
Specifying and Using a PartitionableGroup Communication Service�Alan Feketey Nancy Lynchz Alex ShvartsmanxJune 20, 1999; revised April 24, 2000AbstractGroup communication services are becoming accepted as e�ective building blocks for theconstruction of fault-tolerant distributed applications. Many speci�cations for group commu-nication services have been proposed. However, there is still no agreement about what thesespeci�cations should say, especially in cases where the services are partitionable, that is, wherecommunication failures may lead to simultaneous creation of groups with disjoint memberships,such that each group is unaware of the existence of any other group.In this paper, we present a new, succinct speci�cation for a view-oriented partitionable groupcommunication service. The service associates each message with a particular view of the groupmembership. All send and receive events for a message occur within the associated view. Theservice provides a total order on the messages within each view, and each processor receives apre�x of this order.Our speci�cation separates safety requirements from performance and fault-tolerance require-ments. The safety requirements are expressed by an abstract, global state machine. To presentthe performance and fault-tolerance requirements, we include failure-status input actions in thespeci�cation; we then give properties saying that consensus on the view and timely messagedelivery are guaranteed in an execution provided that the execution stabilizes to a situation inwhich the failure status stops changing and corresponds to a consistently partitioned system. Be-cause consensus is not required in every execution, the speci�cation is not subject to the existingimpossibility results for partitionable systems. Our speci�cation has a simple implementation,based on the membership algorithm of Cristian and Schmuck.We show the utility of the speci�cation by constructing an ordered-broadcast application,using an algorithm (based on algorithms of Amir, Dolev, Keidar and others) that reconcilesinformation derived from di�erent instantiations of the group. The application manages theview-change activity to build a shared sequence of messages, that is, the per-view total ordersof the group service are combined to give a universal total order. We prove the correctness andanalyze the performance and fault-tolerance of the resulting application.Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Dis-tributed Systems; D.4.5 [Operating Systems]: Reliability { fault tolerance; D.2.4 [SoftwareEngineering]: Program Veri�cation { correctness proofs.�A preliminary version of this work appeared in the Proceedings of the 16th ACM Symposium on Principlesof Distributed Computing , 1997. This research was supported by the following contracts: ARPA F19628-95-C-0118, AFOSR-ONR F49620-94-1-0199, U.S. Department of Transportation: DTRS95G-0001- YR. 8, NSF9225124-CCR, and by an Australian Research Council grant.yBasser Department of Computer Science, Madsen Building F09, University of Sydney, NSW 2006, Australia.Email: fekete@cs.usyd.edu.auzMassachusetts Institute of Technology, Laboratory for Computer Science, 545 Technology Square, NE43-365,Cambridge, MA 02139, USA. Email: lynch@theory.lcs.mit.edu.xDepartment of Computer Science and Engineering, 191 Auditorium Road, U-155, University of Connecticut,Storrs, CT 06269 and Massachusetts Institute of Technology, Laboratory for Computer Science, 545 TechnologySquare, NE43-371, Cambridge, MA 02139, USA. Email: alex@theory.lcs.mit.edu. The work of this authorwas in part supported by the NSF Career Award, CCR-9984778.1

1 IntroductionBackgroundIn the development of practical distributed systems, considerable e�ort is devoted to makingdistributed applications robust in the face of typical processor and communication failures.Constructing such systems is di�cult, however, because of the complexities of the applicationsand of the fault-prone distributed settings in which they run. To aid in this construction,some computing environments include general-purpose building blocks that provide powerfuldistributed computation services.Among the most important examples of building blocks are group communication services.Group communication services enable processes located at di�erent nodes of a distributed net-work to operate collectively as a group; the processes do this by using a group communicationservice to multicast messages to all members of the group. Di�erent group communicationservices o�er di�erent guarantees about the order and reliability of message delivery. Exam-ples are found in Isis [13], Transis [22], Totem [46], Newtop [25], Relacs [6], Horus [49] andEnsemble [48].Solutions based on the group communications approach have been developed for real-worldproblems. For example, Isis and Isis-based systems are providing reliable multicast communica-tion for the New York Stock Exchange where timely and consistent data has to be delivered and�ltered at multiple trading
oor locations, for the Swiss Electronic Bourse where the \trading
oor" has been completely replaced by a distributed system where the traders and memberbanks participate in all activities electronically, and for the new generation of the French AirTra�c Control System where teams of controllers use clusters of workstations running an air-sector control application that provides high levels of availability and data consistency [11].The basis of a group communication service is a group membership service. Each process,at each time, has a unique view of the membership of the group. The view includes a list of theprocesses that are members of the group. Views can change from time to time, and may becomedi�erent at di�erent processes. Isis introduced the important concept of virtual synchrony [13].This concept has been interpreted in various ways, but an essential requirement is that processesthat proceed together through two consecutive views deliver the same set of messages betweenthese views. Additionally, if a particular message is delivered to several processes, then all havethe same view of the membership when the message is delivered. This allows the recipients totake coordinated action based on the message, the membership set and the rules prescribed bythe application.The Isis system was designed for an environment where processors might fail and messagesmight be lost, but where the network does not partition. That is, it assumes that there arenever two disjoint sets of processors, each set communicating successfully among its members.This assumption might be reasonable for some local area networks, but it is not valid in widearea networks. Therefore, the more recent systems mentioned above allow the possibility thatconcurrent views of the group might be disjoint.To be most useful to application programmers, system building blocks should come equippedwith simple and precise speci�cations of their guaranteed behavior. These speci�cations shouldinclude not only safety properties, but also performance and fault-tolerance properties. Suchspeci�cations would allow application programmers to think carefully about the behavior of2

systems that use the primitives, without having to understand how the primitives themselvesare implemented. Unfortunately, providing appropriate speci�cations for group communicationservices is not an easy task. Some of these services are rather complicated, and there is stillno agreement about exactly what the guarantees should be. Di�erent speci�cations arise fromdi�erent implementations of the same service, because of di�erences in the safety, performance,or fault-tolerance that is provided. Moreover, the speci�cations that most accurately describeparticular implementations may not be the ones that are easiest for application programmersto use.The �rst major work on the development of speci�cations for asynchronous fault-tolerantgroup-oriented membership and communication services appears to be that of Ricciardi [50],and the research area is still active (see, e.g., [47, 14, 16]). In particular, there has beena large amount of work on developing speci�cations for partitionable group services. Somespeci�cations deal just with membership and views [34, 51], while others also cover messageservices (ordering and reliability properties) [7, 8, 9, 18, 23, 28, 33, 45, 44]. The speci�cations areoften complicated, many are di�cult to understand, and in some cases seem to be ambiguous.It is not clear how to tell whether a speci�cation is su�cient for a given application. It is noteven clear how to tell whether a speci�cation is implementable at all; impossibility results suchas those in [14] demonstrate that this is a signi�cant issue.Our contributionsWe present a new, simple formal speci�cation for a partitionable view-oriented group com-munication service. To demonstrate the value of our speci�cation, we use it to construct analgoritm for an ordered-broadcast application that reconciles information derived from di�er-ent views. Our algorithm is based on algorithms of Amir, Dolev, Keidar, Melliar-Smith andMoser [35, 36, 3]. We prove the correctness and analyze the performance and fault-toleranceof this algorithm. Our speci�cation has a simple implementation, based on the membershipalgorithm of Cristian and Schmuck [19]. We call our speci�cation VS , which stands for view-synchrony.1In VS , the views are presented to each processor2 according to a consistent total order,though not every processor need see every view that includes it in its membership. Eachmessage is associated with a particular view, and all send and receive events for a messageoccur at processors when they have the associated view. The service provides a total orderon the messages associated with each view, and each processor receives a pre�x of this totalorder. There are also some guarantees about stabilization of view information and aboutsuccessful message delivery, under certain assumptions about the number of failures and aboutthe stabilization of failure behavior.Our speci�cation VS does not describe all the potentially-useful properties of any partic-ular implementation. Rather, it includes only the properties that are needed for the ordered-broadcast application. However, preliminary results suggest that the same speci�cation is alsouseful for other applications.The style of our speci�cation is di�erent from those of previous speci�cations for groupcommunication services, in that we separate safety requirements from performance and fault-tolerance requirements. The safety requirements are formulated in terms of an abstract, global1This is not the same as the notion of view-synchrony de�ned in [9].2We consider \processor groups" in the formal material of this paper rather than \process groups". Thedistinction is unimportant here. 3

input/output state machine, using precondition-e�ect notation. This enables assertional rea-soning about systems that use this service. The performance and fault-tolerance requirementsare expressed as a collection of properties that must hold in executions of the service. Speci�-cally, we include failure-status input actions in the speci�cation; we then give properties sayingthat consensus on the view and timely message delivery are guaranteed in an execution pro-vided that it stabilizes to a situation in which the failure status stops changing and correspondsto a consistently partitioned system. This stabilization hypothesis can be seen as an abstractversion of the \timed asynchronous model" of Cristian [17]. These conditional performanceand fault-tolerance properties are expressed in precise natural language and require operationalreasoning.We consider how our view-synchronous group communication service can be used in thedistributed implementation of a sequentially consistent memory. It turns out that the problemcan be subdivided into two: the implementation of a totally ordered broadcast communicationservice using a view-synchronous group communication service, and the implementation ofsequentially consistent memory using a totally ordered broadcast service. The second of theseis easy using known techniques,3 so we focus in this paper on the �rst problem. A totally orderedbroadcast service delivers messages submitted by its clients, according to a single total orderingof all the messages; this total order must be consistent with the order in which the messagesare sent by any particular sender. Each client receives a pre�x of the ordering, and there arealso some guarantees of successful delivery, under certain assumptions about the stabilizationof failure behavior. This service is di�erent from a view-synchronous group communicationservice in that there is no notion of \view"; the ordering guarantees apply to all the messages,not just those within individual views.We begin in Section 3 by giving a simple formal speci�cation for a totally ordered broadcastservice, which we call TO . This speci�cation will be used later as the correctness de�nition foran algorithm running over a group communication service. It also serves as a simple exampleto illustrate the style of speci�cation we use throughout the paper: an abstract state machinefor safety properties, plus stabilized properties for performance and fault-tolerance.Then, in Section 4, we present our new speci�cation for a partitionable group communicationservice, VS . In VS , there is a crisp notion of a local view, that is, each processor, at any time,has a current view and knows the membership of the group in its current view; moreover, anymessages sent by any processor in a view are received (if they are received at all) in the sameview. The VS layer also provides a \safe" indication, once a message has been delivered to allmembers of the view.Anticipating the formal de�nition of VS in Section 4, we �rst informally enumerate thebasic safety properties of VS that are provided in several existing group communication sys-tem implementations (our presentation follows the survey [53], which includes comprehensivereferences).3Each processor maintains a replica of the underlying memory. A read operation is performed immediatelyon the local copy. A requested update is sent to all processors via the totally ordered broadcast service. Eachprocessor (even the one where the request was submitted) applies the update when it is delivered by the totallyordered broadcast service; the submitting processor also determines the return value and returns it to theclient. The fact that this provides a sequentially consistent shared memory is at the heart of the \ReplicatedState Machine" approach to distributed system design. It was �rst described by Lamport [37], a survey of thisapproach is given by Schneider in [52] (see also the references therein). An alternative approach is to send alloperations (not just updates) through the totally ordered broadcast service; this approach constructs an atomicshared memory. 4

1. Self inclusion: a processor is always a member of its local view (Relacs [7], Transis [23],Horus [28], Newtop [25]).2. Local monotonicity : local views are installed at any processor in the increasing order ofview identi�ers. This is satis�ed by most group communication implementations [23, 5, 28,8, 25, 42].3. Initial view : all communication events in VS must occur in a view; however VS de�nesa hybrid initial view approach, where some processors start in a certain globally knowndefault initial view (cf. Transis [23] and Consul [43]) and the rest of the processors havetheir view unde�ned (cf. Isis [12] and Ensemble [31]).4. Partitionable membership: the processors may partition into several groups; the notion of aprimary group is not imposed by VS , and processors may continue operating in any view.Partionable membership is supported by Transis [22], Totem [5], Horus [49], RMP [54],Newtop [25] and Relacs [6].5. Message delivery integrity : any receive event has a corresponding send event. This is asimple property supported by all group communication services.6. At-most-once delivery (no duplication): a speci�c message is delivered at most one time atany processor. This is provided by most services, e.g., [7, 25, 2].7. Sending view delivery : if a message is delivered to a processor in some view, then thismessage was sent in the same view. Among the systems that support this property areIsis [13] and and Totem [5]; in Horus this property is user-selectable [28].8. Safety noti�cation: a safety event for a speci�c message at a processor in a given view tellsthat processor that the message was delivered to all members of the view. Examples ofsystems with similar facilities include Totem [5, 45], Transis [2] and RMP [54].Here are the most important di�erences between our speci�cation VS and other groupcommunication speci�cations.1. VS does not mention any \transitional views" or \hidden views", such as are found inExtended Virtual Synchrony [45] or the speci�cation of Dolev et al. [23]. Each processoralways has a well-de�ned view of the group membership, and all recipients of a messageshare the view that the sender had when the message was sent.2. VS does not require that a processor learn of all the views of which it is a member.3. VS does not require any relationship among the membership of concurrent views held bydi�erent processors. Stronger speci�cations demand that these views be either disjoint oridentical [9], or either disjoint or subsets [7].4. VS does not require consensus on whether a message is delivered. Many other speci�cationsfor group communication, including [7, 9, 23, 28, 45], insist on delivery at every processorin the intersection of the current view and a successor view4. We allow each member to4The property of agreed delivery in the intersection of views has its main use in allowing applications toreduce the amount of state exchange messages (see [1]).
5

receive a di�erent subset of the messages associated with the view; however, each membermust receive a pre�x of a common total order of the messages of that view5.5. The \safe" indication is separate from the message delivery event. In Transis, Totem andHorus [22, 46, 49], delivery can be delayed until the lower layer at each site has the message(though it might not yet have delivered it). Thus in these systems, safe delivery meansthat every other member is guaranteed to also provide safe delivery or crash. A simple\coordinated attack" argument (as in Chapter 5 of [38]) shows that in a partitionablesystem, this notion of safe delivery is incompatible with having all recipients in exactly thesame view as the sender. In contrast, our service delivers a message before it is safe andlater provides a noti�cation once delivery has happened at all other group members.6. There are no liveness requirements that apply to all executions. Instead, we follow the\timed asynchronous model" of Cristian [17] and make conditional claims for timely deliveryonly in certain executions where the processors and links behave well.7. VS does not require that every view change have a cause; in contrast, some speci�cationsrequire that the removal of a member that was in the previous view must be due to a failureof that member, or of a link to it. We allow arbitrary view changes during periods when theunderlying network is unstable, however the conditional performance and fault-toleranceproperty of VS shows that once the communication stabilizes to a consistently partitionedsystem, process views must quickly converge to match that partitioning.The di�erences represented by points 2 and 6 mean that our VS service is not subject to theimpossibility results that a�ict some group communication speci�cations [9, 14].Although VS is weaker in several respects than most services considered in the literature,we demonstrate that it is strong enough to be useful, by showing, in Section 5, how an inter-esting and useful algorithm can run on top of it. This algorithm is based on data replicationalgorithms developed by Amir, Dolev, Keidar, Melliar-Smith and Moser [35, 36, 3]. These pre-vious algorithms implement a fault-tolerant shared memory by sending modi�cation operationsto each replica through a group communication service based on Extended Virtual Synchrony,and carrying out a state-exchange protocol when partition components merge.We model processor failures by introducing delays (possibly unbounded) between any twoevents occurring at a processor, and we assume that processors preserve local state betweenthe corresponding crashes and recoveries. Other solutions make di�erent approaches to dealingwith processor failures. In the work of Dolev and Keidar [35, 36] the message is written tostable storage before it is ordered or acknowledged, thus their solution trades latency for fault-tolerance. The algorithm of Amir, Dolev, Melliar-Smith and Moser [3] reduces this latencyby using a specialized \safe" message delivery service before the message is written to stablestorage. Friedman and Vaysburg give an algorithm [29] that does not use stable storage formessages. This allows for messages to be delivered to the clients faster, however the algorithmmust assume that certain failures of a large number of processors do not occur.5The pre�x total order property is somewhat stronger than what is commonly provided by group communica-tion services. However it was observed in [53] that our pre�x total order property, as it is used in the total orderapplication in this paper, can be replaced by the weaker property that guarantees that all messages are orderedwithin each view, but the delivery may have message \gaps", as long as the safe noti�cation for a message holdsfor the pre�x of the messages up to that message. This property is su�cient because our application updatesthe stable order only after a message becomes safe. 6

TO Service#" !VS Service
#" ! #" !#" !VStoTO VStoTO VStoTOClient Client Client

6? 6? 6?6? 6? 6?
Figure 1: Overview of system structureOur algorithm, which we call VStoTO , can be seen as a more abstract form of the previoussolutions, separated from the speci�c use for data replication. We present the algorithm usingI/O automata [39, 38] in Section 5. The algorithm is formally speci�ed in great detail, howeverour intent is to give an algorithm that admits many implementations and we assume the localoptimizations would be largely performed during the mapping of the abstract algorithm to thetarget platform (cf. [15]). Figure 1 depicts the major components of the system we consider.The TO Service is represented by the dashed box. The totally-ordered broadcast service isstructured in two layers, the top layer consisting of the distributed VStoTO components, andthe bottom layer consisting of the VS Service. The clients access the totally-ordered broadcastservice via the VStoTO components.Finally, in Sections 6 and 7, we give a proof that the VStoTO algorithm, running on topof VS , indeed provides the service expressed by the TO speci�cation. The safety aspect ofthis claim uses assertional methods. We give invariants on the global state of a system thatconsists of the VStoTO algorithm and the VS state machine. We then give a simulationrelationship between the global state of the system, and the TO state machine. As usual,proving the invariants and the simulation relationship involves reasoning only about individualstate transitions; it does not require operational reasoning, in which one considers a wholeexecution. Our safety proofs assume complete asynchrony; we make no assumptions abouttime or communication delays. The performance and fault-tolerance aspects of the proof involveoperational reasoning about timed executions.2 Models and Mathematical FoundationWe model the distributed computing setting where �nitely many processors communicate bymeans of message passing and share no common storage. The processors have unique identi�ersfrom a totally ordered �nite set P . The processors and communication are asynchronous.By assuming asynchrony we are able to model arbitrary delays, and we can model processorcrashes and recoveries in terms of appropriate bounded or unbounded delays. We assume thatprocessors do not crash with a loss of state. Assuming communication asynchrony allows us tospecify our services and algorithms without regard for communication latency and bandwidth.7

In assessing the conditional performance of our algorithms we assume that in the executionswhere the system stabilizes the communication occurs within bounded delays regardless of thenumber and the size of the messages (we give precise de�nitions in Sections 3.2 and 4.2).We now de�ne our formal notation and model of computation.If S is a set, the notation S? refers to the set S [f?g. We assume that each of the basicsets used in this paper (sets of locations, messages, group identi�ers, etc) does not contain ?.Whenever S is ordered, we order S? by extending the order on S, and making ? less than allelements of S.If r is a binary relation, then we de�ne dom(r) to be the set (without repetitions) of�rst elements of the ordered pairs comprising relation r, and range(r) to be the set of secondelements. If f is a partial function from A to B and ha; bi 2 A � B, then f � ha; bi is de�nedto be the partial function that is identical to f except that f(a) = b.If f and g are partial functions, from A to B and from A to C respectively, then the pairhf; gi is de�ned to be the function from A to B �C such that hf; gi(a) = hf(a); g(a)i.If S is a set, then seqof (S) denotes the set of all �nite sequences of elements of S. We write� for the empty sequence, and hhaii for the sequence consisting of the single element a. If s is asequence, length(s) denotes the length of s. If s is a sequence and 1 � i � length(s) then s(i)denotes the ith element of s. If s and t are sequences and s is �nite, then the concatenationof s and t is denoted by s � t. We say that sequence s is a pre�x of sequence t, written ass � t, provided that there exists s0 such that s � s0 = t. A collection S of sequences is consistentprovided that for every s; t 2 S, either s � t or t � s. If S is a consistent collection of sequences,we de�ne lub(S) to be the minimum sequence t such that s � t for all s 2 S.We often regard a sequence s as a partial function from its index set to its elements; thus,for example, we use the function notation range(s) to denote the set of elements appearing insequence s. If s is a sequence of elements of X and f is a partial function from X to Y whosedomain includes range(s), then applyall (f; s) denotes the sequence t of elements of Y such thatlength(t) = length(s) and, for i � length(t), t(i) = f(s(i)).Our services and algorithms are described using untimed and timed state machine mod-els. Untimed models are used for the safety properties, while timed models are used for theperformance and fault-tolerance properties.The untimed model we use is the I/O automaton model of Lynch and Tuttle [39], alsodescribed in Chapter 8 of [38]. We do not use the \task" construct of the model { the onlycomponents we need are a set of states, a designated subset of start states, a signature specifyinginput, output and internal actions, and a set of (state,action,state) transitions. The input andthe output actions together constitute the external actions of an automaton. The timed modelwe use is that of Lynch and Vaandrager [41], as described in Chapter 23 of [38]. This is similarto the untimed model, but also includes time passage actions �(t), which indicate the passageof real time t. Time passage actions also have associated state transitions.An execution fragment of an I/O automaton is an alternating sequence of states and actionsconsistent with the transition relation. An execution is an execution fragment that begins witha start state. Timed execution fragments and timed executions of a timed automaton arede�ned in the same way. A timed execution fragment of a timed automaton has a \limit time"ltime 2 R�0 [f1g, which is the sum of all the amounts of time in its time passage actions.Since our treatment is compositional, we need notions of external behavior for both types ofautomata. For I/O automata, we use traces, which are sequences of external actions; for timedautomata, we use timed traces, each of which is a sequence of actions paired with its time of8

TO. . .VSgpsnd(m)pgprcv(m)q;p safe(m)q;psafe(m)q;p newview(v)p@@Rbcast(a)p brcv(a)q;p��� @@Rbcast(a)q brcv(a)p;q����� �� �� ��'
&

$
%�� �
@@R ��� ��� ���@@ �� �� �� gpsnd(m)qgprcv(m)p;q safe(m)p;qsafe(m)p;q newview(v)q@@R ��� ��� ���@@ �� �� ��VStoTOp VStoTOq

Figure 2: System components and interfacesoccurrence, together with a value ltime 2 R�0[f1g indicating the total duration of time overwhich the events are observed. The external behavior of an I/O automaton is captured by theset of traces generated by its executions, while that of a timed automaton is captured by the setof timed traces generated by its \admissible" timed executions, i.e., those in which ltime =1.Execution fragments can be concatenated, as can timed execution fragments, traces andtimed traces. I/O automata can be composed, as can timed automata; Chapters 8 and 23of [38] contain theorems showing that composition respects the external behavior. Invariantassertion and simulation relation methods for these two models are also presented in thosechapters.Finally, we note that we use I/O automata to express our safety speci�cations and to de�nedistributed algorithms. A safety speci�cation is normally given as a single automaton, while adistributed algorithm is given as a composition of several automata, each of which models thebehavior of a processor in a distributed setting.3 Totally Ordered BroadcastIn this section, we present TO , our speci�cation for a totally ordered broadcast communica-tion service. TO is a combination of a state machine TO-machine and a performance/fault-tolerance property TO-property , which is a property of timed traces allowed by a timed versionof TO-machine.Figure 2 depicts the major components of the system we consider together with the signa-tures of their interactions.For the rest of the paper, we �x P to be a totally ordered �nite set of processor identi�ers(we will often refer to these as locations), and A to be a set of data values.3.1 The State Machine TO-machineThe interface between the totally ordered broadcast service and its clients is through inputactions of the form bcast(a)p, representing the submission of data value a by a client at thelocation of processor p, and output actions of the form brcv(a)p;q, representing the deliveryto a client at q of a data value previously sent by a client at p. We call the messages at thisinterface \data values", to distinguish them from messages at lower-level interfaces.The state of the speci�cation automaton includes a queue queue of data values, each pairedwith the location at which it originated; the order represented by queue is determined by the9

service implemented by the TO-machine. Also, for each location p, there is a queue pending [p]containing the data values originating at p that have not yet been added to queue. Finally,for each p there is an integer next [p] giving the index in queue of the next data value to bedelivered at p. The formal automaton de�nition is given in Figure 3.TO-machine:Signature:Input:bcast(a)p, a 2 A, p 2 POutput:brcv(a)p;q, a 2 A, p; q 2 P Internal:to-order(a; p), a 2 A, p 2 PStates:queue , a �nite sequence of A� P , initially emptyfor each p 2 P :pending [p], a �nite sequence of A, initially emptynext [p] 2 N>0, initially 1Transitions:Input bcast(a)pE�ect:append a to pending [p]Internal to-order(a; p)Precondition:a is head of pending [p]E�ect:remove head of pending [p]append ha; pi to queue
Output brcv(a)p;qPrecondition:queue(next [q]) = ha; piE�ect:next [q] next [q] + 1

Figure 3: TO-machineThe �nite traces of this automaton are exactly the �nite pre�xes of traces of a totally orderedcausal broadcast layer, as de�ned in [26].Note that, in any trace of TO-machine, there is a natural correspondence between brcvevents and the bcast events that cause them.3.2 The Performance and Fault-Tolerance Property TO-propertyConsider a signature TO-fsig that is the same as that of TO-machine, above, with the additionof the actions shown in Figure 4.If � is any �nite sequence of actions of TO-fsig, then we de�ne the failure status of anylocation or pair of locations after � to be either good , bad , or ugly , based on the last action forthat location or pair of locations in �. If there is no such action, the default choice is good . Weextend this de�nition to related types, e.g., where � is a sequence of timed actions.The intention (though this has no formal meaning at the level of an abstract speci�cation)is that a good process takes steps with no time delay after they become enabled, a bad process isstopped, and an ugly process operates at nondeterministic speed (or may even stop). Similarly,a good channel delivers all messages that are sent while it is good, within a �xed time ofsending. A bad channel delivers no messages. An ugly channel might or might not deliverits messages, and there are no timing restrictions on delivery. But these statements refer to10

Input:for each p:goodpbadpuglyp for each p, q:goodp;qbadp;quglyp;qFigure 4: Signature for good, bad and ugly actionsTO-property(b; d;Q):Both of the following hold:1. � with the timing information removed is a trace of TO-machine .2. Suppose that (�;1) = (
; l)(�;1) and that all the following hold:(a) � contains no failure status events for locations in Q or for pairs including a location in Q.(b) All locations in Q and all pairs of locations in Q are good after
.(c) If p 2 Q and q 62 Q then (p; q) is bad after
.Then (�;1) can be written as (�0; l0)(�00;1), where(a) l0 � b.(b) Every data value sent from a location in Q in � at time t is delivered at all members of Q bytime max (t; (l + l0)) + d.(c) Every data value delivered in � to any location in Q at time t is delivered at all members of Qby time max (t; (l + l0)) + d.Figure 5: De�nition of TO-propertyprocessors, channels and their properties, notions that belong in an implementation model, notin an abstract service speci�cation.To formulate our performance/fault-tolerance claim, we de�ne TO-property (b; d;Q), in Fig-ure 5, as a parameterized property of a timed sequence pair over external actions of TO-fsig, asde�ned in [41]. This is a pair consisting of a sequence � of timed actions (with non-decreasingtimes) together with an ltime. Here, we only consider cases where ltime =1. The parametersb and d are nonnegative reals, and the parameter Q is a set of processors.The intended intuitive property that is formalized in TO-property (b; d;Q) is as follows.Suppose that, starting from a certain time l, processors in Q and all pairs of processors from Qare good , while all pairs where one processor is in Q and the other is not in Q are bad . Then,after a \stabilization interval" of length at most b, the messages sent among the processors inQ are delivered within time d, and any message delivered to any processor in Q is also deliveredto all other processors in Q within time d.3.3 The Combined Speci�cation TOWe de�ne the speci�cation TO(b; d;Q) to be the pair consisting of the speci�cation TO-machineand the property TO-property(b; d;Q).We say that a timed automaton A satis�es the speci�cation TO(b; d;Q) provided that everyadmissible timed trace of A is in the set (of timed sequence pairs) de�ned by TO-property(b; d;Q).11

4 View-Synchronous Group CommunicationIn this section, we give a formal speci�cation for our view-synchronous group communicationservice. This speci�cation is again based on a combination of a state machine, VS-machine,and a performance/fault-tolerance property, VS-property .For the rest of the paper, we �xM to be a message alphabet, and hG;<G; g0i to be a totallyordered set of view identi�ers with an initial view identi�er g0. We de�ne views = G� P(P),the set of pairs consisting of a view identi�er together with a set of locations; an element of theset views is called a view . If v is a view, we write v:id and v:set to denote the view identi�erand set components of v, respectively. v0 = hg0; P0i is a distinguished initial view , in which theidenti�er g0 is the minimal identi�er, and the set is a particular set P0.4.1 The State Machine VS-machineThe external actions of VS-machine include actions of the form gpsnd(m)p, representing theclient at p sending a message m, and actions of the form gprcv(m)p;q, representing the deliveryto q of the message m sent by p. Outputs safe(m)p;q are also provided at q to report that theearlier message m from p has been delivered to all locations in the current view as known by q.VS-machine informs its clients of group status changes through newview(hg; Si)p actions(with p 2 S being guaranteed by the de�nition of the newview signature), which tells p thatthe view identi�er g is associated with membership set S and that, until another newviewoccurs, the following messages will be in this view. After any �nite execution, we de�ne thecurrent view at p to be the argument v in the last newview event at p, if any, otherwise itis either the initial view hg0; P0i if p 2 P0, or ? if p =2 P0. This re
ects the concept that thesystem starts with the processors in P0 forming the group, and other processors unaware of thegroup.The code is given in Figure 6. The state of the automaton is similar to that of TO-machine,except that there are multiple queues, one per view identi�er, and similarly for each viewidenti�er there is a separate indicator for the next index to be delivered to a given location.Also, the service keeps track of all the views that have ever been de�ned, and of the currentview at each location.The actions for creating a view and for informing a processor of a new view are straight-forward (recall that the signature ensures that only members, but not necessarily all members,receive noti�cation of a new view). Within each view, messages are handled as in TO-machine:�rst kept pending, then placed into a total order in the appropriate queue, and �nally passed tothe environment. Thus, VS-machine ensures that each gprcvp;q and each safep;q event occursat q when q's view is the same as p's view when the corresponding gpsnd event occurs at p.(This is shown formally in Lemma 4.2.) A message that is sent before the sender knows ofany view (when the current view is ?) is simply ignored, and never delivered anywhere. Thespeci�cation given in Figure 6 (unlike the particular VStoTO algorithm presented later) doesnot have any notion of \primary" view: it does not treat a message associated with a majorityview di�erently from one in a minority view.Note that VS-machine does not include any restrictions on when a new view might beformed. However, our performance and fault-tolerance property VS-property , described below,does express such restrictions { it implies that \capricious" view changes must stop shortly afterthe behavior of the underlying physical system stabilizes. In any trace of VS-machine, there isa natural correspondence between gprcv events and the gpsnd events that cause them, and12

VS-machine:Signature:Input:gpsnd(m)p, m 2M , p 2 POutput:gprcv(m)p;q m 2M , p 2 P , q 2 Psafe(m)p;q m 2M , p 2 P , q 2 Pnewview(v)p, v 2 views, p 2 P , p 2 v:set Internal:createview(v), v 2 viewsvs-order(m; p; g), m 2M , p 2 P , g 2 GStates:created � views, initially fhg0; P0igfor each p 2 P :current-viewid [p] 2 G?, initially g0 if p 2 P0, ? elsefor each g 2 G:queue [g], a �nite sequence of M �P , initially emptyfor each p 2 P , g 2 G:pending [p; g], a �nite sequence of M , initially emptynext [p; g] 2 N>0, initially 1next-safe [p; g] 2 N>0, initially 1Transitions:Internal createview(v)Precondition:8w 2 created : v:id > w:idE�ect:created created [fvgOutput newview(v)pPrecondition:v 2 createdv:id > current-viewid [p] _ current-viewid [p] = ?E�ect:current-viewid [p] v:idInput gpsnd(m)pE�ect:if current-viewid [p] 6= ? thenappend m to pending [p; current-viewid [p]]Internal vs-order(m;p; g)Precondition:m is head of pending [p; g]E�ect:remove head of pending [p; g]append hm;pi to queue [g]

Output gprcv(m)p;qPrecondition:choose g 2 Gg = current-viewid [q]queue [g](next [q; g]) = hm;piE�ect:next [q; g] next [q; g] + 1Output safe(m)p;qPrecondition:choose g 2 G, S 2 2Pg = current-viewid [q]hg; Si 2 createdqueue [g](next-safe [q; g]) = hm; pifor all r 2 S:next [r; g] > next-safe [q; g]E�ect:next-safe [q; g] next-safe [q; g] + 1
Figure 6: VS-machine

13

between safe events and the gpsnd events that cause them.For later use we give some facts about VS-machine. These are expressed using a derivedvariable. Derived variables:created-viewids = fg 2 G j 9S : hg; Si 2 createdgLemma 4.1 The following are true in all reachable states of VS-machine: For any p 2 P ,S � P , m 2M , g 2 G:1. If g 2 created-viewids then there is a unique S such that hg; Si 2 created .2. If current-viewid [p] 6= ? then current-viewid [p] 2 created-viewids.3. If hcurrent-viewid [p]; Si 2 created then p 2 S.4. If pending [p; g] 6= � then g 2 created-viewids.5. If pending [p; g] 6= � then current-viewid [p] 6= ?.6. If pending [p; g] 6= � then g � current-viewid [p].7. If queue[g] 6= � then g 2 created-viewids.8. If hm; pi is in queue[g] then current-viewid [p] 6= ?.9. If hm; pi is in queue[g] then g � current-viewid [p].10. next [p; g] � length(queue[g]) + 1.11. next-safe[p; g] � length(queue[g]) + 1.12. next-safe[p; q] � next [p; g].13. If hg; Si 2 created and next [p; g] 6= 1 then p 2 S.14. If hg; Si 2 created and next-safe[p; g] 6= 1 then p 2 S.Proof. All are straightforward by induction. 2In Lemma 4.2 we enumerate some important properties of the traces of VS-machine withthe help of a function cause that, for a given trace, maps gprcv and safe events to gpsndevents. When we say that the mapping is monotone increasing for gprcvp;q (respectivelysafep;q) events, it means that if event � precedes event �0 in a trace, where � and �0 aregprcvp;q (respectively safep;q) events for the same p and q and within the same view, thencause(�) precedes cause(�0) in that trace.Lemma 4.2 If � is any trace of VS-machine, then there exists a unique total function causemapping gprcv and safe events in � to gpsnd events in �, such that:1. (Message integrity) For each gprcv and safe event �, cause(�) precedes �, has the samevalue argument, and has a processor subscript equal to the �rst (\source") subscript of �.Moreover, the current view at the location of � when � occurs is not ?, and is the same asthe current view at the location of cause(�) when cause(�) occurs.2. (No duplication) For each q, cause is one-to-one for gprcv events with second (\destina-tion") subscript q. Similarly, for each q, cause is one-to-one for safe events with second(\destination") subscript q. 14

3. (No reordering) For each p and q, and within each view: cause is monotone increasing forgprcvp;q events, and cause is monotone increasing for safep;q events.4. (No losses) For each p and q, and within each view: The range of cause for gprcvp;q eventsis a pre�x of the subsequence of gpsndp events, and the range of cause for safep;q eventsis a pre�x of the subsequence of gpsndp events.Proof. Such a cause mapping can be constructed from any execution � that gives rise to trace�, by assigning unique identi�ers to gpsnd events and carrying them along in the pending andqueue components.Uniqueness is immediate, since the properties require that the i-th gprcvp;q event withina particular view g must be mapped to the i-th gpsndp event within the same view g, andsimilarly for safep;q events. 2Lemma 4.2 allows us to implicitly associate a particular gpsnd event with each gprcv eventand each safe event, in any trace of VS-machine.Remark. As an alternative possibility for specifying view-synchronous group communication,we might weaken the createview precondition so that it only enforces unique ids, and does notenforce in-order creation: Internal createview(v)Precondition:for all w 2 created ,v:id 6= w:idE�ect:created created [fvgWe call this alternative speci�cation WeakVS-machine. We do not prove it here, but it canbe shown that Weak-VS-machine and VS-machine are equivalent speci�cations: they allowexactly the same �nite traces. Thus, the safety property for the VStoTO-system remains validwhen using WeakVS-machine in place of VS-machine.4.2 The Performance and Fault-Tolerance Property VS-propertyConsider a signature VS-fsig that is the same as that of VS-machine, above, with the additionof the failure status actions (as in Figure 4). We de�ne VS-property as a parameterized propertyof a timed sequence pair (�;1) over external actions of VS-fsig. The parameterized propertyis de�ned in Figure 7. Parameters b and d are nonnegative reals, and Q is a set of processors.For the clause (d) of VS-property, the correspondence between the messages and safe eventsis formally guaranteed by the cause function whose existence and uniqueness are asserted inLemma 4.2.The intended intuitive property that is formalized in VS-property(b; d;Q) is as follows.Suppose that, starting from a certain time l, processors in Q and all pairs of processors from Qare good , while all pairs where one processor is in Q and the other is not in Q are bad . Then,after a \stabilization interval" of length at most b, all processors in Q are in the same view andno other processors are in that view, no new views are reported to processors in Q after thattime, and any messages sent among the processors in Q in that view are safe at all processorsin Q within time d. 15

VS-property(b; d;Q):Both of the following hold:1. � with the timing information removed is a trace of VS-machine.2. Suppose that (�;1) = (
; l)(�;1). Suppose that all the following hold:(a) � contains no failure status events for locations in Q or for pairs including a location in Q.(b) All locations in Q and all pairs of locations in Q are good after
.(c) If p 2 Q and q 62 Q then (p; q) is bad after
.Then (�;1) can be written as (�0; l0)(�00;1), where(a) l0 � b(b) No newview events occur in �00 at locations in Q.(c) The latest views at all locations in Q after
�0 are the same, say hg; Si, where S = Q.(d) Every message sent from a location in Q in � while in view hg; Si at time t has correspondingsafe events at all members of Q by time max (t; (l + l0)) + d.Figure 7: De�nition of VS-property4.3 The Combined Speci�cation VSWe de�ne the speci�cation VS(b; d;Q) to be the pair consisting of the speci�cation VS-machineand the property VS-property(b; d;Q).We say that a timed automaton A satis�es the speci�cation VS(b; d;Q) provided that everyadmissible timed trace of A is in the set de�ned by VS-property(b; d;Q).5 The Algorithm VStoTONow we describe the VStoTO algorithm, which uses VS to implement TO . As depicted inFigure 1, the algorithm consists of an automaton VStoTOp for each p 2 P . Code for VStoTOpappears in Figure 9 (signature and states) and Figure 10 (transitions), and some auxiliaryde�nitions needed in the code appear in Figure 8.For the rest of the paper, we �x a set Q of quorums, each of which is a subset of P . Weassume that every pair Q, Q0 in Q satisfy Q \Q0 6= ;. Quorums are used to establish certainviews as primary views. The membership of a primary view must contain a quorum. Note thatwe \�x" the set Q for convenience. The quorums in Q need not be necessarily precomputed,for example, we can de�ne Q to be the set of majorities.The activities of the algorithm consist of normal activity and recovery activity. Normalactivity occurs while group views are stable. Recovery activity begins when a new view ispresented by VS , and continues while the members exchange and combine information fromtheir previous histories in order to establish a consistent basis for subsequent normal activity.In the normal case, each value received by VStoTOp from the client is assigned a system-wideunique label consisting of the viewid at p when the value arrives, a sequence number, and theprocessor id p. The variable current keeps track of the current view, and the variable nextseqnois used to generate the sequence numbers. Labels are ordered lexicographically. VStoTOpstores the h label,value i pair in a relation content . It sends the pair to the other members ofthe current view, using VS , and these other processors also add the pair to their own content16

Types:L = G�N>0 � P , with selectors id , seqno, originsummaries = P(L�A)� (L�)�N>0 �G?, with selectors con, ord , next , and highOperations on types:For x 2 summaries ,x:con�rm is the pre�x of x:ord such that length(x:con�rm) = min(x:next � 1; length(x:ord))For Y a partial function from processor ids to summaries,knowncontent(Y) = [q2dom(Y)Y (q):conmaxprimary(Y) = maxq2dom(Y)fY (q):highgreps(Y) = fq 2 dom(Y) : Y (q):high = maxprimarygchosenrep(Y) is some element in reps(Y)shortorder (Y) = Y (chosenrep(Y)):ordfullorder (Y) is shortorder (Y) followed by the remaining elements of dom(knowncontent(Y)),in label ordermaxnextcon�rm(Y) = maxq2dom(Y)fY (q):nextgFigure 8: De�nitions used in VStoTO automatonrelations. An invariant shows that each content relation is actually a partial function fromlabels to values, and that a given label is associated with the same data value everywhere.The algorithm distinguishes primary views, whose membership includes a quorum of pro-cessors, from non-primary views. When VStoTOp receives a h label,value i pair while it is in aprimary view, it places the label at the end of its sequence order . In combination with content ,order describes a total order of submitted data values; this represents a tentative version ofthe system-wide total ordering of data values that the TO service is supposed to provide. Theconsistent order of message delivery within each view (guaranteed by VS) ensures that orderis consistent among members of a particular view, but it need not always be consistent amongprocessors in di�erent views. When VStoTOp receives a h label,value i pair while it is in anon-primary view, it does not process the pair (except for recording it in content).VStoTOp remembers which data values have been reported as safely delivered to all membersof the current view, using a set safe-labels of labels. When a label is in safe-labels , it is acandidate for becoming \con�rmed" for release to the client. Labels in the order sequencebecome con�rmed in the same order in which they appear in order . The variable nextcon�rmis used to keep track of the pre�x of the current order sequence that is con�rmed. VStoTOpcan release data values associated with con�rmed labels to the client, in the order described byorder . The variable nextreport is used to keep track of which values have been released to theclient.Recovery activity begins when VS performs a newview event. This activity involves ex-changing and combining information to integrate the knowledge of di�erent members of thenew view. The recovery process consists of two, possibly overlapping phases. In the �rst phaseof recovery, each member of a new view uses VS to send a state-exchange message containinga summary of that processor's state, including the values of its content , order and nextcon�rmvariables. In order to use this state information, each processor must determine which memberhas the most up-to-date information. For this purpose, another variable highprimary is used torecord the highest view identi�er of a primary view in which an order was calculated that hasa�ected the processor's own order sequence. (This e�ect can be through the processor's ownearlier participation in that primary view, or through indirect information in previous state17

exchange messages.) The value of the highprimary variable is also included in the summarysent in the state-exchange message.During this �rst phase of recovery, VStoTOp records the summary information received fromthe other members of the new view, in gotstate , which is a partial function from processor ids tosummaries. Once VStoTOp has collected all members' summaries, it processes the informationin one atomic step; at this point, it is said to establish the new view. The processor processesstate information by �rst de�ning its con�rmed labels to be longest pre�x of con�rmed labelsknown in any of the summaries. Then it determines the representatives, which are the memberswhose summaries include the greatest highprimary value. Then the information is processed indi�erent ways, depending on whether or not the new view is primary.If the new view is not primary, the processor adopts as its new order the order sent bya particular \chosen" representative processor. In this case, highprimary is set equal to thegreatest highprimary in any of the summaries, i.e., the highprimary of the chosen representative.On the other hand, if the view is primary, the processor adopts as its new order the ordercomputed as above for non-primary views, extended with all other known labels appearing inany of the summaries in gotstate , arranged in label order. In this case, highprimary is set equalto the new viewid.Extracting the various pieces of information described above from gotstate requires someauxiliary functions, which are de�ned in Figure 8. Namely, let Y be a value of the type recordedin the gotstate component. Then knowncontent(Y) contains all the (label, value) pairs in thesummaries recorded in Y . Also, maxprimary (Y) is the greatest view identi�er of an establishedprimary appearing in any of the summaries, reps(Y) denotes the set of members that knowof this view, and chosenrep(Y) is some consistently-chosen element of this set. (Any methodcan be used to select the particular representative, as long as all processors select the same onefrom identical information; for example, they could choose the representative with the highestprocessor id, or the one whose order sequence is extreme in some total order on sequences.) Nowshortorder is the order of the chosen representative; this is the order adopted in a non-primaryview, as described above. And fullorder consists of shortorder (Y) followed by the remainingelements of knowncontent (Y), in label order; this is the order adopted in a primary view. Wealso de�ne maxnextcon�rm(Y) to be the highest among the reported nextcon�rm values in theexchanged state.At this point, the �rst phase of recovery is completed, and normal processing of new clientmessages is allowed to resume. For a primary view, the second phase of recovery involvescollecting the VS safe indications for the state-exchange messages. VStoTOp remembers theseindications in a variable safe-exch. This phase may overlap with the summary collection phase.Once the state exchange is safe, all labels used in the exchange are marked as safe, and allassociated messages are con�rmed just as they would be in normal processing. For a non-primary view, in the second phase of recovery the safe indications are ignored.The state of VStoTOp also records the status of processing, which may be normal (anywhereother than in the �rst phase of recovery), send (in the �rst phase of recovery, after the new viewannouncement but before sending the state-exchange message), or collect (in the �rst phase ofrecovery, waiting for some state-exchange messages).
18

VStoTOp:Signature:Input:bcast(a)p, a 2 Agprcv(m)q;p, q 2 P , m 2 (L�A) [summariessafe(m)q;p, q 2 P , m 2 (L�A) [summariesnewview(v)p, v 2 views Output:gpsnd(m)p, m 2 (L�A) [summariesbrcv(a)q;p, a 2 A, q 2 PInternal:label(a)p, a 2 Acon�rmpStates:current 2 views?, initially hg0; P0i if p 2 P0, else ?status 2 fnormal ; send ; collectg, initially normaldelay , a �nite sequence of A, initially �content � L�A, initially ;nextseqno 2 N>0, initially 1bu�er , a �nite sequence of elements of L, initially �safe-labels � L, initially ;order , a �nite sequence of L, initially �nextcon�rm 2 N>0, initially 1
nextreport 2 N>0, initially 1highprimary 2 G?, initially g0 if p 2 P0, otherwise ?gotstate , a partial function from P to summaries , ini-tially ;,safe-exch � P , initially ;,Derived variables:primary , a Boolean, de�ned to be the condition thatcurrent 6= ? and 9Q 2 Q : Q � current:set.Figure 9: VStoTOp: Signature and States6 Correctness - Safety ArgumentDe�ne VStoTO-system to be the composition of VS-machine and VStoTOp for all p 2 P , withthe actions used for communication between the two layers (that is, the gpsnd, gprcv, safeand newview actions) hidden. In a state of the composition, we refer to the separate statevariables by giving a subscript p indicating a variable that is part of the state of VStoTOp.The proof is based on a forward simulation relation [40] fromVStoTO-system to TO-machine,established with the help of a series of invariant assertions for VStoTO-system. We add somederived variables to the state of VStoTO-system, for use in de�ning the simulation relation andin stating and proving the invariants:We write allstate [p; g] to denote a set of summaries, de�ned so that x 2 allstate [p; g] if andonly if at least one of the following hold:1. current :idp = g and x = hcontentp; order p;nextcon�rmp; highprimary pi.2. x 2 pending [p; g].3. hx; pi 2 queue[g].4. For some q, current :id q = g and x = gotstate(p)q.Thus, allstate [p; g] consists of all the summary information that is in the state of p if p'scurrent view is g, plus all the summary information that has been sent out by p in stateexchange messages in view g and is now remembered elsewhere among the state componentsof VStoTO-system . Notice that allstate [p; g] consists only of summaries: an ordinary messagehl; ai is never an element of allstate [p; g]. We write allstate [g] to denote Sp2P allstate [p; g], andallstate to denote Sg2G allstate [g].We write allcontent for Sx2allstate x:con . This represents all the information available any-where that links a label with a corresponding data value.The invariants also require the addition of some history variables to the state ofVStoTO-system :For every p 2 P , g 2 G, established [p; g] is de�ned to be a Boolean, initially true if g = g0 and p 219

Transitions:Input bcast(a)pE�ect:append a to delayInternal label(a)pPrecondition:a is head of delaycurrent 6= ?E�ect:let l be hcurrent :id ; nextseqno ; picontent content [fhl; aigappend l to bu�ernextseqno nextseqno + 1delete head of delayOutput gpsnd(hl; ai)pPrecondition:status = normall is head of bu�erhl; ai 2 contentE�ect:delete head of bu�erInput gprcv(hl; ai)q;pE�ect:content content [fhl; aigif primary thenorder order � hhliiInput safe(hl; ai)q;pE�ect:if primary thensafe-labels safe-labels [flgInternal con�rmpPrecondition:primaryorder(nextcon�rm) 2 safe-labelsE�ect:nextcon�rm nextcon�rm + 1Output brcv(a)q;pPrecondition:nextreport < nextcon�rmhorder(nextreport); ai 2 contentq = order (nextreport):originE�ect:nextreport nextreport + 1

Input newview(v)pE�ect:current vnextseqno 1bu�er �gotstate ;safe-exch ;safe-labels ;status sendOutput gpsnd(x)pPrecondition:status = sendx = hcontent ; order ; nextcon�rm ; highprimaryiE�ect:status collectInput gprcv(x)q;p, where x 2 summariesE�ect:content content [x:congotstate gotstate � hq; xiif dom(gotstate = current :set ^ status = collectthennextcon�rm maxnextcon�rm(gotstate)if primary thenorder fullorder(gotstate)highprimary current :idelseorder shortorder (gotstate)highprimary maxprimary(gotstate)status normalInput safe(x)q;p, where x 2 summariesE�ect:safe-exch safe-exch [fqgif safe-exch = current :set and primary thensafe-labels safe-labels[range(fullorder(gotstate))
Figure 10: VStoTOp: Transitions20

P0, otherwise false; this variable is maintained by placing the statement established [p; current :id] true in the e�ects part of gprcv(x)q;p, just after the assignment status normal (and withinthe scope of the outer if statement).For every p 2 P , g 2 G, buildorder [p; g] is de�ned to be a sequence of labels, initially empty;this variable is maintained by following every statement of processor p that assigns to orderwith another statement buildorder [p; current :idp] order . It follows that if p establishes aview with id g, and later leaves view g for a view with a higher viewid, then forever afterwards,buildorder [p; g] remembers the value of order p at the point where p left view g.6.1 InvariantsWe �rst prove a long series of invariants, establishing simple relationships among the statevariables, and other properties of the reachable states. As usual, each invariant is proved usinginduction on the length of an execution, assuming previous invariants.The �rst invariant asserts consistency between certain variables of the processes and of VS .Lemma 6.1 The following are true in all reachable states of VStoTO-system.For any p 2 P :1. currentp = ? if and only if current-viewid [p] = ?.2. If currentp 6= ? then current :idp = current-viewid [p].3. If currentp 6= ? then currentp 2 created .Proof. Easy induction. 2The next invariant expresses that no state exchange happens until a node learns of a view.Lemma 6.2 The following is true in all reachable states of VStoTO-system.If currentp = ? then statusp = normal .Proof. The only action in which statusp can change from normal is newview(v)p, whichchanges currentp. 2The next invariant characterizes the labels that occur in various state components.Lemma 6.3 The following are true in all reachable states of VStoTO-system.1. If hg0; �; p0i is in bu�erp then currentp 6= ? and p=p0 and g0=current :idp.2. If hhg0; �; p0i; �i is in pending [p; g] then currentp 6= ? and p = p0 and g = g0.3. If hhhg0; �; p0i; �i; pi is in queue[g] then currentp 6= ? and p = p0 and g = g0.Proof. Each part is an immediate induction on the execution, using the previous part. 2The next two invariants justify the way the de�nition of the simulation relation usesallcontent as a function from labels to data values.Lemma 6.4 The following is true in all reachable states of VStoTO-system.If l 2 domain(allcontent) and l:origin = pthen l < hcurrent :idp;nextseqnop; pi. 21

Proof. The only change is in labelp and the code shows that the new label is less than thenew (current :idp;nextseqnop; p) triple. 2Lemma 6.5 The following is true in all reachable states of VStoTO-system.allcontent is a function.Proof. The only change is in label and Lemma 6.4 shows the new entry is for a new label.2Lemma 6.6 The following is true in all reachable states of VStoTO-system.If l is in bu�erp then hl; ai is in contentp for some a.Proof. Immediate induction. The only relevant actions are labelp (which adds a new labelto bu�er and to the domain of content) and newviewp (which empties bu�er). 2The next invariants describe situations when certain information is guaranteed not to appearin the state.Lemma 6.7 The following are true in all reachable states of VStoTO-system.If currentp = ? or current :id p < g then1. pending [p; g] = �.2. There is no message of the form h�; pi in queue[g].3. If current :id q = g then there is no hp; �i in gotstateq.4. allstate [p; g] = ;.5. There is no pair of the form hhg; �; pi; �i in x:con, for any summary x 2 allstate.6. There is no pair of the form hhg; �; pi; �i in content q, for any q.Proof. Part 1 is a simple induction; part 2 is an induction using part 1 in the gpsnd; part3 is induction using part 2 in the gprcv. Part 4 follows from parts 1, 2 and 3. Part 5 is directfrom Lemma 6.4; part 6 follows directly from part 5. 2Lemma 6.8 The following are true in all reachable states of VStoTO-system.If statusp = send and current :idp = g then1. pending [p; g] = �.2. There is no element of the form h�; pi in queue[g].3. If current :id q = g then there is no hp; �i in gotstateq.4. There is no pair of the form hhg; �; pi; �i in x:con, for any summary x 2 allstate other thanthe summary whose components are those from the local state of p.5. There is no pair of the form hhg; �; pi; �i in content q, for any q 6= p.Proof. Part 1 is induction using lemma 6.7 for the case newviewp; part 2 is an inductionusing lemma 6.7 for the case newviewp, and part 1 in the gpsnd; part 3 is induction usingLemma 6.7 for newviewp and and also part 2 in the gprcv. Part 4 is induction (where thecase of gpsndp is ruled out by the hypothesis on statusp); part 5 follows directly from part 4.222

Lemma 6.9 The following are true in all reachable states of VStoTO-system.For any p 2 P , if statusp = collect and current :idp = g then the following holds.If x 2 allstate [p; g] then1. x:con � contentp.2. x:ord = order p3. x:next = nextcon�rmp4. x:high = highprimary p.Proof. For parts 1 and 4, when p �rst enters reaches the collect status in view g, the onlysummary in allstate [p; g] is that whose components are the state of p (we appeal here to Lemma6.8, since the statusp = send immediately before it becomes collect). Thereafter, contentpchanges only by union with more pairs, and no action changes highprimaryp without alsochanging statusp so it is no longer collect .The other parts need more sophisticated proof, as they depend on the property that noordinary message is received at p until after all members' state exchange messages. As the restof the paper relies only on part 4, we omit the details. 2Now some simple facts about \established".Lemma 6.10 The following are true in all reachable states of VStoTO-system.For any p 2 P , g 2 G:1. If established [p; g] then current :idp � g.2. established [p; current :idp] if and only if statusp = normal and currentp 6= ?.Proof. Straightforward induction. Depends on views coming in in increasing order. 2Here are some upper bounds on highprimaries.Lemma 6.11 The following are true in all reachable states of VStoTO-system.For any p; q 2 P , x 2 summaries, g 2 G:1. If established [p; current :idp] and primaryp then highprimary p = current :idp.2. If established [p; current :idp] and not(primary p) then highprimary p < current :idp.3. If current 6= ? and established [p; current :idp] = false then highprimary p < current :idp.4. If hq; xi 2 gotstatep then x:high < current :idp.5. If hx; qi is in queue[g] then x:high < g.6. If x is in pending [q; g] then x:high < g.Proof. Prove all these parts together using induction.1. When state exchange is completed for a primary view (which establishes currentp), theequality is set explicitly.Supposed established [current :idp] in both pre-state s and poststate s0; the events that couldfalsify the RHS are newview and a gprcv that sets highprimary. But a newview(v)p has23

s0:statusp = send , so Lemma 6.10 implies that s0:established [s0:current :idp] = false, a con-tradiction.A gprcv that sets highprimaryp has s:statusp = collect . Then Lemma 6.10 implies thats:established [s:current :idp] = false, a contradiction.2. Consider a gprcv that completes state exchange, and so establishes a non-primary viewidg. The code sets highprimaryp to be the largest high component of the summaries among theprestate's gotstate and the �nal state exchange message. By part 4 and 5, all of these are lessthan g, hence the largest is also less than g.3. Consider newview(v)p. LHS becomes true. We claim RHS is also true in the state s0 afterthe step. Parts 1, 2 and 3 together in the pre-state s imply that s:highprimary p � s:current :idp.Since s0:current :idp > s:current :idp, this means that s0:highprimary p < s0:current :idp, asneeded.4. Depends on 5. A key fact is that a message only gets delivered if its view is the same asthe current view of p.5. Depends on 6.6. Depends on 3. This uses the fact that when a process sends, its status is send , so byLemma 6.2, currentp 6= ?, and by Lemma 6.10, established [p; current :idp] = false. 2Lemma 6.12 The following are true in all reachable states of VStoTO-system.1. If x 2 allstate [p; g] then x:high � g.2. If x 2 allstate [p; g] then x:high � current :idp.Proof. Part 1 is an easy induction. Part 2 follows using part 4 of Lemma 6.7. 2The next two lemmas assert lower bounds on highprimaries.Lemma 6.13 The following is true in all reachable states of VStoTO-system.For any p 2 P , v 2 created , such that established [p; v:id], v:set contains a quorum, andcurrent :idp > v:id then highprimary p � v:id .Proof. Let g = v:id . First consider actions that could make the hypothesis true (we denotethe state before the action as s, and that afterwards as s0).1. When established [p; g] becomes true, current :idp = g, so the hypothesis is false.2. Suppose a newview step converts the hypothesis from false to true. Then s:established [p; g] =s0:established [p; g] = true, s:current :idp � g and s0:current :idp > g. Lemma 6.10 implies thats:current :idp � g, so it must be that s:current :idp = g. Then Lemma 6.11, part 1 implies thats:highprimaryp = g. Therefore, s0:highprimary p = g, as needed.Now consider steps for which the hypothesis is true both before and after the step, but thatmake the conclusion false.3. gprcv for a summary, if domain(s0:gotstatep) = s:current :setp and s:statusp = collect ,sets highprimaryp.There are two cases. If s:primaryp = true then since s0:current :idp > g and s0:current :idp =s0:highprimary p, we have that s0:highprimary p > g, which su�ces.On the other hand, suppose that s:primaryp = false . Since the hypothesis is true beforethe step, the inductive hypothesis implies that s:highprimary p � g. It su�ces to show thats0:highprimary p � s:highprimaryp. 24

The step ensures that s0:highprimary p = maxprimary (s0:gotstatep). Since p 2 current :setp,s0:gotstatep must include some (p; x). Then part 4 of Lemma 6.9 implies that x:high =s:highprimaryp. Now, maxprimary (s0:gotstatep) � x:high, so s0:highprimary � s:highprimary .This su�ces. 2Lemma 6.14 The following are true in all reachable states of VStoTO-system.For any p 2 P , for any summary x, and for all v; w 2 created :1. If established [p; v:id], v:set contains a quorum, w:id > v:id , and x 2 allstate [p;w:id], thenx:high � v:id .Proof. Let g denote v:id , and g0 denote w:id . We need only consider actions that could makethe hypothesis true, since the conclusion is unchanged in all transitions.1. When established [p; g] becomes true, current :idp = g. Then part 4 of Lemma 6.7 impliesthat allstate [p; g0] = ;, which makes the conclusion vacuously true.2. When x �rst gets into allstate [p; g0], this happens by putting it into the state of p whencurrent :idp = g0 > g. Then Lemma 6.12 implies that highprimary p � g. 2Lemma 6.15 The following are true in all reachable states of VStoTO-system.1. If current :idp = g and established [p; g] = false, then there is no x 2 allstate [p; g] withx:high = g.Proof. Lemma 6.11 implies that highprimary p < g.We prove the statement by induction. newviewp is the only action that can convert thehypothesis from false to true, and it guarantees the conclusion, by Lemma 6.12 applied to thepre-state.To convert the conclusion from true to false, we would have to end the step with highprimaryp =g (since the other pieces of allstate [p] are derived from p's state). But this doesn't happen, bythe claim at the beginning of the proof. 2Lemma 6.16 The following is true in all reachable states of VStoTO-system.If x 2 allstate [p; g] then there exists v 2 created and q 2 v:set such that1. x:high = v:id2. established [q; x:high].3. x:ord = buildorder [q; x:high].4. either x:high = g or current :id q > v:idProof. The proof is by induction, so consider a step in which the state changes from s tos0 by the action �. If x 2 s0:allstate [p; g], then in most cases, there is y 2 s:allstate [p; g] withy:high = x:high and y:ord = x:ord , to which we apply the induction hypothesis. The only caseswhere this does not happen are as follows:� � is the receipt by p of an ordinary message in a primary view, and x is the summary whosecomponents are taken from the state of p. In this case we take v = g and q = p.� � is the establishment of a new primary view g at p, and x is the summary whose componentsare taken from the state of p. In this case we take v = g and q = p.25

� � is newview(v)p, where v:id = g, and x is the summary whose components are takenfrom the state of p. In this case, there is y 2 s:allstate [p; s:currentp] with y:high = x:highand y:ord = x:ord , to which we apply the induction hypothesis. 2Lemma 6.17 The following is true in all reachable states of VStoTO-system.If v 2 created and established [p; v:id] then for every q 2 v:set, current :id q � v:id .Proof. When established [p; v:id] �rst becomes true, the code for the gprcv action shows thatdomain(gotstatep) = v:set , so allstate [q; v:id] is non-empty for all q 2 v:set . Part 4 of Lemma6.7 thus implies current :id q � v:id . This is maintained inductively in all later states, by themonotonicity of currentq. 2The following is a key invariant; it can be used to show that information from certainprocessors' tentative orders for a primary view v is also present in all summaries with higherviewids. The hypothesis says that every processor in v:set that has a current :id higher thanv:id has succeeded in establishing v, and moreover, has succeeded in including the sequence �in its order for view v. The conclusion says that anyplace in the state where information abouta higher view than v is present, information about � is also present.Lemma 6.18 The following is true in all reachable states of VStoTO-system.Suppose that v 2 created , v:set contains a quorum, � 2 L?, and for every p 2 v:set, the follow-ing is true:If current :idp > v:id then established [p; v:id] and � � buildorder [p; v:id].Then for every x 2 allstate with x:high > v:id , � � x:ord .Proof. The statement is vacuously true if v 62 created .Otherwise argue by induction, where s denotes the state before a step and s0 the stateafterwards.If v 2 s0:created and v 62 s:created , then the action involved must be createview(v).In this case, we claim that the conclusion is true because no x 2 s0:allstate has x:high >v:id . To see this, �x x 2 s0:allstate , say, x 2 s0:allstate [p]. Then Lemma 6.12 impliesthat x:high � s0:current :idp. Lemma 6.1 implies that s0:currentp 2 s0:created . And thecode for createview(v) implies that v:id is the largest id in s0:created , in particular, thatv:id � s0:current :idp. So x:high � v:id .So for the rest of the argument, we �x v and assume that v 2 s:created . Also �x �.As usual, the interesting steps are those that convert the hypothesis from false to true, andthose that keep the hypothesis true while converting the conclusion from true to false.In this case, there are no steps that convert the hypothesis from false to true: If there issome p 2 v:set for which s:current :idp > v:id and either s:established [p; v:id] = false or � is nota pre�x of buildorder [p; v:id], then also s0:current :idp > v:id (the id never decreases) and eithers0:established [p; v:id] = false or � is not a pre�x of s0:buildorder [p; v:id]. (These two cases carryover, since s:current :idp > v:id implies that established [p; v:id] and buildorder [p; v:id] cannotchange during the step.)So it remains to consider any steps that keep the hypothesis true while converting theconclusion from true to false. So suppose that x 2 s0:allstate and x:high > v:id . If also26

x 2 s:allstate then we can apply the inductive hypothesis, which implies that � � x:ord , asneeded. So the only concern is with steps that produce a new summary.Any step that produces the new summary x by modifying an old summary x0 2 s:allstate ,in such a way that x0:ord � x:ord and x0:high = x:high , is easy to handle: For such a step,x0:high > v:id and so the inductive hypothesis implies that � � x0:ord � x:ord , as needed.So the only concern is with gprcvp steps that deliver the last state-exchange message to someprocess p.If the gprcvp is not for a primary, then the new summary x that is produced, in p's state,takes its highprimary and order values directly from some summary x0 which is in the rangeof s0:gotstatep. By the code, such an x0 is either in the range of s:gotstatep, or else it is thesummary whose receipt is the step we are considering. In either of these cases, x0 2 s:allstate ,so the inductive hypothesis yields the result.This leaves the case where gprcvp establishes a primary w, and x is the summary composedof the new values of the state components of p. Thus x:high = w:id . Let x0 be the summary ofq0 = chosenrep in state s.We claim that x0:high � v:id . To see the claim, �x any element q00 in w:set \ v:set ; sucha q00 must exist, because each contains a quorum. Recall that the condition for establishing aprimary shows domain(s0:gotstatep) = w:set , so by the code, either q00 2 domain(s0:gotstatep),or else q00 is the sender of the message whose receipt is the step we are examining. In the formercase, let x00 be the summary s:gotstate(q00)p; in the latter let x00 be the summary whose receiptis the event. In either case we have x00 2 s:allstate [q00; w:id]. Thus, part 4 of Lemma 6.7 impliesthat s:current :id q00 � w:id . We have that x:high > v:id by assumption, and x:high = w:id bythe code; therefore, w:id > v:id . So also s:current :id q00 > v:id .Recall that we are in the case where the hypothesis of this lemma is true. Therefore, bythis hypothesis, we obtain that s:established [q00; v:id] and � � s:buildorder [q00; v:id]. By Lemma6.14, (applied with q00 replacing p) we obtain x00:high � v:id . By the de�nition of q0 as amember that maximizes the high component in the summary recorded in gotstate , we havex0:high � x00:high . Therefore x0:high � v:id , completing our demonstration of the claim.If x0:high > v:id then we can apply the induction hypothesis to x0 and we are done, sincex0:ord � x:ord . So suppose x0:high = v:id . Note that x0 2 s:allstate [q0; w:id]. By Lemma6.16, there must exist6 q 2 v:set so that s:established [q; v:id], x0:ord = s:buildorder [q; v:id],and (either x0:high = w:id or s:current :id q > v:id). Since x0:high = v:id < x:high = w:id ,the last property can be simpli�ed to s:current :id q > v:id . By monotonicity of current ,we have s0:current :id q > v:id . The hypothesis of this lemma says that this forces � �s0:buildorder [q; v:id]. Since x0:ord � x:ord by the code for this event, and x0:ord = s:buildorder [q; v:id]as shown above, and s:buildorder [q; v:id] = s0:buildorder [q; v:id] since q is not currently in viewv, this is what we need. 2The invariant given in the corollary implies that once all members if a primary view agreeon a common part of the tentative order, all processors in a higher view will also share thatsequence in that order.Corollary 6.19 The following is true in all reachable states of VStoTO-system.Suppose that v 2 created , v:set contains a quorum, � 2 L?, and for every p 2 v:set, established [p; v:id]6Direct application of the Lemma actually shows the existence of some v̂ and q 2 v̂:set , but since x0:high = v̂:idand also x0:high = v:id , uniqueness of viewids shows we may take v̂ to be v itself.27

and � � buildorder [p; v:id].Then for every x 2 allstate with x:high � v:id , � � x:ord .Proof. If x:high > v:id , then we can apply Lemma 6.18, since the premise of this Corollarydeals with every p 2 v:set , and therefore is stronger than the premise of Lemma 6.18, whichonly covers those p where current :idp > v:id .When x:high = v:id , we apply apply Lemma 6.16 to x, which gives v0 2 created andq0 2 v0:set such that x:high = v0:id , established [q0; x:high], and x:ord = buildorder [q0; x:high].Since v:id = v0:id , Lemma 4.1 shows v = v0. Substituting in the facts above we see x:ord =buildorder [q0; v:id]. Since q0 2 v:set , we can apply the premise of the corollary to see that� � buildorder [q0; v:id]; that is, � � x:ord , as required. 2The next lemma makes precise the fact that a label is in safe-labelsp only after it (and allprior labels in order p) were placed in order q at every member q of current :setpLemma 6.20 If l 2 safe-labelsp and � is a pre�x of order p that is terminated by l, thenprimaryp and for all q 2 current :setp, � � buildorder [q; current :idp]The next lemma shows that in any summary, the ord component is closed under the relation\sent-before-by-one-client".Lemma 6.21 The following is true in all reachable states of VStoTO-system.Suppose l; l0 2 L and i 2 N>0. If l; l0 2 domain(allcontent) and l:origin = l0:origin and l < l0and x 2 allstate and l0 = x:ord (i0) then there exists i such that i < i0 ^ l = x:ord (i)Next we show that x:con�rm is a pre�x of a known sequence. This leads to consequencesthat show the consistency of the con�rmed sequence of labels at di�erent places in the system.Lemma 6.22 The following is true in all reachable states of VStoTO-system. If x 2 allstatethen1. There exists v 2 created such that v:id � x:high, v:set contains a quorum, and for everyq 2 v:set , established [q; v:id] and x:con�rm � buildorder [q; v].2. x:next � length(x:ord) + 1Remark: an immediate consequence of part (2) is that length(x:con�rm) + 1 = x:next .Proof. The strategy is to show that (1) and (2) hold in the post-state, by induction, using(1) and (2) from the pre-state.How is the post-state proved: In the step from s to s0, in most cases, there is y in s:allstateso that y:next = x:next , y:ord = x:ord (and hence y:con�rm = x:con�rm) and also y:high =x:high . If this holds induction hypothesis gives us what we want, since buildorder [q; v] increasesmonotonically through an execution.The places where a problem might happen are the following.� con�rmp. If x is not the summary from the state of p in s0, the inductive argumentworks. If x is the summary from the state of p in s0, the precondition of the event is thatthe newly con�rmed message has label in s:safe-setp, so Lemma 6.20 shows that we have(1) with taking v to be s:currentp = x:high . The precondition also gives (x:next � 1) 2domain(x:ord), thus showing (2). 28

� gprcv(hl; ai)p For a summary other than that from the state of p, the inductive argumentapplies. Where x is the summary from the state of p, let y denote the summary in the pre-state taken from the state of p. The code shows that x:high = y:high, x:next = y:next , andx:ord is an extension of y:ord . By (2) applied to y, we see that y:next � length(y:ord) + 1and therefore x:next � length(x:ord) + 1. This is (2) applied to x; also it shows thatx:con�rm = y:con�rm , so that the inductive hypothesis of (1) applied to y gives (1) appliedto x.� receipt of the �nal state exchange message at p. For a summary other than that from thestate of p, the inductive argument applies. Where x is the summary from the state of p, letw denote the summary, among those in gotstatep after the action, with the highest valuefor w:next . The code shows that x:next = w:next . Now w is in allstate in the pre-state (itis either in s:gotstate , or else it is the summary received in the �nal state-echange message,in which case it is in the queue component of VS-machine). The inductive hypothesisshows that w:con�rm has length w:next � 1, and that there is v 2 s:created such thatv:id � w:high and 8q 2 v:set : (s:established [q; v:id] ^ w:con�rm � buildorder [q; v]). Nowlet z denote the summary of chosenrep(gotstate), as calculated in the e�ect of the action.Since z:high � w:high � v:id (recall the de�nition of z as being from a representative, thatis, having maximal highprimary among summaries in gotstate), Corollary 6.19 shows thatw:con�rm � z:ord . Since z:ord � x:ord by the code (whether the newly established viewis primary or not), we deduce that w:con�rm is a pre�x of x:ord ; as length(w:con�rm) =w:next � 1 = x:next � 1, we have x:con�rm = w:con�rm . Also by the code (for a non-primary view) or Lemma 6.12 (for a primary view) we have x:high � w:high . Thus theinductive hypothesis applied to w, along with the monotonicity of the set created and theboolean established [q; v:id], gives (1) and (2) for x. 2Corollary 6.23 The following is true in all reachable states of VStoTO-system.If x1; x2 2 allstate and x1:high � x2:high, then x1:con�rm � x2:ord .Proof. This is done by using lemma 6.22 (part (1)) with x = x1, giving v with v:id �x1:high and x1:con�rm � buildorder [q; v]. Now the hypothesis of Corollary 6.19 applies for� = x1:con�rm ; since x2:high � v:id the conclusion of that Lemma holds for x2, that isx1:con�rm � x2:ord . 2Corollary 6.24 The following is true in all reachable states of VStoTO-system.For any x; x0 2 allstate, either x:con�rm � x0:con�rm or x0:con�rm � x:con�rm.Proof. Wlog x:high � x0:high . From lemma 6.23, we have that both x:con�rm and x0:con�rmare pre�xes of x0:order . 2Invariant 6.24 allows us to de�ne another derived variable that represents the collectiveknowledge of the con�rmed order, throughout the system. Namely, in any reachable state, wewrite allcon�rm for lubx2allstate(x:con�rm).
29

6.2 Simulation RelationNext, we de�ne the simulation relation f . We de�ne it as a function from reachable states ofVStoTO-system to states of TO-machine. (We assume an arbitrary default value for unreach-able states.) Namely, if x is a reachable state of VStoTO-system, then f(x) = y where:1. y:queue = applyall (hx:allcontent ; origini; x:allcon�rm),where the selector origin is regarded as a function from labels to processors.2. y:next [p] = x:next-report p.3. y:pending [p] = applyall (x:allcontent ; s) �x:delayp where s is the sequence of labels such that(a) range(s) is the set of labels l such that l:origin = p, hl; ai 2 x:allcontent for some a,andl 62 range(allcon�rm).(b) s is ordered according to the label order.The �rst clause says that y:queue is the sequence of hvalue, origini pairs corresponding tothe sequence x:allcon�rm of labels that are con�rmed anywhere in the system. For each labelin x:allcon�rm , the set x:allcontent , which contains all the content information that appearsanywhere in the system, is used to obtain the value, and origin is used to extract the origin.(Note that the set of pairs x:allcontent is treated as a function, and that the two functions arepaired together into one for use with the applyall operator.) The second clause de�nes y:next [p]directly from the corresponding next-pointer in x. The third clause de�nes y:pending [p] tobe the concatenation of two sequences. The pre�x of y:pending [p] is the sequence of valuescorresponding to all the labels in the system with origin p that are not included in x:allcon�rm ,arranged in label order. For each such label, x:allcontent is used to obtain the value. The su�xof y:pending [p] is the values in x:delayp. Note that the well-de�nedness of this simulation restson the invariant that says that x:allcontent is a function, and on Invariant 6.24, which yieldsthe de�nedness of allcon�rm .Lemma 6.25 Function f is a forward simulation from VStoTO-system to TO-machine.Proof. The correspondence in the initial state is trivial. So consider any step (x; �; x0) ofVStoTO-system, and y = f(x). We argue depending on the action involved in �.� = bcast(a)p Since � is an input to TO-machine, � is enabled in y. Now the e�ect of �shows that x0:allcon�rm = x:allcon�rm , x0:allcontent = x:allcontent , and x0:pending [p] =x:pending [p] � hhaii. This implies that f(x0):pending [p] = f(x):pending [p] � hhaii, thus showingthat (f(x); �; f(x0)) is a step of TO-machine.� = label(a)p Since � is not an action of TO-machine, we need to show that f(x) = f(x0).Now the e�ect of � shows that x0:allcon�rm = x:allcon�rm , and x0:allcontent is the unionof x:allcontent with hl0; ai where l0 = hx:currentp; x:nextseqnop; pi; by Lemma 6.4, this newlabel l0 is greater than all labels in the domain of x:allcontent . Thus let us consider thesequence of labels s0 (arranged in label order) such that range(s0) is the set of labels l suchthat l:origin = p, hl; a0i 2 x0:allcontent for some a0, andl 62 range(x0:allcon�rm). We see that s0 is related to the sequence s (de�ned the sameway but using x instead of x0) by s0 = s � hhl0ii. Therefore applytoall (x0:allcontent ; s0) =30

applytoall (x:allcontent ; s) � hhaii. On the other hand, the precondition of � shows that ais the head of x:delayp, and so the e�ect of � means x:delayp = hhaii � x0:delayp. Thus,f(x0):pending [p] is the same as f(x):pending [p], because in the concatenation that de�nesthis component, the element a is simply transferred from su�x to pre�x. Therefore f(x0) =f(x).� = con�rmp Clearly the e�ect of � shows x:allcontent = x0:allcontent .If x:nextcon�rmp � length(x:allcon�rm) then Lemma 6.24 and the e�ect of � shows thatx0:allcon�rm = x:allcon�rm , so that f(x) = f(x0).Otherwise x:nextcon�rmp = length(x:allcon�rm)+1, so the e�ect of � shows that x0:allcon�rm =x:allcon�rm � hli where l = x:order p(x:nextorder p). Let q = l:origin and a = x:allcontent(l).We claim that (f(x); to-order(a; q); f(x0)) is a step of TO-machine.We �rst show that to-order(a; q) is enabled in f(x). We have l 2 domain(x:allcontent) andl 62 setof (x:allcon�rm); this means that a is an element of the sequence f(x):pending [q].Also by Lemma 6.21, any lower label with origin q is in x:con�rmp and so in x:allcon�rm .Since the sequence S used to de�ne f(x):pending [q] is arranged by label, we see that l isthe head of S, and so a is the head of f(x):pending [q], as required. Further, the equationabove for x0:allcon�rm shows that f(x0):queue = f(x):queue � hhha; piii, and this is what isneeded to show that � takes f(x) to f(x0).� = gprcv(s)p;q In some cases this may change the value of nextcon�rmq, but in every situationit leaves allcon�rm unchanged (it only moves nextcon�rmq to a value already somewherein allstate) Thus f(x0) = f(x).� = brcv(a)pq We need to show that � is enabled in f(x) as an action of TO-machine, butthis is immediate from the fact that � is enabled in x as an action of VStoTO . Similarly,the e�ect corresponds (only nextreport q is altered).Other actions The other actions leave f(x0) = f(x). 2Theorem 6.26 Every trace of VStoTO-system is a trace of TO-machine.7 Performance and Fault-ToleranceWe argue that the performance and fault-tolerance characteristics of TO (for certain values ofthe parameters) are implied by the corresponding ones for VS (for certain parameter values),together with performance and fault-tolerance characteristics of the VStoTO processes. Inorder to do this, we need a richer model for the system than we have been using so far. Thisricher model must include timing and failure information. We de�ne this richer model in twoseparate pieces, for VStoTO and for VS .For the VStoTO part, we de�ne a timed automaton VStoTO 0p for every p. This timedautomaton is obtained by modifying the untimed automaton VStoTOp as follows:� Add new input actions goodp, badp and uglyp.� Add new time-passage actions �(t) for all t 2 R>0.� Add a new state component failure-status , with values in fgood ; bad ; uglyg, initially good .31

� Add new code fragments for the failure status actions, just setting the failure-status variableappropriately.� Add a new precondition to each output and internal action, that failure-status 6= bad .� Add a code fragment for each �(t):Internal �(t)Precondition:if failure-status = good thenno output or internal action is enabledE�ect:noneThe new precondition on output and internal actions says that the processor takes no stepswhen its failure status is bad . The new time-passage actions are allowed to happen at anypoint, unless there is some output or internal action that is supposed to happen immediately(because it is enabled and the processor is good).For the VS part, we now �x b and d to be particular constants. We assume that we haveany timed automaton A that satis�es the speci�cation VS (b; d;Q) from Section 4 for every setQ of processors that contains a quorum.De�ne VStoTO 0-system to be the composition of A and VStoTO 0p for all p 2 P , with theactions used for communication between the two layers (that is, the gpsnd, gprcv, safe andnewview), hidden. Note that the failure status input actions are not hidden. The compositionoperator used here is timed automaton composition.We show that any admissible timed trace of VStoTO 0-system satis�es TO-property , forcertain values of the parameters:Theorem 7.1 Every admissible timed trace of VStoTO 0-system satis�es TO-property(b + d ; d ;Q)for every Q that contains a quorum.Proof. Let (�;1) be any admissible timed trace of VStoTO 0-system, and let � be an admis-sible timed execution of VStoTO 0-system that gives rise to �. Fix Q to be any set of processorscontaining a quorum.We �rst show Condition 1 of the de�nition of TO-property , that � with the timing infor-mation removed is a trace of TO-machine. This follows from general composition results fortimed automata (see, e.g., Chapter 23 of [38]), using what we have already proved in the safetypart of the paper.In more detail, regard � as a timed execution of the composed system composed of VStoTO 0and A, without the interface actions being hidden. Then project � on VStoTO 0 and A to givetimed executions �1 of VStoTO 0 and �2 of A, respectively { this uses a projection result fortimed automata. Removing the timing information from the timed trace of �1 yields a traceof VStoTO , by de�nition of VStoTO 0. The �rst part of VS-property implies that removingthe timing information from the timed trace of �2 yields a trace of VS-machine. Now pastethese two timed traces together, using a pasting lemma for composition of untimed automata,to yield a timed trace �1 of the composition of VStoTO and VS-machine. We claim that �1restricted to the external actions of TO-machine is equal to the original trace �. But then � isa trace of VStoTO-system, and so by Theorem 6.26 is a trace of TO-machine.The more interesting property to show is Condition 2, the performance and fault-toleranceproperty. Our strategy for proving the needed property of � is to use an auxiliary \conditional"property VStoTO-property of �, stated in Figure 11.32

VStoTO-property :Suppose that � can be written as �0�00, such that:1. �00 contains no newview events at locations in Q.2. The latest views at all locations in Q after �0 are the same, say hg; Si, where S = Q.3. Every message sent from a location in Q in � while in view hg; Si at time t has corresponding safeevents at all members of Q by time max (t; ltime(�0)) + d.4. �00 contains no failure status events for locations in Q or for pairs including a location in Q.5. All locations in Q and all pairs of locations in Q are good after �0.6. If p 2 Q and q 62 Q then (p; q) is bad after �0.Then �00 can be written as �000�0000, where1. ltime(�000) � d2. Every data value sent from a location in Q in � at time t is delivered at all members of Q by timemax ft; ltime(�0�000)g+ d.3. Every data value delivered to any location in Q at time t is delivered at all members of Q by timemax ft; ltime(�0�000)g+ d.Figure 11: De�nition of VStoTO-propertyVStoTO-property uses the \conclusion" part of VS-property(b; d;Q) for A, together withthe performance and fault-tolerance assumptions for the processors VStoTO 0p, to infer theconclusion part of TO-property(b+ d; d;Q).We prove VStoTO-property operationally. In our proof, the execution fragment �000 whoseexistence is asserted in the conclusion of VStoTO-property extends until every member of Qhas received the safe indication for every state-exchange message sent in view hg; Si. Our proofuses the fact that Q contains a quorum, and also the fact that the \good" processors performenabled actions immediately.Based on VStoTO-property , it is easy to unwind the de�nitions and prove that the completesystem satis�es TO-property(b + d ; d ;Q). Suppose that (�;1) = (
; l)(�;1) is an admissibletimed trace of VStoTO 0-system. Suppose that all the following hold:1. � contains no failure status events for locations in Q or for pairs including a location in Q.2. All locations in Q and all pairs of locations in Q are good after
.3. If p 2 Q and q 62 Q then (p; q) is bad after
.We show that (�;1) can be written as (�0; l0)(�00;1), where1. l0 � b+ d.2. Every data value sent from a location in Q in �, say at time t, is delivered at all membersof Q by time max (t; l + l0) + d.3. Every data value delivered to any location in Q, say at time t, is delivered at all membersof Q by time max (t; l + l0) + d.By the de�nition of VS-property(b; d ;Q), we have that (�;1) can be written as (�0; t0)(�00; t00),where1. t0 � b. 33

� TIME
 (�0) >physicalstabilization

��0 (�1)� b �00 (�2)�3 �4�0 �00� d delivery in � d:VS stableFigure 12: Performance argument diagram2. No newview events occur in �00 at processors in Q.3. The latest views at all locations in Q after
�0 are the same, say hg; Si, where S = Q.4. Every message sent from a location in Q in � while in view hg; Si, say at time t, hascorresponding safe events at all members of Q by time max (t; l + t0) + d.Next, we apply the conditional property to the timed execution � that gives rise to the timedtrace (�;1). Let �0, �1 and �2 be the parts of � that give rise to
, �0 and �00, respectively(see Figure 12).The conditional property implies that �2 can be written as �3�4, where1. ltime(�3) � d2. Every data value sent from a location in Q in �, say at time t, is delivered at all membersof Q by time max (t; ltime(�0�1�3)) + d.3. Every data value delivered to any location in Q, say at time t, is delivered at all membersof Q by time max (t; ltime(�0�1�3)) + d.Then we claim that taking �0 to be the timed trace of �1�3 and �00 to be the timed trace of �4yields the needed properties. To see that l0 � b+d, note that l0 = ltime(�1)+ ltime(�3) � b+d.For the delivery times, the conclusion of the conditional property provides bounds in terms ofltime(�0�1�3), which is the same as l + l0, which is as needed. 2As a consequence of Theorem 7.1, we have the main result:Theorem 7.2 VStoTO 0-system satis�es the speci�cation TO(b + d ; d ;Q), for every Q thatcontains a quorum.8 Implementing VSIn this paper we do not o�er a formal proof that VS can be implemented. Instead, we sketchone implementation, informally. The implementation is based on the 3-round membershipprotocol7 given by Cristian and Schmuck in [19]. In this protocol, once a view is formed, it is7A di�erent implementation could use the one-round protocol of [19]. However, this would stabilize lessquickly. 34

\held together" by a circulating token, which is started by a deterministically chosen leader,and travels from member to member around a logical ring. Each processor knows the size ofthe ring, and so it sets a timer that expires if the token does not return in reasonable time. Ifa member crashes, or communication failure causes the token to be lost or delayed, the timerexpiration triggers formation of a new view. Similarly a new view is initiated if contact occursfrom a processor outside the current membership.Once a processor determines that a new view is needed, it broadcasts a call-for-participationin the new view (together with a unique viewid chosen to be larger than any the processor hasseen). The membership of the view is all processors that reply to the broadcast. A processormay not reply to one call after replying to another with higher viewid. Once the membershipis determined, this is sent to the members which then join the view (unless they have alreadyagreed to participate in a view with higher viewid). A leader within the view membershiplaunches the token.To provide ordered message delivery, we use the token to carry the sequence of messages.Each processor bu�ers messages from the client until the token passes; the messages are thenappended to the token. Each processor examines the sequence carried by the token, and passesto its client any messages that it has not already passed on. The token also carries an indicationof how many messages each member passed to its client, when the token last left that member.This is the basis for the safe indication: a message is safe once the token records that allmembers have passed it to the corresponding clients.Suppose the following hold of the underlying physical system of processors and links:� While statusp = good p, processor p takes any enabled step immediately.� While statusp = bad , processor p takes no locally controlled step.� While statuspq = good , every packet sent from p to q arrives within time �� While statuspq = bad , no packet is delivered from p to qAs analyzed in [19] the protocol above implements VS(b; d;Q), where Q is any set of processors,b = 9� + maxf� + (n + 3)�; �g, and d = 2� + n�. Here, n is the number of processors in Q,� is the spacing of token creation by the ring leader (this must satisfy � > n�), and � is thespacing of attempts to contact newly connected processes.Some remarks about a correctness proof for this implementation: The safety claim involvesshowing that any trace of the implementation is a trace of VS-machine. Since traces include onlyexternal events (and not internal events like createview), the implementation needn't preservethe order of createview events (in fact, the implementation needn't even have createview events).To show this trace inclusion, we useWeakVS-machine. We �rst show thatWeakVS-machineimplements VS-machine, in the sense of trace inclusion, provided that the viewid set G doesnot contain an in�nite number of elements smaller than any particular element g. This proof isachieved by reordering createview events, pushing any such event earlier than any createviewevent for a bigger view.Then use a forward simulation to show that the algorithm implements WeakVS-machine.This forward simulation should be straightforward, mapping to createview inWeakVS-machinethe event in [19] where a processor de�nes the membership of the view, after waiting 2� unitssince sending the "newgroup" message (the membership is the set that sent "accept" responses).Uniqueness of viewids is immediate since in [19] they have a procid as low-order part (and astable seqno as highorder part). Note that we still have monotonicity on the viewids that psees, because newview(v)p still has precondition that v:id > current :id p.35

An operational argument should work for performance and fault-tolerance. In showingimplementability of VS , we focused on simplicity and feasibility. While the approach we pre-sented can be further optimized, we note that token-based solutions have been used in realgroup communication implementations [5].9 Conclusions and discussionThe construction of distributed applications is substantially aided by the availability of dis-tributed system building blocks, such as message passing, multicast or remote procedure call.Some sophisticated application are most e�ectively aided by the availability of building blocksproviding higher level functions and guarantees, such as universally ordered broadcast. In orderfor a building block to be useful, it must be precisely speci�ed, the speci�cation must be assimple as possible, the correctness and performance guarantees must be explicitly stated, lastbut not least, the building block must be implementable.We presented a simple speci�cation for a partionable group communication service, calledVS . We demonstrated the utility of the service by using it in specifying and proving correcta total order messaging service. The performance and fault-tolerance properties of the totalorder service are derived from the performance and fault-tolerance properties of the groupcommunication service. We also described one implementation of the service.Other results based on this VS speci�cation include [20, 24, 27] that show a range ofextended services, which can be built with ours.Ongoing research in this area is dealing with other speci�cations, e.g., [8, 32, 21], andsystems and implementations, e.g., [8, 30].Acknowledgments. We thank Ken Birman, Tom Bressoud, Danny Dolev, Brad Glade, IditKeidar, Debby Wallach, and especially Dalia Malki for discussions about practical aspects ofgroup communication services. Myla Archer has mechanically checked some of the invariantsusing PVS, thereby helping us to debug and polish the proofs. Roger Khazan contributedseveral improvements to the formal models. Roberto De Prisco and Nicole Lesley made severalhelpful suggestions. Finally we thank the ACM TOCS referees for insightful comments andsuggestions that helped us improve the presentation.References[1] Y. Amir, G.V. Chokler, D. Dolev and R. Vitenberg, \E�cient State Transfer in PartitionableEnvironments," in Proc. of the 2nd European Research Seminar on Advances in Distributed Systems(ERSADS'97), pp. 183-192, 1997.[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki, \Transis: A communication subsystem for highavailability". In 22nd IEEE Fault-Tolerant Computing Symposium (FTCS), July 1992.[3] Y. Amir, D. Dolev, P. Melliar-Smith and L. Moser, \Robust and E�cient Replication Using GroupCommunication" Technical Report 94-20, Department of Computer Science, Hebrew University.,1994.[4] Y. Amir, L. Moser, P. Melliar-Smith, D. Agrawal and P. Ciarfella, \Fast Message Ordering andMembership Using a Logical Token-Passing Ring", in Proc. of IEEE International Conference onDistributed Computing Systems, 1993, pp 551{560.[5] Y. Amir, L. Moser, P. Melliar-Smith, D. Agrawal and P. Ciarfella, \Totem Single-Ring Orderingand Membership Protocol", ACM Transactions on Computer Systems, vol. 13, no. 4, November1995. 36

[6] O. Babaoglu, R. Davoli, L. Giachini and M. Baker, \Relacs: A Communication Infrastructurefor Constructing Reliable Applications in Large-Scale Distributed Systems", in Proc. of HawaiiInternational Conference on Computer and System Science, 1995, volume II, pp 612{621.[7] O. Babaoglu, R. Davoli and A. Montresor, \Failure Detectors, Group Membership and View-Synchronous Communication in Partitionable Asynchronous Systems", Technical Report UBLCS-95-18, Department of Computer Science, University of Bologna, Italy.[8] O. Babaoglu, R. Davoli and A. Montresor. \Group Communication in Partitionable Systems: Spec-i�cation and Algorithms", Technical Report UBLCS 98-01, University of Bologna, April 1998.[9] O. Babaoglu, R. Davoli, L. Giachini and P. Sabattini, \The Inherent Cost of Strong-Partial ViewSynchronous Communication", in Proc of Workshop on Distributed Algorithms on Graphs, pp 72{86, 1995.[10] K.P. Birman, Building Reliable and Secure Network Applications, Prentice Hall, 550 pp., 1996.[11] K.P. Birman, \A Review of Experiences with Reliable Multicast", Software{ Practice and Experi-ence, (J. Wiley), vol. 29, no. 9, pp. 741-774, Aug. 1999.[12] K. Birman, A. Schiper, and P. Stephenson, \Lightweight causal and atomic group multicast", ACMTransactions on Computer Systems, vol. 9, no. 3, pp. 272-314, 1991.[13] K.P. Birman and R. van Renesse, Reliable Distributed Computing with the Isis Toolkit, IEEE Com-puter Society Press, Los Alamitos, CA, 1994.[14] T.D. Chandra, V. Hadzilacos, S. Toueg and B. Charron-Bost, \On the Impossibility of GroupMembership", in Proc. of 15th Annual ACM Symp. on Princ. of Distr. Comput., pp. 322-330,1996.[15] O. Cheiner and A.A. Shvartsman, \Implementing and Evaluating an Eventually-Serializable DataService as a Distributed System Building Block," Networks in Distributed Computing, DIMACSSeries on Discrete Mathematics and Theoretical Computer Science, vol. 45, pp. 43-71, AMS, 1999.[16] Communications of the ACM, special section on group communications, vol. 39, no. 4, 1996.[17] F. Cristian, \Synchronous and Asynchronous Group Communication", Comm. of the ACM, vol.39, no. 4, pp. 88{97, 1996.[18] F. Cristian, \Group, Majority and Strict Agreement in Timed Asynchronous Distributed Systems",in Proc. of 26th Conference on Fault-Tolerant Computer Systems, 1996, pp. 178{187.[19] F. Cristian and F. Schmuck, \Agreeing on Processor Group Membership in Asynchronous Dis-tributed Systems", Technical Report CSE95-428, Department of Computer Science, University ofCalifornia San Diego.[20] R. De Prisco, A. Fekete, N. Lynch, and A.A. Shvartsman. A dynamic view-oriented group commu-nication service. In Proceedings of the 17th ACM Symposium on Principle of Distributed Computing(PODC), pages 227{236, Puerto Vallarta, Mexico, 1998.[21] R. De Prisco, A. Fekete, N. Lynch, and A.A. Shvartsman. A Dynamic Primary Con�gurationGroup Communication Service. in Proceedings of the 13th International Conference on DistributedComputing (DISC), 1999.[22] D. Dolev and D. Malki, \The Transis Approach to High Availability Cluster Communications",Comm. of the ACM, vol. 39, no. 4, pp. 64{70, 1996.[23] D. Dolev, D. Malki and R. Strong \A Framework for Partitionable Membership Service", TechnicalReport TR94-6, Department of Computer Science, Hebrew University.[24] S. Dolev, R. Segala and A. Shvartsman, Dynamic Load Balancing with Group Communication,in the Proc. of the 6th International Colloquium on Structural Information and CommunicationComplexity, 1999.[25] P. Ezhilchelvan, R. Macedo and S. Shrivastava \Newtop: A Fault-Tolerant Group CommunicationProtocol" in Proc. of IEEE International Conference on Distributed Computing Systems, 1995, pp296{306. 37

[26] A. Fekete, F. Kaashoek and N. Lynch \Providing Sequentially-Consistent Shared Objects UsingGroup and Point-to-point Communication" in Proc. of IEEE International Conference on Dis-tributed Computer Systems, 1995, pp 439{449.[27] A. Fekete, R. Khazan and N. Lynch, \Group Communication as a base for a Load-Balancing,Replicated Data Service", in Proc. of the 12th International Symposium on Distributed Computing,1998.[28] R. Friedman and R. van Renesse, \Strong and Weak Virtual Synchrony in Horus", Technical ReportTR95-1537, Department of Computer Science, Cornell University.[29] R. Friedman and A. Vaysburg, \Fast Replicated State Machines Over Partitionable Networks", inthe Proc. of the 16th Symposium on Reliable Distributed Systems, 1997.[30] M. Hayden, The Ensemble System, Doctoral Dissertation, Computer Science, Cornell University,1998.[31] M. Hayden and R. van Renesse, \Optimizing Layered Communication Protocols", Technical ReportTR96-1613, Dept. of Computer Science, Cornell University November 1996.[32] J. Hickey, N. Lynch and R. van Renesse, \Speci�cations and Proofs of Ensemble Layers", in Proc.of TACAS'99, 1999.[33] M. Hiltunen and R. Schlichting \Properties of Membership Services", in Proc. of 2nd InternationalSymposium on Autonomous Decentralized Systems, pp 200{207, 1995.[34] F. Jahanian, S. Fakhouri and R. Rajkumar, \Processor Group Membership Protocols: Speci�cation,Design and Implementation" in Proc. of 12th IEEE Symposium on Reliable Distributed Systems pp2{11, 1993.[35] I. Keidar, A Highly Available Paradigm for Consistent Object Replication, M.Sc. Thesis, HebrewUniv., Jerusalem, 1994; (see also TR CS95-5 available at URL:http://www.cs.huji.ac.il/�transis/publications.html).[36] I. Keidar and D. Dolev, \E�cient Message Ordering in Dynamic Networks", in Proc. of 15th AnnualACM Symp. on Princ. of Distr. Comput., pp. 68-76, 1996; (see also \Totally Ordered Broadcast inthe Face of Network Partitions", Exploiting Group Communication for Replication in PartitionableNetworks, in Dependable Network Computing, Ed. D. Avresky, Kluwer Acad., 2000).[37] L. Lamport, \Time, Clocks. and the Ordering of Events in a Distributed System, Comm. of theACM, vol. 21, no. 7, pp. 558-565, 1978.[38] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1996.[39] N.A. Lynch and M.R. Tuttle, \An Introduction to Input/Output Automata", CWI Quarterly, vol.2,no. 3, pp. 219-246, 1989.[40] N.A. Lynch and F. Vaandrager, \Forward and Backward Simulations | Part I: Untimed Systems",Information and Computation, vol. 121, no. 2, pp. 214-233, 1995.[41] N.A. Lynch and F. Vaandrager, \Forward and backward simulations { Part II: Timing-based sys-tems", Information and Computation vol. 128, no. 1, pp 1-25, 1996.[42] C. Malloth and A. Schiper, \View synchronous communication in large scale networks", in 2ndOpen Workshop of the ESPRIT project BROADCAST (Number 6360), July 1995 (also available asa Technical Report Nr. 94/84 at Ecole Polytechnique Federale de Lausanne (Switzerland), October1994).[43] S. Mishra, L. L. Peterson, and R. L. Schlichting, \Consul: A Communication Substrate for Fault-Tolerant Distributed Programs", TR 91-32, dept. of Computer Science, University of Arizona, 1991.[44] A. Montresor, R.Davoli, O. Babaoglu. \Group-Enhanced Remote Method Invocations," TechnicalReport UBLCS 99-05, University of Bologna, April 1999.[45] L. Moser, Y. Amir, P. Melliar-Smith and D. Agrawal, \Extended Virtual Synchrony" in Proc. ofIEEE International Conference on Distributed Computing Systems, 1994, pp 56{65.38

[46] L.E. Moser, P.M. Melliar-Smith, D.A. Agarawal, R.K. Budhia and C.A. Lingley-Papadopolous,\Totem: A Fault-Tolerant Multicast Group Communication System", Comm. of the ACM, vol. 39,no. 4, pp. 54-63, 1996.[47] G. Neiger, \A New Look at Membership Services", in Proc. of 15th Annual ACM Symp. on Princ.of Distr. Comput., pp. 331-340, 1996.[48] R. van Renesse, K.P. Birman, M. Hayden, A. Vaysburd, and D. Karr, Building adaptive systemsusing Ensemble. Software{ Practice and Experience, 29(9):963{979, 1998.[49] R. van Renesse, K.P. Birman and S. Ma�eis, \Horus: A Flexible Group Communication System",Comm. of the ACM, vol. 39, no. 4, pp. 76-83, 1996.[50] A. Ricciardi, \The Group Membership Problem in Asynchronous Systems", Technical Report TR92-1313, Department of Computer Science, Cornell University.[51] A. Ricciardi, A. Schiper and K. Birman, \Understanding Partitions and the \No Partitions" As-sumption", Technical Report TR93-1355, Department of Computer Science, Cornell University.[52] F. Schneider, \Implementing Fault-Tolerant Services using the State machine Approach: A Tuto-rial", ACM Computing Surveys, vol. 22, no. 4, 1990.[53] R. Vitenberg, I. Keidar, G.V. Chockler and D. Dolev, \Group Communication Speci�ca-tions: A Comprehensive Study", MIT Technical Report MIT-LCS-TR-790, September 1999. URLhttp://theory.lcs.mit.edu/~idish/ftp/gcs-survey-tr.ps.[54] B. Whetten, T. Montgomery, and S. Kaplan, \A high performance totally ordered multicast pro-tocol". In K. P. Birman, F. Mattern, and A. Schipper, editors, Theory and Practice in DistributedSystems: International Workshop, pages 33{57. Springer Verlag, 1995. LNCS 938.

39

