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Abstract

We present a new model for describing and reasoning about transaction-processing algorithms.
The model provides a comprehensive, uniform framework for rigorous correctness proofs. The
model generalizes previous work on concurrency control to encompass nested transactions and
type-specific concurrency control algorithms. Using our model, we describe general conditions
for a concurrency control algorithm to be correct—i.e., to ensure that transactions appear to be
atomic.

We also present a new concurrency control algorithm for abstract data types in a nested
transaction system. The algorithm uses commutativity properties of operations to aflow high
levels of concurrency. The results of operations, in addition to their names and argunnts, can
be used in checking for conflicts, further increasing concurrency. We show, using our general
model, that the new algorithm is correct. We also present a read-update locking algorithm due to
Moss and prove it correct

The correctness proofs for the algorithms are modular, in the sense that we consider a system
structure consisting of many objects, with concurrency control and recovery performed
independently at each object. We define a condition on individual objects, called dynamic
a:omicUy, which has the property that as long as all objects in the system axe dynamic atomic,
transactions will appear atomic. We then show that each algorithm, considered at a single
object, ensures dynamic atomicity. This means that different algorithms can be used at different
objects; as long as each ensures dynamic atomicity, global atomicity of transactions is
guaranteed.
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1. Introduction
This paper has two main contributions. First, we present a comprehensive model for nested

transaction systems. The model allows rigorous proofs of a wide variety of transaction-
processing algorithms in a single uniform framework. The model generalizes most previous
work on concurrency control to encompass nested transactions and type-specific concurrency
control algorithms. We use the model to define correctness for nested transaction systems, and
also to discuss alternative correctness criteria.

Second, we present a new concurrency control and recovery algorithm for abstract data types
in a nested transaction system, and prove it correct. The algorithm, which generalizes an
algorithm developed by Weihl [42, 39] to handle nested transactions, uses commutativity
properties of operations to achieve high levels of concurrency. The results of operations, in
addition to their names and arguments, can be used in checking for conflicts, further increasing
concurrency.

As part of our development of the general model, we present a theorem that provides a general
sufficient condition for a transaction-processing algorithm to be correct. This condition is
analogous to the ‘absence of cycles” condition used in the more classical work on concurrency
control (e.g., see [7]). We use the condition as the basis of the correctness proof of the
algorithms presented in this paper. We have also used it in other work to prove the correctness
of other algorithms. For example, in [2], we prove the correctness of Reed’s multi-version
timestamping algorithm [34] and of a type-specific variation of Reed’s algorithm that uses the
semantics of operations to pennit more concurrency.

The description and correctness proof of our algorithm are modular. We consider a system
structure consisting of many objects, with concurrency control and recovery performed
independently at each object. We define a condition on individual objects, called dynamic
atomicity, with the property that as long as all objects in the system are dynamic atomic,
transactions will appear atomic. We then show that our algorithm, when used to implement a
single object, ensures dynamic atomicity. This means that our algorithm can be used at some
objects, and other algorithms at other objects in the same system; as long as each algorithm
ensures dynamic atomicity, global atomicity of transactions is guaranteed.

Dynamic atomicity is ensured by a wide range of concurrency control algorithms, including
most popular variations on two-phase locking [9]. We also present the read-update locking
algorithm developed by Moss [29] for nested transactions and prove that it ensures dynamic
atomicity.

The generality of the model presented here is illustrated in part by the two algorithms that are
desribed and verified in this paper, and by the proofs of the timestanip-based algorithms
(including multi-version algorithms) in [2]. In addition, with others we have used the model
presented here to prove the correctness of algorithms for management of replicated data [12] and
of orphan transactions [17].

The remainder of this paper is organized as follows. We begin in Section 2 with some
background on nested transactions and a brief discussion of related work. Then, in Sections 3
through 5, which constitute the first major part of this paper, we present our general model. In
Section 3, we describe input/output automata, which provide the formal foundation for our work.
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In Section 4, we define correctness for a nested transaction system. Finally, in Section 5, we
present our Serializability Theorem, which describes general sufficient conditions that can be
used to prove the correctness of many concurrency control algorithms.

In Sections 6 through 9, which constitute the second major part of this paper, we describe our
new algorithm and Moss’s algorithm and prove them correct. In Section 6, we define dynamic
atomicity and prove that it is a local atomicity property [42, 401—i.e., that if each object in a
system is dynamic atomic, then the system is correct. In Section 7, we define the properties of
operations, such as commutativity, that are used by the two algorithms to be presented later.
Next, in Section 8, we present our new commutativity-based locking algorithm and prove it
correct. Finally, in Section 9, we present the description and proof of Moss’s read-update
locking algorithm.

Finally, we conclude the paper in Section 10 with a summary and a discussion of future work.

2. Background
The abstract notion of “atomic ransaction” was originally developed to hide the effects of

failures and concurrency in centralized database systems. It has since been generalized to
incorporate a nested structure, and has been applied to problems in both centralized and
disthbuted systems.

2.1. Atomic Transactions
Roughly speaking, a transaction is a sequence of accesses to data objects; it should execute

“as if” it ran with no interruption by other transactions. Moreover, a transaction can complete
either successfully or unsuccessfully, by ‘‘committing” or “aborting”, If it commits, any
alterations it makes to the database should be lasting; if it aborts, it should be ‘‘as if’’it never
altered the database at all. The execution of a set of transactions should be “serializable”, that
is, equivalent to an execution in which no transactions run concurrently and in which all accesses
of committed transactions, but no accesses of aborted transactions, are performed.

The original motivation for transactions was to provide a way of maintaining the consistency
of a database. Maintaining consistency is difficult because the hardware can fail, and because
users can access the database concurrently. Transactions provide fault-tolerance by guaranteeing
that either all or none of the effects of a transaction occur. Transactions also simplify the
problems of concurrent access by synchronizing the access of concurrent users so that the users
appear to access the database sequentially. The net effect is that one can guarantee that
consistency is preserved by ensuring that each transaction, when run alone and to completion,
preserves consistency. Given that each transaction preserves consistency, any serial execution of
transactions without failures (i.e., where each transaction runs to completion) also preserves
consistency. Since any serializable concurrent execution is equivalent to a serial execution
without failures, any serializable concurrent execution also preserves consistency.

Although much of the database literature focuses on preserving consistency, this alone is not
enough. Consider, for example, a simple database system in which no transaction ever actually
modifies the database. Such a database is always in a consistent state (assuming that the initial
state is consistent), but it is not very useful. A useful system should also guarantee something
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about the connection between different transactions, and between transactions and the database
state. For example, ordinary serializability requires the final state of the database to be the same
as after a serial execution in which the same transactions occur. The “view serializability”
condition insists in addition that accesses to data return the same values as in the equivalent
serial execution. Also, either ordinary serializability or view serializability can be augmented by
an “external consistency” condition, which requires that the order of transactions in the
equivalent serial execution should be compatible with the order in which transaction invocations
and responses occur. A discussion of several correctness conditions can be found in Chapter 2 of
the book by Papadimitriou [33].

Recently, transactions have been explored as a way of organizing programs for distributed
systems [23, 37]. Here, their purpose is not just to provide a way of keeping the state of the
database consistent, but also to provide the programmer with mechanisms that simplify
reasoning about programs. Failures and concurrency make it harder to reason about programs
because of the complexity of the interactions among concurrent activities, and because of the
multitude of failure modes. (See, for instance, the banking example in [23].) Transactions help
here by allowing the programmer to view a complex piece of code as if it is run atomically: it
appears to happen instantaneously, and it happens either completely or not at all.

2.2. Nested Transactions
In order for transactions to be useful for general distributed programming, the notion needs to

be extended to include nesting. Thus, in addition to accesses to data objects, a transaction can
also contain subtransactions. The transaction nesting structure can be described by a forest, with
the top-level transactions at the roots and the accesses to data at the leaves. (We do not place
any constraints on the structure of the transaction tees. For example, we do not require all the
leaves to be at the same level. Instead, leaves may occur at any level, so that a top-level
transaction might itself be a leaf representing a single data access, or might invoke both a
subtransaction and a data access as children.) The semantics of nested transactions generalize
those of ordinary transactions as follows. Each set of sibling transactions or subtransactions is
supposed to execute serializably. As with top-level transactions, subtransacdons can commit or
abort. Each set of sibling transactions runs as if all the transactions that committed ran in a serial
order, and all the transactions that aborted did not run at all. An external consistency property is
also required for each set of siblings, ensuring that if a transaction waits for one child T to
complete before invoking another child T’, then T is before 1” in the apparent serial order.

Nested transactions provide a flexible programming mechanism. They allow the programmer
to describe more concurrency than would be allowed by single-level transactions, by having
transactions request the creation of concurrent subtransactions. They also allow localized
handling of transaction failures. When a subtransaction commits or aborts, the commit or abort
is reported to its parent transaction. The parent can then decide on its next action based on the
reported results. For example, if a subuansaction aborts, its parent can use the reported abort to
trigger another subtransaccion, one that implements sont alternative action. This flexible
mechanism for handling failures is especially useful in distributed systems, where failures are
more common because of unreliable communication, and where one node can keep running
while another node is down.

Nested transactions are useful in other ways in distributed systems For example, they can be
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used to implement remote procedure calls with a ‘‘zero or once’’ semantics: the call appears to
happen either zero or one times despite retransmissions of request messages caused by poorly
chosen timeouts, lost acknowledgements and other problems of unreliable communication. This
is accomplished by treating incomplete or redundant calls as aborted subtransactions of the
caller, and undoing their activity without aborting the successful call. For another example,
nested transactions aid in the construction of replicated systems. The reading and writing of
individual copies of data objects can be done as subtransactions; even if some of the copies fail
to respond (causing their subtransactions to fail), the overall transaction can still succeed if
enough of the copies respond.

The idea of nested transactions seems to have originated in the “spheres of control” work of
Davies [8]. Reed [34] developed the current notion of nesting and designed a timestamp-based
implementation. Moss [29] later designed a locking implementation that serves as the basis of
the implementation of the Argus programming language. The notion of nesting studied here is
analogous to levels of procedural abstractions. A related but more complex notion of nesting,
emphasizing levels of data abstraction, is used in System R and has been studied in a number of
papers, including work by Beed, eta!. [5, 4], Moss, eta?. [301 and Weikum [44].

2.3. Transaction-Processing Algorithms
Many algorithms have been proposed and used for implementing non-nested atomic

transactions [9, 38, 20] and also for implementing nested transactions [34, 29]. These algorithms
make use of various techniques, including some based on locks, timestamps, multiple versions of
data objects, and multiple replicas. The most popular algorithms in practice are probably “read-
update” locking algorithms such as those in [9, 29], in which transactions must acquire read
locks or update locks on data objects in order to access the objects in the corresponding manner.
Update locks are defined to conflict with other locks on the same data object, and conflicting
locks are not permitted to be held simultaneously. Thus, a transaction that updates a data object
prevents or delays the operation of any other transaction that also wishes to update the same
object. The recent book by Bernstein eta!. [7] provides an excellent survey of many of the most
important transaction-processing algorithms for non-nested transactions.

While read-update locking is simple and widely used, in some situations it can result in poor
performance. Many systems contain “concurrency bottlenecks”: for example, if the data is
organized into a graph structure, the roots of the structure are likely to be accessed by most of the
transactions. If read-update locking is used, a transaction that modifies the roots will prevent any
other transaction from accessing the root until the modifying transaction commits and releases its
lock. Thus, most transactions will be blocked for a significant period, and throughput will suffer.
Examples of such situations arise in index stnictures (e.g., a B-tree) and in resource allocation
problems (e.g., a free list of disk blocks). Concurrency bottlenecks also occur when the database
contains data that summarizes other data, such as a record of the total assets of a bank. In such
cases, most transactions that update the database will need to update the summary data, and thus
will exclude one another from concurrent activity if update locks need to be obtained on the
summary data.

In the last decade, many researchers have explored using type-specific concurrency control
algorithms to avoid concurrency bottlenecks (e.g.,
see [19,42, 40, 39, 36, 1, 5,4, 30, 43, 44, 31]). Read-update locking itself is a simple example



6

of such a algorithm: transactions executing read operations can be allowed to run concurrently
without sacrificing atomicity. The correctness of this algorithm depends on type-specific
properties of the transactions, namely, that certain operations do not modify the state of the
database. This example can be generalized to allow more concurrency than can be permitted by
read-update locking. For example, operations on summary data such as the total assets of a bank
often include increment, decrement, and read operations. Increment and decrement operations
are executed by transactions that transfer money into or out of the bank. Using read-update
locking, n-ansactions executing increment and decrement operations must exclude each other.
However, it is possible to design more permissive concurrency control algorithms for this
example, using the fact that increment and decrement operations commute to allow transactions
executing them to run concurrently. (Cf. IMS Fast Path [11].)

In this paper we present and prove correct two algorithms: a read-update locking algorithm
developed by Moss [29], and a new commutazivity-based locking algorithm, which allows
transactions to proceed concurrently as long as their operations commute (iii a precise sense to be
defined below). Our commutativity-based locking algorithm generalizes most existing type-
specific locking algorithms in several ways. First, it works for nested transactions. Second, it
works for arbitrary abstract data types, including types whose operations may be both partial and
nondeterministic. Third, it allows the results of operations, as well as their names and
arguments, to be used in checking for conflicts; this gives the effect of a finer “granularity” of
locking, thus providing more concurrency. The algorithm is based on one developed by
Weihl [42, 391, generalized to handle nested transactions.

2.4. Formal Models
There are two reasons why a formal model is needed for reasoning about atomic transactions.

First, the implementors of languages that contain transactions need a model with which to reason
about the correctness of their implementations. Some of the algorithms that have been proposed
for implementing transactions are complicated, and intormal arguments about their correctness
are not convincing, In fact, it is not even obvious how to state the precise correctness conditions
to be satisfied by the implementations; a model is needed for describing the semantics of
transactions carefully and formally. Second, if programming languages containing transactions
become popular, users of these languages will need a model to help them reason about the
behavior of their programs.

Much of the prior work on formal models is summarized in [7]. This “classical” theory is
primarily applicable to single-level transactions, rather than nested transactions. It treats both
concurrency control and recovery algorithms, although the treatments of the two kinds of
algorithms are not complelely integrated. The theory asstns a system organization in which
accesses are passed from the transactions to a “scheduler”, which determines the order in which
they are to be pci-formed by the database. The database handles recovery from transaction abort
and media failure, so that each access to one data object is performed in the state resulting from
all previous non-aborted accesses to that object. “Serializability” is defined in this model by
requiring an execution of the same system to exist in which the transactions run one at a time
(without interleaving of steps from different transactions) and perform the same steps. Proofs for
some algorithms are presented, primarily based on one combinatorial theorem, the
‘‘Serializability Theorem”. This important basic theorem states that serializability is equivalent
to the absence of cycles in a graph representing dependencies among transactions.
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There has also been some recent work extending some of the ideas of the classical theory to
encompass nested transactions involving levels of data abstraction [5,4, 44]); this work is aimed
at developing proof techniques for type-specific concurrency control algorithms, such as the
commutativity-based locking algorithm presented later in this paper.

The classical theory and its extensions to handle type-specific algorithms have several
limitations that we have tried to avoid in our work. First, the notion of correctness, stated as it is
in terms of the existence of a serial execution of the sa,ne system, is too restrictive. The
implementation of the system does not serve as an adequate specification of the permissible
serial executions, particularly when the specification permits operations to be nondeterministic
but the implementation restricts the nondetenninism. In the approach we describe in this paper,
we define the correctness of a system relative to a separate specification of the permissible serial
executions.

Second, the classical theory defines correctness for a particular system organization. rn early
work, such as [32], the interface between the scheduler and the database that is described is
suitable for single-version locking and timestamp algorithms (in the absence of transaction
aborts), but is much less appropriate for other kinds of algorithms. Multi-version algorithms and
replicated darn algorithms, for example, maintain state information in a form that is quite
diffrrent from the (single-copy latest-value) form used for the simple algorithms, and the
appropriate interface between the scheduler and the database is also different. In later work,
such as [18, 6], the interface between the scheduler and the database is changed to accomodate
multi-version algorithms. In effect, a different model is used to define correctness for different
classes of algorithms. It seems more appropriate, and useful in not unduly restricting possible
implementations, to state conectness conditions in a way that does not depend on the details of a
particular system organization, and that does not requiie different definitions for different classes
of algorithms.

Third, most of the classical work ignores recovery. Typically, the informal assumption that
“some underlying recovery mechanism ensures that aborted transactions have no effect” is
captured formally by studying only executions in which all transactions commit In the process,
however, assumptions are made about the way in which the database processes operations; in
particular, the database is assumed to use an “update-in-place” strategy, which requires basing
recovery on some sort of “undo log”. (In the work that does include a model of recovery and
aborts (e.g., [30, 15]), similar assumptions axe made about the use of an update-in-place strategy
for recovery.) As shown by Weihl [41], there are useful concurrency control and recovery
algorithms based on other approaches to recovery that do not match the assumptions made in the
classical theory (e.g., a “deferred-update” strategy, using intentions lists [21, 28j for recovery).

Furthermore, the different strategies for recovery place different constraints on concurrency
control, so that there exist intuitively correct concurrency control algorithms that use intentions
lists for recovery that do not work with undo logs, and hence cannot be considered correct in a
model that restricts recovery to an update-in-place su-ategy.

There are other aspects of the classical work that seem to make it difficult to extend to handle
nested transactions. For example, there is no operational model (ie., an execution model, or
operational semantics) for transactions; instead, they are characterized using axioms about their
executions. We have found many situations in which such an operational model is useful. For
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example, it is possible for a transaction to create a subtransaction because of the fact that an
earlier subtransaction aborted; an operational model is helpful in capturing this dependence.
Also, it is sometimes interesting to describe how the same transaction would behave in different
systems. Such reasoning is facilitated by an operational model, such as the one used in this
paper, that clarifies which actions occur under the transaction’s control, and which are due to
activity of the environment.

The model we present in this paper provides an explicit operational model for transactions and
for the other components of a system. Our definition of correctness, described in detail later in
the paper, relies on a specification of the acceptable behavior of a system in the absence of
concurrency and failures; this specification is separate from the description of the system itself.
Taking this approach allows us to give a single definition of correctness that applies to a wide
range of systems, including both single-version and multi-version systems, as well as systems
that use a wide range of methods for recovery. Our model includes explicit events for aborts; as
discussed later in the paper, this avoids restrictive assumptions about recovery that are made in
the classical theory.

Another difference between our work and the “classical” work on concurrency control is that
we include more events in our model. For example, we include separate events for the request
by a transaction to perform an access to an object, the invocation of the access at the object, the
completion of the access at the object, the decision by the system that the access is to be
committed rather than aborted, and the report to the transaction of the results of the access. In
the classical theory, these five separate events from our model would be represented by a single
event. Partly because of the technical tools that we employ in this paper, we have found it
convenient to distinguish these different events. In addition, the introduction of nesting and
aborts into the model, both of which ate missing in the classical theory, requires us to state
certain properties that seem difficult to state without distinguishing between these different
events. At the same time, however, our model is more complex because of the greater level of
detail. Some of this complexity may be inherent in the systems being studied, and some is
certainly due to our desire to state definitions and results so that they apply to as broad a range of
systems as possible.

In earlier work, Lynch [24] provided a complete proof of an exclusive locking algorithm for
nested transactions, but the framework used there does not appear to extend easily to treat many
other transaction-processing algorithms. The approach taken in this paper was started by Lynch
and Merritt in [25] with an analysis of an exclusive locking algorithm, and developed
further [10) with an analysis of a read/write locking algorithm. In this paper we present a theory
that is significantly more general than that used in this earlier work.

3. The Input/Output Automaton Model
In order to reason carefully about complex concurrent systems such as those that implement

atomic transactions, it is important to have a simple and clearly defined formal model for
concurrent computation. The model we use for our work is the input/output automaton
model [26, 27]. This model allows careful and readable descriptions of concurrent algorithms
and of the correctness conditions that they are supposed to satisfy. The model can serve as the
basis for rigorous proofs that particular algorithms satisfy particular correctness conditions.
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This section contains an inbxxlucdon to a simple special case of the model that is sufficient for
use in this paper. Since we consider only properties of finite executions in this paper. we omit
aspects of the model that are concerned with describing and verifying “liveness” or ‘‘fairness”
properties.

3.1. Mathematical Preliminaries
We rely on several basic mathematical concepts in this paper. To make the paper self-

contained, and to avoid confusion about possibly non-standard terminology, we summarize these
concepts here.

An irreflexive partial order is a binary relation that is irreflexive, antisymmetric and transitive.
Two binary relations R and S are consistent if their union can be extended to an irreflexive
partial order (or in other words, if their union has no cycles).

The formal subject matter of this paper is concerned with finite and infinite sequences
describing the executions of automata. Usually, we will be discussing sequences of elements
from a universal set of actions. Formally, a sequence of actions is a mapping from a prefix of
the positive integers to the set of actions. We describe the sequence by listing the images of
successive integers under the mapping, writing = ir1rit3....1 Since the same action may occur
several times in a sequence, it is convenient to distinguish the different occurrences. Thus, we
refer to a particular occurrence of an action in a sequence as an event. Formally, an event in a
sequence 3 = it1x2... of actions is an ordered pair (Lit), where i is a positive integer and it is an

action, such that it1, the 1th action in f3, is it.

If j3 is a sequence of actions and A is a set of actions, then 31A, the projection of on the set A,
is the subsequence of j3 containing exactly the occurrences in 3 of actions in A.

A set of sequences P is prefix-closed provided that whenever 3 c P and y is a prefix of ,it is
also the case that y e P. Similarly, a set of sequences P is limit-closed provided that any
sequence all of whose finite prefixes are in P is also in?.

3.2. Basic Definitions
Each system component is modeled as an “1/0 automaton”, which is a mathematical object

somewhat like a traditional finite-state automaton. However, an 1/0 automaton need not be
finite-state, but can have an infinite state set. The actions of an I/O automaton are classified as
either “input’’, “output” or ‘‘internal”. This classification is a reflection of a distinction in the
system being modeled between events (such as the receipt of a message) that are caused by the
environment, events (such as sending a message) that the component can perform when it
chooses and that affect the environment, and events (such as changing the value of a local
variable) that a component can perform when it chooses, but that are undetectable by the
environment except through their effects on later events. In the model, an automaton generates
output and internal actions autonomously, and transmits output actions instantaneously to its
environment, hi contrast, the automaton’s input is generated by the environment and transmitted

1We use the symbols , y... for sequences of actions and the symbols r, 0 andy for individual actions.
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instantaneously to the automaton. The distinction between input and other actions is
fundamental, based on who determines when the action is performed: an automaton can establish
restrictions on when it will perform an output or internal action, but it is unable to block the
performance of an input action.

3.2.1. Action Signatures
A formal description of the classification of an automaton’s actions is given by an “action

signature’. An action signature S is an ordered triple consisting of three pairwise-disjoint sets
of actions. We write in(s), out(s) and tnt(s) for the three components of S. and refer to the
actions in the three sets as the input actions, output actions and internal actions of 5,
respectively. We let en(s) = in(s) ti out(S) and refer to the actions in ext(S) as the external
actions of S. Also, we let local(S) = int(S) u out(S), and refer to the actions in local(S) as the
locally controlled actions of S. Finally, we let acts(S) in(s) u out(S) ti int(S), and refer to the
actions in acts(s) as the actions of S.

An external action signature is an action signature consisting entirely of external actions, that
is, having no internal actions. IfS is an action signature, then the external action signature of S
is the action signature extsig(S) = (in(S),out(S),Z), i.e., the action signature that is obtained from
S by removing the internal actions.

3.2.2. Input/Output Automata
An inputlourpur automaton A (also called an 110 automaton or simply an automaton) consists

of four components:

• an action signature sig(A),

• a set staies(A) of states,

• a nonempty set start(A) ç states(A) of start states, and

• a transition relation steps(A) states(A) x acts(sig(A)) x states(A), with the
property that for every state s’ and input action it there is a transition (s’at,s) in
steps(A).2

Note that the set of states need not be finite. We refer to an element (s’,ic,s) of steps(A) as a
step of A. The step (s’,x,s) is called an input step of A if it is an input action, and output steps,
internal steps, external steps and locally controlled steps art defined analogously. If (s’at,s) is a
step of A, then it is said to be enabled in s’. Since every input action is enabled in every state,
automata are said to be input-enabled. The input-enabling property means that an automaton is
not able to block input actions. If A is an automaton, we sometimes write acts(A) as shorthand
for acts(sig(A)), and likewise for in(A), out(A), etc. An I/O automaton A is said to be closed if
all its actions are locally controlled, i.e., if in(A) = 0.

Note that an 110 automaton can be “nondeterministic”, by which we mean two things: that
more than one locally conuolled action can be enabled in the same state, and that the same
action, applied in the same state, can lead to different successor states. This nondeterminism is

21/0 automata, as defined in [261, also include a fifth component, an equivalence relation on local(sig(A)). This
component is used for describing fair executions, and is not needed for the results described in this paper.
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an important part of the model’s descriptive power. Describing algorithms as
nondeterministically as possible tends to make results about the algorithms quite genenl, since
many results about nondeterministic algorithms apply a fortiori to all algorithms obtained by
restricting the nondeternfinistic choices. Moreover, the use of nondeterminisni helps to avoid
cluttering algorithm descriptions and proofs with inessential details. Finally, the uncertainties
introduced by asynchrony make nondeterminism an intrinsic property of real concurrent systems,

and so an important property to capture in our formal model of such systems.

3.2.3. Executions, Schedules and Behaviors
When a system is modeled by an I/O automaton, each possible nan of the system is modeled by

an “execution”, an alternating sequence of states and actions. The possible activity of the
system is captured by the set of all possible executions that can be generated by the automaton.

However, not all the information contained in an execution is important to a user of the system,
or to an environment in which the system is placed. We believe that what is important about the
activity of a system is the externally visible events, and not the states or internal events. Thus,
we focus on the automaton’s “behaviors” — the subsequences of its executions consisting of
external (i.e., input and output) actions. We regard a system as suitable for a purpose if any
possible sequence of externally visible events has appropriate characteristics. Thus, in the
model, we formulate correctness conditions for an IJO automaton in terms of properties of the
automaton’s behaviors.

Formally, an execution fragmenr of A is a finite sequences0ic1s11t2..at0sor infinite sequence

5&1512itn5n of alternating states and actions of A such that (s1at1÷1,s11)is a step of A for
every i for which s exists. An execution fragment beginning with a start state is called an

execution. We denote the set of executions of A by execs(A), and the set of finite executions of
A byflnexecs(A). A state is said to be reachable in A if it is the final state of a finite execution
of A.

The schedule of an execution fragment a of A is the subsequence of a consisting of actions,

and is denoted by schedftz). We say that is a schedule of A if 3 is the schedule of an execution
of A. We denote the set of schedules of A by scheds(A) and the set of finite schedules of A by
flnscheds(A). The behavior of a sequence of actions in acts(A), denoted by beh(13), is the
subsequence of consisting of actions in ext(A). The behavior of an execution fragment a of A,
denoted by beh(a), is defmed to be beh(sched(a)). We say that is a behavior of A if is the
behavior of an execution of A. We denote the set of behaviors of A by behs(A) and the set of
finite behaviors of A byflnbehs(A).

An extended step of an automaton A is a triple of the form (s’43,s), where s’ and s are in
states(A), is a finite sequence of actions in acts(A), and there is an execution fragment of A
having s’ as its first state, s as its last state and as its schedule. (This execution fragment might

consist of only a single state, in the case that 3 is the empty sequence.) If y is a sequence of
actions in ext(A), we say that (s’,y,s) is a nwve of A if there is an extended step (s’,J3,s) of A such
that y = beh(J3).

We say that a finite schedule of A can leave A in state s if there is some finite execution a of
A with final state s and with sched(a) = 3. We say that an action it is enabled after a finite

schedule J3 of A if there is a states such that 3 can leave A in states and it is enabled in s.
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If c is any sequence of actions and A is an automaton, we write alA for alacts(A).

3.3. Composition
Often, a single system can also be viewed as a combination of several component systems

interacting with one another. To reflect this in our model, we define an operation called
“composition”, by which several I/O automata can be combined to yield a single 1/0
automaton. Our composition operator connects each output action of the component automata
with the identically named input actions of any number (usually one) of the other component
automata. In the resulting system, an output action is generated autonomously by one
component and is thought of as being instantaneously transmitted to all components having the
same action as an input. All such components are passive recipients of the input, and take steps
simultaneously with the output step.

3.3.1. Composition of Action Signatures
We first define composition of action signatures. Let I be an index set that is at most

countable. A collection { Si h i action signatures is s?id to be strongly compatible3if we have

1. out(S1)n out(S) = 0, for all i, j € I such that ij,

2. int(S) n acts(S) = 0, for all i, J € I such that ij, and

3. no action is in acts(S1)for infinitely many i.
Thus, no action is an output of more than one signature in the collection, and internal actions of
any signature do not appear in any other signature in the collection. Moreover, we do not permit
actions involving infinitely many component signatures.

The composition S = fl11Sof a collection of strongly compatible action signatures {S}1 is
defined to be the action signature with

• in(S) = u€iin(S1)— u€iout(S1),

• out(S) = tilE1out(S), and

• int(S) = U11int(S).
Thus, output actions are those that are outputs of any of the component signatures, and similarly
for internal actions. Input actions are any actions that are inputs to any of the component
signatures, but outputs of no component signature.

3.3.2. Composition of Automata
A collection { A j of automata is said to be strongly compatible if theft action signatures are

strongly compatible. The composition A = H€ 1A of a strongly compatible collection of
automata (A ) j has the following components:4

• sig(A)
= ieI sig(A),

3A weaker notion called “compatibility” is defined in [26J, consisting of the first two of the three given
properties only. For the purposes of this paper, only the stronger notion will be required.

4Note that the second and third components listed are just ordinary Cartesian products, while the first component
uses a previous definition.
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• states(A)
= 111e1 states(A),

• start(A) = rk start(AØ, and

• steps(A) is the set of triples (s’,2t,s) such that for all i € I, (a) if it e acts(A1) then

(s’[il,lt,s[i]) e steps(A1), and (b) if it E acts(A) then s’[iJ =

Since the automata A1 are input-enabled, so is their composition, and hence their composition
is an automaton. Each step of the composition automaton consists of all the automata that have a
particular action in theft action signature performing that action concunently, while the automata
that do not have that action in their signature do nothing. We will often refer to an automaton
formed by composition as a “system” of automata.

If a = oii• is an execution of A, let aIA be the sequence obtained by deleting when
is not an action of A1, and replacing the remaining s by sj[i]. Recall that we have previously
defined a projection operator for action sequences. The two projection operators are related in
the obvious way: sched(aIA1)= sched(a)1A1,and similarly beh(aIA) = beh(a)1A1.

In the course of our discussions we will often reason about automata without specifying their
internal actions. To avoid tedious arguments about compatibility, henceforth we assume that
unspecified internal actions of any automaton are unique to that automaton, and do not occur as
internal or external actions of any of the other automata we discuss.

All of the systems that we will use for modeling transactions are closed systems, that is, each
action is an output of some component. Also, each output of a component will be an input of at
most one other component.

3.3.3. Properties or Systems of Automata
Here we give basic results relating executions, schedules and behaviors of a system of

automata to those of the automata being composed. The first result says that the projections of
executions of a system onto the components are executions of the components, and similarly for
schedules, etc.

Proposition 1: Let {A111 be a strongly compatible collection of automata, and let
A = r111A1. If a € execs(A) then alA1 € execs(A1)for all i € I. Moreover, the same
result holds for finexecs, scheds, finscheds, behs and flnbehs in place of execs.

Certain converses of the preceding proposition are also true. In particular, we can prove that
schedules of component automata can be “patched together” to form a schedule of the
composition, and similarly for behaviors.

Proposition 2: Let { A lie i be a strongly compatible collection of automata, and let
A =H11A.

1. Let 3 be a sequence of actions in acts(A). If MA1 € scheds(A1)for all i € I,
then 1 e scheds(A).

2. Let 3 be a finite sequence of actions in acts(A). If lA e finscheds(A1)for all

5We use the notation s[i] to denote the jth component of the state vectors.
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1€ I, then f3 c finscheds(A).

3. Let 3 be a sequence of actions in ext(A). If 131A1 E behs(A) for all i € I, then
3 c behs(A).

4. Let be a finite sequence of actions in ext(A). If IA1 E finbehs(A) for all i
e I, then 3€ flnbehs(A).

The preceding proposition is useful in proving that a sequence of actions is a behavior of a
composition A: it suffices to show that the sequence’s projections are behaviors of the
components of A and then to appeal to Proposition 2.

3.4. Implementation
We define a notion of “implementation” of one automaton by another. Let A and B be

automata with the same external action signature, i.e., with extsig(A) = extsig(B). Then A is said
to implement B if finbehs(A) ç finbehs(B). One way in which this notion can be used is the
following. Suppose we can show that an automaton B is “correct”, in the sense that its finite
behaviors all satisfy some specified property. Then if another automaton A implements B, A is
also correct. One can also show that if A implements B, then replacing B by A in any system
yields a new system in which all fmite behaviors are behaviors of the original system.6

In order to show that one automaton implements another, it is often useful to demonstrate a
correspondence between stales of the two automata. Such a correspondence can often be
expressed in the form of a kind of abstraction mapping that we call a “possibilities mapping”,
defined as follows. Suppose A and B are automata with the same external action signature, and
suppose f is a mapping from states(A) to the power set of states(B). That is, ifs is a state of A,
f(s) is a set of states of B. The mapping f is said to be a possibilities mapping from A to B if the
following conditions hold:

1. For every start state s of A, there is a start state of B such that t0e

2. Lets’ be a reachable state of A, t’ € f(s’) a reachable state of B, and (s’,x,s) a step
of A. Then there is an extended step, (t’,y,t), of B (possibly having an empty
schedule) such that the following conditions are satisfied:

a. extIB) = zlext(A), and

b. t e f(s).

Proposition 3: Suppose that A and B aie automata with the same external action
signature and there is a possibilities mapping, f, from A to B. Then A implements B.

¼ sfronger and oftai useful notion of “A implements B” would require both fmite and Uqinile behaviors of A to
be behaviom of B. behs(A) c behs(B). As observed by Rosenkrantz eta) 135L this condition is too stmng for us to
use in defining correctness conditions for the locking algorithms considered in this papet.
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3.5. Preserving Properties
Although automata in our model are unable to block input actions, it is often convenient to

resthct attention to those behaviors in which the environment provides inputs in a “sensible”
way, that is, where the environment obeys certain “well-formedness” restrictions. A useful way
of discussing such restrictions is in terms of the notion that an automaton “preserves” a property
of behaviors: as long as the environment does not violate the property, neither does the
automaton. Such a notion is primarily interesting for properties that are prefix-closed and limit-
closed. 1st e be a set of actions and P be a nonempty, prefix-closed, limit-closed set of
sequences of actions in 0 (i.e.. a nonempty, prefix-closed, limit-closed “property” of such
sequences). Let A be an automaton with S rm int(A) = 0. We say that A preserves P if J3itIA c
finbehs(A), , c out(A) and j3I € P together imply that f3xI’ e P. (Note that in the case ‘1 iN

out(A) = 0, A trivially preserves P.)

Thus, if an automaton preserves a property P. the automaton is not the first to violate P: as long
as the environment only provides inputs such that the cumulative behavior satisfies P. the
automaton will only perform outputs such that the cumulative behavior satisfies P. Note that the
fact that an automaton A preserves a property P does not imply that all of A’s behaviors, when
restricted to ‘1’, satisfy P; it is possible for a behavior of A to fail to satisfy P. if an input causes a
violation of P. However, the following proposition gives a way to deduce that all of a system’s
behaviors satisfy P. The proposition says that if all components of a system preserve P. then all
the behaviors of the composition satisfy P.

Proposition 4: Let (A1)1be a strongly compatible collection of automata, and let

A = Hi € 1A1. Let 0 be a set of actions such that On int(A) = 0, and let P be a
nonempty, prefix-closed, limit-closed set of sequences of actions in 0. If every A1

preserves P. then A preserves P; if in addition, A is closed, then behs(A)I0 c P.

4. Serial Systems and Correctness
In this section, we develop the formal machinery needed to define correctness for transaction-

processing systems. Unlike much of the classical work on concurrency control, which defines
correctness of a transaction-processing system in terms of the existence of a serial execution of
the same system, we define correctness by first giving a separate specification of the permissible
serial executions as seen by users of the system, and then defining how executions of a
transaction-processing system must relate to this specification.7 We specify the permissible
seria] executions in terms of a system of automata, called a “serial system”. A serial system has
a structuit that looks much like a transaction-processing system, but is constrained not to run
transactions concurrently and not to allow aborted transactions to access data.

7Work that has analyzed multi-version concurrency control algorithms (e.g.. [61) has taken a similar approach of
using a separate specification of the serial executions, but has not developed a general structure that applies to a
wide range of algorithms.
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4.1. Overview
Transaction-processing systems consist of user-provided transaction code, plus transaction-

processing algorithms designed to coordinate the activities of different uansactions. The
transactions are written by application programmers in a suitable programming language.
Transactions are permitted to invoke operations on data objects. In addition, if nesting is
allowed, then transactions can invoke subtransactions and receive responses from the
subtransactions describing the results of their processing.

In a transaction-processing system, the transaction-processing algorithms interact with the
transactions, making decisions about when to schedule subtransactions and operations on
objects. In order to carry out such scheduling, the transaction-processing algorithms may
manipulate locks, multiple copies of objects, and other data structures. In the system
organization emphasized by the classical theory, the transaction processing algorithms are
divided into a “scheduler algorithm” and a “database” of objects. The scheduler has the power
to decide when operations are to be performed on the objects in the database, but not to perform
more complex manipulations on objects (such as maintaining multiple copies). Although this
organization is popular, it does not encompass all useful system designs.

In this paper, each component of a transaction-processing system is described as an 110
automaton. In particular, each transaction is an automaton, and all the transaction-processing
algorithms together comprise another automaton. Sometimes, as when describing serial systems
or explaining our algorithms, we will use a more detailed structure, and present the transaction-
processing algorithms as a composition of a collection of automata, one representing each object.
and one representing the rest of the system.

It is not obvious how one ought to model the nested structure of transactions within the 110
automaton model. One might consider defining special kinds of automata that have a nested
structure. However, it appears that the cleanest way to model this structure is to describe each
subtransaction in the transaction nesting structure as a separate automaton. If a parent
transaction T wishes to invoke a child transaction T’, T will issue an output action that “requests
that T’ be created”. The transaction-processing algorithms receive this request, and at some
later time might decide to issue an action that is an input to the child T’ and corresponds to the
“creation” of T’. Thus, the different transactions in the nesting structure comprise a forest of
automata, communicating with each other indirectly through the transaction-processing
automaton. The highest-level user-defined transactions, i.e., those that are not subtransactions of
any other user-defined transactions, are the roots in this forest.

It is actually more convenient to model the transaction nesting structure as a tree rather than as
a forest. Thus, we add an extra “root” automaton as a “dummy transaction”, located at the top
of the transaction nesting structure. The highest-level user-defined transactions are considered to
be children of this new root. The toot can be thought of as modeling the outside world, from
which invocations of top-level transactions originate and to which reports about the results of
such transactions are sent; indeed, we will generally regard the boundary between this root
transaction and the rest of the system as the “user interface” to the system. The use of the root
transaction works out nicely in the formal development: in most cases, the reasoning we do
about this dummy root transaction is the same as the reasoning we do about ordinary
transactions, so that regarding the root as a transaction leads to economy in our formal
arguments.
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The main purpose of this section is to define correctness conditions to be satisfied by
transaction-processing systems. In general, correctness conditions for systems composed of 1/0
automata are stated in terms of properties of sequences of external actions, and we will follow
that convention in this paper. Here it seems most natural to define correctness conditions in
terms of the actions occurring at the boundary between the transactions (including the dummy
root transaction) and the transaction-processing automaton. For it is immaterial how the
transaction-processing algorithms work, as long as the outside world and the transactions see
“correct” behavior.

We define correct behavior for a transaction-processing system in terms of the behavior of a
particular and heavily constrained transaction-processing system, one that processes all
transactions serially. We call such a system a “serial system”. Serial systems consist of
transaction automata and “serial object automata” composed with a ‘serial scheduler
automaton”. Transaction automata have already been mentioned above. Serial object automata
serve as specifications for permissible object behavior. They describe the responses the objects
should make to arbitrary sequences of operation invocations, assuming that later invocations wait
for responses to previous invocations. Serial objects are much like the ordinary typed variables
that occur in sequential programming languages; they serve the same purpose as the ‘serial
specifications” for data objects used by Weihl [42, 40]

The serial scheduler handles the communication among the transactions and serial objects, and
thereby controls the order in which the transactions take steps. It ensures that no two sibling
transactions are active concurrently—that is. it runs each set of sibling transactions serially. The
serial scheduler is also responsible for deciding if a transaction commits or aborts. The serial
scheduler can permit a transaction to abort only if its parent has requested its creation, but it has
not actually been created. Thus, in a serial system, all sets of sibling transactions are run serially,
and in such a way that no aborted transaction ever performs any steps.

It is important to understand that serial systems are introduced solely to serve as the
specification of the permissible serial behaviors. Since serial systems allow no concurrency
among sibling transactions, and cannot cope with a transaction that fails after it has started
running, they are not sufficiently general to serve directly as a model of real transaction-
processing systems. However, they are quite adequate as a basis for the definition of correctness
of more interesting systems. In later sections, we will describe some systems that do allow
concurrency and recoveiy from transaction failures. (For example, they undo the effects of
aborted transactions that have performed significant activity.) We prove that these systems are
correct in the sense that certain transactions, in particular the root transaction, are unable to
distinguish these systems from corresponding serial systems. In other words, it appears to these
transactions as if all siblings run serially, and that aborted transactions were never created.

In the remainder of this section, we develop all the necessary machinery for defining serial
systems. First, we define a type structure used to name transactions and objects. Then we
describe the general structure of a serial system—the components it includes, the actions the
components perform, and the way that the components are interconnected. Next, we define
several useful concepts involving the actions of a serial system. We then define the components
of the serial system in detail, and state some basic properties of serial systems. Finally, we use
serial systems to state the correctness conditions that we will use for the remainder of this paper.
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4.2. System Types
We begin by defining a type strucwre that will be used to name the transactions and objects in

a serial system.

A system jype consists of the following:
• a set Tof transaction names,

• a distinguished transaction name T0 E I
• a subset accesses of Tnot containing T0,

• a mapping parent: 7- (T0) —+ I which configures the set of transaction names into
a tree, with T0 as the root and the accesses as the leaves,

• a set rof object names,

• a mapping object accesses —+ L and

• a set V of return values.

Each element of the set “accesses” is called an access transaction name, or simply an access.
Also, if object(T) = X we say that T is an access to X.

In referring to the transaction flee, we use standard tree terminology, such as “leaf node”,
“internal node’’, “child”, ‘‘ancestor” and “descendant’’. As a special case, we consider any
node to be its own ancestor and its own descendant, i.e., the “ancestor” and “descendant”
relations are reflexive. We also use the notion of a “least common ancestor” (Ica) of two nodes.

The transaction tree describes the nesting structure for transaction names, with T0 as the name
of the dummy “root transaction”. Each child node in this tree represents the name of a
subtransaction of the transaction named by its parent. The children ofT0 represent names of the
top-level user-defined transactions. The accesses represent names for the lowest-level
transactions in the transaction nesting structuit; we will use these lowest-level transactions to
model operations on data objects. Thus, the only transactions that actually access data are the
leaves of the transaction tee, and these do nothing else. The internal nodes model transactions
whose function is to create and manage subtransactions (including accesses), but they do not
access data directly.

The tree structure should be thought of as a predefined naming scheme for all possible
transactions that might ever be invoked. In any particular execution, however, only some of
these transactions will actually take steps. We imagine that the wee structure is known in
advance by all components of a system. The tree will, in general, be an infinite structure with
infmite branching.

Classical concurrency control theory, as represented, for example, in [7], considers
transactions having a simple nesting structure. As modeled in our framework, that nesting
structure has three levels; the top level consists of the root T, modehng the outside world, the
next level consists of alL the user-defined transactions, and the lowest level consists of the
accesses to data objects.

The set ris the set of names for the objects used in the system. Each access transaction nanie
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is assumed to be an access to some particular object, as designated by the “object” mapping.
The set V of return values is the set of possible values that might be returned by successfully
compLeted transactions to theft parent transactions.

if T is an access transaction name and v is a return value, we say that the pair (T,v) is an
operation of the given system type. Thus, an operation includes a designation of a particular
access to an object, together with a designation of the value returned by the access.

4.3. General Structure of Serial Systems
A serial system for a given system type is a closed system consisting of a “transaction

automaton” AT for each non-access transaction name T, a “serial object automaton” S for
each object name X, and a single “serial scheduler automaton”. Later in this section, we will
give a precise definition for the serial scheduler automaton, and will give conditions to be
satisfied by the transactIon and object automata. Here, we just describe the signatures of the
various automata, in order to explain how the automata are interconnected.

The following diagram depicts the smscwre of a serial system.

Figure 1: Serial System Structure

The transaction nesting structure is indicated by dotted lines between transaction automata
corresponding to parent and child, and between each serial object automaton and the transaction

Transaction
Automata
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automata corresponding to parents of accesses to the object. The direct connections between
automata (via shared actions) are indicated by soLid lines. Thus, the transaction automata
interact directly with the serial scheduler, but not directly with each other or with the object
automata. The object automata also interact directly with the serial scheduler.

CREATE(T) REQUEST_COMMIT(T,v)

1” achild ofT

REQUEST_CREATE(T’)
REPORT_ABORT(T)

REPORT_COMMIT(T,v’)

Figure 2: Transaction Automaton

Figure 2 shows the interface of a transaction automaton in more detail. Transaction T has an
input CREATE(T) action, which is generated by the serial scheduler in order to initiate T’s
processing. We do not include explicit arguments to a transaction in our model; rather, we
suppose that there is a different transaction for each possible set of arguments, and so any input
to the transaction is encoded in the name of the transaction. In addition, T has
REQUEST_CREATEfI’) actions for each child T’ of T in the transaction nesting structure;
these are requests for creation of child transactions, and are communicated directly to the serial
scheduler. At some later time, the scheduler might respond to a REQUEST_CREATEçr) action
by issuing a CREATE(T’) action, an input to transaction T’. Transaction T also has
REPORT_COMM1TfF’,v’) and REPORT_ABORT(T’) input actions, by which the serial
scheduler informs T about the fate (commit or abort) of its prtviously requested child T’. In the
case of a commit, the report includes a return value v’ that provides information about the
activity of T’; in the case of an abort, no information is returned. Finally, T has a
REQUEST_COMMIT(Ty) output action, by which it announces to the scheduler that it has
completed its activity successfully, with a particular result as described by return value v.
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CREATE(T) REQUEST_COMMIT(T,v)

Figure 3: Object Automaton

Figure 3 shows the object interface. Object X has input CREATE) actions for each T that is
an access to X. These actions should be thought of as invocations of operations on object X.
Object X also has output actions of the form REQUEST_COMMIT(T,v), representing responses
to the invocations. The value v in a REQUEST_COMMIT(T,v) action is a return value returned
by the object as part of its response. (We have chosen to use the “create” and
“request_commit” notation for the object actions, rather than the more familiar “invoke” and
“respond” terminology, in the interests of unifonnity: there are many places in our formal
arguments where access transactions can be treated uniformly with non-access transactions, and
so it is useful to have a common notation for them.)

Tanaccess toX
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REQUEST CREATE(T) + REPORT_COMMIT(r,v)4 I

REPORT_ABORT(T)

COMMWm
ABORTçfl

— _

I Serial Scheduler Automaton

REQUESLCOMMrnT.v)

Figure 4: Serial Scheduler Automaton

Figure 4 shows the serial scheduler interface. The serial scheduler receives the previously
mentioned REQUEST_CREATE and REQUEST_COMMiT actions as inputs from the other
system components. It produces CREATE actions as outputs, thereby awakening transaction
automata or invoking operations on objects. It also produces corrçr and ABORT(T)

actions for arbitrary transactions T T0, representing decisions about whether the designated
transactions commit or abort. For technical convenience, we classify the COMMIT and ABORT
actions as output actions of the serial scheduler, even though they are not inputs to any other
system component.8 Finally, the serial scheduler has REPORT_COMMIT and
REPORT_ABORT actions as outputs, by which it communicates the fates of transactious to their

parents.

As is always the case for IA) automata, the components of a system are determined statically.

Even though we xvferred earlier to the action of “creating” a child transaction, the model treats

the child transaction as if it had been there all along. The CREATE action is treated formally as
an input action to the child transaction; the child transaction will be constrained not to perform

any output actions until such a CREATE action occurs. A consequence of this method of
modeling dynamic creation of transactions is that the system must include automata for all
possible transactions that might ever be created, in any execution. In most interesting cases, this
means that the system will include infinitely many transaction automata.

tiassifying actions as outpuLs even though they are ra inputs to any othes system component is permissible in
the 110 automaton modeL In this case, it would also be possible to classify these two aciions as intunal xtiorts of
Ur sajal scheduler, but then the slaLemeifis and1.oofs of the esmuing results would be slightly mon complicated.
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4.4. Serial Actions and Well-Formedness
The serial actions for a given system type are defined to be the external actions of a serial

system of that type. These are just the actions listed in the preceding subsection: CREATWT)

and REQUEST_COMIvIIT(T,v), where T is any transaction name and v is a return value, and

REQUEST_CREATE(T), COMMIT(T), ABORT(T), REPORT_COMMIT(T,v), and

RBPORT_ABORT(T)) where T T0 is a transaction name and v is a return value.9

In this subsection, we define some basic concepts involving serial actions. All the definitions

in this subsection are based on the set of serial actions only, and not on the specific automata in

the serial system. For this reason, we present these definitions here, before going on (in the next

subsection) to give more information about the system components.

We first present some basic definitions, and then we define “well-formedness” for sequences

of external actions of transactions and objects.

4.4.1. Basic Definitions
The COMMITIT) and ABORT(T) actions are called completion actions for T, while the

REPORT_COMMTT(T,v) and REPORTABORT(T) actions are cal]ed report actions forT.

With each serial action it that appears in the interface of a transaction or object automaton (that

is, with any non-completion action), we associate a transaction in the natural way: let T be any

transaction name. If it is one of the serial actions CREATE(T), REQUEST_COMMIT(T,v),

REQUEST_CREATE(T’), REPORT_COMMrr(T’,v’) or REPORT_ABORT(T’), where T’ is a

child ofT, then we define tranxaction(u) to beT. If it is a completion action, then transaction(it)

is undefined. In some contexts, we will need to associate a transaction with completion actions

as well as with other serial actions; since a completion action for T can be thought of as

occurring “in between” T and parentCfl, we will sometimes want to associate T and sometimes

parentQr) with the action. Thus, we extend the “transactionØr)” definition in two different

ways. If it is any serial action, then we define hightransacrion(ir) to be transaction(it) if it is not

a completion action, and to be parent(T), if it is a completion action forT. Also, if it is any serial

action, we define lowtransactionØt) to be transaction(ir) if it is not a completion action, and to be

T, if it is a completion action for T. In particular, highu-ansaction(ir) = lowtransaction(m) =

transacflonØt) for all serial actions other than completion actions.

We also require notation for the object associated with any serial action whose transaction is

an access. If it is a serial action of the form CREATE(TJ) or REQLTST_COMMff(T,v), where

T is an access to X, then we define objectOt) to be X.

We extend the preceding notation to events as well as actions. For example, if it is an event,

then we write cransaction(it) to denote the transaction of the action of which it is an occurrence.

We extend the definitions of “hightransaction”, “lowtransaction”, and “object” similarly. We

will extend other notation in this paper in the same way, without further explanation.

9Later in the paper, we will defme other kinds of systems besides serial systems, namely, simple systems and
generic systems. These will also include the serial actions among their external actions; we will still refer to these

actions as “serial actions” even though they appear in non-serial systems.
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Recall that an operation is a pair (T,v), consisting of an access transaction name and a return
value. We can associate operations with a sequence of serial actions: if is a sequence of serial
actions, we say that the operation (T,v) occurs in if there is a REQUEStCOMMIT(T,v) event
in f3. Conversely, we can associate serial actions with a sequence of operations: for any
operation (T,v), let petfor,n(T,v) denote the two-action sequence CREATE(T)
RQUEST_COMMIT(T,v), the expansion of (T,v) into its two parts. This definition is extended
to sequences of operations in the natural way: if is a sequence of operations of the form
‘(T,v), then perform() = perform(’) perform(T.v). Thus, the “perform” function expands a
sequence of operations into a corresponding alternating sequence of CREATE and
REQUEST_COMMIT actions.

Now we require terminology to describe the status of a transaction during execution. Let 3 be
a sequence of serial actions. A transaction name T is said to be active in 13 provided that 3
contains a CREATh(T) event but no REQUEST_COMMIT event for T. Similarly, T is said to
be live in 3 provided that 3 contains a CREATE(T) event but no completion event for T.
(However, note that 3 may contain a REQUEST_COMMIT for T.) Also, T is said to be an
orphan in 3 if there is an ABORT(U) action in 13 for some ancestor U of T.

We have already used projection operators to restrict action sequences to particular sets of
actions, and to actions of particular automata. We now introduce another projection operator,
this time to sets of transaction names. Namely, if 13 is a sequence of serial actions and Uis a set
of transaction names, then I3IUis defmed to be the sequence 131{x: transactionO) c 0). If T is a
transaction name, we sometimes write jilT as shorthand for 131(T). Similarly, if 3 is a sequence
of serial actions and X is an object name, we sometimes write 131X to denote j3l( it: objectØr) =

X}.

Sometimes we will want to use definitions from this subsection for sequences of actions
chosen from some other set besides the set of serial actions — usually, a set containing the set of
serial actions. We extend the appropriate defmitions of this subsection to such sequences by
applying them to the subsequences consisting of serial actions. Thus, if 13 is a sequence of
actions chosen from a set CD of actions, define serial(j33) to be the subsequence of 13 consisting of
serial actions. Then we say that operation (T,v) occurs in 13 if it occurs in serial(f3). A
transaction T is said to be active in 13 provided that it is active in serial(13), and similarly for the
“live” and “orphan” definitions. Also, 1311/is defined to be serial(j3)114 and similarly for
restriction to an object.

4.4.2. WeIl-Formedness
We will place very few constraints on the transaction automata and serial object automata in

our definition of a serial system. However, we will want to assume that certain simple properties
are guaranteed; for example, a transaction should not take steps until it has been created, and an
object should not respond to an operation that has not been invoked. Such requirements are
captured by “well-formedness conditions”, properties of sequences of external actions of the
transaction and serial object components. We define those conditions here.

First, we define “transaction well-formedness”. Let The any transaction name. A sequence
13 of serial actions it with transactionØz) = T is defined to be transaction well-formed for T
provided the following conditions hold.
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1. The first event in , if any, is a CREATE(T) event, and there are no other
CREATE events.

2. There is at most one REQUEST_CREATE(T’) event in for each child T’ of T.

3. Any report event for a child T’ of T is preceded by REQUEST_CREATE(T’) in 3.

4. There is at most one report event in 3 for each child T’ ofT.

5. If a REQIJESTJCOMJVIIT event for T occurs in 3, then it is preceded by a report
event for each child T’ of T for which there is a REQUEST_CREATE(T’) in 3.

6. If a REQI.JEST_COMMIT event for T occurs in , then it is the last event in .

In particular, if T is an access transaction name, then the only sequences that are transaction
well-formed for T are the prefixes of the two-event sequence
CREATE(T)REQTJEST_COMMIT(T,v). For any T, it is easy to see that the set of transaction
well-formed sequences for T is nonempty, prefix-closed and limit-closed.

It is helpful to have an equivalent form of the “transaction well-formedness” definition for
use in later proofs.

Lemma 5: A sequence of actions 0 with transaction($) = T is transaction well-
formed for T if and only if for every finite prefix yr of , where it is a single action,
the following conditions hold.

1. If it is CREATE(T)), then
a. there is no CREATEQI’) event in

2. If it is REQUEST_CREATE(T’) for a child T’ ofT, then
a. there is no REQUEST_CREATE(T’) event in y,

b. CREATE(T) appears in and

c. there is no REQUEST_COMMIT event for Tin y.

. If it is a report event for a child T’ ofT, then
a. REQUEST_CREATE(T’) appears in y and

b. there is no report event forT’ in y

4. If it is REQUEST_COMMIT(T,v) for some value v, then
a. there is a report event in y for every child of T for which there is a

REQUEST_CREAm event in y,

b. CREATE(T) appears in y, and

c. there is no REQUEST_COMMIT event for Tin y.

Now we define “serial object well-formedness”. Let X be any object name. A sequence of
serial actions it with object(it) = X is defined to be serial object welt-formed for X if it is a prefix
of a sequence of the form CREATE(T1) REQUEST_COMMTT(T1,v1)CREATE(T2)
REQUEST_COMMIT(r2,v2)..., where T1 Tj when i J.

Lemma 6: Suppose 3 is a sequence of serial actions it with objectOr) = X. If 3 is
serial object well-formed for X and T is an access to X, then IT is transaction well-
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formed for T.

Again, we give an equivalent form of the “serial objeet well-formedness” definition that will
be useful in later proofs.

Lemma 7: A sequence of actions 0 with objeet(Ø) = X is serial object weU-fornrd
for X if and only if for every finite prefix c of

,
where it is a single action, the

following conditions hold.
I. If it is CREATE(fl then

a. there is no CREATEQJ) event in y and

b. there are no active accesses in

2. If it is REQIJEST_COMMIT(T,v) for a return value v, then

a. T is active in y

We also say that a sequence of operations (T,v) with objectçr) = X is serial object
well-formed for X if no two operations in have the same transaction name. Clearly, if is a
serial object well-formed sequence of operations of X, then perform() is a serial object well
formed sequence of actions of X. Also, any serial object well-formed sequence of actions of X is
a prefix of perform() for some serial object well-formed sequence of operations .

4.5. Serial Systems
We are now ready to define “serial systems”. Serial systems are composed of transaction

automata, serial object automata, and a single serial scheduler automaton. There is one
transaction automaton AT for each non-access transaction name T, and one serial object
automaton S, for each object name X. We describe the three kinds of components in turn.

4.5.1. Transaction Automata
A transaction aiuomaton AT for a non-access transaction name T of a given system type is an

I/O automaton with the following external action signature.

Input:
CREATE(T)
REPORT_COMMIT(T’,v’), for even child T’ ofT, and every return value v’
REPORT ABORTer’), for every child T’ of T

Output:
REQUEST_CREATE(T’), for every child T’ of T
REQUEST_COMMIT(T,v), for every return value v

In addition, AT may have an arbitrary set of internal actions. We require A1 to preserve
transaction well-fojmedness for T, as defined in Sections 3.5 and 4.4.2. Except for this
requirement, transaction automata can be chosen arbitrarily. Note that if is a sequence of
actions, then j31T = J3Iext(AT).

As discussed earlier, the requirement that AT preserve transaction well-fonnedness for T does
not mean that all behaviors of AT are transaction well-formed, but it does mean that as long as
the environment of AT does not violate transaction well-formedness, AT will not do so. Notice
that the only ways the environment can violate transaction well-formedness for T are by



27

reporting the fate of a subtransaction that was never requested, or by generating duplicate
CREATE(T) actions or REPORT actions for children ofT.

Transaction automata are intended to be general enough to model the transactions defined in
any reasonable programming language. Of course, there is still work required in showing how to
define appropriate transaction automata for the transactions in any particular language. This
correspondence depends on the special features of each language, and we do not describe

techniques for establishing such a correspondence in this paper.

43.2. Serial Object Automata
A serial object auwmatOn for an object name X of a given system type is an 110 automaton

with the following external action signature.

Input:
CREATE(T), for eveiy access T to X

Output:
REQIJEST_COM?vllT(T,v), for every access T to X and every return value v

In addition, S may have an arbitrary set of internal actions. We require S< to preserve serial

object well-formedness for X, as defined in Sections 3.5 and 4.4.2.

As with tiansaction automata, serial object automata can be chosen arbitrarily as long as they
preserve serial object well-formedness. However, as above, this does not mean that all behaviors

of S, are serial object well-formed for X, but it does mean that as long as the environment of S
does not violate serial object well-formedness, S> will not do so.

Serial object automata are intended to be general enough to model any of the system-provided

or user-defined types provided in modem programming langiages, subject to the zesthction that
each operation involves only a single object. The “semantic information” about a data object
that is used in some concurrency control algorithms is obtained from the serial object automaton.

4.5.2.1. Example: A Bank Account
As an example, we describe a serial object BA representing the specification of a bank account.

There are three kinds of accesses to BA:

• balance?: The return value for this kind of access gives the current balance.

• deposit_k: This increases the balance by Sa. The only mturn vaJue is “OK”.

• withdraw$b: This reduces the balance by Sb if the result will not be negative. In
this case the return value is “OK”. If the result of withdrawing would be to cause
an overdraft, then the balance is left unchanged, and the return value is “FAIL”.

The serial object automaton is defined as follows. A state s of SBA has two components,

spending, which is either null or an access to BA, and s.balance, which is an integer representing

the current balance of the account. The transition relation consists of all triples (s’,2t,s) satisfying

the pie- and post-conditions described below, where it is the indicated action. If a component of
is not mentioned in the effects, it is implicit that the set is the same in s’ and s.

CREATE(T), for T an access to
Effect;

s.pending = T
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REQUEST_COMMIT(T,’ ‘OK”), for T a deposit_k access to
Precondition:

s’.pending = T
Postconcjition:

spending = null
s.baiance = s’.balance + a

RFQUEST_COMMIT(T,”OK”), forT a withdraw_$b access to
Precondition

s’.penthng = T
s’.balance b

Postcondition:
spending = null
s.balance = s’.balance - b

REQUEST cOMMITCr,”FAIL”), for Ta withdraw_$b access to
Precondition:

s’.pending = T
s’.balance tb

Postcondition:
spending = null

REQUEST_COMMIT(T,v), for Ta balance? access to SBA
Precondition:

s’.pending = T
s’.balance = v

Postcondition:
spending = null

An invocation can occur at any time, and is recorded as pending. A response to a pending
deposit operation increments the current balance by the amount to be deposited. A response with
value “OK” to a pending withdraw operation can be generated whenever the current balance is
large enough to cover the requested withdrawal, and decrements the current balance by the
specified amount. If the current balance is too small to cover a requested withdrawal, then the
response to the withdrawal must return the value “PAL”, and the balance is not changed.
Finally, a response v to a pending balance? operation can be generated whenever the balance is
V.

The ability to specify the behavior of an object using a serial object automaton is essential for
modeling type-specific concurrency control algorithms. As discussed earlier, concurrency can
be enhanced by using information about the semantics of operations—for example, that two
operations commute—in synchronizing concurrent transactions. When a system has a hot spot,
such as an aggregate quantity (e.g., net assets for a bank, or quantity on hand for an inventory
system) or a data structure representing a collection, type-specific algorithms can be essential for
achieving good performance. Many examples of type-specific algorithms can be found in the
literature. In the second half of this paper, we describe a locking algorithm that uses the
specifications of operations to allow operations that commute to run concurrently.
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4.5.3. Serial Scheduler
There is a single serial scheduler autothaton for each system type. It runs transactions

according to a depth-first traversal of the transaction tree, running sets of sibling transactions
serially. When two or more sibling transactions are available to run (because their parent has
requested their creation), the serial scheduler is free to determine the order in which they run. In
addition, the serial scheduler can choose nondeterrninistically to abort any transaction after its
parent has requested its creation, as long as the transaction has not actually been created. In the
context of this scheduler, the “semantics” of an ABORT(T)) action are that transaction T was
never created. The scheduler does not permit any two sibling transactions to be live at the same
time, and does not abort any transaction while any of its siblings is live. We now give a formal
definition of the serial scheduler automaton.

The action signature of the serial scheduler consists of the following actions, for every
transaction name T and return value v.

Input;
REQUEST_CREAThrn T
REQUEST_COMMIT(T,v)

Output:
CREATE(T)
COMMIT(T),TT0
ABORTW,TT0
REPORT_COMMIT(T,v), T T0
REPORT_ABORT(T), T T0

Each state s of the serial scheduler consists of six sets, denoted via record notation:
screate_requested, s.created, s.commit_requested, s.committed, s.aborted and s.reported. The
set s.comniit_requested is a set of operations. The others are sets of transactions. There is
exactly one start state, in which the set create_requested is fT0 }, and the other sets are empty.
We use the notation s.completed to denote s.committed u s.aborted. Thus, s.completed is not an
actual variable in the state, but rather a “derived variable” whose value is determined as a
function of the actual state variables.

The transition relation of the serial scheduler consists of exactly those tiiples (s’,it,s) satisfying
the preconditions and yielding the effects descñbed below, where It is the indicated action. We
include in the effects only those conditions on the state s that may change with the action. If a
component of s is not mentioned in the effects, it is implicit that the set is the same in s’ and s.

REQUEST_CREATECT), T
Effect:

s.create_requested = s’.create_requested ci fT}

REQUEST_COMMrF(r,v)
Effect:

s.cornmit_requested = s’.commit_requested ci { (Lv)

CREAmrnD
Precondition:

T € s ‘create requested - s’ .created
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T s’.aborted
siblings(T) n s’.created c s’.completed

Effect:
s.created = s’.created U (T}

COMMITfr), T T0
Precondition:

(T,v) e s’.commit_requested for some v
T s ‘. completed

Effect:
scommitted = s’.committed u (T)

ABORTm, T
Precondition:

T s’.createjequested - s’.completed
T s’.created
siblings(T) n s’.created s’.completed

Effect:
s.aborted = s’.aborted U (T)

REPORT_COMMITQF,v), T T0
Precondition:

T € s’.comrnitted
(T,v) € s’.commit_requested
TE s’.reported

Effect:
s.reported = s’.reported Li (T}

REPORT_ABORTrn T T0
Precondition:

Te s’.aborted
T s’.reported

Effect:
s.reported = s’.reported U (T)

The input actions, REQUEST_CREATE and REQUEST_COMMIT, simply result in the
request being recorded. The COMMrT and REPORT output actions are relatively simple: a
COMMIT action can occur only if it has previously been requested and no completion action has
yet occurred for the indicated transaction, while the result of a transaction can be reported to its
parent at any tint after the COMMIT or ABORT has occurred.

The other output actions, CREATE and ABORT, are the most interesting. A CREATE action
can occur only if a corresponding REQUEST_CREATE has occurred and the CREATE has not
already occurred. Moreover, it cannot occur if the transaction was previously aborted.
Similarly, an ABORT action can occur only if a corresponding REQUEST_CREATE has
occurred and no completion action has yet occurred for the indicated transaction. Moreover, it
cannot occur if the transaction was previously created. The third ptecondition on the CREATE
action says that the serial scheduler does not create a transaction until each of its previously
created sibling transactions has completed (i.e., committed or aborted). That is, siblings are run



31

sequentially. Similarly, the third precondition on the ABORT action says that the scheduler does

not abort a ransaction while there is activity going on on behalf of any of its siblings. That is,

aborted transactions are dealt with sequentially with respect to their siblings. The combined

effect of the preconditions on the CREATE arid ABORT actions is that the scheduler does not

consider a transaction for creation or abortion so long as a sibling is live.

The following lemma describes simple relationships between the state of the serial scheduler

and its computational history.

LemmaS: Let (3 be a finite schedule of the serial scheduler, and let s be a state such

that J3can leave the serial scheduler in states. Then the following conditions are true.

1. T c s.create_requested if and only if T = T0 or J3 contains a

REQUEST CREATE(T) event.

2. T E s.created if and only if 3 contains a CREATE(T) event.

3. (T,v) c s.commit_requested if and only if l contains a

REQUEST_COMMITIT,v) event.

4. T E s.committed if and only if contains a COMMIT(T) event.

5. T c s.aborted if and only if [3 contains an ABORT(T)) event.

6. T € s.reported if and only if 1 contains a report event for T.

7. s.committed n s.aborted = 0.

8. s.reported ç s.committed u s.aborted.

The following lemma gives simple facts about the actions appearing in an arbitrary schedule of

the serial scheduler.

Lemma 9: Let be a schedule of the serial scheduler. Then all of the following

hold:

1. If a CREATE(TJ) event appears in for TT0, then a

REQUEST_CREATE(T) event precedes it in 3.

2. At most one CREATE(T) event appears in f3 for each transaction T.

3. Wa COMMJT(T) event appears in
,

then a REQUEST_.COIVIMIT(T,v) event

precedes it in [3 for some return value v.

4. If an ABORT(’l]) event appears in [3, then a REQUEST_CREATE(T) event

precedes it in l•
5. If a CREATECT) or ABORTçF) event appears in [3 and is preceded by a

CREATE(T’) event for a sibling T’ of T, then it is also preceded by a

completion event forT’.

6. At most one completion event appears in 3 for each transaction.

7. At most one report event appears in [3 for each transaction.

8. If a REPORT_COMMIT(T,v) event appears in [3,then a COMMIT(T) event

precedes it in I3
9. If a REPORLABORTCT) event appears in [3, then an ABORT(T) event
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precedes it in (3.

The final lemma of this subsection says that the serial scheduler preserves the well-formedness

properties described earlier.

Lemma 10:
1. Let T be any transaction name. Then the serial scheduler preserves

transaction well-formedness forT.

2. Let 5< be any object name. Then the serial scheduler preserves serial object
well-formedness for X.

Proof:
1. Let S be the set of all serial actions 0 with transacflon(Ø) = T. Suppose f3it

restricted to the actions of the serial scheduler is a finite behavior of the serial
scheduler, it is an output action of the serial scheduler, and JMG is transaction
well-formed for T. We must show that f3irKD is transaction well-formed for T.
If it 0, then the result is immediate, so assume that c 4’, i.e., that
transacfionOt) = T.

We use Lemma 5. We already know that 315 is transaction well-formed for
T, and so the four conditions of the lemma hold for all prefixes of IC’. Thus,
we need only prove the four conditions of the lemma hold for ,rIS. Since it

is an output of’ the serial schedular, It is either a CREATE(T) event or a
REPORT event for a child ofT. If it is CREATEJ), then since fr restricted
to the actions of the serial scheduler is a schedule of the serial scheduler,
Lemma 9 implies that no CREATh(T)) occurs in (3. If it is a REPORT event
for a child T’ of T, then Lemma 9 implies that REQUEST_CREATE(T’)
occurs in 3 and no other REPORT forT’ occurs in fi Then Lemma 5 implies
that itIC is transaction well-formed for T.

2. The argument for this case is similar, using Lemma 7.
II

4.5.4. Serial Systems, Executions, Schedules and Behaviors
A serial system of a given system type is the composition of a strongly compatible set of

automata indexed by the union of the set of non-access transaction names, the set of object
names and the singleton set ISS) (for “serial scheduler”). Associated with each non-access
transaction name T is a transaction automaton AT for T. Associated with each object name X is

a serial object automaton S for X. Finally, associated with the name SS is the serial scheduler
automaton for the given system type. When the particular serial system is understood from
context, we will sometimes use the terms serial executioits, serial schedules and serial behaviors

for the system’s executions, schedules and behaviors, respectively.

We show that serial behaviors are well-formed for each transaction and object name.

Proposition 11: If [3 is a serial behavior, then the following conditions hold.

1. For every transaction name T, lT is transaction well-formed for T.

2. For every object name X, IX is serial object well-formed for SC.

Proof: For non-access transaction names T. or arbitrary object names X, the result is
immediate by Proposition 4, the definitions of transaction and object automata, and
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Lemma 10.

Suppose that T is an access to X, Since 31X is serial object well-formed for X,
Lemma 6 implies that 3!T is transaction well-formed for T. E

A serial system runs sibling transactions serially. This does not mean, however, that the
REQUEST_CREATE events and the REPORT events for siblings are serialized. For example,
the following sequence could be a fragment of a serial behavior, where T and T’ are siblings:

REQUESLCREATh(T)
REQUESTCREATh(T’)
CREATE(T)
REQUEST_COMMIT(T,v)
COMMlTf)
CREATE(T’)
REQUEST_COMMIT(r’,v’)
COMMIT(T’)
REPORT_COMMIT(T’,v’)
REPORT_COMMTT(T,v)

Notice that the REQUEST_CREAm and REPORT events for T and T’ are interleaved, even
though the CREATE and COMMIT events are serialized.

Unless expressly stated, we henceforth assume an arbitraiy but fixed system type and sexial
system, with AT as the transaction automaton associated with non-access transaction name T,
and as the serial object automaton associated with object name X. In the next subsection, we
show how this fixed serial system serves as the basis of our definition of correctness for actual
transaction-processing systems.

4.6. Correctness Conditions
Now that we have defined serial systems, we can use them to define correctness conditions for

other transaction-pmcessing systems. It is reasonable to use serial systems in this way because
of the particular constraints the serial scheduler imposes on the orders in which transactions and
objects can perform steps. We contend that the given constraints correspond precisely to the
way nested transaction systems ought to appear to behave; in particular, these constraints yield a
natural generalization of the notion of serial execution in classical transaction systems. We
arrive at a number of correctness conditions by considering for which system components this
appearance must be maintained: for the external environment T0, for all transactions, or for all
non-orphan transactions.

To express these correctness conditions we define the notion of “serial correctness” of a
sequence of actions for a particular transaction name. We say that a sequence 3 of actions is
serially correct for transaction name T provided that there is some serial behaviory such that I3rr
= fl10 (Recall that if T is a non-access, we have IMT = Plext(AT) and ylT = lext(AT)). If T is a
non-access transaction, the serial correctness for T of a sequence guarantees to implenrutors

rhis condition is analogous to the “ciew serializability’ condition of Yannakakis [45], extended to deal with
operations other than reads and writes, and with subtiansactions.



34

of AT that their code has encountered only situations that could arise in serial executions.

Our intention in defining correctness for a system is to constrain its interactions with the
external environment, which is modeled by the root transaction T0. Thus, our fundamental

correctness condition simply requires serial correctness for T9. We might expect most systems

to contain the same transaction automaton for T0 as in the serial system. (In other words, the

external environment in the serial system will be the same as in the real transaction-processing

system.) In fact, we have modeled many systems with a stnicture that is even closer to that of

the serial system: as a system of automata containing an automaton AT for each transaction

name T. However, our definition of correctness does not depend on these or other assumptions.

Such constraints may seem intuitively reasonable, but they ate not needed for defining

correctness. Furthermore, in our experience, most such constraints rule out some interesting

systems. Thus, in defining correctness, we allow any system (modeled as an 110 automaton) to

be considered as a candidate for a transaction-processing system. As a result, our definition of

correctness does not constrain the internal structure of a transaction-processing system, or even

its interface with the external environment

We consider a system to be serially correct for transaction name T provided all of its finite

behaviors are serially correct for T. Then if T is a non-access transaction, serial correctness for T
of a system containing AT guarantees to implementors of AT that their code will encounter only

situations that can arise in serial executions.

The principal notion of correctness for a transaction-processing system that we use in our work

is that of serial correctness for the root transaction T0 of all finite behaviors. This says that the

“outside world” cannot distinguish between the given system and the serial system. However,

many of the algorithms we study satisfy slmnger correctness conditions. A fairly strong and
possibly interesting correctness condition is the serial correctness of all finite behaviors for all

non-access transaction names. Thus, neither the outside world nor any of the indivithial user
transactions can distinguish between the given system and the serial system. Note that the
definition of serial correctness relative to all non-access transactions does not require that all the
transactions see behavior that is part of the same execution of the serial system; rather, each
could see behavior arising in a different serial execution.

We will also consider intermediate conditions such as serial correctness for all non-orphan
transaction names. This condition implies serial correctness for T0 because the serial scheduler

does not have the action ABORT(T0)in its signature, so T0 cannot be an orphan. Most of the

popular algorithms for concurrency control and recovery, including the locking algorithms in this

paper, guarantee serial correctness for all non-orphan transaction names. Our Serializability

Theorem gives sufficient conditions for showing that a behavior of a transaction-processing

system is serially correct for an arbitrary non-orphan transaction name, and can be used to prove

this property for many of these algorithms. The usual algorithms do not guarantee serial
correctness for orphans, however; in order to guarantee this as well, the use of a special “orphan

management” algorithm is generally required. Such algorithms are described and proved correct

in [17].

Note that each correctness condition discussed in this section can be applied to many different

kinds of transaction-processing systems. AU that is needed is that the system be modeled as an

1/0 automaton with appropriately named actions. Typically, the system would contain an
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automaton AT for each non-access transaction flame, and one or more automata modeling the

transaction management components. In this paper, and in most of our work, we place no

resthctions on the transaction automata other than their preservation of transaction well

formedness. (More specialized algorithms could depend upon special properties of the

transaction automata; for example, that transactions access objects in a particular order.) In fact,

we place no constraints on the signature or structure of a transaction-processing system. Alt we

require is that its behaviors satisfy the stated correctness condition, namely serial correctness for

T0.

5. The Serializability Theorem
In this section, we present our Serializability Theorem, which embodies a fairly general

method for proving that a concurrency control algorithm guarantees serial correctness. This
theorem expresses the following intuition: a behavior of a system is serially correct provided

that there is a way to order the transactions so that when the operations at each object are

arranged in the corresponding order, the result is a behavior of the conesponding serial object.

The correctness of many different concurrency control algorithms can be proved using this
theorem; in this paper, we use it to prove correctness of two locking algorithms.

This theorem is the closest analog we have for the classical Serializability Theorem of [7].
Both that theorem and ours hypothesize that there is some ordering on transactions consistent

with the behavior at each object. In both cases, this hypothesis is used to show serial

correctness. Our result is somewhat more complicated, however, because it deals with nesting
and aborts, and also with objects whose operations are more complex than simple reads and
updates. In the first subsection of this section, we give some additional definitions that are
needed to accommodate these complications.

We have tied to state our theorem to mae it as widely applicable as possible. Thus, the
theorem talks about sequences of actions, not about particular system organizations. However,

not all sequences of actions are reasonable; the theorem applies to those sequences that could be

behaviors of systems containing the transaction automata AT. In other words, the projection of

the sequence on each transaction must be a behavior of that transaction’s automaton. In addition,

certain additional constraints, such as that a CREATE(T) action does not occur without a
preceding REQUEST_CREATE(T)) action, must also be satisfied. To capture these constraints

on sequences of actions, we define “simple systems” in Section 5.2. Next, we define various
orders on events and transactions that are used to reorder behaviors of real transaction-processing

systems to show the existence of appropriate serial behaviors. Finally, we present the statement

and proof of our Serializability Theorem.

5.1. Visibility
One difference between our result and the classical Serializability Theorem is that the

conclusion of our result is serial correctness for an arbitrary transaction T, whereas the classical

result essentially considers only serial correctness for T0. Thus, it should not be surprising that

the hypothesis of our result does not deal with all the operations at each object, but only with

those that are in some sense “visible” to the particular transaction T. In this subsection, we

define a notion of “visibility” of one transaction to another. This notion is a technical one, but

one that is natural and convenient in the formal statements of results and in their proofs.
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Visibility is defined so that, in the usual transaction-processing systems, only a transaction T’
that is visible to another transaction T can affect the behavior of T.

A transaction T’ can affect another transaction T in several ways. First, if T’ is an ancestor of
T, then T’ can affect T by passing information down the transaction tree via invocations.
Second, a transaction T’ that is not an ancestor of T can affect T through COMMiT actions for
T’ and all ancestors of T’ up to the level of the least common ancestor with T; information can
be propagated from T’ up to the least common ancestor via REPORT_COMMIT actions (and the
associated return values), and from there down to T via invocations. Third, a transaction T’ that
is not an ancestor of T can affect T by accessing an object that is later accessed by T; in most of,
the usual transaction-processing algorithms, this is only allowed to occur if there axe intervening
COMMIT actions for all ancestors ofT’ up to the level of the least common ancestor with T.

Thus, we define “visibility” as follows. Let 3 be any sequence of serial actions. If T and T’
are transaction names, we say that T’ is visible to T in if there is a COMMITØJ) action in 3 for
every U in ancestors(T’) - ancestors(T). Thus, every ancestor of T’ up to (but not necessarily
including) the least common ancestor of T and V has committed in 3.

Our definition of visibility has been chosen for ease of argument. Note, however, that it says
that T’ is visible to T even in some situations where T’ cannot affect the behavior of T, for
example when T’ follows T in 3. Intuitively, the definition includes all transactions that, as far
as T can “see”, participate in the computation, either before or after T.

Figure 5: Visibility

Figure 5 depicts two transactions, T and T’, neither an ancestor of the other. If the transactions
represented by all of the circled nodes have committed in some sequence of serial actions, then
the definition implies that T’ is visible to T.

T

T
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The following lemma describes elementary properties of “visibility”.

Lemma 12: Let 3 be a sequence of actions, and let T, T’ and T” be transaction
names.

1. If T’ is an ancestor of T, then T’ is visible Co T in j3.

2. T’ is visible to Tin j3 if and only if V is visible to lcacT,T) in P
3. If T” is visible toT’ in and T’ is visible to Tin 3, then T” is visible to Tin

4. UT’ is live in J3 andT’ is visible to Tin , then T is a descendant ofT’.

5. If T’ is an orphan in and T’ is visible to Tin , then T is an orphan in JS.

We use the notion of “visibility” to pick, out of a sequence of actions, a subsequence
consisting of the actions corresponding to transactions that are visible to a given transaction T.
More precisely, if 13 is any sequence of actions and T is a transaction name, then visible(f3,T)
denotes the subsequence of 3 consisting of serial actions it with hightransaccionØt) visible toT in
[3. Note that every action occurring in visible(13,T) is a serial action, even if 13 itself contains
other actions. Note also that the use of “hightransaction” in the definition implies that if T’ is
visible to T in (3 and T” is a child of V that has an AEORT(T”) in f3, then any

REQUEST_CREATE(T”), ABORT(T”) and REPORT_ABORT(J”) actions in 13 are included
in visible(13,T), but actions of T” are not.11

The following easy lemma says that the “visible” operator on sequences picks out either all or
none of the actions having a particular transaction.

Lemma 13: Let 3 be a sequence of actions, and let T and T’ be transaction names.
Then visibleØ3,T)IT’ is equal to 13T’ if V is visible to Tin 3, and is equal to the empty
sequence otherwise.

5.2. Simple Systems
It is desirable to state our Serializability Theorem in such a way that it can be used for proving

correctness of many different kinds of transaction-processing systems, with radically different
architectures. We therefore define a “simple system”, which embodies the common features of
most transaction-processing systems, independent of their concurrency control and recovery
algorithms, and even of theft division into modules to handle different aspects of transaction-
processing. A “simple system” consists of the transaction automata together with a special
automaton called the “simple database”. The simple database ensures a number of simple
constraints, including the following:

• A transaction is not created without first being requested.

• A transaction does not both commit and abort.

• A transaction does not commit without first requesting to commit

• A REPORT action does not occur for a transaction unless it is preceded by a
corresponding completion action.

111f T = T0. vIsib1e(T) cmresponds to the “committed projection” of as defined in [1.
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However, the simple database does not include any constraints based on the semantics of the

objects as specified by the serial system. In other words, the simple database is allowed to return

arbitrary responses to accesses.

In practice, a real transaction-processing system will obey all the constraints imposed by a

simple system, and will also impose additional constraints on the responses to accesses that

guarantee serial correctness. Our Serializability Theorem is stated in terms of simple systems; it

can be applied to any system that “implements” the simple system in the sense that each of its

behaviors is a simple behavior. In our experience, many complicated transaction-processing

algorithms can be modeled as implementations of the simple system. For example, a system

containing separate objects that manage locks and a “controller” that passes information among

transactions and objects can be represented in this way, and so our theorem can be used to prove

its correctness. The same strategy works for a system containing objects that manage

timestamped versions and a controller that issues timestamps to tansactions. Later in this paper,

we apply our Serializability Theorem to show that every behavior of certain locking systems is
serially correct for non-orphan transactions.

5.2.1. Simple Database
There is a single simple database for each system type. The action signature of the simple

database is that of the composition of the serial scheduler with the serial objects:

Input:
REQUEST_CREAmrn T * T0
REQUEST_COMMITfr,v), T a non-access

Output:
CREATE(T)
COMMIT(T), T T0
ABORT(T), T T0
REPORT_COMMIT(T,v), T T0
REPORT ABORT(T), T T0
REQUEST_COMMIT(T,v), T an access

Note that actions such as CREATEfr) and REQUEST_COMMITfr,v), for T an access

transaction name, are outputs of the simple database but are not inputs of any transaction

automaton. (The same is true for the COMMIT and ABORT actions.) Thus, they could be
classified as internal actions of the simple database, but it tunis out to be more convenient to
treat them as outputs.

States of the simple database are the same as for the serial scheduler, and the initial states are
also the same. In particular, although the signature of the serial scheduler has been extended by
adding the actions of the serial objects, no additional state information about the objects occurs

in the simple database. Intuitively, the behaviors of the simple database are “syntactically well-
formed”, but are not constrained to satisfy any substantive “semantic” constraints, particularly

as to the serial object actions. Semantic constraints are added in the statement of the
Serializability Theorem, which specifies general sufficient conditions for the serial correctness of
behaviors of the simple system. The transition relation is as follows.

REQUEST CREATE(TX T T0

* -
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Effect:
s.create_requested = s’.create_requested u fT}

REQIJEST_COMMIT(T,v), Ta non-access
Effect:

s.commitaequested = s’.commit requested u ((T,v))

CREATh(T)
Precondition:

T E s ‘.createjeques ted - s ‘.created
Effect:

screated s’created tj (T}

COMIv11T(T), T
Precondition:

(T,v) E s’commit_requested for some v
T s’.completed

Effect:
s.comrnitted = s’.conimkted u {T}

ABORT(T), T T0
Precondition:

T e s’.create_requested - s’.completed
Effect:

saborted s’.abortedt. (T}

REPORT_COMMIT(T,v), T T0
Precondition:

Te s’.eommitted
(T,v) € s’.commit_requested
TE s’.reported

Effect:
s.reported = s’.reported u (TI

REPORT_ABORTQI’), T T0
Precondition:

Te s’.aborted
T s’.reported

Effect:
s.reported = s’.reported {T}

REQUEST_COMMIT(T,v), T an access
Precondition:

Te s’.created
for all v’, (T,v’) E s’.commit_requested

Effect:
s.commit_requested s’.comrnit_requested u {(T,v)

The next two lemmas are anaJogous to those previously given for the serial scheduler.

Lemma 14: Let be a finite schedule of the simple database, and let s be a state that
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can result from applying [3 to the start state. Then the following conditions are true.

1. T e s.create_requested if and only if T = or 3 contains a
REQUEST_CREATE(T) event.

2. T c s.created if and only if contains a CREATE(T) event.

3. (T,v) € s.commit_requested if and only if contains a
REQUEST_COMMIT(J,v) event.

4. T € s.committed if and only if contains aCOMvflT(T) event.

5. T € s.aborted if and only if contains an ABORT event.

6, T E s.reported if and only if (3 contains a report event for T.

7. s.committed n s.aborted = 0.
8. s.reported scommitted u s.aborted.

Lemma 15: Let 3 be a schedule of the simple database. Then all of the following
hold:

1. If a CREATE(T) event appears in 3 for TT0, then a
REQUES’LCREATE(T) event precedes it in f3.

2. At most one CREATECT) event appears in J3 for each transaction T.

3. If a COMMIT(T) event appears in ft then a REQUEST_COMMIT(T,v) event
precedes it in [3for some return value v.

4. If an ABORT(T) event appears in [3, then a REQUEST_CREATE(TJ) event
precedes it in [3.

5. At most one completion event appears in for each transaction.

6. At most one report event appears in f3 for each transaction.

7. If a REPOR1ZCOMMIT(T,v) event appears in l. then a COM1MIT(T) event
precedes it in [3.

8. If a REPORT_ABORT(T) event appears in 3, then an ABORT(T) event
precedes it in [3.

9. If T is an access and a REQUEST_COMMTT(I’,v) event occurs in j3, then a
CREATE(T) event precedes it in

.

10. If T is an access, then at most one REQUEST_COMMiT event for T occurs in

13.

Thus, the simple database embodies those constraints that we would expect any reasonable
Uansacdon-processing system to satisfy—i.e., weLl-formedness and contml-flow
(communication) requiremezns. The simple database does not allow CREATEs, ABORTs, or
COMMfl’s without an appropriate preceding request, does not allow any transaction to have two
creation or completion events, and does not report completion events that never happened. Also,
it does not produce responses to accesses that were not invoked, nor does it produce multiple
responses to accesses. On the other hand, the simple database allows almost any ordering of
transactions, allows concurrent execution of sibling transactions, and allows arbitrary responses
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to accesses.

We do not claim that the simple database produces only serially correct behaviors; rather, we

use the simple database to model features common to more sophisticated systems. Such systems

will usually include a controller (perhaps with constraints of its own) and complicated objects

with concurrency control and recovery built into them. Such a system will have a&lidonal

actions for communication between these objects and the controller.

We now show that the simple database preserves transaction well-formedness.

Lemma 16: Let T be any transaction name. Then the simple database preserves

transaction well-formedness for T.

Proof: Let e be the set of all serial actions 0 with transaction(Ø) T. Suppose 3x

restricted to the actions of the simple database is a finite behavior of the simple

database, it is an output action of the simple database, and I3’ is transaction well-

formed for T. We must show that 3xKD is transaction well-formed for T. If it

then the result is immediate, so assume that it e 0, i.e., that transa.ction(it) = T.

We use Lemma 5. We already know that lø is transaction well-formed for T, and

so the four conditions of the lemma hold for all prefixes of I0. Thus, we need only

prove the four conditions of the lemma hold for itiø. Since it is an output of the

simple database, It is either a CREATE(T) event for an arbitrary transaction T, a

REPORT event for a child of an arbitrary transaction T, or a REQUEST_COMMIT for

T, where T is an access. ii it is CREATE(T)), then since 3n restricted to the actions of

the simple database is a schedule of the simple database, Lemma 15 implies that no

CRFATE(T) ocean in (3. If it is a REPORT event for a child T’ of T, then Lemma 15

implies that REQUEST_CREATE(T’) occurs in f3 and no other REPORT forT’ occurs

in 3. If it is REQUEST COMMITçT,v) and T is an access, then Lemma 15 implies

that CREATE(T) occurs in 3, and no REQUEST_COM?vflT for T occurs in 3. Then

Lemma 5 implies that (3itIO is transaction well-formed for T.

5.2.2. Simple Systems, Executions, Schedules and Behaviors

A simple system is the composition of a strongly compatible set of automata indexed by the

union of the set of non-access transaction names and the singleton set (SD I (for “simple

database”). Associated with each non-access transaction name T is the transaction automaton

AT for T, and associated with the name SO is the simple database automaton for the given

system type. When the particular simple system is understood from context, we will often use

the terms simple executions, simple schedules and simple behaviors for the system’s executions,

schedules and behaviors, respectively.

Proposition 17: If is a simple behavior and T is a transaction name, then 31T is

transaction well-formed forT.

Proof: The result is immediate by Lemma 16 and the definition of transaction

automata. Cl

The following is a basic fact about simple behaviors.

Lemma 18: Let 13 be a simple behavior. Let T and T’ be transaction names, where

T’ is an ancestor ofT. if T is live in and not an orphan in then T’ is live in 3.

Our Serializability Theorem is formulated below in temis of simple behaviors; it provides a
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sufficient condition for a simple behavior to be serially correct for a particular transaction name
T.

5.3. Event and Transaction Orders
Our general approach to showing that a system is correct is to extract a subsequence of each

behavior of the system, reorder the subsequence in certain ways, and then show that the resulting
sequence is a behavior of the serial system. We put two constraints on the reordering: first, it
must preserve the order of certain events from the original behavior, and second, for certain pairs

of transactions T and T’ it must order all events of T before all events of V. The first constraint
is captured by the notion of an “affects order”, while the second is captured by a “sibling
order”. In this subsection we define these orders precisely and prove some simple facts about
them.

5.3.1. Affects Order
We first define a partial order “affectsW)” on the events of a sequence 1 of serial actions.

This will be used to describe basic dependencies between events in a simple behavior; any
appropriate reordering of will be required to be consistent with these dependencies.

We define the affects relation by first defining a subrelation, which we call the “directly
affects” relation, and then taking its transitive closure. This decomposition will be useful to us
later when we carry out proofs about the “affects” relation, since it is often easy to reason about
“directly-affects”. For a sequence 1 of serial actions, and eventsØ and It in fi, we say thatØ
directly affects it in 3 (and that (Ø,0 € directly-affects(f3)) if at least one of the following is true.

• transaction(Ø) = transaction(ir) and 0 precedes icin j312

• 0 = REQUEST_CREATE(T) and it = CREATE(T)

• 0= REQUEST_COMMIT(T,v) and it = COMMIT(T)

• 0= REQUESLCREATE(T) and it = ABORT)

• = COMMIT(T) and it = REPORT_COMMIT(T,v)

• 0 = ABORT(T) and it = REP0RT_AB0RTfr)

Lemma 19: If j3 is a simple behavior and (Ø,ir) a directly-affects(fl), then 0 precedes
icinl3.’3

Proof: The first case is obvious, so we consider only the last five cases of the
definition. Transaction well-formedness implies that there cannot be two
REQUES’LCREATE(T) events in fi for the same T, and that there cannot be two
REQUES1’ COMMIT events for the same transaction. Also, Lemma 15 says that 13
does not contain two completion events for the same T. Hence, in each case 0 is the
only occurrence of the appropriate action in 3. In each case, it is an output of the
simple database, and the simple database preconditions test for the presence of the
appropriate preceding action. fl

t2Thjs includes accesses as well as non-accessea

13Note that the flons of a simple system are exactly the seriai dons.
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For a sequence 3 of serial actions, define the relation affectsW) to be the transitive closure of
the relation dfrectly-affects(j3). If the pair (Ø,m) is in the relation affects([3), we also say that ip

affects It in 3. The following is immediate.

Lemma 20: Let be a simple behavior. Then affeczs() is an irreflexive partial
order on the events in j3.

Proof: By Lemma 19,0 directly affects it in f3 only if 0 precedes it in [1 Therefore 0
affects it in 3 only if 0 precedes it in 3. Thus, affects(f3) is irreflexive and
antisymmeffic. Since affects() is constructed as a transitive closure, the result
follows. U

The conditions listed in the definition of “directly-affects” should seem a reasonable
collection of dependencies among the events in a simple behavior. At a technical level, the
justification for them is that we will use the affects relation to extract seria] behaviors from a
simple behavior satisfying certain conditions. The order of the events in the serial behavior will
be consistent with the affects ordering. Thus, if is a simple behavior and (Ø,x) E ffectsW), all
the serial behaviors we conswuct that contain it will also contain 0, and 0 will precede it in each
such behavior. The first case of the “directly-affects” definition is necessary because we ate not
assuming special knowledge of transaction behavior; if we included it and not 0 in our candidate
serial behavior, we would have no way of proving that the result included correct behaviors of
the transaction automata. The remaining cases naturally parallel the preconditions of the serial
scheduler; in each case, the preconditions of it as an action of the serial scheduler include a test
for a previous occurrence of 0, so a sequence of actions with it not preceded by 0 could not
possibly be a serial behavior.

5.3.1.1. Example: Affects Order
Recall that a serial system only constrains the CREATE and completion actions of siblings, not

the REQUES1ZCREATE and REPORT actions. For example, consider the following fragment
of a simple behavior, where T and T’ are siblings:

REQUEST_CREATEQT)
REQUESTJDREATh(T’)
CREATE(T)
CREATE(T’)
REQUEST_COMMITcr’,v’)
REQUESLCOMMIT(T,v)
COMMIT(T)
COMMIT(T’)
REPORT_COMMIT(T’,v’)
REPORT_COMMIT(T,v)

Notice that T and T’ are not run serially. However, the events of T do not affect the events ofT’,
or vice-versa. Thus, the following reordering of the sequence above is consistent with the affects
relation for the sequence:

REQUESTCREATE(T)
REQUEST_CREATE(T’)
CREATE(T)
REQIJESTCOMMIT(r,v)
corrçr
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CREATE(T’)
REQUESTSOMMIT(T’ ,v’)
COMMIT(T’)
REPORLCQMMIT(T’,v’)
REPORT_COMMIT(T,v)

In addition, this reordering is a schedule of the serial scheduler. This illustrates how we can
reorder a simple behavior into a serial one without violating the affects ordering.

53.1.2. Properties of the Affects Order
The following lemmas contain son constraints on the kinds of events that can affect other

events in a simple behavior. The first lemma shows that events of transactions in the subtree
rooted at T can only affect events of transactions outside the subtree if they first affect a
REPORT event for T.

Lemma 21: Let [ be a simple behavior and T a transaction name. Let 0 and It be
events of 3 such that 0 affects it in I. lowtransaction(Ø) is a descendant of T and
lowtransaction(rc) is not a descendant of T. Then j contains a REPORT event v for T,

• affects i, and either it = or ic affects it. Furthermore, if t is a REPORT_ABORT
event thenØ = ABORT(T)).

Proof: The existence of v follows from the observation that if $‘ directly affects it’

in , lowtransaction(4”) is a descendant of T and lowlransactionØt’) is not a descendant
ofT, then 0’ is a completion event for T and it’ is a corresponding REPORT event for
T. Furthermore, by Lemma 15, ‘ is the only completion event for T and it’ = v) is
the only REPORT event for T in

.

By definition of the affects relation, 0 affects w and either it = w or v affects it.

The final property follows from the observation that no event of a descendant of T
directly affects an ABORT event forT. U

The next lemma shows that events of transactions outside the subtree rooted at T can only
affect events of descendants of T if they first affect a REQUEST_CREATE(T) event Its proof
is similar to that of the previous lemma.

Lemma 22: Let 1 be a simple behavior and T a transaction name. Let $ and it be
events of f3 such that 0 affects it in f3, lowtransaction(Ø) is not a descendant of T and

• lowtransactionØt) is a descendant of T. Then either 0 is a REQUEST_CREATE(T)
event, or 0 affects a REQUEST CREATE(T) event for T that affects it.

Together, Lemmas 21 and 22 describe conditions under which the effects of events can
“leave” or ‘enter” subtrees of the transaction tree. These conditions will be useful in later
proofs.

As before, we extend the “affects” definition to sequences of arbitrary actions by saying
that 0 affects it in [3 if and only if O affects it in serialW).
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5.3.2. Sibling Orders
The essential feature of any concurrency control mechanism is the choice of a consistent

serialization order throughout the system. The type of serialization ordering needed for a nested
transaction system is more complicated than that used in the classical theory. Instead of just
arbitrary total orderings on transactions, we will use orderings that only relate siblings in the
transaction nesting tree. We call such an ordering a “sibling order”. Intertsting examples of
sibling orders are the order of completion of transactions or an order determined by assigned
timestamps. We define “sibling orders’ in this subsection. (Note that a total order on all
transactions is not appropriate, as subtransactions run concurrently with their parents in a nested
system.)

Let SIB be the (ineflexive) sibling relation among transaction names, for a particular system
type; thus, (T,T’) E SIB if and only if T T’ and parent(I’) = parent(T’). If R ç sm is an
irreflexive partial order then we call R a sibling order. Sibling orders are the analog for nested
transaction systems of serialization orders in single-level transaction systems. Note that sibling
orders am not necessarily total, in general; totality is not always appropriate for our results.

A sibling order can be extended in two natural ways. First, if R is a binary relation on the set
of transaction names (such as a sibling order), then let R+r be the extension of R to
descendants, i.e., the binary relation on transaction narrrs containing (T,T’) exactly when there
exist transaction names U and U’ such that T and T’ are descendants of U and U’ respectively,
and (U,U’) e R. If R is a sibling order, echoes the manner in which the serial scheduler
runs transactions when it runs siblings with no concurrency, in the order specified by
Ri4 Second, if 13 is any sequence of actions, then Revent(33)is the extension of R to serial events
in f3, i.e., the binary relation on events in containing (Ø,ir) exactly when 0 and it are distinct
serial events in l with lowtransactions T and T’ respectively, where (T,T’) € R5. (We use
“lowtransaction” in this definition to ensure that completion actions are ordered along with the
actions of the completing transaction.)

The following are straightforward.

Lemma 23: Let R be a sibling order. Then R11 is an irreflexive partial order, and
for any sequence 3 of actions, Revent(13)is an irreflexive partial order.

Lemma 24: Let 3 be a sequence of actions and R a sibling order. Let it and it’ be
events of with lowtransactions U and U’ respectively. Let t and “ be events of
with lowtransactions T and 1” respectively, where T is a descendant of U and V is a
descendant of U’. If (wjt’) c Revt(P) then (14i,y’) E Revt(l3).

The concept of a “suitable sibling order” describes two basic conditions that will be required
of the sibling orders to be used in our theorem. Given T, we want to find a serial behavior that
includes the actions of transactions visible to T (i.e., that can be “seen” by T). Each set of
siblings that appears in this serial behavior must be totally ordered, motivating the first condition
below. The second condition asserts that R does not contradict the dependencies described by
the affects relation. Formally, let fi be a sequence of actions and Ta transaction name. A sibling
order P. is suitable for l and T if the following conditions are met:

14A similar definition is used by Been, eta?. [5] and by Lynch [24].
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L R orders all pairs of siblings T’ and T” that are lowtransactions of actions in

visible(fi,T).

2. and affectsW) are consistent partial orders on the events in visibleW,T).

The use of lowtransaction in this definition ensures that ABORT events in visible(ji,T) are

included in the events ordered by ReWRL.

We have the following extension of the first property above.

Lemma 25: Let 3 be a simple behavior and T a transaction name, If the sibling

order R is suitable for [3 and T, then R orders all pairs of siblings T’ and T” such that

some descendant of each is the lowtransacdon of an action in visible([3,T).

Proof: The lemma follows from the following fact about simple behaviors: if a

descendant of T is the lowuansaction of an action in a simple behavior , then T is the

lowtransacflon of some action in 3. Q

We next give a technical lemma that will be useful for proving that particular sibling orders are

suitable.

Lemma 26: Let ( be a simple behavior and let R be a sibling order satisfying the

following condition: if (it,ic’) E affects(j3) and lowtransactionØt) is neither an ancestor

nor a descendant of lowtransactionQr’) then (wjr’) € ReveflLW3). Then Revent(l3) and

affectsW3) axe consistent partial orders on the events off).

Proof: We prove this lemma by contradiction. If Rent() and affects(13) are not

consistent, then there is a cycle in the relation R,([3) u affects(13), and thus there

must be some shortest cycle. Let o’ n = it0 be such a shortest cycle,

where for each 1, (w1iq,,1)e RevW3)u affects(j33). In the following discussion we

will use arithmetic modulo n for subscripts, so that if i = n, 7tj1 is to be interpreted as

it1. We note that n> 1, since both RevencW) and affects@) are irreflexive.

Since the relation Revent([3) is acyclic, there must be at least one index i such that

(wit1)e aftects() and Let T and T’ be the lowtransactions of

it1 and x11 respectively. By hypothesis, T is either an ancestor or a descendant ofT’.

We consider two cases.
1. Tis an ancestor of T’.

If the pair (K11r1) is in affeets(J33), then by the transitivity of the affects

relation, (it11,t÷1) € affects([3). On the other hand, if (x11,x1)e Reveiit([3),

then by Lemma 24, (ic1jt÷1)c vent(P) In either situation, there is a

shorter cycle in the relation ReventW3)u affects([3), obtained by omitting ,t.

This contradicts our assumption that the cycle chosen is as short as possible.

2. T is a descendant of T’.

If the pair (it÷1,c1÷2)is in affects(f3), then by the transitivity of the affects

relation, (it12) c affects(). On the other hand, if 04.1,74+2) c

then by Lemma 24, (r1,w1,2)€ R1(f)). In either situation, there is a shorter

cycle in the relation Revent([3) C’ affects([3), obtained by omitting x,1. This

contradicts the assumption that the cycle chosen is as short as possible.
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In every case, we have found a contradiction; thus, the assumption that the relation

u affectsWl) contains a cycle must be wrong. U

5.4. The Serializability Theorem

We now present the main result. It says that a simple behavior 3is serially correct for a

non-orphan transaction name T provided that there is a suitable sibling order R for which a

certain “view condition” holds for each object name X. The view condition says that the

portion of 3 occurring at X that is visible to T, reordered according to R, is a behavior of the

serial object S. In order to make all of this precise, suppose 3 is a finite simple behavior, T a

transaction name, R a sibling order that is suitable for I and T, and X an object name. Let be

the sequence consisting of those operations occurring in (3 whose transaction components are

accesses to X and are visible to T in (3. ordered according to on the transaction

components. (Lemma 25 implies that this ordering is uniquely determined.) Define

vIew(13,T,R,X) to be perform().

Informally, viewW,T,R,X) represents the portion of the behavior occurring at X that is

visible to T, reordered according to R. Stated in other words, this definition extracts from 3 the

REQUEST_COMMIT actions for accesses to X that are visible to T; it then reorders those

REQUEST_COMMIT actions according to ft, and then inserts an appropriate CREATE action

just prior to each REQUEST_COMMIT action. The theorem uses a hypothesis that each

view(j3,T,R,X) is a behavior of the serial object S to conclude that 13 is serially correct for T.

Theorem 27: (Serializability Theorem) Let (3 be a finite simple behavior, T a

transaction name such that T is not an orphan in , and R a sibling order suitable for 3

and T. Suppose that for each object name X, viewW3,T,R,X) c flnbehs(Sx). Then (3 is

serially correct for T.

The theorem has a straightforward corollary that applies to other systems besides simple

systems—in particular, to systems that have additional, non-serial actions in their signature.

Corollary 28: Let (B1) be a strongly compatible set of automata and let B =

111€ 1B1. Suppose that all non-access transaction names Tare in the index set I and that

AT and BT are identical automata for all such T.

Let be a finite behavior of B, Ta transaction name that is not an orphan in (3 and R

a sibling order suftable for serial((3) and T. Suppose that the following conditions hold.

1. serial(3) is a simple behavior.

2. For each object name X, view(seriai(),T,R,X) e flnbehs(Sx).

Then 3 is serially correct for T.

(Recall that our definition of serial correctness for T only requires that each fmite behavior of

the given system look to T like a serial behavior. An alternative definition would require the

same for all behaviors, not just finite behaviors. However, for T * T0, the proof of the

Serializability Theorem does not work for all behaviors: the reordering that is carried out th the

construction of y need not always produce a sequence, in the case of a transaction that carries out

an infinite amount of computation. In fact, this is not just an anomaly of our proof; transaction

management systems based on locking algorithms do not satisfy this stronger condition, an

observation first made by Rosenkrantz et al. p35]. In the most interesting case, where T = T0, the
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songer condition does hold, and the proof of the Serializability Theorem can be modified to
give the result.)

We use the Serializability Theorem and its corullary later in this paper to reason about two
locking algorithms, and in [2] to prove correctness of timestamp algorithms. The rest of this
section contains a careful (and somewhat technical) proof of the Serializability Theorem. The
reader who is more interested in the applications of this theoiem than in its proof may wish to go
on to later sections without reading die rest of this section. Nothing in the rest of this section is
needed for understanding the rest of the paper.

5.5. Proof of the Serializabillty Theorem
This subsection is devoted to a proof of the Serializability Theorem. We define several

technical terms, such as “ordered-visible” and “pictures”, to use in the proof. These
definitions are not used elsewhere in the paper.

The general strategy is as follow& Given a finite simple behavior 3, a non-orphan transaction
T, and a suitable sibling order R, we must produce a serial behavior y that looks the same as to
T, i.e., such that MT = rr. The construction of y is done in three steps. First, visible(13,T), the
portion of 3 visible toT, is extracted from f3. Second, this sequence is reordered according to R
and affects(). (There may be many ways of doing this.) The set of all acceptable reorderings is
called ordered-visible(I&T,R). Third, we take a prefix y of a sequence in ordered-visibleW,T,R)
that includes all events of T. The set of all acceptable such prefixes is called pictures(,T,R).
We argue that each element of pictures(13,T,R) is a serial behavior by showing separately that its
projections are behaviors of the transaction automata, of the seri& object automata, and of the
serial scheduler, and then applying Proposition 2; since the projection of an element of
picturesWT,R) on T is the same as IT, the desired result follows.

5.5.1. Pictures
If f3 is a finite simple behavior, T a transaction name and R a suitable sibling order for and T,

then define ordered-visibIeW,T,R) to be the set of reorderings of visibleW3,T) that are consistent

with affectsW) u R0(I3). Also, define pictures(,T,R) to be the set of all sequences y
obtained as follows. If no actions it with transaction(7t) = T appear in visible(f3,T) then y is the
empty sequence. Otherwise, take a sequence 6 in ordered-visible(f3,T,R). Then y is the prefix of
Sending with it, where it is the last event in 6 such that hightransactionOr) is a descendant of T.

Lemma 29: Let [1 be a finite simple behavior, T a transaction name and R a suitable
sibling order for f3 and T. Then ordered-visible({3,T,R) and pictures(j3,T,R) are
nonempty sets of sequences.

Proof: By the fact that R is suitable for 1 and T. E
Lemma 30: Let 13 be a finite simple behavior, T a transaction name and R a sibling

order that is suitable for 3 and T. Let 7E pictures(13,T,R). If$ and lv are events of 13.0
affects iv in 3 and it is an event of y, then 0 is an event in y, and 0 precedes lv in 7.

Proof: Since affectsW) is the transitive closure of the finite relation
directly-affects(j3), it suffices to prove the lemma in the case that 0 directly affects it in
13. Since it is in visible(13,T). examination of the six cases of the definition of
directly-affects(3) shows thatØ is also in visible(13,T). By definition, y is a prefix of a
sequence S in ordered-visible(13,T,R). Since S is ordered consistently with affectsW3), 0



49

precedes it in S. Therefore, 0 is in 7

5.5.2. Behavior of Transactions
In this subsection, we show that any sequence in pictures(,T.R) projects to yield a finite

behavior of each transaction automaton. Also, for T itself, each sequence in pictures([,T,R)
projects to yield 3IT.

Lemma 31: Let fi be a simple behavior, T a transaction name and R a sibling order
that is suitable for j3 and T. Suppose ye pictures(13,T,R). Then uT = fliT, and 4T’ is a
prefix of 31T’ for all transaction names T’.

Proof: By the definition of pictures, using Lemma 13 and the fact that the directly-

affects relation orders all events in fi with the same transaction. LI

Lemma 32: Let 3 be a simple behavior, T a transaction name and R a sibling order

that is suitable for and T. Suppose y e picturesQ3,T,R). Then T’ is a finite

behavior of AT for every non-access transaction nameT’.

Proof: By Lemma 31 and Proposition 1. U

5.5.3. Behavior of Serial Objects
Next we show that any sequence in pictures(fl,T,R) projects to yield a finite behavior of each

serial object automaton. We will use the view condition to show this; thus, we must begin by
relating the definitions of “view” and “pictuies”.

Lemma 33: Let f3 be a finite simple behavior, T a transaction name and R a sibling

order suitable for and T. Let S c ordered-visible(j3,T,R). Let X be an object name.
Then one of the following two possibihties holds.

1. SIX is identical to view(j3,T,R,X).

2. T is an access to X and SIX is the result of inserting a single CREATE(T))
event somewhere in the sequence viewQ3,T,R,X).

Proof: The two constructions imply that SIX and view(,T,R,X) have identical
subsequences of REQUEST_COMMIT actions. The sequence view(fl,T,R,X) contains
exactly one CREATEQJ) immediately preceding each REQUEST_COMMIT for U.
Each such CREATEçI.J) also appears in SIX, by the preconditions for the simple
database and the defmition of visibility; moreover, the definition of ordered-visible

implies that each such CREATE(U) also appears immediately preceding the
corresponding REQUEST_COMMIT for U. Thus, the only possible difference
between SIX and view(,T,R,X) is that SIX might contain some extra CREATE(U)

events, without matching REQUEST_COMMIT events for U.

Since S is a reordering of a subsequence of visible((3,T), any such unmatched
CREATE(U) event must have U visible to Tin . Since no REQUEST.COMMIT for

U appears in SIX, none appears in visible(fl,T) and hence none appears in 3. Simple

database preconditions imply that no COMMIT(U) appears in 3. Therefore, it must be
chat U = T, and that T is an access to X.

Lemma 34: Let j3 be a finite simple behavior, Ta transaction name such that T is not
an og,han in 3, and R a sibling order suitable for 3 and T. Let y e picEures(,T,R).

Let X be an object name. Then uiX is either a prefix of viewW,T,R,X) or else is a
prefix of view W,T,R,X) followed by a single CREATE(T) event
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Proof: By definition of pictures(j3,T,R), y is obtained as a prefix of a sequence 6 €

ordered-visibleW,T,R). The previous lemma implies that 61X and view(J3,T,R,X) are
identical except that an exa CREATE(T) event might appear in &1X, and this can only
occur in case T is an access to X.

if SIX contains no extra CREATE events not present in view(,T,R,X), then it is
immediate by the construction of y as a prefix of S that 1X is a prefix of
view({3,T,R,X), as needed. So suppose that Six is the same as view(13,T,R,X) except
that SIX contains an exui CREATE(T)) event. Then the definition of pictures implies
that 1X is the prefix of SIX ending with the CREATE(T) event Then y1X is a prefix of

viewW.T,ILX) followed by a single CREATE(T) event LI

Lemma 35: Let 3 be a simple behavior, T a transaction name, R a sibling order that
is suitable for and T, and X an object name. Suppose that view(j33,T,R,X) is a finite
behavior of S. Suppose 7€ pictures(13.T,R). Then ylX is a finite behavior of S,.

Proof: By Lemma 34 and the fact that inputs to S, as with any I/O automaton, are

always enabled.

5.5.4. Behavior of the Serial Scheduler
Next, we show that any sequence in pictures(jl,T,R) is a behavior of the serial scheduler.

Lemma 36: Let 3 be a finite simple behavior Ta transaction name such that T is not
an orphan in 3, and R a sibling order that is suitable for and T. Let y E

pictures((3,T,R). Then yis a finite behavior of the serial scheduler.

Proof: By definition of pictures(j3,T,R), y is obtained as a prefix of a sequence 6 c
ordered-visible(,T,R). That is, if no actions it with transactionQt) — T appear in
visibleW,T) then y is empty. Otherwise, 7 is the pyeflx of Sending with the last event
in 6 that has a descendant of T as its hightransaction.

The proof is by induction on prefixes of y, with a trivial basis. Let ir be a prefix of
with it a single event, and assume that 7’ is a behavior of the serial scheduler. If it is

an input action of the serial scheduler, then the fact that inputs are always enabled
implies that 7 is a behavior of the serial scheduler. So assume that It is an output action
of the serial scheduler. Let s’ be the state of the serial scheduler after 1’ We must
show that it is enabled in the serial scheduler automaton in state s’.

1. it is CREATE(T’). We show that T’ e s’.create_requested - s’.created -

s’.aboned and that siblings(T’) n s’.created c s’.completed.

By the preconditions of the simple database and Lemma 14, a
REQUEST_CREATE(T’) event 0 precedes it in . Then (Ø,it) e affects(),
so Lemma 30 implies that is in y’. Thus T’ e s’.create_requested.

Since only one CREATE(T’) occurs in 3. no CREATE(T’) occurs in y’, so by
Lemma 8, T’ E s’.creaced.

Since by Lemma 12, T’ is not an orphan in , no ABORT(T’) occurs in .

Thus, no ABORTT’) occurs in y’, so by Lemma 8, T’ s’.aborted.

Suppose T” is a sibling ofT’ that is in s’.created. Then CREATE(T”) occurs
in y’, by Lemma 14. Since the order of events in 7 is consistent with

(T’,T”) R. Since Rr is suitable for and T, çr”,T’) €
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R5. If T is a descendant of T”, then T and T’ are incomparable and so

(T,T’) € Rftar,. Since 6 is ordered consistently with ReveflL(), it follows all

events ô in 6 such that highzransaction(ø) is a descendant of T. But then the
definition of pictures would exclude it from y, a contradiction. Therefore, T is
not a descendant ofT”. Since T” is visible to Tin 3, a COMMIT(T”) event
occurs in J3. This COM1flT(T”) is in visiblef,T) and is ordered before it by

Revent(P). Thus, COMMIT(T”) precedes It in 3, and so COMMIT(T”)

occurs my’. Hence, T” e s’.completed.

2. it is COMMIT(T’).

We show that (T’,v) e s’.cornmit_requested for some v, and that T’ €

s’.completed.

By the preconditions of the simple database, there is a value v such that a

REQUESt.COMMIT(T’,v) event 0 appears in 3. Then (Øjt) E affectsQ3), so
Lemma 30 implies that is in y. Thus (T’,v) e s’.commiLrequested.

By Lemma 15, there is only one completion event for T’ in and hence only
one in y. Hence, T’ s’.completed.

3. It IS ABORT(T’).

We must show that T’ € s’.create_requested - s’.completed - s’.created and
siblings(T’) n s’.created s’.completed.

By the preconditions of the simple database, a REQUEST CREATE(T’)

event 0 appears in I• Then (Ø,it) € affects(), so Lemma 30 implies that 9 is
in y’. Thus, T’ € s’.create_requested.

Since by Lemma 15 there is at most one completion event in 3, there can be

no completion event in y’. Thus, T’ s’.completed.

Also T’ is an orphan in , so by Lemma 12, T’ is not visible to Tin
.

Thus

CREATE(T’) drs not occur in visible([3,T) and so also CREATE(T’) does

not occur in Thus, T’ s’.created.

The remainder of this case is identical to the first case above, when r is
CREATE(T).

4. it is a REPORT_COMMIT or REPORT ABORT event forT’.

By the preconditions of the simple database and Lemma 14, a COMP.41T or
ABORT event 0 appears in . Then (9,it) e affects(j3), so Lemma 30 implies

that 0 is in y’. Also, by Lemma 15 there is at most one report event in 3, so

there can be no report event in y. Thus, T’ E s’.reported.

Thus, it is enabled in the serial scheduler in state s’. LI

5.5.5. Proof of the Main Result
We can now tie the pieces together to prove Theorem 27, the Serializability Theorem.

Proof: Let y € picturts(,T,R). (Lemma 29 implies that this set is nonempty,)

Lemma 32 shows that 1T’ is a finite behavior of AT for all non-access transaction

names T’. Lemma 35 shows that 1X is a finite behavior of S for all object names X.
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Lemma 36 implies that y is a finite behavior of the serial scheduler. Proposition 2
implies that y is a finite serial behavior. Lemma 31 implies that ylT = IT.

It is easy to see that the serial behavior y constructed to show serial correctness forT0 also has

the property that ?T = IT for ail T visible to T0 in 3. Thus, if the view condition holds for a

suitable sibling order for T0, then there exists a single serial schedule that looks like f3 to all the

transactions that commit to the top level.

6. Dynamic Atomicity
The Serializability Theorem gives a general sufficient condition for proving the correctness of

transaction-processing algorithms. In this section, we specialize the ideas developed in the
preceding section to the particular case of locking algorithms. Locking algorithms serialize
transactions according to a particular sibling order, the order in which transactions complete.
We define a property of objects, called “dynamic atomicity”, that captures this aspect of locking
algorithms. Our definition of dynamic atotnicity is phrased in terms of a system organization

consisting of a “generic object” automaton for each object name, which handles the
concurrency control and recovery for that object, and a single “genetic controller” automaton

that handles communication among the other components We then prove that a “genetic
system” in which all generic objects are dynamic atomic is serially correct.

Our definition of dynamic atomicity for an object is phrased in terms of the behaviors of all
possible systems in which the object could be placed. At the end of this section, we define

another condition on objects, called “local dynamic atomicity”, that is stated solely in terms of
the behavior of an individual object and suffices to ensure dynamic atonñcity. In subsequent

sections, we show that particular algorithms ensuit local dynamic atomicity.

As discussed earlier, proving that an algorithm is dynamic atomic gives more than just the
correctness of a single system. In particular, we can derive as immediate corollaries the
correctness of any system in which each object is dynamic atomic. This affords useful
modularity. For example, we can initially implement each object in a system using a simple
concurrency control and recovery algorithm that provides relatively little concurtency. If some
objects are “hot spots” or “concurrency bottlenecks”, we can reimplement those objects using
more sophisticated algorithms that provide more concurrency. In implementing a particular

object, however, we do not need to be concerned with the other objects in the system; instead,
we simply need to show that the particular object ensures dynamic atomicity.

6.1. Completion Order
The key property of locking algorithms is that they serialize transactions according to their

completion (commit or abort) order. This order is determined dynamically. If is a sequence of
actions, then we define completion(f3) to be the binary relation on transaction names containing
(T,T’) if and only if T and T’ are siblings and one of the following holds:

1. There are completion events for both T and V in 3, and a completion event for T
precedes a completion event forT’.

2. There is a completion event for T in , but there is no completion event forT’ in 3.

The following is easy to see.
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Lemma 31: If j3 is a simple behavior, then compleflonQ3) is a sibling order.

The next few lemmas show that the compledon order is suitable. The first shows that events

of one transaction T can affect (in the technical sense of the affects() relation) events of an

unrelated ansaction T’ only if T compktes before T’. In other words, the chain in the directly-

affects relation must involve the completion event forT.

Lemma 38: Let J3 be a simple behavior and let R = complenon(f3). Let it and t’ be

distinct events in with lowtransactions T and T’ respectively, If T is neither an

ancestor nor a descendant of V and (xjt’) € affects(), then (wit’) € Ryfl(P).

Proof: Since T is neither an ancestor nor a descendant of T’, there are siblings U and

U’ such that Tis a descendant of U and T’ is a descendant of U’. Since it affects It’ in

j3, by Lemmas 21 and 22, there must be events 0 and 0’ in fS such that 0 is a REPORT

event for U, 0’ is RFQUEST_CREATE3J’), and (,t,Ø), (04’) and (4’,it’) are all in

affects(fi). Furthermore, the events it, , 0’ and it’ occur in 3 in the indicated order.

The simple database preconditions and transaction well-formedness imply that any

completion event for U’ in must occur after the unique REQUEST_CREATE(U’)

event. Similarly, by Lemma 5, is preceded in ( by a unique completion event for

U. Thus f3 contains a completion event for U, which precedes 0, which precedes 0’,

which in turn precedes any completion event for U’. Thus (U,U’) c R =

compIetion(), and therefore (Itit) C ReventW). U

Now we will prove that the two partial orders we have defined on the events of 1 are

consistent.

Lemma 39: Let 3 be a simple behavior and let R = completioriW). Then

and affects() are consistent partial orders on the events of j3.

Proof: Immediate by Lemmas 38 and 26. C

Lemma 40: Let (3 be a simple behavior and T a transaction name. If T’ and T” are

siblings that are lowtransaczions of actions in visibleW,T) then either (T’,T”) or

(T”,T’) € comp1etion(3).

Proof: Since T’ and T” are distinct siblings, T is not a descendant of both T’ and

T”. Without loss of generality, we will assume that T is not a descendant ofT’. Note

that therefore the least common ancestor of T and V must be an ancestor of parent(T’).

There is an event It in visible((3,T) such that lowtransaction(ic) = T’. Thus either it is a

completion event for T’ or hightransaction(it) must be T’. fri the case where

highisansaction(it) = T’, we must have that T’ is visible to T in , and thus (since T’ is

not an ancestor of T) that fi contains a COMMIT(T’) event. Thus in either case

contains a completion event for T’, and so completion3) orders T’ and T”. LI

Now we can conclude that the completion order is suitable.

Lemma 41: Let ( be a finite simple behavior and T a transaction name. Then

completion(f33) is suitable for and T.

Proof: By Lemmas 40 and 39
0
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6.2. Generic Systems
In this subsection, we give the system decomposition appropriate for describing locking

algorithms. We will formulate such algorithms as “generic systems”, which are composed of
transaction automata, “generic object automata” and a “generic controller”. The general
structure of the system is the same as that given in Figure 1 for serial systems.

The object signature for a generic object contains more actions than that for serial objects.
Unlike the serial object for X, the corresponding generic object is responsible for carrying out
the concurrency control and recovery algorithms for X, for example by maintaining lock tables.
In order to do this, the automaton requires information about the completion of some of the
transactions, in particular, those that have accessed that object. Thus, a generic object automaton
has in its signature special INFORM_COMMiT and INFORM_ABORT input actions to inform
it about the completion of transactions. These INFORM actions are not restricted to mention
only accesses to X. since the automaton will also need information about the completion of
ancestors of the accesses.

6.2.1. Generic Object Automata
A generic object automaton Gx for an object name X of a given system type is an I/O

automaton with the following external action signature.

Input:
CREATE(T), for T an access to X
INFORM_COMMIT_ATIX)OFrn), for T * T0
INFORM_ABORT_AT(X)OFQfl, for T *

Output:
REQUEST_COMMIT(T,v), for T an access to X and v a value

In addition, Gx may have an arbitrary set of internal actions. G is required to preserve
“generic object well-formedness”, defined as follows. A sequence 3 of actions it in the external
signature of Gx is said to be generic object well-formed for X provided that the following
conditions hold.

1. There is at most one CREATE(T) event in for any transaction T.

2. There is at most one REQUEST_COM1vUT event in for any transaction T.

3. If there is a REQUEST_COMMIT event for T in f3, then there is a preceding
CREATE(T) event in f3.

4. There is no transaction T for which both an INFORM_COMMIT_AT(X)OFrn)
event and an INFORMABORT_AT(X)OFfl) event occur in 3.

5. If an INFORM_COMMIT_AT(X)OF(T) event occurs in I and T is an access to X,
then there is a preceding REQUEST_COMMiT event for T.

Generic object well-formedness is significantly less restrictive than serial object well
forrnedness. Serial object well-formedness requires the CREATE and REQUEST_COMMIT
actions to alternate, so that only one access is active at a time. Generic object well-formedness
allows multiple simultaneously active accesses. The only constraints are that CREATEs and
REQUESTJDOMMITs not be repeated, that a REQUEST_COMMIT be generated only if the
access has already been invoked by a CREATE, and that conflicting information about the
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completion of tansactions not be received by the object.

6.2.2. Generic Controller
There is a single generic controller for each system type. It passes requests for the cjeation of

subtransactions to the appropriate recipient, makes decisions about the commit or abort of

transactions, passes reports about the completion of children back to their parents, and informs

objects of the fate of iransactions. Unlike the serial scheduler, it does not prevent sibling

transactions from being live simultaneously, nor does it prevent the same transaction from being

both created and aborted. Rather, it leaves the task of coping with concurrency and recovery to
the generic objects. (The generic controller should not be confused with the “scheduler”

component of some classical database architectures. n our formal system decomposition, this
scheduler has been decomposed into the controller and the generic objects. The important

scheduling events are controlled by the objects, and the generic controller acts as a
communication system, rrely informing transaction and object automata of the occurence of
relevant events.)

The generic controller is very nondeterministic. It may delay passing requests or reports or
making decisions for arbitrary lengths of time, and may decide at any time to abort a transaction

whose creation has been requested (but that has not yet completed). Each specific
implementation of a system win make particular choices from among the many nondetertuinistic

possibilities. For instance, Moss [29] devotes considerable effort to describing a particular

distributed implementation of the controller that copes with node and communication failures yet
still commits a subtransaction whenever possible. Our results apply a fortiori to all
implementations of the generic controller obtained by restricting its nondeterminism.

The generic controller has the following action signature.

Input:
REQUESTSREATE(T), T
REQUEST_COMMITCr,v)

Output:
CREATE(T)
COMM1TIT), T T0

AB0RTm, T T0
REPORT_COMMITçr,v), T

REPORT_ABORTrn T

INFORM_COMMIT_AT(X)OPrn T
INFORM_ABORT_AT(X)OF(T), T T0

All the actions except the INFORM actions play the same roles as in the serial scheduler. The
INFORM_COMMIT and INFORM_ABORT actions pass information about the fate of

transactions to the generic objects.

Each state s of the generic controller consists of six sets: s.create_requested, screated,

scommit_requested, s.committed, s.aborted and s.reported. The set scommit_requested is a set

of operations, and the others axe sets of transactions. All axe empty in the start state except for

create_requested, which is (T0}. Define s.completed = s.committed u s.aborted. The transition

relation is as follows.
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REQLTESLCREATE(T)
Effect:

screate_requested = s’create_requestedti (T

REQUEST COMMIT(f,v)
Effect:

s.commit_requested = scommit_requestedu ((T,v))

CREATEcT)
Piecondidon:

T € s’.create requested - s’ created
Effect:

s.created = s’.created u (T)

COMMITçr), T T0
Precondition:

(T,v) e s’.commit_requested for some v
T c s’.comp}eted

Effect:
s.committed = s’.committed tj (T)

ABORT(T), T T0
Precondition:

T e s’.create-requested - s’.completed
Effect:

s.aborted = s’.aborted u {TJ

REPORT_COMMIT(T,v), T T0
Precondition:

T e s’.cornmitted
(T,v) e s’.commit_requested
T s.reported

Effect:
s.reported = s’seported u (T}

REPORT_ABORTrn), T *

Precondition:
Te s’aborted
T s’reported

Effect:
s.reported = s’.reported u (T}

INFORM_COMMIT_AT(X)OF(T), Ti
Precondition:

T € s’.committed

INFORM_ABORT_AT(X)OF(T), T iT0
Precondition:

T€ s’.aborted
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Now that INFORM events may occur any number of times, once they are enabled. This
simplifies the description of some of the algorithms implemented in the generic objects, which
otherwise would have to store information about the fates of completed transactions.

We have the following simple lemmas, the first relating a schedule of the generic controller to
the resulting states, and the second stating some simple properties of schedules of the generic
controller.

Lemma 42: Let 13 be a finite schedule of the generic controller, and let s be a state
such that f3 can leave the generic controller in state s. Then the following conditions
are true.

1. T is in s.createjequested if and only if T = or 13 contains a
REQUEST_CREATE(T) event.

2. T is in s.created if and only if ji contains a CREATEff) event.

3. (T,v) is in s.commit_requested if and only if 13 contains a
REQuEST_COMMITçr,v) event.

4. T is in s.committed if and only if J3 contains a COMMIT(T) event.

5. T is in s.aborted if and only if [3 contains an ABORT(T) event.

6. T is in s.reported if and only if 13 contains a report event for T.

7. s.committed n s.aborted = 0.

8. s.reported c s.committed u s.aborted.

Lemma 43: Let [3 be a schedule of the generic controller. Then all of the following
hold:

1. If a CREATE(T) event appears in 13, then a REQUEST_CREATF(T) event
precedes it in [3.

2. At most one CREATE(T) event appears in [3for each transaction T.

3. If a COMMIT(T) event appears in [3,then a REQUEST.COMMITfr,v) event
precedes it in 13 for some return value v.

4. If an ABORT(T) event appears in [3, then a REQUEST_CREATE(T) event
precedes it in 13.

5. At most one completion event appears in 3 for each transaction.

6. At most one report event appears in 3 for each transaction.

7. If a RE.PORT_COMMI’flT,v) event appears in 3, then a COMMITJ) event
precedes it in 3.

8. If a REPORT_AiBORT(T) event appears in 3, then an ABORT(T) event
precedes it in [3.

9. If an 4FORMCOMMITAT(X)OF(T) event appears in 3, then a
COMMIT(T) event precedes it in 3.

10. If an I?FORM_ABORtAT(X)oFrn) event appears in [3, then an
ABORT(T) event precedes it in 3.



58

6.2.3. Generic Systems
A generic system of a given system type is the composition of a sUtngly compatible set of

automata indexed by the union of the set of non-access transaction names, the set of object
names and the singleton set (GC) (for “generic controller”). Associated with each non-access
transaction name T is a transaction automaton AT for T, the same automaton as in the serial
system. Associated with each object name X is a generic object automaton Gx for X. Finally,
associated with the name GC is the generic controller automaton for the system type.

The external actions of a generic system are called generic actions, and the executions,
schedules and behaviors of a generic system an called generic executions, generic schedules and
generic behaviors, respectively. The following proposition says that generic behaviors have the
appropriate well-formedness properties. Its proof is analogous to that of the simiLar result for
serial behaviors,

Proposition 44: If [3 is a generic behavior, then the following conditions hold.

I. For every transaction nant T, [3IT is transaction well-formed for T.

2. For every object name X, I3IG is generic object well-formed for X.

The following result says that if the INFORM events are removed from any generic behavior,
the result is a simple behavior.

Proposition 45: ff3 is a generic behavior then serialW) is a simple behavior.

Proof: By a straightforward induction on the length of prefixes of [3i C

The following variant of the corollary to the Serializability Theorem applies to the special case
where ft is the completion order and the system is a generic system.

Proposkion 46: Let f3 be a finite generic behavior and T a transaction name that is
not an orphan in [3, and let R = completion3). Suppose that for each object name X,
view(serial(13),T,R,X) c finbehs(S). Then 3 is serially correct forT.

Proof: Immediate from Corollary 28, using Lemma 41, Proposition 45, and the
observation that completion(3) = completion(serial3)). U

6.3. Dynamic Atomicity
Now we define the “dynamic atomicity” property for a generic object automaton; roughly

speaking, it says that the object satisfies the view condition using the completion order as the
sibling order R. This restatement of the view condition as a property of a generic object is
convenient for decomposing correctness proofs for locking algorithms: the Serializability
Theorem implies that if all the generic objects in a generic system are dynamic atomic, then the
system guarantees serial correctness for all non-orphan transaction names. All that remains is to
show that the generic objects that model the locking algorithms of interest are dynamic atomic.

Let G be a generic object automaton for object name X. We say that G is c’nanzic atomic
for a given system type if for all generic systems Sof the given type in which is associated
with X, the following is ne. Let [3 be a finite behavior of J R = completion([3) and T a

An alternative proof can be formulated in terms of the notion of implemenEation, using a possibilities mapping.
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transaction name that is not an orphan in [3. Then view(serial([3),T,R,X) e tinbehs(Sx).

Theorem 47: (Dynamic Atomicity Theorem) Let Sbe a generic system in which all
generic objects are dynamic atomic. Let [3 be a finite behavior of S Then is serially
correct for every non-oz-phan transaction name.

Proof: Jmmediate from Proposition 46 and the definition of dynamic atomicity. U

As discussed earlier, this proof structure can be used to yield much stronger results than just
the correctness of the locking algorithms in this paper. As long as each object is dynamic
atomic, the whole system will guarantee that any finite behavior is serially correct for all non-
orphan transaction names. Thus, we are free to use an arbitrary implementation for each object,
independent of the choice of implementation for each other object, as long as dynamic atomicity
is satisfied. For example, a simple algorithm such as Moss’s can be used for most objects, while
a more sophisticated algorithm permitting extra concurrency by using type-specific information
can be used for objects that are “hot spots”. (That is, objects that are very frequently accesse&)
The idea of a condition on objects that guarantees serial correctness was introduced by
Weihi p42, 40] for systems without transaction nesting.

6.4. Local Dynamic Alomicity
In the previous subsection, we showed that to prove that a generic system guarantees serial

correctness for non-orphan transactions it is enough to check that each generic object automaton
is dynamic atomic. In this subsection, we define another property of generic object automata
called “local dynamic atomicity”, which is a convenient sufficient condition for showing
dynamic atomicity. For each generic object automaton G, dynamic atomicity is a local condition
in that it only depends on 0. However, the form in which the condition is stated may be difficult
to check directly: one must be able to verify a condition involving
view(serial(f3),T,completion(),X) for all finite behaviors 3 of all generic systems containing 0.
Local dynamic atomicity is defined more dixectly in terms of the behaviors of G.

First we introduce some terms to describe information about the the status of transactions that
is deducible from the behavior of a particular generic object. Let Gx be a generic object
automaton for X, a sequence of external actions of O, and T and T’ transaction names. Then
T is locally visible at X to T’ in [3if 3 contains an INFORM_COM1vIIT_AT(X)OF(lJ) event for
every U in ancestors(T) - ancestors(T’). Also, T is a local aiplian at X in [3 if an
INFORM_ABORT_AT(X)OF(JJ) event occurs in [3for some ancestor U of T. The following are
obvious facts about local visibility and local orphans.

Lemma 48: Let be a generic object automaton for X. Let [3 be a sequence of
external actions of G, and let T, T’ and T” be transaction names, if T is locally

visible at X toT’ in [3,and T’ is locally visible at X toT” in 13. then T is locally visible
at X to T” in [3.

Lemma 49: Let be a generic object automaton for X. Let [3 be a generic object
well-formed sequence of external actions of and let T and T’ be transaction names.

If T is locally visible at X to V in (3, and T’ is not a local orphan at X in , then T is
not a local orphan at X in [3.

We now justify the names introduced above by showing some relationships between the local
properties defined above and the corresponding global properties.
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Lemma 50: Let be a behavior of a generic system in which generic object
automaton Gx is associated with X. If T is locally visible at X to T’in iGx then T is

visible to V in f3. Similarly, if T is a local orphan at X in $IGx then T is an orphan in

Proof: These are immediate consequences of the generic controller preconditions,
which imply that any INFORM_ABORT_AT(X)OF(T) event in must be preceded
by an ABORT(T) event and that any INFORM_COMMIT_AT(X)OF(T) is preceded
by COMMIT(T).

Next, we define a relation on accesses to X to describe some information about the completion

order that is deducible from the behavior of Gx. Given a sequence of external actions of Gx,

we define a binary relation local-completion(j33) on accesses to X. Namely, (U,U’) e

local-completion() if and only if U U’, 3 contains REQUEST_COMMiT events for both U

and U’, and U is locally visible at X to U’ in ‘, where rS’ is the longest prefix of not
containing the given REQUESTJDOMMIT event for U’. The intuition underlying this

definition is that (U,U’) is in local-completionØ) if in any generic behaviory such that‘0x’ the

ancestors of U and U’ that are siblings, say T and V respectively, must complete in this order

(i.e., T before T’).

Lemma 51: If 3 is a generic object well-formed sequence of external actions of a
generic object automaton for X, then 1ocal-completion() is an ineflexive partial order
on accesses to X.

Proof: We must show that local-completion®) is irreflexive, antisymmethc and
transitive. Irreflexivity follows immediately from the defmition.

Suppose that (T,T’) and (T’,T) are both in local-compleiion(). Then 3 contains a
REQUEST_COMMIT event for each of T and T’, and generic object well-formedness
implies that there is only one of each. Since (T,T’) c local-completion®), T is locally
visible at X toT’ in the longest prefix 13’ of 3 not containing the REQUEST_COMMiT
forT’. Therefore, an INFORM_COMMIT for T occurs in j3’, and generic object well
formedness implies that the REQUEST_COMMIT for T precedes the
REQUEST_COMMIT for T’ in 3. But the saint reasoning implies that the
REQUEST_COMMIT for T’ wecedes the REQUEST_COMMIT for T in f3, a
contradiction. Therefore, local-completion®) is antisymmetric.

Now suppose (T,T’) and (T’,T”) are both in local-completion®). Let (‘ and 3” be
the longest prefixes of not containing a REQUESLCOMMIT for T’ and not
containing a REQU ST_COMMIT forT”, respectively. As in the argument above.
the REQUEST_COMMIT forT’ must precede the REQUEST_COMMIT forT” in ,

so ‘ is a prefix of j3”. Since T is locally visible at X to T’ in ‘, T is locally visible at
X toT’ in p”, and since T’ is locally visible at X to T” in n”, Lemma 49 implies that
T is locally visible at X toT” in 3”. Thus (T,T”) e local-completion(j3). LI

The relationship between the local-completion order and the true completion order in a generic

system is as follows.

Lemma 52: Let 3 be a behavior of a generic system in which generic object
automaton Gx is assocIated with X. Let T and T’ be accesses to X. If (T,T’) e

local-completion(PIGx), and T’ is not an orphan in , then (T,T’) c where R =

completion®).
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Proof: By definition of local-completion([3), 3IG contains a REQUEST_COMMIT
event for T’, and T is locally visible at X to T’ in 3’Gx, where 3’ is the longest prefix

of not containing the REQUEST_COM1VIIT for T’. Lemma 50 implies that T is
visible toT’ in ‘.

Since $ is transaction well-formed for T’, it contains at most one
REQUEST_COMMIT event for T’, and so 3’ does not contain a
REQUEST_COMMIT event for T’. By the conu-oller preconditions, and Lemma 43,
3’ does not contain a COMMITfr’) event Since 3IGx is generic object well-formed,

‘ contains a CREATE(T’) event. Since 1” is not an orphan in
,

‘ does not contain
an ABORT(T’) event. Therefore, T’ is live in

‘.

Let U and U’ denote the siblings such that T is a descendant of U, and T’ is a
descendant of U’. Since T is visible toT’ in 3’, 3’ contains a COMMTT(U) event. By
Proposition 45 and Lemma 18, U’ must be live in

‘.
Since 5’ contains a return for U,

and no return for U’, it follows that (U,U’) e R. Therefore (T,T’) e Cl

Notice that the global completion order is a total order on siblings that actually complete. The
local completion order, however, might be partial, since two siblings might run descendant
accesses before either sibling completes. In such a situation, the object does not know which
order the siblings completed in.

6.4.1. Example: LocaI-completion(I3IGx) and Completion(fl)
One might expect local-completion(f3IGx) to be a subset of completion(). Lemma 52

shows that most pairs (T,T’) in local-completion(I3IGx) are also in compleion(3),but only if
T’ is not an orphan. The following example shows why this assumption is necessary. Suppose T
and T’ are accesses to X with parents U and U’, respectively, and that U and U’ are siblings.

Consider the following fragment of a generic behavior (for brevity, we have omitted most of the
REQUEST actions):

CREATE(U’)
REQUEST_CREATh(T’)
ABORT(U’)
CREATE(U)
CREATE(T)
COMMIT(T)
INFORM_COMMYLAT(X)OF(T)
COMMITOJ)
INFORM_COMMrr_AT(X)OFcJJ)
CREATEcT’)
REQUEST_COMM1T(T’,v’)

The generic controller allows an orphan transaction such as T’ to continue running, so even after

U’ has been aborted V can be created. (In fact, the REQUEST CREATE(T’) action could occur
after the ABORT(U’) action, since U’ can also keep running after ABORTOJ’) occurs.) The
fragment of this behavior involving Gx consists of the following sequence of actions:

CREATE(T)
INFORM_COMMIT_ATQK)OF(T)
tNFORMCOMMIT_AT(X)OF(U)
CREATE(T’)
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REQUEST_COMMIT(T’,v’)

The definition of local-completion implies that (T,T’) is in the local-completion ordering.
However, notice that U’ aborted before U committed, so (U’,U) is in the global completion
ordering. Hence, (T’,T) ‘sin completion5.

6.4.2. Local Views and Local Dynamic Atomicity
Now we give a definition to describe how to reorder the external actions of a generic object

automaton according to a given local-completion order. Suppose [3 is a generic object well-
formed sequence of external actions of G and T is a transaction name. Let local-views(j3,T) be
the set of sequences defined as follows Let Z be the set of operations occurring in 13 whose
transactions are locally visible at X to T in f3. Then the elements of local-views($,T) are the
sequences of the form perform(), where is a total ordering of Z in an order consistent with the
partial order local-completion(3)on the transaction components. The following is
straightforward from the definitions.

Lemma 53: If is a generic object well-formed sequence of external actions of O
and T is a transaction name, then every element of local-views(f33,T) is serial object
well-formed.

We ale finally ready to define “local dynamic atomicity”. We say that generic object
automaton for object name X is locally dynamic atomic if whenever [3 is a finite generic
object well-formed behavior of and T is a transaction name that is not a local orphan at X in

3, then local-views(13,T) finbehs(Sx). That is, the result of reordering a behavior of
according to the given local-completion order is a finite behavior of the corresponding serial
object automaton. The main result of this subsection says that local dynamic atonñcity is a
sufficient condition for dynamic atomicity.

Theorem 54: If Gx is locally dynamic atomic then Clx is dynamic atomic.

Proof: Let Sbe a generic system in which G< is associated with X. Let 3 be a finite
behavior of J R = completion(13) and T a transaction name that is not an orphan in 3.
We must prove that view(serial([3),T,R,X) E finbehs(Sx). By definition,
view(seria1(3),T,R,X) = perform(), where is the sequence of operations occurring in
13 whose transactions are visible to T in 3, arranged in the order given by R5on the
transaction component.

Let 7 be a finite sequence of actions consisting of exactly one
INFORM_COMMItAT(X)OF(U) for each COMMIT(U) that occurs in 3. Then j3y
is a behavior of the system S since each action in y is an enabled output action of the
generic controller, by Lemma 42. Then ltlGx is a behavior of Gx, and Proposition 44
implies that it is generic object well-formed.

Since INFORM_COMMIT_ATQC)OF(U) occurs in [30x if and only if
COMMIflU) occurs in 13, an access T’ to X is visible to T in [3 if and only if it is
locally visible at X to T in [31G. Therefore, the same operations occur in
view(serial(J33),T,R,X) and in any sequence in local-views(fr,40x,T). To show that

view(serialW3),T,R.X) e local-views(13ylGx,T), we must show that they can appear in
the same order.
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If T’ is any access that is locally visible at X to T in PlGx, then T’ is visible to Tin

13, so Lemma 12 implies that T’ is not an orphan in 13, and hence not an orphan in

Also, note that completion(fry) = completion([3) = R. Then Lemma 52 implies that if

accesses that are locally visible at X to T in $x are ordered by

local-completion(ftlGx), they are also ordered in the same way by

Thus, the sequence can be obtained by taking those operations (T’,v’) such that

REQLTEST_COMMIT(T’,v’) occurs in frGx and T’ is locally visible at X to T in

l3Y1Gx, and arranging them in an order that is consistent with local-compledon(131G)

on the transaction component Thus, perforin() is an element of

local-views(fr1Gx,T). Since Gx is locally dynamic atomic, perform() is a finite

behavior of S, as required. C

7. Properties of Operations and Objects
The correctness of the two algorithms in this paper depends on semantic information about the

types of serial object automata used in the underlying serial system. For example, Moss’s

algorithm provides special treatment for “read accesses”, i.e., accesses that do not modify the

state of the object. Also, our general commutativity-based locking algorithm uses information

about commutativity of certain operations in order to determine the orders in which these

operations are permitted to occur. In this section, we provide the appropriate defmitions for

these concepts.

We first define the important concept of “equieffectiveness” of two sequences of external

actions of a serial object automaton. Roughly speaking, two sequences are “equieffective” if

they can leave the automaton in states that are indistinguishable to the outside world. We then

define the notion of “commucativity’ required for our algorithm. Finally, we define “read

accesses’’; that is, we state the properties of read accesses that are required for the correctness of

Moss’s algorithm.

7.1. Equieffectiveness
In this subsection, we define “equieffectiveness” of finite sequences of external actions of a

particular serial object automaton S. The definition says that the two sequences can leave S in

states that cannot be distinguished by any environment in which can appear. Formally, we

express this indistinguishability by requiring that S x can exhibit the game behaviors as

continuations of the two given sequences.

Let X be an object name, and recall that S is a particular serial object automaton for X. Let [1

and 3’ be finite sequences of actions in ext(Sx). Then j3 is equieffecrive to 3’ (with respect to

Sx) if for every sequence y of actions in ext(Sx) such that both j3y and ‘y are serial object

well-formed for X, frye beh(Sx) if and only if 13’y c beh(Sx). Obviously, equieffectiveness Is a

symmetric relation, so that if is equieffective to [3’ we often say that 3 and I’ are equieffective.

Also, any sequence that is not serial object well-formed for X is equieffective to all sequences.

On the other hand, if 13 and 13’ are serial object well-formed sequences for X and 13 is

equieffective to [3’,then if is in beh(Sx), 3’ must also be in beh(Sx).

The following proposition says that extensions of equieffective sequences are also
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equieffective.

Proposition 55: Let X be an object name. Let f3 and
‘

be equieffective sequences
of actions in ext(Sx). Let y be a finite sequence of actions in ext(Sx). Then 3y is
equieffective to

Equieffectiveness is not an equivalence relation, but we do have a resthcted transitivity result

Lemma 56: Let X be an object name, and let and C be three finite sequences of
operations of X that are serial object well-formed for X, such that every operation in
appears in either or . if perform() is equieffective to perfonu(r9, and perform(fl) is
equieffective to perfonn(tj, then perform() is equieffective to perform(Q.

Proof: Suppose perform() and perform(q) are equieffective, and that perform()
and perforrn() axe equieffective. Let y be a sequence of external actions of such
that pefform( and perform©y are serial object well-formed for X, and suppose that
perform(Jy is a behavior of S. We show that perform(Øy is a behavior of S.

By the defmiiion of serial object well-formedness, y must be either of the form
perform(c) or perform(t)CREATE(T)), where the first components of all the operations
in t (and T as well, if appropriate) axe distinct from the first components of all the
operations in and

.
By the condition on Ii. the first components of all the operations

in r (and T as well, if appropriate) are distinct from the first components of the
operations in 11. Thus, perfonn()y is serial object well-formed. The definition of
equieffectiveness than implies that perforrnO97 is a behavior of S, and therefore that
perform(yyis a behavior of S, as needed. U

A special case of equieffectiveness occurs when the final states of two finite executions are
identical. The classical notion of serializability uses this special case, in requiring concurrent
executions to leave the database in the same state as some serial execution of the same
transactions. However, this property is probabiy too restrictive for reasoning about an
implementation in which details of the system state may be different following any concurrent
execution than after a serial one. (Relations may be stored on different pages, or data su-uctures
such as B-tees may be configured differently.) These details are irrelevant to the perceived
future behavior of the database. The notion of equieffectiveness formalizes this
indistinguishability of different implementation states.

7.2. Commutativity
We now define an appropriate notion of’ commutativity for operations of a particular serial

object automaton. Namely, we say that operations (T,v) and (T’,v’) commute, where T and T’
are accesses to X, if for any sequence of operations such that both perform((T,v)) and
perform(g(T’,v’)) are serial object well-formed behaviors of Sx, then perform((T,v)J’,v’)) and
perform((T’,v’)(T,v)) are equieffective serial object well-formed behaviors of S.

A consequence of the definition of cornmutativity is the following extension to sequences of
operations.

Proposition 57: Suppose that C and C’ are finite sequences of operations of X such
that each operation in C commutes with each operation in C’. If is a finite sequence
of operations of such that perform(C) and perform(C’) are serial object well-
formed behaviors of then perform(CC’) and perform(’) are equieffective serial
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object well-formed behaviors of

The definition of commutativity given here is a variation of the notion of “forward
commutativity” due to Weihl [39], originally defined in [42), adapted to the formal framework
used in this paper. This definition is different from and slightly more complicated than that often

used in the classical theory, for two reasons. First, we deal with objects whose accesses may be
specified to be partial and nondeterministic, that is, the return value may be undefined or
multiply defined from a given state. Second, as discussed in detail by Weihl [41]. the definition
used in the classical theory is appropriate for concurrency control and recovery algorithms that
use an “update-in-place” approach to abort recovery (with recovery based on undo logs); the
definition given here is appropriate for algorithms that use a “deferred-update” approach to
abort recovery (with recovery based on intentions lists).

7.2.1. Example: Commutative Banking Operations
As an example, consider the serial object SHA described in Section 4.5.2. For this object, it is

clear that two serial object well-formed schedules that leave the same final balance in the
account are eguieffective, since the result of each access depends only on the current balance.
We claim that if T and T’ are accesses of kind deposiL$a and deposit_$b, then the operations
(T,”OK”) and (T’,”OK”) commute. To see this, suppose that perform((T,”OK”)) and
perform((T’,”OK”)) are serial object well-formed behaviors of Sx. This implies that is serial

object well-formed and contains no operation with first component T or T’. Therefore, =

perform((T,”OK’ ‘)(T’,”OK’’)) and [3’ = perform((T’,’OK’ ‘)(T,’ ‘0K’)) are serial object
well-formed. Also, since perform() is a behavior of S, so are 3 and f3’, since a deposit can
always occur. Finally, the balance left after each of 3 and [3’ is $(x+a+b), where $x is the
balance after perform(), so [3 and [3’ are equieffecfive.

Also, if T and T’ are distinct accesses of kind withdraw_$a and withdraw_$b respectively,
then we claim that (T,”OK”) and (T’,”FAIL”) commute. The reason is that if
perform(T,”OK”)) and perform(4(T’,”FAJL’)) are both serial object welt-formed behaviors
then we must have a x < b, where Sx is the balance after perform(). Then both
perform((T,”OK”)(T’,”FAIL”)) and perform((T’,”FAlL”XT,”OK”)) axe serial object
well-formed behaviors of S that result in a balance of $(x - a), and so are equieffective.

On the other hand, if T and T’ are distinct accesses of the kind withdraw_k and withdraw_$b
respectively, then (T,”OK”) and (T’,”OK”) do not commute, since if perform() leaves a
balance of $x, where max(a,b) x < a-i-b, then perform((T,”OK”)) and perform((T’,”OK))
can be serial object well-formed behaviors of S, but perfonn((T,”OK”)(T’,’OK”)) is not a
behavior, since after perform((T,”OK”)) the balance left is $(x - a), which is not sufficient to
cover the withdrawal of $b.

7.3. Transparent Operations
We now define the essential property that we will require of any read access. We say that an

operation (T,v) at X is eranspareni if for any finite sequence of operations of S such that
perform((T,v)) is a serial object well-formed behavior of S, perform(g(T,v)) and perforrn()

are equieffeccive behaviors of S. Thus, a transparent operation does not affect the later

behavior of the object automaton. The following simple proposition shows that any subsequence

__

/
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consisting of transparent operations can be removed from a behavior, resulting in a behavior
equieffective to the original one.

Proposition 58: Let be a finite serial object well-formed sequence of operations of
X such that perform() is a behavior of S, and let be a subsequence of i such that
every operation in 1- is transparent. Then perform() and perform() are
equieffective serial object well-formed behaviors of S.

It is easy to see that transparent operations commute.

Proposition 59: Let (T,v) and (T’,v’) be transparent operations of X such that T
T’. Then (T,v) commutes with (T’,v’).

Proof: Suppose is a finite sequence of operations of X such that perform(T,v))
and perform((T’,v’)) are serial object well-formed behaviors of S. Then no
operation in has T or T’ as first component, and all the operations in have distinct
first components. Therefore perform(T,v)(T’,v’)) and perfonxi(T’,v’)(T,v)) are
serial object well-formed sequences of external actions of S. Now perform((T,v))
and perform() are equieffective, since (T,v) is transparent. Since
perform()perforrn(T’,v’) is a behavior of S, the definition of equieffectiveness
implies that perform(T,v))performcr’,v’) = perform((T,v)(T’,v’)) is also a behavior
of S. Similarly, the fact that (T’,v’) is transparent implies that perform(fr’,v’)(T,v))
is a behavior of S. By Proposition 58, each of perform((T,v)(T’,v’)) and
perform((T’,v’)(T,v)) is equieffective to perform(). Lemma 56 now shows that they
are equieffective to each other, as required. LI

8. General Commutativity-Based Locking
Iii this section, we present our general commutativity-based locking algorithm and its

correctness proof. The algorithm is described as a generic system. The system type and the
transaction automata are assumed to be fixed, and are the same as those of the given serial
system. The generic controller automaton has already been defined. Thus, all that remains is to
define the generic objects. We define the appropriate objects here, and show that they are
dynamic atomic.

8.1. Locking Objects
For each object name X, we describe a generic object automaton Lx (a “locking object”).

The object automaton uses the commutativity relation between operations to decide when to
allow operations to be performed. Recovery is handled using intentions lists [21, 281, which we
generalize here to handle nested transactions. When a transaction executes an operation (i.e.,
when a response is returned for an access), the operation is recorded in the transaction’s
intentions list. When a transaction commits (i.e., when an INFORM_COMMIT action occurs for
the transaction), the transaction’s intentions list is appended to its parent’s. When a transaction
aborts, its intentions list is discarded. The response for an access is constrained so that the
resulting operation can be performed by the serial object from a state resulting from executing
the intentions lists of the access’s ancestors.

Automaton Lx has the usual signature of a generic object automaton for X. A state s of Lx has
components screated, s.commit-requested and s.intentions. Of these, created and commit-
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requested are sets of transactions, initially empty, and intentions is a function from transactions
to sequences of operations of X, initially mapping every transaction to the empty sequence A.
When (T,v) is a member of s.intentions(U), we say that U holds a (T,v)-lock. Given a state s and
a transaction name T we also define the sequence total(s,T) of operations by the recursive
definition total(s,T0) = s.intentions(T0), totaXs,T) = totai(s,parent(T))s.intentions(T). Thus,
total(s,T) is the sequence of operations obtained by concatenating the values of intentions along

the chain from T0 to T, in order. The precondition for REQUEST_COMMIT(T,v), where T is an

access, explicitly references semantic properties of serial object S, ensuring that
perform(total(s,T’)) is a behavior of for any transaction T’. (The proof of this fact relics on

the explicit zest in the precondition for REQUEST_COMMITçr,v), which ensures that
perforrn(total(s,T)) is a behavior of S, plus the test that (T,v) commutes with operations

performed by concurrent transactions.)

The transition relation of Lx is given by all triples (s’,it,s) satisfying the following pie- and

postconditions, given separately for each it. As before, any component of s not mentioned in the

posteonditions is the same in s as in s’.

CREATE(T), T an access to X
Effect:

s.created = s’.created U (T}

INFORMCOMMIT_AT(X)OFrn), T T0

Effect:
s.intentions(T) = A
s.irnentions(parent(T)) = s’.intentions(parent(T))s’ .intentions(T)
s.intentions(U) = s’.intentionsftj) for U * T, parent(T)

INFOR!vj_ABQRT_AT(X)OFJ), T T0
Effect:

s.intentions(U) = A, U e descendantsfr)
s.intentions(U) = s’.intentionsQj), U descendants(T)

REQUESTJDOMMITçT,v), T an access to X
Precondition:

T e s’.created - ‘.commit-requested
(T,v) commutes with every (T’y’) in s’.intentions(U),

where U ancestors(T)
perform(total(s ‘,TXT,v)) € finbehs(Sx)

Effect:
scommit-requested = s’.commit-requested c’ {T)
s.intentions(T) = (T,v)
s.intentions(U) = s’.intentionsØi) for U T

Thus, when an access transaction is created, it is simply added to the set created. When L is

informed of a commit, it passes any locks held by the transaction to the parent, appending them
at the end of the parent’s intentions list. When Lx is informed of an abort, it discards all locks

held by descendants of the transaction. A response containing return value v to an access T can

be returned only if the access has been created but not yet responded to, every holder of a

‘i (that is, non-commuting) lock is an ancestor ofT, and performff,v) can occur in a
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move of from a state following the behavior perform(total(s’,T)). When this response is

given, T is added to commit-requested and the operation (T,v) is appended to intentions(T)) to

indicate that the (T,v)-Iock was granted. It is easy to see that Lx is a generic object for X, i.e.,

that Lx has the correct external signature and preserves generic object well-formedness.

The locking object Lx is quite nondeterministic; implementations16of Lx can be designed that

restrict the nondeterminism in various ways, and correctness of such algorithms follows

immediately from the correctness of Lx. once the implementation relationship has been proved,

for example by using a possibilities mapping.

As a trivial example, consider an algorithm expressed by a generic object that is just like Lx
except that extra preconditions are placed on the REQUESLCOMMITCF,v) action, say

requiring that no lock at all is held by any non-ancestor of T. (This corresponds to exclusive

locking.) Every behavior of this generic object is necessarily a behavior of Lx (although the

converse need not be true). That is, this object implements Lx and so is dynamic atomic (since,

as shown below, Lx is dynamic atomic).

For another example, note that our algorithm models both choosing a return value and testing

that no conflicting locks are held by non-ancestors of the access in question as preconditions on

the single REQUEST_COMMIT event for the access. Traditional database management

systems have used an architecture in which a lock manager first determines whether an access is

to proceed or be delayed, and then another component determines the response later. In such an
architecture, it is infeasible to use the return value in determining which activities conflict. We

can model such an algorithm by an automaton in which the granting of locks by the lock
manager is an internal event whose precondition tests for conflicting locks using a “conflict

table’’, where the conflict table requires a lock for access T to conflict with a lock for access T’

whenever there are any return values v and v’ such that (T,v) does not commute with (T’,v’).

Then we would have a REQUEST_COMMIT action whose preconditions include that the return

value is appropriate and that a lock had previously been granted for the access. If we do this, we

obtain an object that can be shown to be an implementation of Lx, and therefore its correctness

follows from that of Lx.

Many slight variations on these algorithms can be considered, in which locks are obtained at
different times, recorded in different ways, and tested for conificts using different relations; so
long as the resulting algorithm treats non-commuting operations as conflicting, it should not be

hard to prove that these algorithms implement Lx, and so are correct. Such implementations

could exhibit much less concurrency than Lx, because they use a coarser test for deciding when

an access may proceed. In many cases the loss of potential concurrency might be justified by the
simpler computations needed in each indivisible step.

Another aspect of our algorithm that one might wish to change in an implementation is the
complicated data structure maintaining the “intentions”, and the corresponding need to replay
all the operations recorded there when determining the response to an access. In the next
section, we will consider an algorithm that is able to summarize all these lists of operations in a

Recal1 that “implementation” has a fonnal definition, given in Section 3.4. The “implementatici” relation
only relates external behaviors, but allows complete freedom in the choice of automaton states.
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stack of versions of the serial object, at the cost of itducing available concurrency by using a

conflict relation in which all updates exclude one another.

8.2. Correctness Proof
In this subsection, we prove several lemmas about Lx, leading to the theorem that Lx is

dynamic atomic.

The first lemma says that the ordering of operations in the “total” sequences does not change

during execution of Lx; its proof is straightforwari

lAmma 60: Let be a finite generic object well-formed schedule of Lx, such

that can leave Lx in state s’ and is an extended step of Lx. Let T1, T2, U

and V be transaction names. Suppose (T1,v1) pitcedes (T2,v2) in total(s’,U) and

(T2,v2)occurs in total(s,V). Then (T1,v1)occurs in total(s,V) and precedes (T2,v2)in

total(s,V).

We next introduce a definition to describe the information Lx uses about visibility. If l is a

sequence of actions of Lx and T and V are uansaction names, we say that T is lock-visible at X

to T’ in 1 if contains a subsequence [3’ consisting of an EsTORMCOMMIT_AT(X)OF(U)

event for every U E ancestors(T)) - ancestors(T’), arranged in ascending order (so the

INFORM_COMMIT for parentQJ) is preceded by that for U). Lock-visibility is similar to local-

visibility, with the added constraint that the INFORM actions occur in leaf-to-root order.

The following lemma characterizes the contents of the various intentions lists in terms of lock

visibility.

I.emma 61: Let 13 be a finite generic object well-formed schedule of Lx. Suppose

that [3 can leave Lx in state s.
1. Let T be an access to X such that REQUEST_COM?vllT(r,v) occurs in [3 and

T is not a local orphan at X in 3, and let V be the highest ancestor of T such
that T is lock-visible to T’ at X in 3. Then (T,v) is a member of
s.intentions(T’).

2. If (T,v) is an element of s.intencions(T’) then T is a descendant of 7”,
REQUEST_COMMIT(T,v) occurs in [3, and T’ is the highest ancestor of T to
which T is lock-visible at X in [3.

3. If T’ is not a local orphan at X in , then sintentions(T’) consists of eact1y

the operations (T,v) such that T is a descendant of T’,
REQUESTJDOMMIT(T,v) occurs in [3, and T’ is the highest ancestor of T to
which T is lock-visible at X in [3.

We also define a binary relation lock-completion([3) on accesses to X, where (U,U’) e

lock-completionU3) if and only if U U’, contains REQUEST_COMMIT events for both U

and U’. and U is lock-visible to U’ at X in [3’,where ‘ is the longest prefix of 3 not containing

the given REQUEST_COMMIT event for U’

The following simple lemmas zelate lock-visibility and the lock-completion order to local

visibility and the local completion order. They follow immediately from the definitions.

Lemma 62: Let 3 be a generic object well-formed sequence of actions of Lx. Then
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Iock-completion(3) is an irreflexive partial order.

Lemma 63: Let be a sequence of actions of Lx and T and T’ transaction names. If

T is lock-visible at X to T’ in 13 then T is locally visible at X to T’ in 3. Also
lock-completion) is a subrelation of Iocal-completion(13).

Now we relate the contents of the intentions lists to the lock-completion order. Lemma 64

characterizes the operations in an intentions list, while Lemma 65 characterizes the order in

which the operations appear in an intentions list.

Lemma 64: Let be a generic object well-formed finite behavior of Lx. and

suppose that a REQUEST_COMMIT(T,v) event it occurs in
,

where T is not a local
orphan at X in f3. Let 3’ be the prefix of j preceding it, and let s’ be the (unique) state
in which 13’ can leave Lx. Then the operations in total(s’,T) are exactly the operations

(T’,v’) that occur in j3 such that (T’,T) e lock-completion).

Proof: Lemma 61 implies that the operations in total(s’,T) are exactly those (T’,v’)
that occur in f3’ such that V is lock-vIsible to an ancestor of T in 3’. By the definition
of lock-completion(13) and the generic object well-formedness of 3. (T’,T) €

lock-completion3).

Lemma 65: Let 13 be a generic object well-formed finite behavior of Lx that can

leave Lx in state s, and let T be any transaction name. Then the order of operations in

total(s,T) is consistent with lock-completion().

Proof: Suppose (T1,v1)and (T2,v2)are two operations in total(s,T) such that (T1,T2)

€ lock-completion(J3). By the definition of lock-completion, T1 is lock-visible to T2 at

X in the longest prefix, of 13 that does not include REQUEST_COMMIT(T2,v2).

Then Lemma 61, applied to f3, implies that (T1,v1) is in the intentions list of an

ancestor of T2 in the state s reached by 13k, and by the effects of

REQUEST_COMIvIIT(T2,v2),(T1,v1)precedes (T2,v2) in total(s2,T2),where 2 is the

state reached by131REQUEST_COMMIT(T2.v2).By Lemma 60, (T1,v1) precedes

(T2,v2) in total(s,T). Thus, the order of operations in total(s,T) is consistent with

lock-completion(f33).

We now give the key lemma, which shows that certain sequences of actions, extracted from a
generic object well-formed behavior of Lx, are serial object well-formed behaviors of S. The

second conclusion, that certain such sequences are equieffective, is needed to carry out the
induction step of the proof of this lemma.

It is helpful to have an auxiliary definition. Suppose is a generic object well-formed fmite

behavior of Lx. Then a set Z of operations of X is said to be allowable for 3 provided that for

each operation (T,v) that occurs in Z, the following conditions hold.

1. (T,v) occurs in 3.

2. T is not a local orphan in 13.
3. If (T’,v’) is an operation that occurs in such that (T’,T) € lock-completion(13),

then (T’,v’) e Z.
An allowable set of operations corresponds roughly to a set of operations whose accesses either

are or could become visible to some non-orphan transaction U. Thus, each operation in the set
must occur in 13 and must not be a local orphan (since otherwise it could never be visible to a



7’

non-orphan). In addition, if T’ is visible to T and Tbecomes visible to U, T’ also becomes
visible to U, so if (T.v) is in the set and T’ is visible to T, (T’,v’) should also be in the set. The
third condition only requires (T’,v’) to be in the set if T’ precedes T in the lock-completion
order; thus, we consider more sets of operations than just those whose accesses could become

visible to U. This only strengthens the next lemma, since it shows that afl allowable sets of
operations for , when ordered consistently with lock-compledon(3), correspond to behaviors of

Sx.
Lemma 66: Let 3 be a generic object well-formed finite behavior of Lx and let Z be

an allowable set of operations for fi. Let R = lock-completion(J3).

1. If is a total ordering of Z that is consistent with R on the transaction
components, then perfonn() c finbehs(Sx).

2. 11 and t are both total orderings of Z such that each is consistent with Ron
the transaction components, then perform(g) and perform(1) art equieffective.

Proof: We use induction on the size of the set Z. The basis, when Z is empty, is
trivial. So let k 1 and suppose that Z contains k operations and the lemma holds for
all allowable sets of k - 1 operations. Let be a total ordering of Z that is consistent
with R on the transaction component. Let (T,v) be the last operation in , and let Z’
Z - {cT,v)}. Let ‘ be the sequence of operations such that = ‘(T,v). Then Z’ is an
allowable set of k - 1 operations, since Z is, and there is no operation (T’,v’) in Z such
that (T,T’) E R. Also, ‘ is a total ordering of V consistent with R,

Let 3’ be the longest prefix of 3 not containing REQUEST_COMMIT(T,v), and let
s’ be the (unique) state in which j3’ can leave Lx. Let C1 = total(s’,T), and let C2 be
some total ordering that is consistent with R of the operations in Z’

- C1. Lemma 64

implies that the operations in C1 are exactly those (T’,v’) that occur in fi such that

(T’,T) € R, and Lemma 65 implies that the order of operations in C1 is consistent with
R.

We show that (T,v) commutes with even’ operation (T”,v”) in C2 There are two

cases.
1. REQUESTJDOMIvIITJ”,v”) precedes REQIJEST_COMMITJ.v) in 3.

Then let U denote the highest ancestor ofT” to which T” is lock-visible at X
in f3’. By Lemma 61, (T”,v”) E s’intentionsW). By definition of C2’ U is
not an ancestor of T. Therefore, by the preconditions for
REQUEST_COMMITJ,v), which is enabled in state s’, (T,v) commutes with
(T’ ‘,v’ ‘).

2. REQUEST_COMMIT(T,v) precedes REQUEST COMMIT(T”,v”) in

Then let f3” be the longest prefix of 3 not containing
REQUEST_COMIvilT(T”,v”), and let t be the state in which “ leaves Lx.
Also let U denote the highest ancestor of T to which T is lock-visible at X in

so that (T,v) E t.intentions(U). U is not an ancestor of T”, since if it
were, then the defmition of lock-completion implies that (T,T”) c
contradicting the assumption that (T,v) is the last operation in . Therefore,
by the preconditions for REQUEST_COMPvUT(T”,v”), which is enabled in
state t, (T’’,v’’) commutes with (T,v).
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Next, we claim that if (T’,v’) and (T”,v”) are operations in C1 and C2 respectively,

then (T”,T’) e It For if (T”,T’) E R, then since (T’,T) e R, by Lemma 62 we have
also (t”,T) e R. Then the characterization of Ci above implies that (T”,v”) occurs in

Ci’ a contradiction.

This claim implies that 12 is also a total ordering of Z’ consistent with It The

inductive hypothesis then implies that perform(’) and perform(12)are equieffective

serial object well-formed behaviors of S.

By the preconditions for REQUEST_COMMIT(T,v), which is enabled in state s’,
perform(total(s’J)(T,v)) = perform(C1(T,v)) is a finite behavior of S, and it is clearly

serial object well-formed, since is generic object well-formed. We also showed
above that perform(C1C2)is a serial object well-formed behavior of S. Since (T,v)

commutes with every operation in C2. we have by Proposition 57 that
perform(i2(T,v)) is a serial object well-formed behavior of S,. Since perform(12)
is equieffective to perform(’), and since perform() perform(’(T,v)) is clearly
serial object well-formed, the definition of equieffectiveness implies that perform(EJ is
a behavior of S. This completes the proof that perfonn() is a serial object well-

formed behavior of S.

Now let t be any other total ordering of Z that is consistent with R on the transaction
component. Let Ti1 and fl2 be the sequences of operations such that 1 = 11(T,vYfl2.
Then n is a total ordering of V consistent with R. The inductive hypothesis shows

that performQfl 112) is a serial object well-formed behavior of S and that it is

equieffective to perform(’). Therefore, by Proposition 55, perform(fl1fl2(T,v)) is
equieffective to perform().

Part 1 applied to i implies that perforrn(9) is a serial object well-formed behavior of

Sx; therefore, its prefix perform(1(T,v)) is also a serial object well-formed behavior

of S.

By the characterization above for C1 every operation in has its transaction
component preceding T in R. Thus, since is consistent with R, every operation in C1
is contained in ,h• Thus, every operation in is contained in C2’ and so (T,v)

commutes with every operation in 112. Therefore perform() = pefform(fl1(T,v)1) is
equieffeetive to perform(q12(T,v)), by Proposition 57.

Since perform(fl) is equieffective to perform(11fl2(T,v)) and perform(fl1fl2(T,v)) is
equieffective to perform(), Lemma 56 implies that perform(fl) is equieffective to
perform(), completing the proof. LI

Now we can prove that locking objects are locally dynamic atomic.

Proposition 67: L is locally dynamic atomic.

Proof: Let be a finite generic object we11-fornd behavior of Lx and let T be a
transaction name chat is not a local orphan at X in j3. We must show that
local-views(,T) ç finbehs(Sx). So let Z be the set of operations occurring in whose
transactions are locally visible to Tat X in i Let be a total ordering of Z consistent
with Iocal-completion(f3) on the tansaction components. We must prove that
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perform() is a behavior of S,.

We claim that Z is allowable for J3. To see this, suppose that (T,v’) is an operation
that occurs in Z. Then (T’,v’) occurs in [3. Since T’ is locally visible at X to T in 3
and T is not a local orphan at X in 3, Lemma 49 implies that V is not a local orphan at
X in f3. Now suppose that (T”,v”) is an operation that occurs in [3 and (T”,T’) e
lock-completion(3). Then T” is lock-visible at X to V in 3, and hence, by Lemma 63,
is locally visible at X toT’ in 3. Therefore, (T’ ‘,v”) is in Z.

We also claim that the ordering of is consistent with lock-completion(fii) on the
transaction components. This is because the total ordering of 4 is consistent with

local-completionW), and Lemma 63 implies that lock-compleflon(J33) is a subrelation of
local-completion()

Lemma 66 then implies that perform() is a behavior of S, as needed.

Finally, we can show the main result of this section.

Theorem 68: Lx is dynamic atomic.

Proof: By Proposition 67 and Theorem 54.

An immediate consequence of Theorems 68 and the Dynamic Atomicity Theorem is that if Sis

a generic system in which each generic object is a locking object, then Sis serially contct for all

non-orphan transaction names.

9. Moss’s Algorithm
In this section, we present Moss’s algorithm for read-update locking [29j and its correctness

proof. Once again, the algorithm is described as a generic system, and all that needs to be
defined is the generic objects. We define the appropriate objects here, and show that they
implement locking objects. It follows that they are dynamic atomic.

9.1. Moss Objects
For each object name X, we describe a generic object automaton Mx (a “Moss object”). The

automaton Mx nns a stack of “versions” of the corresponding serial object S, and

manages “read locks” and “update locks”.

The construction of Mx is based on a classification of all the accesses to X as either read

accesses or updose accesses. We assume that this classification satisfies the property that every

operation (T,v) of a read access T is transparent. If 4 is a sequence of operations of X, we let

update(4) denote the subsequence of consisting of those operations whose first components are

update accesses. Proposition 58 implies that if perforrn() is a serial object well-formed

behavior of S, then perform(update()) is also a serial object well-formed behavior of S, and

perform(update(g)) is equieffective to perform().

Mx has the usual action signature for a generic object automaton for X. A state s of Mx has
components s.created, s.comzuit-requested, s.update-lockholders and s.read-lockholders, all sets
of transactions, and s.map, which is a function from s.update-lockholders to states of the serial

object automaton S,. We say that a transaction in update-Iockholders Iwids an tqdate-lock. and
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similarly that a transaction in read-lockholders holds a read-lock. The start states of Mx are

those in which update-lockholders (T0J and map(T0)is a start state of the serial object S, and

the other components are empty.

If Uis a finite set of transactions such that for all T and T’ in (4 either T is an ancestor ofT’ or

vice-versa, then we define leasr(t’) to be the unique transaction in Uthat is a descendant of all

transactions in U Some of the following actions contain preconditions in which the function

“least” is applied to the set s’.update-lockholders. In case least(s’.update-lockholders) is

undefined, the precondition is assumed to be false.17

The transition relation of Mx is as follows.

CREATh(T), T an access to X
Effect:

s.created = s’created u {TJ

INF0Rr&coMMrr_AT(x)oFm, T
Effect:

if T c s’.update-lockholders
then

s.update-lockholders = (s’.update-lockholders - (T}) Li (parent(T))
s.mapQ,arent(T)) = s’.map(T)
s.map(U) = s’.map(U) for U e s.update-lockholders - {parent(T)J

if T a s’.read-lockholders
then s.read-lockholders = (s’.read-lockholders - {T)) u {parent(T)}

INFORM_ABORT_AT(X)OFçr), T
Effect:

s.update-lockholders = s ‘.update-lockholders - descendantsfl’)
s.read-lockholders = s.read-lockholders - descendants(T)
s.map(U) = s’.mapOJ) for all U e s.update-lockholders

BQUESTJLDOMMJT(T,v), Ta read access to X
Precondition:

T e s’.created - s’.commit-requested
s’.updace-lockholders ancestors(T)
there is a state t of S such that

(s’.map(least(s’.update-lockholders)),performiT,v),t) is a move of S

Effect:
s.commit-requested = scommit-requested c [T}
s.read-lockholders = s’.read-lockholders u {T}

REQUEST.COMMITcr,v), T an update access to X
Precondition:

T E s ‘created - s’.commit-requested
s ‘.update-lockbolders u s ‘.read-lockholders ancestors(T)

7Th fact, in all states s’ that arise in executions having generic object well-formed behaviors, least(s’.update

Icckholders) is defined.
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there is a state t of such that

(s ‘.mapØeast(s ‘.update-lockholders)),perform(T,v),t) is a move of S

Effect:
s.commit-requested = s’.cammft-requested u (T}

s.update-lockholders = s’update-lockholders u {T}

s.map(T) =

s.map(U) = s’.map(U) for all U c s.update4oclcholders -

When an access transaction is created, it is added to the set created. When Mx is informed of

a commit, it passes any locks held by the uansaction to the parent, and also passes any serial

object state stored in map. When Mx is informed of an abort, it discards all locks held by

descendants of the transaction. A response containing return value v to an access T can be

returned only if the access has been created but not yet responded to, every holder of a

conflicting lock is an ancestor oft and perform(T,v) can occur in a move of S, from the state

that is the value of map at least(update-lockholders). When this response is given, T is added to

commit-requested and granted the appropriate lock. Also, if T is an update access, the resulting

state is stored as map(T), while if T is a read access, no change is made to map.

It is easy to see that Mx is a generic object, i.e, that it has the correct external signature and

preserves generic object well-formedness. The following is also easy to prove, using induction

of the length of a schedule.

Lemma 69: Let be a finite schedule of Mx. Suppose that 3 can leave Mx in state

s. Suppose T E s.update-lockholders and T’ € s.read-locltholders U s.update

lockholders. Then either T is an ancestor of V or else T’ is an ancestor ofT.

Note that it is permissible to classify all accesses as update accesses. The Moss object

consmhcted from such a classification implements exclusive locking. Thus, the results we obtain

about Moss objects also apply to exclusive locking as a special case.

9.2. Correctness Proof
In this subsection, we show that Mx is dynamic atomic. In order to show this, we produce a

possibilities mapping from Mx to Lx as defined in Seccion 3.4, thereby showing that Mx

implements Lx. Note that Mx is not describable as a simple special case of Lx: the two

algorithms maintain significantly different data structures. Nevertheless, a possibilities mapping

can be defined.

We begin by defining the mapping f. Let f map a state s of Mx to the set of states t of Lx that

satisfy the following conditions.

1. s.created tcreated.

2. s.comnit-requested = icommit-requested.

3, s.read-lockholders is the set of transaction names T such that t.intentions(T)

contains a read operation.

4. s.update-loclcholders is the set of transaction names T such that t.intentionsçr)

contains an update operation, together with T0.

5. For every transaction name T, perform(update(total(t,’fl)) is a finite behavior of S
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that can leave S in the state s.map(T’), where V is the least ancestor of T such
that V € s.update-Jockholders.

Lemma 70: f is a possibilities mapping from Mx to Lx.

Proof: The proof involves checking the conditions in the definition of a possibilities
mapping. These checks axe completely straightforward, hut numerous and tedious.
For completeness, we include the details here, although the reader will probably not
wish to read them,

It is easy to see that t0 f(s), where and are start states of Mx and Lx,
respectively. Let s’ and C be reachable states of Mx and Lx, respectively, such that t’

€ f(s’). Suppose (s’,it,s) is a step of Mx. We produce t such that (t’jt,t) isa step of

Lx and t € f(s). We proceed by cases.
1. it = CREATE(fl T an access to X.

Since iris an input of Lx, it is enabled in state 1’. Choose t so that (t’,x,t) is a

step of Lx. We show that t € f(s).

The effects of it as an action of Mx and Lx imply that s.created = s’.created U
T) and tereated = C created u { T). Moreover, all of the other components

of s or t are identical to the corresponding components of s’ or t’, respectively.
Since C e f(s’), we have s’.created = t’.created, so that s.created = t.created,
thus showing the first condition in the definition of f. The other conditions
hold in s and t because they hold in s’ and I’ and none of the relevant
components are modified by it.

2. it = INFORM_COMMIT_AT(X)OF(U).

Since 71 an input of Lx, n is enabled in state C. Choose t so that (t’,it,t) is a
step of Lx. We show that t € f(s).

The first and second conditions hold in s and t because they hold in s’ and C
and none of the relevant components are modified by it.

The effects of it as an action of imply that t.intentions(W)
t’.intentions(W) unless W e (U,parentØJ)), c.intentions(parent(U)) =

t’.intentions(parent(J.J))t’.intentions(U), and tintentions(U) = ?. We consider
two cases.

a. t’.intentions(U) contains a read operation.

Then the set of transaction names T such that t.jntenffons(T) contains a
read operation is exactly the set of T such that t’.intendons(T) contains
a read operation, with U removed and parentQj) added. Since C e
f(s’), s’.read-lockholders is the set of transaction names T such that
t’.intentionsQl) contains a read operation; in particular, U c s’.read
locktolders. The effects of it as an action of Mx imply that stead

lockliolders = s’rad-lockholders
- I U} Li (parent(U)). Thus, s.read

lockholders is exactly the set of T such that tintentions(T) contains a
read operation.

b. t’.intentions(U) does not contain a read operation.
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Then the set of uansaction names T such that t.intentions(T) contains a
read operation is exactly Ihe set of T such that t.intentions(T) contains
a read operation. Since C e f(s’), s’.read-lockholders is the set of
transaction names T such that t’.intentions(T) contains a read
operation; in particular, U s’.read-lockholders. The effects of it as
an action of Mx imply that s.read-lockholders = s’.read-lockholders.

Thus, s.read-lockholders is exactly the set of T such that
t.intentions(T) contains a read operation.

This shows the third condition. The proof of the fourth condition is analogous
to that for the third condition.

Finally, fix some transaction T and let T’ be the least ancestor of T such that
V c supdate-lockholders. The discussion is divided into subcases,
depending on the relation between T and U in the transaction tree.

a. U is an ancestor of T.

Then total(t,T) = total(t’,T). Let T” be the least ancestor of T in

s’.update-lockholders. Since C e f(s’), perform(update(total(t’.T))) is
a finite behavior of that can leave S in the state s’.map(T”).

= T”, then the effects of it as an action of Mx imply that s.update

lockhol&rs = s’.update-lockholders - {T”} Li {parent(T”)}, so V =

parent(l”). Then s.map(T’) = s.map(parent(T”)) = s’.map(T”).

If U T” and U e s’.update-lockholders, then by definition ofT”, U
is a strict ancestor ofT”. Then s.map(T”) = s’map(T”) and T” = T’,
so again s.map(T’) = s’.map(T”).

If U T” and U is not in s’.update-lockholders, then s.update
ockho1ders = s’.update-lockholdersand smap = s’map; thus, T” =

and so s.map(T’) = s’.map(T”).

In each case, we have shown that s.map(T’) = s’.map(T”); therefore,
perfoim(update(total(t,T))) is a finite behavior of that can leave S

in the state s.map(T’).

b. U is not an ancestor of T, but parent(U) is an ancestor ofT.

If U e s’.update-lockholders then Lemma 69 implies that no

transaction in ancestors(T) - ancestors(paxent(U)) can be in s’.update
Iockholders u s’.read-lockholders. The effects of it as an action of

Mx therefore show that T’ = paxent(U). These effects also show that

s.map(parencQJ)) s’.map(U). Since C € f(s’), C.intentions(W) must

be empty for all W e ancestors(T) - ancestors(parent(U)). By the
effects of it as an action of Lx, t.intentions(W) = t’.intentions(W)

unless W equals U or parentiji), so tintentions(W) is empty for all W
€ ancestors(T) - ancestors(parent(U)). Thus, total(t,T) =

total(t,parentØJ)). The effects of it as an action of Lx also show that

total(t,parent(U)) total(t’,U), so that totaKt,T) = total(t’,U). Since C

E f(s’) and U is the least ancestor of U in s’update-Iockholders,
perform(update(total(t’ ,U))) is a finite behavior of 5x that can leave

in state s’.map(U). The equalities we have proved show that
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perform(update(total(t,T))) is a finite behavior of S that can leave S
in state s.mapff’).

If U s’.update-lockholders then s.update-lockholders s’.update
lockliolders and s.map = s’.map. Thus, T’ is the least ancestor of T in
s’.update-lockholders, and s.map(T’) = s’.map(T’). Since t’ E

there are no update operations in C .intentions(U). Then the effects of
It as an action of Lx imply that update(total(t,T)) = update(total(t’,T)).
Thus, perform(update(total(t,T))) = perform(update(total(t’ ,T))), which
is, by the fact that t’ € f(s’), a finite behavior of S that can leave S
in state s’.map(T’) = s.map(T’).

c. parent(UJ is not an ancestor of T.

The effects of it ensure that T’ is the least ancestor of T in s’.update
lockholders, s.map(T’) = s’.map(T’) and total(t,T) = total(t’,T). The
result follows immediately from the fact that C e f(s’).

This completes the demonstration of the fifth condition.

3. it = INFOR?&ABORT_AT(X)OFW).

Since Iris an input of Lx, it is enabled instate t’. Choose t so that (t’,it,t) is a

step of Lx. We show that t c f(s).

Theffrscandsecondconthtionsholdinsandtbecausetheyboldins’andt’
and none of the relevant components are modified by x.

The effects of it as an action of Lx imply that tintentions(W) =

t’.intentions(W) unless W is a descendant of U, and t.intentions(W) = ? if W
is a descendant of U. Thus, the set of transaction names T such that
t.intentions(T) contains a read operation is equal to the set of T such that
t’.intentions(T)) contains a read operation with the descendants of U removecL
Similarly the effects of it as an action of Mx show that s.read-lockholders

equals s ‘ read-lockliolders with the descendants of U ttmoved. Since C c
f(s), the set of transaction names T such that t’.intentions(l]) contains a read
operation equals s’.update-lockholders. - Thus, the set of T such that
t.intentions(T) contains a read operation equals s.update-lockholders, as
required. This shows the third condition. The proof of the fourth condition is
analogous to that for the third condition.

Fixially, fix some transaction T and let T’ be the least ancestor of T such that
c s.update-lockholders. The discussion is divided into subcases,

depending on the relation between T and U.
a. U is an ancestor of T.

Then total(t,T) = total(t’,parent(U)). The effects of it as an action of
Mx imply that s.update-lockholders = s’.update-lockholders -

descendants(U) and s.map(W) = s’.mapcW) if W is not a descendant of
U. Thus, T’ is an ancestor of parenUjj), and in fact must be the least
ancestor of parent(U) in s’.update-lockholders. Since C = f(s’),
perform(update(totalO’,parent(U)))) is a finite behavior of S that can
leave in state s’.map(T’). Thus, perform(update(total(t,T))) is a
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finite behavior of S that can leave in state s.map(T’).

b. LI is not an ancestor oft

The effects of it ensure that V is the least ancestor of T in s’.update

loclcholders, ssnap(T’) s’.map(T’) and total(t,T) = total(t’,T). The

result follows immediately from the fact that t’ e f(s’).

This completes the demonstration of the fifth condition.

4. iv = REQUEST_COMMIT(U,u), U a read access to X.

We first show that it is enabled as an action of Lx in state t’. That is, we must

show that U c t’.created - t’.commit-requested, that (U,u) commutes with

every (V,v) in t’.intentions(U’), where U’ ancestors(U), and that

perform(totalQ’,U)(U.u)) is in finbehs(Sx).

Since C € f(s’), t’.creazed = s’.creazed and t’.commit-requested = s’.commit

requested. Since it is enabled as an action of Mx in state s’, we have that U e

s’.cxeated - s’.conimit-requested. Therefore, U e t’.created - t’.commit

requested.

Suppose (in order to obtain a contradiction) that theit exist U’, V and v such

that U’ ancestors(3J), (V,v) is in t’.intentionsQ.J’), and (U,u) does not

commute with (V,v). Since U is a read access and read accesses are

transparent, Pxoposidon 59 implies that either U = V or else V is an update

access. Lemma 61 implies that U’ is an ancestor of V. so that we cannot have

V U. Therefore, V is an update access. Since V is an update access and

(V,v) is in t’,intentions’JJ’), the fact that t’ e f(s’) shows that U’ e s’.update

lockholders, Thus, since it is enabled in state s’, U’ is an ancestor of U. This

is a contradiction; thus, we have shown that if U’ is not an ancestor of U and

(V,v) is in t’.irnentions(U’), then (U,u) and (V,v) commute.

Finally, let U’= least(s’.update-lockholders). Since it is enabled in s’, U’ must

be an ancestor of U and is thus the least ancestor of U in s’.updace

lockholders. Therefore, the fact that C e f(s’) implies that

perform(update(total(t’,U))) is a finite behavior of S that can leave in

state s’.mapQJ’). Since It is enabled in s’, there is a move of with behavior

perform(U,u) starting from state s’map(U’). Thus,

perform(update(tota1(t’.Uperform(U,u) is a behavior of S. Since

perform(update(total(t’,U))) is equieffective to perfonn(total(t’,U)),

perform(total(t’ ,U))performQJ,u) = perforni(total(t’,U)(IJ,u)) is in

fiflbehs(Sx), since it is serial object well-formed.

Thus, it is enabled as an action of Lx in state t’. Choose t such that (t’at,t) is a

step of Lx. We show that t c f(s).

The effects of it imply that s.created = s’.created, t.created = t’.created,

s.cotmnit-requested = s’.commit-requested u {U) and L.commit-requested =

t’.commit-requested ti {UJ. Since C e f(s’), we have t’.created s’.created

and t’.commit-requested s’.commit-requested. Thus, s.created = t.created

and s.commit-requested = t.commit-requested, so the first and second

conditions hold.
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The effects of it imply that s.read-lockholdtrs = s’.read-lockholders U (U),
t.intentions(U) = t’.intentions(U)(U,u), and t.intentions(W) = t’.intentions(W)
for W * U. Since C e f(s’), s’.read-lockholders is the set of transaction nanrs
T such that t’.intentions(T) contains a read operation. Then s.jtad-lockholders
= s ‘.read=Iockholders Li {U}, which is exactly the set of transaction names T
such that t.intentionsfl) contains a itad operation, so the third condition
holds.

It is easy to see that the fourth condition holds in sand t, because it holds in s’
and t’ and the only relevant component that is modified is that t.intentions(U)
= t’.intentionsOjXU,u), and (V,u) is a read operation.

For the final condition, consider any transaction T. Note that
perform(update(total(t,T))) = perform(update(total(t’,Tfl) and s.map = s’.map.
Since the fifth condition holds in s’ and t’, it is easy to see that it holds in
and t.

5. it = REQUEST_COMMIT(U,u), U an update access to X.

We first show that it is enabled as an action of Lx in state C. The proofs that
U € C created - t’ commit-requested and that perform(total(t’ ,UXU,u)) is in
finbehs(Sx), ar identical to the corresponding proofs for the read update case.
We must show that (U,u) commutes with every (V,v) in t’.intentions(U’),
where U’ ancestors(U). We will show the stronger statement that if
t’.intentionsfti’) is not the empty sequence, then U’ E ancestorsfti). Since C
c f(s’), if t’.intentions(U’) is nonempty, then U’ c s’.read-Iockholders Li
s’.update-lockholders. Thus, since it is enabled as an action of Mx in state s’,
U’ € ancestors(U).

Thus it is enabled as an action of Lx in state C. Choose t such that (t’,it,t) is a
step of Lx. We show that t c f(s). The first two conditions follow as for the
read access case. The third condition holds in s and t because it holds in s’
and C and the only relevant component that is modified is that t.intentions(U)
= t’.intentions(U)(U,u), and (U,u) is an update operation.

The effects of it imply that s.update-lockholders = s’.update-lockholders u
[U), t.incentions(U) = t’.intentionsØi)(U,u), and t.intentions(W) =

t’.intentions(W) for W U. Since C E f(s’), s’.update-lockholders is the set
of transaction names T such that t’.intentions(T) contains an update operation,
together with T0. Thus, s.update-lockholders = s’.update-lockholders u (U),
which is exactly the set of T such that t.intentions(T) contains an update
operation, together with T0. Thus, the fourth condition is satisfied.

Finally, we show the fifth condition. Fix any transaction name T. If T U,
then since U is an access, T is not a descendant of U; then the fifth condition
holds in s and t because if holds in s’ and C and none of the relevant
components are modified. So suppose that T = U.

The effects of it as an action of Mx imply that s.mapftJ) is equal to some state
r of S such that (s’.map(U’),perform(U,u),r) is a move of S, where U’ =

least(s’.update-lockholders); also, s.map(W) = s’.map(W) for all W U.
Since all members of s’.update-Iocltho)ders must be ancestors of U by the
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preconditions of it in Mx, U’ is the least ancestor of U in s’.update

lockholders, so the fact that t e f(s) implies that perform(update(total(t’,IJ)))

is a finite behavior of S that can leave in state s’.mapOj’). Thus,

perform(update(totnl(t’,Ufl)perform(U,u) is a finite behavior of S that can

leave in state s.map(U). But perform(update(total(t’,Uperform(U,u) =

perform(update(total(t’,U)(U,u))) perform(update(total(t,U))). Thus,

perforrn(update(totalQ,U))) is a finite behavior of that can leave S in state

s.map(U), as required.

C

Proposition 71: Mx implements Lx.

Proof: By Lemma 70 and Theorem 3. C

Theorem 72: Mx is dynamic atomic.

Proof: By Proposition 71 and Theorem 68. C

An immediate consequence of Theorems 72, 68 and the Dynamic Atomicity Theorem is that if

Sis a generic system in which each generic object is either a Moss object or a locking object,

then Sis serially correct for all non-orphan transaction names.

10. Conclusions
We have presented a formal model for reasoning about atomic transactions that can include

nested subtransactions, and have used it to carry out an extensive development of the important

ideas about locking algorithms. First, we have stated the correctness conditions to be satisfied by

transaction-processing algorithms; we have stated these at the user interface to the transaction-

processing system. Second. we have stated and proved a general Serializability Theorem that

can be used to show the correctness of transaction-processing algorithms. Third, we have

defined the concept of ‘dynamic atomicity”. a sufficient condition for satisfying the hypotheses

of the Serializability Theorem. Fourth, we have presented two locking algorithms: a new

general commutativity-based locking algorithm and a previously known read-update locking

algorithm. Fifth, we have provided complete correctness proofs for both algorithms. We have

proved the general algorithm correct by showing that it satisfies the dynamic atomicity

condition, and then we have proved the read-update algorithm correct by showing that it

implements the general algorithm. All of these tasks have been quite manageable within the

given framework.

The proofs we have constructed are modular. A system is modeled in terms of a number of

components, and our woofs follow the modular decomposition of the system. Many interesting

concepts are captured by formal definitions, and many facts about these concepts are captured by

formally stated lemmas. This modularity makes the development much easier to understand than

it would be without it. Moreover, much of the machinery is reusable for presenting and

verifying other algorithms.

We have already used our model to present and prove contctness of several other kinds of

transaction-processing algorithms, including timestamp-based algorithms for concurrency

control and recovery 2] and algorithms for management of replicated data [12] and of orphan

transactions [17]. Our treatment of timescamp algorithms is especially noteworthy because it
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parallels the work in this paper quite closely.

Briefly, the paper [2] contains descriptions of two timestamp algorithms: Reed’s timestamp
based algorithm [34], designed for data objects that are accessible only by read and write
operations, and a new general algorithm that accommodates arbitrary data types. (This latter
algorithm generalizes work by Herlihy [16) for single-level transactions.) These algorithms both
involve assignment of ranges of dmestamp values to transactions in such a way that the interval
of a child transaction is included in the interval of its parent, and the intervals of siblings are
disjoint. Responses to accesses are determined from previous accesses with earlier timestamps.

These algorithms are proved correct using the Serializability Theorem of this paper. This time,
the sibling order used is the timestamp order. Now the view condition says that the processing
of accesses to Xis “consistent” with the timestamp order, in that reordering the processing in
timestamp order yields a correct behavior for S. The Serializability Theorem implies that the
timestamp algorithms are serially correct for all non-orphan transaction names. Again, each
algorithm is described as the composition of object automata and a controller. Again, a local
condition (“static atomicity”) is defmed, this time saying that an object satisfies the view
condition using the timestamp order. As long as each object is static atomic, the whole system is
serially correct for non-orphan transactions. Again, we have the flexibility to implement objects
independently as long as static atomicity is guaranteed. We show that both algorithms ensure
static atomicitv.

There is much more that could be done using this model. For example, it would be interesting
to model other kinds of locking algorithms, such as those using rnultigranularity locking 113],
tree locking [3], and predicate locking [9). Perhaps the dynamic atomicity and local dynamic
atomicity conditions defined in this paper will prove useful for reasoning about these other
algorithms as well. It would also be interesting to see if our Serializability Theorem can be used
to prove correcmess of other concurrency control algorithms besides those based on locking or
timestamps.

There are other areas of transaction-processing systems that contain subtle, complex
algorithms that would benefit from a more rigorous analysis. For example, it would be
interesting to use our framework to model some of the complex transaction-processing
algorithms that tolerate processor “crashes”, i.e., failures that obliterate the contents of volatile
memory [14). Similarly, algorithms that manage orphans resulting from node crashes in
distributed systems [22] are complex, yet no rigorous proof exists.

It would also be interesting to integrate our approach more closely with the classical approach,
to try to combine the advantages of both. Our framework is more general than the classical
model (because of its integrated treatment of concurrency control and recovery and because it
allows transactions to nest). On the other hand, our model includes mort detail than the classical
model, and so it may seem more complicated. For example, the classical Serializability Theorem
is stated in simple combinatorial terms, while our Serializability Theorem involves a fme-grained
treatment of individual actions. We wonder if there is a simple combinatorial condition similar
to the hypothesis of the classical theorem (but taking suitable account of nesting and failures),
that implies the general correctness conditions described in this paper.
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