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1 Introduction

In designing fadt-tolerant distributed systems, one often encounters questions of sgree

meat among processes. In the Byzantine Generals problem [PSL so, tsp 821, the objective

is for nonfaulty processes to agree on a nIne, in spite of the presence of a small number

of ‘Byzautine’ type of faults — completely arbitrary, even possibly malicious, behavior.

Several variations on the problem can be considered — the model can be synchronous or

asynchronous, and either exact or approximate agreement can be demanded. In this ptper,

we consider a variant on the traditional Byzantine Generals problem, in which processes

start with arbitrary real value,, and where approximate, rather thau exact, agreement lithe

desired goal. Approximate agreement cia be used, for example, for clock synchronisation

and for stabilization of input from sensors.

We assume a model in which processes can send messages containing arbitrary real

values, and can store arbitrary real values as ecU. We assume that each process starts with

an arbitrary real value. For any preaaigned c, C (as small as desired), an appwdmate

aQrcement algorithm must satisfy the following two conditions:

• Agreement: All nonfaulty processes eventually halt with output values that are within

of each other.

• Validity: The value output by each nonfauity process must be in the range ot initial

value, of the nonfaulty processes.

Thus, in particular, if all nonfaulty processes should happen to start with the same

initial value, the final values are all required to be the same as the common initial value.

This is consistent with the usual requirements for Byzantine agreement algorithms. How

ever, should the nonfaulty processes start with different nines, we do not require that the

noufaulty processes agree on a unique final value. - -
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We consider both synchronous and asynchronous versions of the problem. Systtms

in which there is 3 finite bounded delay on the operations of the procenes and on their

intercommunication are said to be synchronous. In such systems, unannounced process

deaths, as well as long delays, are considered to be faults. For synchronous systems, we give

a simple and rather efficient algorithm for achieving approximate agreement. This aigorithm

works by succenive approximation, with a provable convergence rate that depend, vu the

ratio between the number of faulty processes and the total mimber of processes. The

algorithm is guaranteed to converge when the total number of processes is more than three

times the number of possible faulty processes. Termination is achieved using a technique

that ensures that all nonfaulty processes halt, but allows different processes to terminate

at different times.

For asynchronous systems, in which a very slow process cannot be distinguished from

a dead process, no exact agreement can be achieved, even if no malicious failures occur

{FLP 83, DOS 83J. An interesting contrast to the results in [FLP 83, DOS is our second

algorithm, which enables processes in an asynchronous system to get as close to agreement

as one chooses. Our algorithm for the asynchronous case also works by successive approx

imation. In this case, however the total number of processes required by he algorithm is

more than Bye times the number of possible faulty processes. As in the synchronous case.

we achieve termination using a technique that ensures that all nonfaulty processes halt, but

permits different processes to terminate at different times.

Our algorithms to obtain approximate agreement are of a very simple form. Namely, at

each round until termination is reached, each process sends its latest vaiue to all processes

(including itself). On receipt of a collection V of values, the process computes a certain

function 1W) as its next value. The function f is a kind of averaging function. Here we

use functions that are appropriate for handling I faulty processes. We will show that these

functions have particularly nice approximation behavior. In particular, we will show that,

for algorithms of a particular form, no approximation function can provide uniformly faster

convergence than the functions used in this paper. An earlier paper [DLPSW 831 presented

similaralgorithms, but used approximation functions that provided slower convergence than

achieved by the functions used in this paper.
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The remainder of this paper is organited as follows: In Section 2, we prove some combina

torial properties of the approximation functions upon which our algorithms depend. Then,

in Section 3, we introduce the synchronous model and present the synchronous approximate

agreement algorithm, and in Section 4, we present the asynchronous model and algorithm.

Next, in Section 5, we present lower bounds on the convergence rate for algodthms of the

form presented in sections 3 and 4, and show that the approximation functions used in our

algorithms are optimal. In Section 6, we discuss the resilience properties of our algorithms.

Finally, in Section 7, we conclude with a short summary and some open questions.

2 Properties of the Approximation Functions

In this section, we will state and prove the relevant properties of the approximation

functions. First, we require some preliminary definitions and properties of multisets.

2.1 Preliminary Definition.

Let N be the natural numbers, including 0, and let £ be the real numbers. We view a

finite multi,et U of reals as a function U R —‘ it that is uontero on at most finitely mauy

E R. Intuitively, the function U assigl]s a finite multiplicity to each value r C R. The

cardinality of a inultiset U is given by EFER U(r), and i denoted by UI. We say that a

mu] tiset is empty if its cardinality is zero; otherwise it is nonempty. The difference U — V

of multisets U and V is the multiset W defined by

W(r)
— U(r) — V(r) if 11(r) — V(r) 0

C otherwise.

The intersection U n V of multisets U and V is the multiset W defined by W(r) =

min(U(r),V(rfl.

In the sequel, the term “multiset” wilt always refer to finite multisets of real numbers

as above. If g is a function on multisets, then g’ will denote the k-fold iteration of g; thus
91 = 992 = gog, etc.

The minimum inin(U) of a nonempty multiset U is defined by

min(U) = min{r E R U(r) 3é O}.
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The maximum max(U) is defined similarly. TI U is nonempty, let p(U) (the range of U) be

the interval fmin(IJ), max(U)j, and let 6(U) (the diameter of U) be msx(U) — min(U). The

mean mean(U) of a nouempty multiset U is defined by

mean((J)
=

rU(r)/U.
‘ER

If U is a nonempty multiset, we define the muitiset s(U) (intuitively, the multiset ob

tained by removing one occurrence of the smallest value in U) to be the multiset W defined

by

U(r)—1 if r=min(U),
W(r)=

U(r) otherwise.

The multiset 1(U) (remove one occurrence of the largest value in U) is defined similarly, if

UI 2. then define reduce((J) = s(1(U)), the result of removing the Iagest and smallest

elements of ii.

The first lemma shows that tbe number of common elements in two nonempty multisets

is reduced by at most 1 when the smallest (or the largest) element is removed from each.

Lemma 1 Suppose that V and W are nonempty mulftsets. Then

I. V n W — Is(V) fl s(W)I 51.

2. jVflW — Ii(Y)fll(W)I 51.

Proof — We prove the first inequality; the argument for the second is symmetric. If V

and W have the same minimum, then the same element is removed from each, and hence

at most one e)ement is removed from their intersection. If the minima of V and W are not

the same, then either the minimum of V is not in W, or the minimum of W is not in V. In

either case, at most one element is removed from the intersection. •
Th next lemma extends the results of the previous lemma to removing the j largest

and j smallest elements.

Lemma 2 Suppose that jis a nonnegative integer and that V and W are muitüets such

that IVI Zj and IWI 2j. Then

Iv n W — reduce’(V) fl reducS(W)I 521
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Proof — Follows from repeated application of Lemma 1. I

The next lemma is fundamental to the correctness of the algorithms. It states that if

V and U are multisets such that V contains at mo5t j values not in U, then every value in

reditce’(V) is in the range of U. For example, if the multiset of values held by nonfaulty

processes at some point in the algorithm i U, and the multiset of values received by some

process isV, then at most t of the values in V are not in U, where t is the maximum number

of faulty processes. The lemma then states that reduce’(V) is a multiset whose range is

contained in the range of the values of the noufaulty processes. This property is essential

in showing that the validity condition ii satisfied.

Lemma S Suppose thatj ía a rwnnegflive integer and that U andV are nonempty multOets

such that V—U j and IVI >21. Then p(reduce”(V)) c p(U).

Proof — Suppose p(reduce(V)) p(U). Then either min(reduce1(V)) < min(U) or

max(reducd(V)) > max(U). If min(reducei(V)) <min(lJ), then Er.crjduw) V(r) I + 1.

Hence, IV — U j + 1, which contradicts a hypothesis. The case max(reduce1(V)) >

max(U) is symmetric. I

-

2.2 The Approximation Fnnctlons

Suppose U is a nonempty multiset. Let m = UI and let uo u1
- -

u,.j be the

elements of U in nondecreasing order, If k > 0 then define selectj(U) to be the multiset

consisting of the elements Ito, Uj, Un, and ttjk, where j = [(m — 1)fkj. Thus, selatk(U)

chooses the smallest element of U and every kth element thereafter.

An important role will be played by the constants

c(m, k) = 1(m — 1)/kj + 1,

where c(, k) is the number of elements in selecti(U) when U has m elements. The constant
c(n — 2t, t) appears as the convergence factor for the synchronous protocol, and the constant

c(n — 3t. 2t) as the convergence factor for the asynchronous protocol.

In this paper we will use approximation functions drawti from a class of functions

parametrized by: (1) the number I of faulty processes, and (2) a conztant k, the choice
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of which depends on t and on whether the algorithm is synchronous or asynchronous. For

k > 0 and t 0 define the function 1k: by

f&dV) = mean(selectk(reduce’(Vfl),

for all multisets V with VI > 2t. The approximation function for the synchronous protocol

with no more than t faulty processes is f,g. The approximation function for the asyn

chronous protocol with no more than t faulty processes is f,gj. We will show below why

these functions are appropriate.

The next two lemmas describe properties of the approximation functions. Lemma 4 is

used in verifying the validity condition.

Lemma 4 Suppose k > U and t 0 are integer.. Suppo.e that U and V are nonernpty

muttisets such that V — U t end WI > Zt. Then fkAV) € p(U).

Proof — Follows easily from Lemma 3 (with j = t). •
Lemma S will be applied to determine the rate of convergence of the approximation

rounds. The multisets V and W will be the multisets of values received by two nonfaulty

processes in a given round, and U will be the multiset of values held by nonfaulty processes

at the beginning of that round. Nonfaulty processes use the appropriate approximation

function to choose their values for the next round; the lemma tells us how quickly those

values éonverge.

Lemma 5 Suppose V. W, and U are rnultiseta, and k >0, t 0, and n > 2t are integers,

withIVI=IWI=m,IV—UIt, IW—UIt, andlW—VI=IV—WI k. Then

Ifj,i(V) — fk,g(W)I 6(U)/c(m — 2t, k).

Proof — Let M = reduce’(V) and N = reduce’(W). Since V and W each contain exactly

in elements, M and N each contain exactly in — Zt elements, and hence selectj(M) and

selectj(N) each contain exactly c = e(m — 2t, k) elements. Let m0 m1 - m1._.1 be

the elements of selectt(.M) and let no S ‘i ne—i be the elements of select1(N).

Notice that there are at least ki + 1 element, in M that are Less than or equal to rn, and

at most ki elements in Ad that are strictly less than m; similarly for N.
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We begin by showing that max(ini,n1) miu(m1÷jnj) for 0 i $c —2. It suffices

to show that in1 a symmetric argument demonstrates that n me+t.
We proceed by contradiction: Suppose that m > As noted above, there are at

least k(i + 1) + I elements in N less than or equal to n.1.3. By our supposition, these

elements are strictly less than m. However, there are at most ki elements in M strictly less

than m1. Therefore, there are at least k(i + 1) + 1— ki ( k+ 1) elements in N that are not

in M; thus, IN — MI k + 1. Now by hypothesis, 1W —19 1, so W ri 19 m — k. Then

Lemma 2 shows INn MI in — k — 2t, and hence IV — MI S (in — 2t) — (m — k — 2t) = Ic.

This is a contradiction, and we conclude that m1

Now we will use the inequality shown above to obtain the desired result. Using the

notation defined above,

—j1(Wfl = mean(selectj(M’)) — mean(selecta(Nflj

=

=

-

Elmi — nI/c (by the triaaigle inequality)

= E(max(m,n) — min(m,nJ)/e.
i=0

By the inequality demonstrated above, for 0 IS c —2, (max(m1n1)— min(mjn1))

(min(m,+i, nj+j) — min(m1nj)). so we get

Iftt(V) — f&dW)I S [max(m_1,n...i) — min(m._i,n_j)jfc

+ (min(m1+i, rt+,) — min(m, njfl/c.

Collecting terms then shows that

If&i(V) — fj(W)f S (max(m_z,n._j) — min(mo,nofl/c.

Now. p(M) ç p(U) and p(N) ç p(U) by Lemma 3 (with j = I). so ma1(m_j,n_1)S
max(U) and xnin(mo,no) min(U). Hence

11j4V) — f&,e(W)I S (ma(U) — min(Ufl/c
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= 6(U)/c,

as desired. I

3 The Synchronous Problem

A aynchrQnoas approximation algorithm P is • system of n processes, n 1. Each

process p has a set of states, including a subset of states called initial statea and a subset

called hatting stated. There is a value mapping which assigns a real number as the value

of each state. For each real number r, there is exactly one initial state with value r. Each

process acts deterministically according to a transition function and a message generation

function. The transition function takes a non-halting process state a,d a vector of messages

received from all processes (one message per process) and produces a new process state. The

message generation function talces a non-halting state and produces a vector of messages to

be sent to all processes (one per process).

We assume that the system acts synchronously, using a reliable commimication medium.

Each process is able to send messages to all processes (including itself), and the sender of

each message is identifiable by the receiver.

A configuration consists of a state for each process. An initial configuration consists

of an initial state for each process. Let T be any subset of the processes. A sequence

of configurations (called round.),C0C1,C,,... is a T-computation provided there exist

messages sent by each process at each round such that: (a) co is an initial configuration;

(b) for every i, and every p € T, the messages sent out by p after C1 are exactly those

specified by p’s message generation function, applied to p’s state in C; and (c) for every

i, and every p E T, p’s state in C.j is exactly the one specified by p’s transition function

applied to p’s state in C and the messages sent top after C. In a T-computation, processes

in T are nonfaulty, while processes not in T may be faulty.

For the test of the paper, assume a fixed small value €, a fixed number of processes n,

and a fixed maximum number of faulty processes L

A syncbronouz approximation algorithm is said to be t-correct provided that for every

subset T of processes with TI n — t, and every T-computation, the following is true:
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Every p C T eventually enters a halting state, and the following two conditions hold for the

values of those halting states:

• Agreement: It two processes in T enter halting states with values r and,, respectively,

then r — s c.

• Validity: If a process in Tenters a halting state with value r, then there exist processes

in T having z and v as initial values, such that x r V.

We will prove the following theorem.

Theorem 1 Ifa 3t+ 1, then there edits a f-correct synchronous approximation algorithm

with n processes.

Note tInt the following strategy would suffice to prove Theorem 1. The processes could

run a executions of a general (unlimited value set) Byzantine Generals algorithm such as

the one in DS 82], in order to obtain common estimates for the initial values of all the

processes. After this algorithm completes, all processes in 7’ will have the same multiset,

V, of values for all the processes. Then each process halts with value 1(V), where I is a

predetermined averaging function that is the same for all processes. This algorithm actually

achieves exact real-valued agreement, with the required validity condition. However. th€

solution presented below is simpler and more elegant, and moreover extends directly to

the asynchronous case, for which exact agreement is impossible. The algorithm has two

addLtional advantages over using a Byzantine Generals algorithm: it is more resilient than

typical Byr,antine Generals algorithms, and it can, in some cases, terminate in fewer than

t+lrounds.

We now present our synchronous approximation algorithm, S. First, we describe a non-

terminating algorithm, s0, and then we discuss how termination is achieved. We assume

that a 3t + 1.

Synchronous Approximation Algorithm SD:

At each round, each nonfaulty process p performs the following steps:

1. Process p broadcasts its current value to all processes, including itselt
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2. Process p collects all the values sent to it at that round into a multj,et V. If p does not

receive exactly one correct value from some particular other process (which means,

in the synchronous model, that the other process is faulty), then p simply picks some

arbitrary default value to represent that process in the muitiset. The multiset V will

therefore always contahi exactly n value,.

3. Process p applies the function fig to the nultiset V to obtain it, new value.

The following result states how the diameter and range of the nonfaulty processes’ values

are affected by each round of algorithm S0.

Lemma C Suppose n,t >0 are such that it 3t+ 1. LeIT be a set of proccnes, vith

171 r — t. Let h be a poaitive integer. Let U and U’ be the mu(tiset, of values of processes

in T, imme&auiy before and after round h, reapeetiveip, in a particulizr T-eomputation of

So Then

1. 6(U’) 6(U)/c(n — 2t,t).

p.J’) ç

Proof — t p and q be arbitrary processes in T. Let V and W be the multisets of values

(including default values) received byp and q, respectively, at round Ia. Then IVI = WI =

Since there are at most t faulty processes, S Land lW—UI t. Moreover, since V and

W contain identical entries for all the processes in T, we know that IV — WI = 1W —Vl t.

1. The multisets V, W, and U satisfy the hypotheses of Lemma 5 (with in = n and

Ic = fl. Thus,

111.(V) — I 6(U)/c(n — 2t, t).

2. The multisets V and U satisfy the hypotheses of Lenin. 4. Thusf1,(V) € p(U).

Since p and q were chosen arbitrarily, the result follow,. I

Part I of Lemma 6 show, that, at each round, the diameter of the multiset of values

held by uonfaulty processes decreases by a factor of c(n — 2t, t), which is at least 2 because
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it 3t + 1. thus, the diameter of the multiset of values held by nonfaulty processes

eventually decreases to or less. In addition, repeated application of part 2 of Lemma 6

shows that, at each round A 1, the values held by nonfaulty processes immediately before

round A are all in the range of the initial values of nonfaulty processes.

It is now easy to ee why the function jg, is appropriate for the synchronous algorithm.

Since a correct process can receive at most t values in a round from faulty processes, t-fold

application of reduce is sufficient to ensure that extreme values from faulty processes are

discarded. Thus, the second subscript off is:. Also, if p and q are correct processes that

receive multiseta V and W, respectively, in a round, then t is the maximum number of

values that can be in V — W. Application of select1 to the reduced multisets ii therefore

sufficient to obtain convergence, and the first subscript of f is also t.

Algorithm S is not a correct synchronous approximation algorithm, however, for as

stated, it never terminates. We modify So to obtain a terminating algorithm, 5, as foUows.

At the Brst round, each nonfaulty process uses the range of all the values it has received

at that round to compute a round number at which it is sure that the values of any two

nonfauLty processes wilL be at most apart. Each process can do this because it knows

the value of c, the guaranteed rate of convergence and furthermore, it knows that the

range of values it receives on the Brat round includes the initial values of all nonfaulty

processes. The total number of rounds that must be executed (including the first round) is

given by [log(h(V)/c)1, where V is the multiset of values received in the first round, and

c = c(n — 2t,t).

In general, different processes might compute different round numbers. Any process that

reathes its computed round simply halts, and semis its value out with a special 9ialting” tag.

When any process, say p, receive, a value with a halting tag, it know, to use the enclosed

value not only for the designated round, but also for all future rounds (until p itself decides

to halt, based on p’s own computed round number). Although nonfaulty processes might

compute different round numbers, it is clear that the smallest such estimate is correct.

Thus, at the time the first noofaulty process baits the range is already sufficiently small.

At subsequent round,, the range of values of nonfaulty processes is never increased, although

we can no longer guarantee that it decreases. The following lemma makes these ideas more
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precise.

Lemma I Assume that n 3t + 1. Let 2’ be a get ojprocenn, with T n — t. Let 4¼ be a

potitive irLteger. Let U and Ut ôc the multisets of values of processes in 2’, immediately be/ore

and after round h respectively, in a particular T-comptitation of S. Then p(F.J’) ç p(U).

Proof — Let p be an arbitrary process in 2’. Let u and v’ be the values held by p

immediately before and after round 4¼, respectively. It suffices, since p is arbitrary, to show

that v’ C p(U). If p has terminated prior to the start of round 4¼, then v’ = v E pill). lip

has not halted prior to the start of round h, then let V be the multiset of values received

by p in round h. Then V and U satisfy the hypotheses of Lemma 4, and since v’ =

it follows that u’ E p(V). I

Algorithm S is summarized in Figure 1. to show that S is a correct synchronous ap

proximation algorithm, we must show that all processes terminate, and that the agreement

and validity conditions are satisfied. It is clear that all processes terminate. Consider the

agreement property. At the first round at which some nonfauity proces3 halts, it is already

the case that all nonfaulty processes’ values are within (of each other. By Lemma 7, this

thameter never rnrreases at subsequent rounds, so the final value, of all the nonfaulty pro

cesses are also within oi each other. The validity property also follows from repeated

application of Lemma 7. This completes the proof of Theorem 1.

As a final note, observe that algorithm S can be modiBed so that a process need not

always wait for its computed round to arrive before halting: it can halt after it receives

halting tags from at least t ± 1 other processes.

4 The Asynchronous Problem

In this section, we reformulate the problem in an asynchronous model adapted from the

one in [FLP T- In an ajpnch,onou., approzimation algorithm, we assume that processes

have states as before, but now the operation of the processes is descñbed by a transition

function that in one step tries to receive a message, gets back either “null” or an actual

message, and based on the message, changes state am! sends out a finite number of other

13



Figure 1: Synchronous Approximation Mgorithm $

Round 1 (First Approximation Round):

Input v;

V — SgnchExchangc(v);

v — fi4V);

H — flog(b(V)/€)1, where c = c(n — 2t,t).

Round s1z (2 h H) (Approximation Rounds):

V — Svnckszchange(v);

v — 141’).

Round H + 1 (Termination Round):

Droadcast((u, haltedfl;

Output v.

Subroutine SynchEzchange(u):

Broadra.t{v)

Collect a responses:

• Fill in values for halted processes.
• Fill in default values, if necessary.

Return the multiset of responses.
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messages. Nonfaulty processes always follow the algorithm. Faulty processes, on the other

hand, are constrained so that their steps at least follow the standai,d form — in each step,

they try to receive a message as do nonfaulty processes. However1 they can change state

arbitrarily (not necessarily according to the given algorithm), and can send out any finite

set of messages (not necessarily the ones specified by the algorithm). A T•computation of

an asynchronous approximation algorithm is one in which the processes in 1’ always follow

the algorithm all processes (faulty and nonfaulty) continue to take steps until they reach

a halting state, and any process that fails to enter a halting state eventually receive, all

messages sent to it.

An asynchronous approximation algorithm is said to be f-correct provided for every

subset T of processes with TI n — t, and every T-computation, every process in T

eventually halts, and the same agreement and validity conditions hold as for the synchronous

case -

It seems simplest here to insist on the standard form being followed by all processes.

The requirement that faulty processes keep taking steps until they enter halting states is

not a restriction, since they. are free to enter halting states at any time they wish. Similarly,

the requirement that faulty processes continue trying to receive messages is not a re,tric

tion, since they are free to do whatever they like with the messages received. Finally, the

requirement that faulty processes only send finitely many messages at each step is needed

so that faulty processes are unable to flood the message system, preventing messages from

other processes from getting through.

We assume that processes take steps at completely arbitrary rates, so that there i

no way (in finite time) to distinguish a faulty process from oue that is simply slow in

responding. Also, we assume that the message system takes arbitrary lengths of time to

deliver messages, and delivers them in arbitrary order.

We will prove the following theorem:

Theorem 2 If it 5t t 1, then there exist, a f-correct asynchronous approximation algo

rithm with it processes.

We now describe the asynchronous approximation algorithm. As in the synchronous

case, first we describe a nontermi’rnting algorithm, A0, in which processes compute better
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and better approximation., and we then modify A0 to produce a terminating algorithm A.

Assume that is 5t + 1.

Asynchronous Appraxlmatlôn Algorithm A0

At round h, each nonfaulty process p performs the following steps:

I. Process p labels its current value with the current round number h, and then broad

casts this labe!ed value to all processn, including itself.

2. Process p waits to receive exactly vi — t round h values, and coiled, these values into

a multiset V. Since there can be at most t faulty processes, process p will eventually

receive at least n — t round h values. Note that, in contrast to the synchronous case,

process p does not choose any default values.

3. Process p applies the function he,, to the multiset V to obtain its new value.

In analogy with Lemma 6 we have the following result, which states the convergence

properties of the above algorithm.

Lemma $ Suppo8e n,t > 0 are such that is St + 1. Let T be a act of processes, with

(TI is — t. Let h be a positive integer. Let U and U’ be the muttisets of values of processes

in 7, frnmediately before In4 after round h, respectively, in a parti&ar 7-computation of

A0. Then

1. 6(U’) b(tI)/c(n —3t,2t).

2. p(U’) c p(U).

Proof — Let p and q be arbitrary processes in T. Let V and W be the multisets of values

received by p and q, respectively, at round It. Then lvi = (WI is — t. Since there are
at most t faulty processes, W — U t and 1W — U t. Moreover, since V and W both

contain identical eutries for all the processes in T from which both p and q heard, we know

that IVflWIn—3t. Hence jV—WL=(W—Vj=IVI--$VflWI<t.

1. The multisets V, W, and U satisfy the hypotheses of Lemma 5 (with in = is — t and

k = 2t). Thus,

lfAP’) —f21,(W)I b(U)/c(n — 3t, Zt).
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2. The multisets V and LI sstisfy the hypothesn of Lemma 4. Thusf71,(V) € p((J).

Since p and q were chosen arbitrarily, the result follow,. •
Part I of Lemma 8 shows that, at each round, the diameter ot the muitiset of values

of nonfaulty processes decreases by a factor of c(n — 31, 2t), which is at least 2 because

Ii St + 1. Thus, the diameter of the multiset of values held by nonfaulty processes

eventually decreases to or less. In addition, repeated application of part 2 of Lemma B

shows that, at each round It 1, the values held by nonfaulty processes immediately before

round It are all in the range of the initial values of nonfaulty processes.

We can now see why fzi,g is the appropriate approximation function for the asynchronous

algorithm. The second subscript is I because as in the synchronous case, that is the

maximum number of values a correct process can receive in a round that are not values of

correct processes. The first subscript is 22 because if the correct proces,e p and q receive

multisets V and W, respectively, in a round, then 21 is the maximum number of values that

can be in V — W (t faulty values, plus I nonfaulty values received by p but not by q).

The only remaining problem is termination. We cannot use the same technique that

we used in the synchronous algorithm, because a process cannot wait until it hears from

all other processes, and thus cannot obtain an estimate of the range of the initial values

of the nonfaulty processes. We sotve this problem by adding an initialization round at the

beginning of the algorithm. In this initialization round (round 0). each nonfaulty process p

performs the following steps:

Initialization Round for Asynchronous Approximation Algorithm A:

1. Process p labels its initial value with the round number 0, and then broadcasts this

labeled value to all processes, including itself.

2. Process p waits to receive exactly n — t round 0 values, and collects these values into

a muitiset Vj,.

3. Process p chooses an arbitrary element of p(reduce2(K,)) (say mean(reduce2(V)))

as its initial value for use in round 1. Lets7 be this chosen value.

Suppose that p and q are arbitrary nonfaulty processes. Then since IVpI > 4t and

Vp — V 21 it follows that ‘4 and V, satisfy the hypotheses for the multisets V and U,

17



respectively in Lemma 3 (with j = 2t). An application of this result therefore shows that,

for any nonfaulty processes p and q, it is the case that x € p(3). That i, the value z

computed by process p as the result of the initialization round is contained in the range of

al) values received by process q in the initialization round. Since each nonfaulty process q
knows: (1) that its range p(Vq) contains all the round I values z for nonfaulty processes

p; (2) the value of C; and (3) the guaranteed rate of convergence, it can compute, before

the beginning of round 1, a round number at which it is sure that the values of aiy two

nonfaulty processes will be at most apart. The total number of rounds that must be

executed by a process, not including the initialization round, is rln(6(V)/e)1, where V is

the multiset received in the initialization round, and c = e(vz — 31, Zt).

As in the synchronous case, different processes will calculate different round numbers at

which they wouM like to halt. The same modification, of sending a value out with a special

halting tag, works here as well. We obtain a lemma analogous to Lemma 7:

Lemma 9 Assume that n 51 + 1. Let 2’ be a set of processes, with ITI n—I. Let h be a

positive integer, Let U and U’ be the muftisets of values of processes in T, immediately before

and after round h, respectively, in a particular T-computation of A. Then p(U’) ç p(U).

Algorithm A is summarized in Figure 2. The remainaer of the proof of Theorem 2 is
analogous to that of theorem 1.

5 Lower Bound Results

In this section, we assume that algorithms are of a standard form in which at each
round, an old approximation is exchanged with other processes, and a flew approximation

is computed from the multiset of value, received, by the application of an approximation
function f. We assume that f is cautious, as defined below. (Our algorithms all fit this
pattern.) The results show that, under these assumptions, the function f,,, gives the best
possible single-round convergence factor for a synchronous algorithm for n St + 1. and the
function /21I gives the best possible single-round convergence factor for an asyuchronous
algorithm for n St + 1.
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Figure 2: Asyuchronous Approximation Algorithm A

Round 0 ([nitialization Round):

Input o

V — AsvnchEzchangc(v,O);

v — mean(reduce2t(Vfl;

H ‘— ilog(6(V)/c), where c = c(n — 3t, 2t).

Round I. (1 h H) (Approximation Rounds):

V — A.ynchEzchange(v,Ii);

—

Round H + I (Termination Round):

Broadcaat((v, halted));

Output u.

Subroutine AaynchExchange(u, h):

Broadcast(v. h))

Collect a — t round h responses:

• Fill in values for halted processes.
• Do not fill in default values.

Return the multiset of responses.
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We should note that the results of this section merely show the existence, given a
particular choice of approximation functions, of multisets that demonstrate the worst-case
behavior of those approximation functione. These multisets satisfr cardinality constraints

such that they could be the multisets appearing in some round of an actual execution of the
algorithm, for example the first round. However, the inultisets of values appearing in any
round of an execution of the algorithm in general depend upon the behavior of the faulty
processes at all preceding rounds. We do not necessarily know that the faulty processes can
conspire to produce worst-case behavior at each round of the algorithm. The results of this
section tberefore do not preclude the existence of approximation functions whose per-round
convergence factor is not constant over the course of the algorithm, but rather becomes
more favorable as the algorithm progresses.

In fDLPSW 8311 an earlier version of this work, we used different approximation functions
in our algorithms. The discovery of the lower bounds in this section suggested that those
functions did not give optimal rates of convergence, and led us to search for the imptoved
approximation functions that appear in this paper.

In the remainder of this section. let n and t be fixed.

We say that an approximation function I, which takes a multiset M of real numbers to a
real number f(M), is cautou, if 1(M) £ p(U) for all multisets LI such that M—UI t. The
cautious requirement seems reasonable for any approximation function that will tolerate up
to t faults; regardless of the values received from the faulty processes, a cautious function
will produce a value in the range of the value, held by the nonfaulty processes. It is easy
to see that is cautious for all A > 0.

5.1 The Synchronous Problem

We will show the following theorem;

Theorem S Suppose n,t >0 rc suck that n 3t + 1. Suppoat thutf zn4 g are cautious
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approxivnatthn function.. Then there edit multint, V, W, and U such that:

WI = Iwl = ‘a,

lUl = n—t,

IV—UI=IW—UI = t, and

1(V) — g(W)I 6(U)/c(n — 2t, t).

The impicatious of this result for the synchronous agreement algorithm are the follow

ing: Suppose we consider algorithms of a standard form, in which at each round, a process

exchanges its current approximation with all other processes and then applies a cautious

approximation function to the mu!ti,et of values it receives to detennine its new approxima

tion. Theorem 3 then implies that there exist multisets V, W, and U, such that if correct

processes p and q (using approximation functions f and g, respectively) receive multisets of

values V and W, respectively, in some round of execution, and U is the multiset of values

held by correct processes at the start of that round, then the new approximations held by

p and q at the end of the round can be no closer than 5(U)fc(n — 2t, t). Thus this result

yields a fundamental limitation on the rate of convergence of algorithms of the standard

form. The lower bound given by this result alse matches the upp€r bound provided by the

function f,j.

The proof of Theorem 3 requires the following lemma, which asserts the existence of a

chain of multi,et, that spans from a multiset 4 upon which every cautious approximation

function must yield 0, to a multiset M upon which every cautious approximation function

must yield 1, where c = c(n — 2:, t). The chain is defined so that:

1. 4 has the valueD with multiplicity n—Land the value 1 with multiplicity:, and

2. For < i Sc — I, the multiset M3 is obtained from M by clrnaging g of the values

from 0 to 1.

Lemma 10 Suppose n,t >0 are such than 3t+ 1. Lctc = c(n—Zt,t). Then there
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exist multü eta A4, All..., and U1 (12,... ,U such thst:

= ii for OiSc,

IUd = n—f for lic

IM—U1+tI=IM1+i—U+iI=tforOic—1,

6(U1) = 1 for 1ie,

and such that f(M0) = 0 and f(M) = 1 whenever fiso cntiou, approzimtition function.

Proof — Define M1 to have the value 0 with multiplicity it — (i + 1)t sad the value 1
with multiplicity (i + i)t. Define U1to have the value 0 with multiplicity n — (i + l)t and

the value I with multiplicity it. The cardinality and diameter constraints on these sets are
easily checked. Suppose f is cautious. Then since A4 has the value 0 with multiplicity ii —

(> t) and the value 1 with multiplicity t ( t), it follows this f(14) = 0. Also, M has

the value 0 with multiplicity ii — (c + 1)t and the value 1 with multiplicity (c + l)t. Ftom
the definition of c, we know that n — 3t < (c — 1): + 1 it — 2t, so (c + 1)t it — t, and
n--(c+1)tt. ltfollowsthatf(Mj=I. I

We can now present the proof ot Theorem 3:

Proof — For 0 I 5 e (= c(n — 2t. tfl let the approximation function h1 be fit i is even,

am) gil is odd. By Lemma 10, there exists a chainM0,M1,...,M, andU1V2...,LJ,

such that:

= ii for 0 5 1 c,

ti1) = n—t for 1ie,

t for 051e—1,

6(U1) = 1 for 15ic,

and such that ho(Mo) = 0 and h(M) = 1. Suppose, to obtain a contradiction, that

— h1(Mj)I <1/c for 05 i Sc—I. Then

1 = Ih,tA4) — hot)I

— h_1(A_,) + h_1(M...1)—h12(.M_3)+ . . +h1(.Mj) —

S Ih,(M) — h,_i(Af_1)I+ h_1( _.z) — h_2(4..2)I+ . + h1(M1)—

C c/c

=1.
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This is a contradiction, and we conclude that Ih1.1(A+1)— h(A) 1/c for some i with

1 c—i. If i is even, then h1 = f and h+1 = g, so letting V = A, W = M.1, and

U U.1 satisfies the requirements of the theorem, Ni is odd, then instead let V =

W=MandU=Uj..1.I

5.2 The Asynchronous Problem

We will show the following theorem:

Theorem 4 Suppose n,t >0 are such that ii St + 1. Suppose that! andg are cautious

approximation functions. Then there exist rnultisets V, W, and U such that:

VI=IWI = n—t,

= n—t,

= t, and

If(V) — g(W) bW)/c(n — 3t,2t).

The implications of this result for the asynchronous agreement algorithm arc analogous

to what Theorem 3 has to say about the synchronous algorithm: there exist multisets V,

W, and (I, such that if correct processes p and q (using approximation functions I and g,

respectively) receive multisets of values V and W, respectively, in some round of execution,

and U is the multiset of values held by correct processes at the start of that round, then

the new approximations held by p and q at the end of the round can be no closer than

6(U)/c(n — 3t,2t). The lower bound given by this result also matches the upper bound

provided by the function rn,,.
As before, the theorem is proved with the aid of a chain lemma. Let c = c(n — 3t, 2t).

The chain is defined so that:

1. AL3 has the value 0 with multiplicity n — 2: and the value 1 with multiplicity t, and

2. For 0 I c —2, the multiset MH is obtained from A by changing 2: of the values

from 0 to 1.

3. If_ has the value 0 with multiplicity at least 2t+1, them M. is obtained from M..1

by changing 2: of the values from 0 to 1. if has the value 0 with multiplicity
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2t, then M is obtained from M—1 by changing t of the values from 0 to 1. Note
that M_1 will always have the value 0 with multiplicity at least t + 1,

Lemma 11 Suppose n,t >0 are such that it St + 1. Let e = e(n — 3t,21J. Then there
eztst muflhaets M0.A4,. M, and U1,U2.. U, such that:

= it — t for 0 i c,

lUd = it — t for 1 S i c,

[di—V+tIM+i—U1+i(=tfor0ic—1,

6(0’,) = 1 for lic,

and such that ICA4) — 0 and J(M) = 1 whenever J is a cautious approzimation function.

Proof — From the definition oft, we know that (2c + 1)t + 1 itS (2e+ 3)t. We split the
proof into two cases. In case (2c + 2)t + 1 5 it (2c + 3)t. then define M, to have the value
o with multiplicity it — (2i+ 2)t and the value 1 with multiplicity (Zi+ 1)t, for each i with
o c, Define fJ to have the value 0 with multiplicity it — (2i + 1)t and the value 1 with
multiplicity 21t, for each i with 1 i 5 c. In case (2e + 1)t + 1 5 it (2c + 2)t, then we
modify slightly the definition of M and tI from the preceding case. That is, define M to
have the value 0 with multiplicity it — (2c ÷ 1)t and the value 1 with multiplicity 2ct. Also,
define U to have the value 0 with multiplicity it — Zct and the value I with multiplicity
(2c — 1)t.

In both cases it is straightforward to check that the required properties hold. I

The proof of Theorem 4 is entirely analogous to the proof of Theorem 3.

6 Resilience

The algorithms presented in this paper have some interesting resilience properties,
stronger than those usually claimed for Byzaistine agreement algorithms. So far, we have
only claimed that the algorithms are resilient to t different processes exhibiting Byzantine
faults during the attire course of the algorithm. How€ver, we can rlaim more far situations
where processes fail and recover repeatedly. Our algorithms actually support resilience to
any t Byzantine faulty processes at a time (under suitable definitions of faultiness at a
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particular time); the total number of faulty processes can be much greater than t, since we

can allow different processes to be faulty at different times.

We do not give a formal presentation of our resilience properties. Rather, we just give

a brief sketch of the main ideas.

First, consider the synchronous case. A faulty process is able to recover easily and

reintegrate itself into the algorithm. ft can reenter the algorithm at any round, just by

sending an arbitrary value, collecting values and averaging them as usual to et a new

value. The process also needs to obtain an estimate of the number of rounds required

before termination. It can obtain such an estimate in the reentry round, just as it could in

the first round.

The asynchronous case is a little more complicated. A faulty process p needs to rejoin

the algorithm at some particular (asynchronous) round; however, it must be careful to rejoin

at some rQuDd that is not out of date.’ TInt is, in the absence of additional failures of p

it must be guaranteed to receive all of its messages for that and subsequent rounds. Process

p could not simply wait until it received n — t messages for some particular round k, since

those messages might have been delivered very late, and messages for round k + 1 might

have already been lost. However, it suffices for p to send out a recovery’ message, and

await acknowledgements from n — t processes carrying the number of their current round.

Process p knows that the t + 1st smallest of these round numbers, plus 1, is an allowable

round number for it to use for reentry.

The recovering process is not able to use the saint method of estimating a termination

round as it did initially. Therefore, it seems necessary to modify the asynchronous algorithm

to enable recovering processes to obtain termination estimates when needed. Au easy

modification that work, is to have every process piggyback its estimate of the number of

round, to termination on every message it sends. ‘then a recovering process can obtain a

new estimate just by taking the t + tat smallest of the estimates it receives at the reentry

round.

7 Summary and Open Questions

We have defined a problem of approximate agreement on real numbers by processes
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in a distributed system. We integrated simple approximation functions into two simple-

to-implement aigorithms for achieving approximate agreement — one for a synchronous

distributed system, and the other for an asynchronous system. In addition, we showed

that both algorithms achieve the fa,te,t possible convergence rate Lot algorithms of a par

ticular form. The algorithm for an asynchronous system provides an interesting contrast

to the results in IFLP 83, UDS 83), which show that exact agreement is impossible in an

asynchronous system.

The ideas of this paper have been used in the design of algorithms for synchronizing

clocks in distributed systems (LL 41•
For the synchronous case, it is not difficult to show that St-i-i processes are necessary to

solve the approximate agreement problem. The proof is an adaptation of the lower bound

proof in LSP $2], and appean in IFLM 85. For the asyncbronous case, our number of

processes is not optimal. Lu fact, it appears possible to reduce the number of processes to

as few as 3t + I. This reduction is obtained using a more complex algorithm, based on some

of the interesting ideas of [B 84]. This algorithm has a slower rate of convergence than ours.

The algorithms presented here have the undesirable property that the fauity processes,

by their actions in the first round, can cause the range of values received by correct processes

to be arbitrarily large, and hence can cause the time to convergence to be arbitrarily long.

It appears that some of the ideas of [B 84] can also be used to obtain improved initialization

rounds for the algorithms that eliminate this possibility.

To obtain the lower bound results, we had to restrict our attention to algorithms of

a standard form (ones that operate by broadcasting values and using received values to

compute a new approximation), and to functions with a natural, but apparently restric

tive property (the Kcautious property). It would be interesting to obtain nswen to the

following questions:

• Can the cautious property be weakened or removed entirely?

• Can algorithms not of the standard form considered here produce agreement faster?

We would also like to have a better understanding of the relationship between the

number of processes and the rate of convergence for approximate agreement algorithms. For
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instance, the more complex asynchronous algorithm mentioned above uses fewer processes,

but has a slower rate of convergence than ours. I. there a tradeoff?

We can state a variant of the approximate agreement problem which uses a fixed number,

r, of rounds, and in which c is not predetermined. Each process starts with a real value, as

before. After r rounds, the processes must output their final values. The validity condition

is the same as before, The object of the algorithm is to insure the best possible agreement,

expressed as a ratio of the new diameter of the nonfaulty processes’ values to the original

diameter. For given it, t and r, we would like to know the best ratio.

As before, if the algorithm is constrained to operate round-by-round, applying cautious

functions at each round, we obtain lower bounds which are exactly the same as are achieved

by our averaging functions. However, if the algorithm is unconstrained, the best bounds

we have are not at all tight. Consider the synchronous case, for example. The best upper

bound we have still arises from repeated application of our averaging function and is

approximately (tin)1. We can obtain a lower bound by extending our chain argument of

this paper to a k-dimensional hypercube (along the lines in 821). Thi, extension gives

a lower bound of approximately (f/ni)1. This is still a considerable gap, which we would

like to see closed. Recent work of Fekete [F] has made some progress toward this goal.
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