
Simulation Techniques for Proving Properties of 
Real-Time Systems 

Nancy Lynch 

Department of Electrical Engineering and Computer Science 
Massachusetts Institute of Technology 

Cambridge, MA 02139 

A b s t r a c t .  The method of simulations is an important technique for 
reasoning about real-time and other timing-based systems. It is adapted 
from an analogous method for untimed systems. This paper presents 
the simulation method in the context of a very general automaton (i.e., 
labelled transition system) model for timing-based systems. Sketches are 
presented of several typical examples for which the method has been used 
successfully. Other complementary tools are also described, in particular, 
inv'~riants for safety proofs, progress functions for timing proofs, and 
execution correspondences for liveness proofs. 

Keywords: Simulation, t iming-based system, real-time system, untimed sys- 
tem,  invariant, invariant assertion, progress function, execution correspondence, 
t ime bound, upper bound, lower bound, clock synchronization, mutual  exclusion, 
leader election. 

Table of Contents  

1 I n t r o d u c t i o n  

2 T h e  B a s i c  T i m e d  A u t o m a t o n  M o d e l  
2.1 Timed A u t o m a t a  
2.2 Timed Executions 
2.3 Timed Traces 
2.4 Discrete Executions 
2.5 Composit ion 
2.6 Example: Bounded Clock System 
2.7 Discussion 

3 S i m u l a t i o n s  f o r  T i m e d  A u t o m a t a  
3. i Simulations 
3.2 Invariants and Weak Simulations 
3.3 Example: Clock Synchronization Algorithm 

4 A S p e c i a l i z e d  M o d e l  
4.1 MMT Au t oma t a  
4.2 Example: Fischer's Mutual Exclusion Algorithm 



376 

5 Using Simulat ions  to  Prove  T ime  Bounds  
5.1 Example: Counting Process 
5.2 Example: Two-Process Race 
5.3 Example: Fischer Mutual Exclusion Algorithm 
5.4 Example: Dijkstra's Mutual Exclusion Algorithm 
5.5 Example: LeLann-Chang-Roberts Leader Election Algorithm 
5.6 Progress Functions 

6 Liveness 
6.1 Augmented Timed Automata and Execution Correspondence 
6.2 Example: Fischer Mutual Exclusion Algorithm 

7 Discussion 

8 Acknowledgements  

1 I n t r o d u c t i o n  

In the years that have elapsed since the REX workshop series began, a good 
deal has been learned about how to reason about real-time and other timing- 
based systems. In many cases, the methods that have been developed have been 
adaptations of methods that had previously been used for untimed systems. 

In this paper, I present a method that I have found useful for verifying proper- 
ties of timing-based systems: the method of simulations. This has been adapted 
from the simulation method that has been widely used for untimed systems. The 
simulation method falls into the general category of assertional techniques, and 
includes refinement mappings, forward and backward simulations, and history 
and prophecy mapping techniques as special cases. 

I illustrate how simulations can be used for timing-based systems by intro- 
ducing them in the context of a very general automaton (i.e., labelled transition 
system) model for such systems. I present sketches of a sizable collection of typ- 
ical examples for which the method has been used successfully. These examples 
include proofs of ordinary safety properties, as well as time bound properties. 
Along the way, I describe other complementary tools, most notably, invariants 
for safety proofs, progress functions for timing proofs, and execution correspon- 
dences for liveness proofs. 

In more detail, the paper proceeds as follows. In Section 2, I describe the very 
general and basic timed automaton model of Lynch and Vaandrager [26], and 
use it to model a simple bounded clock system. In Section 3, I express the various 
notions of simulations from the literature, together with their basic soundness 
properties, all in terms of the basic model. As an example, I describe a simple 
clock synchronization algorithm and show, using a refinement mapping, that it 
implements the bounded clock system. 

Next, I impose some useful structure on the model and simulations, and 
present several examples of simulation proofs that take advantage of this struc- 
ture. Specifically, in Section 4, I define an important special case of the general 
timed automaton model - the timed automaton model of Merritt, Modugno and 



377 

Turtle [29]. I use this model to describe Fischer's t iming-based mutual  exclusion 
a lgor i thm [10], and to verify that  the algori thm in fact satisfies the mutua l  ex- 
clusion property. Then in Section 5, I illustrate how simulations, in particular,  
forward simulations, can be used to prove t ime bounds as well as ordinary safety 
properties. I do this using five examples, including Fischer's and Dijkstra 's  mu- 
tual  exclusion algorithms. All these examples are described using the special case 
model of Merritt  et al. 

Section 6 indicates how liveness proofs can be integrated with the safety and 
t ime bound proofs, and Section 7 concludes with a discussion. 

2 The Basic Timed Automaton  Model  

The basic model  tha t  I use for describing t iming-based systems is the simple and 
very general model of Lynch and Vaandrager [26, 27, 41]. 1 This section contains 
the relevant definitions. 

2.1 T i m e d  A u t o m a t a  

A t imed automaton A consists of: 

- a set s ta tes (A)  of states; 
- a nonempty  subset s tar t (A)  of start  states; 
- a set acts(A)  of actions, including a special t ime-passage action v; the actions 

are part i t ioned into ezternal  and internal  actions, where u is considered 
external; the visible actions are the non-v external actions; the visible actions 
are part i t ioned into input  and ou@ut actions; 

- a set s teps (A)  of steps (transitions); this is a subset of s ta tes(A)  x ac ts (A)  x 
s ta tes(A);  

- a mapping  nOWA : states --* R +. (R + denotes the nonnegative reals.) 

I write s '  ---~A s as shorthand for (s', ~r, s) 6 s teps(A) .  I usually write the 
s .noWA in place of nOWA(S). I sometimes suppress the subscript or argument  A 
when no confusion seems likely. 

There are several simple axioms that  a t imed au tomaton  is required to satisfy: 
[A1] If  s 6 start  then s .now = O. 
[A2] I f  s' ~, s and ~r # u then # . n o w  = s .now.  
[A3] If  s' ~ ~ s then # . n o w  < s .now.  
[A4] I f  s '  ~, s" and s" - - ~  s, then s' ~ ~ s. 
In order to state the last axiom, I need a preliminary definition of a trajectory,  

which describes restrictions on the state changes that  can occur during time- 
passage. Namely, if I is any interval of R +, then an I - t rajectory  is a function 
w : I ~ s~ates, such that  

1 There are a few tiny technical distinctions among the definitions in the listed papers. 
The definitions I use here are restatements of those of [41], except that I classify 
external actions as input or output, allow named internal actions, and also correct 
an obvious omission in the trajectory axiom. 



378 

1. w(t ) .=ow = t for all t E I ,  and 
2. w ( h )  - ~  w(t2) for all t l ,  t2 E I with t~ < t2. 

Tha t  is, w assigns, to each t ime t in interval I ,  a state having the given t ime 
as its rtow component.  This assignment is done in such a way that  t ime-passage 
steps can span between any pair of states in the range of w. I f  w is a n / - t r a j e c t o r y  
and I is left-closed, then define w.f t ime  = mi=(I)  and w.fstate = w(w.f-~ime), 
while if I is right-closed, then define w.l t ime = maz  (I)  and w.lstate = w(w.  l~ime). 
If  I is a closed interval, then a n / - t r a j e c t o r y  w is said to span from state # to 
state s if w.fsgate = s' and w.lstate = s. The final axiom is: 

[A5] If  s '  ~ , s then there exists a trajectory from s'  to s. 
Axiom [A1] says that  the current t ime is always 0 in a s tar t  state. Axiom 

[A2] says that  non-time-passage steps do not change the time; tha t  is, they occur 
"instantaneously",  at a single point in time. Axiom [A3] says tha t  t ime-passage 
steps must  cause the t ime to increase; this is a convenient technical restriction. 
Axiom [A4] allows repeated time-passage steps to be combined into one step. 
Axiom [A5] is a kind of converse to [A4]; it says that  any t ime-passage step can 
be "filled in" with states for each intervening time, in a "consistent" way. This 
axiom is a strengthening of a similar axiom used elsewhere which, rephrased in 

�9 the terminology of this paper, reads: If  s '  ~ , s and s'.rtow < ~ < s .~ow, then 
there is an s" with s' .~tow = t such that  s '  ~ ~ s" and s" ~ ~ s. 

Note that  this model is sufficiently general to allow description of hybrid 
systems [28], because it allows rather general changes to the state during t ime- 
passage steps. 

2.2 T i m e d  E x e c u t i o n s  

In this subsection, I define a notion of "t imed execution" for a t imed au tomaton .  
The most  obvious formulation of a t imed execution might be as a sequence of 
visible, internal and time-passage actions, interspersed with their intervening 
states. I augment  this information slightly by including the trajectories for each 
t ime-passage action. 

Formally, a timed ezecutio~ fragment  is a finite or infinite al ternating se- 
quence ~ = ~.o07rl~olTr2~o 2 . . . ,  where: 

1. Each wj is a t rajectory and each ~rj is a non-time-passage action. 
2. I f  a is a finite sequence, then it ends with a trajectory. 
3. I f  wj is not the last t rajectory in c~ then its domain is a closed interval. If  

wj is the last t rajectory then its domain is left-closed (and either right-open 
or right-closed). 

4. I f  wj is not the last t rajectory then wj.lstate~J+~ wj+l.fstate.  

The trajectories describe the changes of state during the t ime-passage steps. The  
last i tem says that  the actions in a span between successive trajectories. 

A t imed ezec~ttio~ is a t imed execution fragment for which the first s tate of 
the first trajectory, wo, is a start  state. In this paper,  I am mainly interested 
in a particular subclass of the set of t imed executions: the ttdmissible t imed 



379 

executions. These are defined to be the t imed executions in which the supremum 
of the set of now values occurring in the states is oo. 

A state  of a t imed au tomaton  is defined to be reachable if it is the final s tate 
of the final t ra jectory in some finite t imed execution of the au tomaton .  

Note that ,  as I have described them so far, t imed a u t o m a t a  have no features 
for expressing liveness or fairness properties (with the exception of admissibility). 
In general, such features are less impor tant  in the t imed setting than  they are in 
the unt imed setting, since they are often replaced by t ime bound requirements. 
However, in Section 6, I will say more about  how liveness can be added in. 

Note tha t  there exist t imed au toma ta  that  have no admissible t imed execu- 
tions. To rule out this case, one generally restricts at tention to t imed a u t o m a t a  
tha t  are feasible, i.e., in which each "finite" t imed execution can be extended 
to an admissible t imed execution. I will not address issues of feasibility in this 
paper; for a discussion of feasibility, I refer the reader to [12]. 

2.3 T i m e d  T r a c e s  

In order to describe the problems to be solved by t imed au tomata ,  I require a 
definition for their visible behavior. I use the notion of timed traces. The timed 
trace of any t imed execution is just  the sequence of visible events tha t  occur in 
the t imed execution, paired with their times of occurrence. The admissible timed 
traces of the t imed au tomaton  are just the t imed traces tha t  arise from all the 
admissible t imed executions. If  a problem P is formulated as a set of (finite and 
infinite) sequences of actions paired with times, then a t imed au tomaton  A is 
said to solve P if all its admissible t imed traces are in P.  Often, it is natural  
to express a problem P as the set of admissible t imed traces of another t imed 
au toma ton  B. Thus,  the notion of admissible t imed traces induces a preorder 
on t imed au tomata :  A < B is defined to mean that  the set of admissible t imed 
traces of A is a subset of the set of admissible t imed traces of B. 

2.4 D i s c r e t e  E x e c u t i o n s  

Sometimes it is useful in proofs about  t imed au toma ta  to use another notion of 
execution, one tha t  omits  the trajectory information in favor of just  recording 
t ime-passage steps. I define a discrete ezecution fragment of a t imed au tomaton  
to be a finite or infinite al ternating sequence a -- soxlslTr2s2 . . . ,  where: 

1. Each sj is a state and each ~rj is an action (possibly a t ime-passage action). 
2. If  a is a finite sequence, then it ends with a state. 
3. If  sj is not the last s tate then sj ~J+~ sj+l .  

A discrete ezecution is a discrete execution fragment  whose first s tate is a s tar t  
state. Again, I am mainly interested in the admissible discrete executions - those 
in which the supremum of the now values occurring in the states is co. Note that  
any admissible discrete execution must  be an infinite sequence. 



380 

The timed trace of an admissible discrete execution is the sequence of visible 
events that  occur in the execution, paired with their t imes of occurrence, i.e., 
the now values in the preceding states. 

An admissible discrete execution c~ is said to sample an admissible t imed exe- 
cution a '  if its sequence of actions consists of exactly the actions of a ' ,  occurring 
at the same times, interspersed with t ime-passage actions; several consecutive 
t ime-passage actions can be used to span a trajectory. The states appearing in 

must  be extracted in the natural  way from the trajectories in a ' .  

L e m m a  1. I f  ~' is an admissible timed ezecution then there ezists an admissible 
discrete ezecution a that samples it. Conversely, i f  ~ is an admissible discrete 
ezecution, then there ezists an admissible timed ezecution ~' such that ~ samples 

L e m m a 2 .  I r a  samples a', then the timed trace of a is the same as that of ~'.  

L e m m a  3. A state of a timed automaton is reachable ezactly i f  it is the final 
state of some finite discrete ezecution. 

These definitions and relationships are presented in detail in [26]. 

2.5 Composition 

I define a simple binary parallel composition operator for t imed au tomata .  Let 
A and B be t imed au tom a ta  satisfying the following compatibility conditions: 

1. A and B have no output  actions in common.  
2. No internal action of A is an action of B, and vice versa. 

Then the composition of A and B, written as A • B, is the t imed au toma ton  
defined as follows. 

- states(A • B)  = {(SA, SB) 6 states(A) x s ta tes(B):  sA.nOWA = SB.nOWB}; 
- s t a r t ( A  • B )  = s t a r t ( A )  • star (B); 
- acts(A x B)  = acts(A) U acts(B); an action is ezternal in A x B exactly if 

it is external in either A or B, and likewise for internal actions; a visible 
action of A x B is an output in A x B exactly if it is an output  in either A 
or B, and is an input otherwise; 

- (S'A, s'B) 7AxS (SA, Ss) exactly if 
1. s' A ---~A SA if 7r 6 acts(A), else s~ = sA, and 
2. s' B ---%B SB if ~r 6 acts(B), else s~ = SB; 

-- ( S A ,  8 B ) . n O I ~ A •  = 8A.nOllJ A .  

I t  is not hard to show that  A x B is indeed a t imed au tomaton ,  and that  the par- 
allel composit ion operator is substitutive for the admissible t imed trace inclusion 
ordering, <, on t imed au tomata .  



381 

2.6 E x a m p l e :  B o u n d e d  Clock  S y s t e m  

I close this section with a simple example of a t imed automaton.  This example 
is adapted from [38]. It is a fairly standard-looking description of a clock system, 
consisting of a collection of "local clocks", each of whose values is always within 
a bound e of real time. The automaton simply maintains this property, while 
permit t ing real t ime to pass. 

In the given code, the state is described in a structured fashion, as a col- 
lection of values for a collection of state components. Likewise, the start  state 
is described as a collection of initial values for the components. The actions 
are listed explicitly. The steps are described in a guarded command style, orga- 
nized by actions (including the time-passage action), each with a "precondition" 
(guard) describing conditions on the state that  enable the action to occur, and 
an "effect" describing the state changes that  accompany the action. The time- 
passage action u is parameterized with an incremental t ime At, describing the 
amount  of t ime that  passes. The now component appears as an explicit state 
component.  

Let I be a nonempty, finite set of node indices. 

A u t o m a t o n  B: B o u n d e d  Clock  S y s t e m  

Actions: 

Output: 

reporti(c), i E I 
Internal: 

tick~(c), i e I 

State components: 
now E R +, initially 0 
clock~ E R +, i E I,  initially 0 

Precondition: Precondition: 
c ~ clock~ c = clockl 
[c -- now I _< E Effect: 

Effect: none 
clocki : :  c 

.(n~) 
Precondition: 

t = n o w  -I- A t  

Effect: 
n O t O  : =  ~; 

Thus, any local clock is allowed to "tick" (i.e., advance to a new specified 
value c) if the new value is at least as big as the old value, and is within e of real 



382 

time. Moreover, real time is allowed to pass, as long as it remains within r of all 
the local clock values. Finally, any current local clock value can be reported at 
any time. The following lemma captures the key synchronization property. 

L e m m a 4 .  The following is true of every reachable state o r B :  
For all i, I clock~ - now I < e. 

Proof. In view of Lemma 3, it suffices to prove the property for all states that  
occur as final states of finite discrete executions of B. The proof proceeds by 
induction on the number of actions in a finite discrete execution. Correctness 
follows from the explicit checks performed by the tick and u actions. [] 

Consider the admissible timed executions of B - those in which the time 
components of the states approach infinity. In order for time to pass to infinity, 
it is necessary that  the clocks all tick infinitely often (and by an appropriate 
amount) so they can stay close to real time. The report actions are optional. 

It is not hard to see that  timed automaton B is feasible. For, starting from any 
finite timed execution of B, it is not hard to construct a sequence of synchronized 
clock ticks and time-passage actions that  allows time to pass to infinity. 

Clock B is discrete, in the sense that the increases in the values of the various 
clocks all happen in discrete tick's. It is also possible to define a corresponding 
continuous clock within the same model. Such a clock would eliminate the tick 
actions, and would instead allows continuous increases in the values of the local 
clocks, as part of time-passage steps. Such clocks are described in [5]. 

2.7 Discuss ion  

In [41], parallel composition and several other useful operations on timed au- 
tomata  are defined. These include standard "untimed operations" such as hid- 
ing, renaming, internal and external choice, sequential composition, and the CSP 
interrupt operator [13] (i.e., A and B are both started; if B performs a visible 
action then A is interrupted and B continues to run). They also include some 
"timed operations" such as the timed CSP timeout [6, 35] (i.e., A is started; if A 
does not perform a visible action by real time d, then A is interrupted and B is 
started), and the ATP execution delay operator [31]. The admissible timed trace 
inclusion relation (more precisely, a variant of it that  includes certain kinds of 
"finite timed traces" as well) is shown to be substitutive with respect to all of 
these operations. 

3 S i m u l a t i o n s  f o r  T i m e d  A u t o m a t a  

In this section, I introduce the basic types of simulations that can be used for 
proving properties of systems described as timed automata. Simulation methods 
arc just a few among many possible formal tools for reasoning about systems 
expressed as timed automata, but they are among the most powerful for proving 
safety properties. 



383 

The value of the simulation method for verifying safety properties of untimed 
systems is now well established. Many papers and books, e.g., [3, 15, 19, 21, 23, 
32, 38, 42], contain substantial examples of its use. Also see [14] for a persuasive 
discussion of the value of the technique. The use of this method for t imed systems 
is much newer, but  appears very promising. Preliminary results appear in [20, 38]. 

3.1 S i m u l a t i o n s  

In this subsection, I define the basic types of simulations: refinements, forward 
simulations, and backward simulations, for t imed automata.  These definitions are 
paraphrased from [26, 27]. 2 As described in [25-27], they are all straightforward 
extensions of similar definitions for untimed automata.  

Suppose A and B are t imed automata.  A refinement from A to B is a function 
r :  s tates(A)  ---* s ta tes(B)  that  satisfies: 

1. r(s).r~ow = s.now. 

2. If start(A) then e start(B). 
3. If s' %A s then there is a t imed execution fragment from r(s ' )  to r(s)  

having the same sequence of t imed visible actions (that is, the same sequence 
of visible actions, with the same associated times) as the given step. 

Note that  v is allowed to be the time-passage action in the third i tem of this 
definition; the same is true in the succeeding definitions. 

In the following definitions, I use the notation r[s], where r is a binary rela- 
tion, to denote {u :  (s, u) E r}. 

A forward simulation from A to B is a relation f over states(A) and s ta tes(B)  
tha t  satisfies: 

1. If u E f[s] then u.now = s.now. 
2. If s e s tar t (A)  then f[s] N s tar t (B)  # r 
3. If s' %A s and u' e f[s'], then there exists u e f[s] such that  there is a 

t imed execution fragment from u ~ to u having the same sequence of t imed 
visible actions as the given step. 

A backward simulation from A to B is a total relation b over states(A) and 
s ta tes(B)  tha t  satisfies: 

1. If u C b[s] then u.now = s.now. 
2. If s e s tar t (A)  then b[s] C_ start(B).  
3. If s' ~'A s and u E b[s], then there exists u' e b[s'] such that  there is a 

t imed execution fragment from u ~ to u having the same sequence of t imed 
visible actions as the given step. 

A backward simulation is said to be image-finite provided that  b[s] is a finite set 
for every state s of A. Note that  every refinement is a forward simulation, and 
is also an image-finite backward simulation. 

In the earlier papers, they are called "timed refinements", etc. Here I omit the 
adjective "timed" for brevity. 



384 

I write A <R B, A <F B and A < s  B to denote the existence of a refinement, 
forward simulation, or backward simulation from A to B, respectively. Also, I 
write A <is B to denote the existence of an image-finite backward simulation 
f rom A to B. 

The most important  fact about these simulations is captured by a set of 
results saying that  they are sound for admissible t imed trace inclusion. More 
specifically: 

T h e o r e m 5  ( S o u n d n e s s )  . A <R B, A <F B and A <_is B all imply that 
A < B .  

Note that  A < s  B does not by itself imply admissible t imed trace inclusion; 
a weaker soundness result, involving inclusion of sets of "finite t imed traces", 
does hold in this case. 

The soundness results are all proved in [26, 27], based on corresponding re- 
sults for untimed automata.  For untimed automata,  the first two are proved by 
induction on the number of steps in an execution, while the last is proved by 
a backwards induction together with KSnig's Lemma. Alternatively, the t imed 
results can be proved directly by such inductions and KSnig's Lemma, but  the 
proof is best done using the "discretized" version of a timed execution mentioned 
earlier, which includes discrete time-passage steps rather than trajectories. 

Another important  fact about these simulations is a completeness result, also 
proved in [26, 27], for the methods used in combination. Namely, define a t imed 
automaton to have finite invisible nonde$erminism if, for every sequence of t imed 
visible actions and every real t ime ~, there are only finitely many states that  can 
result from finite timed executions that  generate the given sequence of t imed 
visible actions and have t as the final time. 

T h e o r e m 6  ( C o m p l e t e n e s s ) .  If A <<_ B and B has finite invisible nondeter- 
minism then there ezis~s a timed automaton C such ~hat A <F C <is B. 

3.2 Invarlants and Weak Simulations 

In using the simulation methods for actual proofs, the first thing that  one usually 
wants to do is to divide the work of the proof, by first proving some invariants 
about  either or both of the two automata  involved. The use of such invariants 
must be justified; doing this requires augmenting the simulation definitions and 
soundness results to incorporate the invariants explicitly. In this subsection, I 
describe this extension. 

For the purposes of this paper, I define an invariant of a t imed au tomaton  to 
be any property that  is true of all reachable states; I do not make the assump- 
tion sometimes made elsewhere, that it is actually preserved by all steps of the 
automaton.  

I call the newly-defined simulations weak refinements, weak forward simula- 
tions, etc., since (in most cases) they have fewer proof obligations. 

A weak refinement from A to B with respect to invariants IA and IB (of A 
and B, respectively) is a function r : states(A) ---* stages(B) that  satisfies: 



385 

1. r(s).now = s.now. 
2. If  s E start(A) then r (s)  e s tar t (B) .  
3. If  s' ~*A s, {s', s} C_ IA, and r ( s ' )  E IB, then there is a t imed execution 

f ragment  f rom r ( s ' )  to r(s) having the same t imed visible actions as the 
given step. 

A weak forward simulation from A to B with respect to 1.4 and IB is a 
relation f over states(A) and states(B) that  satisfies: 

1. I f  u C f[s] then u.now = s.now. 
2. If  s E star t(A) then f[s] M star t (B)  ~s 0. 
3. I f s '  ~'A S, {s ' , s}  C IA, and u' E f[s']MIB, then there exists u E f[s] such 

tha t  there is a t imed execution fragment  from u / to u having the same t imed 
visible actions as the given step. 

A weak backward simulation from A to B with respect to IA and IB is a 
relation b over s$ates(A) and states(B) that  satisfies: 

1. I f  u E b[s] then u.now = s.now. 
2. I f  s E start(A) then b[s] A I s  C start(B). 
3. I f  s' ~'A s, {s', s} C IA, and u E b[s] M IB, then there exists u' E b[s'] ~ IB 

such tha t  there is a t imed execution fragment  from u I to u having the same 
t imed visible actions as the given step. 

4. If  s E 1.4 then b[s] M IB • ~. 

A weak backward simulation is said to be image-finite provided that  his] is a 
finite set for every state s of A. 

Each of these three new definitions says tha t  it is permissible to use the in- 
variants on all the hypothesized states, in proving the existence of the required 
t imed execution fragment.  Note that  in the case of a backward simulation, there 
is an extra  proof  obligation - to show that  the invariant for B gets preserved 
"in reverse". In this sense, it is not strictly correct to say the notion of a weak 
backward simulation is "weaker" than the original notion of a backward simula- 
tion. Every weak refinement is a weak forward simulation, but not necessarily a 
weak backward simulation. 

I extend the notat ion defined earlier, writing A _<wR B, A <wF B, A<_wB 
B, and A _<wis B to denote that  there exists a weak refinement, weak forward 
simulation, weak backward simulation, or weak image-finite backward simula- 
tion, f rom A to B, respectively, with respect to some invariants. The extended 
soundness results are: 

Theorem7 (Soundness).  A _<wR B, A _<WF B and A <_wiB B all imply thai 
A < B .  

3.3 Example: Clock Synchronization A l g o r i t h m  

In this subsection, I describe a very simple implementat ion (in the sense of the 
preorder) of the bounded clock system B (where ]I] - - 2 ,  i.e., the system 



386 

has two nodes). The algori thm consists of two nodes connected by a one-way 
channel, with message delay in the known range [0, d]. Node 1 maintains  its 
own local clock, assumed always to be within ~ of real t ime. Node 1 informs 
node 2 whenever its own clock changes, and node 2 simply adopts  the m a x i m u m  
clock value it has seen as its own. Although it would probably be most  natural  
to model this algori thm as the composition of three t imed au toma ta  (the two 
nodes and the channel), for brevity, I just  model it as a single t imed au toma ton  
A. 

Automaton A: C l o c k  Synchronization Algorithm 

Actions: 
Output :  

~eport~(c), i �9 {1, 2} 
Internal: 

tickl(c) 
deliver(c) 

State components:  
now C R +, initially 0 
clocki E R +, i E {1, 2}, initially 0 
channel,  a multiset of R + • R +, initially empty  

tick1 (c) 
Precondition: 

c > clock1 
Ic - noval < 

Effect: 
clock1 := c 
add ( c, nova + d) to channel 

,,( za~) 
Precondition: 

t = now + At  
I t -  clockll < 
for all (c, v) E channel, ~ < v 

Effect: 
nO~ :~ 

del~.~r(c) report,(c) 
Precondition: Precondition: 

(c, v) C channel c = clock~ 
Effect: Effect: 

remove (c,v) from channel none 

clock~ := max( elock~, c) 

The tick action for node 1 is just  like the tick actions of B, except that ,  in 
addition to just  updat ing the local clock, it also causes a copy of the new clock 
value to be put into the channel. The second component  v of the message that  
is put into the channel represents a real t ime by which that  message is supposed 
to get delivered to node 2. Note that  this second component  is not a "normal" 
component  of the algorithm; it is only introduced in order to encode a real-t ime 
restriction on the algori thm's  behavior. This strategy - representing a real-t ime 



387 

deadline by an explicit deadline component in the state - is a frequently-used 
technical device in defining timed automata.  

The deliver action causes node 9. to reset its clock to the newly received value 
(provided that  the new value is not less than the old value). Now the time-passage 
action is required explicitly to maintain the appropriate relationship with clock 
1, but  there is no direct requirement that  it remain close to clock 2. However, 
there is a new constraint on real time: time is constrained not to pass beyond 
the scheduled last delivery t ime for any message in the channel. The reports are 
as in B. 

I claim that ,  provided that  e > 6 + d, this algorithm A "implements" system 
B, in the sense that  A < B (inclusion of sets of admissible t imed traces). To 
show this, I use a trivial weak refinement, r, defined as follows. Here, record 
notat ion is used to indicate state components. 

- -  T ( 8 ) . n O f f /  = 8 . n O t / / .  

In order to show that  r is a weak refinement, some invariants are helpful. 
Specifically, Ia  is defined to be the set of states of A in which now - e < 
clock2 < now + 6 and now - 6 < clockl < now + 6. IB is defined to be the set of 
all states of B - no particular properties of B will be needed in the proof. I now 
prove that  IA holds of all reachable states of A; this requires a series of simple 
lemmas. 

L e m m a  8. The following is true of every reachable state of A: 
t clockx - howl < 6. 

Proof. By induction on the number of actions in a discrete execution, using the 
explicit checks in the tiCkl and v actions. [] 

L e m m a  9. The following are true of  every reachable state of  A:  

I .  I f  (c, v) E channel then c < clock1. 
~. clock2 < clockl .  
3. clock2 <_ now + 6. 

Proof. The first two parts are by an easy induction. The last part follows from 
the second part  and Lemma 8. [] 

I t  remains to prove that  n o w  - e < c lock2,  i.e., that  clock2 does not lag too 
far behind real time. In order to prove this, I prove several intermediate lemmas.  
The next l e m m a  asserts tha t  the value of c l o c k l  is in fact communicated to node 
2. 

L e m m a  10. The following is true of  every reachable state of  A :  
E i ther  clock2 = clockl or there is some (c, v) E channel such that c = c lock1 .  



388 

T h e  next  l e m m a  says t h a t  eve ry  message  in the  channel  is scheduled  to  be  
del ivered a t  mos t  t ime  d in the  future .  

L e m m a  11.  The  fo l lowing  is t rue  o f  every  reachable s ta te  o f  A :  
I f  (c, v)  E channe l  t hen  n o w  < v < n o w  + d. 

The  fol lowing is the  key l emma .  I t  impl ies  t ha t ,  for 0 < l < d, the  value  t h a t  
clock2 will have l t ime  uni t s  f rom now is a t  least  n o w  - 6 - ( d - l) >_ n o w  - e + l. 

T h e  l e m m a  expl ic i t ly  descr ibes  the  smal les t  value t h a t  clock2 can take  on, in 

t e r m s  of  the  current  value of  clock2 and  the messages  t h a t  are  g u a r a n t e e d  to  be  
del ivered s t r i c t ly  before t ime  l f rom now. 3 

L e m m a  12.  The  fo l lowing  is t rue  o f  every  reachable s ta te  o f  A :  

For  any  l, 0 < I <_ d, e i ther  clock~. > n o w  - ~ - ( d - l )  or there  is s o m e  

(c, v )  c h a n n e l  s=ch  tha t  > n o w  - - (d  - l) and  v < n o w  + I. 

Proof .  By induc t ion  on the  n u m b e r  of  ac t ions  in a discrete  execut ion.  T h e  in ter -  
es t ing case is the  t ime-pas sage  ac t ion :v ;  S u p p o s e  t h a t  v increases the  t i m e  f rom 
t '  to  t = t '  + At ,  while a l lowing the s t a t e  to change f rom s '  to  s. F i x  l, 0 < l < d. 

The re  are  two cases: 

1. A t + l < &  

Then  let  l ' = l + At ;  then  0 < l '  < d. By induc t ive  hypothes i s ,  e i ther  
s ' . c lock2  > t '  - 6 - (d - l') or there  is some (c, v)  E s ' . c h a n n e l  such t h a t  
c > t ' - 6 - ( d - l ' )  and  v < t ' , + l ' .  But  t + l  = t ' + l ' ,  and  so t - 5 -  ( d - l )  = 

t ' - 6 - ( d - l ' ) .  Moreover,  s .c lock2 = s ' . c lock2 .  So e i ther  s .c lock2 > t - ~ - ( d - l )  

or there  is some (c, v)  E s . c h a n n e l  such t h a t  c > t - 6 - (d - l) and  v < t + I. 
Th i s  is as needed.  : 

2. A t + l > &  

T h e  def in i t ion  for v says t h a t  s . c l o c k l  = s ' . c l o c k l  > t - 6. Then  L e m m a  
10 impl ies  t h a t  e i ther  s.clock~. = s . c l o c k l  > t -  6 or there  is some ( c , v )  E 

s . c h a n n e l  such t h a t  c = s . c l o c k l  > t - 6. The  first of these a l t e rna t i ve s  
suffices for the  l e m m a .  In the  l a t t e r  case, i t  mus t  be  t h a t  v < t ~ + d, by  
L e m m a  11. By the defining cond i t ion  of  th is  case, th is  impl ies  t h a t  v < t + l. 
Th is  suffices. 

[] 

L e m m a  13.  The  fo l lowing  is t rue  o f  every  reachable s ta te  o f  A :  

n o w  - e < clock2. 

Proof .  By L e m m a  12, for l = 0, i t  mus t  be t h a t  in any  reachab le  s ta te ,  e i ther  
clock~. > now - 6 - d > n o w  - e or there  is some ( c , v )  E channe l  such t h a t  
c > now - 6 • d and  v < now .  But the  l a t t e r  is imposs ib le ,  by  L e m m a  11. So 
the  former  holds ,  which is as needed.  [] 

s Note that  the model allows for several actions to occur at the same real time. This 
makes it necessary to be especially careful about strict vs. non-strict inequalities: 



389 

This proves IA. I t  still remains to show that  r is a weak forward simulation 
with respect to invariants IA and IB. Fortunately, for this case, proving the 
invariants has already accomplished most  of the work. 

L e m m a  14. r is a weak refinement f rom A to B ,  with respect to invariants IA 
and IB .  

Proof. The t ime condition and start  condition are easy to see; it remains to show 
the step condition, Condition 3. Suppose s ~ ~ A  s, s', s E IA, r(s ' )  E I s .  The 
proof  is by cases: 

1. x = ~ickl(c) 
tickl(c) 

Then I claim tha t  r ( s ' )  ' s  r(s) .  This is straightforward because 6 _< e - 
the precondition for t ickl(c)  in A is at  least as strong as in B. 

2. ~r = deliver(c), c > s'.clock~. 
~ick2(~) 

Then I claim that  r ( s ' )  'B r(s) .  Since s E IA, it must  be that  Is.clock2 - 
s.now[ < e. But s.clock~. = c, by the effect of the deliver(c) action. Also, 
s ' .now -- s .now.  So [c - s'.now[ < e. Thus, the precondition of the $ick~.(c) 
action in B holds. The effect clearly corresponds. 

3. 7r = deliver(c), c < s'.clock~. 
Then r ( s ' )  -- r(s) ,  which suffices. 

4. 7r = repor~i(c) 
report,(c) 

Then it is straightforward to show that  r ( s ' )  'B r(s) .  
5. ~r -- u, increasing by A~. 

Then I claim tha t  r ( s ' )  -Y-~v B r(s).  Define ~ = s ' .now + A~. The precondition 
of ~r in A implies that  [L - s'.clockl[ < 6 < e. Since s E IA,  it follows that  
[s.clock2 - s . n o w [  < e. But ~ = s .now and s.clock~. = sl.clock2, so that  
[~ - s'.clock~ I < e. This yields the precondition for u(A~) in B. The effect 
corresponds. 

[] 

This  proves the following theorem. 

T h e o r e m  15. I,e$ A be the clock synchronization algorithm and B the bounded 
clock system. Then A <_wR B ,  and therefore A <_ B .  

This example showed a simple weak refinement. For an example of a weak 
forward simulation, consider A',  which is defined to he the same system as A, 
but instead of sending the full clock values, node i just  send the "low-order bits". 
More precisely, in place of sending c, node 1 sends c' -- c mod % for some fixed O' 
such that  ~, > 2e q- 26. (I use the notation c mod  "y to denote the remainder when 
c is divided by % i.e., c/ 'y - Lc/~/] .) The second component,  v, of each message, 
is still allowed to be an unbounded time, because it does not represent an actual  
component  to be included in the message, but rather just  a conceptual real-t ime 
deadline. 



390 

The key idea is that  from any state s of algorithm A, the range of c values 
that  might arrive at node 2 in a deliver step in algorithm A is [s. clock2 - r - 
6, s. clock~ +E+6].  Thus, node 9. can correctly decode an arriving condensed clock 
value c' into the unique clock value c in the given range such that  c' = c rood 7, 
and sets clock2 to maz(  eloek2, c). 

In more detail, the modified actions are as follows. Here, the decode is defined 
to be the partial function such that  decode(c, d) is the (unique) value c' E [ d -  
e - 6, d + e + 8] such that  c = c' mod 3', if one exists, else undefined. 

tick1 (c) 
Precondition: 

e >_ clockt 

Ic- nolo I < 6 
Effect: 

cloekt :---- e 
add (c rood 7, now + d) to channel 

deliver(c) 
Precondition: 

(c,v) E channel 
Effect: 

remove (c, v) from channel 
clock~ := ma=(clock~, decode(c, ctock~)) 

There is a (multivalued) forward simulation from A' to A, defined by (s, u) E 
f if and only if all state components are the same in s and u, with the follow- 
ing exception. For each message (c, v) in u. ch=r~nel, the corresponding message 
(e rood 7, v) appears in s. channel. Correctness of this simulation rests on first 
proving the invariant for A that all clock values appearing in messages in the 
channel are in the indicated interval; this follows in turn from the claim that  
clock2 and all the clocks in the channel are in the interval [now - e, now + 8]. 

This example shows a typical use for forward simulations - describing an 
optimized version of an algorithm in terms of a simple, less efficient original ver- 
sion. In such a case, the correspondence generally needs to be multi-valued, since 
the original algorithm typically contains more information than the optimized 
version. 

I do not have a related example to show here of a backward simulation. In 
fact, it seems hard to find practical examples where backward simulations are 
needed. They arise in situations where a choice is made earlier in the specification 
automaton than in the implementation automaton.  I will not mention backward 
simulations any further in this paper; all the remaining examples will involve 
forward simulations only. 

4 A S p e c i a l i z e d  M o d e l  

So far, I have presented the basic concepts for simulation proofs in the setting 
of a very general t imed automaton model. But when one carries out interesting 



391 

verifications, it is often the case that  the implementation and /or  specification 
has some specialized structure that  can help to "stylize" the proofs. Next I will 
describe a special case of the general t imed automaton model that  I have found 
to be suitable for describing most implementations, and many specifications as 
well. 

4.1 M M T  A u t o m a t a  

The specialized model is based on one defined by Merritt, Modugno and Tutt le 
[29], hence I call it the MMT automatort model. An MMT automaton is basically 
an I /O  au tomaton  [23, 24] together with some upper and lower bounds on time. 

An I /O  automaton A consists of 

- a set states(A) of states; 
- a nonempty subset start(A) of start states; 
- a set acts(A) of actions, partit ioned into ez~ernal and interrtal actions; the 

external actions are further partit ioned into input and output actions; 
- a set steps(A) of steps; this is a subset of states(A) • acts(A) • states(A); 
- a part i t ion part(A) of the locally controlled (i.e., output  and internal) actions 

into at most countably many equivalence classes. 

An action ~r is said to be enabled in a state # provided that  there exists a state 
s such that  (s', ~r, s) E steps(A), i.e., such that  s--&~ A s. A set of actions is said 
to be enabled in s' provided that  at least one action in that  set is enabled in # .  
It is required that  the automaton be input-enabled, by which is meant that  7r is 
enabled in s' for every state s' and input action 7r. Note that  there is no explicit 
time-passage action. The final component, part, is sometimes called the fairness 
partition. Each class in this parti t ion groups together actions that  are supposed 
to be part  of the same "task". Fair ezecutions are defined in such a way as to 
allow "fair turns" to each class of the partition. That  is, for each parti t ion class 
C, either (a) the execution is finite and ends in a state in which C is not enabled, 
or (b) the execution is infinite and either contains infinitely many C actions or 
infinitely many states in which C is not enabled. The I /O automaton model 
is a simple, yet rather expressive model for asynchronous concurrent systems. 
Typical  examples of its use in describing and reasoning about such systems 
appear in [22]. 

The I /O  automaton model, however, does not have any facilities for describ- 
ing timing-based systems. An MMT automaton is obtained by augmenting an 
I /O  au tomaton  with certain upper and lower time bound information. In this 
paper, I use a special case of the MMT model that  is described formally in [20]. 
Namely, let A be an I /O automaton with only finitely many parti t ion classes. 
For each class O, define lower and upper t ime bounds, lower(C) and upper(G), 
where 0 < lower < oo and 0 < upper(C) < or that  is, the lower bounds cannot 
be infinite and the upper bounds cannot be 0. 

A t imed execution of an MMT automaton A is defined to be an alternating 
sequence of the form So, (Trl,tl), s l , . . ,  where now the ~r's are input, output  or 



392 

internal actions. For each j ,  it must be that  sj ~ Sj+l. The successive times 
are nondecreasing, and are required to satisfy the given lower and upper bound 
requirements. More specifically, define j to be an initial indem for a class C 
provided that  C is enabled in sj, and either j = 0, or else C is not enabled in 
s j -1 ,  or else ~rj C C; initial indices are the points at which the bounds for C 
begin to be measured. Then for every initial index j for a class C, the following 
conditions must hold: 

1. (Upper bound) 
If upper 7s co, then there exists k > j with r < gj + upper(C) such that  
either ~-~ E C or C is not enabled in s~. 

2. (Lower bound) 
There does not exist k > j with t~ < ~j + lower(C) and 7r~ C C. 

Note that  an upper bound of co does not impose any requirement that  actions 
in the corresponding class ever occur. Finally, admissibiligy is required: if the se- 
quence is infinite, then the times of actions approach co. More formal statements 
of these conditions appear in [20]. 

Each t imed execution of an MMT automaton A gives rise to a timed ~race, 
which is just the subsequence of external actions and their associated times. The 
admissible ~imed ~races of the MMT automaton A are just the timed traces that  
arise from all the timed executions of A. 

MMT automata  can be composed in much the same way as ordinary I /O  
automata,  using synchronization on common actions. More specifically, define 
two MMT automata  A and B to be compatible according to the same definition 
of compatibility for general t imed automata.  Then the composition of the two 
au tomata  is the MMT automaton consisting of the I /O automaton that  is the 
composition of the two component I /O automata  (according to the definition of 
composition in [23, 24]), together with the bounds arising from the components. 
This composition operator is substitutive for the admissible t imed trace inclusion 
ordering on MMT automata.  

The MMT model just described is useful for describing many real-time sys- 
tems. It is especially good as a low-level model for computer systems, since the 
class structure and associated time bounds are natural  ways of modelling phys- 
ical components and their speeds. However, it cannot be used for describing 
hybrid systems, in which state changes can accompany time-passage actions. 
Also, the MMT model does not appear to be general enough to provide a good 
model for arbitrary specifications or high-level system descriptions. For exam- 
ple, the model does not seem to be appropriate for describing the bounded clock 
system in Section 2.6. 

Note that  MMT automata,  as presented so far, are not exactly a special case 
of the general (Lynch-Vaandrager) t imed automata  I described earlier. This is 
because the MMT model uses an "external" way of specifying the time bound re- 
strictions, via the added lower and upper bounds. The Lynch-Vaandrager model, 
in contrast, builds the time-bound restrictions explicitly into the time-passage 
steps. However, it is not hard to transform any MMT automaton  A into a 



393 

naturally-corresponding Lynch-Vaandrager t imed automaton Aq This can be 
done using a construction similar to the one in Section 3 of [20], as follows. 

First, the state of the MMT automaton A is augmented with a now com- 
ponent, plus f i r s t (C)  and las t (C)  components for each class. The f i r s t (C)  and 
las t (C)  components represent, respectively, the earliest and latest t ime in the 
future that  an action in class C is allowed to occur. The rest of the state is 
called basic. The now,  first  and las~ components all take on values that  rep- 
resent absolute times, not incremental times. The time-passage action v is also 
added. 

The f irst  and last components get updated in the natural way by the various 
steps, according to the lower and upper bounds specified in the MMT automaton  
A. The time-passage action has explicit preconditions saying that  t ime cannot 
pass beyond any of the last(C) values, since these represent deadlines for the 
various tasks. Note that  this usage of the last(C) components as deadlines is 
similar to the usage of deadline components in messages in the clock synchro- 
nization algorithm above. RestricLions are also added on actions in any class C, 
saying that  the current time now must be at least equal to f i rs t (C) .  

In more detail, each state of A ~ is a record consisting of a component basic, 
which is a state of A, a component now C R +, and, for each class C of A, 
components f i r s t (C)  and last(C),  each in R + U {cx~}. Each start state s of A' 
has s.basic E star~(A),  and s .now = O. Also, if C is enabled in s.basic, then 
s . f i rs t (C)  = lower(C)  and s . las t (C)  = upper(C);  otherwise s.firs~(C) = 0 and 
s . las t (C)  : oo. The actions of A j are the same as those of A, with the addition 
of the time-passage action t~. Each non-time-passage action is classified as an 
input, output  or internal action according to its classification in A. 

The steps are defined as follows. IfTr C acts(A),  then s' ~A' S exactly if all 
the following conditions hold: 

1. 8/.T$OW = 8.T~OW. 

2. s'. basic---~A s. basic. 
3. For each C C part(A):  

(a) If e c then < s'. ow. 
(b) If C is enabled in both s and s', and v ~ C, then s . f irs t(C) -=- # . f i r s t (C)  

and s . las t (C)  : s ' . las t (C) .  
(c) If C is enabled in s and either C is not enabled in s ~ or ~r E C then 

s . f i rs t (C)  = s'.r~ow + lower(C)  and s.Zast(C) = sqnow + upper(C) .  
(d) If C is not enabled in s then s . f irs t (C) = 0 and s . las t (C)  = oo. 

On the other hand, if 7r = v, then s' hA' s exactly if all the following conditions 
hold: 

1. S/.~OW ~ 8,1~0W. 

2. s. basic = s ~. basic. 
3. For each C C part(A):  

(a) s.~ow < s ' . last(C).  
(b) ~ . ~ ( C )  = s ' .~rst(C) and s.last(C) = ~'.l~st(C). 



394 

The resulting t imed automaton A ~ has exactly the same admissible t imed 
traces as the MMT automaton A. Moreover, this transformation commutes with 
the operation of composition, up to isomorphism. From now on in this paper, 
I will often refer to an MMT timed automaton and to its transformed version 
interchangeably, relying on the context to distinguish them. 

Suppose that  two MMT automata  are given, one (A) describing an imple- 
mentat ion and the other (B) describing a specification. Then by regarding both 
A and B as t imed automata,  it is possible to use the simulation techniques de- 
fined in Section 3 to show that  A implements B (in the sense of admissible t imed 
trace inclusion). 

4.2 E x a m p l e :  F i s c h e r ' s  M u t u a l  E x c l u s i o n  A l g o r i t h m  

In this subsection, I use MMT automata  to model a simple algorithm - the well- 
known Fischer mutual  exclusion algorithm using read-write shared memory [10]. 
This algorithm has become a standard example for demonstrating the power 
of formal methods for reasoning about real-time systems. It can be verified in 
several ways, but to fit it into this paper, I express the proof as a simulation. 

The most important  correctness property of this algorithm is mutual  ex- 
clusion. Other properties may also be of interest, for example, a t ime bound 
property, limiting the time that it takes from when anyone requests the resource 
until someone gets it, and a liveness property, stating that  if anyone is trying 
to obtain the resource, then someone succeeds. In this subsection, I will just  
argue mutual  exclusion, but will return to this example twice later in the paper 
to prove time bounds and liveness properties. Both of these proofs will also be 
based on simulations, but they will require a little more machinery (which I will 
introduce shortly). 

I begin with the problem specification. It consists of a set of users, U~, 1 < i < 
n, each an MMT automaton,  plus a mutem object M,  also an MMT automaton.  
Let U denote the composition of all the U~. 

Each U~ has a state containing its current regior~, either trying, critical, exit 
or remainder. The outputs are tryi and ezi$i, while the inputs are criti and rem~. 
Each action moves the user to the indicated region, The input-output  behavior 
is intended to be cyclical, in the order Styx, cri~i, emits, remi .--; the definition of 
the user guarantees that  it will not be the first to violate the cyclic condition. 

The tryi and ezi~i actions are placed in separate singleton classes of the 
fairness partition. There are no special bounds on when try actions must occur, 
or when the critical region must be exited; therefore, the bounds are just  the 
trivial [0, oo] for each class. 

A u t o m a t o n  Ui: User  

Actions: 
Input: 

cri~ 
Tew'l,i 



395 

Output: 
tryi 
emit~ 

State components: 
region~ E {rein,  try ,  crit ,  emit}, initially rein 

try i 
Precondition: 

region i = tern 
Effect: 

region i := try 

criti 
Effect: 

region i : :  crit 

exit~ 
Precondition: 

region i = crit 
Effect: 

region~ := exit 

Effect: 
region i := rein 

Classes and Bounds: 
{try~}, bounds [0, co] 
{emits}, bounds [0, co] 

The mutex object models the high-level behavior of a mutual exclusion sys- 
tem. It interacts with users by receiving the tryi and eziQ inputs and producing 
the crit i  and remi  outputs. It keeps track of the regions for M1 the users, and 
ensures that  it does not issue two cri~ actions before the first has exited. All crit  

actions are placed in one class, while each remi is in a class by itself. Again, all 
the classes only have the trivial bounds [0, co]. (Recall that for now, I am only 
going to prove mutual  exclusion, not time bounds or liveness, so no interesting 
bounds are included in the specification.) 

A u t o m a t o n  M:  M u t e x  O b j e c t  

Actions: 
Input: 

tryi, l < i < n  
emiQ, l < i < n 

Output:  
crit~, l < i < n 
remi ,  l < i < n 

State components: 
regior~i, 1 < i < n, each in {rein, try ,  crit,  ezit}, initially rein 



396 

try i 
Effect: 

region i := try 

exiti 
Effect: 

region~ := exit 

criti 
Precondition: 

region i = try 
for all j ,  regionj ~ crit 

Effect: 
region i := crit 

r e m i  

Precondition: 
region i = exit 

Effect: 
regioni := rein 

Classes and Bounds: 
crit  = { crit i ,  1 < i < n}, bounds [0, co] 
{rem~},  1 < i < n, bounds [0, c~] 

Finally, I present the algorithm. It is modelled formally as a single MMT 
automaton containing several processes sharing read-write memory. The state 
consists of the state of the shared memory (in this case, just the single variable 
z), plus the local states of all the processes. Each class of the fairness part i t ion 
consists of actions of just one of the processes. 

In this algorithm, each process i that  is trying to obtain the resource tests 
the shared variable z until it finds the value equal to 0. After it finds this value, 
process i sets z to its own index i. Then it checks that  ~ is still equal to i. If 
so, process i obtains the resource, and otherwise, it goes back to the beginning, 
testing for z -- 0. When a process i exits, it resets ~ to 0. 

A possible problem with the algorithm as described so far is that  two pro- 
cesses, i and j ,  might both test z and find its value to be 0. Then i might set 

:= i and immediately check and find its own index, and then j might do the 
same. This execution is illustrated in Figure 1. 

tes t  

s e t  

c h e c k  

c r i t  

i J 

tes t  

se t  

c h e c k  

cr i t  

Fig. 1. Bad interleaving prevented by Fischer mutual exclusion algorithm 



397 

In order to avoid this bad interleaving, a simple time restriction is used. 
Each of the actions tests, sets, check~, crit~, resds ,  reins, for each i, comprises 
a singleton class. The bounds assigned to all the classes are [0, co], with the 
following exceptions: sets gets assigned [0, a] and checks gets assigned [b, co], for 
some constants a, b, where a < b. 

The two bounds a and b prevent the bad interleaving in Figure 1 as follows. 
Any process i that  sets z := i is made to wait long enough before checking to 
ensure that  any other process j that  tested $ before i set $ (and therefore might 
subsequently set �9 to its own index) has already set $ to its index. That  is, there 
should be no processes left at the point of setting, when i finally checks. 

A u t o m a t o n  F-" F i sche r  M u t u a l  Exc lus ion  A l g o r i t h m  

Actions: 
Input: 

frye, 1 < i < n  
eziQ, 1 < i < n 

Output: 
criQ, l < i < n 
rem~, l < i < n 

Internal: 
tests, l < i < n  
seti~ I < i <  n 
checks, 1 < i < n 
resets, 1 < i < n 

State components: 
pQ, 1 < i < n, each in {rein, test, set, check, leave-try, crit, reset, leave-ezit},  

initially rein 
�9 , an integer in [0, hi, initially 0 



t r y i  

Effect: 
pc i := t e s t  

t e s t i  

Precondition: 
pc  i - -  t e s t  

Effect: 
if z = 0 then pc i := s e t  

se t l  
Precondition: 

pc i ---- s e t  
Effect: 

pc  i :-- check  

cheek i  

Precondition: 
pc i = check  

Effect: 
i f z = i  
then pc i := l e a v e - t r y  

else pc i : =  t e s t  

Classes and  Bounds:  

A s s u m e  a < b. 
{ t e s t , } ,  1 < i < n ,  bounds  [0, oo] 
{set,}, [0, a] 
{check,}, [b, oo] 

[0, oo] 
{ r e s e t , } ,  [0, oo] 

[0, oo] 

398 

er i t i  

Precondition: 
pc i - -  l e a v e - t r y  

Effect: 
pc i : :  cr i t  

ex i t l  

Effect: 
pc i := re se t  

re se t i  

Precondition: 
pc~ = r e s e t  

Effect: 
x:~O 
pc i :---~- l e a v e - e x i t  

r e m i  
Precondition: 

pc i ---- l e a v e - e x i t  

Effect: 
pc i :=  rera 

Cons ider  the  compos i t i on  F • U. W h e n  this  is t r a n s f o r m e d  in to  a t i m e d  
a u t o m a t o n ,  the  only  non t r iv ia l  s t a t e  componen t s  t h a t  a re  a d d e d  by  the  t r ans -  
f o r m a t i o n  are  n o w ,  and  l a s t ( s e t , )  and  f i r s ~ ( c h e e k , ) ,  1 < i < n .  (Here a n d  else- 
where,  I a m  using the  convent ion of  n a m i n g  a s ingle ton  class by  the  single ac t ion  
con ta ined  in the  class. Also,  for s impl ic i ty ,  I ignore t r iv ia l  f i r s t  and  l a s t  compo-  
nents . )  Likewise, when M x U is t r a n s f o r m e d  into  a t i m e d  a u t o m a t o n ,  the  on ly  
non t r i v i a l  a d d e d  s t a t e  componen t  is n o w .  Note t ha t  the  ex te rna l  ac t ions  in each 
of  the  compos i t i ons  F x U and  M x U are  t r y , ,  c r i t , ,  e z i t ,  and  t e r n , ,  1 < i < n .  

I c l a im t h a t  the  compos i t i on  F x U is an  i m p l e m e n t a t i o n  of  M x U, in the  
sense t h a t  /7 x U < M x U. To show the  i m p l e m e n t a t i o n ,  I define a m a p p i n g  
r f rom F x U to M x U. Here, do t  n o t a t i o n  is used to  ind ica te  c o m p o n e n t  
a u t o m a t a ,  as well as s t a t e  componen t s .  



399 

- , ( , )  = s,o . 
- r(s).U.region i = s.U.region i. 

I try if s.F.pc i E {test, set, check, leave-try}, 

- r(s).M.regioni = crit if s.F.pc i = crit, 
e$it if s.F.pci E {reset, leave-exit}, 
rein if S . F . p C  i = rein. 

In order to show that  r is a weak refinement, I first prove some invariants. 
The  main  invariant is mutual  exclusion, i.e., that  there do not exist two different 
users whose regions are both  crit. Mutual exclusion is proved by means of a series 
of auxiliary invariants; these invariants and their proofs are due to Luchangco 
[18], and are based on those used by Abadi and Lampor t  [1]. The first proper ty  
is obvious f rom the general definitions of the last functions - it says tha t  the 
last value is no later than the current t ime plus the upper bound for the class. 

L e m m a l 6 .  The following is true of every reachable state o f F  x U: 
I f  pc~ = set ~hen last(seQ) <_ now + a. 

This l e m m a  can be used to prove the following key claim. It  says that  the 
earliest t ime a successful checki can happen is after the setj of any j tha t  has 
already passed the test. This l emma  serves to rule out the bad interleaving in 
Figure 1, in which the sequence seti, checki, sets, check s occurs, and both checks 
are successful. 

L e m m a  17. The following is true of every reachable state of F x U: 
ffpc  = check and  = i pe t = set  then   rst(cheek ) > l a s t ( s e t s ) .  

Proof. By induction. Again, I consider steps of the form s ~ * ~ s. Here, the only 
interesting cases are: 

1. ~r ---- seti 
Then s.first(check~) = s .now + b and last(set j)  <_ s .now + a, by L e m m a  16. 
Since a < b, the inequality follows. 

2. 7r : test j  and s~.z = 0  (i.e., the test is successful) 
Then s.z = 0, making the s ta tement  true vacuously. 

[] 

The  next l emma  says that  if a process i is in the critical region (or just  before 
or just  after it), then z = i and no other process can be about  to set. 

L e m m a l 8 .  The following is true of every reachable state o f f  • U: 
I f  pc~ E {leave-try, crit, reset} then ~ = i and for all j ,  pcj ~= set. 

Proof. By induction. The interesting cases are: 

1. ~r = check~ and s ' . z  = i (i.e., the check is successful) 
Then s.z = sl.z ----- i, and Lemma  17, together with the t ime requirements, 
imply  tha t  no j has sl.pcj = set, nor (therefore) s.pcj = set. 



400 

2. ~r = setj, j r i 
This is impossible because the inductive hypothesis implies that  there can 
be no j with s'.pcj = set. 

3. 7r = resetj, j • i 
This is impossible because if it were true, the inductive hypothesis applied 
to both i and j would imply the contradictory requirements s'.m -- i and 
8/.~ : j .  

4. ~r = testj, j ys i, and s~.m = 0 (i.e., the test is successful) 
Then the inductive hypothesis implies that s'.pc i ~ {leave-try, crit, reset}, 
so s.pc i ~ {leave-try, crit, reset}, which implies that  the condition is true 
vacuously. 

[] 

Now it is not hard to see that Lemma 18 implies the mutual  exclusion prop- 
erty. 

L e m m a  19 ( M u t u a l  E x c l u s i o n ) .  The following is true of every reachable state 
o f F  x U: 
There do not emist i, j ,  i 5s j ,  such that pc i = pcj = crit. 

Now, using the mutual exclusion invariant, it is possible to argue that  r is a 
weak refinement. This claim says a bit more than just that  the algorithm satisfies 
the mutual  exclusion property: it says that the algorithm actually implements a 
mutual emelusion system, with a particular interface, input /ou tput  conventions, 
etc. 

L e m m a  20. The f u n c t i o n  r is  a weak refinement f r o m  F x U t o  M x U .  

Proof. Straightforward. The dangerous steps to check are those of the form 
, cri~ , s ----* s, where some process j is in the critical region in state s'. But then 

both i and j would be in the critical region, in state s, which violates the mutual  
exclusion property for s, a contradiction. [] 

T h e o r e m  21. Let F be the Fischer mutual emclusion algorithm, U the composed 
user automaton and M the mutem object. Then F x U <WR M x U, and therefore 
F x U < M x U .  

Note that  this proof, while technically a simulation proof, does not really 
demonstrate the power of the method, since the key property being proved, 
mutual  exclusion, is shown just using invariants. The remaining examples in 
this paper better illustrate the power of the simulation method. I will return to 
the Fischer mutual  exclusion example twice more, once to argue t ime bounds 
and once to argue liveness, both using simulations. 

For later use, I also state the following invariant: 

L e m m a  22. The following is true of every reachable state of F x U: I f  m = i 
then pcl G {check, leave-try, crit, reset}. 



401 

5 Using Simulations to Prove Time Bounds 

In the previous section, I introduced the MMT model and used it to describe 
Fischer's mutual  exclusion algorithm. I then used invariants and simulations to 
prove that  the algorithm satisfies the mutual  exclusion property. In this section, 
I show how simulations can be used to prove something more than just basic 
safety properties - they can also be used to prove time bounds. 

In the Fischer example, the implementation automaton had upper and lower 
bound assumptions, which were used in proving the basic safety property. The 
specification, however, did not include any time bounds. The main idea for prov- 
ing t ime bounds via simulations is to include lower and upper time bounds on 
the classes of the specification MMT automaton.  I demonstrate the power of 
this method with three examples: a simple counting process, a two-process race 
system, and Fischer's mutual  exclusion algorithm. I also indicate how the same 
method can be used to prove time bounds for asynchronous algorithms. 

I believe that  these examples demonstrate that  the power of simulation meth- 
ods is much greater in the real-time setting than it is in the asynchronous setting. 
For in the asynchronous setting there are usually liveness conditions rather than 
time bounds to be proved. Proofs of liveness conditions require some extra ma- 
chinery, e.g., temporal  logic, in addition to simulations, but time bounds can be 
proved just using simulations. I will say more about liveness in Section 6. 

This method of proving timing properties is derived from [20]. Also, the first 
two examples are simplifications of examples in that  paper. 

5.1 E x a m p l e :  C o u n t i n g  P r o c e s s  

The first example involves a simple automaton that  just counts down from some 
fixed positive integer k and then reports its completion. If the time between the 
automaton 's  steps is always in a limited range, say [ci,c2], then it should be 
possible to prove a corresponding range of times until the report occurs. 

A u t o m a t o n  Count'. C o u n t i n g  A u t o m a t o n  

Actions: 
Output:  

repor~ 
Internal: 

decremen~ 

State components: 
count, initially k > 0 
reported, Boolean, initially false 



402 

d e c r e f l ~ e n t  

Precondition: 
count > 0 

Effect: 
count : :  count - -  1 

Classes and Bounds: 
{repor t ) ,  bounds [ct, c9.] 
{ decrement ) ,  each with bounds [cl, c2] 

report 
Precondition: 

count = 0 
reported = false 

Effect: 
reported := true 

Informally, it is easy to see that the time until a report occurs can be any 
time in the interval [(k + 1)cl, (k + 1)c2]. In order to prove this formally, I ex- 
press these time bound assumptions by a trivial high-level reporting automaton 
called Report .  In the following formal description, I parameterize the name of 
this automaton by the time bounds that  it is to guarantee. This is for the pur- 
pose of disambiguation, because in the next example, I will use another Report  
automaton, with different time bounds. 

A u t o m a t o n  Report[d1, d2]: R e p o r t i n g  A u t o m a t o n  

Actions: 
Output: 

report 

State components: 
reported, Boolean, initially false. 

report 
Precondition: 

reported = false 
Effect: 

reported := true 

Classes and Bounds: 
( repor t ) ,  bounds [dr, d2]. 

I show that  Count  implements Report[(k 4- 1)el, (k 4- 1)c2], using a weak 
forward simulation. The multiple values permitted by a forward simulation are 
needed because the simulation is expressed in terms of inequalities. Specifically, 
I define (s, u) E f provided that  the following hold: 

- -  " l ~ . n o ~  ~ s . n o t l ] ~  

- u.reported = s.reported, 



403 

- u . l a s t ( r e p o r t )  >_ 
s.last( decreraent) q- s.count . cz if s.eount > 0, 
s. last(report) otherwise. 

- u.first(report) < 
s.first( deereraent) + s.count . el if s.count > O, 
s. first( report) otherwise. 

The  idea of the simulation is as follows. The now and reported component  
definitions are straightforward. The last(report) component  is constrained to be 
at  least as large as a quanti ty tha t  is calculated in terms of the state (including 
t ime components)  of Count.  This quanti ty is a calculated upper bound on the 
latest t ime until a report action is performed by Count.  There are two cases: I f  
count > 0, then this t ime is bounded by the last t ime at which the first decrement  
can occur, plus the additional t ime required to do count - 1 decrement  steps, 
followed by a report; since each of these count steps could take at most  t ime 
eg., this addit ional t ime is at  most  count �9 c2. On the other hand, if count - O, 
then this t ime is bounded by the last t ime at which the report can occur. The 
inequality expresses the fact that  this calculated bound on the actual  t ime until 
report is at most  equal to the upper bound to be proved. The interpretat ion 
of the f i rs t (report )  component  is symmetr ic  - it should be no larger than a 
calculated lower bound on the earliest t ime until a report action is performed by 
Count.  

In order to prove that  f is a weak forward simulation, I use the simple 
invariant "if count > 0 then reported = false",  plus basic properties of the 
Count  au tomaton ,  of the style of L e m m a  16. 

L e m m a  23. The relation f is a weak forward s imulat ion f rom Count  to 
 eport[(k + 1)cl,  (k + 1)c2]. 

Proof. The proof  proceeds in the usual way for forward simulations, verifying 
the three properties in the definition one by one. The inequalities are t reated in 
the same manner  as any other type of relation between the states. The corre- 
spondence between now values is immediate .  

For the correspondence between start  states, let s and u be the unique s tar t  
states of Count  and R, respectively. I show that  (s, u) E f .  The first two par ts  
of the definition of f are immediate;  consider the third part .  The definition of R 
implies tha t  u. last(report)  : (k + 1)e2, while the definition of Count  implies tha t  
s. count > 0 and s.last(decrement) + s.count.c  = c2 = 1) 2. Therefore, 
u. las t (report )  : s . last(  decrement)  + s .count  .c2, which shows the third par t  of 
the definition of f .  The fourth part  is analogous to the third. 

Finally, for the correspondence between steps, consider cases based on types 

of transitions. For example,  consider a transition s I decrement~ Count  s, where u I E 
f [#] .  Since decrement  is enabled in # ,  it must  be that  # . c o u n t  > 0. Suppose 
tha t  also s .count  > 0. The fact that  u I E f [#]  means that  ul .now : # . n o w ,  
u ' .reported = #.reported,  uqlas t (report )  > # . l a s t ( d e c r e m e n t ) +  s ' . coun t . cg . ,  
and u' . f i rs t (report )  < # . f i r s t (decremen t )  + s ' . coun t ,  cl .  It  suffices to show tha t  
u' c f[s] .  



404 

The first two conditions in the definition of f carry over immediately. For 
the third condition, the left-hand side of the inequality, last(report), does not 
change, while on the right-hand side, last(decrement) is increased by at most c2, 
while the second term decreases by exactly c2. (The reason why last(decrement) 
is increased by at most c2 is as follows: the construction of the t imed au tomaton  
from the MMT automaton for Count - -  captured in the invariants - -  implies 
that  s' .now ~ s'.last( decrement), but note that  s.last( decrement) = s.now § c2 
and s.now -= s' .now.) So the inequality still holds after the step. 

Similar arguments can be made for the lower bound, and for the case of 
decrementing to O. [] 

T h e o r e m  24. Count ~WF Report[(k + 1)cl, (k + 1)c2], and therefore Count < 
Report[(k + 1)cl, (k + 1)c2]. 

The main content of this theorem is that  Count satisfies the timing require- 
ments. In the rest of the paper, I will focus on upper bound results and proofs; 
lower bounds can be stated and proved similarly. 

5.2 Example:  Two-Process  Race 

This is an example suggested by Pnueli [34] as a test case for proof methods for 
timing-based systems. Consider an MMT automaton Race with state variables 
count, flag, and reported. The automaton can be thought of as consisting of two 
tasks. The main task increments the variable count as long as the flag is false, 
then decrements count back to 0. When the value of the count has been restored 
to 0, the main task reports its completion. There is a separate interrupt task 
whose sole job is to set the flag to true. 

A u t o m a t o n  Race: T w o - P r o c e s s  R a c e  S y s t e m  

Actions: 
Output:  

report 
Internal: 

increment 
decrement 
set 

State components: 
count, a nonnegative integer, initially 0 
flag, a Boolean, initially false 
reported, a Boolean, initially false 



405 

increment set 
Precondition: Precondition: 

flag = false flag = false 
Effect: Effect: 

count :---- count -I- 1 flag := true 

decrement report 
Precondition: Precondition: 

flag = true flag = true 
count > 0 count = 0 

Effect: reported = false 
count := count - 1 Effect: 

reported := true 

Classes and Bounds: 
main  = { increment ,  decrement, report}, bounds [cl, c2] 
int  - {set}, bounds [0, a] 

Let C = c2/cl .  
The correctness specification is the au tomaton  Report[O, a +  c2 + Ca], where 

Report  is defined in the previous example. (I am only proving the upper bound 
here, so I use a lower bound of 0.) The reason why a + c 2  + Ca is a correct upper  
bound is, intuitively, as follows. Within t ime a, the int task sets the flag to true. 
During this t ime, the count could reach at most  a/c l .  Then it takes at most  
t ime (a/cx)c2 = Ca  for the main  task to decrement count to 0, and another  c2 
to report .  

I show tha t  this bound is correct by a simple weak forward simulation f rom 
Race to Report[O, a + c2 + Ca]: Specifically, I define (s, u) E f provided that  the 
following hold: 

- -  " t l , .nO' l . IJ  ~ 8 . n o t l ] .  

- -  u . r e p o r t e d  = s . r e p o r t e d .  

- u.last(report) > 
s.last( int ) + ( s.count + 2)c~ + C( s.last( int) - s.first( main ) ) 

if s.flag = false and s.first(main) < s.last( int), 
s.zast( m in ) + ( a.count)c  

otherwise. 

The idea of the last inequality is as follows. If flag = true, then the t ime 
remaining until report is just  the t ime for the main  task to do the remaining 
decrement steps, followed by the final report. The same reasoning holds if flag 
is still false, but  must  become true before there is t ime for another increment  
to occur, i.e., if s . f i rs t (main)  > s . last( int) .  Otherwise, there is t ime for at least 
one more increment  to occur, i.e., s.fla# = false and s . f i rs t (main)  < s.last( int); 
then the first case of the inequality for last(report) applies. 

In this case, after the set, it might  take as long as t ime (count + 1)c~. for 
the main  task to count down from the current count, and then to report. But 
the current count could be increased by some additional increment  events tha t  



406 

happen before the se$. The largest number of these that  might  occur is 1 + 
(las~(int) -first(mair~))/cl. Multiplying this by c2 gives the extra  t ime required 
to decrement this additional count. 

Again, the only invariants needed are general properties of the sort in L e m m a  
16. Now the s tandard proof methods yield: 

L e m m a  25. The relation f is a weak forward simulation from Race to Report[O, a§ 
c2 + Ca]. 

T h e o r e m  26. Race _<WF Report[0, a+c~.§ and therefore Race <_ Report[O, a§ 
c~ + Ca]. 

5.3 E x a m p l e :  F i s c h e r  M u t u a l  E x c l u s i o n  A l g o r i t h m  

As the third example of proving t ime bounds via simulations, I return to the 
Fischer mutual  exclusion algorithm, F.  This time, I prove an upper  bound for 
the t ime from when some process is trying to obtain the resource and no one 
is critical, until some process is critical. There is also a corresponding bound 
(trivial to prove) for the remainder region. 

In order to prove these t ime bounds, I must assume additional t ime bounds 
for process steps, besides the upper bound of a on se~ steps and lower bound 
of b on check steps already used for proving mutual  exclusion. For simplicity, I 
assign the same upper bound of a used for set steps to all of the other locally 
controlled steps except for the check steps, i.e., to the test, crit, rese$ and rein 
steps. (Upper bounds are not needed for try or ezit steps.) I also assign an 
upper bound of c to the check steps, for some c > b. The result is a new MMT 
automaton ,  which I call F I. 

I also express the t ime bound requirements using an MMT automaton ,  M I. 
M ~ is the same as M except that  the class crit of crit~ actions has the bounds 
[0, 2c + 5a] and each class rem~ has the bounds [0, 2a]. (Note: It  appears  tha t  the 
upper bound can be improved to 2c § 5a - b, at the cost of some complication. 
Details appear  in [18].) 

For the proof, I could give a direct weak forward simulation f rom F ~ • U 
to M ~ • U, but  it seems useful instead to introduce an intermediate level of 
abstraction.  The intermediate level expresses certain milestones toward the goal 
of some process reaching the critical region. (This general approach is derived 
f rom [18].) Specifically, from the point when actions in the class crit becomes 
enabled ( that  is, when some process enters the trying region when no process is 
critical, or when some process leaves the critical region), there is a later step at 
which some process first converts z from 0 to a process index; I call this a seize 
step. Then there is a later step at which some process last sets z to an index, 
leaving no other processes with program counters equal to set (this means tha t  
no one will do another set, before some process reaches the critical region); I 
call this a stabilize step. The milestones I will consider are just  the seize and 
s~abilize steps. 



407 

I will a rgue  tha t ,  f rom the t ime  of enabl ing of cri t ,  a se ize  s tep occurs a t  
m o s t  t ime  c +  3a later .  T h e n  f rom the t ime  of a se ize  step, a s tabi l ize  s tep occurs 
a t  m o s t  t ime  a later .  And  f rom the t ime  of a s tabi l ize  step, a cr i t  step occurs 
a t  mos t  t i m e  c + a later .  The  to ta l  is 2c + 5a, as c laimed.  To  express these 
miles tones ,  I describe an in te rmedia te  M M T  a u t o m a t o n  I ~. 

A u t o m a t o n  I~: I n t e r m e d i a t e  A u t o m a t o n  f o r  F i s c h e r  A l g o r i t h m  

Actions:  
Inpu t :  

t r y i ,  l < i < n 

e z i t i ,  l < i < n 

Outpu t :  
cr i t i ,  l < i < n 

r e m i ,  l < i < n 

Internal :  
se i ze ,  l < i < n 

s tabi l i ze ,  1 < i < n 

Sta te  componen t s :  
regionl ,  i E I ,  an e lement  of  {rein, try,  cri t ,  e~it}, init ial ly rein  
s ta tus ,  an  e lement  of  { s t a r t ,  se ized,  s tab} ,  ini t ial ly s ta r t  

t ry  i 
Effect: 

region i := t ry  

seize 
Precondition: 

~i, region i ---- t ry  
Vi, region i 5~ cri t  
s tatus  = s tart  

Effect: 
s tatus  := seized 

stabilize 
Precondition: 

status = seized 
Effect: 

status := stab 

Criti 
Precondition: 

region i = try 
status = stab 

Effect: 
region i := crit  
s tatus := start  

eziti  
Effect: 

region i := exit  

f e r a l  

Precondition: 
region = exit  

Effect: 
region := rein 

Classes and  Bounds:  
{ s e i z e } ,  bounds  [0, c + 3a] 
{ s t a b i l i z e ) ,  bounds  [0, a] 
cr i t  = { cr i t i  : 1 < i < n } ,  bounds  [0, c + a] 
{ r e m i } ,  1 < i < n ,  bounds  [0, 2a] 



408 

There  is a simple weak forward s imulat ion f rom 11 x U to M I x U. Namely,  
define (s, u) E f provided tha t  the following hold. 

- -  " l ~ . n O i Y  : 8 . n o t o .  

- u.U.region i = s.U.region i for all i. 
- u.M~.regionl = s.I~.regionl for all i. 

I 
s.last(seize) + c + 2a if s.status : start, 

- u.last(crit)  > s.last(stabilize) + c + a if s.status = seized, 
s.last( crit) if s.status = stab. 

- u.last(remi)  > s. last(rem O. 

Here, the inequali ty for las t (cr i t )  uses a calculated upper  bound  on the t ime 
until  1 ~ • U performs a cri t  action. This calculation is based on a series of  cases. 
Working  backwards,  in the last case, where s ta tus  = cri t ,  cri t  is enabled in 
I ~ • U, and  a calculated upper  bound  is just  last( cri t  ). In the next- to- las t  case, 
stabilize is enabled, and after it occurs, only the worst-case t ime c + a for cri t  

remains.  In the first case, seize is enabled, and after it occurs, the addi t ional  
remaining t ime is at  most  the worst-case t ime for stabilize and cri t  to  occur,  in 
succcession. 

To show that f is a weak forward simulation, I use the following invariant 
of I '  x U: If  region i = crit  for some i, then s ta tus  = s tar t .  (Also, once again,  I 
need some propert ies of  the sort in L e m m a  16. From now on, I will omi t  explicit 
ment ion  of such properties.)  

L e m m a  27.  The relat ion f is a weak f o rw ard  s imu la t i on  f r o m  I '  x U to M '  x U.  

T h e o r e m  28.  I '  x U <WF M '  x U, and therefore I '  x U <_ M '  x U.  

Now I consider the s imulat ion f rom F '  x U to I '  x U. Define (s, u) E g if the 
following hold. (All unbound  uses of  process indices are implici t ly universally 
quantified.) 

- -  ~ . ~ 0 ~  ~ S . n O t O .  

- u.U.region i = s.U.region i. 
r e i n  

_ u.i~.regionl = crit 
exit 
try 

start 
- u.status = seized 

stab. 

if s.Ft.pci = rern, 
if s.F~.pcl = erit, . 
if s.F~.pcr E {reset, leave.exit), 
otherwise. 

if s.z = 0, or 3i : s.pc~ E {crit ,  reset}, else 
if 3i : s.pc i = set, else 

- u.last(seize) > s.last(reseti) + c + 2a if s.pc i = reset. 
- u.last(seize) >_ min~{h(i)} if s.= = O, 

s.last( ehecki ) + 2a if s.pe i = check, 

where h( i) = s . l a s t (  t e s t l )  + a if s.pc i = test, 
s . last(seti)  if s.pc i = set, 
oo, otherwise. 



409 

- ~ . las t ( s tab i l i ze )  >_ s . l a s t ( s e t 4  i f  s .pc~  = s e t .  

{ s.last(cheekl) + a if s.pe i = check A s.m = i, 
- u.last(crit) >_ s.last(crit~) if s.pc i = leave-try. 

s.last(resetl) + a if s.pci = reset, 
- u.last(rem~) > s.last(rem~) if s.pc~ = leave-exit. 

The now and region correspondences and status definition are straightfor- 
ward. The first inequality for seize says that  if some process is about  to reset, 
then the t ime until the variable is seized is at most  an additional c +  2a after the 
reset occurs. The second inequality for seize says that  if m = 0 (which means 
tha t  no process is about  to reset), then the t ime until the variable is seized is 
determined by the min imum of a set of possible times, each corresponding to 
some candidate process that  might set z. For instance, if some process i is about  
to set z, then the corresponding t ime is only the max imum time until it does so, 
while if i is about  to test z,  then the corresponding t ime is an additional a after 
the test  occurs. The interpretations for the remaining inequalities are similar. 

To show that  g is a weak forward simulation, I use the invariant of F '  • U 
given in L e m m a  18. Then: 

L e m m a  29. The relation g is a weak forward simulation f rom F '  x U to I '  • U. 

Proof. (Rough sketch) Each external step simulates a corresponding external 
step of I '  • U. A set step that  changes m from 0 to a process index simulates 
seize, while a set step that  occurs when no process is in critical or reset, and 
after which there are no other processes with pc = set, simulates stabilize. A set 
step tha t  satisfies both  of these conditions simulates both  seize and stabilize, in 
tha t  order. All other steps simulate a trivial t imed execution fragment  with no 
actions. [] 

T h e o r e m  30. Let  F '  be the Fischer mutual  exclusion algorithm with t ime bounds, 
U the composed user automata, and I ~ the Fischer intermediate automaton with 
t ime bounds. Then  F I x U __<WF 11 x U, and therefore F I x U < I ~ • U. 

C o r o l l a r y  31. Let  F '  be ~he Fischer mutual  exclusion algorithm with t ime bounds, 
U the composed user automaton, and M ~ ~he mutez  object wi~h t ime bounds. 
Then  F '  x U < M I X U. 

5.4 E x a m p l e :  D i j k s t r a ' s  M u t u a l  E x c l u s i o n  A l g o r i t h m  

Using these simulation methods,  it is also possible to carry out rigorous t ime 
complexi ty analysis for asynchronous algorithms. It  might  not be clear to the 
reader what  it means to analyze the t ime complexity for an asynchronous algo- 
r i thm, since asynchronous algorithms, by definition, have no t iming assumptions 
on their steps; thus, it is impossible to prove any unconditional t ime bounds for 



410 

their user-visible behavior. However, it is reasonable to assume upper bounds on 
time for various steps, since just assuming upper bounds (and no lower bounds) 
does not restrict the possible executions of the algorithm. Given such upper 
bounds on steps, it is often possible to prove upper bounds on the time for 
interesting behavior. 

Analyzing the time complexity of asynchronous algorithms is often a very 
difficult task. Generally, such analysis has been done in an informal and oper- 
ational style. But it is not hard to see that  the simulation methods described 
in this paper can also be used in the asynchronous setting, yielding proofs that  
express the key insights, yet can be done in complete formal detail. 

I illustrate with sketches of two examples. In this subsection, I consider Di- 
jkstra 's asynchronous algorithm [8] for mutual exclusion using read-write shared 
memory. In the following subsection, I consider a simple leader election algo- 
rithm. 

The Dijkstra algorithm, rewritten to fit the precondition-effect notation, is 
as follows. 

A u t o m a t o n  D: D i j k s t r a ' s  M u t u a l  Exc lus ion  A l g o r i t h m  
Actions: 

Input: 
tryi ,  l < i < n 

emiQ, 1 < i < n 
Output: 

criti, l < i < n 
remi ,  l < i < n 

Internal: 
announcel ,  1 < i < n 
gestl i l < i < n 
test2(j)~, 1 <_ i , j  <_ ,~ 

seQ, 1 < / , < n  
advancei,  1 < i < n 
checki ( j ) ,  1 < i , j  < n 
reseQ, l < i < n 

State components: 
pQ, 1 < i < n, an element of 

{rein,  aTz~z, test1,  t e s t2 ( j ) ,  set,  adv, cheek, leave-try, erit, reset, leave-emit}, 
each initially rein 

m, an element of I,  initially arbitrary 
flagi, i E I, an element of {0, 1, 2}, initially 0 
Sl, i E I, a set of process indices, initially {i} 



411 

t r y  i a d v a n c e i  

Effect: Precondition: 
pc  i := a n n  pc~ = adv  

Effect: 
a n n o u n c e i  f l ag  i : :  2 

Precondition: pc  i := check  

pc~ = a n n  S/ := {4} 
Effect: 

f l a g  i := 1 c h e c k i ( ] )  
pc  i :=  t e s t1  Precondition: 

pc~ = check  
test1~ ] ~ & 

Precondition: Effect: 
pc~ = tes t1  if f l a g j  = 2 then pc  i := a n n  

Effect: else 
if z = i then pc  i : :  adv  S~ : :  S~ U {]} 
else pc  i :=  t e s t ~ ( z )  if ISi] = n then pc  i : :  l e a v e - t r y  

t e s t ~ ( j  )~ c r i t i  

Precondition: Precondition: 
pc~ = t e s t a ( j )  pc i  = l e a v e - t r y  

Effect: Effect: 
if f l a g j  = 0 then pc  i : :  se t  pc  i := cr i t  

else pc  i :: t es t1  

e z i t i  

set~ Effect: 
Precondition: pc~ :=  r e se t  

pc  i : s e t  
Effect: res et l  

z :=  i Precondition: 
pc~ := t es t1  pc  i : r e s e t  

Effect: 
f lag i  := 0 
pc  i :---- l e a v e - e z i t  

r e m i  

Precondition: 
p c  i = l e a v e - e x i t  

Effect: 
pC i : =  Fern 

Classes and Bounds: 

For each i,  the re  is a s epa ra t e  class for each t ype  of  loca l ly  con t ro l led  ac t ion;  
each class has  b o u n d s  [0, a]. 

I t  is no t  diff icult  to  prove t h a t  a l g o r i t h m  D x U satisfies m u t u a l  exclusion,  
where  U is the  composed  user a u t o m a t o n  used in the  Fischer  example .  The  
p r o o f  is by  i nduc t i on  as usual ,  wi th  the  fol lowing as a key aux i l i a ry  invar ian t :  
-~[3i, j : ( i  ~ j )  A (i  6 S j )  A ( j  6 S~)]. T h e n  a weak fo rward  s imu la t i on  can  be  



412 

given from D x U to M x U, where M is the mutex  object used in the Fischer 
algorithm. 

In order to prove an upper bound on time, I once again modify the specifica- 
tion M by adding t ime bounds. This time, however, the t ime bound for the crit 
class is (3n + l l ) a ,  while the bound for each rern~ is still 2a. I call the resulting 
specification M D. 

The proof  strategy is similar to the one for the Fischer algorithm. I define 
an intermediate au tomaton  I D ,  also with seize and stabilize milestones, plus an 
additional dropback milestone. The new code is as follows: 

I D  

dropback critl 
Precondition: Precondition: 

status = stab region i = try 
Effect: status = drop 

status := drop Effect: 
region i := crit 
status := start 

Classes and Bounds: 
( se i ze ) ,  bounds [0, (n + 5)a] 
.[stabilize), bounds [0, 2a] 
(dropback},  bounds [0, (n + 1)a] 
crit = {criti : 1 < i <  n}, bounds [0, ( n +  3)a] 
{rem~),  1 < i < n, bounds [0, 2a] 

The action seize is deemed to occur when no process is in the critical region 
or at the point of reset, some process is trying, and z acquires a value that  is the 
index of a trying process with flag # 0 (i.e., an announced trying process). Once 
seize is enabled, (when no process is in the critical region but some process is 
trying, and z does not have such a value), it is at most one step (time a) until 
any newly-exiting process j has reset its flag to 0, then at most  n + 4 steps until 
some process reaches test1, then t e s ~ ,  then set - this accomplishes a seize. 
(There is a technicality: a process could be interrupted at tes ts  by the arrival 
(more particular,  the announcement)  of the process j whose index is already in 
m. But such an announcement itself serves to accomplish the seize.) 

The stabilize action is deemed to occur when m settles down to a value that  
cannot be changed before someone reaches the critical region. By a similar ar- 
gument  to the one used for the Fischer algorithm, it takes at most  2 steps until 
residual effects are removed, thus producing stabilization. 

The dropback action is deemed to occur when all but the process whose index 
is in z drop back to the first stage of the algorithm, where flag = 1 (or when 
someone goes critical before this happens). This takes at most  n + 1 steps. Then 
the remaining process goes to the critical region in at  most  n + 3 steps. 

The simulation from I D  x U to M D  • U is similar to tha t  from I '  • U to 
M '  x U. The simulation from D • U to I D  • U is similar in style to tha t  f rom 



413 

F '  x U to  I '  x U, but  is more  compl ica ted  because of  the addi t ional  technical  

compl ica t ions  in this a lgori thm.  

- -  ~d,.lq, OV) -= S.T&OU). 

- u.U.region i = s.U.region~. 
rern if s.D.pc~ = rein, 
crit if s.D.pei = crit, 

- u ' ID ' reg i~  = exit if s .D.pQ E {reset,  leave-exit}, 

try otherwise. 
start if 3i, s.pc i E { crit, reset}, or s.flag,.= = 0, else 
seized if 3i # s . z :  s.pci E {se t}  U { t e s t a ( j ) :  j # s . z} ,  else 

- u.s tatus  = stab if 3i # s.z : s.pc i = adv V s.flagi = 2, else 
drop. 

- u.last(seize)  >_ s.last(reseti)  + (n + 4)a if s.pc i = reset. 
- u. last(seize)  > mini{h(1)}  if Vi: s.pci 7s reset, 

where h(i)  = 

s.last(advance,) + (~ + Z)a 
s . last(checkd + (,~ - Is.Sd + 3)a 
s . l a s t (  a n n o u n c e  0 + 3 a  

s.last(test~ 0 + 3a 
s . las t ( tes t l ; )  + 2a 
s . last( test~i)  + a 
s. last(set  0 
s.last( announcei ) 
o o  

i f  s . p c  i = a d v ,  

if s.pc i : check, 
if s.pc i = ann A s .z  r i, 
if s.pc i : tes ta( j )  A j # s .z ,  
if s.pc i = tes t l ,  
if s.pe i = test~(s .z) ,  
S . p C  i = s e t ,  

s . p c i  = a n n  A s . ~  = ~, 

otherwise. 

{ s . last(test$ 0 + a if s.pe i = tes ta( j )  A j # s .z ,  
- u.last(stabilize) > s.last(set~) if s.pc i = set. 

I 
s.last(advance 0 + na if s.pc i = 
s.last(check~) + (n - [s.Si[)a if s.pc~ = 

- u.last(dropback) > s . last(announceO if s.pc~ = 

s.last( criti) if s.pc~ = 

adv A i # s .z ,  
check A i # s .z ,  
ann A s.flagi = 2, 
leave- try. 

- ,,.za, tC~it) >__ mi=,M0} where g(0 = s . l a s t ( a d v a n c e O + n a  

s . las t (cr i t~ )  

if s .pc  i : a n n  A SlZ : ~'  

if s . p c  i = tes t1  A s . z  = i, 

i f  s . pc  i = adv ,  

if s .pc;  = check ,  

if s.pc~ = l eave - t r y ,  

otherwise. 

{ s. last(reseti)  + a if s.pe i = reset, 
- u . las t (reml)  > s . last(remi)  if s.pc i = leave-ezit. 

This  definition m a y  look formidable  because of  its size. However, as for the t  
Fischer a lgor i thm,  the now and  region correspondences and s ta tus  definition 
are s t ra ightforward.  The  remaining pieces of  the definition are inequalities de- 
scribing the progress toward  the various goals. For each goal, the cases in the 
cor responding  inequalities jus t  t race this progress step-by-step.  



414 

In order to show that  this is a weak forward simulation, we use the following 
invariant: 

L e m m a 3 2 .  The following is true of every reachable state o l D  x U: 

1. I f  pc i E {leave-ezit, rein} ~hen flag i = O. 
2. g E {tesU, testa(i), se , adv}, then #ag  = 1. 
3. I f  pc i E {check, leave-try, crit, reset} then flag i : 2. 
,~. I f  pc i : ann, then flag i E {0, 2}. 

Lemma 33. This relation is a weak forward simulation from D x U to I D  x U. 

T h e o r e m  34. Let D be the Dijkstra mutual ezclusion algorithm, U the composed 
user automaton, and I D  the Dijkstra intermediate automaton. Then D x U <wF 
I D  • U, and therefore D x U <_ I D  x U. 

Corollary 35. Let D be the Dijkstra mutual ezclusion algorithm, U the com- 
posed user automaton, and M D  ghe mutez  object with t ime bounds [0, (3n+  11)a] 
for the crit class and [0, 2a] for each remi class. Then D x U <_ M D x U. 

5.5 E x a m p l e :  L e L a n n - C h a n g - R o b e r t s  L e a d e r  E l e c t i o n  A l g o r i t h m  

Luchangco [18] gives a formal proof of an upper bound on time for the LeLann- 
Chang-Roberts leader election algorithm for ring networks [4, 16]. The algorithm 
is simple: every processor in the network sends its processor identifier clockwise, 
and smaller identifiers that  encounter larger identifiers are discarded. If a node 
receives its own identifier in a message, it elects itself as leader. An upper bound 
of c is assumed on the step time of each processor, and an upper bound of d is 
assumed for the time to deliver the oldest message in each channel. Under these 
assumptions, the time until a processor is elected is at most (n + 1)c + nd, if 
there are n processors in the ring. 

The difficulties in the proof involve the possible pile-up of identifiers in chan- 
nels, if some processors and channels operate faster than others. Luchangco's 
proof is again based on the ~milestone" idea. Here, there are n milestones; mile- 
stone i, 1 _< i _< n, is said to be reached when the slowest token has pro- 
gressed distance i around the ring. Formally, the specification au tomaton  is just  
Report[0, (n + 1)c + n ~ ,  and the intermediate automaton describes milestones 
that  are time at most c -4- d apart,  followed by a leader election report occurring 
at most time c after the final milestone. The mapping from the algorithm to 
the intermediate automaton computes how many milestones have been reached 
based on the least progress made by any identifier. Details can be found in [18]. 

5.6 P r o g r e s s  F u n c t i o n s  

I t  should be apparent that  the proofs in this section all have a similar style. In 
each case, the correspondence is a weak forward simulation. In each case, the 
simulation includes a set of inequalities involving calculated upper and lower 



415 

bounds. It is possible to formalize this common structure, and to establish gen- 
eral sufficient conditions for a relation with this structure to be a weak forward 
simulation. Doing this can systematize and slightly shorten the proofs. 

In some more detail, the heart of each proof is a collection of definitions 
of "progress functions", one corresponding to each upper or lower bound to be 
proved, i.e., an upper bound expression ub(C) and a lower bound expression 
lb(C) for each class of the specification automaton.  Then the portion of the 
simulation involving the las~ and firsg components is of the form: for all C, 
u.las~(C) >_ s.ub(C) and u.firs~(C) <_ s.lb(C). The rest of the forward simulation 
is defined by the equations u.now = s.now and u.basic = f (s) ,  where f is some 
function of the implementation state. 

There are certain conditions that  the progress functions have to satisfy in 
order for this correspondence to be a forward simulation. They are somewhat 
technical, so I paraphrase them roughly here. (A formal presentation, which 
includes some additional technicalities not mentioned here, appears in [20]; how- 
ever, I remind the reader that  there are some technical differences between the 
model of that  paper and the one used here.) 

For all classes C of the specification automaton: 

1. If s is a start  state then f(s) is a start state; moreover, if C is enabled in 
f(s)  then s.ub(C) <_ upper(C) and s.lb(C) >_ lower(C). 

2. For each non-time-passage step from s' to s, there is a "corresponding" 
fragment of the specification automaton,  beginning with f(s ')  and ending 
with f (s ) ,  such that: 
(a) If a C step occurs in this fragment, then #.now >_ s'.Ib(C). 
(b) If C remains enabled and no action in C occurs, then s.ub(C) < s'.ub(C) 

and s.lb(C) > s'.lb(C). 
(c) If C becomes newly enabled then s.ub(C) < s'.uow + upper(C) and 

s.lb(c) >_ s'., ow + lo ,er(C). 
3. For each time-passage step from s' to s: 

(a) f ( s )  = f ( s ' ) .  
(b) s.now < s'.ub(C). 
(c) s.ub(C) < s',ub(C) and s.lb(C) > s'.lb(C). 

A general theorem in [20] says that  if a collection of progress functions sat- 
isfies these conditions, then combining the functions as indicated above yields a 
forward simulation. The examples in that  paper are developed in terms of the 
formal notion of progress functions. It appears to be straightforward to carry 
out the technical modifications of the theorem to fit the model of this paper, 
as well as to incorporate invariants for the implementation automaton into the 
conditions, thereby obtaining similar sufficient conditions for a weak forward 
simulation. However, this work remains to be done. 

6 L i v e n e s s  

It is sometimes desirable to prove liveness properties, e.g., properties that  say 
that  something eventually happens, even for systems with t ime bounds. In do- 



416 

ing this, it is sometimes useful to make liveness assumptions as well as timing 
assumptions. In this section, I give a way of describing systems with liveness 
assumptions, and a way, based on simulations and an "Execution Correspon- 
dence lemma", to verify that t imed systems satisfy liveness properties. These 
notions are taken from [12]. I illustrate these methods with a proof of liveness 
for Fischer's mutual  exclusion algorithm. 

6.1 Augmented  Timed Automata  and Execut ion Correspondence 

In order to describe liveness properties, I augment the timed au tomaton  model. 
An augmented timed automaton consists of a t imed automaton A, together with 
a subset L of the admissible t imed executions called the live ~imed ezecutions. 
(Normally, E is required to be of a restricted form - to contain an extension 
of every "finite" t imed execution of A; however, I will not address this issue 
further in this paper, but refer the reader to [12].) A timed au tomaton  A can 
be regarded as a special case of an augmented timed automaton,  where the 
live timed executions are just the entire set of admissible executions. Define an 
admissible t imed trace of A to be a live timed trace of (A, L) provided that  it is 
the timed trace of some live timed execution of (A, L). 

If (A, L) and (S,  M) are augmented timed automata,  and A and B are com- 
patible, then I define the composition of (A, L) and (B, M) to be the augmented 
timed automaton (A x B, N),  where N is the set of admissible executions of A x B 
that  project onto A and B to give timed executions in L and M, respectively. 

If (A, L) and (B, M) are augmented timed automata,  I define (A, L) < 
(B, M) provided that  all the live timed traces of (A, L) are also live t imed traces 
of (B, M).  Then composition is substitutive with respect to <. 

For any augmented timed automaton (A, L), I define La, the live discrete 
ezecutions, to be the set of admissible discrete executions of A that  sample 
timed executions in L. 

Given a timing-based algorithm with some additional liveness assumptions, 
it is natural  to express the algorithm as an augmented timed au tomaton  (A, L). 
If one wants to show that  the algorithm satisfies certain high-level liveness prop- 
erties, then an effective strategy is to express the entire specification, safety 
plus liveness conditions, as another augmented timed automaton (B, M).  Then 
showing that  the algorithm satisfies the required liveness properties amounts  to 
showing that  (A, L) < (B, M).  

Now I describe one strategy for showing that (A, L) < (B, M).  This strategy 
involves first showing a simulation from A to B, yielding safety and timing 
properties as usual. But more strongly, it turns out that  a simulation yields a 
close correspondence between any admissible discrete execution of A and some 
admissible discrete execution of B. For instance, consider the following definition 
of a correspondence between discrete executions of two t imed automata .  The 
definition is adapted slightly from [12]. Let A and B be timed au tomata  with 
the same visible actions and let R be a relation over sta~es(A) and states(B) that  
only relates states with the same now component. Let a = so~rlsl~r2s2.., and 
a '  = s'0 ~r'lsl' 7r'2s2 �9 �9 ' be admissible discrete executions of A and B, respectively. I 



417 

say that  a and a '  are related by R, or (a, a ~) E R, provided that  there is a total 
nondecreasing mapping m from natural  numbers (i.e., indices of states in a)  to 
natural  numbers (i.e., indices of states in a ' ) ,  such that: 

1. m(0)  = 0. 
2. (si, s~(i)) E R for all i. 

3. The execution fragment s~(~) �9 .. s Im(~+1) contains the same sequence of t imed 
visible actions as the step si, 7ri+l, s~+l. 

Tha t  is, the initial states of a and al correspond, corresponding states are R- 
related, and the fragment corresponding to any step has the same sequence of 
t imed visible actions. I also say that  A and B are related by R (or (A, B) E R) 
if for every admissible discrete execution of A, there is an R-related admissible 
discrete execution of B. 

The next result says that  all of the simulations that have been presented in 
this paper yield a stronger correspondence than just inclusion of sets of admissi- 
ble t imed traces - they yield that  the two automata  are related by the simulation 
relation. 

L e m m a 3 6  ( E x e c u t i o n  C o r r e s p o n d e n c e ) .  Suppose that R is a refinement, 
forward simulation, or image-finite backward simulation from A to B (or a weak 
versio= thereof). The  (A, B) E R. 

To show that  (A, L) < (B, M),  one first produces a simulation from A to B, 
in order to obtain a close correspondence between admissible discrete executions 
as just  described. Given a live timed trace/3 of (A, L), one can obtain a t imed 
execution a l  in L that  gives rise to ft. Let a be any admissible discrete execution 
of A that  samples a l ;  Lemma 1 implies that  a exists. Then a E Ld, by definition 
of Ld, and Lemma 2 implies that  a also has fl as its t imed trace. Next, one 
uses the Execution Correspondence Lemma to obtain a corresponding admissible 
discrete execution a ~ of B, again with fl as its t imed trace. Then one shows that  
cJ E Md, by performing a case analysis based on the correspondence with a and 
the definition of Ld; this is the part of the proof that  is specially tailored for each 
pair of augmented timed automata.  Let a2 be a live timed execution of (B, M) 
that  is sampled by a~; a~. exists by definition of Mg. Lemma 2 implies that  a2 
also has fl as its t imed trace. This implies that /3  is a live timed trace of (B, M),  
as needed. 

In this way, the liveness proof can be built incrementally on top of the sim- 
ulation proof. 

6.2 E x a m p l e :  F i s c h e r  M u t u a l  E x c l u s i o n  Algorithm 

I consider a version F "  of Fischer's algorithm that  is similar to the t ime-bounded 
version F I, but instead of the explicit upper bounds of a on the steps, it just  has 
eventual upper bounds for each type of step of each individual process. However, 
the upper bound of a on each set~ and the lower bound of b on each checki are 
retained, because they are needed to guarantee the safety property (mutual 



418 

exclusion). Formally, F II can be described as an augmented t imed au toma ton  
(F, LF),  where F is the original Fischer algori thm presented in Section 3 and 
LF is a liveness condition for F giving the eventual bounds for all the non-set  
steps. 

Similarly, I use a version I "  of the intermediate algori thm I ~, giving eventual 
bounds for the classes seize, stabilize, eri~ and rem~ for each i. Formally, by 
removing the t ime bounds from I ~, I can obtain a version I having neither t ime 
bounds nor liveness conditions; then I "  can be described as an augmented t imed 
au tomaton  (I ,  s  where LI  is a liveness condition for I giving eventual bounds 
for all the classes. 

Finally, I use an eventual version M "  of M,  giving eventual bounds for the 
classes crit  and rem~ for each i. Formally, M "  can be described as an augmented 
t imed au tomaton  (M, LM), where M is the untimed mutex object presented in 
Section 3 and LM is a liveness condition for M giving the eventual bounds. Thus, 
the liveness at each level is described using fairness conditions in the usual style 
for I / O  au tomata .  

I carry out the liveness proof in two stages, first showing that  every live t imed 
trace of I "  • U is a live t imed trace of M "  • U, and then showing that  every live 
t imed trace of F "  x U is also a live t imed trace of I "  x U. I use the Execution 
Correspondence Lemma  for each of these steps. 

First, consider the mapping  from I "  • U to M "  x U. This proof rests on a 
simulation from I x U to M x U. Note that  I never actually gave such a simulation, 
but only a t imed version, from I ~ • U to M ~ • U. However, the unt imed version 
of this simulation can be derived straightforwardly from the t imed version, just  
by dropping the first and last components in the simulation. 

A simple invariant for I • U is useful: 

L e m m a 3 7 .  The following is ~rue in all reachable states of  I x U: I f  s tatus ~= 
start  ~hen region~ --- try  for  some i. 

Let a be a live discrete execution of I "  x U. Then a is an admissible discrete 
execution of I • U. Then by the Execution Correspondence Lemma,  get a ', a 
corresponding admissible discrete execution of M x U. It  suffices to show tha t  a '  
is also a live discrete execution of M "  x U. I work by contradiction, supposing 
tha t  c~' is not live. There are two liveness conditions that  ~ '  can fail to satisfy: 
fairness for the class crit, or fairness for one of the classes rem~. I illustrate the 
method by sketching the argument  for crit. 

Suppose that  the liveness condition for crit fails. Then crit  must  be enabled 
f rom some point on in a ' ,  but no cri2 action ever occurs after tha t  point. Since 
cri~ is enabled from the given point on in ~ it follows that  region~ = try  
for some i and region~ ~s cri2 for all i, f rom that  point on. By the execution 
correspondence, from some corresponding point on in a ,  no crit action ever 
occurs, and the same region conditions hold. I consider cases. 

1. s tatus = stab occurs sometime after the designated point in a .  
Then Lemma  37 implies that  region~ -- try at that  point~ for some i. Since no 
crit action ever occurs, this persists. Also, the condition s~atus = stab must  



419 

persist, since the cri~ actions are the only ones that  can change s ta tus  f rom 
M.ab to anything else. Then fairness of a for cri~ implies tha t  eventually some 
cvit action occurs, a contradiction. Therefore, status = stab never occurs. 

2. s ta tus  = seized occurs sometime after the designated point in a .  
Then this condition persists, since the only action tha t  can cause it to change 
is s~abilize, which would lead to status = stab, contradicting the first case. 
But then fairness of ot for stabilize implies that  eventually stabilize must  
occur, a contradiction. 

3. s ta tus  = s tar t  everywhere after the designated point in a .  
Then the correspondence implies that  seize is enabled throughout  that  por- 
tion of a ,  so the fairness of a for seize implies that  eventually seize occurs. 
But this leads to stat~ts = seized, contradicting the second case. 

Next, consider the mapping  from F "  x U to I "  x U. This proof  rests on a 
simulation f rom F x U to I x U. Again, I have only given a t imed version of this 
simulation, f rom F ~ • U to I ~ • U, but the untimed simulation can be derived 
f rom the t imed version by dropping the J~rst and last components.  

I t  is possible to use the Execution Correspondence Lemma  based on the same 
kind of execution correspondence defined above, but  a more efficient approach 
is to define a stronger (but messier) kind of correspondence, also implied by the 
simulations of this paper. This correspondence preserves not only the visible ac- 
tions, but  also certain information about  internal actions. A little more precisely, 
to each internal step of the implementat ion automaton,  I assign a particular se- 
quence of internal actions of the specification automaton.  Provided that ,  in the 
simulation proof, each internal step of the implementat ion always corresponds 
to an execution fragment  with the assigned sequence, such a correspondence 
also holds for the complete admissible t imed executions. Tha t  is, an additional 
condition 4 is added to the correspondence definition, saying that ,  if ~ + t  is an 
internal action, then the execution fragment  # �9 m(0 "'Sm(~+l) contains exactly 

the sequence of internal actions assigned to the step si ~ si+l.  

In the current example,  I assign the seize action to each set step that  changes 
m from 0 to a process index. I assign the st=bilize action to each set step occurring 
when no process is in cri~ or reset, and after which there are no other processes 
with pc -- set. Note tha t  both  actions can be assigned to the same set step; in 
this case, they are assigned in the order seize,  s~abilize. The empty  sequence is 
assigned to all other internal steps. These assigned sequences of internal actions 
are exactly what  is s imulated by the given internal steps, in the simulation proof 
I sketched earlier. 

Now for the proof. Let a be a live discrete execution of F "  x U. Then a is an 
admissible discrete execution of F x U. Then by the Execution Correspondence 
L e m m a  (using the stronger correspondence just  defined), get a I, a corresponding 
admissible discrete execution of I x U. It  suffices to show that  a ~ is also a live 
discrete execution of I "  x U. I work by contradiction, supposing that  a ~ is not 
live. There are four liveness conditions that  ~ can fail to satisfy: fairness for the 
class seize, stab, or crit, or fairness for one of the classes rem~. 



420 

1. seize 

Suppose tha t  the liveness condit ion for seize fails. Then  seize must  be en- 
abled f rom some point  on in a~, but  no seize action ever occurs after t ha t  
point.  Since seize is enabled f rom the given point  on in a t, it follows tha t  
region i ---- t ry  for some i, re#ion~ ~ erit for all i, and status = start,  f rom 
tha t  point  on. By the execution correspondence, f rom some corresponding 
point  on in a ,  the same region condit ions hold, either m -- 0 or else some 
process has pc = reset,  and no set  step ever occurs tha t  changes m f rom 0 to 
a process index. I consider cases. 

(a) A later point  p is reached in a where no process is at  reset.  
Then  it mus t  be tha t  m -- 0 at  point  p, and consequently f rom tha t  
point  onward.  This implies by L e m m a  18 that ,  f rom point  p onward,  no 
process is ever at leave-try. 
I f a  point  is reached after p at  which some process i is at  set, then fairness 
for set~ in a implies tha t  a set f rom 0 to an index eventually occurs, a 
contradict ion;  therefore, no process is ever at  set. 

I f a  point  is reached after p at  which some process i is at  test, then fairness 
for tesQ says tha t  testi  eventually occurs, and since m stays equal to 0, 
the test succeeds, causing pc i to becomes set, a contradict ion.  Therefore,  
no process is ever at test.  

The only remaining possibility is tha t  some process i remains  at  check 
f rom point  p onward. But  then fairness for checki in a implies t ha t  cheeki 
eventually occurs, fails because m = 0, and results in process i going to 
test. This is again a contradict ion.  
This  covers all the  possibilities (because some process mus t  be in the 
t ry ing region f rom point  p onward),  so this entire case is contradicted.  

(b) At  every later point  in ex, some process is as reset.  
Note tha t  in this f ragment ,  no new process ever reaches reset, because 
no process is ever in the critical region. Then  repeated use of  fairness for 
reset implies tha t  eventually there is no process at  reset, a contradict ion.  

2. stabilize: 

Suppose tha t  the liveness condit ion for stabilize fails. Then  stabilize must  be 
enabled f rom some point  on in a ~, but  no stabilize act ion ever occurs after 
tha t  point.  Since stabilize is enabled f rom the given point  on in a ~, it follows 
tha t  status -- seized f rom tha t  point  on. By the execution correspondence,  
f rom some corresponding point  on in cq m r 0, no process is at  crit or reset,  
and some process is at set. Note tha t  in this f ragment ,  no new process ever 
reaches set, because m S 0. Then  repeated use of  fairness for set  implies t ha t  
eventually there is no process at  se~. This is a contradict ion.  

3. crit 
Suppose tha t  the liveness condit ion for erit  fails. Then  crit must  be enabled 
f rom some point  on in a ~, but  no erit act ion ever occurs after tha t  point .  Since 
crit is enabled f rom the given point  on in a ~, it follows tha t  st=tus = s~ab f rom 
tha t  point  on. By the execution correspondence, f rom some corresponding 
point  on in a ,  m ~ 0, no process is at  crit or reset, and no process is at  



421 

set. Moreover, no erit action occurs. This implies that  z remains equal to 
i for some fixed i. By Lemma 22, it must be that  from this point onward, 
this process i must either be at check or leave4ry. If it is ever at leave-try, 
then fairness to crit in a easily implies that  a crit action eventually occurs, 
a contradiction. So it must be that  process i is at check throughout the 
fragment. Then fairness implies that  cheek~ eventually occurs, and succeeds 
since z = i. But this leads to pc~ = leave-try, which is again a contradiction. 

4. remi 
Left to the reader. 

Such a proof can be written more formally using a temporal language that  
allows mention of both states and actions, such as the ones used in [36, 40]. 

7 Discussion 

In this paper, I have given a comprehensive survey of simulation methods and 
other related methods for reasoning about timing-based systems. The main con- 
cepts and techniques that  I have presented are the following: 

1. The general t imed automaton model. 
2. Refinements, forward and backward simulations, and their weak versions. 
3. The special-case MMT model. 
4. Building time, in particular, the current time and timing predictions, into 

the state. 
5. Invariants, especially those involving time predictions. 
6. Milestones. 
7. Progress functions. 
8. Execution correspondence. 
9. Weak fairness for automaton classes. 

I have illustrated these methods with a substantial number of examples. 
I do not mean to claim that  simulations provide an all-purpose proof method 

for timing-based systems. Even though there are completeness results for the 
combination of forward and backward simulations, there are important examples 
for which simulations do not provide the most natural proof of correctness. For 
example, some algorithms are best understood as the result of transformations of 
au tomata  that  reorder the steps of executions, shifting the part of the execution 
that  occurs at one node relative to the part that  occurs at another. For examples 
of such algorithms in the timed setting, consider the transformations described 
by Neiger and Toueg [30] and by Chaudhuri et al. [5]. In the untimed setting, 
this style of reasoning occurs in arguments about database concurrency control 
[21], and about synchronizers [2, 7]. It also occurs in arguments about algorithms 
that  have the structure of communication-closed layers [9]. 

Several other examples have been verified, or partially verified, using the 
methods of this paper. These include a timed protocol for at-most-once message 
delivery due to Liskov, Shrira and Wroclawski [17]; the proof appears in [36, 38]. 



422 

They also include a bounded message queue example designed to show that, 
with certain limitations on the rate of message arrival and message processing, 
the length of a message queue stays bounded. The proof appears in [18]. A 
third example is a timing-based link-state packet distribution protocol designed 
by Perlman [33]; Although efficient in practice, this protocol has bad worst- 
case behavior, which was identified in the course of sketching an analysis using 
simulation methods. 

Future work includes continuing to apply these methods to additional prob- 
lems. Telecommunications and real-time process control are general areas that 
should serve as rich sources for appropriate timing-based algorithms. 

It also remains to systematize and formalize liveness proofs of the sort out- 
lined here. This will probably involve fixing a suitable temporal language and 
logic. 

Finally, proofs of the sort given in this paper appear to be excellent candidates 
for mechanical verification using automatic theorem-provers. Several researchers 
have already done work using automatic theorem-provers to assist in carrying 
out simulation proofs [32, 37]. Work in progress [39] involves using the Larch 
Prover [11] to carry out some simple simulation proofs for timing properties. 

8 A c k n o w l e d g e m e n t s  

I would like to thank my co-workers, Hagit Attiya, Victor Luchangco, Jorgen 
So, guard-Andersen and Frits Vaandrager, for their great contributions to the 
ideas in this paper. Victor deserves special thanks for helping with the many 
details of the examples in this paper. Roberto Segala and Ruiner Gawlick also 
made many useful suggestions on the presentation. 

R e f e r e n c e s  

1. M. Abadi and L. Lamport. An old-fashioned recipe for real time. In Proceedings 
of REX Workshop "Real-Time: Theory in Practice", volume 600 of Lecture Notes 
in Computer Science, pages 1-27, Mook, The Netherlands, June 1991. Springer- 
Verlag. 

2. Baruch Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804- 
823, October 1985. 

3. K. M. Chandy and J. Misra. Parallel program design: a foundation. Addison- 
Wesley, 1988. 

4. E. Chang and R. Roberts. An improved algorithm for decentralized extrema- 
finding in circular configurations of processes. Communications of the A UM, 
22:281-283, May 1979. 

5. Soma Chaudhuri, Ruiner Gawlick, and Nancy Lynch. Designing algorithms for dis- 
tributed systems with partially synchronized clocks. In Proceedings of the Twelve 
Annual A CM Symposium on the Principles of Distributed Computing, August 1993. 

6. J. Davies and S. Schneider. An introduction to CSP, August 1989. Technical 
Monograph PRG-75. 



423 

7. Harish Devarajan. Correctness proof for a network synchronizer. Master's thesis, 
MIT Dept. of Electrical Engineering and Computer Science, May 1993. 

8. E.W. Dijkstra. Solution of a problem in concurrent programming control. Com- 
munications of the ACM, 8(9):569, September 1965. 

9. T. Elrad and N. Frances. Decomposition of distributed programs into 
communication-closed layers. Science of Computer Progamming, 2:155-173, 1982. 

10. Michael Fischer. Re: Where are you? E-mail message to Leslie Lamport. 
Arpanet message number 8506252257.AA07836~YALE-BULLDOG.YALE.ARPA 
(47 lines), June 25, 1985 18:56:29EDT. 

11. Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover. Tech- 
nical report, Digital Systems Research Center, 130 Lytton Avenue, Pato Alto, 
California 94301, December 1991. Research Report 82. 

12. R. Gawlick, N. Lynch, R. Segala, and J. Segaard-Andersen. Liveness in timed and 
untimed systems. In preparation, 1993. 

13. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985. 
14. Butler Lampson. Principles for computer system design, 1993. Turing Award Talk. 
15. Butler Lampson, William Weihl, and Eric Brewer. 6.826 Principles of computer 

systems, Fall 1991. MIT/LCS/RSS 19, Massachusetts Institute of Technology, 
1992. Lecture notes and Handouts. 

16. G. LeLann. Distributed systems, towards a formal approach. In IFIP Congress, 
pages 155-160, Toronto, 1977. 

17. B. Liskov, Luiba Shrira, and John Wroclawski. Efficient at-most-once messages 
based on synchronized clocks. Technical Report MIT/LCS/TR-476, Laboratory 
for Computer Science, Massachusetts Institute of Technology, April 1990. 

18. Victor Luchangco. Using simulation techiniques to prove timing properties. Mas- 
ter's thesis, MIT Electrical Engineering and Computer Science, 1993. In progress. 

19. N. Lynch. Multivalued possibilities mappings. In Rex Workshop, volume 430 of 
Lecture Notes in Computer Science, Mook, The Netherlands, May 1989. Springer- 
Verlag. Also, MIT/LCS/TM-422. 

20. N. Lynch and I-I. Attiya. Using mappings to prove timing properties. Distrib. 
Comput., 6(2):121-139, 1992. 

21. N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions. Morgan 
Kaufmann Publishers, 1994. 

22. N. Lynch and B. Patt-Shamir. Distributed algorithms. MIT/LCS/RSS 20, Mas- 
sachusetts Institute of Technology, 1992. Lecture notes for 6.852. 

23. N. Lynch and M. Turtle. Hierarchical correctness proofs for distributed algorithms. 
Master's thesis, MIT Dept. of Electrical Engineering and Computer Science, April, 
1987. Also, MIT/LCS/TR-387. 

24. N. Lynch and M. Turtle. An introduction to Input/Output automata. CWI- 
Quarterly, 2(3):219-246, September 1989. Also, MIT/LCS/TM-373. 

25. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations - Part I: 
Untimed systems. Submitted for publication. Also, MIT/LCS/TM-486. 

26. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations - Part II: 
Timing-based systems. Submitted for publication. Also, MIT/LCS/TM-487. 

27. Nancy Lynch and Frits Vaandrager. Forward and backward simulations for timing- 
based systems. In Proceedings of REX Workshop "Real-Time: Theory in Practice", 
volume 600 of Lecture Notes in Computer Science, pages 397-446, Mook, The 
Netherlands, June 1991. Springer-Verlag. Also, MIT/LCS/TM-458. 

28. O. Mulet, Z. Manna, and A. Pnueli. From timed to hybrid systems. In Proceedings 
of REX Workshop "Real-Time: Theory in Practice", volume 600 of Lecture Notes 



424 

in Computer Science, pages 447-484, Mook, The Netherlands, June 1991. Springer- 
Verlag. 

29. M. Merritt, F. Modugno and M. Turtle. Time constrained automata. In CON- 
CUR'91 Proceedings Workshop on Theories of Concurrency: Unification and Ex- 
tension, Amsterdam, August 1991. 

30. Gfl Neiger and Sam Toueg. Simulating synchronized clocks and common knowledge 
in distributed systems. J. ACM, 40(2):334-367, April 1993. 

31. X. Nicollin and J. Sifalds. The algebra of timed processes ATP: Theory and appli- 
cation, November 1991. Technical Report RT-C26, LGI-IMAG (revised version). 

32. Tobias Nipkow. Formal verification of data type refinement. In Proceedings of 
REX Workshop "Steptvise Refinement of Distributed Systems: Models, Formalisms, 
Correctness", volume 430 of Lecture Notes in Computer Science, pages 561-591, 
Mook, The Netherlands, June 1989. Springer-Verlag. 

33. Radia Perlman. Interconnections: bridge and rousers. Addison Wesley, 1992. 
34. A. Pnueli, 1988. Personal Communication. 
35. G.M. Reed and A.W. Roscoe. A timed model for communicating sequential pro- 

cesses. Theor. Comp. Sci., pages 249-261, 58 1988. 
36. JCrgen SCgaard-Andersen. Reliable at-most-once message delivery protocols, a 

protocol verification example. PhD thesis in progress. 
37. Jergen SCgaard-Andersen, Stephen J. Garland, John V. Guttag, Nancy A. Lynch, 

and Anna Pogosyants. Computer-assisted simulation proofs. In Proceedings of the 
Conference on Computer-Aided Verification, Heraldion, Crete, Greece, June 1993. 

38. J~rgen Segaard-Andersen, Nancy A. Lynch, and Butler Lampson. Correctness of 
at-most-once message delivery protocols. In FORTE '93 - Sixth International Con- 
ference on Formal Description Techniques, pages 387-402, Boston, MA, October 
1993. 

39. Ekrem Soylemez. Automatic verification of the timing properties of MMT au- 
tomata. Master's thesis, MIT Dept. of Electrical Engineering and Computer Sci- 
ence, 1993. In progress. 

40. E.W. Stark. Foundations of a Theory of Specification for Distributed Systems. PhD 
thesis, Massachusetts Institute of Technology, Laboratory for Computer Science, 
Cambridge, MA 02139, August 1984. Also, MIT/LCS/TM-342. 

41. F.W. Vaandrager and N.A. Lynch. Action transducers and timed automata. In 
Proceedings of CONCUR '9~, 3rd International Conference on Concurrency The- 
ory, Lecture Notes in Computer Science, Stony Brook, NY, August 1992. Springer 
Verlag. 

42. J.L. Welch, L. Lamport, and N. Lynch. A lattice-structured proof technique ap- 
plied to a minimum spanning tree algorithm. In Proceedings of the 7 th Annual 
A CM Symposium on Principles of Distributed Computing, pages 28-43, Toronto, 
Canada, August 1988. Also, MIT/LCS/TM-361. 


