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safety properties; we would like to use similar methods to also prove timing properties(e.g., upper and lower bounds on time).In this paper, we describe a candidate for such a model, and use it to express somepowerful simulation techniques for proving correctness of timing-based systems. The styleof the model we de�ne is automata-theoretic, which is the natural style for expressingassertional methods. However, we expect that the model can also serve as a semanticmodel for interesting algebraic languages, and thus that process algebraic methods canalso be employed in the same framework. We de�ne several kinds of simulations includingre�nements, forward simulations, backward simulations, and hybrid versions that we callforward-backward and backward-forward simulations. We prove basic results for thesekinds of simulations, in particular, soundness and completeness theorems. We also de�nehistory relations and prophecy relations, which are abstract versions of the history andprophecy variables of Abadi and Lamport [1]. We prove theorems describing the propertiesof these various kinds of simulations and relating the di�erent kinds of simulations to eachother.The goal of extending simulation techniques to timing-based systems is also the mo-tivation for the work of Lynch and Attiya in [19]. That work, however, only exploresforward simulations. Also, the model used in [19] has considerably more structure thanthe very general model proposed here; it is based closely on the timed automaton modelof Merritt, Modugno and Tuttle [22], which assumes that the system being modeled isdescribable in terms of a collection of separate tasks, each with associated upper andlower bounds on its speed. This extra structure supports the development of some use-ful progress measure proof methods, which we do not develop here. On the other hand,the basic theorems about forward simulations that appear in [19] are stated in a settingthat has more structure than is really necessary for those theorems. In this paper, wemake only those assumptions that are needed for the basic results about simulation prooftechniques.We propose a notion of timed automaton, which is just an automaton (or labeledtransition system) equipped with some additional structure. Speci�cally, each state ofthe automaton has an associated time, which indicates the current time. (Thus we useabsolute time in the sense of [2].) The actions of the automaton are of three kinds:visible actions, time-passage actions, and a special internal action � . As in many otherformalisms for real-time, see for instance [2, 3, 7, 22, 24, 25, 32], all actions except for thetime-passage actions are modeled as occurring instantaneously, i.e., they do not changethe time component of the state.To specify times, we use a dense time domain, speci�cally, the nonnegative reals(starting with time 0 in the initial state), and we impose no lower bound on the timebetween events. This choice distinguishes our work from many others', e.g., [4, 7, 24, 25,29, 33], in which discrete time values or universal positive lower bounds on step time areused. Use of real-valued time is less restrictive, and we believe that the extra 
exibility willbe useful in the design and analysis of timing-based distributed algorithms. The penaltywe pay for this 
exibility is that our automata may admit some \Zeno executions", i.e.,in�nite executions in which the time component is bounded.Timed automata are required to satisfy a small set of basic axioms which expressnatural properties of time. For instance, there is an axiom saying that time-passage actionsmay not decrease time, and another saying that all the other actions are instantaneous.



Also, time can advance by a particular amount in one time-passage step if and only if itcan also advance by the same amount in two steps. (This property is called continuity in[32] and, more appropriately, time additivity in [26].) We attempt to use as few axiomsas possible to obtain the results about simulations. Later, as we try to express di�erentproof methods in terms of this model, we expect to have to add additional requirementsto obtain the desired properties. A typical axiom we may have to add at some point isthe axiom of time determinism [32, 26], which says that if from a given state s there aretime-passage actions leading to states s0 and s00, which both have the same time, s0 ands00 must be equal.In order to de�ne correctness for timed automata, we require notions of externalbehavior. We emphasize two notions. First, as the �nite behaviors of a timed automaton,we take the �nite timed traces, each of which consists of a �nite sequence of timed externalactions together with a �nal time. Second, as the in�nite behaviors, we take the admissibletimed traces, each of which consists of a sequence of timed external actions that canoccur in an execution in which the time grows unboundedly (i.e., a \non-Zeno" in�niteexecution). In a feasible timed automaton, i.e., a timed automaton in which each �niteexecution can be extended to an execution in which the time is unbounded, the �nite timedtraces are determined by the admissible ones. For this type of automaton, inclusion ofsets of admissible timed traces appears to be a good notion of implementation. One of themain objectives of this paper is to develop proof techniques to show that one automatonimplements another in this sense.Even though our notion of timed automata has less structure than those of [22] and[19], it is closely related to those models. Ours can be regarded as a generalization of themodel in [19], in which the notion of separate tasks is removed. (There are some minordistinctions; for instance, we do not include names for internal actions, but label themall by the special symbol � . This distinction is unimportant in a setting without separatetasks.) On the other hand, the model of [22] includes treatment of fairness and liveness,whereas our model does not. (The model in [22] was originally designed as an extensionof the non-timing-based input/output automaton model of [20], which emphasizes thenotion of fair execution.) The reason we have not equipped our model with facilitiesfor handling fairness and liveness is that we believe that in the setting of timing-basedsystems, all properties of practical importance can be expressed as safety properties,given the admissibility assumption that time increases without bound. The absence offairness and liveness considerations in our model seems to remove various technical andphilosophical complications, and to lead to simpler and more systematic proof techniques.The simulations we consider are derived from simulations studied in many places in theresearch literature. The simplest kind of simulation we consider is a re�nement, which is afunctional simulation similar to those studied in [17] and very similar to a homomorphismbetween automata in the sense of classical automata theory [6]. A re�nement from atimed automaton A to another timed automaton B is a time-preserving function fromstates of A to states of B such that (a) the image of every start state of A is a start stateof B, and (b) every step of A has a corresponding sequence of steps of B that beginsand ends with the images of the respective beginning and ending states of the given step,and that has the same visible actions. In the untimed setting, it is well known that thecorresponding untimed notion of re�nement implies an implementation relation betweenA and B; we give the analogous soundness result, as well as a partial completeness result,



for the timed setting.We then consider forward simulations and backward simulations, which are general-izations of re�nements that allow a set of states of B to correspond to a single state ofA. Forward simulations are similar to the the simulations of [28, 10], the possibilitiesmappings of [20], the downward simulations of [9, 14, 8], and the forward simulations of[13]. The correspondence conditions (a) and (b) above are generalized so that (a) everystart state of A has some image that is a start state of B, and (b) every step of A andevery state of B corresponding to the beginning state of the step yield a correspondingsequence of steps of B ending with the image of the ending state of the given step. Theusefulness of such simulations in proving correctness in the untimed setting has been welldemonstrated. (See, e.g., [18] for some examples.) Again, we give soundness and par-tial completeness results for the timed setting. Backward simulations occurred �rst in[9] under the name of upward simulations and were used later in the setting of CSP in[14, 8]. In [21, 12] it is observed that they are closely related to the prophecy variables�rst de�ned in [1]. In the case of a backward simulation, conditions (a) and (b) are gen-eralized so that (a) all images of every start state of A are start states of B, and (b)every step of A and every state of B corresponding to the ending state of the step yield acorresponding sequence of steps of B beginning with the image of the beginning state ofthe given step. Abadi and Lamport [1] demonstrate the usefulness of prophecy variables(and hence backward simulations) in the untimed setting, with some simple examples.Again, we give soundness and partial completeness results for the timed setting.We also consider forward-backward and backward-forward simulations, which are es-sentially compositions of one forward and one backward simulation, in the two possibleorders. The de�nition of a forward-backward simulation has been inspired by the work ofKlarlund and Schneider [15] for the untimed setting (with no internal actions) again, weextend these ideas to the timed setting (with internal actions). The notion of a backward-forward simulation is suggested by symmetry with forward-backward simulations. Whilesome of the results for this case are symmetric with the forward-backward case, others(notably, certain completeness results) do not hold.We also provide rede�nitions of the history variable notion of [27] and the prophecyvariable notions of [1], in terms of timed automata, and prove equivalence results betweenthese explicit de�nitions and our more abstract simulation de�nitions.In order to present our results for timed automata, we �nd it convenient �rst todescribe corresponding results for the simpler untimed setting. Therefore, we �rst de�nea simple untimed automaton model corresponding to the timed automaton model, andexplore all the types of simulations described above in terms of this model. The de�nitionsand results for timed automata are given in a subsequent step. The results for the timedsetting are completely analogous to those for the untimed setting; in fact, in many cases,our results for the timed setting are derived directly from those for the untimed setting.An advantage of this two-phase approach is that it highlights the adaptability of thevarious veri�cation techniques from the untimed to the timed setting.As far as the classi�cation of simulations is concerned, our work is closely relatedto and extends that of Jonsson [13]. However, whereas we focus on real-time issues,Jonsson addresses fairness instead. Also, Jonsson has more powerful notion of backwardsimulation, which we prefer not to use since it fails to reduce global reasoning aboutin�nite behaviors to local reasoning about states and actions.



We consider the main contributions of the paper to be the following. First, we give anorganized presentation, in terms of a very simple and abstract model, of a wide range ofimportant simulation techniques, together with their basic soundness and completenessproperties. We present the various simulation techniques in a \bottom-up" fashion, start-ing with simple ones such as forward and backward simulations and building up to morecomplicated simulations such as forward-backward simulations and history relations. Wegive elegant and short proofs of soundness and completeness results for complicated sim-ulations in terms of soundness and (partial) completeness results for simple simulations.Second, we introduce the notions of a timed automaton and its behavior, and extendexisting simulation notions to this new setting. Third, there are several speci�c newde�nitions and results, notably: (1) The de�nition of a notion of composition of forward-backward simulations. This allows us to prove that image-�nite forward-backward sim-ulations induce a preorder on the domain of general automata. (2) The introduction ofbackward-forward simulations. Although these simulations do not lead to a completeproof method, they are sound and possibly useful in practice. They arise naturally as thedual notion of forward-backward simulations. (3) The notions of history and prophecyrelations. Fourth and �nally, our presentation style, which bases the timed case on theuntimed case, explains the connections between these two settings.In what follows, some of the proofs have been omitted because of length restrictions.2 Preliminaries2.1 SequencesLet K be any set. The sets of �nite and in�nite sequences of elements of K are denotedby K� and K!, respectively. Concatenation of a �nite sequence with a �nite or in�nitesequence is denoted by juxtaposition; � denotes the empty sequence and the sequencecontaining one element a 2 K is denoted a. We say that a sequence � is a pre�x of asequence �, notation � � �, if either � = �, or � is �nite and � = ��0 for some sequence �0.A set S of sequences is pre�x closed if, whenever some sequence is in S all its pre�xes arealso. If � is a nonempty sequence then �rst(�) returns the �rst element of �, and tail(�)returns � with its �rst element removed. Moreover, if � is �nite, then last(�) returns thelast element of �. If � is a sequence over K and L � K, then �dL denotes the sequenceobtained by projecting � on L. If S is a set of sequences, SdL is de�ned as f�dL j � 2 Sg.2.2 Sets, Relations and FunctionsA relation over sets X and Y is de�ned to be any subset of X � Y . If f is a relationover X and Y , then we de�ne the domain of f to be domain(f ) �= fx 2 X j (x; y) 2f for some y 2 Y g, and the range of f to be range(f ) �= fy 2 Y j (x; y) 2 f for some x 2Xg. A total relation over X and Y is a relation f over X and Y with domain(f ) = X. IfX is any set, we let id(X) denote the identity relation overX and X, i.e., f(x; x) j x 2 Xg.We de�ne composition of relations in the usual way, i.e., if f and g are relations overX andY and over Y and Z, respectively, then g �f denotes the relation over X and Z consistingof all pairs (x; z) such that there exists y 2 Y with (x; y) 2 f and (y; z) 2 g. For allrelations f , g and h, f � (g �h) = (f � g) �h. Also, for X � domain(f ) and Y � range(f ),



id(X) � f = f � id(Y ) = f . If f is a relation over X and Y , then the inverse of f , writtenf�1, is de�ned to be the relation over Y and X consisting of those pairs (y; x) such that(x; y) 2 f . Recall that for any pair of relations f and g, (g � f)�1 = f�1 � g�1. If fis a relation over X and Y , and Z is a set, then fdZ is the relation over X \ Z and Ygiven by fdZ �= f \ (Z � Y ). If f is a relation over X and Y and x 2 X, we de�nef [x] = fy 2 Y j (x; y) 2 fg. We say that a relation f over X and Y is a function fromX to Y , and write f : X ! Y , if jf [x]j = 1 for all x 2 X; in this case, we write f(x) todenote the unique element of f [x]. A function c from X to Y is a choice function for arelation f over X to Y provided that c � f (i.e., c(x) 2 f [x] for all x 2 X). If X is aset, P(X) denotes the powerset of X, i.e., the set of subsets of X, and PN(X) the set ofnonempty subsets of X, i.e., the set P(X)�f;g. We say that a relation f over X and Yis image-�nite if f [x] is �nite for all x in X. If f is a relation over X and P(Y ), then wesay that f is image-2-�nite if every set in the range of f is �nite.2.3 A Basic Graph LemmaWe require the following lemma, a generalization of K�onig's Lemma [16]. IfG is a digraph,then a root of G is de�ned to be a node with no incoming edges.Lemma 2.1 Let G be an in�nite digraph that satis�es the following properties.1. G has �nitely many roots.2. Each node of G has �nite outdegree.3. Each node of G is reachable from some root of G.Then there is an in�nite path in G starting from some root.Proof: The usual proof for K�onig's Lemma extends to this case.3 Untimed Automata and Their BehaviorsThis section presents the basic de�nitions and results for untimed automata.3.1 AutomataWe begin with the de�nition of an (untimed) automaton. An automaton A consists of:� a set states(A) of states,� a nonempty set start(A) � states(A) of start states,� a set acts(A) of actions that includes a special element � , and� a set steps(A) � states(A) � acts(A) � states(A) of steps.



We let s; s0; u; u0,.. range over states, and a,.. over actions. We let ext(A), the externalactions, denote acts(A) � f�g. We call � the internal action. We use the term event torefer to an occurrence of an action in a sequence. If � is a sequence of actions then b� isthe sequence gained by deleting all � events from �. We write s0 a�!A s, or just s0 a�! s ifA is clear from the context, as a shorthand for (s0; a; s) 2 steps(A). In this section as wellas the next one, A, B,.. range over automata. Later, however, we will use these symbolsto range over timed automata.An execution fragment of A is a �nite or in�nite alternating sequence s0a1s1a2s2 � � �of states and actions of A, beginning with a state, and if it is �nite also ending with astate, such that for all i, si ai+1�! si+1. We denote by frag�(A), frag!(A) and frag(A) thesets of �nite, in�nite, and all execution fragments of A, respectively. An execution of A isan execution fragment that begins with a start state. We denote by execs�(A), execs!(A)and execs(A) the sets of �nite, in�nite, and all executions of A, respectively. A state s ofA is reachable if s = last(�) for some �nite execution � of A.Suppose � = s0a1s1a2s2 � � � is an execution fragment of A. Let 
 be the sequenceconsisting of the actions in �: 
 = a1a2 : : :. Then trace(�) is de�ned to be the sequence
̂. A �nite or in�nite sequence � of actions is a trace of A if A has an execution � with� = trace(�). We write traces�(A), traces!(A) and traces(A) for the sets of �nite, in�niteand all traces of A, respectively. These notions induce three preorders (i.e., re
exiveand transitive relations). For A and B automata, we de�ne A ��T B �= traces�(A) �traces�(B), A �!T B �= traces!(A) � traces!(B), and A �T B �= traces(A) � traces(B).Recall that the kernel of a preorder v is the equivalence � de�ned by x � y �= x v y^y vx. We denote by ��T, �!T and �T, the respective kernels of the preorders ��T, �!T and�T.Suppose A is an automaton, s0 and s are states of A, and � is a �nite sequence overext(A). We say that (s0; �; s) is a move of A, and write s0 �=)As, or just s0 �=) s whenA is clear, if A has a �nite execution fragment � with �rst(�) = s0, trace(�) = � andlast(�) = s.3.2 Restricted Kinds of AutomataAutomaton A is deterministic if jstart(A)j = 1, steps(A) contains no � steps, and for allstates s0 and all external actions a there is at most one state s such that s0 a�!A s.A has �nite invisible nondeterminism (�n) if start(A) is �nite, and for any state s0 andany �nite sequence � over ext(A), there are only �nitely many states s such that s0 �=)As.A is a forest if for each state of A there is a unique execution that leads to it. Recallthat a forest is characterized uniquely by the property that all states of A are reachable,start states have no incoming steps and each of the other states has exactly one incomingstep.The relation after(A) consists of the pairs (�; s) 2 (ext(A))� � states(A) for whichthere is a �nite execution of A with trace � and last state s.after(A) �= f(�; s) j 9� 2 execs �(A) : trace(�) = � and last(�) = sg:The relation past(A) �= after(A)�1 relates a state s of A to the traces of �nite executionsof A that lead to s. Also, de�ne before(A) to be the relation that relates a �nite sequence



� to those states of A from where an execution with trace � is possible.before(A) �= f(�; s) j 9� 2 frag�(A) : trace(�) = � and �rst(�) = sg:We write future(A) for before(A)�1.Lemma 3.11. If A is deterministic then after(A) is a function from traces�(A) to states(A).2. If A has �n then after(A) is image-�nite.3. If A is a forest then past(A) is a function from states(A) to traces�(A).3.3 Trace PropertiesFor A an automaton, its behavior, beh(A), is de�ned by beh(A) �= (ext(A); traces(A)).In this subsection, we characterize the structures that can be obtained as the behaviorbeh(A) for some automaton A as trace properties.A trace property P is a pair (K;L) with K a set and L a nonempty, pre�x closed set of(�nite or in�nite) sequences over K. We will refer to the constituents of P as sort(P) andtraces(P ), respectively. Also, we write traces�(P ) �= K� \ L and traces!(P ) �= K! \ L.For P and Q trace properties, we de�ne P ��T Q �= traces�(P ) � traces�(Q), P �!T Q �=traces!(P ) � traces!(Q), and P �T Q �= traces(P ) � traces(Q). With ��T, �!T and �T,we denote the kernels of the preorders ��T, �!T and �T, respectively. A trace propertyP is limit-closed if an in�nite sequence is in traces(P ) whenever all its �nite pre�xes are.Lemma 3.2 Suppose P and Q are trace properties with Q limit-closed. Then P ��T Q, P �T Q.Lemma 3.31. beh(A) is a trace property.2. If A has �n then beh(A) is limit-closed.3. A ��T B , beh(A) ��T beh(B), A �!T B , beh(A) �!T beh(B), and A �T B ,beh(A) �T beh(B).Proof: It is easy to see that beh(A) is a trace property.For Part 2, suppose A has �n. We use Lemma 2.1 to show that beh(A) is limit-closed.Suppose � is an in�nite sequence over ext(A) such that all �nite pre�xes of � are intraces(A). Consider the digraph G whose nodes are pairs (
; s), where 
 is a �nite pre�xof � and s is a state of A, and where there exists an execution � of A that ends with states and such that 
 = trace(�); there is an edge from node (
0; s0) to node (
; s) exactly if 
is of the form 
0a, where a 2 ext(A), and where s0 a=)As. Then G satis�es the hypothesesof Lemma 2.1, which implies that there is an in�nite path in G starting at a root. Thiscorresponds directly to an execution � having trace(�) = �. Hence, � 2 traces(A).Part 3 is immediate from the de�nitions.



Proposition 3.4 If B has �n then A ��T B , A �T B.Proof: Immediate from Lemmas 3.2 and 3.3.Example 3.1 The automata A and B of Figure 1 illustrate the di�erence between ��Tand �T. Note that automaton B does not have �n.- q q q q- - -a a a � � �A ��T6�T�T ? ? ? ?q q q q� � �a a a � � �BFigure 1: ��T versus �T.We close this subsection with the construction of the canonical automaton for a giventrace property.De�nition 3.1 For P a trace property, the associated canonical automaton can(P) isthe structure A given by� states(A) = traces�(P ),� start(A) = f�g,� acts(A) = sort(P) [ f�g, and� for �0; � 2 states(A) and a 2 acts(A), �0 a�!A � , a 2 ext(A) ^ � 0 a = �.Lemma 3.51. can(P) is a deterministic forest,2. beh(can(P)) ��T P ,3. P �T beh(can(P)), and4. if P is limit-closed then beh(can(P)) �T P .Proof: Parts 1 and 2 follow easily from the de�nitions. Since can(P) is deterministic itcertainly has �n, so it follows by Lemma 3.3 that beh(can(P)) is limit-closed. Now 3 and4 follow by combination of 2 and Lemma 3.2.Lemma 3.61. can(beh(A)) is a deterministic forest,2. can(beh(A)) ��T A,3. A �T can(beh(A)), and4. if A has �n then can(beh(A)) �T A.Proof: By combining Lemmas 3.3 and 3.5.



4 Simulations for Untimed AutomataIn this section, we develop simulation techniques for untimed automata.4.1 Re�nementsThe simplest type of simulation we consider is a re�nement. A re�nement from A to Bis a function r from states of A to states of B that satis�es the following two conditions:1. If s 2 start(A) then r(s) 2 start(B).2. If s0 a�!A s then r(s0) â=)Br(s).We write A �R B if there exists a re�nement from A to B.This notion is similar to that of a homomorphism in classical automata theory; see forinstance Ginzberg [6]. Besides our additional treatment of internal actions, a di�erencebetween the two notions is that the classical notion involves a mapping between the actionsets of the automata, whereas our re�nements do not.Example 4.1 Figure 2 presents some canonical examples of �R.?qq?a���
?aC �T�R6�R ?q���
?aD ? ?q q? ?q qa bE �T�R6�R ?qq q����� AAAAUa bFFigure 2: Re�nements.The following technical lemma is a straightforward consequence of the de�nition of are�nement.Lemma 4.1 Suppose r is a re�nement from A to B and s0 �=)As. Then r(s0) �=)Br(s).Proposition 4.2 �R is a preorder (i.e., is transitive and re
exive).Proof: The identity function id(states(A)) is a re�nement from A to itself. This impliesthat �R is re
exive. Using Lemma 4.1, transitivity follows from the observation that ifr is a re�nement from A to B and r0 is a re�nement from B to C, r0 � r is a re�nementfrom A to C.Theorem 4.3 (Soundness of re�nements) A �R B ) A �T B.



Proof: Suppose A �R B. Let r be a re�nement from A to B, and let e be a functionthat maps each move (s0; �; s) of B to a �nite execution fragment of B from s0 to s withtrace �. Suppose � 2 traces(A). Then there exists an execution � = s0a1s1a2s2 � � � ofA with � = trace(�). By the �rst condition in the de�nition of a re�nement, r(s0)is a start state of B, and by the second condition, r(si) dai+1=)Br(si+1) for all i. Fori � 0, de�ne �i = e((r(si); dai+1; r(si+1))). Next de�ne sequence �0 to be the (in�ni-tary) concatenation �0tail(�1 )tail(�2 ) � � �. By construction, �0 is an execution of B withtrace(�0) = trace(�) = � 2 traces(B).Theorem 4.4 (Partial completeness of re�nements) Suppose A is a forest, B is deter-ministic and A ��T B. Then A �R B.Proof: The relation r �= after(B) � past(A) is a re�nement from A to B.4.2 Forward and Backward Simulations4.2.1 Forward SimulationsA forward simulation from A to B is a relation f over states(A) and states(B) thatsatis�es:1. If s 2 start(A) then f [s] \ start(B) 6= ;.2. If s0 a�!A s and u0 2 f [s0], then there exists a state u 2 f [s] such that u0 â=)Bu.We write A �F B if there exists a forward simulation from A to B.Example 4.2 Let C;D;E;F be as in Figure 2. Then D �F C and F 6�F E.Proposition 4.5 A �R B ) A �F B.Proof: Any re�nement relation is a forward simulation.The following lemma is the analogue for forward simulations of Lemma 4.1.Lemma 4.6 Suppose f is a forward simulation from A to B and s0 �=)As. If u0 2 f [s0],then there exists a state u 2 f [s] such that u0 �=)Bu.Proposition 4.7 �F is a preorder.Proof: For re
exivity, observe that the identity function id(states(A)) is a forwardsimulation from A to itself. For transitivity, use Lemma 4.6 to show that if f and f 0are forward simulations from A to B and from B to C, respectively, f 0 � f is a forwardsimulation from A to C.Theorem 4.8 (Soundness of forward simulations, [20, 11, 30]) A �F B ) A �T B.Proof: Versions of this proof appears in the cited papers. The proof is similar to thatof Theorem 4.3.Theorem 4.9 (Partial completeness of forward simulations) Suppose B is deterministicand A ��T B. Then A �F B.Proof: The relation f �= after(B) � past(A) is a forward simulation from A to B.



4.2.2 Backward SimulationsIn many respects, backward simulations are the dual of forward simulations. Whereasa forward simulation requires that some state in the image of each start state shouldbe a start state, a backward simulation requires that all states in the image of a startstate be start states. Also, a forward simulation requires that forward steps in the sourceautomaton can be simulated from related states in the target automaton, whereas thecorresponding condition for a backward simulations requires that backward steps can besimulated. However, the two notions are not completely dual: the de�nition of a backwardsimulation contains a nonemptiness condition, and also, in order to imply soundness ingeneral, backward simulations also require a �nite image condition. The mismatch is dueto the asymmetry in our automata between future and past: from any given state, all thepossible histories are �nite executions, whereas the possible futures can be in�nite.A backward simulation from A to B is a total relation b over states(A) and states(B)that satis�es:1. If s 2 start(A) then b[s] � start(B).2. If s0 a�!A s and u 2 b[s], then there exists a state u0 2 b[s0] such that u0 â=)Bu.We write A �B B if there exists a backward simulation from A to B, and A �iB B ifthere exists an image-�nite backward simulation from A to B.Example 4.3 Let A;B be as in Figure 1. Then A �B B but A 6�iB B. If C;D;E;F areas in Figure 2, then D 6�B C and F �iB E.Proposition 4.10 A �R B ) A �iB B.The following lemma is useful in the proofs of the preorder properties and of soundness.Lemma 4.11 Suppose b is a backward simulation from A to B and s0 �=)As. If u 2 b[s],then there exists a state u0 2 b[s0] such that u0 �=)Bu.Proposition 4.12 �B and �iB are preorders.Proof: The identity function id(states(A)) is a backward simulation from A to itself.Using Lemma 4.11 one can easily show that if b is backward simulation from A to B andb0 is a backward simulation from B to C, b0 � b is a backward simulation from A to C.Moreover, if both b and b0 are image-�nite, then b0 � b is image-�nite too.Theorem 4.13 (Soundness of backward simulations)1. A �B B ) A ��T B, and2. A �iB B ) A �T B.Proof: Suppose b is a backward simulation from A to B and suppose � 2 traces�(A).Then there is a move s0 �=)As, where s0 is a start state of A. Since b is a backwardsimulation it is a total relation, so there exists a state u 2 b[s]. By Lemma 4.11, thereexists u0 2 b[s0] with u0 �=)Bu. By the �rst condition of the de�nition of a backward



simulation, u0 2 start(B). Therefore, � 2 traces�(B), which shows the �rst part of theproposition.For the second part, suppose that b is image-�nite. We have already establishedA ��T B, so it is su�cient to show A �!T B. Suppose that � 2 traces!(A), and let� = s0a1s1a2 � � � be an in�nite execution of A with trace(�) = �.Consider the digraph G whose nodes are pairs (u; i) such that (si; u) 2 b and in whichthere is an edge from (u0; i0) to (u; i) exactly if i = i0+1 and u0 bai=)Bu. Then G satis�es thehypotheses of Lemma 2.1, which implies that there is an in�nite path in G starting at aroot. This corresponds directly to an execution �0 of B having trace(�0) = trace(�) = �.Hence, � 2 traces(B).In a recent paper, Jonsson [13] considers a weaker image-�niteness condition for back-ward simulations. Translated into our setting, the key observation of Jonsson is that inorder to prove A �T B, it is enough to give a backward simulation b from A to B withthe property that each in�nite execution of A contains in�nitely many states s with b[s]�nite. We do not explore this extension in this paper, primarily because it lacks a keyfeature of simulation techniques. Namely, it fails to reduce global reasoning about in�nitebehaviors to local reasoning about states and actions.The following partial completeness result slightly generalizes a similar result of Jonsson[12] in that it also alllows for � -steps in the B automaton.Theorem 4.14 (Partial completeness of backward simulations) Suppose A is a forest andA ��T B. Then1. A �B B, and2. if B has �n then A �iB B.Proof: We de�ne a relation b over states(A) and states(B). Suppose s is a state of A.Since A is a forest there is a unique trace leading up to s, say �. Now de�neb[s] = fu j 9� 2execs�(B) : trace(�) = �; last(�) = u ^ [�0 < �) trace(�0) 6=�]g:By letting b[s] consist only of those states of B which can be reached via a minimalexecution with trace �, we achieve that, if s is a start state, all the states in b[s] are startstates of B. It is also the case that b satis�es the other conditions in the de�nition of abackward simulation.Lemma 3.1 implies that b is image-�nite if B has �n.Proposition 4.15 Suppose all states of A are reachable, B has �n and A �B B. ThenA �iB B.Proof: Let b be a backward simulation from A to B and let s be a state of A. Sinces is reachable we can �nd a trace � 2 past(A)[s]. From the fact that b is a backwardsimulation it follows that b[s] � after(B)[�]. But since B has �n, after(B)[�] is �nite byLemma 3.1. This implies that b is image-�nite.Example 4.4 Figure 3 shows that the reachability assumption in Proposition 4.15 isessential. There is a backward simulation fromG toH, but even though H is deterministicthere is no image-�nite backward simulation.
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?aG �B6�iB ?q q q q q� � �a a a � � �HFigure 3: �B and �iB are di�erent, even for automata with �n.4.2.3 Combined Forward and Backward SimulationsSeveral authors have observed that forward and backward simulations together give acomplete proof method (see [9, 8, 14, 12]): if A ��T B then there exists an intermediateautomaton C with a forward simulation from A to C and a backward simulation from Cto B. We prove this below.Theorem 4.16 (Completeness of forward and backward simulations) If A ��T B thenthe following are true.1. 9C : A �F C �B B.2. If B has �n then 9C : A �F C �iB B.Proof: Let C = can(beh(A)). By Lemma 3.6, C is a deterministic forest and A ��T C.Since C is deterministic, A �F C by Theorem 4.9, and because C is a forest, C �B Bfollows by Theorem 4.14(1). If B has �n then C �iB B follows by Theorem 4.14(2).4.3 Forward-Backward and Backward-Forward Simulations4.3.1 Forward-Backward SimulationsForward-backward simulations were introduced by Klarlund and Schneider [15] who callthem invariants. They also occur in the work of Jonsson [13] under the name subsetsimulations, and are related to the failure simulations of Gerth [5]. Forward-backwardsimulations combine in a single relation both a forward and a backward simulation. Belowwe present simple proofs of their soundness and completeness by making this connectionexplicit.Formally, a forward-backward simulation from A to B is a relation g over states(A)and PN(states(B)) that satis�es:1. If s 2 start(A) then there exists S 2 g[s] such that S � start(B).2. If s0 a�!A s and S0 2 g[s0], then there exists a set S 2 g[s] such that for every u 2 Sthere exists u0 2 S0 with u0 â=)Bu.We write A �FB B if there exists a forward-backward simulation from A to B, andA �iFB B if there exists an image-2-�nite forward-backward simulation from A to B.The following theorem says that a forward-backward simulation can be obtained bycombining a forward and a backward simulation.



Theorem 4.171. A �F C �B B ) A �FB B.2. A �F C �iB B ) A �iFB B.Proof: Suppose f is a forward simulation from A to C, and b is a backward simulationfrom C to B. Then the relation g over states(A) and PN(states(B)) de�ned by g =f(s; b[u]) j (s; u) 2 fg is a forward-backward simulation from A to B. If b is image-�nitethen g is image-2-�nite.Proposition 4.181. A �F B ) A �iFB B.2. A �B B ) A �FB B.3. A �iB B ) A �iFB B.Proof: Immediate from Theorem 4.17, using that �iB and �F are re
exive.In combination with Theorem 4.17, the following theorem tells us that forward-backward simulations are equivalent to forward simulations followed by backward sim-ulations.Theorem 4.191. A �FB B ) (9C : A �F C �B B).2. A �iFB B ) (9C : A �F C �iB B).Proof: Let g be a forward-backward simulation from A to B, which is image-2-�nite ifA �iFB B. De�ne C to be the automaton given by:� states(C ) = range(g),� start(C ) = range(g) \P(start(B)),� acts(C ) = acts(B), and� for S0; S 2 states(C ) and a 2 acts(C ), S0 a�!C S , 8u 2 S 9u0 2 S0 : u0 â=)Bu.Then g is a forward simulation from A to C. Also, f(S; u) j S 2 states(C ) and u 2 Sg isa backward simulation from C to B, which is image �nite if g is image-2-�nite.In order to show that �FB and �iFB are preorders, we require a de�nition of compo-sition for forward-backward simulations, and a transitivity lemma.De�nition 4.1 If g is a relation over X and PN(Y ) and g0 is a relation over Y andPN(Z) then the composition g0 � g is a relation over X and PN(Z) de�ned as follows.(x; S0) 2 g0 � g , 9S 2 g[x];9c; a choice function for g0dS : S0 = [fc(y) : y 2 Sg:(The nonemptiness assumptions for g and g0 immediately imply the nonemptiness as-sumption for g0 � g.)



Lemma 4.20 Suppose g is a forward-backward simulation from A to B, and g0 is aforward-backward simulation from B to C. Then g0 � g is a forward-backward simulationfrom A to C. Moreover, if g and g0 are image-2-�nite then g0 � g is also image-2-�nite.Proof: For Condition 1 of the de�nition of a forward-backward simulation, supposes 2 start(A). Because g is a forward-backward simulation, there is a set S 2 g[s] withS � start(B). Since g0 is a forward-backward simulation, it is possible to �nd, for eachu 2 S, a set Su 2 g0[u] with Su � start(C ). Hence all states in the set S0 = SfSu j u 2 Sgare start states of C. Now let c be the function with domain S given by c(u) = Su. Thenc is a choice function for g0dS. From the de�nition of � it now follows that (s; S 0) 2 g0 � g.This shows that g0 � g satis�es Condition 1.Now we show Condition 2 of the de�nition of a forward-backward simulation. Supposes0 a�!A s and (s0; S0) 2 g0 � g. By de�nition of g0 � g, there exist T 0 2 g[s0] and a choicefunction c0 for g0dT 0 such that S0 = Sfc0(u0) : u0 2 T 0g. Because g is a forward-backwardsimulation from A to B, there is a set T 2 g[s] such that for each u 2 T there existsu0 2 T 0 with u0 â=)Bu. Consider any particular u 2 T . Choose u0 2 T 0 with u0 â=)Bu.Because g0 is a forward-backward simulation, there exists a set Su 2 g0[u] such that forevery v 2 Su there exists a v0 2 c0(u0) with v0 â=)Cv. De�ne a choice function c for g0dTby taking c(u) to be the set Su.Now consider the set S = Sfc(u) : u 2 Tg. Then (s; S) 2 g0 � g by de�nition. Byconstruction, we can �nd, for each v 2 S, a state v0 2 S 0 with v0 â=)Cv. Thus S has therequired property to show Condition 2.Finally, it is immediate from the de�nitions that, if g and g0 are image-2 �nite, g0 � gis also image-2-�nite.Proposition 4.21 �FB and �iFB are preorders.Proof: By Lemma 4.20.Theorem 4.22 (Soundness of forward-backward simulations, [15])1. A �FB B ) A ��T B, and2. A �iFB B ) A �T B.Proof: For part 1, suppose A �FB B. By Theorem 4.19, there exists an automaton Cwith A �F C �B B. By soundness of forward simulations, Theorem 4.8, A �T C, andby soundness of backward simulations, Theorem 4.13, C ��T B. This implies A ��T B.Part 2 is similar.Theorem 4.23 (Completeness of forward-backward simulations, [15]) Suppose A ��T B.Then1. A �FB B.2. If B has �n then A �iFB B.Proof: By Theorem 4.16, there exists an automaton C with A �F C �B B. Moreover,if B has �n then A �F C �iB B. Then Theorem 4.17 implies the needed conclusions.



4.3.2 Backward-Forward SimulationsHaving studied forward-backward simulations, we �nd it natural to de�ne and study adual notion of backward-formulation simulation.A backward-forward simulation from A to B is a total relation g over states(A) andP(states(B)) that satis�es:1. If s 2 start(A) then, for all S 2 g[s], S \ start(B) 6= ;.2. If s0 a�!A s and S 2 g[s], then there exists a set S 0 2 g[s0] such that for every u0 2 S0there exists a u 2 S with u0 â=)Bu.We write A �BF B if there exists a backward-forward simulation from A to B, andA �iBF B if there exists an image-�nite backward-forward simulation from A to B.As for forward-backward simulations, backward-forward simulations can be character-ized as combinations of forward and backward simulations.Theorem 4.241. A �B C �F B ) A �BF B.2. A �iB C �F B ) A �iBF B.Proposition 4.251. A �F B ) A �iBF B.2. A �B B ) A �BF B.3. A �iB B ) A �iBF B.Theorem 4.261. A �BF B ) (9C : A �B C �F B).2. A �iBF B ) (9C : A �iB C �F B).Proof: Let g be a backward-forward simulation from A to B, which is image-�nite ifA �iBF B. De�ne C to be the automaton given by:� states(C ) = range(g),� start(C ) = range(gdstart(A)),� acts(C ) = acts(B), and� for S0; S 2 states(C ) and a 2 acts(C ), S0 a�!C S , 8u0 2 S0 9u 2 S : u0 â=)Bu.Then g is a backward simulation from A to C (and image-�niteness carries over). Also,the relation f(S; u) j S 2 states(C ) and u 2 Sg is a forward simulation from C to B.In order to show the properties of backward-forward simulations, it is useful to relatethem to forward-backward simulations.



Theorem 4.271. A �BF B , A �FB B.2. A �iBF B ) A �iFB B.Proof: For one direction of 1, suppose that A �BF B. Then by Theorem 4.26, thereexists an automaton C with A �B C �F B. By Proposition 4.18, A �FB C and C �FB B.Now A �FB B follows by Proposition 4.21. The proof of 2 is similar.For the other direction of 1, suppose that f is a forward-backward simulation fromA toB. Given a state s of A, we de�ne g[s] to be exactly the set of subsets S of states(B) suchthat S intersects each set in f [s] in at least one element. Then g is a backward-forwardsimulation.Example 4.5 In general it is not the case that A �iFB B implies A �iBF B. Acounterexample is presented in Figure 4. The diagram shows two automata I and J . Inthe diagram a label > i next to an arc means that in fact there are in�nitely many steps,labeled i+ 1, i+ 2, i+ 3, etc..Figure 4: I �iFB J but I 6�iBF J .We claim that the relation g given byg[0] = ff0g; f00; 1g; f00; 10; 2g; : : :gg[n] = ff!g; f!0gg for n > 0is an image-�nite forward-backward simulation from I to J .However, there is no image-�nite backward-forward simulation from I to J . We seethis as follows. Suppose g is an image-�nite backward-forward simulation from I to J .In order to prove that this assumption leads to a contradiction, we �rst establish thatg[0] does not contain a �nite subset X of N. First note that by the �rst condition inthe de�nition of a backward-forward simulation, all sets in g[0] are nonempty. The proofproceeds by induction on the maximal element of X. For the induction base, observethat f0g 62 g[0], since 0 has an incoming 0-step in I but not in J . For the inductionstep, suppose that we have established that g[0] contains no �nite subset of N with amaximum less than n, and suppose X 2 g[0] with X a �nite subset of N with maximumn. Using that 0 has an incoming 0-step in I, the second condition in the de�nition of abackward-forward simulation gives that g[0] contains an element of g[0] which is a subsetof N with a maximum less than n. This contradicts the induction hypothesis.Pick some state n > 0 of I and a set S 0 2 g[n]. Since 0 n�!I n, there exists a setS 2 g[0] such that every state in S has an outgoing n-step. Then S must be a subset off0; : : : ; n� 1; (n� 1)0g. Since g[0] does not contain the empty set or a �nite subset of N,it follows that (n� 1)0 2 S. But since n was chosen arbitrarily (besides being positive) itfollows that g[0] has an in�nite number of elements. This gives a contradiction with theassumption that g is image-�nite.Proposition 4.28 �BF is a preorder.



Proof: Trivially implied by Theorem 4.27 and Proposition 4.21.However, the counterexample of Figure 4 tells us that �iBF is not a preorder in general.If we take the two automata I and J from the example, then we can �nd an automatonC with I �F C �iB J , using Theorem 4.16. By Proposition 4.25, I �iBF C and C �iBF J .Hence it cannot be that �iBF is transitive, because this would imply I �iBF J .Soundness and completeness results for backward-forward simulations now follow fromthose for forward-backward simulations.Theorem 4.29 (Soundness of backward-forward simulations)1. A �BF B ) A ��T B.2. A �iBF B ) A �T B.Proof: By Theorems 4.27 and 4.22.Theorem 4.30 (Completeness of backward-forward simulations) A ��T B ) A �BF B.Proof: By Theorems 4.23 and 4.27.Example 4.5 falsi�es the completeness result that one might expect here. That is,Theorem 4.30 does not have a second case saying that if B has �n and A ��T B, thenA �iBF B.4.4 Auxiliary Variable ConstructionsIn this subsection, we present two new types of relations, history relations and prophecyrelations, which correspond to the notions of history variable and prophecy variable ofAbadi and Lamport [1]. We show that there exists a close connection between historyrelations and forward simulations, and also between prophecy relations and backwardsimulations. Using these connections together with the earlier results of this section, wecan easily derive a completeness theorem for re�nements similar to the one of Abadi andLamport [1]. In fact, in the setting of this paper the combination of history and prophecyrelations and re�nements gives exactly the same veri�cation power as the combination offorward and backward simulations.4.4.1 History RelationsA relation h over states(A) and states(B) is a history relation from A to B if h is a forwardsimulation from A to B and h�1 is a re�nement from B to A. We write A �H B if thereexists a history relation from A to B.We give an example of a history relation, using the construction of the \unfolding" ofan automaton; the unfolding of an automaton augments the automaton by rememberinginformation about the past.De�nition 4.2 The unfolding of an automaton A, notation unfold(A), is the automatonB de�ned by



� states(B) = execs�(A),� start(B) = the set of �nite executions of A that consist of a single start state,� acts(B) = acts(A), and� for �0; � 2 states(B) and a 2 acts(B), �0 a�!B � , � = �0 a last(�).Proposition 4.31 unfold(A) is a forest and A �H unfold(A).Proof: Clearly, unfold(A) is a forest. The function last which maps each �nite executionof A to its last state is a re�nement from unfold(A) to A, and the relation last�1 is aforward simulation from A to unfold(A).Example 4.6 For C;D;E;F as in Example 4.1, C 6�H D, D �H C, E 6�H F andF 6�H E.Proposition 4.32 �H is a preorder.Proof: Re
exivity is trivial. For transitivity, suppose h is a history relation from A toB and h0 is a history relation from B to C. Then h is a forward simulation from A to Band h0 is a forward simulation from B to C, so h0 �h is a forward simulation from A to C,by Proposition 4.7. Also, since h0�1 is a re�nement from C to B and h�1 is a re�nementfrom B to A, (h0 � h)�1 = h�1 � h0�1 is a re�nement from C to A by Proposition 4.2. Itnow follows that h0 � h is a history relation from A to C.The notion of a history relation is a new contribution of this paper. It provides asimple and abstract view of the history variables of Abadi and Lamport [1]. Translatedto the setting of this paper history variables can be simply de�ned in terms of historyrelations, as follows.De�nition 4.3 An automaton B is obtained from an automaton A by adding a historyvariable if there exists a set V such that� states(B) � states(A) � V , and� the relation f(s; (s; v)) j (s; v) 2 states(B)g is a history relation from A to B.Whenever B is obtained from A by adding a history variable, then A �H B byde�nition. The following proposition states that the converse is also true if one is willingto consider automata up to isomorphism.Proposition 4.33 Suppose A �H B. Then there exists an automaton C that is isomor-phic to B and obtained from A by adding a history variable.Proof: Let h be a history relation from A to B. De�ne automaton C by� states(C ) = h,� (s; u) 2 start(C ) , u 2 start(B),



� acts(C ) = acts(B), and� for (s0; u0); (s; u) 2 states(C ) and a 2 acts(C ), (s0; u0) a�!C (s; u) , u0 a�!B u.Clearly, the projection function �2 that maps a state (s; u) of C to the state u of B is anisomorphism between C and B.In order to show that C is obtained from A by adding a history variable, let states(B)play the role of the set V required in the de�nition of a history variable. It is easy tocheck that relation f(s; (s; v)) j (s; v) 2 states(C )g is a history relation from A to C.Proposition 4.33 shows that history relations already capture the essence of historyvariables. For this reason and also because history relations have nicer theoretical prop-erties, we will state all our results in this subsection in terms of relations, and will notmention the auxiliary variables any further.Theorem 4.34 (Soundness of history relations) A �H B ) A �T B.Proof: Immediate from the soundness of re�nements and forward simulations.In fact, a history relation from A to B is just a functional bisimulation between A andB in the sense of Park [28] and Milner [23]. This implies that if there exists a historyrelation from A to B, both automata are bisimulation equivalent. Hence, history relationspreserve the behavior of automata in a very strong sense.De�nition 4.4 Suppose k is a relation over states(A) and states(B) satisfying k \(start(A)�start(B)) 6= ;. (Typically, k will be a forward or a backward simulation.) Thesuperposition sup(A;B ; k) of B onto A via k is the automaton C given by� states(C ) = k,� start(C ) = k \ (start(A)� start(B)),� acts(C ) = acts(A) \ acts(B), and� for (s0; v0); (s; v) 2 states(C ) and a 2 acts(C ),(s0; v0) a�!C (s; v) , s0 â=)As ^ v0 â=)Bv:Lemma 4.35 Suppose f is a forward simulation from A to B. Let C = sup(A;B ; f )and let �1 and �2 be the projection functions that map states of C to their �rst andsecond components, respectively. Then ��11 is a history relation from A to C and �2 is are�nement from C to B.Theorem 4.36 A �F B , (9C : A �H C �R B).Proof: For the implication \)", suppose A �F B. Let f be a forward simulation fromA to B. Take C = sup(A;B ; f ). The result follows by Lemma 4.35. For the implication\(", suppose that A �H C �R B. Then A �F C by the de�nition of history relations,and C �F B because any re�nement is a forward simulation. Now A �F B follows by thefact that �F is a preorder.



4.4.2 Prophecy RelationsNow we will present prophecy relations and show that they correspond to backwardsimulations, very similarly to the way in which history relations correspond to forwardsimulations.A relation p over states(A) and states(B) is a prophecy relation from A to B if p is abackward simulation from A to B and p�1 is a re�nement from B to A. We write A �P Bif there exists a prophecy relation from A to B, and A �iP B if there is an image-�niteprophecy relation from A to B. We give an example of a prophecy relation, using theconstruction of the \guess" of an automaton. This construction is a kind of dual to theunfolding construction of the previous subsection in that the states contain informationabout the future rather than about the past.De�nition 4.5 The guess of an automaton A, notation guess(A), is the automaton Bde�ned by� states(B) = frag�(A),� start(B) = execs �(A),� acts(B) = acts(A), and� for �0; � 2 states(B) and a 2 acts(B), �0 a�!B � , �rst(�0) a � = �0.Proposition 4.37 A �P guess(A).Proof: The function first which maps each execution fragment of A to its �rst state isa re�nement from guess(A) to A, and the relation first�1 is a backward simulation fromA to guess(A).Example 4.7 For the automata of Figure 2 we have C 6�P D, D 6�P C, E 6�P F andF �iP E. The di�erence between �P and �iP is illustrated by the automata of Figure 3:G �P H but G 6�iP H.Proposition 4.38 �P and �iP are preorders.Just as history relations capture the essence of history variables, prophecy relationscapture the essence of prophecy variables:De�nition 4.6 An automaton B is obtained from an automaton A by adding a prophecyvariable if there exists a set V such that� states(B) � states(A) � V , and� the relation f(s; (s; v)) j (s; v) 2 states(B)g is a prophecy relation from A to B.A prophecy variable is bounded if the underlying prophecy relation is image-�nite.



Proposition 4.39 Suppose A �P B. Then there exists an automaton C that is iso-morphic to B and obtained from A by adding a prophecy variable, which is bounded ifA �iP B.Again, we will state all further results in this subsection in terms of relations, and notmention the auxiliary variables any further.Theorem 4.40 (Soundness of prophecy relations)1. A �P B ) A ��T B, and2. A �iP B ) A �T B.Proof: Immediate from the soundness of re�nements and backward simulations.Lemma 4.41 Suppose b is a backward simulation from A to B. Let C = sup(A;B ; b)and let �1 and �2 be the projection functions that map states of C to their �rst andsecond components, respectively. Then ��11 is a prophecy relation from A to C and �2 isa re�nement from C to B. If b is image-�nite then so is ��11 .Theorem 4.421. A �B B , (9C : A �P C �R B),2. A �iB B , (9C : A �iP C �R B).Proof: The proof of 1 is analogous to that of Theorem 4.36, using Lemma 4.41. 2 canbe proved similarly.We �nish this section with versions of the completeness results of [1].Theorem 4.43 (Completeness of history relations, prophecy relations and re�nements,[1]) Suppose A ��T B. Then1. 9C;D : A �H C �P D �R B, and2. if B has �n then 9C;D : A �H C �iP D �R B.Proof: By Theorem 4.16, there exists an automaton E with A �F E �B B. Hence, byTheorem 4.36, there is an automaton C with A �H C �R E. Combining C �R E andE �B B yields C �B B. Theorem 4.42 yields an automaton D with C �P D �R B,which proves 1. Now statement 2 is routine.Similarly, we obtain:Theorem 4.44 A ��T B ) 9C;D : A �P C �H D �R B.



�iP �P�R �iB �B�H �F �iBF �BF�iFB �FB�T ��T
-- -- - ---

? ????
????666�Figure 5: Classi�cation of basic relations between automata.4.5 Classi�cation of Basic Relations Between AutomataWe can summarize the basic implications between the various simulation techniques ofthis section as follows. Suppose X;Y 2 fT, �T, R, F, iB, B, iFB, FB, iBF, BF, H, iP, Pg.Then A �X B ) A �Y B for all automata A and B if and only if there is a path from�X to �Y in Figure 5 consisting of thin lines only. If B has �n, then A �X B ) A �Y Bfor all automata A and B if and only if there is a path from �X to �Y consisting of thinlines and thick lines.5 Timed Automata and Their BehaviorsThis section presents the basic de�nitions and results for timed automata. The develop-ment is generally parallel to that in Section 3.5.1 Timed AutomataA timed automaton A is an automaton whose set of actions is a superset of f�g [ R�0,and whose step relation satis�es a number of axioms that will be presented below. Theactions in R�0 are referred to as the time-passage actions. (Each action t 2 R�0 representsthe passage of time exactly up to real time t.) The set of visible actions is de�ned byvis(A) �= acts(A) � (f�g [ R�0).The �rst axiom a timed automaton A has to satisfy is:T1 For each state s there is a unique t 2 R�0 such that s t�! s.We call the steps introduced by axiom T1 idling steps. The intended meaning of an idlingstep s t�! s is that the current time in state s is t. In this case we write s:timeA = t,



or s:time = t if A is clear from the context. Instead of the idling steps, we could haveincluded the mapping :timeA as a basic component of a timed automaton. Formally thiswould have been equivalent, but we prefer the present formulation for technical reasons.We assume further that a timed automaton A satis�es the following restrictions onindividual steps.S1 If s 2 start(A) then s:time = 0.S2 If s0 a�! s and a 62 R�0, then s0:time = s:time.S3 If s0 a�! s and a 2 R�0, then s0:time � a = s:time.S4 If s0 a�! s and a = s0:time, then s0 = s.Axiom S1 says that the time is always 0 in a start state. Axiom S2 says that non-time-passage actions do not change the time; that is, they occur \instantaneously", at asingle point in time. Axiom S3 says that time-passage actions may not cause the time todecrease; the label of the transition refers to the time in the �nal state. Axiom S4 impliesthat the only time-passage steps that does not cause the time to increase are the idlingsteps.We also require that A include a su�ciently rich collection of time-passage steps:T2 If s0 t�! s00 and s00 t0�! s, then s0 t0�! s.T3 If s0 t�! s and s0:time < t0 < t, then there is an s00 with s00:time = t0 such that s0 t0�! s00and s00 t�! s.Axiom T2 allows repeated time-passage steps to be combined into one step, and axiomT3 says that if time can pass to some time t, it can also pass to t in two steps, via anyintermediate time t0.In the rest of this paper, A;B; : : : will range over timed automata.Suppose � is an execution fragment of A. Then �:ftime denotes the time componentof the �rst state in �, and �:ltime denotes the smallest element of R�0 [ f1g larger orequal than (i.e., the supremum of) the time components of all states in �. In particular,if � is an execution, then �:ftime = 0, and if � is a �nite execution fragment, then�:ltime = last(�):time.5.2 Admissible Executions and FeasibilityTimed automata do not include any features for describing liveness or fairness (such asthe class structure of I/O automata). We believe that such features are not so importantin the timed setting as they are in the untimed setting. In fact, we think that by simplyrequiring that time grow unboundedly in in�nite executions, we will be able to handlethe liveness properties that arise in practice. Thus, in our study of timed automata, weconcentrate on the admissible executions and execution fragments, i.e., those in which thetime components of the states increase without bound. So � is an admissible executionfragment i� �:ltime =1.The notion of an admissible execution is more tractable mathematically than thenotion of a fair execution in the I/O automaton model; this is because the admissible



executions of a timed automaton are exactly the limits of the in�nite sequences of �niteexecutions, where each execution in the sequence is a pre�x of the next and the timecomponents of the states go to1. This characterization permits the reduction of questionsabout in�nite behaviors to questions about �nite behaviors. A similar reduction is notpossible in untimed models that incorporate fairness.The idea behind the notion of admissible executions is that time is an independentforce, beyond the control of any automaton, which happens to grow unboundedly. Wenote that, according to our de�nitions, there are timed automata in which from some (oreven all) states no admissible execution fragment is possible. This can either be becausefrom these states onwards time cannot advance at all (that is, a time deadlock occurs),or because time can continue advancing, but not beyond a certain point (that is, allexecutions are so-called Zeno executions). The possibility of time deadlocks occurs inseveral process algebraic models ([2, 7, 24]) but we have no intuition whatsoever aboutwhat it means to \stop time". Zeno executions arise due to the inability of automatonmodels to deal with an in�nite amount of activity within a bounded period of time. Somemodels of real-time computation, for instance the model of real-time CSP [29], excludeZeno executions altogether. As a result of our attempt to make our results as general aspossible, our model does allow for both time deadlocks and Zeno executions. However, inseveral of our theorems we will require that the automata be feasible. A timed automatonA is feasible provided that each �nite execution is a pre�x of some admissible execution.Thus, a feasible timed automaton does not have time deadlocks, but may have Zenoexecutions.5.3 Timed TracesThe traces of timed automata do not provide a su�ciently abstract view of their behavior,because they do not re
ect the invisible nature of time-passage actions. We illustrate thisvia the following key example.Example 5.1 Consider two timed automata, Idle and Idle0. Automaton Idle doesnothing except that it lets time pass. Its state set is just R�0, the start state is 0, theset of actions is f�g [ R�0, and there is a transition t0 t�! t whenever t0 � t. AutomatonIdle0 is also rather boring: it idles all the time except that it does a � -step at time 37. Infact, we like to argue that from an observational point of view Idle0 is just as boring asIdle since both automata do not engage in any interaction with their environment at all.Formally, timed automaton Idle0 is de�ned as follows:� states(Idle 0) = R�0 � fT;Fg,� start(Idle 0) = f(0;T)g,� acts(Idle 0) = f�g [ R�0, and� steps(Idle 0) is speci�ed by:(t0; b) t�! (t; b) if t0 = t _ (t0 < t ^ (b = T) t � 37))(37;T) ��! (37;F)



Although Idle0 �T Idle, it is not the case that Idle �T Idle0. This is because Idle has atrace consisting of 38 only, which Idle0 does not have. (Note that Idle0 does have a trace37 38.) So if we would use �T as an implementation relation it would not be allowed toimplement a speci�cation that only requires an internal (unobservable) step at time 37by a device that does nothing at all. It is for this reason that we consider �T not to be agood implementation relation.In this subsection, we de�ne an alternative notion of external behavior for timedautomata that does not include explicit individual time-passage actions. We describe theexternal behavior of timed automata in terms of observations that we call timed traces;these contain information about the visible actions that occur, together with their timeof occurrence, and also about the �nal time up to which the observation is made. Alongthe way to the de�nition of a timed trace, it is helpful to de�ne the basic notion of a timedsequence pair.5.3.1 Timed Sequence PairsA timed sequence over a given set K is de�ned to be a (�nite or in�nite) sequence � overK � R�0 in which the time components are nondecreasing, i.e., t � t0 if (k; t) and (k0; t0)are consecutive elements in �. We say that � is Zeno if it is in�nite and the limit of thetime components is �nite.A timed sequence pair over K is a pair p = (�; t), where � is a timed sequence overK and t 2 R�0 [ f1g, such that t � t0 for all elements (k; t0) in �. We write p:seq,and p:ltime for the two respective components of p. We de�ne p:ftime to be equal to thetime component of the �rst pair in p:seq in case p:seq is nonempty, and equal to p:ltimeotherwise. We denote by tsp(K ) the set of timed sequence pairs over K. We say that atimed sequence pair p is �nite if both p:seq and p:ltime are �nite, and admissible if p:seqis not Zeno and p:ltime =1.Let p and p0 be timed sequence pairs overK such that p is �nite and p:ltime � p0:ftime.Then de�ne p; p0 to be the timed sequence pair (p:seq p0:seq; p0:ltime). If p and q are timedsequence pairs over a set K, then p is a pre�x of q, notation p � q, if either p = q, or p is�nite and there exists a timed sequence pair p0Lemma 5.1 � is a partial ordering on timed sequence pairs over K.5.3.2 Timed Traces of Timed AutomataSuppose � = s0a1s1a2s2 � � � is an execution fragment of a timed automaton A. Let 
 bethe sequence consisting of the actions in � paired with the time of their occurrence:
 = (a1; s1:time)(a2; s2:time) � � � :Then t-trace(�) is de�ned to be the pairt-trace(�) �= (
d(vis(A)� R�0); �:ltime):So t-trace(�) records the occurrences of external actions together with their time of oc-currence, and the limit time of the execution fragment. We call t-trace(�) the timed trace



of �. Thus, the timed trace of an execution fragment suppresses both � and time-passageactions. It is easily checked that t-trace(�) is a timed sequence pair over vis(A).A timed trace of A is the timed trace of some �nite or admissible execution of A. Wewrite t-traces(A) for the set of all timed traces of A, t-traces�(A) for the set of �nitetimed traces, i.e., those that originate from a �nite execution of A, and t-traces1(A) forthe admissible timed traces, i.e., those that originate from an admissible execution of A.The following proposition is a direct consequence of the de�nitions.Proposition 5.2 The sets t-traces�(A) and t-traces1(A) consist of �nite timed sequencepairs and admissible timed sequence pairs over vis(A), respectively.These notions induce three preorders on timed automata in an obvious way: A �tTB �= t-traces(A) � t-traces(B), A �t�T B �= t-traces�(A) � t-traces�(B), and A �t1T B �=t-traces1(A) � t-traces1(B). The kernels of these preorders are denoted by �tT, �t�T and�t1T, respectively.Suppose A is a timed automaton, s0 and s are states of A, and p is a timed sequencepair over vis(A). Then we say that (s0; p; s) is a t-move of A, and write s0 p;A s, orjust s0 p; s when A is clear, if A has a �nite execution fragment � with �rst(�) = s0,t-trace(�) = p and last(�) = s.Lemma 5.3 Suppose s0 p;A s and p = q; r. Then there exists s00 such that s0 q;A s00 ands00 r;A s.5.3.3 From Traces to Timed TracesA trace preserves more information about an execution than a timed trace. Below weshow how the timed trace of an execution fragment can be reconstructed from its startingtime and its trace. This reconstruction will allow us to relate the untimed and the timedtrace preorders.Let K be some set with R�0 � K, and let � = a1a2a3 � � � be a sequence over K. Wesay � is monotonic if the time-passage events contained in it increase monotonically, i.e.,for all i < j, ai; aj 2 R�0 ) ai � aj. Clearly, each trace of a timed automaton A is amonotonic sequence over ext(A).Let � = a1a2a3 � � � be monotonic sequence over K, and let t 2 R�0 be less than orequal to all time-passage events in �. We de�ne a timed sequence pair t-pair(t ; �) in twosteps. First, de�ne for i 2 N, ti 2 R�0 inductively by: t0 �= t and if ai 2 R�0 then ti+1 �= aielse ti+1 �= ti. Let 
 be the sequence (a1; t1)(a2; t2)(a3; t3) � � �, and let t0 be the supremum,in R�0 [ f1g, of all the ti's. Thent-pair(t ; �) �= (
d((K � R�0)� R�0); t0):We write t-pair(�) for t-pair(0 ; �). The following lemma relates the usual notion of traceto the new notion of timed trace.Lemma 5.4 Suppose � 2 frag(A). Then t-trace(�) = t-pair(�:ftime; trace(�)).Corollary 5.5 Suppose � 2 traces�(A). Then t-pair(�) 2 t-traces�(A).



Lemma 5.61. A ��T B ) A �t�T B.2. A �!T B ) A �t1T B.3. A �T B ) A �tT B.Proof: For 1, suppose that A ��T B and p 2 t-traces�(A). Then A has a �nite execution� with p = t-trace(�). Let � = trace(�). Then � 2 traces�(A) and, using A ��T B, also� 2 traces�(B). By Corollary 5.5, t-pair(�) 2 t-traces�(B). But Lemma 5.4 yieldst-pair(�) = p. Thus p 2 t-traces�(B), and A �t�T B follows as required.For 2, suppose that A �!T B and p 2 t-traces1(A). Then there is an admissibleexecution � of A such that p = t-trace(�). Let � = trace(�). Since � 2 traces!(A) andA �!T B, also � 2 traces!(B). Thus B has an in�nite execution �0 with trace(�0) = �.Since � is admissible the time-passage actions contained in � grow unboundedly. Butsince trace(�0) = �, this means �0 is also admissible. Using Lemma 5.4 we derive:t-trace(�) = t-pair(trace(�)) = t-pair(�) = t-pair(trace(�0)) = t-trace(�0):Thus p = t-trace(�0) 2 t-traces1(B). It follows that A �t1T B.Finally, 3 follows from the �rst two parts.The automata Idle and Idle0 of Example 5.1 illustrate that the reverse implicationsof the statements in the above lemma are not valid.5.4 Restricted Kinds of Timed AutomataA has t-�nite invisible nondeterminism (t-�n) if start(A) is �nite, and for any state s0 andany �nite timed sequence pair p over vis(A), there are only �nitely many states s suchthat s0 p;A s.Example 5.2 In order to illustrate the di�erence between �n and t-�n we de�ne a timedautomaton Idle00. Basically, automaton Idle00 does nothing except that it lets time pass.However, at one nondeterministically chosen time t > 0, Idle00 makes a � -step, and thenit subsequently remembers t. Formally, Idle00 is de�ned as follows:� states(Idle 00) = R�0 � R�0,� start(Idle 00) = f(0; 0)g,� acts(Idle 00) = f�g [ R�0, and� steps(Idle 00) is speci�ed by:(t00; t) t0�! (t0; t) if t00 � t0;(t; 0) ��! (t; t) if t > 0:



By induction on the length of the sequence of time-passage actions one can easily establishthat Idle00 has �n. However, Idle00 does not have t-�n since for any t 2 R+ all the statesfrom the uncountable set f(t; t0)j0 < t0 � tg can be reached with timed sequence pair(�; t) from the initial state.The requirement that a timed automaton be a forest is not a very interesting onebecause if a state has one incoming time-passage step from a state with a smaller timecomponent, then it must have an in�nite number of them (as a consequence of axiom T3)so that the timed automaton cannot be a forest. Now a forest is characterized by theproperty that for each state there is a unique execution that leads to it. In analogy wewill de�ne below the notion of a t-forest. This is a timed automaton with the propertythat for each state there is an execution that leads to it, which is unique \modulo" axiomsT1, T2 and T3.Call a �nite execution fragment of A fat if it contains no idling steps and no pair ofconsecutive time-passage steps. Then A is de�ned to be a t-forest if for each state of Athere is a unique fat execution that leads to it. The following lemma gives a su�cientcondition for a timed automaton to be a t-forest.Lemma 5.7 Suppose that all states of A are reachable, the only incoming steps of startstates are idling steps, and for every state s, if there are two distinct non-idling stepsleading to s, r a�! s and r0 a0�! s, then a = a0 2 R�0 and either r t0�! r0 or r0 t�! r, wheret = r:time and t0 = r0:time. Then A is a t-forest.Proof: Suppose A satis�es the conditions of the lemma. Because all states of A arereachable we know that for each state s there is at least one execution that leads to it.Since we can remove idling steps from an execution, and since by repeated application ofaxiomT2 we can contract successive time-passage steps, there is at least one fat executionthat leads to s. In order to show uniqueness, suppose that A has two fat executions, �and �0 that lead to s. By induction on the sum of the lengths of � and �0, using the factthat A is a t-forest, we prove that � = �0.If � consists of state s only, then so does �0, and vice versa. We see this as follows. If� consists of s only, then s is a start state. Because A is a t-forest, there are no incomingnon-idling steps to s. But since �0 contains no idling steps and ends with s, �0 must alsoconsist of s only. So if either � or �0 contains no steps, then � = �0.Now suppose that � = 
as and �0 = 
0a0s. Let last(
) = r, last(
0) = r0, r:time = tand r0:time = t0. If r = r0, then 
 = 
0 by induction hypothesis, a = a0 since A is at-forest, and hence � = �0. So assume that r 6= r0. We derive a contradiction. In this caser a�! s and r0 a0�! s are two distinct steps ending with s, so since A is a t-forest, it mustbe that a and a0 are both time-passage actions and either r t0�! r0 or r0 t�! r. Withoutloss of generality, we may assume that the former holds.Now consider the execution 
 00 = 
t0r0. Since � is fat, 
00 must be fat too. Thus 
 00 and
0 are two fat executions leading to r0, and by induction hypothesis we obtain 
00 = 
0.But since 
 00 ends with a time-passage step, this means that �0 ends with two time-passagesteps, which is in contradiction with the fact that this execution is fat.Thus we have shown that for each state of A there is a unique fat execution that leadsto it, which means that A is a t-forest.



Suppose A is a timed automaton. In analogy with the untimed case, the relationt-after(A) consists of those pairs (p; s) 2 tsp(vis(A))�states(A) for which there is a �niteexecution of A with timed trace p and last state s.t-after(A) �= f(p; s) j 9� 2 execs�(A) : t-trace(�) = p and last(�) = sg:The relation t-past(A) �= t-after(A)�1 relates a state s of A to the timed traces of exe-cutions that lead to s. Also, de�ne t-before(A) to be the relation that relates a timedsequence pair p to those states of A from where an execution with timed trace p is possible.t-before(A) �= f(p; s) j 9� 2 frag�(A) : t-trace(�) = p and �rst(�) = sg:We write t-future(A) for t-before(A)�1.Lemma 5.81. If A is deterministic then t-after(A) is a function from t-traces�(A) to states(A).2. If A has t-�n then t-after(A) is image-�nite.3. If A is a t-forest then t-past(A) is a function from states(A) to t-traces�(A).Proof: For 1, suppose A is deterministic. By de�nition, t-after(A)[p] contains at leastone element for each p 2 t-traces�(A). Suppose that for some p 2 t-traces�(A), boths and s0 are in t-after(A)[p]. Then A has �nite executions � and �0 with t-trace(�) =t-trace(�0) = p, last(�) = s and last(�0) = s0. Without loss of generality we may assumethat both � and �0 contain no idling steps. Since � and �0 have the same timed trace,s:time = s0:time. Since A is deterministic, there are no � events in either execution.By induction on the sum of the lengths of � and �0 we prove that s = s0. If � consistsof state s only, then s is the unique start state of A and therefore also the �rst state of �0.As noted above, �0 does not contain � events. Moreover, �0 does not contain any eventsin ext(A) because that would violate the condition that t-trace(�) = t-trace(�0). Thus �0contains no events at all and consists of state s only. But this implies s = s0, as required.By a symmetric argument it also follows that s = s0 if we start from the assumption that�0 consists of s0 only.Now suppose � = 
as and �0 = 
0a0s0, with last(
) = r and last(
 0) = r0. Lett = r:time and t0 = r0:time. Since a and a0 are either time-passage actions or visibleactions, and � and �0 have the same timed trace and end at the same time, it cannot bethat one of a and a0 is an external action and the other is a time-passage action. In fact,it must be the case that a = a0. If t = t0, then t-trace(
) = t-trace(
0). This means we canapply the induction hypothesis to obtain r = r0. Then in combination with the fact thatA is deterministic, this gives s = s0. Otherwise, we can assume without loss of generalitythat t < t0. (The other case is symmetric.) In this case, it must be that a and a0 are bothtime-passage actions, and so t0 < s:time. By axiom T2, there is an r00 such that r t0�! r00and r00s:time�! s. Since t-trace(
t 0r 00) = t-trace(
0), we can apply the induction hypothesis toobtain r00 = r0. Now s = s0 follows by the fact that A is deterministic.Parts 2 is immediate from the de�nitions.For 3, suppose that A is a t-forest. Because all states of A are reachable we knowthat for each state s of A, t-past(A)[s] contains at least one element. Suppose that both



p and p0 are in t-past(A)[s] for some s 2 states(A). Then there are �nite executions �and �0 of A with t-trace(�) = p, t-trace(�0) = p0 and last(�) = last(�0) = s. Withoutloss of generality we can assume that both � and �0 are fat, since we can always removeidling steps, and by repeatedly applying axiom T1 we can eliminate successive time-passage steps, and this does not in
uence the timed traces of the executions. But nowthe assumption that A is a t-forest gives � = �0. This immediately implies p = p0.5.5 Timed Trace PropertiesFor each timed automaton A, its timed behavior, t-beh(A), is de�ned by t-beh(A) �=(vis(A); t-traces(A)). Completely analogous to the way in which we characterized, in Sec-tion 3.3, the behaviors of automata in terms of trace properties, we will now characterizethe timed behaviors of timed automata in terms of timed trace properties.A set of timed sequence pairs is pre�x closed if, whenever a timed sequence pair is inthe set all its pre�xes are also. A timed trace property P is a pair (K;L) where K is aset and L is a nonempty, pre�x closed set of �nite and admissible timed sequence pairsover K. We will refer to the constituents of P as sort(P) and t-traces(P), respectively.Also, we write t-traces�(P) for the set of �nite timed sequence pairs in t-traces(P), andt-traces1(P) for the set of admissible timed sequence pairs in t-traces(P). For P and Qtimed trace properties, we de�ne P �t�T Q �= t-traces�(P) � t-traces�(Q), P �t1T Q �=t-traces1(P) � t-traces1(Q), and P �tT Q �= t-traces(P) � t-traces(Q). The kernels ofthese preorders are denoted by �t�T, �t1T and �tT, respectively.P is limit-closed if each in�nite chain p1 � p2 � p3 � � � � of elements of t-traces�(P)in which time grows unboundedly has a limit in t-traces1(P), i.e., an admissible timedsequence pair p with for all i, pi � p.Lemma 5.9 Suppose P and Q are timed trace properties with Q limit-closed. ThenP �t�T Q , P �tT Q.A timed trace property P is feasible if every element of t-traces�(P) is a pre�x of someelement of t-traces1(P).Lemma 5.10 Suppose P and Q are timed trace properties such that P is feasible. ThenP �t1T Q , P �tT Q.Lemma 5.111. t-beh(A) is a timed trace property.2. If A has t-�n then t-beh(A) is limit-closed.3. If A is feasible then t-beh(A) is feasible.4. A �tT B , t-beh(A) �tT t-beh(B), A �t�T B , t-beh(A) �t�T t-beh(B), and A �t1TB , t-beh(A) �t1T t-beh(B).



Proof: We sketch the proof of 2; it is analogous to that of Lemma 3.3. Suppose A hast-�n and p1 � p2 � : : : is an in�nite chain of timed sequence pairs in t-traces�(A) suchthat the limits of the time components of the pi's is1. Assume without loss of generalitythat pi:ltime < pi+1:ltime for all i � 1. Let p be the limit of the pi's. We must show thatp 2 t-traces1(A).We use Lemma 2.1. This time, G is constructed as follows. The nodes are pairs(pi; s), where pi is one of the timed sequence pairs in the sequence above, and s is a stateof A, such that there exists an execution � of A that ends with state s and such thatpi = t-trace(�). There is an edge from node (pi; s0) to node (pi+1; s) exactly if s0 q;A s,where pi+1 = pi; q. Using Lemma 5.3, it is not di�cult to show that G satis�es thehypotheses of Lemma 2.1. Then that lemma implies the existence of an in�nite path inG starting at a root; this yields an admissible execution of A having p as its timed trace.Proposition 5.121. If B has t-�n then A �t�T B , A �tT B.2. If A is feasible then A �t1T B , A �tT B.Proof: Part 1 follows from Lemmas 5.9 and 5.11. Part 2 is a corollary of Lemmas 5.10and 5.11.Example 5.3 We present two timed automata, TA and TB, which are in a sense thetimed analogues of the automata A and B of Example 3.1, that illustrate the necessity ofthe t-�n condition in Proposition 5.12. Automaton TA does an a-action at integer times:� states(TA) = R�0 � N,� start(TA) = f(0; 0)g,� acts(TA) = f�; ag [ R�0, and� steps(TA) is speci�ed by:(t0; n) t�! (t; n) if t0 = t _ (t0 < t � n);(t; n) a�! (t; n+ 1) if t = n:Automaton TB also does an a-action at integer times, but only �nitely often:� states(TB) = R�0 � N� N,� start(TB) = f(0; 0;m) j m 2 Ng,� acts(TB) = f�; ag [ R�0, and� steps(TB) is speci�ed by:(t0; n;m) t�! (t; n;m) if t0 = t _ (t0 < t � n);(t; n;m) a�! (t; n+ 1;m) if t = n < m:



One can check that TA �t�T TB but TA 6�tT TB.In order to see that the feasibility condition in Proposition 5.12(2) is actually needed,we consider a Zeno machine: a timed automaton Zeno with states drawn from the interval[0; 1), start state 0, actions from R�0 [ f�g, and a step t0 t�! t whenever t0 � t. SinceZeno has no admissible timed traces, Zeno �t1T AT . However, because AT does notallow for initial (nontrivial) time-passage steps, Zeno 6�tT AT .De�nition 5.1 For P a timed trace property, the associated canonical timed automatont-can(P) is the structure A given by� states(A) = t-traces�(P),� start(A) = f(�; 0)g,� acts(A) = sort(P) [ (f�g [ R�0), and� steps(A) consists of all triples of the form (�0; t0) a�!A (�; t), where (�; t0); (�; t) 2states(A), a 2 ext(A), and where the following hold. If a 2 R�0 then t0 � t and�0 = �, and if a 2 vis(A) then t0 = t and �0 (a; t) = �.(It is not hard to check that t-can(P) is indeed a timed automaton).Lemma 5.13 Suppose P is a timed trace property. Then1. t-can(P) is deterministic and is a t-forest,2. t-beh(t-can(P)) �t�T P ,3. P �tT t-beh(t-can(P)), and4. if P is limit-closed then t-beh(t-can(P)) �tT P .Proof: 1 and 2 follow easily from the de�nitions. Since t-can(P) has t-�n, it follows byLemma 5.11 that t-beh(t-can(P)) is limit-closed. Now 3 and 4 follow by combination of2 and Lemma 5.9.Lemma 5.14 Suppose A and B are timed automata. Then1. t-can(t-beh(A)) is deterministic and is a t-forest,2. t-can(t-beh(A)) �t�T A,3. A �tT t-can(t-beh(A)), and4. if A has t-�n then t-can(t-beh(A)) �tT A.Proof: By combining Lemmas 5.11 and 5.13.



6 Simulations for Timed AutomataOur aim is to develop proof techniques for showing inclusion between the sets of timedtraces of timed automata. In order to do this, we show how this problem can be reducedto the problem of proving inclusion between the sets of traces of certain derived automata.This reduction solves our problem, in a sense, since it allows us to use the various simula-tion techniques in Section 4 to prove inclusion results for timed automata. The approachis analogous to that followed for Milner's CCS [23] where the problem of deciding weakobservation equivalence is reduced to the problem of deciding strong bisimulation. A keyrole in our reduction is played by the construction of the closure of a timed automaton.6.1 t-Closed Timed AutomataIn the previous section we have shown that for timed automata the traces contain (ingeneral) more information than the timed traces. That is, from the traces of a timedautomaton we can retrieve the timed traces (Lemma 5.4), but the reverse is not alwayspossible (Example 5.1). However, there exist certain classes of timed automata for whichthe traces can be retrieved from the timed traces. In this subsection, we will identify onesuch a class, namely the t-closed timed automata.A timed automaton A is said to be t-closed provided that it satis�es the followingclosure condition:T4 If s0 t�! s00, s0:time < s00:time and s00 ��! s, then s0 t�! s.The timed automaton Idle of Example 5.1 is t-closed. The timed automata Idle0 andIdle00 of Example 5.1 and Example 5.2, respectively, are not t-closed.In order to show that the (�nite) traces of a t-closed timed automaton can be retrievedfrom its (�nite) timed traces, we proceed in two steps. First we de�ne an operation prunethat associates to each montonic sequence a normal form. We then show (Lemma 6.1)that a sequence is a trace of a t-closed automaton if and only if its normal form is. Next,we de�ne an operation monot that takes a timed sequence pair and transforms it into amonotonic sequence in normal form. We show (Lemma 6.2) that prune is nothing butthe composition of t-pair, which takes a trace to a timed trace, and monot. In the samelemma we also prove that if p is a timed trace of a t-closed automaton, monot(p) is atrace of that automaton. From these results it follows that traces�(A) can be retrievedfrom t-traces�(A): traces�(A) consists of all the monotonic sequences whose normal formequals monot(p) for some timed trace p of A.Let � be a �nite monotonic sequence over some set K, and let t 2 R�0 be less thanor equal to all time-passage actions in �. Then prune(t ; �) is the monotonic sequenceobtained from � by (1) removing all time-passage events that are either t or preceded (notnecessarily directly) by a time-passage event with the same value, and (2) removing alltime-passage events that are immediately followed by a time-passage event with a highervalue. We write prune(�) for prune(0 ; �).Lemma 6.1 Suppose A is t-closed, s0; s 2 states(A), t = s0:time, � is a �nite monotonicsequence over ext(A) with t less or equal than all time-passage actions in �, and � 0 =prune(t ; �). Then s0 �=) s i� s0 �0=) s.



Proof: Suppose s0 �=) s. Then there exists a �nite execution fragment, �, of A with�rst(�) = s0, trace(�) = � and last(�) = s. Let �1 be the execution obtained from� by removing all idling steps, and let trace(�1 ) = �1. By axiom S4 all instanteneoustime-passage steps are idling steps. Using this fact, it is easy to see that the idling stepsin � are in one-one correspondence with the time-passage events in � that are either tor preceded by a time-passage event with the same value. This means that �1 is thesequence obtained from � by applying pruning step (1). Next, let �2 be the executionfragment obtained from �1 by eliminating, through application of axiom T4, all � -stepsthat are immediately preceded by a time-passage step. This transformation does nota�ect the trace of the execution fragment: trace(�2 ) = �1. Also both �1 and �2 start ins0 and end in s. Finally, let �3 be the execution fragment obtained from �2 by contractingall successive time-passage steps through application of axiom T2. Let �3 = trace(�3 ).Since �3 does not contain successive time-passage steps, it is obtained from �1 by applyingpruning operation (2). Thus in fact we have �3 = prune(t ; �) = � 0. Since �3 also leadsfrom s0 to s, this implies s0 �0=) s.Conversely, suppose s0 �0=) s. Then there exists a �nite execution fragment, �, of Awith �rst(�) = s0, trace(�) = prune(t ; �) and last(�) = s. Using axioms T1 and T3, wecan simply insert additional time-passage steps in � to obtain another �nite execution,�0, of A with �rst(�0) = s0, trace(�0) = � and last(�0) = s. Therefore, s0 �=) s.Let t 2 R�0 and let p = ((a1; t1) � � � (an; tn); tn+1) be a �nite timed sequence pair overK with t � p:ftime. Then the monotonic sequence monot(t ; p) is obtained by taking thesequence t1a1 � � � tnantn+1 and removing from it all ti events that are either t or precededby an event tj that has the same value. We write monot(p) for monot(0 ; p).Lemma 6.21. Suppose t 2 R�0 and � is a �nite monotonic sequence with t less or equal than alltime-passage actions in �. Then prune(t ; �) = monot(t ; t-pair(t ; �)).2. Suppose A is t-closed, s0; s 2 states(A), t = s0:time, p is a �nite timed sequence pairover vis(A), and � = monot(t ; p). Then s0 p; s implies s0 �=) s.Proof: 1 easily follows from the de�nitions. For 2, suppose s0 p; s. Then A has anexecution fragment � from s0 to s with t-trace(�) = p. Let �0 = trace(�) and � 00 =prune(t ; �0). Then s0 �00=) s, by Lemma 6.1. Using 1 and Lemma 5.4, we derive �00 =prune(t ; �0) = monot(t ; t-pair(t ; � 0)) = monot(t ; p) = �. Thus s0 �=) s.Corollary 6.3 Suppose B is t-closed. Then A �t�T B , A ��T B.Proof: Suppose A �t�T B and � 2 traces�(A). By Corollary 5.5, t-pair(�) 2 t-traces�(A).Using A �t�T B, we get t-pair(�) 2 t-traces�(B). By Lemma 6.2(2), monot(t-pair(�)) 2traces�(B) and by Lemma 6.2(1), monot(t-pair(�)) = prune(�). Now � 2 traces�(B) isa consequence of Lemma 6.1. It follows that A ��T B.The converse direction follows from Lemma 5.6.We also have the following property involving �n.



Lemma 6.4 Suppose A is t-closed. Then A has t-�n if and only if A has �n.Proof: Suppose A does not have �n but does have t-�n. Then A has a state s0 anda sequence � such that for in�nitely many states s, s0 �=) s. Let p = t-pair(s 0:time; �).Then, by Lemma 5.4, s0 p; s for in�nitely many s. Thus A does not have t-�n, which isa contradiction.For the other direction, assume that A does not have t-�n but does have �n. Then Ahas a state s0 and a timed sequence pair p such that for in�nitely many states s, s0 p; s.Let � = monot(s 0:time; p). Then it follows by Lemma 6.2(2) that s0 �=) s for in�nitelymany s. Thus A does not have �n, which is again a contradiction.6.2 Closure of a Timed AutomatonIn this subsection, we give a useful construction to extend an arbitrary timed automatonto a t-closed timed automaton.Let A be a timed automaton. The closure of A, denoted by cl(A), is the structure Bwhich is exactly the same as A, except that the relation steps(A) is augmented by closingit under the closure condition given in T4 (simultaneously with T2 to let the result be atimed automaton again).Lemma 6.5 cl(A) is a t-closed timed automaton, cl(cl(A)) = cl(A) and cl(A) �tT A.Lemma 6.61. A is deterministic if and only if cl(A) is deterministic.2. A has t-�n if and only if cl(A) has �n.Proof: 1 is trivial. Since cl(A) is closed, cl(A) has �n if and only if it has t-�n(Lemma 6.4). But cl(A) has t-�n if and only if A has t-�n, since it is obvious fromthe de�nition of the closure operation that s0 p;cl(A) s , s0 p;A s.The importance of the closure construction is a consequence of the following lemmas.Lemma 6.7 A �t�T B , cl(A) ��T cl(B).Proof: By combination of Lemma 6.5 and Corollary 6.3.Lemma 6.8 cl(A) �T cl(B) ) A �tT B.Proof: Suppose cl(A) �T cl(B). Lemma 5.6 implies that cl(A) �tT cl(B). ThenLemma 6.5 implies that A �tT B.Example 6.1 The reverse implication of Lemma 6.8 does not hold in general. Toobtain a counterexample: take B to be a machine, modeled as a timed automaton, whichnondeterministically chooses a positive natural number n, then does action a at times1 � 2�1, 1 � 2�2,..., 1 � 2�n, and then idles for ever. B is a feasible timed automatonwith in�nite invisible nondeterminism. Let A be the same as B, except that it may alsochoose ! at the beginning, in which case it subsequently does action a at times 1� 2�1,



1�2�2,..., 1�2�n,... Timed automaton A is not feasible because by choosing ! it reachesa state from where only a Zeno execution is possible and no admissible execution. Timedautomata A and B have the same timed traces, but cl(A) has an in�nite trace (a; 1�2�1),(a; 1� 2�2),..., (a; 1� 2�n),... which cl(B) does not have.It turns out that we do have the reverse of Lemma 6.8 in case B has t-�n.Lemma 6.9 Suppose B has t-�n. Then cl(A) �T cl(B) , A �tT B.Proof: By Lemma 6.6 and Proposition 3.4, cl(A) �T cl(B) i� cl(A) ��T cl(B). ByLemma 6.7, cl(A) ��T cl(B) is in turn equivalent to A �t�T B. Proposition 5.12 gives theequivalence of A �t�T B and A �tT B.Corollary 6.10 The following statements are equivalent.1. A �t�T B,2. cl(A) �FB cl(B),3. cl(A) �BF cl(B).If B has t-�n then the following statements are equivalent.1. A �tT B,2. cl(A) �iFB cl(B).Proof: The equivalence of the �rst three statements follows by combining Lemma 6.7with the soundness and completeness results for �FB and �BF (Theorems 4.22, 4.23, 4.29and 4.30).The equivalence of the last two statements follows by combining Lemma 6.9 andLemma 6.6 with the soundness and completeness result for �iFB (Theorems 4.22 and4.23).In a sense, we have solved our problem now: we have found a way to prove inclusionof the sets of timed traces of timed automata A and B, under the reasonable assumptionthat B has t-�n. All we have to do is to establish an image-2-�nite forward-backwardsimulation between two closely related timed automata, cl(A) and cl(B). The timedautomata cl(A) and cl(B) are really very similar to A and B: they are the same exceptfor their step relations, which are just a kind of transitive closure of the step relations ofA and B. Still, it would be more elegant to de�ne the various simulations directly on thetimed automata themselves. This will be done in the next section. A simple lemma willsubsequently relate the new simulations to the simulations between the closures of theautomata.



6.3 Direct Simulations Between Timed AutomataWe require two auxiliary de�nition. First, if A is a timed automaton, s0 and s are states ofA, and � is a sequence of elements of vis(A), then we write s0 �,!A s, or just s0 �,! s whenA is clear, if A has a �nite execution fragment � with �rst(�) = s0, trace(�)dvis(A) = �and last(�) = s. Second, if � is any sequence then e� is the sequence obtained by removingall internal and time-passage actions from �.Suppose A and B are timed automata. A timed re�nement from A to B is a functionr : states(A)! states(B) that satis�es:1. r(s):time = s:time.2. If s 2 start(A) then r(s) 2 start(B).3. If s0 a�!A s then r(s0) ea,!B r(s).A timed forward simulation from A to B is a relation f over states(A) and states(B)that satis�es:1. If u 2 f [s] then u:time = s:time.2. If s 2 start(A) then f [s] \ start(B) 6= ;.3. If s0 a�!A s and u0 2 f [s0], then there exists u 2 f [s] such that u0 ea,!B u.A timed backward simulation from A to B is a total relation b over states(A) andstates(B) that satis�es:1. If u 2 b[s] then u:time = s:time.2. If s 2 start(A) then b[s] � start(B).3. If s0 a�!A s and u 2 b[s], then there exists u0 2 b[s0] such that u0 ea,!B u.A timed forward-backward simulation from A to B is a relation g over states(A) andPN(states(B)) that satis�es:1. If u is an element of any set in g[s] then u:time = s:time.2. If s 2 start(A) then there exists S 2 g[s] such that S � start(B).3. If s0 a�!A s and S0 2 g[s0], then there exists S 2 g[s] such that for every u 2 S thereexists u0 2 S0 such that u0 ea,!B u.A timed backward-forward simulation from A to B is a total relation g over states(A)and P(states(B)) that satis�es:1. If u is an element of any set in g[s] then u:time = s:time.2. If s 2 start(A) then for all S 2 g[s], S \ start(B) 6= ;.3. If s0 a�!A s and S 2 g[s], then there exists S0 2 g[s0] such that for every u0 2 S0there exists u 2 S such that u0 ea,!B u.



A relation h over states(A) and states(B) is a timed history relation from A to B if itis a timed forward simulation from A to B and h�1 is a timed re�nement from B to A.A relation p over states(A) and states(B) is a timed prophecy relation from A to B ifit is a timed backward simulation from A to B and p�1 is a timed re�nement from B toA. We write A �tR B, A �tF B, etc. in case there exists a timed re�nement, timed forwardsimulation, etc., from A to B.6.4 SynchronicityA new feature in the de�nitions of the various timed simulations is the requirement thatrelated states have the same time component. In this subsection we explore the conse-quences of this natural restriction.Suppose A and B are timed automata. A relation f over states(A) and states(B) issynchronous if for all (s; u) 2 f , u:time = s:time. For each relation f over states(A) andstates(B), we de�ne the subrelation syn(f ) to bef(s; u) 2 f j u:time = s:timeg:Thus, f is synchronous if and only if syn(f ) = f .Similarly, a relation g over states(A) and P(states(B)) is synchronous if for all (s; S) 2g and all u 2 S, u:time = s:time. For each relation g over states(A) and P(states(B)),we de�ne the subrelation syn1 (g) to bef(s; S) 2 g j 8u 2 S : u:time = s:timeg:Thus, g is synchronous if and only if syn1 (g) = g.Also, for each relation g over states(A) and P(states(B)), we de�ne the subrelationsyn2 (g) to bef(s; S) j 9(s; T ) 2 g : S = T \ fu j u:time = s:timeggSo also g is synchronous if and only if syn2 (g) = g.Obviously, all the timed versions of re�nements, forward simulations, etc., that we de�nedabove are synchronous. The following observation is more interesting. Note that in theproof below the idling steps play a key role. In fact, the result would not be correctwithout them.Lemma 6.111. Any re�nement from A to B is synchronous.2. If f is a forward simulation from A to B, then syn(f ) is a synchronous forwardsimulation from A to B.3. Any backward simulation from A to B is synchronous.4. If g is a forward-backward simulation from A to B, then syn1 (g) is a synchronousforward-backward simulation from A to B.



5. If g is a backward-forward simulation from A to B, then syn2 (g) is a synchronousbackward-forward simulation from A to B.6. Any history relation from A to B is synchronous.7. Any prophecy relation from A to B is synchronous.Proof: For 1, suppose that r is a re�nement from A to B and s is a state of A withs:timeA = t. By axiom T1, s t�!A s. Thus, since r is a re�nement, r(s) t=)Br(s). Fromthis it folows, by axioms S2 and S3, that r(s):time = t = s:time.For 2, suppose f is a forward simulation from A to B. By the de�nition of a forwardsimulation, if s 2 start(A), then there is a state u 2 f [s] that is in start(B). Axiom S1implies that s:time = u:time = 0, and thus u 2 syn(f )[s].Now suppose s0 a�!A s and u0 2 syn(f )[s0]. Then u0:time = s0:time. Also, u0 2 f [s0]and therefore there exists a state u 2 f [s] such that u0 ba=)Bu. Then it follows by axiomsS2 and S3 that s:time = u:time. Hence u 2 syn(f )[s].For 3, suppose that b is a backward simulation from A to B, and suppose s is astate of A with s:timeA = t. Let u 2 b[s]. By axiom T1 s t�!A s. Thus, since b isa backward simulation there exists u0 2 b[s] with u0 t=)Bu. By axioms S2 and S3, thisimplies u:time = t = s:time.Parts 4-7 are similar.6.5 Relating Timed and Untimed SimulationsIn Section 6.2, we showed that (under certain �niteness conditions) there is a one-to-one correspondence between inclusion of timed traces on the level of timed automata,and inclusion of traces between the closures of these automata. In this subsection weobserve that there is also a strong connection between timed simulations between timedautomata, and the same functions viewed as untimed simulations between the closuresof these automata. As an immediate consequence of this observation we obtain easysoundness proofs for all the timed simulations of Section 6.3, since soundness of the timedsimulations reduces to the soundness of the corresponding untimed simulations. Moreoverwe obtain \for free" a completeness result for timed forward-backward simulations.Lemma 6.12 Suppose s; s0 2 states(A) and a 2 acts(A) such that if a 2 R�0 thens:time = a else s:time = s0:time. Then s0 ea,!A s , s0 ba=)cl(A)s.Proof: Easy from the de�nitions.Lemma 6.13 A synchronous relation is a timed re�nement from A to B if and only ifit is a re�nement from cl(A) to cl(B). Moreover, the above property also holds if bothoccurrences of the word \re�nement" are replaced by \forward simulation", \backwardsimulation", \forward-backward simulation", \backward-forward simulation", \history re-lation" or \prophecy relation".Proof: Here we prove the case of re�nements. The other mappings can be handledsimilarly.



Suppose r is a timed re�nement from A to B. We have to show that r is a re�nementfrom cl(A) to cl(B), and the only thing nontrivial here is to demonstrate that r satsi�esthe second clause from the de�nition of a re�nement. For this, suppose s0 a�!cl(A) s. Thencertainly s0 ba=)cl(A)s, and thus, by Lemma 6.12, s0 ea,!A s. Since r is a timed re�nement,we can use this fact to infer r(s0) ea,!B r(s). Now r(s0) ba=)cl(B)r(s) follows by anotherapplication of Lemma 6.12.For the other direction, suppose r is a re�nement from cl(A) to cl(B). We have toestablish that r is a timed re�nement from A to B, and for this again the only nontrivialpart is the second clause in the de�nition of a timed re�nement. So suppose s0 a�!A s.Since the closure construction only adds transitions, this trivially implies s0 a�!cl(A) s.Now we use the fact that r is a re�nement from cl(A) to cl(B) to obtain r(s0) ba=)cl(B)r(s).From this r(s0) ea,!B r(s) follows by Lemma 6.12.Corollary 6.14 Suppose X 2 fR, F, iB, B, iFB, FB, iBF, BF, H, iP, Pg. Then A �tX Bi� cl(A) �X cl(B).Proof: Immediate from Lemmas 6.11 and 6.13.Proposition 6.15 The relations �tR, �tF, �tB, �tiB, �tFB, �tiFB, �tBF, �tH, �tP and �tiPare all preorders. (However, �tiBF is not a preorder.)Proof: By Lemma 6.14, using that the corresponding untimed simulations are preorders.Also the classi�cation of Section 4.5 carries over to the timed setting:Theorem 6.16 Suppose X;Y 2 fT, �T, R, F, iB, B, iFB, FB, iBF, BF, H, iP, Pg. ThenA �tX B ) A �tY B for all timed automata A and B if and only if there is a path from�tX to �tY in Figure 6 consisting of thin lines. If B has t-�n, then A �tX B ) A �tY Bfor all automata A and B if and only if there is a path from �tX to �tY consisting of thinlines and thick lines.Proof: Note that except for the superscripts t, Figure 6 is the same as Figure 5, whichgives an overview of the relationships in the untimed case. Using Corollary 6.14 andLemmas 6.7 and 6.8, the \thin line" inclusions for the timed case follow from the cor-responding inclusions for the untimed case. For the \thick" line inclusions one needs inaddition Lemmas 6.6 and 6.9.In order to show that all the inclusions are strict, one can basically just use the samecounterexamples as in the untimed setting. In order to turn the untimed automata intotimed automata one only has to attach a 0-loop to each state. Only for establishingthe di�erence between �t�T and �tT the examples of Section 4 are not adequate, and onehas to use Example 5.3 instead. (If A0 and B0 denote the timed automata obtained byadding 0-loops to all states of the automata A and B of Example 3.1, respectively, thenA0 �t�T B0 but, since both timed automata have no admissible traces, also A0 �tT B0.)Here are two more results that carry over because of the correspondence between thetimed and the untimed case.
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????666�Figure 6: Classi�cation of basic relations between timed automataProposition 6.17 Suppose all states of A are reachable, B has t-�n and A �tB B. ThenA �tiB B.Proof: From the de�nition of the closure construction it is immediate that all states ofcl(A) are reachable. By Lemma 6.6(2), cl(B) has �n, and by Lemma 6.13, cl(A) �B cl(B).Now we can apply Proposition 4.15, the untimed version of the fact we are proving, toobtain cl(A) �iB cl(B). By Lemma 6.11 any backward simulation is synchronous, whichmeans that we can apply Lemma 6.13 in the other direction to conclude A �tiB B.Theorem 6.18 (Partial completeness of timed forward simulations) Suppose B is deter-ministic and A �t�T B. Then A �tF B.Proof: By Lemma 6.6, cl(B) is deterministic, and by Lemma 6.7, cl(A) ��T cl(B). Thusby the partial completeness result for forward simulations (Theorem 4.9), cl(A) �F cl(B).Now Lemmas 6.11 and 6.13 allow us to conclude A �tF B, as required.6.6 Additional Results for Timed AutomataThe previous sections show how some simple correspondences cause most of the results foruntimed automata to carry over to the timed setting. There are some results about un-timed automata that do not carry over because of these correspondences, but are nonethe-less true. Firstly, there are the partial completeness results that involve t-forests. These donot carry over since the closure construction does not map t-forests to forests. Secondly,the various results that require the construction of some timed automaton (for instancethe timed version of the Abadi-Lamport result) do not carry over via the correspondence.This subsection is devoted to establishing these remaining results in the setting of timedautomata.



6.6.1 Partial Completeness ResultsTheorem 6.19 (Partial completeness of timed re�nements) Suppose A is a t-forest, Bis deterministic and A �t�T B. Then A �tR B.Proof: Analogous to the proof of Theorem 4.4. If r �= t-after(B) � t-past(A), then r canbe shown to be a timed re�nement from A to B. The proof uses Lemmas 5.8 and 5.3.Theorem 6.20 (Partial completeness of timed backward simulations) Suppose A is at-forest and A �t�T B. Then1. A �tB B, and2. if B has t-�n then A �tiB B.6.6.2 Results Involving an Intermediate Timed AutomatonTheorem 6.21 (Completeness of timed forward and timed backward simulations) Sup-pose A �t�T B. Then1. 9C : A �tF C �tB B, and2. if B has t-�n then 9C : A �tF C �tiB B.Proof: The proof is essentially the same as the proof of Theorem 4.16.Let C = t-can(t-beh(A)). By Lemma 5.14, C is a deterministic t-forest and A �t�T C.Since C is deterministic, A �tF C by partial completeness of timed forward simulations(Theorem 6.18), and because C is a t-forest, C �tB B follows by partial completeness oftimed backward simulations (Theorem 6.20(1)). Similarly, if B has t-�n then C �tiB Bfollows by Theorem 6.20(2).De�nition 6.1 Suppose k is a synchronous relation over states(A) and states(B) satis-fying k \ (start(A)� start(B)) 6= ;. The timed superposition t-sup(A;B ; k) of B onto Avia k is the timed automaton C given by� states(C ) = k,� start(C ) = k \ (start(A)� start(B)),� acts(C ) = acts(A) \ acts(B), and� for (s0; v0); (s; v) 2 states(C ) and a 2 acts(C ),(s0; v0) a�!C (s; v) , s0 ea,!A s ^ v0 ea,!B v ^ S2 ^ S3 ^ S4;where S2 �= a 62 R�0 ) s0:time = s:time, S3 �= a 2 R�0 ) s0:time � a = s:time,and S4 �= a = s0:time ) (s0 = s ^ v0 = v).Theorem 6.22 A �tF B , (9C : A �tH C �tR B).



Proof: Suppose A �tF B. Let f be a timed forward simulation from A to B, letC = t-sup(A;B ; f ) and let �1 and �2 be the projection functions that map states of Cto their �rst and second components, respectively. Then it is easy to check that ��11 is atimed history relation from A to C and �2 is a timed re�nement from C to B.The reverse implication also follows via a standard argument.Theorem 6.231. A �tB B , (9C : A �tP C �tR B).2. A �tiB B , (9C : A �tiP C �tR B).Proof: Similar to the proof of Theorem 6.22, using timed backward simulations instead.Theorem 6.24 (Completeness of timed history/prophecy relations and re�nements) IfA �t�T B then the following are true.1. 9C;D : A �tH C �tP D �tR B.2. If B has t-�n then 9C;D : A �tH C �tiP D �tR B.3. 9C;D : A �tP C �tH D �tR B.Proof: Completely analogous to the proofs of Theorem 4.43 and Theorem 4.44.6.6.3 Unfold and Guess ConstructionsThe timed unfolding of A, notation t-unfold(A), is the timed automaton B de�ned by� states(B) = the set of fat executions of A,� start(B) = the executions of A that consist of a single start state,� acts(B) = acts(A), and� for �0; � 2 states(B) and t 2 R�0,�0 t�!B � , strip-end(�0) = strip-end(�) ^ last(�0) t�!A last(�)and, for a 2 acts(B) � R�0,�0 a�!B � , � = �0 a last(�);where strip-end(�) is obtained from � by removing the time-passage step (if present)at the end of �.(We leave it to the reader to verify that B is a timed automaton.)Proposition 6.25 t-unfold(A) is a t-forest and A �tH t-unfold(A).



Proof: From the de�nitions it easily follows that t-unfold(A) is a t-forest. The func-tion last which maps each fat execution of A to its last state is a timed re�nementfrom t-unfold(A) to A, and the relation last�1 is a timed forward simulation from A tot-unfold(A). Thus, last�1 is a timed history relation from A to t-unfold(A).Dual to the timed unfolding is the following timed guess construction. The timed guessof A, notation t-guess(A), is the timed automaton B de�ned by� states(B) = the set of fat execution fragments of A,� start(B) = the set of fat executions of A,� acts(B) = acts(A), and� for �0; � 2 states(B) and t 2 R�0,�0 t�!B � , strip-begin(�0) = strip-begin(�) ^ �rst(�0) t�!A �rst(�)and, for a 2 acts(B) � R�0,�0 a�!B � , �rst(�0) a � = �0;where strip-begin(�) is obtained from � by removing the time-passage step (ifpresent) at the begin of �.(Again we leave it to the reader to verify that B is a timed automaton.)Proposition 6.26 A �tP t-guess(A).Proof: Similar to the proof of Proposition 6.25.7 DiscussionIn this paper, we have presented an automata-theoretic model for timing-based systems,and have used it to develop a variety of proof techniques for such systems. A considerableamount of further work remains to be done.First, there is a technical issue. Some of the other work on simulations (e.g., [21])includes reachability restrictions in the step correspondence conditions; we would liketheorems justifying the soundness of those simulations in terms of the soundness of oursimulations (without reachability hypotheses).Re�nements and forward simulations have already been used extensively and suc-cessfully for verifying concurrent algorithms, and backward simulations (in the form ofprophecy variables) have also been shown to be of practical value in some cases. Addi-tional work remains to determine the practical utility of the various kinds of simulationsstudied in this paper, particularly in the case of timing-based systems. This will involveapplying the simulation techniques to a wide range of examples. It may also involve de-velopment of techniques analogous to the progress measure techniques in [19], based onextra structure to be added to our timed automaton model.
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