In this paper, we have

chosen to avoid modeling transactions explicitly with a particular pro-

gramming model. Rather, we have attempted to extract from such a
model just that information which is needed for concurrency control
theory.

Let act be a universal set of actions. Let U be a distinguished action.
We assume that the actions are configured a priori into a tree represent-
ing their nesting relationship, with U as the root. For every Ae
act—{U}, let parent(A) denote a unique parent action for A. Let siblings
denote {(A, B) € act*: parent(A) = parent(B)}. If A€ act, let children(A)
denote {B € act: parent(B) = A}. If A, B < act, let ica(A, B) denote the
least common ancestor of A and B. If A € act, let desc(A) (resp. anc(A))
be the set of descendants (resp. ancestors) of A. Let proper-desc(A)
(resp. proper-anc(A)) be the set of proper descendants (resp. ancestors)
of A.

It might be convenient for the reader to think of this as an a priori
configuration of all possible actions into a tree as a preassigned ‘“naming
scheme” for actions. That is, the “name” of any action is assumed to

P N S P Y S Y S e T e T Y o Y =)

Peaden prged ek ¢

™

P T . Y

“H

be
be
; a
en

of
‘he

on,
he
ter

2

Ty

the
_et
(x)
tial
to

we
ro-
1a
0l

on.
nt-
Ae
ngs

ihe '

A)
s)
jori

ing
to

Concurrency Control for Resilient Nested Transactions 347

carry within it information which locates that action in this universal tree
of actions. In any particular execution, only some of these possible
actions will be “activated.” The (virtual) action U, the parent of all
top-level actions, has been added for the sake of uniformity. Its presence
provides a simplification in many arguments.

We assume a priori determination of which actions actually access
data, which objects they access and the functions they perform on those
objects. Namely, let accesses denote the leaves of the tree described
above. It is exactly these actions which access data. (We assume that
U ¢ accesses, so that the entire set of actions is nontrivial.) Let
object: accesses— obj be a fixed function. If object(A) = x, we say that A
i1s an access to x. For A€ accesses, let update(A): values(object(A))—
values(object(A)) be a fixed function, describing the change made by A
to its object. Let sameobject denote {(A, B) € accesses®: object(A) =
object(B)}.

It might at first appear that our model does not permit updates to
depend on previous steps executed by a transaction. This is not our
intention. Dependence on previous steps is modeled by our choice of a
particular access: the “name” of the access is assumed to carry in-
formation about previous steps executed by a transaction.

Note that the usual read and write operations of serializability theory
can be regarded as special cases of accesses. Namely, “read accesses”
have the identity function as their associated update function, while
“write accesses” have an associated update function which is a constant
function.

3.2. Action Trees

Next, we give a way of describing a “snapshot” of a particular
execution, using a structure called an “action tree.” An action tree can
be regarded as the generalization of the log from ordinary serializability
theory. The information captured in an action tree includes which actions
have been ‘““activated,”” what the status of each such action is (i.e., active,
committed, or aborted), and what value of its data object was seen by
each access.

An action tree T has components verticesr, dctiver, committedr,
abortedr, and labelr, where

® verticest is a finite subset of act, closed under the parent operation:
if A e verticesy —{U]}, then parent(A) e verticesy.. (These represent
the actions which have ever been created during the current
execution.)

® activer, committedr, and abortedr comprise a partition of verticesy.

348 NANCY A. LYNCH

(These classifications indicate the current status of each action that
has ever been created. When a nonaccess action is first created, it is
classified as active. At some later time, its classification can be
changed to either committed or aborted. By “committed” we mean
that the action is committed relative to its parent, but not neces-
sarily committed permanently. Permanent commit of an action
would be represented by classification of all ancestors of the action,
except for U, as committed. Section 3.4 contains definitions and a
lemma about permanent commit of actions.)

e labelr: datastepsr — values(obj) (where datastepsr = committedr N
accesses), with labelr(A) € values(object(A)). (The label of an ac-
cess to an object is intended to represent the value read by that
access. Since the access has an associated function, the value which
the access writes into the object is deducible from the value read,
and therefore need not be explicitly represented. As a technical
convenience, we do not assign a label to accesses until they become
committed.)

The following definitions are just convenient shorthand for concepts
already defined. Let doner denote committedr U abortedr. Let statusr
be defined by status;(A) = ‘active’ (resp. ‘committed’, ‘aborted’) pro-
vided A € activer (resp. committedr, abortedr). Let accessesr =
verticest N accesses, accessest(x) ={B € accessesr: object(B) = x}, and
datasteps(x) = { B € datastepsr: object(B) = x}.

3.3. \Visibility

Next, we give a very important definition which helps to describe the
“views” which actions have of each other and of the data. In particular,
this definition allows us to describe actions whose existence is intended to
be known to other actions (i.e., not masked from those other actions by
intervening failures or active actions). For A € verticesr, let visibler(A)
‘denote {B e verticesr: anc(B) N proper-desc(lca(A, B)) C committedr}.
That is, visibler(A) is just the set of actions whose existence is potentially
known to action A, because they and all their ancestors, up to and not
including some ancestor of A, have committed (to their parents). Action
A will be permitted to see the results of updates made by the transactions
in visibler(A), and no others. For A € verticesr, x € obj, let visibler(A, x)
denote visibler(A) N datastepsr(x). The following lemma describes ele-
mentary properties of “visibility.”

LEMMA 5. Let T be an action tree, A, B, C € verticesr.

1at
t is
be
an
2s-
on
mn,
ia

\c-
at
ch

>al

ne

“HHts

he

i,

by .

4)

ly
ot

m
ns

x)

Concurrency Control for Resilient Nested Transactions 349
a. If Be desc(A), then A € visibler(B).
b. A< visibler(B) if and only if Ae visibler(lca(A, B)).
c. If A€ visibler(B) and B € visibler (C), then A e visibler(C).
d. If A€ desc(B) and C € visibler(B), then C e visibler(A).
e. If Aedesc(B) and A € visible;(C), then B e visible+(C).
ProOF
a. Immediate
b. Immediate from the fact that ica(A, B) = Ica(A, lca(A, B)).

c. Let D e anc(A) N proper-desc(lca(A, C)). We must show that D €
committedr. It D € proper-desc(lca(A, B)), then the fact that A e
visibler(B) implies the result. So assume that D¢ proper-
desc(lca(A, B)). It must be the case that De anc(lca(A, B)),
and that lIca(B, C)=lca(A, C). Thus D e anc(B)N proper-
desc(lca(B, C)), so the fact that B € visibler(C) implies the result.

d. Immediate from parts a and c.

e. Immediate from parts a and c. [

A related definition allows us to describe actions which are capable of
“‘committing up to the top level.” If A € verticesr, then we say A is live in

T provided anc(A)N abortedr =@, and we say A is dead in T
otherwise.

LeEmMmA 6. If A, B e verticesr, A is live in T, and Be visibler(A),
then Bis livein T.

Proor. If B is dead in T, then there exists Ce anc(B) N aborted.
We know C & proper-desc(lca(A, B)), since Be visibler(A). Thus Ce
anc(lca(A, B))Canc(A), so A is dead in T, a contradiction. []

3.4. Serializability

~ In this subsection, we develop the basic correctness condition for
action trees: serializability.

First, we define the result of applying a sequence of steps to a data
object. If x € obj and s is a finite sequence of datasteps, then we define
result(x, s) as follows. If s is the empty sequence, then result(x, s) =
init(x). Otherwise, let s = s'A. Then result(x, s) = update(A)(result(x, s"))
if A involves x, and result(x, s) = result(x, s') otherwise. '

If Sis a set, and < is a total order on the elements of S, then we let

350 NANCY A. LYNCH

{S; =) denote the sequence consisting of the elements of S, in the order
given by =.

~ In order to define serializability, we need to consider linear orderings
of all sets of siblings in the action tree. Thus let T be an action tree. A
partial order pCsiblings is linearizing for T provided p totally orders all
sets of siblings in T. A linearizing partial order p induces a total order
inducedr ,, on datastepsr, in the obvious way; if A and B are datasteps,
with respective ancestors A" and B’, where A’ and B’ are siblings, then
(A, B) € inducedr , if and only if (A', B') e p. If A € datastepsr(x) and p
is a linearizing partial order for T, let predsr,(A) denote {{Be
visibler (A, x): (B, A) € inducedr, and B# A}; inducedrp). Thus,

predsr ,(A) denotes the sequence of datasteps whose effects on A’s

object are supposed to be visible to A.

A linearizing partial order p for T is said to be a serializing partial
order for T provided that label;(A) = result(x, predsr ,(A)) for all Ae
datasteps+(x). That is, the value actually seen by A for its data object is
exactly the result of the datasteps whose effects are supposed to be
visible to A. T is said to be serializable provided there exists some
serializing partial order for T.

In this paper, we consider serializability of portions of an action tree
rather than an entire action tree. In particular, it might sometimes be
useful to require serializability only for those actions whose effects
become “permanent,” and not worry about those which get aborted.

Thus, given an action tree T, a new action tree, perm(T), is defined as
follows.

® vertiCeSperm(r) = Visibler (U). (Lemma S5e shows that perm(T) is a
tree.)

® A€ vertices perm(ty, then Status perm(ry(A) = statusr(A). (This status
is always “committed,” except for U.)

o If A< datasteps,.mr), then labelon(A) = labelr(A).

The following lemma shows the useful property that all the vertices in
a permanent subtree are visible to each other.

Lemma 7. If T is an action tree and A, B € vertices pe,m(t), then
B € visible perm(1)(A).

ProoF. Since B € verticeSymry = visibler(U), Lemma 5d implies that
B € visibler(A). Then B € visible ye;m(m)(A), since the status of each ver-
tex is the same in T and perm(T). [

er

g8

all

ge
be
1S

as .

us

in

en

at

Concurrency Control for Resilient Nested Transactions 351

In this paper, we will use the correctness condition that any tree T
created by our algorithm should have perm(T) serializable. It is worth
noting that one of the reasons that actions might be aborted is that a
concurrency controller has discovered that allowing an action to proceed
or commit will corrupt serializability. Thus there is no reason to expect
complete action trees to be serializable, and we focus on the permanent
part of the trees only.)

3.5. Discussion

Note that the style in which serializability is defined here constrains the
implementation less than the type of definition used in “traditional”
concurrency control theory. The earlier definitions regard the data as
external to the concurrency control algorithm; the algorithm is to take
requests for data accesses and translate them into actual accesses,
observing appropriate rules. Generally, the accesses performed by the
concurrency control algorithm simply obtain the latest version of the
data object. A clue that the earlier definitions are too constraining is that
they do not apply unchanged to algorithms, such as Reed’s, which use
sophisticated management of versions of the data. The earlier definitions
require extensions [2,5] to handle algorithms such as Reed’s. These
extensions still regard the data as external to the concurrency control
algorithm, and so the modified correctness conditions contain explicit
information about particular “versions” of the data objects. It seems,
however, that the appearance of serializability, in terms of the values
seen by the accesses, is really all that matters—it is possible that this -
appearance could be preserved by some algorithm which does not operate
in terms of versions at all.

The less constraining approach which is taken here is to regard the
data as internal to the concurrency control algorithm, at least for the
purpose of stating the basic correctness conditions. Thus the definitions
introduced in this paper are intended to be applicable to algorithms
which use single versions of data objects, algorithms that use multiple

versions of data obJects as well as to other implementation as yet
unforeseen.

4. AN ALGEBRA BASED ON ACTION TREES

In this section, we begin to use the event-state algebra framework. We
use the set of action trees as the state set for an algebra and define a set
of standard events which we would like to allow to be performed on
action trees. We describe each event by defining the circumstances under

352 NANCY A. LYNCH

which the event is to be allowed to be performed (the “precondition’)
and the resulting changes to be made in the action tree (the “‘effect”).

We will use this algebra as a specification of correct abstract system
behavior, the first level in our correctness proof. Thus we must ensure
that the definition of this algebra includes the property that all action
trees it generates have their permanent subtrees serializable. One way of
doing this would be to include preservation of serializability explicitly in
all the preconditions. It is a little simpler notationally just to state the
serializability condition as a global invariant, to be maintained by all
events; thus we follow this latter option. In terms of the algebraic model,
there is an implicit precondition on each event stating that the result of
the event satisfies the global invariant.

We now define a set of events on action trees. That is, we define an
algebra of = (A, o, II), where A is the set of action trees, o is the trivial
action tree with the single vertex U, with status ‘active’, and II contains
the four kinds of events described in (a)-(d) below. We define the events
as follows. First, we let C denote the set of all action trees T for which

perm(T) is serializable. (In particular, o€ C.) We place an implicit

precondition on each event, stating that the result of the event is in C.
Within this constraint, we define the domain by giving a precondition on
action trees T and use assignment notation to describe the effect of the
eventon T.

In all events, we assume that A € act—{U}.

(a) create,
(al) Precondition
(all) A ¢ verticesr.
(al2) parent(A) € verticesy — committedr .
(a2) Effect
(a21) verticest < verticest U { A}.
(a22) statusr(A) < ‘active’.
(b) commit 4, A ¢ accesses
(b1) Precondition
(b11) A € activer.
(b12) children(A) N verticesy C doner .
(b2) Effect
(b21) statusy(A) < ‘committed’.
(c) abort 4
(c1) Precondition
(c11) A e activer.
(c2) Effect
(c21) statusr(A)<‘aborted’.

e

CH
n b 7)
em
ure
ion
7 of
7in
the

all

lel,
: of

an
vial

iuns

nts
ich
icit

on
the

|

Concurrency Control for Resilient Nested Transactions 353

(d) perform, ., A € accesses, x = object(A), u € values(x)
(d1) Precondition
(d11) A € activer.
(d2) Effect
(d21) status;(A) < ‘committed’.
(d22) label(A) <« u.

The meaning of the four events is as follows. The create, event
creates or (“activates”) a new action. It is required, of course, that A not
be already in the tree. Its parents must be there, however, and must not
already be committed (since a committed parent is assumed to have all of
its children completed and to depend on the completion of the particular
set of children it had at the time of commit). Note that we allow A to be
created after its parent has aborted. This might be reasonable in an
implementation in which the two events occur at different nodes of a
distributed system, for example. The effect of creating A is to add A to
the tree, with status ‘active’.

The commit,, event commits an active nonaccess action. It requires
that A be active and all its children be completed. The effect is to
change the status to ‘committed’. The abort 4, event is similar, but there is
no requirement on the children—an active action can abort at any time.

Finally, the perform , , event actually performs a step on a data object.
It requires that access A be active and changes its status to ‘committed’.
It also records (in our action tree analog to the “log”) the value u seen
by the access. (It is unnecessary to record the value written, since that
could be inferred from the value seen.) Note that we do not specify how
the value u is supposed to be obtained by the perform event; it is
permissible to record any value, as long as the serlahzabxhty condition is
preserved.

We note that the only events which could cause the serializability
constraint to be violated are commit and perform events. Thus these
are the only events for which the implicit precondition C is actually
necessary.

We also note that this algebra provides considerable ﬂex1b111ty in
allowable sequences of events.

5. AUGMENTED ACTION TREES

Now, we proceed to the second level of our proof. As before, it will be
useful to define a data structure first and then develop an algebra based
on that data structure. The data structure to be used in the second level

354 NANCY A. LYNCH

is called an “augmented action tree.” It is very similar to an action tree,
but includes some extra information describing a sequence of versions for
- each data object. An augmented action tree is similar to a transaction
conflict graph with resolution of conflicts. We stated earlier that we did
not want to rely on definitions that depend on data versions for our basic
correctness conditions. However, the definitions which make specific
reference to versions are still useful in conjunction with the approach of
this paper. Their role is in supplying sufficient conditions for seri-
alizability, and thereby helping to organize correctness proofs.

Serializability is defined for agumented action trees. It is seen that
serializability for augmented action trees implies serializability for cor-
responding action trees. Moreover, serializability for augmented action
trees has a cycle-free characterization similar to those in usual concur-
rency control theory. Therefore, this structure can be useful in proofs of
serializability for action trees.

Thus it is at our second level that the interesting concurrency control
arguments occur.

5.1. Augmented Action Tree Definitions

An augmented action tree (AAT) T is a pair (S, datar), where S is an
action tree and datar C sameobjectss is a partial order on datastepss which
totally orders the datasteps for each object. We extend action tree
notation to T; for example, we write datastepsr to denote datastepss. We
also extend the definitions of visible, live, dead, linearizing, induced,
preds, and serializable to T by applying them to S.

The assumed ordering on accesses to each data object imposes an
ordering on siblings higher up in the tree. If T is an AAT, then let
sibling-data; denote {(A, B)e szblmgs (C, D)€ datayr for some Ce
desc(A), D e desc(B)}.

We require notation for an access’ visible predecessors in the version
order. If A e datastepsr(x), then let v-datar(A) denote {Be
visibler (A, x): (B, A) € datar and B # A}. The following is a techmcal
lemma.

LEMMA 8. Let T be an AAT. Let p be a linearizing partial order for
T, x € obj, and A € datastepsr(x). Assume that inducedr , is consistent
with datar. Then predsr ,(A) = {v-datar(A); datar).

Proor. Straightforward. [

An AAT T is data-serializable provided there exists p, a serializing
partial order for T, with the additional property that inducedr , is

S¢

fc

fe

S¢€
sl

Concurrency Control for Resilient Nested Transactions 355
> consistent with datar. Thus T is data-serializable provided that it is
or - g serializable in a way that respects the conflict resolution partial ordering.
on | Of course, data-serializability for AAT’s provides a sufficient condition
lid | for serializability.
sic
fic e
of |
ri- , 5.2. Characterization of Data-Serializability
at | The analog of the usual characterization in concurrency control theory
- | is prove?d in j[his .subsection. Namely, we give a characterization of
on ! datg—serlalizat?llity in terms of absence of cycles.

- | Flrgt, we give a definition which says that the label of each access
of i describes the correct object value which the access should see if the
| versions of objects are ordered according to the datar order. Formally,
ol | an AAT is version-compatible provided for every x € obj and every
' ; A € datastepsr(x), it is the case that labelr(A) = result(x, s), where s =
{v-datar(A); datay).
| The next theorem contains the characterization result.

an | THEOREM 9. An AAT T is data-serializable if and only if both of the
ch ; following are true:
ee |
Ve a. T is version-compatible. ,
d, b. There are no cycles of length greater than one in sibling-datar .
i:: ‘PI.QOOF. Assume T is data-serializable and obtain p, a serializing
e partial order for T for which inducedr , is consistent with datar.
on ‘ a. Let A € datastepsr(x), s = {(v-datar(A); datar). Then
le labelr (A) = result(x, predsr ,(A)), by the definition of serializabil-
-al ity, = result(x, s), by Lemma 8.

o b. sibling-datarCp. Thus there are no cycles of length greater than

- one in sibling-datar .

for
2nt

Now assume a and b. Let p be any partial order which totally orders
all siblings and is consistent with sibling-datar. Then p is linearizing for
T, and inducedr) is consistent with datar. We will show that pisa
serializing partial order for T. Let x € 0bj, A € datastepst(x). We must
show that labelr(A) = result(x, predsr ,(A)). Since T is version-com-
ng patible, we know that labelr(A)= resuli(x,s), where s={v-datar;
18 datar). Then Lemma 8 implies that s= predsr ,(A), as needed. [

356 : NANCY A. LYNCH

6 AN ALGEBRA BASED ON AUGMENTED
ACTION TREES

In this section, we define the algebra for our second level. This algebra
will be based on the set of AAT’s. We define events on AAT’s analo-
gously to the definitions for action trees. Once again, we carry out the
definitions within the event-state algebra framework. We then prove
several basic properties of this algebra. Finally, we show that this algebra
simulates the level 1 algebra.

The second-level algebra can be understood as describing the ‘‘ab-
stract effect” achieved by locking algorithms. (We do not actually
describe a locking mechanism until later levels.) The major accom-
plishment of this section involves showing that this abstract effect in fact
guarantees the required serializability condition. The argument is rela-
tively nontrivial and is analogous to the usual correctness proofs for strict
two-phase locking. Argument for later levels will show that locking
- protocols actually achieve the required abstract effect. Thus we have
factored the correctness proof for a locking algorithm into two natural
parts.

6.1. Definitions

We define a new algebra o =(A’, o/,II'), where A’ is the set of
AAT’s, ¢ is the trivial AAT which has a single vertex U with status
‘active’, and the events of IT' correspond closely to the events of &, and
are designated by the same names. (We will rely on context to distinguish
the two cases.) The only differences are that there is no global constraint
corresponding to C, and perform,, introduces two additional pre-
conditions and an additional change. These new conditions can be
thought of as capturmg the abstract effect of a variant of Moss’ locking
algorithm.

(d1) Precondition
(d12) Let Be datastepst(x), B live in T. Then Be
visibler (A, x).
(d13) If A is live in T, then u = result(x,s), where s=
{visible;(A, x); datar).
(d2) Effect
(d23) datay < datar U{(B, A): Be datastepsT(x)} U{(A, A)}.

'The new preconditions say that a data access A must wait long enough
so that all live accesses to the object have been committed, up to the
level which matters to A. Also, the value used in the access is just the

Co

on
Oor
thi

SO

a]

ra
O_
he
ve
ra

2.

ac

1€

i
!

Concurrency Control for Resilient Nested Transactions 357

one resulting from the sequence of previous accesses in the given data
ordering. The new effect just involves adding appropriate new pairs to
the end of the data ordering.

6.3. Preliminary Results

This section contains two straightforward lemmas. The first describes
some invariants preserved by the events.

LEMMA 10. If T is computable in ', then the following are true.

a. If A€ verticest and parent(A) € committedr, then A € doner.

b. U € activer.

c. If (B, A)edatay, then either B is dead in T, or else Be
visibler (A).

d. If A e committedr and B € desc(A) N verticesr, then either B is dead
in T else B € visible;(A).

PrOOF. Most of the arguments are straightforward. We argue cases
¢ and d. ‘

c. If B= A, the result is immediate. If B # A, then the only way we
get (B, A) € datar is by virtue of some perform, ,, event. That is,
there exists T’ such that T'+ T, such that the precondition for
some step perform, , is satisfied in T’. Thus B is dead in T' or
B € visibler (A). Therefore, B is dead in T or B € visibler (A).

d. It B=A, the result is immediate. So assume A# B. lLet Ac
committedr, B e desc(A)Nverticesr, B live in T, and B¢
visibler(A). Then there exist C, D e desc(A)N anc(B), for
which C = parent(D), C € committedr and D € activer. But this
contradicts part a. [

The second lemma of this subsection describes properties that hold of
a pair of AAT’s, one of which is derivable from the other.

LemMAa 11. Let T and T' be computable in ', and assume that ‘
THT'.

a. verticesy Cr, committed; C committedy, aborted C aborted,
and datarC datar.

b. If A€ datasteps, then labelr(A) = labelr(A).

c. If Ae datastepsr and (B, A) € datar, then (B, A) € datar.

d. If A e verticest, then visibler (A)C visibler(A).

358 | NANCY A. LYNCH

e. If A e verticesr and A is live in Tk', then A is livein T.
f. . If A= parent(B) and A € committedr and B € verticesr, then B €
doner.

Proor. The only case that takes some arguing is f. Let A=
parent(B), A € committedr and B € verticesr. Let T' be the result of ¢
applied to T, and let T be the result of W. Then ¥ contains a step 7 of
the form commit,, and ¥® contains a step p of the form createp. =
cannot precede p, since the precondition for p would be violated. So p
precedes 7. Then the precondition for = implies that B € doner. [

6.3. Computability Guarantees Data-Serializability

Note that there is no correctness condition for AAT’s explicitly
mentioning serializability. This is because for AAT’s, computability
alone is sufficient to guarantee serializability of perm(T), as we show in
~ the next theorem. It is convenient to prove the two required properties
separately in two lemmas. The second of these two lemmas is the hardest
result in the paper.

LEmMMA 12. If T is computable in ', then perm(T) is version-
compatible. '

PrROOF. Let A € datasteps perm(ry(x). We must show that u
(= labelpe,m(r)(A)) = result(x, s), where s = {v-datpemr(B);
data pe,m(T))) A is inserted into the tree by a perform, , step r, so let the
event sequence producing T be written as ®#¥. Let T’ denote the result
of ®, and T" the result of ®=. The preconditions for 7 show that
labelr(A) = result(x, s"), where s" = {visibler (A, x); datar). By Lemma
11b and the definition of perm(T), it follows that label cm(T)(A)=
result(x, s"). Thus it suffices to show that s=s'. Since both datar and
data pe:m(ty are consistent with datar, it suffices to show that s and s’
contain the same elements.

First, let Bes. Then (B, A)e datar and so by Lemma 1llc, Be
datasteps7-(x). Since A is the only element in T"” which is not in T',
B € datastepst(x). Since A € vertices perm() = visibler (U), and U ¢ abor-
tedr (by Lemma 10), it follows that A is live in T. Since B € visibler (A),
Lemma 6 shows that B is live in T. Thus B is live in T', by Lemma 11e.
The precondition for #r implies that B € visibler (A, x), so Be s'.

Conversely, suppose Bes'. Then B# A since A ¢ verticesr-. Then
(B, A) € datay-, so by Lemma 1la, (B, A)e datar. By Lemma 114,
B e visibler (A, x). By Lemma 7, it suffices to show that Be
vertices perm) = visibler (U). But B € visibler(A) and Ae visibler(U), so
Lemma 5c suffices. []

C

iz

CH

Be

o

r of

0p

itly

lity

7 in
ties
lest

on-

B);
the
sult
hat
ma

and
1 s

Be
T,’
Yor-
A),
le.

acn
1d,
Be
SO

Concurrency Control for Resilient Nested Transactions 359

Lemma 13. If T is computable in ', then there are no nontrivial cycles
in sibling-data pe,m(r)-

PrROOF. Assume the contrary: let (o= Ag, Ay,..., Ac=0), k=2, be
a minimum length cycle such that (A;, A, 1) € sibling-data pem(r) for all
i,0=i=k—1. Let a sequence @ of events be defined so that T is the
result of ®. We will show that for each i, O0<i=<k—1, there exists a
prefix ¥; of ®@ such that if T’ is the result of V;, then A, € doney, and
A1 & doner. If we fix i for which ¥, is of maximum length and let T’ be
the result of this W¥;, then we see that A, ¢ doner. But ¥,,; is no
longer than ¥;, so Lemma 1la implies that A;., € doner., which is a
contradiction.

Sofix i, 0=i=k—1. Then (A;, Ai+1) € sibling-data peym(t)- Then there
exist B e desc(A;), Cedesc(A;y1) with (B, C)e datapemr). Since
B, C € verticeS perm(t), 1t follows that (anc(B)U anc(C)) N proper-
desc(U)C committedr . Now, ® has a prefix ¥, where 7 is a performc ,
step, Let T’ be the result of ¥, and T” the result of ¥7. Lemma 11c
implies that (B, C) € datar, so that B € datastepsr. Since B is live in T
(using Lemma 10b), Lemma 11e implies that B is live in T'. Then the
precondition for 7 implies that B € visibler(C), which means that A, €
anc(B) N proper-desc(lca(B, C))C committedr C doner.. We must show
that A;.; ¢ doner; if we can do this, then taking ¥, = ¥ yields the resuit.
Assume A, € doner. Then let D be the lowest ancestor of C for
which D € doney: it must be the case that D e anc(C)N proper-
desc(lca(B, C))C committedy, so D € committedr . Since C € activer, we
know that D # C. Let E be the single element of children(D) N anc(C).
Then E ¢ doner.. Then E ¢ verticesy by Lemma 11f. This means
C & verticesy. This is contradiction. [

Tueorem 14. If T is computable in ', then perm(T) is data-
serializable.

Proor. Immediate from Lemma 12, Lemma 13, and Theorem 9.]

6.4. Simulation

Next, we show that &' simulates &/. We define a mapping h from &' to
o as follows. If T = (S, datar) is an AAT, then h(T)={S}. If = is in IT,
then h(m) is just the event in II with the same name.

LemMA 15. his a simulation of o by o'.

Proor. (a) and (d) of the definition of a possibilities mapping are
immediate. Property (b) follows immediately from the fact that a'e

360 NANCY A. LYNCH

domain(#) (since only additional constraints are added for &'); note that
Theorem 14 implies that the C-constraint is always satisfied. Property (c)
is then straightforward. Thus, h is a possibilities mapping. Lemma 3
shows that h is a simulation. [

7. AN ALGEBRA BASED ON VERSION MAPS

In order to complete the proof of Moss’ algorithm, it remains to prove
that it achieves the abstract effect of locking described by &f'. It seems
simplest to decompose this task further, first showing that a centralized
locking algorithm simulates &', and then showing that a distributed
version of the algorithm simulates the centralized version. It turns out to
be feasible to decompose the proof of the centralized locking algorithm
still further. Namely, we first describe a locking-style algorithm which

retains a large amount of useful information. Then we show that a more -

optimized locking algorithm simulates the algorithm which retains in-
formation. ' _

In this section, we develop the third level of the algorithm, the
locking-style algorithm which retains information.

7.1. Version Maps

As before, we begin by introducing another data structure, called a
“version map.” This one records some locking information for each
object. As in Moss’ algorithm, each object has a stack of locks, held at
any time by a sequence of actions which are successive descendants. The
version map records, for each object, and each action in some sequence

of successive descendants, the sequence of accesses to the object whose

result is available to the action.
Thus a version map is a partial mapping V from obj x act to sequences
of accesses, such that the following properties are satisfied:

e V(x, U) is defined for all x.

e Each V(x, A) consists of accesses to x.

e For each x, if V(x, A) and V(x, B) are both defined, then either
A e desc(B) or B < desc(A).

o If V(x,A) and V(x, B) are both defined and B e desc(A), then
V(x, B) is an extension of V{(x, A).

Thus, for each x, V is defined only for transactions which lie on some
chain of ancestors; V is not necessarily defined for all transactions on the
chain, but only for some subset of the transactions on the chain.

1at

(c)

e
ms
ed
ed

to
m
ch
re
in-

he

| a
ch

at
he
ice
)se

e

1er

cn

ne
he

Concurrency Control for Resilient Nested Transactions 361

If A is the least action for which V(x, A) is defined, then we call A the
principal action for x in V; in this case, if result(x, V(x, A)) = u, we say
that u is the principal value of x in V.

7.2. Definition of the Algebra

We define another algebra o” = (A", ¢”, IT") as follows. A” is the set of
pairs (T, V), where T is an AAT and V is a version map. ¢” consists of
the trivial AAT consisting of a single node U with status ‘active’, and the
version map which has V(x, U) equal to the empty sequence, for all x,
and is otherwise undefined. I1” consists of the six events defined below in

(@)—(D).

In all the events to follow, we assume that A€ act—{U}. Events
(a)-(c) are identical to (a)—(c) of &'. Some changes are needed in the
perform event, and there are two new events which manipulate locks.

(d) perform, ., A € accesses, x = object(A), u € values(x)
(d1) Precondition
(d11) A € activer.
(d12) {B: V(x, B) is defined}C proper-anc(A).
(d13) u is the principal value of x in V.
(d2) Effect I
(d21) statusr(A) < ‘committed’.
(d22) labelr(A) < u.
(d23) dala'r :
«datar U{(B, A): B € accessesr(x)} U{(A, A)}.
(d24) V(x, A)< V(x, B)°(A), where B is the principal
action in V.
(e) release-lock 4 ,, x € obj
(e1) Precondition
(ell) V(x, A) is defined.
(e12) A€ committedr.
(e2) Effect
(e21) V(x, parent(A)) < V(x, A).
(e22) V(x, A) < undefined.
(f) lose-lock 4 ., x € obj
(f1) Precondition .
(f11) V(x, A) is defined.
(f12) Aisdeadin T.
(f2) Effect
(f21) V(x, A) «undefined.

Thus (d) says that a perform, , event can only be carried out when the

362 NANCY A. LYNCH

current lock-holders are all proper ancestors of A and when u is the
proper value which should be provided to A. This event has the new
effect of augmenting the version map by giving a “lock” to A: A gets a
sequence of versions which is exactly that held by the previous principal
action, concatenated with a new version for A. Event (e) allows a lock to
be released by a committed action; its effect is to pass the lock up to its
parent, so that its parent now obtains the sequence of versions previously
held by the child. Event (f) allows a lock to be released by a dead action.

7.3. Basic Properties

In this subsection, we present a simple lemma stating some important
invariants preserved in " ' :

LemMA 16. If (T, V) is computable in 54", then the following are true.

a. If V(x, A) is defined, then A € verticesr .

b. If B € datastepsy(x) and B is live in T, then there exists A € anc(B)
with V(x, A) defined and B an element of V(x, A). '

c. If V(x,A) is defined, then each element of V(x, A) is in
visibler(A).

d. If V(x, A) is defined, then the elements of V(x, A) are in datar
order.

Proor. Straightforward. We argue b, for example. Immediately after
an event performp, occurs, we see that V(x, B) is defined, and B¢
V(x, B). Assume inductively that there is some ancestor C of B with
V(x, C) defined and Be V(x, C). Since B remains live, there are no
steps of the form lose-lock .. Thus if V(x, C) is ever changed, it must
be because-of a release-lock step. There are two possibilities. First, the
change could occur because of a release-lock ¢, step. But such a step
causes V(x, parent(C)) to take on the old value of V(x, C), thereby
preserving the needed property. Second, the change could occur because
V(x, C) gets redefined to be the previous value of V(x, D), where
D e children(C). But because the successive sequences are extensions of

each other, B is an element of V(x, D) as well. Thus the needed property
is preserved in this case also. []

7.4. Simulation

Define a mapping k' from " to o' as follows, k' maps (T, V) to {T},
~ and maps events (a)-(d) to events of the same name, and events (e) and
(f) to A. |

he
ew
s a
ral
to
its
sly
n.

int

i€e.

B)
in

ar

er

th
no
18t
he

cp

s¢
re

of

Concurrency Control for Resilient Nested Transactions 363

Lemma 17. H is a simulation of &' by s{".

Proor. It suffices to show that h’ is a possibilities mapping. Proper-
ties (a) and (d) are easy to check. We consider property (b). Let « I,
where h'(n) = well'. Then #' is either of the form create,, commit 4,
abort 4, or perform, ,. In the first three cases, the property (b) is easy to
check. So assume that 7' is of the form perform, ,. Assume (T, V) is
computable in " and « is defined on (T, V), yielding (T’, V). We
must show that perform, , (i.e., the event of &) is defined on T. Let
x = object(A).

Condition (d11) for & follows immediately from the corresponding
condition for . We consider (d12). Let B € datastepsy(x), and assume
that B is live in T. Since (T, V) is computable in &", Lemma 16 implies
that there is some C € anc(B) for which V(x, C) is defined and for which
B is an element of V(x,C). Then Lemma 16 implies that Be
visibler (C). Since 7' is defined on (T, V), (d12) for " implies that
C € anc(A). Since A € verticesr, Lemma 5 implies that B e visibler (A),
as needed.

‘Next, we consider (d13). Assume A is live in T, and let s=
{visibler (A, x); datar). We must show that u = result(x, s). Let B be the
principal action for x in V. Condition (d13) for &" implies that u=
result(x, V(x, B)). It suffices to show that s and V(x, B) are identical.
Since the elements of V(x, B) are in datar order (by Lemma 16), it
suffices to show that s and V(x, B) contain the same set of elements.

First assume C is in s, that is, C € visibler (A, x). Since A islivein T,
Lemma 6 implies that C is live in T. Then Lemma 16 implies that there
exists D € anc(C) for which V{(x, D) is defined and C is an element of
V(x, D). Since B is the principal element for x in V, the sequence
extension property of the definition of version maps implies that C is also
an element of V(x, B).

Conversely, assume that C is an element of V(x, B). Lemma 16‘implies
that C e visibler (B). Condition (d12) for " implies that B e anc(A).
Thus C € visibler(A).

It i1s easy to check that property (c) holds, once we know that the
definability conditions correspond. Therefore, k' is a possibilities map-
ping. [

THEOREM 18. ho k' is a simulation of f by A".

Proor. Immediate from Lemmas 15, 17, and 1. [J

8. AN ALGEBRA BASED ON VALUE MAPS

The previous section described a version of a locking algorithm in which
considerable information (the sequences of versions) were retained. In

364 : NANCY A. LYNCH

this section, we describe the fourth level of our algorithm. In this level,
we optimize the locking algorithm of the previous level by condensing
"~ some of the information retained. Namely, it turns out not to be
necessary to retain the complete sequences of versions; rather, we can
manage by retaining only the latest value of the object for each action.

Note that we can prove a simulation result after eliminating in-
formation precisely because possibilities maps are able to yield sets of
states rather than single states. The sets of states serve to replace the
eliminated information.

8.1. Value Maps

As before, we introduce another data structure. This one records, for
each object and action, the latest value of the object which is available to
the action. ,

A value map 1s a partial mapping V from obj x act to values(obj), such
that the following properties are satisfied:

e V(x, U) is defined for all x.

e Each V(x, A) € values(x).

e For each x, if V(x, A) and V(x, B) are both defined, then either
A € desc(B) or B e desc(A).

If A is the least action for which V(x, A) is defined, then we call A the
principal action for x in V; in this case, if V(x, A) = u, we call u the
principal value of x in V. ,

If V is a version map, then let eval(V) be the value map defined on
exactly the same domain, so that eval(V)(x, A) = result(x, V(x, A)).

LemMMA 19. Let V be a version map, x € obj. Then the principal action
for x in V is the same as the principal action for x in eval(V), and the
principal value of x in V is the same as the principal value of x in eval(V).

ProoF. Straightforward. O

8.2. Definition of the Algebra

We define another algebra o =(A", ¢”,II") as follows. A" is the set
of pairs (T, V), where T is an AAT and V is a value map. o’ consists of
the trivial AAT consisting of a single node U with status ‘active’, and the
value map which has V(x, U) equal to init(x), for all x, and is otherwise
undefined. II"” consists of six events (a)—(f).

In all the events, we assume that A € act —{U}. Events (a)-(c), (e), and

{(

<« et |}

=

S|

‘H

el,

ng
be
an
m.

of
he

‘or
to

ch

cr

he
he

on

ion
the
/) .

et
of
he

ise

nd

Concurrency Control for Resilient Nested Transactions 365

(f) are identical to the corresponding events of «”. Event (d) is also
identical, except for the change indicated below.

(d2) Effect
(d24) V(x, A) < update(A)(u).

8.3. Simulation

Define a mapping h" from o to " as follows. Let h"(T, V)=
{(T, W): eval(W) = V}. h" maps all events to events of the same name.

LEMMA 20. h" is a simulation of A" by ",

ProOOF. It suffices to show that h” is a possibilities mapping. Proper-
ties (a) and (d) are easy to check. Let #/ e IT”. It # is any event except
for a perform event, then properties (b) and (c) are immediate.

Assume 7« is performy, ,. Assume (T, V) is computable in &,
(T, W)ye h"(T, V), (T, W) is computable in &’, # is defined for
(T, V), and (T', V)= «/(T, V). Lemma 19 implies that property (b)
holds, that is, that 7= perform,, is defined on (T, W). It follows from
the effects of the two events that «(T, W)= (T’, W’) for some version
map W' In order to show property (c), it suffices to show that
eval(W’) = V', Since eval(W)= V, we need to consider only the values
which change because of the present event, that is, we need to show
that result(x, W'(x, A)) = V'(x, A). But result(x, W'(x, A)) =
result(x, W(x, B)<(A)), where B is the principal action for x in W,
= update(A)(result(x, W(x, B))), = update(A} V(x, B)) since eval(W) = .
V. But B is the principal action for x in V, by Lemma 19, so u =
V(x, B). Therefore, the latest term in the extended equality is equal to
update(A)(u), which is equal to V'(x, A) by definition. [J

THEOREM 21. ho k' h" is a simulation of s by "

ProoOF. Immediate from Lemmas 18, 20, and 1. [

9. THE ALGORITHM

The only remaining task is to describe a distributed locking algorithm
and show that it simulates the previous algorithm. In this section, a
slightly simplified version (which doesn’t distinguish read and write steps)
of Moss’ algorithm is described using a distributed algebra.

366 NANCY A. LYNCH

9.1. Notation and Definitions

Let [k] denote {1, ..., k}.

We fix a particular k as the number of nodes. For convenience, we
designate the nodes by identifiers in [k].

Let home: (act—{U})U obj—[k], with home(A)= home(object(A))
for all A € accesses. Thus home partitions the actions and objects among
the nodes. Let origin: (act —{U})—[k] be defined so that origin(A) =
home(A) if parent(A)= U, and = home(parent(A})) otherwise.

In order to describe the local state of each node, it is convenient to
define a generalization of action trees. Thus we define an action summary
T to consist of components verficesr, activer, committedr, and abortedr,
where verticesr is any finite subset of act (not necessarily closed under
the parent operation) and the remaining three components form a
partition of verticesr. The notation doner and statusr is also extended in
the obvious way. If T and T’ are action summaries or action trees, we

say that T =< T' provided that verticesy Cverticesr, and correspondingly |

for committedr and absorbedr. We also define T"=T U T’ so that
verticest- = verticest U verticest-, and similarly for committedr- and
abortedr-. An action summary will be used to describe partial knowedge
of the latest status of the transactions.

9.2. Definition of the Algebra

We describe the algorithm as the algebra B =(B, r, P), which is
distributed over I =[k]U {‘buffer’}. The elements of [k] correspond to k
nodes of a distributed system, and the buffer corresponds to the entire
message system. The components are defined as follows. Let B be the
Cartesian product of state sets B;, where ie I.

If ie[k] (that is, if i corresponds to a node), then B; consists of the
values of two variables, i. T which contains an action summary, and i.V,
which contains a value map. The action summary recorded in i.T
represents node i’s knowledge of the latest status of various transactions.
The value map in i.V contains the latest value map information for all
objects whose home is i.

If i = ‘buffer’, then B; consists of the values of variables M;, je[k],
each of which contains an action summary. The action summary in M;
represents all the information which has been sent to node j during the
entire computation.

The initial state 7 is a vector of initial states for all the components. If
jelk], then 7 has i. T initialized as the trivial action summary, having no
vertices, and i.V initialized so that i.V{(x, U) = init(x} for all x with

Concy

home
equal

Th
Siz ev
and t
other
event
condi
doer

In :

(a)

(b)

(c) .

(d) |

LYNCH

nce, we

rject(A))
s among
rin(A) =

nient to
summary
bortedr,
:d under
form a
ended in
irees, we
ondingly
so that
dr- and
nowedge

which is
yond to k
he entire
B be the

sts of the
and i.V,
d in i.T
1sactions.
on for all

L, jelk],
ary in M;
uring the

onents. If
having no
1l x with

Concurrency Control for Resilient Nested Transactions 367
home(x) = i, and otherwise undefined. If i = ‘buffer’, then ; has each M;
equal to the trivial action summary.

The algorithm has eight kinds of events. Six correspond closely to the
siz events of of"—four record the creation, commit, and abort of actions
and the performance of data accesses and two manipulate locks. The
other two correspond to the sending and receiving of messages. The
events are listed below. As usual, we present them by listing a pre-

condition and the effect on the state. In addition, we define d(), the
doer of each step.

In all cases, we assume that A € act—{U};

(a) create; 4, origin(A) =i
(al) Precondition
(all) A ¢ i.verticest.
(al2) If pareni(A)# U, then parent(A)e i.verticesy —
i.committedy. '
(a2) Effect
(a21) i.verticesy < i.verticesy U {A}.
(a22) i.statust(A) < ‘active’.
(a3) Doer: i
(b) commit; o, A ¢ accesses, home(A) = i
(b1) Precondition
(b11) A€ i.activer.
(b12) children(A) N i.verticest Ci.doner.
(b2) Effect
(b21) i.statust (A) < ‘committed’.
(b3) Doer: i
(c) abort; 4, A ¢ accesses, home(A) = i
{c1) Precondition
(c11) A€ i.activer.
(c2) Effect '
(c21) i.statust(A) <« ‘aborted’.
(c3) Doer: i
(d) perform; 4 ., A € accesses, x = object(A), u e values(x),
home(A) = i, home(x) =i
(d1) Precondition
(d11) A€ i.activer.
(d12) {B:i.V(x, B)} is defined}C proper-anc(A).
(d13) u is the principal value of x in i. V.
(d2) Effect
(d21) i.statust(A) < ‘committed’.
(d22) i.V(x, A) « update(A)(u).

368 NANCY A. LYNCH

(d3) Doer: i
(e) release-lock; 4 ., home(x) =i
(e1) Precondition
(e11) i.V(x, A) is defined.
(e12) A€ i.committedr.
(e2) Effect
(€21) i.V(x, parent(A)) < i.V(x, A).
(e22) i.V(x, A) < undefined.
(e3) Doer: i
(f) lose-lock; 4 ., home(x) =i
(f1) Precondition
(f11) i.V(x, A) is defined.
(f12) anc(A) N i.abortedr # 9.
(f2) Effect
(f21) i.V(x, A) < undefined.
(f3) Doer: i
(g) send;; r-, T' an action summary
(g1) Precondition

(g11) T'=i.T.
(g2) Effect

(g21) M,(>MUT"
(g3) Doer: i

(h) receive,;, T' an action summary
(h1) Precondition
(h1l) T'=M,.
(h2) Effect
(h21) i.T<i.TUT'.
(h3) Doer: buffer

Thus (a)-(f) correspond closely to (a)-(f) of &". Events (g) and (h) are
the new communication events. These conditions say that any com-
munication is allowed at any time, which sends any of i’s action summary
information from i to j.

LemMA 22. 9B is an algebra, which is distributed over I using d.

ProoF. Straightforward. [

9.3. Simulation

Now define an interpretation A" from B to " by mapping the first
six types of events to the events of the same name, suppressing the index
in [k], and mapping the other two types of events to A.

I¢

Q

CH

are

nary

first
ndex

Concurrency Control for Resilient Nested Transactions 369

If b e B, then we add “[b]” to the end of a variable name to denote the
value of that variable in state b.

For each i€ I, we define a mapping h; from B to P(A") as follows. If
ie[k], then (T, V)e hi(b) exactly if (T, V) is computable in «" and
the following are true:

® verticest N{A: origin(A) = i}Ci.verticest[b]C verticest .

® committedr N{A: home(A) = i}C i.committed[b]C committed .
® abortedr N{A: home(A) = i}Ci.aborted[b]C aborted .

® i.V[b]is the restriction of V to {(x, A): home(x) = i}.

If i = ‘buffer’, then (T, V) e h;(b) exactly if (T, V) is computable in

A" and M;[b]= T for each je[k].

If (T, V) e h;i(b), then we also say that (T, V) is i-consistent with b.

We now proceed to prove lemmas corresponding to the properties
required in the definition of a local mapping. The proofs are long, but are
very straightforward case analyses.

LEmMMA 23. Foralliel, " e h(7).
Proor. Immediate from the definitions. [

LeMMmA 24, Assume i€ l. Assume 7w e P, diw=i, w=h"(#)e
I, a and a’ are compu_table in A" and B, respectively, a € h;(a") and
a' € domain(7'). Then a € domain(m).

PrROOF. Letabe (T, V).

First, assume that = is create; s, so that & is create,. Then
origin(A) = i. Since a'e domain(#’), A ¢ i.verticesr[a’]. Since (T, V) is
i-consistent with a’, A ¢ verticesr, thus showing (all). If parent(A) =
then the fact that (T, V) is computable and Lemma 16 imply that
parent(A) € activer, thus showing (al12) for this case. On the other hand,
if parent(A)# U, then the precondition for % shows that parent(A)e
i.verticest{a'] — i.committedr[a’]. The fact that (T, V) is i-consistent
with a’ implies that parent(A) € verticest — committedr . Thus (a12) holds.

Second, consider 7/ = commit; 4, so that = is commit,. The pre-
condition for 7' shows that A € i.activer[a’]. The fact that (T, V) is
i-consistent with a' implies that A € activer, thus showing (b11). The
precondition for @' shows that children(A) N i.verticesr[a’}Ci.doner[a’].
The fact that (T, V) is i-consistent with a’ implies that children(A) N
verticesy C doner, thus showing (b12).

Third, assume 7' = abort; 4, so that 7 is abort 4. This case is s:mxlar to
the first half of the previous case.

370 NANCY A. LYNCH

Fourth, assume =’ =perform; 4 ,, so that 7 is perform,,. Then
home(A) = i. Assume object(A) = x, so that home(x) = i. (d11) is argued
as in the preceding two cases. We show (d12). Choose B so that V(x, B)
is defined. Since (T, V) is i-consistent with a' and home(x) =i,
i.V(x, B)[a'] is also defined. The precondition for # implies that B e
proper-anc(A), as needed. Next, we show (d13). The precondition for =’
implies that u is the principal value for x in i.V[a']. Since (T, V) is
i-consistent with a’, u is also the principal value for x in V, as needed.

If 7' is one of (e) and (f), then # involves some x with home(x) = i.
Assume that 7' involves A. The precondition for # implies that
i.V(x, A)la’] is defined. Since (T, V) is i-consistent with a’, it follows
that V(x, A) is defined, thus showing both (e11) and (f11).

If 7' is a release-lock; 4 , step, then the precondition for 7' implies that
A € i.committedr{a’]. Since (T,V) is i-consistent with a'. Ae
committedr , thus showing (e12).

Finally, if 7' is a lose-lock; 4 , step, the precondition for # implies that
anc(A) N i.abortedr[a'] # @. Since (T, V) is i-consistent with a’, it fol-
lows that A is dead in T, thus showing (f12). [

LemMmAa 25. Assﬁme i,jel. Assume w'e P, d(w)=1i, w=h"(7)e
- OP", a and a' are computable in 4" and B, respectively, ac
hi(a') N hi(a'), and a' € domain(w'). If b’ = 7'(a’), then m(a) e hi(b).

- ProOOF. Let a=(T, V) and w(a)=(T', V). Lemma 24 implies that
a € domain().

If j# i, then it is easy to see that all the containments are preserved,
since the sets of actions on the right sides are only increased, while the
sets on the left sides are unchanged. The property involving V is also
easily seen to be preserved. So assume j = i. We consider the six kinds of
events in turn.

First, assume 7’ is of the form create; 4, commit; 4, or abort; 4. Then
V'=V, and T' is exactly like T except that A is added to verticesr,
committedr, or abortedr as appropriate. Also, b’ is just like a’ except that
A is added to i.verticest, i.committedr, or i.abortedr. as appropriate.
Since (T, V) is i-consistent with a’, it is easy to see that all the
containments change in such a way as to insure that (T', V) is i-
consistent with b'.

If 7 is of the form perform; 4 ,, then home(A)=i. Let x = object(A).
Then home(X)=i. T’ is just like T except that A is added to
committedr and is given label u, and datar is augmented with all pairs
in {(B, A): B € datastepsr(x)} U (A, A). V' is just like V except that
V'(x, A) is defined to be update(A)(u). b’ is just like a’ except that A is
added to i.committedr, and i.V(x, A) is defined to be update(A)(u).

™ T

1at
WS

1at
L E

aat
ol-

le

1at

iy

‘he
Iso
of

len
ST,
1at
te.
the

4).

to
urs
hat
LIS

Concurrency Control for Resilient Nested Transactions 371

Since (T, V) is i-consistent with a’, it is easy to see that (T', V') is
i-consistent with b": most of the properties are immediate. We just check

the last property; the only change involves A. We have already noted

that i. V(x, A)[b'] = update(A)(u) = V’'(x, A). This is as needed.

If 7' is of one of the forms (e) or (f), then T'= T and . T(b)=
i.T[a']. Thus it is clear that the containments are all preserved. It is also
easy to check that the final property is preserved. [

LEMMA 26. Assume i,jeI. Assume 7' e P, d(#) =i, h(#)=A, and
a' are computable in A" and 9B, respectively, ac h(a’)N h(a’), and
a' € domain(w'). If b’ = 7'(a’), then a € hi(b').

PrROOF. Let a=(T, V).

First, assume that «' is send, ; . If j # ‘buffer’, then bi;=aj}, and the
conclusion is immediate. So assume that j = ‘buffer’. Since (T, V) is
J-consistent with a’, each action summary M;[a’]< T. The precondition
for # implies that T'=<i.T[a’]. Since (T, V) is i-consistent with a', it
follows that i.T[a']=T, and hence T'<T. Now, each MJ[b]=
M[A'JU T'. Therefore, each M,[b"]=< T, as needed.

Next, assume that 7 is of the form receive; 1, so that ; = ‘buffer’. The
only nontrivial case is j=i. We must show that j. T[p']< T. But
J.- T[b']=j.T[aJU T'. The j-consistency of (T, V) with a’ shows that
j-Tla'l]=T. The precondition for # shows that T'= M[a']. Since
(T, V) is j-consistent with a’, M[a’']=T. Thus T'<T. Therefore,
J.T[b'1=T, as needed. [

LeEMMmA 2;7. h" and h;, i€ I, form a local mapping from B to s{".
Proor. Immediate from Lemmas 23, 24, 25, and 26. [

"Now extend h” to B U P, by defining h"(b) = (M icr hi(b).

LEMMA 28. h" is a simulation of 4" by %.

'PrOOF. Immediate by Lemmas 27 and 4. []

The main correctness theorem now follows.

THEOREM 29. The mapping ho h'< h"o h™ is a simulation of o{ by %.

ProOOF. Immediate from Lemma 28, Lemma 1, and Theorem 21. O

372 NANCY A. LYNCH

10. CONCLUSIONS

- In this paper, we have presented a detailed proof of a variant of Moss’

concurrency control algorithm for nexted transactions. Along the way,
we have developed a substantial amount of basic theory for nested
transactions. The basic framework, especially the definitions and results
involving visibility, should be of further use.

There is much more to be done, however. The framework presented in
this paper is not powerful enough to describe all the correctness con-
ditions one might want for nested transactions. In particular, we do not
model the correspondence between what the system does and what it is
requested to do by the transactions. This deficiency is at least partly due
to the fact that we have chosen not to model the transactions explicitly.
In order to describe everything we might want, we will probably have to
incorporate some type of model for the transactions into the framework.

We have only proved correctness of one variant of Moss’ algorithm.
There are many other related algorithms for which similar proofs ought
to be developed. Certainly, Moss’ complete algorithm (with a distinction
between read and write operations) should be proved correct; we do not
expect this extension to be very difficult. The orphan algorithm men-
tioned in the introduction should be verified; obtaining an understand-
able proof for this algorithm seems like a much harder task. Also, other
implementations for nested transactions, such as Reed’s, should be
proved correct. It would be interesting to see to what extent the theory
developed for one of these algorithms is usable for the others.

The proof presented here has a very interesting structure. It describes
algorithms as algebras and uses a series of five levels of abstraction.
Correctness is shown using four simulation mappings. The interesting
and nontrivial concurrency control arguments are made in proving the
correctness of the first two simulations. The correctness of the first
simulation expresses the fact that certain conditions imply serializability.
The correctness of the second simulation expresses the fact that a form of
locking satisfies these conditions. Successive levels refine the algorithm,
providing more implementation detail, condensing the information that is
kept, and distributing the processing. Proofs at these lower levels are
straightforward checks of the local mapping properties.

There is more to be done in exploring the usefulness of this proof
structure for other distributed algorithms.

ACKNOWLEDGMENTS

Many other people have contributed their ideas and efforts to this work. Barbara
Liskov suggested formal treatment of this area and monitored proposed for-

m:
Sy

dis
ide
pre
eal

hel

r

10.

11.

CH

JsS
‘ay,
ted
alts

iin
on-
not
tis
lue
tly.
s to
rk.
m.
ght
on
not

nd- |

her
be
ory

bes
on.
ing
the
irst
ity.
1 of
m,
tis
are

oof

yara
for-

Concurrency Control for Resilient Nested Transactions 373

malizations for their faithfulness in representing the behavior of the Argus
system. John Goree used a much earlier draft of the current paper as a starting
point for the work in his Master’s thesis; in the process of writing his thesis, he
discovered several major ways of clarifying the ideas of this paper. Some of the
ideas Gene Stark developed for his thesis [11] have found their way into the
present paper. Bill Weihl and Gene Stark contributed helpful criticisms of the
early drafts. Paris Kanellakis and two anonymous referees contributed many very
helpful suggestions for the presentation.

This work was supported in part by the Office of Naval Research under
Contract N00014-85-K-0168, by the Office of Army Research under Contracts
DAAG-29-79-C-0155 and DAAG29-84-K-0058, by the National Science
Foundation under Grants MCS-79-24370 and DCR-83-02391, and by the
Defense Advanced Research Projects Agency (DARPA) under Grants NOOO14-
76-C-0944 and N00014-83-K-0125.

- REFERENCES

1. Berri C, Bernstein PA, Goodman N, Lai MY, Shasha DE: A concurrency control
theory for nested transactions. Proc 2nd ACM Symp on Principles of Distributed
Computing, pp 45-62, 1983.

2. Bernstein P, Goodman N: Concurrency control algorithms for multiversion database
systems. Proc ACM SIGACT-SIGOPS Symp on Principles of Distributed Computing,
pp 209-215, 1982.

3. Eswaren KP, Gray JN, Lorie RA, Traiger IL: The notions of consistency and
predicate locks in a database system. Comm ACM 19, 1976.

4. Goree J: Internal consistency of a distributed transaction system with orphan detec-
tion. Technical Report MIT/LCS/TR-286, MIT Laboratory for Computer Sci,
Cambridge, MA, January, 1983.

5. Kanellakis P, Papadimitriou C: On concurrency control by multiple versions. Proc
ACM Symp on Principles of Database Systems, pp. 76-82, 1982.

6. Lamport L: Time, clocks and the ordering of events in a distributed system. Comm
ACM 21, 1978. '

7. Liskov B, Scheifler R: Guardians and actions:, Linguistic support for robust, dis-
tributed programs. Proc 9th ACM SIGACT-SIGPLAN Symp on Principles of Pro-
gramming Languages, pp 7-19, 1982.

8. Moss JEB: An Approach to Reliable Distributed Computing, MIT Press, Cambridge,
MA, 1985. :

9. Randell B: System structures for software fault tolerance. Proc Int Conf on Reliable
Software, 1975; SIGPLAN Notices 10:437-457; also in: IEEE Trans Software Eng
1:220-232, 1975.

10. Reed ‘DP: Implementing atomic actions on decentralized data. ACM Trans Comp
Systems 1:3-23, 1983.

11. Stark E: Foundations of a theory of specification for distributed systems. Ph.D Thesis,
MIT Laboratory for Computer Science, Cambridge, MA, August, 1984.

