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Abstract. A general automaton model for timing-based systems is presented and
is used as the context for developing a variety of simulation proof techniques for
such systems. As a first step, a comprehensive overview of simulation techniques for
simple untimed automata is given. In particular, soundness and completeness results
for (1) refinements, (2) forward and backward simulations, (3) forward-backward
and backward-forward simulations, and (4) history and prophecy relations are given.
History and prophecy relations are new and are abstractions of the history variables
of Owicki and Gries and the prophecy variables of Abadi and Lamport, respectively.
As a subsequent step, it is shown how most of the results for untimed automata can
be carried over to the setting of timed automata. In fact, many of the results for the
timed case are obtained as consequences of the analogous results for the untimed
case.
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1 Introduction

We are currently involved in a project to define a very general formal model for real-time
and other timing-based systems. We intend that the model should provide a suitable basis
for formal reasoning about timing-based systems, in particular, for verification of their
correctness and for analysis of their complexity. It should support many different kinds of
correctness proof techniques, including process algebraic and assertional methods. So far,
process algebraic and assertional methods have been used primarily to prove properties of
untimed (asynchronous) systems; we would also like to use them for timing-based systems.
Also, the kinds of properties generally proved using these methods have been “ordinary”



safety properties; we would like to use similar methods to also prove timing properties
(e.g., upper and lower bounds on time).

In this paper, we describe a candidate for such a model, and use it to express some
powerful simulation techniques for proving correctness of timing-based systems. The style
of the model we define is automata-theoretic, which is the natural style for expressing
assertional methods. However, we expect that the model can also serve as a semantic
model for interesting algebraic languages, and thus that process algebraic methods can
also be employed in the same framework. We define several kinds of simulations including
refinements, forward simulations, backward simulations, and hybrid versions that we call
forward-backward and backward-forward simulations. We prove basic results for these
kinds of simulations, in particular, soundness and completeness theorems. We also define
history relations and prophecy relations, which are abstract versions of the history and
prophecy variables of Abadi and Lamport [1]. We prove theorems describing the properties
of these various kinds of simulations and relating the different kinds of simulations to each
other.

The goal of extending simulation techniques to timing-based systems is also the mo-
tivation for the work of Lynch and Attiya in [19]. That work, however, only explores
forward simulations. Also, the model used in [19] has considerably more structure than
the very general model proposed here; it is based closely on the timed automaton model
of Merritt, Modugno and Tuttle [22], which assumes that the system being modeled is
describable in terms of a collection of separate tasks, each with associated upper and
lower bounds on its speed. This extra structure supports the development of some use-
ful progress measure proof methods, which we do not develop here. On the other hand,
the basic theorems about forward simulations that appear in [19] are stated in a setting
that has more structure than is really necessary for those theorems. In this paper, we
make only those assumptions that are needed for the basic results about simulation proof
techniques.

We propose a notion of timed automaton, which is just an automaton (or labeled
transition system) equipped with some additional structure. Specifically, each state of
the automaton has an associated time, which indicates the current time. (Thus we use
absolute time in the sense of [2].) The actions of the automaton are of three kinds:
visible actions, time-passage actions, and a special internal action 7. As in many other
formalisms for real-time, see for instance [2, 3, 7, 22, 24, 25, 32], all actions except for the
time-passage actions are modeled as occurring instantaneously, i.e., they do not change
the time component of the state.

To specify times, we use a dense time domain, specifically, the nonnegative reals
(starting with time 0 in the initial state), and we impose no lower bound on the time
between events. This choice distinguishes our work from many others’; e.g., [4, 7, 24, 25,
29, 33], in which discrete time values or universal positive lower bounds on step time are
used. Use of real-valued time is less restrictive, and we believe that the extra flexibility will
be useful in the design and analysis of timing-based distributed algorithms. The penalty
we pay for this flexibility is that our automata may admit some “Zeno executions”, i.e.,
infinite executions in which the time component is bounded.

Timed automata are required to satisfy a small set of basic axioms which express
natural properties of time. For instance, there is an axiom saying that time-passage actions
may not decrease time, and another saying that all the other actions are instantaneous.



Also, time can advance by a particular amount in one time-passage step if and only if it
can also advance by the same amount in two steps. (This property is called continuity in
[32] and, more appropriately, time additivity in [26].) We attempt to use as few axioms
as possible to obtain the results about simulations. Later, as we try to express different
proof methods in terms of this model, we expect to have to add additional requirements
to obtain the desired properties. A typical axiom we may have to add at some point is
the axiom of time determinism [32, 26], which says that if from a given state s there are
time-passage actions leading to states s’ and s”, which both have the same time, s" and
s"” must be equal.

In order to define correctness for timed automata, we require notions of external
behavior. We emphasize two notions. First, as the finite behaviors of a timed automaton,
we take the finite timed traces, each of which consists of a finite sequence of timed external
actions together with a final time. Second, as the infinite behaviors, we take the admissible
timed traces, each of which consists of a sequence of timed external actions that can
occur in an execution in which the time grows unboundedly (i.e., a “non-Zeno” infinite
execution). In a feasible timed automaton, i.e., a timed automaton in which each finite
execution can be extended to an execution in which the time is unbounded, the finite timed
traces are determined by the admissible ones. For this type of automaton, inclusion of
sets of admissible timed traces appears to be a good notion of implementation. One of the
main objectives of this paper is to develop proof techniques to show that one automaton
implements another in this sense.

Even though our notion of timed automata has less structure than those of [22] and
[19], it is closely related to those models. Ours can be regarded as a generalization of the
model in [19], in which the notion of separate tasks is removed. (There are some minor
distinctions; for instance, we do not include names for internal actions, but label them
all by the special symbol 7. This distinction is unimportant in a setting without separate
tasks.) On the other hand, the model of [22] includes treatment of fairness and liveness,
whereas our model does not. (The model in [22] was originally designed as an extension
of the non-timing-based input/output automaton model of [20], which emphasizes the
notion of fair execution.) The reason we have not equipped our model with facilities
for handling fairness and liveness is that we believe that in the setting of timing-based
systems, all properties of practical importance can be expressed as safety properties,
given the admissibility assumption that time increases without bound. The absence of
fairness and liveness considerations in our model seems to remove various technical and
philosophical complications, and to lead to simpler and more systematic proof techniques.

The simulations we consider are derived from simulations studied in many places in the
research literature. The simplest kind of simulation we consider is a refinement, which is a
functional simulation similar to those studied in [17] and very similar to a homomorphism
between automata in the sense of classical automata theory [6]. A refinement from a
timed automaton A to another timed automaton B is a time-preserving function from
states of A to states of B such that (a) the image of every start state of A is a start state
of B, and (b) every step of A has a corresponding sequence of steps of B that begins
and ends with the images of the respective beginning and ending states of the given step,
and that has the same visible actions. In the untimed setting, it is well known that the
corresponding untimed notion of refinement implies an implementation relation between
A and B; we give the analogous soundness result, as well as a partial completeness result,



for the timed setting.

We then consider forward simulations and backward simulations, which are general-
izations of refinements that allow a set of states of B to correspond to a single state of
A. Forward simulations are similar to the the simulations of [28, 10], the possibilities
mappings of [20], the downward simulations of [9, 14, 8], and the forward simulations of
[13]. The correspondence conditions (a) and (b) above are generalized so that (a) every
start state of A has some image that is a start state of B, and (b) every step of A and
every state of B corresponding to the beginning state of the step yield a corresponding
sequence of steps of B ending with the image of the ending state of the given step. The
usefulness of such simulations in proving correctness in the untimed setting has been well
demonstrated. (See, e.g., [18] for some examples.) Again, we give soundness and par-
tial completeness results for the timed setting. Backward simulations occurred first in
[9] under the name of upward simulations and were used later in the setting of CSP in
[14, 8]. In [21, 12] it is observed that they are closely related to the prophecy variables
first defined in [1]. In the case of a backward simulation, conditions (a) and (b) are gen-
eralized so that (a) all images of every start state of A are start states of B, and (b)
every step of A and every state of B corresponding to the ending state of the step yield a
corresponding sequence of steps of B beginning with the image of the beginning state of
the given step. Abadi and Lamport [1] demonstrate the usefulness of prophecy variables
(and hence backward simulations) in the untimed setting, with some simple examples.
Again, we give soundness and partial completeness results for the timed setting.

We also consider forward-backward and backward-forward simulations, which are es-
sentially compositions of one forward and one backward simulation, in the two possible
orders. The definition of a forward-backward simulation has been inspired by the work of
Klarlund and Schneider [15] for the untimed setting (with no internal actions) again, we
extend these ideas to the timed setting (with internal actions). The notion of a backward-
forward simulation is suggested by symmetry with forward-backward simulations. While
some of the results for this case are symmetric with the forward-backward case, others
(notably, certain completeness results) do not hold.

We also provide redefinitions of the history variable notion of [27] and the prophecy
variable notions of [1], in terms of timed automata, and prove equivalence results between
these explicit definitions and our more abstract simulation definitions.

In order to present our results for timed automata, we find it convenient first to
describe corresponding results for the simpler untimed setting. Therefore, we first define
a simple untimed automaton model corresponding to the timed automaton model, and
explore all the types of simulations described above in terms of this model. The definitions
and results for timed automata are given in a subsequent step. The results for the timed
setting are completely analogous to those for the untimed setting; in fact, in many cases,
our results for the timed setting are derived directly from those for the untimed setting.
An advantage of this two-phase approach is that it highlights the adaptability of the
various verification techniques from the untimed to the timed setting.

As far as the classification of simulations is concerned, our work is closely related
to and extends that of Jonsson [13]. However, whereas we focus on real-time issues,
Jonsson addresses fairness instead. Also, Jonsson has more powerful notion of backward
simulation, which we prefer not to use since it fails to reduce global reasoning about
infinite behaviors to local reasoning about states and actions.



We consider the main contributions of the paper to be the following. First, we give an
organized presentation, in terms of a very simple and abstract model, of a wide range of
important simulation techniques, together with their basic soundness and completeness
properties. We present the various simulation techniques in a “bottom-up” fashion, start-
ing with simple ones such as forward and backward simulations and building up to more
complicated simulations such as forward-backward simulations and history relations. We
give elegant and short proofs of soundness and completeness results for complicated sim-
ulations in terms of soundness and (partial) completeness results for simple simulations.
Second, we introduce the notions of a timed automaton and its behavior, and extend
existing simulation notions to this new setting. Third, there are several specific new
definitions and results, notably: (1) The definition of a notion of composition of forward-
backward simulations. This allows us to prove that image-finite forward-backward sim-
ulations induce a preorder on the domain of general automata. (2) The introduction of
backward-forward simulations. Although these simulations do not lead to a complete
proof method, they are sound and possibly useful in practice. They arise naturally as the
dual notion of forward-backward simulations. (3) The notions of history and prophecy
relations. Fourth and finally, our presentation style, which bases the timed case on the
untimed case, explains the connections between these two settings.

In what follows, some of the proofs have been omitted because of length restrictions.

2 Preliminaries

2.1 Sequences

Let K be any set. The sets of finite and infinite sequences of elements of K are denoted
by K* and K<, respectively. Concatenation of a finite sequence with a finite or infinite
sequence is denoted by juxtaposition; A denotes the empty sequence and the sequence
containing one element @ € K is denoted a. We say that a sequence o is a prefiz of a
sequence p, notation o < p, if either 0 = p, or o is finite and p = oo’ for some sequence o’.
A set S of sequences is prefir closed if, whenever some sequence is in S all its prefixes are
also. If o is a nonempty sequence then first(o) returns the first element of o, and tail(o)
returns o with its first element removed. Moreover, if o is finite, then last(o) returns the
last element of o. If o is a sequence over K and L C K, then o[L denotes the sequence
obtained by projecting o on L. If S is a set of sequences, S[L is defined as {o[L | 0 € S}.

2.2 Sets, Relations and Functions

A relation over sets X and Y is defined to be any subset of X x Y. If f is a relation
over X and Y, then we define the domain of f to be domain(f) = {z € X | (z,y) €
f for some y € Y}, and the range of f to be range(f) = {y € Y| (x,y) € f for some = €
X}. A total relation over X and Y is a relation f over X and Y with domain(f) = X. If
X is any set, we let ¢d(X') denote the identity relation over X and X, i.e., {(x,2) | v € X}.
We define composition of relations in the usual way, i.e.,if f and ¢ are relations over X and
Y and over Y and Z, respectively, then go f denotes the relation over X and Z consisting
of all pairs (x,z) such that there exists y € Y with (x,y) € f and (y,z) € ¢g. For all
relations f, g and h, fo(goh) = (fog)oh. Also, for X D domain(f) and Y 2O range(f),



id(X)o f= foudY)=f. If fisarelation over X and Y, then the inverse of f, written
71, is defined to be the relation over Y and X consisting of those pairs (y, ) such that
(v,y) € f. Recall that for any pair of relations f and ¢, (go f)™' = f~tog ™ If f
is a relation over X and Y, and 7 is a set, then f[Z is the relation over X N Z and Y
given by f[Z = fn(Z xY). If fis a relation over X and Y and z € X, we define
fle] ={y € Y| (x,y) € f}. We say that a relation f over X and Y is a function from
X toY, and write f: X — Y, if |flz]| = 1 for all € X; in this case, we write f(z) to
denote the unique element of f[z]. A function ¢ from X to Y is a choice function for a
relation f over X to Y provided that ¢ C f (i.e., ¢(x) € flz] for all x € X). If X is a
set, P(X) denotes the powerset of X, i.e., the set of subsets of X, and PN(X) the set of
nonempty subsets of X, i.e., the set P(X)— {0}. We say that a relation f over X and Y
is émage-finite if f[x] is finite for all x in X. If f is a relation over X and P(Y"), then we
say that f is image-2-finite if every set in the range of [ is finite.

2.3 A Basic Graph Lemma

We require the following lemma, a generalization of Konig’s Lemma [16]. If G is a digraph,
then a root of & is defined to be a node with no incoming edges.

Lemma 2.1 Let GG be an infinite digraph that satisfies the following properties.
1. G has finitely many roots.
2. FEach node of G has finite outdegree.
3. Fach node of GG is reachable from some root of G.

Then there s an infinite path in G starting from some root.

Proof: The usual proof for Kénig’s Lemma extends to this case. |

3 Untimed Automata and Their Behaviors

This section presents the basic definitions and results for untimed automata.

3.1 Automata

We begin with the definition of an (untimed) automaton. An automaton A consists of:
o a set states(A) of states,
e a nonempty set start(A) C states(A) of start states,
e a set acts(A) of actions that includes a special element 7, and

o a set steps(A) C states(A) x acts(A) x states(A) of steps.



We let s, s u,u’,.. range over states, and «a,.. over actions. We let ext(A), the external
actions, denote acts(A) — {r}. We call 7 the internal action. We use the term event to
refer to an occurrence of an action in a sequence. If o is a sequence of actions then & is
the sequence gained by deleting all 7 events from o. We write s’ —% 4 s, or just s’ - s if
A is clear from the context, as a shorthand for (s',a,s) € steps(A). In this section as well
as the next one, A, B,.. range over automata. Later, however, we will use these symbols
to range over timed automata.

An execution fragment of A is a finite or infinite alternating sequence spaqsiassy - - -
of states and actions of A, beginning with a state, and if it is finite also ending with a
state, such that for all i, s; “*3 s;1;. We denote by frag*(A), frag”(A) and frag(A) the
sets of finite, infinite, and all execution fragments of A, respectively. An execution of A is
an execution fragment that begins with a start state. We denote by execs*(A), execs”(A)
and execs(A) the sets of finite, infinite, and all executions of A, respectively. A state s of
A is reachable if s = last(«a) for some finite execution « of A.

Suppose « = s0a1S1a98y -+ 18 an execution fragment of A. Let 4 be the sequence
consisting of the actions in a: v = ayay.... Then trace(a) is defined to be the sequence
4. A finite or infinite sequence 3 of actions is a trace of A if A has an execution o with
f = trace(a). We write traces*(A), traces”(A) and traces(A) for the sets of finite, infinite
and all traces of A, respectively. These notions induce three preorders (i.e., reflexive
and transitive relations). For A and B automata, we define A <.p B = traces™(A) C
traces*(B), A <,r B =1 traces”(A) C traces”(B), and A <r B =1 traces(A) C traces(B).
Recall that the kernel of a preorder C is the equivalence = defined by s =y = 2 C yAy C
x. We denote by =,1, =,1 and =7, the respective kernels of the preorders <,r, <, and
<T.

Suppose A is an automaton, s’ and s are states of A, and /3 is a finite sequence over
ext(A). We say that (¢, /3,s) is a move of A, and write s’ £ 45, or just <> s when
A is clear, if A has a finite execution fragment « with first(a) = &', trace(a) = 3 and
last(a) = s.

3.2 Restricted Kinds of Automata

Automaton A is deterministic if |start(A)| = 1, steps(A) contains no 7 steps, and for all
states s’ and all external actions a there is at most one state s such that s’ —% 4 s.

A has finite invisible nondeterminism (fin) if start(A) is finite, and for any state s’ and
any finite sequence [ over ext(A), there are only finitely many states s such that s’ £ 4.

A is a forest if for each state of A there is a unique execution that leads to it. Recall
that a forest is characterized uniquely by the property that all states of A are reachable,
start states have no incoming steps and each of the other states has exactly one incoming
step.

The relation after(A) consists of the pairs (3,s) € (ext(A))* x states(A) for which
there is a finite execution of A with trace # and last state s.

after(A) = {(B,s) | 3o € execs™(A) : trace(a) = 3 and last(a) = s}.

The relation past(A) = after(A)™" relates a state s of A to the traces of finite executions
of A that lead to s. Also, define before(A) to be the relation that relates a finite sequence



B to those states of A from where an execution with trace § is possible.
before(A) = {(3,s) | Jar € frag™(A) : trace(e) = § and first(a) = s}.
We write future(A) for before(A)™".
Lemma 3.1
1. If A is deterministic then after(A) is a function from traces*(A) to states(A).
2. If A has fin then after(A) is image-finite.

3. If A is a forest then past(A) is a function from states(A) to traces*(A).

3.3 Trace Properties
For A an automaton, its behavior, beh(A), is defined by beh(A) = (ext(A), traces(A)).

In this subsection, we characterize the structures that can be obtained as the behavior
beh(A) for some automaton A as trace properties.

A trace property P is a pair (K, L) with K a set and L a nonempty, prefix closed set of
(finite or infinite) sequences over K. We will refer to the constituents of P as sort(P) and
traces(P), respectively. Also, we write traces*(P) = K* N L and traces*(P) = K“ N L.
For P and () trace properties, we define P <,1 Q = traces*(P) C traces*(Q), P <,r Q =
traces”(P) C traces*(Q), and P <1 Q) = traces(P) C traces(Q). With =.p, =41 and =r,
we denote the kernels of the preorders <,r, <,r and <7, respectively. A trace property
P is limit-closed if an infinite sequence is in traces(P) whenever all its finite prefixes are.

Lemma 3.2 Suppose P and () are trace properties with () limit-closed. Then P <.t ()
& P <t Q.

Lemma 3.3
1. beh(A) is a trace property.
2. If A has fin then beh(A) is limit-closed.

3. A<t B & beh(A) <.1 beh(B), A <,r B & beh(A) <,r beh(B), and A <1 B &
beh(A) <t beh(B).

Proof: It is easy to see that beh(A) is a trace property.

For Part 2, suppose A has fin. We use Lemma 2.1 to show that beh(A) is limit-closed.
Suppose [ is an infinite sequence over ext(A) such that all finite prefixes of 8 are in
traces(A). Consider the digraph G whose nodes are pairs (v, s), where ~ is a finite prefix
of # and s is a state of A, and where there exists an execution « of A that ends with state
s and such that v = trace(«); there is an edge from node (v/, ") to node (v, s) exactly if
is of the form v'a, where a € ext(A), and where ' =% 45. Then ( satisfies the hypotheses
of Lemma 2.1, which implies that there is an infinite path in G starting at a root. This
corresponds directly to an execution o having trace(a) = 3. Hence, 3 € traces(A).

Part 3 is immediate from the definitions. |



Proposition 3.4 If B has fin then A<, B & A <7 B.

Proof: Immediate from Lemmas 3.2 and 3.3. [ |

Example 3.1 The automata A and B of Figure 1 illustrate the difference between <,
and <. Note that automaton B does not have fin.

« . a _a . . e y a4 a |

£

A >T B

Figure 1: <,r versus <r.

We close this subsection with the construction of the canonical automaton for a given
trace property.

Definition 3.1 For P a trace property, the associated canonical automaton can(P) is
the structure A given by

o states(A) = traces™(P),

o start(A) = {\},

o acts(A) = sort(P) U {r}, and

o for 3, € states(A) and a € acts(A), ' —H4 B & a€ ext(A)AF a=p.

Lemma 3.5

1. can(P) is a deterministic forest,

2. beh(can(P)) =1 P,

3. P <1 beh(can(P)), and

4. if P is limit-closed then beh(can(P)) =1 P.

Proof: Parts 1 and 2 follow easily from the definitions. Since can(P) is deterministic it
certainly has fin, so it follows by Lemma 3.3 that beh(can(P)) is limit-closed. Now 3 and
4 follow by combination of 2 and Lemma 3.2. |

Lemma 3.6

1. can(beh(A)) is a deterministic forest,
2. can(beh(A)) =.1 A,
3. A <1 can(beh(A)), and
4. if A has fin then can(beh(A)) =1 A.
Proof: By combining Lemmas 3.3 and 3.5. |



4 Simulations for Untimed Automata

In this section, we develop simulation techniques for untimed automata.

4.1 Refinements

The simplest type of simulation we consider is a refinement. A refinement from A to B
is a function r from states of A to states of B that satisfies the following two conditions:

1. If s € start(A) then r(s) € start(B).
2. If ¥ —% 4 s then r(s') :a>Br(5).

We write A <g B if there exists a refinement from A to B.

This notion is similar to that of a homomorphism in classical automata theory; see for
instance Ginzberg [6]. Besides our additional treatment of internal actions, a difference
between the two notions is that the classical notion involves a mapping between the action
sets of the automata, whereas our refinements do not.

Example 4.1 Figure 2 presents some canonical examples of <g.
=T =T

<r <r

a Fr ZR

C D o) F

Figure 2: Refinements.
The following technical lemma is a straightforward consequence of the definition of a
refinement.
Lemma 4.1 Suppose r is a refinement from A to B and s' =% 4s. Then r(s) ‘—Q>Br(5).
Proposition 4.2 <g is a preorder (i.e., is transitive and reflexive).

Proof: The identity function ¢d(states(A)) is a refinement from A to itself. This implies
that <g is reflexive. Using Lemma 4.1, transitivity follows from the observation that if
r is a refinement from A to B and ' is a refinement from B to C', v’ o r is a refinement

from A to C. [ |

Theorem 4.3 (Soundness of refinements) A <g B = A <r B.



Proof: Suppose A <p B. Let r be a refinement from A to B, and let e be a function
that maps each move (', 3, s) of B to a finite execution fragment of B from s’ to s with
trace (3. Suppose 3 € traces(A). Then there exists an execution o = spa1s1azsz - - of
A with 8 = trace(a). By the first condition in the definition of a refinement, r(sg)
is a start state of B, and by the second condition, r(s;) a%lBr(sH_l) for all 7. For
i > 0, define a; = e((r(s;), dix1,7(8i+1))). Next define sequence o to be the (infini-
tary) concatenation agtail(o;)tail(as)---. By construction, o/ is an execution of B with
trace(o) = trace(a) = B € traces(B). [

Theorem 4.4 (Partial completeness of refinements) Suppose A is a forest, B is deter-
ministic and A <, B. Then A <j B.

Proof: The relation r = after(B) o past(A) is a refinement from A to B. |

4.2 Forward and Backward Simulations
4.2.1 Forward Simulations

A forward simulation from A to B is a relation f over states(A) and states(B) that
satisfies:

L. If s € start(A) then f[s] N start(B) # 0.

2. If ' —% 4 s and v’ € f[s'], then there exists a state u € f[s] such that u' =% pu.
We write A <g B if there exists a forward simulation from A to B.
Example 4.2 Let C, D, E, F be as in Figure 2. Then D <p C and F £y F.
Proposition 4.5 A <g B = A<y B.

Proof: Any refinement relation is a forward simulation. [

The following lemma is the analogue for forward simulations of Lemma 4.1.

Lemma 4.6 Suppose f is a forward simulation from A to B and s' =% 4s. If u' € I,
then there exists a state u € f[s] such that v’ =2 pu.

Proposition 4.7 <g is a preorder.

Proof: For reflexivity, observe that the identity function id(states(A)) is a forward
simulation from A to itself. For transitivity, use Lemma 4.6 to show that if f and f’
are forward simulations from A to B and from B to C, respectively, f' o f is a forward
simulation from A to C. |

Theorem 4.8 (Soundness of forward simulations, [20, 11, 30]) A <p B = A <r B.

Proof: Versions of this proof appears in the cited papers. The proof is similar to that
of Theorem 4.3. |

Theorem 4.9 (Partial completeness of forward simulations) Suppose B is deterministic
and A <.r B. Then A <y B.

Proof: The relation f = after(B) o past(A) is a forward simulation from A to B. |



4.2.2 Backward Simulations

In many respects, backward simulations are the dual of forward simulations. Whereas
a forward simulation requires that some state in the image of each start state should
be a start state, a backward simulation requires that all states in the image of a start
state be start states. Also, a forward simulation requires that forward steps in the source
automaton can be simulated from related states in the target automaton, whereas the
corresponding condition for a backward simulations requires that backward steps can be
simulated. However, the two notions are not completely dual: the definition of a backward
simulation contains a nonemptiness condition, and also, in order to imply soundness in
general, backward simulations also require a finite image condition. The mismatch is due
to the asymmetry in our automata between future and past: from any given state, all the
possible histories are finite executions, whereas the possible futures can be infinite.

A backward simulation from A to B is a total relation b over states(A) and states(B)
that satisfies:

1. If s € start(A) then b[s] C start(B).
2. If &' —% 4 s and u € b[s], then there exists a state u’ € bs'] such that u' =% gu.

We write A <g B if there exists a backward simulation from A to B, and A <;g B if
there exists an image-finite backward simulation from A to B.

Example 4.3 Let A, B be as in Figure 1. Then A <g Bbut A £z B. lf C, D, E, F are
as in Figure 2, then D £g C and F <;jg F.

Proposition 4.10 A <g B = A <g B.
The following lemma is useful in the proofs of the preorder properties and of soundness.

Lemma 4.11 Suppose b is a backward simulation from A to B and s' =2 4s. If u € b[s],
then there exists a state u' € b[s'] such that u' = gu.

Proposition 4.12 <g and <;g are preorders.

Proof: The identity function id(states(A)) is a backward simulation from A to itself.
Using Lemma 4.11 one can easily show that if b is backward simulation from A to B and
b is a backward simulation from B to ', ¥ o b is a backward simulation from A to C.
Moreover, if both b and & are image-finite, then & o b is image-finite too. |

Theorem 4.13 (Soundness of backward simulations)
]ASBB:>A§*TB, and
2. A<gB=A<r B.

Proof: Suppose b is a backward simulation from A to B and suppose 3 € traces*(A).
Then there is a move s’ =245, where s’ is a start state of A. Since b is a backward
simulation it is a total relation, so there exists a state u € b[s]. By Lemma 4.11, there
exists v/ € b[s'] with v'=2gu. By the first condition of the definition of a backward



simulation, v’ € start(B). Therefore, 5 € traces*(B), which shows the first part of the
proposition.

For the second part, suppose that b is image-finite. We have already established
A <.t B, so it is sufficient to show A <,1 B. Suppose that 3 € traces“(A), and let
« = Spais1asz - - - be an infinite execution of A with trace(a) = j.

Consider the digraph G whose nodes are pairs (u,¢) such that (s;,u) € b and in which
there is an edge from (u’,7’) to (u,?) exactly if ¢ = ¢'+1 and v’ = gu. Then G satisfies the
hypotheses of Lemma 2.1, which implies that there is an infinite path in ¢ starting at a
root. This corresponds directly to an execution o of B having trace(o’) = trace(a) = f.

Hence, 8 € traces(B). [

In a recent paper, Jonsson [13] considers a weaker image-finiteness condition for back-
ward simulations. Translated into our setting, the key observation of Jonsson is that in
order to prove A <t B, it is enough to give a backward simulation b from A to B with
the property that each infinite execution of A contains infinitely many states s with b[s]
finite. We do not explore this extension in this paper, primarily because it lacks a key
feature of simulation techniques. Namely, it fails to reduce global reasoning about infinite
behaviors to local reasoning about states and actions.

The following partial completeness result slightly generalizes a similar result of Jonsson
[12] in that it also alllows for 7-steps in the B automaton.

Theorem 4.14 (Partial completeness of backward simulations) Suppose A is a forest and
A <. B. Then

1. A<g B, and
2. if B has fin then A <ijg B.

Proof: We define a relation b over states(A) and states(B). Suppose s is a state of A.
Since A is a forest there is a unique trace leading up to s, say 5. Now define

b[s] = {u | Ja € execs™(B): trace(a) = 3, last(a) = u A [o < a = trace(a’) # 3]}.

By letting b[s] consist only of those states of B which can be reached via a minimal
execution with trace [, we achieve that, if s is a start state, all the states in b[s] are start
states of B. It is also the case that b satisfies the other conditions in the definition of a
backward simulation.

Lemma 3.1 implies that b is image-finite if B has fin. |

Proposition 4.15 Suppose all states of A are reachable, B has fin and A <g B. Then
A< B.

Proof: Let b be a backward simulation from A to B and let s be a state of A. Since
s is reachable we can find a trace 3 € past(A)[s]. From the fact that b is a backward
simulation it follows that b[s] C after(B)[3]. But since B has fin, after(B)[3] is finite by

Lemma 3.1. This implies that b is image-finite. |

Example 4.4 Figure 3 shows that the reachability assumption in Proposition 4.15 is
essential. There is a backward simulation from G to H, but even though H is deterministic
there is no image-finite backward simulation.



G H

Figure 3: <g and <;g are different, even for automata with fin.

4.2.3 Combined Forward and Backward Simulations

Several authors have observed that forward and backward simulations together give a
complete proof method (see [9, 8, 14, 12]): if A <.r B then there exists an intermediate
automaton C' with a forward simulation from A to €' and a backward simulation from C
to B. We prove this below.

Theorem 4.16 (Completeness of forward and backward simulations) If A <.t B then
the following are true.

2. If B has fin then 3C': A <p C <;g B.

Proof: Let C' = can(beh(A)). By Lemma 3.6, C' is a deterministic forest and A =.1 C.
Since C' is deterministic, A <g C' by Theorem 4.9, and because C' is a forest, ¢' <g B
follows by Theorem 4.14(1). If B has fin then C' <;g B follows by Theorem 4.14(2). W

4.3 Forward-Backward and Backward-Forward Simulations
4.3.1 Forward-Backward Simulations

Forward-backward simulations were introduced by Klarlund and Schneider [15] who call
them invariants. They also occur in the work of Jonsson [13] under the name subset
simulations, and are related to the failure simulations of Gerth [5]. Forward-backward
simulations combine in a single relation both a forward and a backward simulation. Below
we present simple proofs of their soundness and completeness by making this connection
explicit.

Formally, a forward-backward simulation from A to B is a relation g over states(A)

and PN(states(B)) that satisfies:
1. If s € start(A) then there exists S € g[s] such that S C start(B).

2. If & —% 4 s and 5" € g[s'], then there exists a set S € g[s] such that for every u € S
there exists v’ € 5" with v’ = gu.

We write A <pg B if there exists a forward-backward simulation from A to B, and
A <ipp B if there exists an image-2-finite forward-backward simulation from A to B.

The following theorem says that a forward-backward simulation can be obtained by
combining a forward and a backward simulation.



Theorem 4.17
1. A<p C<g B = A<gB.
2. A<p O < B= A<ypp B.

Proof: Suppose f is a forward simulation from A to C', and b is a backward simulation
from C to B. Then the relation ¢ over states(A) and PN(states(B)) defined by g =
{(s,0[u]) | (s,u) € f} is a forward-backward simulation from A to B. If b is image-finite
then ¢ is image-2-finite. |

Proposition 4.18
1. A<g B= A< B.
2. A<g B = A<gs B.
3. A<ig B= A<yrs B.

Proof: Immediate from Theorem 4.17, using that <ig and <y are reflexive. [ |

In combination with Theorem 4.17, the following theorem tells us that forward-
backward simulations are equivalent to forward simulations followed by backward sim-
ulations.

Theorem 4.19
2. ASIFBBj(HCASFCSIB B)

Proof: Let g be a forward-backward simulation from A to B, which is image-2-finite if
A < B. Define C to be the automaton given by:

o stales(C) = range(g),

o start(C) = range(g) N P(start(B)),

o acts(C) = acts(B), and

o for 5,5 € states(C) and a € acts(C), S'—%¢ S & Yue S I €5 : v =L pu.

Then ¢ is a forward simulation from A to C. Also, {(S,u) | S € states(C') and u € S} is
a backward simulation from € to B, which is image finite if ¢ is image-2-finite. |

In order to show that <pg and <;pg are preorders, we require a definition of compo-
sition for forward-backward simulations, and a transitivity lemma.

Definition 4.1 If ¢ is a relation over X and PN(Y') and ¢ is a relation over Y and
PN(Z) then the composition ¢’ e g is a relation over X and PIN(Z) defined as follows.

(z,5") € g’ o g = 35 € g[z],Tc, a choice function for ¢'[S: S" = [{c(y) : y € S}.

(The nonemptiness assumptions for ¢ and ¢’ immediately imply the nonemptiness as-
sumption for ¢’ @ g.)



Lemma 4.20 Suppose ¢ is a forward-backward simulation from A to B, and ¢ is a
forward-backward simulation from B to C'. Then ¢' e g is a forward-backward simulation
from A to C'. Moreover, if g and ¢’ are image-2-finite then ¢' ® ¢ is also image-2-finite.

Proof: For Condition 1 of the definition of a forward-backward simulation, suppose
s € start(A). Because ¢ is a forward-backward simulation, there is a set S € g[s] with
S C start(B). Since ¢’ is a forward-backward simulation, it is possible to find, for each
u € 5, aset S, € ¢'[u] with S, C start(C). Hence all states in the set S" = {5, | u € S}
are start states of C'. Now let ¢ be the function with domain S given by ¢(u) = S,. Then
¢ is a choice function for ¢’[.S. From the definition of e it now follows that (s, 5’) € ¢' e g.
This shows that ¢’ e ¢ satisfies Condition 1.

Now we show Condition 2 of the definition of a forward-backward simulation. Suppose
s —54 s and (¢,9") € ¢' o g. By definition of ¢’ e ¢, there exist T" € ¢[s'] and a choice
function ¢ for ¢'[T" such that S = U{c/(v') : v’ € T'}. Because g is a forward-backward
simulation from A to B, there is a set T' € g¢[s]| such that for each u € T there exists
u' € T with o' =% gu. Consider any particular v € T. Choose v’ € T’ with o’ =% gu.
Because ¢’ is a forward-backward simulation, there exists a set S, € ¢'[u] such that for
every v € S, there exists a v/ € ¢(u') with v’ =%cv. Define a choice function ¢ for ¢/ [T
by taking c(u) to be the set S,,.

Now consider the set S = U{c(u) : v € T'}. Then (s,5) € ¢’ @ g by definition. By
construction, we can find, for each v € S, a state v’ € S’ with v/ =2¢v. Thus S has the
required property to show Condition 2.

Finally, it is immediate from the definitions that, if ¢ and ¢’ are image-2 finite, ¢’ ® ¢
is also image-2-finite. |

Proposition 4.21 <gg and <;pg are preorders.
Proof: By Lemma 4.20. |

Theorem 4.22 (Soundness of forward-backward simulations, [15])
1. ASFBB:>A§*TB, and
2. A< B = A<t B.

Proof: For part 1, suppose A <pg B. By Theorem 4.19, there exists an automaton C
with A <g ' <g B. By soundness of forward simulations, Theorem 4.8, A <t (', and
by soundness of backward simulations, Theorem 4.13, C' <.t B. This implies A <,t B.
Part 2 is similar. [

Theorem 4.23 (Completeness of forward-backward simulations, [15]) Suppose A <.t B.
Then

2. If B has fin then A <ipg B.

Proof: By Theorem 4.16, there exists an automaton €' with A <g ' <g B. Moreover,
if B has fin then A <g C' <;g B. Then Theorem 4.17 implies the needed conclusions. W



4.3.2 Backward-Forward Simulations

Having studied forward-backward simulations, we find it natural to define and study a
dual notion of backward-formulation simulation.
A backward-forward simulation from A to B is a total relation ¢ over states(A) and

P(states(B)) that satisfies:
1. If s € start(A) then, for all S € g[s], S N start(B) # 0.

2. If s/ —% 4 sand S € g[s], then there exists a set S € ¢[s] such that for every u’ € 5’
there exists a u € S with v/ =% pgu.

We write A <gp B if there exists a backward-forward simulation from A to B, and
A <igr B if there exists an image-finite backward-forward simulation from A to B.

As for forward-backward simulations, backward-forward simulations can be character-
ized as combinations of forward and backward simulations.

Theorem 4.24
1. A<g C <y B= A<pgrB.
2. A< C<p B = A<gprB.
Proposition 4.25
1. A<g B= A<r B.
2. A<g B = A<gr B.
3. A<ig B= A<gr B.
Theorem 4.26
1. A<gr B= (3C : A< C <p B).
2. A<pr B= (3C: A< C <p B).

Proof: Let ¢ be a backward-forward simulation from A to B, which is image-finite if
A <igr B. Define C to be the automaton given by:

o states(C) = range(yg),

o start(C) = range(g[start(A)),

o acts(C) = acts(B), and

o for &, 5 € states(C) and a € acts(C), §'—H¢ § & Vo' € 8" Ju € S : v =% pu.

Then ¢ is a backward simulation from A to C' (and image-finiteness carries over). Also,
the relation {(S,u) | S € states(C) and v € S} is a forward simulation from C' to B. M

In order to show the properties of backward-forward simulations, it is useful to relate
them to forward-backward simulations.



Theorem 4.27
2. A<pr B = A <ypg B.

Proof: For one direction of 1, suppose that A <grp B. Then by Theorem 4.26, there
exists an automaton ' with A <g ' <g B. By Proposition 4.18, A <gg C and C <pg B.
Now A <gp B follows by Proposition 4.21. The proof of 2 is similar.

For the other direction of 1, suppose that f is a forward-backward simulation from A to
B. Given a state s of A, we define g[s] to be exactly the set of subsets S of states(B) such
that S intersects each set in f[s] in at least one element. Then ¢ is a backward-forward
simulation. |

Example 4.5 In general it is not the case that A <;pg B implies A <pr B. A
counterexample is presented in Figure 4. The diagram shows two automata [ and J. In
the diagram a label > ¢ next to an arc means that in fact there are infinitely many steps,

labeled ¢ + 1, 2 4+ 2, ¢ + 3, etc..

Figure 4: 1 SiFB J but [ %iBF J.

We claim that the relation ¢ given by

9[0] = {{0}7{0/71}7{0/71/72}7'"}
gln] = {{w},{w'}} forn >0

is an image-finite forward-backward simulation from [ to J.

However, there is no image-finite backward-forward simulation from [ to J. We see
this as follows. Suppose ¢ is an image-finite backward-forward simulation from [ to J.
In order to prove that this assumption leads to a contradiction, we first establish that
g[0] does not contain a finite subset X of N. First note that by the first condition in
the definition of a backward-forward simulation, all sets in ¢[0] are nonempty. The proof
proceeds by induction on the maximal element of X. For the induction base, observe
that {0} & ¢[0], since 0 has an incoming O-step in [ but not in .J. For the induction
step, suppose that we have established that ¢[0] contains no finite subset of N with a
maximum less than n, and suppose X € ¢[0] with X a finite subset of N with maximum
n. Using that 0 has an incoming 0-step in [, the second condition in the definition of a
backward-forward simulation gives that ¢[0] contains an element of ¢[0] which is a subset
of N with a maximum less than n. This contradicts the induction hypothesis.

Pick some state n > 0 of [ and a set S" € g[n]. Since 0 —%; n, there exists a set
S € ¢[0] such that every state in S has an outgoing n-step. Then S must be a subset of
{0,...,n—1,(n—1)"}. Since ¢g[0] does not contain the empty set or a finite subset of N,
it follows that (n — 1)’ € S. But since n was chosen arbitrarily (besides being positive) it
follows that ¢[0] has an infinite number of elements. This gives a contradiction with the
assumption that ¢ is image-finite.

Proposition 4.28 <gg is a preorder.



Proof: Trivially implied by Theorem 4.27 and Proposition 4.21. |

However, the counterexample of Figure 4 tells us that <;gp is not a preorder in general.
It we take the two automata I and J from the example, then we can find an automaton
C with I <y C <;g J, using Theorem 4.16. By Proposition 4.25, I <igr C and € <;gr J.
Hence it cannot be that <;gp is transitive, because this would imply I <igp J.

Soundness and completeness results for backward-forward simulations now follow from
those for forward-backward simulations.

Theorem 4.29 (Soundness of backward-forward simulations)

2. A<igr B= A<r B.
Proof: By Theorems 4.27 and 4.22. |
Theorem 4.30 (Completeness of backward-forward simulations) A <.t B = A <pr B.
Proof: By Theorems 4.23 and 4.27. |

Example 4.5 falsifies the completeness result that one might expect here. That is,
Theorem 4.30 does not have a second case saying that if B has fin and A <.t B, then
A <igr B.

4.4 Auxiliary Variable Constructions

In this subsection, we present two new types of relations, history relations and prophecy
relations, which correspond to the notions of history variable and prophecy variable of
Abadi and Lamport [1]. We show that there exists a close connection between history
relations and forward simulations, and also between prophecy relations and backward
simulations. Using these connections together with the earlier results of this section, we
can easily derive a completeness theorem for refinements similar to the one of Abadi and
Lamport [1]. In fact, in the setting of this paper the combination of history and prophecy
relations and refinements gives exactly the same verification power as the combination of
forward and backward simulations.

4.4.1 History Relations

A relation h over states(A) and states(B) is a history relation from A to B if h is a forward
simulation from A to B and A™' is a refinement from B to A. We write A <y B if there
exists a history relation from A to B.

We give an example of a history relation, using the construction of the “unfolding” of
an automaton; the unfolding of an automaton augments the automaton by remembering
information about the past.

Definition 4.2 The unfolding of an automaton A, notation unfold(A), is the automaton
B defined by



states(B) = execs*(A),

start(B) = the set of finite executions of A that consist of a single start state,

o acts(B) = acts(A), and

for o', € states(B) and a € acts(B), o —Spa & a=d alast(a).

Proposition 4.31 unfold(A) is a forest and A <y unfold(A).

Proof: Clearly, unfold(A) is a forest. The function last which maps each finite execution
of A to its last state is a refinement from unfold(A) to A, and the relation last™! is a
forward simulation from A to unfold(A). [

Example 4.6 For C, D, FE, F as in Example 4.1, C £y D, D <y C, E £y F and

Proposition 4.32 <y is a preorder.

Proof: Reflexivity is trivial. For transitivity, suppose h is a history relation from A to
B and A’ is a history relation from B to C'. Then h is a forward simulation from A to B
and A’ is a forward simulation from B to C', so h'o h is a forward simulation from A to C',
by Proposition 4.7. Also, since A’'~! is a refinement from C to B and h™! is a refinement
from B to A, (k' o h)™' = k™' o A’ is a refinement from C to A by Proposition 4.2. It
now follows that A’ o h is a history relation from A to C. |

The notion of a history relation is a new contribution of this paper. It provides a
simple and abstract view of the history variables of Abadi and Lamport [1]. Translated
to the setting of this paper history variables can be simply defined in terms of history
relations, as follows.

Definition 4.3 An automaton B is obtained from an automaton A by adding a history
variable if there exists a set V' such that

o states(B) C states(A) x V, and
e the relation {(s,(s,v)) | (s,v) € states(B)} is a history relation from A to B.

Whenever B is obtained from A by adding a history variable, then A <y B by
definition. The following proposition states that the converse is also true if one is willing
to consider automata up to isomorphism.

Proposition 4.33 Suppose A <y B. Then there exists an automaton C that is isomor-
phic to B and obtained from A by adding a history variable.

Proof: Let h be a history relation from A to B. Define automaton C' by
o states(C) = h,

o (s,u) € start(C) < wu € start(B),



o acts(C) = acts(B), and
o for (s',u'),(s,u) € states(C) and a € acts(C), (s',u') ¢ (s,u) & v —Hp u.

Clearly, the projection function 72 that maps a state (s,u) of C' to the state u of B is an
isomorphism between C' and B.

In order to show that C' is obtained from A by adding a history variable, let states(B)
play the role of the set V' required in the definition of a history variable. It is easy to
check that relation {(s,(s,v)) | (s,v) € states(C)} is a history relation from A to C. M

Proposition 4.33 shows that history relations already capture the essence of history
variables. For this reason and also because history relations have nicer theoretical prop-
erties, we will state all our results in this subsection in terms of relations, and will not
mention the auxiliary variables any further.

Theorem 4.34 (Soundness of history relations) A <y B = A =1 B.

Proof: Immediate from the soundness of refinements and forward simulations. [ |

In fact, a history relation from A to B is just a functional bisimulation between A and
B in the sense of Park [28] and Milner [23]. This implies that if there exists a history
relation from A to B, both automata are bisimulation equivalent. Hence, history relations
preserve the behavior of automata in a very strong sense.

Definition 4.4 Suppose k is a relation over states(A) and states(B) satisfying kN
(start(A) x start(B)) # 0. (Typically, k& will be a forward or a backward simulation.) The
superposition sup(A, B, k) of B onto A via k is the automaton C given by

o states(C) =k,
o start(C) = kN (start(A) x start(B)),
o acts(C) = acts(A) N acts(B), and

o for (s',v'), (s,v) € states(C) and a € acts(C),

(s, 0) —Be (s,v) & =% 45 A v = po.

Lemma 4.35 Suppose f is a forward simulation from A to B. Let C = sup(A, B, f)
and let my and 7y be the projection functions that map states of C to their first and
second components, respectively. Then wi" is a history relation from A to C' and 7y is a
refinement from C to B.

Theorem 4.36 A <p B < (3C: A <y C <y B).

Proof: For the implication “=7, suppose A <p B. Let f be a forward simulation from
A to B. Take C = sup(A, B,f). The result follows by Lemma 4.35. For the implication
“«<” suppose that A <y ¢' <g B. Then A <g C by the definition of history relations,
and ' <g B because any refinement is a forward simulation. Now A <g B follows by the
fact that <g is a preorder. |



4.4.2 Prophecy Relations

Now we will present prophecy relations and show that they correspond to backward
simulations, very similarly to the way in which history relations correspond to forward
simulations.

A relation p over states(A) and states(B) is a prophecy relation from A to B if p is a
backward simulation from A to B and p~! is a refinement from B to A. We write A <p B
if there exists a prophecy relation from A to B, and A <;p B if there is an image-finite
prophecy relation from A to B. We give an example of a prophecy relation, using the
construction of the “guess” of an automaton. This construction is a kind of dual to the
unfolding construction of the previous subsection in that the states contain information
about the future rather than about the past.

Definition 4.5 The guess of an automaton A, notation guess(A), is the automaton B

defined by

states(B) = frag™(A),

start(B) = execs*(A),
o acts(B) = acts(A), and

o for o/, a € states(B) and a € acts(B), o' —%p a & first(a')aa =’

Proposition 4.37 A <p guess(A).

Proof: The function first which maps each execution fragment of A to its first state is
a refinement from guess(A) to A, and the relation first~! is a backward simulation from

A to guess(A). [

Example 4.7 For the automata of Figure 2 we have C £p D, D £p C, E £p F and
F <;p E. The difference between <p and <;p is illustrated by the automata of Figure 3:
GSP H but Gfip H.

Proposition 4.38 <p and <;p are preorders.

Just as history relations capture the essence of history variables, prophecy relations
capture the essence of prophecy variables:

Definition 4.6 An automaton B is obtained from an automaton A by adding a prophecy
variable if there exists a set V' such that

o states(B) C states(A) x V, and
e the relation {(s,(s,v)) | (s,v) € states(B)} is a prophecy relation from A to B.

A prophecy variable is bounded it the underlying prophecy relation is image-finite.



Proposition 4.39 Suppose A <p B. Then there exists an automaton C that is iso-
morphic to B and obtained from A by adding a prophecy variable, which is bounded if
A<p B.

Again, we will state all further results in this subsection in terms of relations, and not
mention the auxiliary variables any further.

Theorem 4.40 (Soundness of prophecy relations)
1. ASPB:>AE*TB, and

2. A<p B= A=1 B.
Proof: Immediate from the soundness of refinements and backward simulations. [ |

Lemma 4.41 Suppose b is a backward simulation from A to B. Let C = sup(A, B,b)
and let my and 7y be the projection functions that map states of C to their first and
second components, respectively. Then w7 is a prophecy relation from A to C and 7y is
a refinement from C to B. If b is image-finite then so is 7;*.

Theorem 4.42
]ASBBﬁ(HCASPCSRB),
,QASIBB@(HCASIPCSRB)

Proof: The proof of 1 is analogous to that of Theorem 4.36, using Lemma 4.41. 2 can
be proved similarly. [

We finish this section with versions of the completeness results of [1].

Theorem 4.43 (Completeness of history relations, prophecy relations and refinements,
[1]) Suppose A <.t B. Then

1. HC,DASHCSPDSRB, and
2. if B has fin then AC, D : A <y C <;p D <p B.

Proof: By Theorem 4.16, there exists an automaton £ with A <¢ K <g B. Hence, by
Theorem 4.36, there is an automaton C' with A <y ' <p FE. Combining ' <g F and
FE <g B yields ' <g B. Theorem 4.42 yields an automaton D with ' <p D <g B,
which proves 1. Now statement 2 is routine. [

Similarly, we obtain:

Theorem 4.44 A<, B= 30, D: A<p (C <y D <y B.
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Figure 5: Classification of basic relations between automata.

4.5 Classification of Basic Relations Between Automata

We can summarize the basic implications between the various simulation techniques of
this section as follows. Suppose X, Y € {T, «T, R, F, iB, B, iFB, FB, iBF, BF, H, iP, P}.
Then A <x B = A <y B for all automata A and B if and only if there is a path from
<x to <y in Figure 5 consisting of thin lines only. If B has fin, then A <x B= A<y B
for all automata A and B if and only if there is a path from <x to <y consisting of thin
lines and thick lines.

5 Timed Automata and Their Behaviors

This section presents the basic definitions and results for timed automata. The develop-
ment is generally parallel to that in Section 3.

5.1 Timed Automata

A timed automaton A is an automaton whose set of actions is a superset of {7} U R2
and whose step relation satisfies a number of axioms that will be presented below. The
actions in RZ% are referred to as the time-passage actions. (Each action ¢ € RZ% represents
the passage of time exactly up to real time ¢.) The set of wisible actions is defined by
vis(A) = acts(A) — ({7} UR2Y).

The first axiom a timed automaton A has to satisfy is:
T1 For each state s there is a unique t € RZY such that s - s.

We call the steps introduced by axiom T1 idling steps. The intended meaning of an idling
step s = s is that the current time in state s is £. In this case we write s.timeys = {,



or s.time = t if A is clear from the context. Instead of the idling steps, we could have
included the mapping .timey4 as a basic component of a timed automaton. Formally this
would have been equivalent, but we prefer the present formulation for technical reasons.

We assume further that a timed automaton A satisfies the following restrictions on
individual steps.

S1 If s € start(A) then s.time = 0.

S2 If s % s and a & RZ°, then s'.time = s.time.

S3 If s % s and a € R2°%, then s'.time < a = s.time.
S4 If ' %5 s and a = §'.time, then s' = s.

Axiom S1 says that the time is always 0 in a start state. Axiom S2 says that non-
time-passage actions do not change the time; that is, they occur “instantaneously”, at a
single point in time. Axiom S3 says that time-passage actions may not cause the time to
decrease; the label of the transition refers to the time in the final state. Axiom S4 implies
that the only time-passage steps that does not cause the time to increase are the idling
steps.

We also require that A include a sufficiently rich collection of time-passage steps:

! !
T2 If s -5 s"” and s” - s, then s’ - s.
2

T3 If s - s and s'.time < t' < ¢, then there is an s” with s”.time = ¢’ such that s - &”
and s - s.

Axiom T2 allows repeated time-passage steps to be combined into one step, and axiom
T3 says that if time can pass to some time ¢, it can also pass to ¢ in two steps, via any
intermediate time #'.

In the rest of this paper, A, B, ... will range over timed automata.

Suppose « is an execution fragment of A. Then «.ftime denotes the time component
of the first state in «, and a.ltime denotes the smallest element of RZ% U {co} larger or
equal than (i.e., the supremum of ) the time components of all states in «. In particular,
if « is an execution, then a.ftime = 0, and if « is a finite execution fragment, then
a.ltime = last(«).time.

5.2 Admissible Executions and Feasibility

Timed automata do not include any features for describing liveness or fairness (such as
the class structure of /O automata). We believe that such features are not so important
in the timed setting as they are in the untimed setting. In fact, we think that by simply
requiring that time grow unboundedly in infinite executions, we will be able to handle
the liveness properties that arise in practice. Thus, in our study of timed automata, we
concentrate on the admissible executions and execution fragments, i.e., those in which the
time components of the states increase without bound. So « is an admissible execution
fragment iff a.ltime = oco.

The notion of an admissible execution is more tractable mathematically than the
notion of a fair execution in the I/O automaton model; this is because the admissible



executions of a timed automaton are exactly the limits of the infinite sequences of finite
executions, where each execution in the sequence is a prefix of the next and the time
components of the states go to co. This characterization permits the reduction of questions
about infinite behaviors to questions about finite behaviors. A similar reduction is not
possible in untimed models that incorporate fairness.

The idea behind the notion of admissible executions is that time is an independent
force, beyond the control of any automaton, which happens to grow unboundedly. We
note that, according to our definitions, there are timed automata in which from some (or
even all) states no admissible execution fragment is possible. This can either be because
from these states onwards time cannot advance at all (that is, a time deadlock occurs),
or because time can continue advancing, but not beyond a certain point (that is, all
executions are so-called Zeno executions). The possibility of time deadlocks occurs in
several process algebraic models ([2, 7, 24]) but we have no intuition whatsoever about
what it means to “stop time”. Zeno executions arise due to the inability of automaton
models to deal with an infinite amount of activity within a bounded period of time. Some
models of real-time computation, for instance the model of real-time CSP [29], exclude
Zeno executions altogether. As a result of our attempt to make our results as general as
possible, our model does allow for both time deadlocks and Zeno executions. However, in
several of our theorems we will require that the automata be feasible. A timed automaton
A is feasible provided that each finite execution is a prefix of some admissible execution.
Thus, a feasible timed automaton does not have time deadlocks, but may have Zeno
executions.

5.3 Timed Traces

The traces of timed automata do not provide a sufficiently abstract view of their behavior,
because they do not reflect the invisible nature of time-passage actions. We illustrate this
via the following key example.

Example 5.1 Consider two timed automata, Idle and Idle¢’. Automaton [dle does
nothing except that it lets time pass. Its state set is just RZ%, the start state is 0, the
set of actions is {7} U RZ% and there is a transition ¢ — ¢ whenever #' < ¢. Automaton
Idle is also rather boring: it idles all the time except that it does a 7-step at time 37. In
fact, we like to argue that from an observational point of view Idle’ is just as boring as
Idle since both automata do not engage in any interaction with their environment at all.
Formally, timed automaton Idle’ is defined as follows:

o states(Idle’) = R20 x {T,F},
o start(ldle’) = {(0,T)},

o acts(ldle') = {7} UR2% and
o steps(ldle') is specified by:

(t',b) -5 (1, b) ift'=tv{H'<tAN(b=T=1<3T7)

(37, T) = (37,F)



Although Idle’ <t Idle, it is not the case that [dle <1 Idle’. This is because Idle has a
trace consisting of 38 only, which Idle’ does not have. (Note that [dle’ does have a trace
37 38.) So if we would use <t as an implementation relation it would not be allowed to
implement a specification that only requires an internal (unobservable) step at time 37
by a device that does nothing at all. It is for this reason that we consider <t not to be a
good implementation relation.

In this subsection, we define an alternative notion of external behavior for timed
automata that does not include explicit individual time-passage actions. We describe the
external behavior of timed automata in terms of observations that we call timed traces;
these contain information about the visible actions that occur, together with their time
of occurrence, and also about the final time up to which the observation is made. Along
the way to the definition of a timed trace, it is helptul to define the basic notion of a timed
sequence pair.

5.3.1 Timed Sequence Pairs

A timed sequence over a given set K is defined to be a (finite or infinite) sequence ¢ over
K x R2% in which the time components are nondecreasing, i.e., t < ¢’ if (k,¢) and (&, 1)
are consecutive elements in 6. We say that 6 is Zeno if it is infinite and the limit of the
time components is finite.

A timed sequence pair over K is a pair p = (6,1), where § is a timed sequence over
K and t € RZ% U {oc}, such that ¢ > ¢ for all elements (k,t') in §. We write p.seq,
and p.ltime for the two respective components of p. We define p.ftime to be equal to the
time component of the first pair in p.seq in case p.seq is nonempty, and equal to p.ltime
otherwise. We denote by tsp(K') the set of timed sequence pairs over K. We say that a
timed sequence pair p is finite if both p.seq and p.ltime are finite, and admissible if p.seq
is not Zeno and p.ltime = oo.

Let p and p’ be timed sequence pairs over K such that pis finite and p.ltime < p'.ftime.
Then define p; p’ to be the timed sequence pair (p.seq p'.seq, p'.ltime). If p and ¢ are timed
sequence pairs over a set K, then p is a prefir of ¢, notation p < ¢, if either p = ¢, or p is
finite and there exists a timed sequence pair p’

Lemma 5.1 < is a partial ordering on timed sequence pairs over K.

5.3.2 Timed Traces of Timed Automata

Suppose a = Sgai81a282 - - - 1s an execution fragment of a timed automaton A. Let ~ be
the sequence consisting of the actions in « paired with the time of their occurrence:

v = (a1, s1.time)(az, sy.time) - - - .
Then t-trace(«) is defined to be the pair
t-trace(a) = (y[(vis(A) x RZ%), avltime).

So t-trace(a) records the occurrences of external actions together with their time of oc-
currence, and the limit time of the execution fragment. We call t-trace(«) the timed trace



of a. Thus, the timed trace of an execution fragment suppresses both 7 and time-passage
actions. It is easily checked that t-trace(«) is a timed sequence pair over vis(A).

A timed trace of A is the timed trace of some finite or admissible execution of A. We
write t-traces(A) for the set of all timed traces of A, t-traces*(A) for the set of finite
timed traces, i.e., those that originate from a finite execution of A, and t-traces™(A) for
the admissible timed traces, i.e., those that originate from an admissible execution of A.
The following proposition is a direct consequence of the definitions.

Proposition 5.2 The sets t-traces*(A) and t-traces™(A) consist of finite timed sequence
pairs and admissible timed sequence pairs over vis(A), respectively.

These notions induce three preorders on timed automata in an obvious way: A <
B2 t-traces(A) C t-traces(B), A <'+ B =1 t-traces*(A) C t-traces*(B), and A <' ; B =1
t-traces™(A) C t-traces™(B). The kernels of these preorders are denoted by =f, =L and
=! 1, respectively.

Suppose A is a timed automaton, s" and s are states of A, and p is a timed sequence
pair over vis(A). Then we say that (s',p,s) is a t-move of A, and write s’ 545, or
just " ~% s when A is clear, if A has a finite execution fragment « with first(a) = &,

t-trace(a) = p and last(a) = s.

Lemma 5.3 Suppose s’ L4 s and p = q;r. Then there exvists s such that s’ ~% 4 5" and

sy s,

5.3.3 From Traces to Timed Traces

A trace preserves more information about an execution than a timed trace. Below we
show how the timed trace of an execution fragment can be reconstructed from its starting
time and its trace. This reconstruction will allow us to relate the untimed and the timed
trace preorders.

Let K be some set with R2° C K, and let 3 = ayasas--- be a sequence over K. We
say [ is monotonic if the time-passage events contained in it increase monotonically, i.e.,
for all + < j, a;,a; € RZ® = a; < a;. Clearly, each trace of a timed automaton A is a
monotonic sequence over ext(A).

Let 3 = ajasas--- be monotonic sequence over K, and let + € RZY be less than or
equal to all time-passage events in 3. We define a timed sequence pair t-pair(t, 3) in two
steps. First, define for ¢ € N, t; € R2° inductively by: to = ¢ and if a; € R2° then tive 2
else t; 11 = t;. Let 4 be the sequence (a1,t1)(az,t2)(as, t3) - - -, and let ¢’ be the supremum,
in R2% U {oc}, of all the ¢;’s. Then

pair(t,8) 2 (3 (K — RZ%) x R2°),1').

We write t-pair() for t-pair(0, 3). The following lemma relates the usual notion of trace
to the new notion of timed trace.

Lemma 5.4 Suppose o € frag(A). Then t-trace(a) = t-pair(a.ftime, trace(a)).

Corollary 5.5 Suppose 3 € traces*(A). Then t-pair(f) € t-traces™(A).



Lemma 5.6

1. A< B= A<l B.

2. A<, B=A<';B.

3. A<r B = A<} B.
Proof: For 1, suppose that A <.r B and p € t-traces*(A). Then A has a finite execution
a with p = t-trace(a). Let 8 = trace(a). Then 3 € traces*(A) and, using A <.t B, also
B € traces*(B). By Corollary 5.5, t-pair(f) € t-traces*(B). But Lemma 5.4 yields
t-pair(3) = p. Thus p € t-traces*(B), and A <!1 B follows as required.

For 2, suppose that A <,1 B and p € t-traces™(A). Then there is an admissible
execution a of A such that p = t-trace(a). Let 8 = trace(a). Since 8 € traces“(A) and
A <, 1 B, also 8 € traces”(B). Thus B has an infinite execution o with trace(a’) = f.

Since « is admissible the time-passage actions contained in  grow unboundedly. But
since trace(a’) = (3, this means o' is also admissible. Using Lemma 5.4 we derive:

t-trace(a) = t-pair(trace(a)) = t-pair(3) = t-pair(trace(a’)) = t-trace(a’).

Thus p = t-trace(a’) € t-traces™ (B). It follows that A <! . B.
Finally, 3 follows from the first two parts. [

The automata Idle and Idle’ of Example 5.1 illustrate that the reverse implications
of the statements in the above lemma are not valid.

5.4 Restricted Kinds of Timed Automata

A has t-finite invisible nondeterminism (t-fin) if start(A) is finite, and for any state s’ and
any finite timed sequence pair p over vis(A), there are only finitely many states s such
that s’ &4 s.

Example 5.2 In order to illustrate the difference between fin and t-fin we define a timed
automaton Idle”. Basically, automaton [dle” does nothing except that it lets time pass.
However, at one nondeterministically chosen time ¢t > 0, Idle” makes a 7-step, and then
it subsequently remembers ¢. Formally, Idle” is defined as follows:

o states(Idle”) = RZ% x R2°,
o start(ldle") = {(0,0)},
o acts(ldle") = {7} UR2%, and

o steps(Idle”) is specified by:
(1" 1) =5 (1) it <,

(£,0) s (t,t)  ift > 0.



By induction on the length of the sequence of time-passage actions one can easily establish
that Idle” has fin. However, Idle” does not have t-fin since for any ¢ € RT all the states
from the uncountable set {(¢,#)|0 < ¢’ < t} can be reached with timed sequence pair
(A, 1) from the initial state.

The requirement that a timed automaton be a forest is not a very interesting one
because if a state has one incoming time-passage step from a state with a smaller time
component, then it must have an infinite number of them (as a consequence of axiom T3)
so that the timed automaton cannot be a forest. Now a forest is characterized by the
property that for each state there is a unique execution that leads to it. In analogy we
will define below the notion of a t-forest. This is a timed automaton with the property
that for each state there is an execution that leads to it, which is unique “modulo” axioms
T1, T2 and T3.

Call a finite execution fragment of A fat if it contains no idling steps and no pair of
consecutive time-passage steps. Then A is defined to be a t-forest if for each state of A
there is a unique fat execution that leads to it. The following lemma gives a sufficient
condition for a timed automaton to be a t-forest.

Lemma 5.7 Suppose that all states of A are reachable, the only incoming steps of start
states are idling steps, and for every state s, if there are two distinct non-idling steps
leading to s, r —> s and v’ al, s, then a = @’ € R2° and either r s or ! - r, where
t = r.time and t' = v'.time. Then A is a t-forest.

Proof: Suppose A satisfies the conditions of the lemma. Because all states of A are
reachable we know that for each state s there is at least one execution that leads to it.
Since we can remove idling steps from an execution, and since by repeated application of
axiom T2 we can contract successive time-passage steps, there is at least one fat execution
that leads to s. In order to show uniqueness, suppose that A has two fat executions, «
and o' that lead to s. By induction on the sum of the lengths of o and ', using the fact
that A is a t-forest, we prove that a = «'.

If o consists of state s only, then so does ', and vice versa. We see this as follows. If
« consists of s only, then s is a start state. Because A is a t-forest, there are no incoming
non-idling steps to s. But since o’ contains no idling steps and ends with s, o’ must also
consist of s only. So if either a or ' contains no steps, then a = «'.

Now suppose that o = vas and o' = ~'a’s. Let last(vy) = r, last(v') = v/, r.time =1
and r'.time = t'. If r = ¢/, then v = 4’ by induction hypothesis, ¢ = &’ since A is a
t-forest, and hence a = o’. So assume that r # . We derive a contradiction. In this case
r—% s and ' <5 s are two distinct steps ending with s, so since A is a t-forest, it must
be that a and @’ are both time-passage actions and either r sy or ' =5 r. Without
loss of generality, we may assume that the former holds.

Now consider the execution 4" = ~t'r’. Since « is fat, 4" must be fat too. Thus 4" and
~" are two fat executions leading to r’, and by induction hypothesis we obtain " = +'.
But since 4” ends with a time-passage step, this means that o ends with two time-passage
steps, which is in contradiction with the fact that this execution is fat.

Thus we have shown that for each state of A there is a unique fat execution that leads
to it, which means that A is a t-forest. [



Suppose A is a timed automaton. In analogy with the untimed case, the relation
t-after(A) consists of those pairs (p, s) € tsp(vis(A)) x states(A) for which there is a finite
execution of A with timed trace p and last state s.

t-after(A) = {(p,s) | Ja € execs™(A) : t-trace(a) = p and last(a) = s}.

The relation t-past(A) = t-after(A)™" relates a state s of A to the timed traces of exe-
cutions that lead to s. Also, define t-before(A) to be the relation that relates a timed
sequence pair p to those states of A from where an execution with timed trace p is possible.

t-before(A) = {(p,s) | Jar € frag*(A) : t-trace(a) = p and first(a) = s}.
We write t-future(A) for t-before(A)™".
Lemma 5.8
1. If A is deterministic then t-after(A) is a function from t-traces*(A) to states(A).
2. If A has t-fin then t-after(A) is image-finite.
3. If A is a t-forest then t-past(A) is a function from states(A) to t-traces*(A).

Proof: For 1, suppose A is deterministic. By definition, t-after(A)[p] contains at least
one element for each p € t-traces*(A). Suppose that for some p € t-traces*(A), both
s and s are in t-after(A)[p]. Then A has finite executions o and o with t-trace(a) =
t-trace(a’) = p, last(a) = s and last(o’) = s'. Without loss of generality we may assume
that both « and o' contain no idling steps. Since o and o' have the same timed trace,
s.time = s'.time. Since A is deterministic, there are no 7 events in either execution.

By induction on the sum of the lengths of o and o’ we prove that s = s'. If a consists
of state s only, then s is the unique start state of A and therefore also the first state of «'.
As noted above, o' does not contain 7 events. Moreover, o’ does not contain any events
in ext(A) because that would violate the condition that t-trace(a) = t-trace(a’). Thus o/
contains no events at all and consists of state s only. But this implies s = s’, as required.
By a symmetric argument it also follows that s = s" if we start from the assumption that
o consists of s’ only.

Now suppose a = ~as and o = ~'a’s’, with last(y) = r and last(y’) = r’. Let
t = r.time and t' = r'.time. Since a and o are either time-passage actions or visible
actions, and « and o have the same timed trace and end at the same time, it cannot be
that one of a and a’ is an external action and the other is a time-passage action. In fact,
it must be the case that a = a'. If t =1/, then t-trace(y) = t-trace(y’). This means we can
apply the induction hypothesis to obtain » = /. Then in combination with the fact that
A is deterministic, this gives s = s’. Otherwise, we can assume without loss of generality
that t < ¢. (The other case is symmetric.) In this case, it must be that a and «’ are both
time-passage actions, and so ' < s.time. By axiom T2, there is an r” such that r gt

and r//s.tz’

“s. Since t-trace(yt'r") = t-trace(y'), we can apply the induction hypothesis to
obtain " = r’. Now s = & follows by the fact that A is deterministic.

Parts 2 is immediate from the definitions.

For 3, suppose that A is a t-forest. Because all states of A are reachable we know

that for each state s of A, t-past(A)[s] contains at least one element. Suppose that both



p and p’ are in t-past(A)[s] for some s € states(A). Then there are finite executions «
and o of A with t-trace(a) = p, t-trace(a’) = p’ and last(«) = last(a’) = s. Without
loss of generality we can assume that both « and o are fat, since we can always remove
idling steps, and by repeatedly applying axiom T1 we can eliminate successive time-
passage steps, and this does not influence the timed traces of the executions. But now
the assumption that A is a t-forest gives a = /. This immediately implies p = p'. [

5.5 Timed Trace Properties

For each timed automaton A, its timed behavior, t-beh(A), is defined by t-beh(A) =
(vis(A), t-traces(A)). Completely analogous to the way in which we characterized, in Sec-
tion 3.3, the behaviors of automata in terms of trace properties, we will now characterize
the timed behaviors of timed automata in terms of timed trace properties.

A set of timed sequence pairs is prefir closed if, whenever a timed sequence pair is in
the set all its prefixes are also. A timed trace property P is a pair (K, L) where K is a
set and L is a nonempty, prefix closed set of finite and admissible timed sequence pairs
over K. We will refer to the constituents of P as sort(P) and t-traces(P), respectively.
Also, we write t-traces*(P) for the set of finite timed sequence pairs in t-traces(P), and
t-traces™ (P) for the set of admissible timed sequence pairs in t-traces(P). For P and @

A

timed trace properties, we define P <'. Q = t-traces*(P) C t-traces*(Q), P <! ; Q =
t-traces™(P) C t-traces™(Q), and P <& Q = t-traces(P) C t-traces(Q). The kernels of
these preorders are denoted by =t1, =t 1 and =k, respectively.

P is limit-closed if each infinite chain p; < py < ps < --- of elements of t-traces*(P)
in which time grows unboundedly has a limit in t-traces®(P), i.e., an admissible timed

sequence pair p with for all 7, p; < p.

Lemma 5.9 Suppose P and () are timed trace properties with () limit-closed. Then
P<iyQe P <tQ.

A timed trace property P is feasible if every element of t-traces*(P) is a prefix of some
element of t-traces™(P).

Lemma 5.10 Suppose P and ) are timed trace properties such that P is feasible. Then
P<irQ& P<iqQ.

Lemma 5.11
1. t-beh(A) is a timed trace property.
2. If A has t-fin then t-beh(A) is limit-closed.
3. If A is feasible then t-beh(A) is feasible.

4. A<b B & t-beh(A) <§ t-beh(B), A <!y B & t-beh(A) <'p t-beh(B), and A <!
B & t-beh(A) <! ; t-beh(B).



Proof: We sketch the proof of 2; it is analogous to that of Lemma 3.3. Suppose A has
t-fin and p; < py < ... s an infinite chain of timed sequence pairs in t-traces*(A) such
that the limits of the time components of the p;’s is co. Assume without loss of generality
that p;.ltime < p;yq.ltime for all ¢+ > 1. Let p be the limit of the p;’s. We must show that
p € t-traces™(A).

We use Lemma 2.1. This time, G is constructed as follows. The nodes are pairs
(pi, s), where p; is one of the timed sequence pairs in the sequence above, and s is a state
of A, such that there exists an execution a of A that ends with state s and such that
pi; = t-trace(a). There is an edge from node (p;,s’) to node (pi41,s) exactly if 8" &4 s,
where p;y1 = p;;q. Using Lemma 5.3, it is not difficult to show that (' satisfies the
hypotheses of Lemma 2.1. Then that lemma implies the existence of an infinite path in
(G starting at a root; this yields an admissible execution of A having p as its timed trace.

|

Proposition 5.12
1. If B has t-fin then A <!; B & A <} B.
2. If A is feasible then A <' + B & A <% B.

Proof: Part 1 follows from Lemmas 5.9 and 5.11. Part 2 is a corollary of Lemmas 5.10

and 5.11. [ |

Example 5.3 We present two timed automata, T'A and T'B, which are in a sense the
timed analogues of the automata A and B of Example 3.1, that illustrate the necessity of
the t-fin condition in Proposition 5.12. Automaton T'A does an a-action at integer times:

o states(TA) = R2% x N,

o start(TA) = {(0,0)},

o acts(TA) = {r,a} URZ’, and
o steps(TA) is specified by:

(t',n) -5 (t,n) i =tv({ <t<n),

(t,n)— (t,n+1) ift=n.
Automaton T'B also does an a-action at integer times, but only finitely often:
e states(TB) = RZ% x N x N,
o start(TB)={(0,0,m) | m € N},
e acts(TB) = {r,a} UR2% and
e steps(TB) is specified by:

(t',n,m)— (t,n,m) ift'=tv (' <t<n),

(t,n,m)—">(t,n+1,m) ift=n<m.



One can check that TA <! TB but TA £% T'B.

In order to see that the feasibility condition in Proposition 5.12(2) is actually needed,
we consider a Zeno machine: a timed automaton Zeno with states drawn from the interval
[0,1), start state 0, actions from R2° U {7}, and a step #' — ¢ whenever ¢’ < ¢. Since
Zeno has no admissible timed traces, Zeno <'  AT. However, because AT does not
allow for initial (nontrivial) time-passage steps, Zeno €5 AT.

Definition 5.1 For P a timed trace property, the associated canonical timed automaton
t-can(P) is the structure A given by

o states(A) = t-traces*(P),
o start(A) ={(A,0)},
e acts(A) = sort(P)U ({7} UR2%), and

e steps(A) consists of all triples of the form (6',¢") —%4 (6,1), where (6,1'),(6,t) €
states(A), a € ext(A), and where the following hold. If ¢ € R2% then ¢’ < ¢ and
6" =6, and if a € vis(A) then t' =t and ¢’ (a,t) = ¢.

(It is not hard to check that t-can(P) is indeed a timed automaton).
Lemma 5.13 Suppose P is a timed trace property. Then

1. t-can(P) is deterministic and is a t-forest,

2. t-beh(t-can(P)) =Ly P,

3. P <& t-beh(t-can(P)), and

4. if P is limit-closed then t-beh(t-can(P)) =% P.

Proof: 1 and 2 follow easily from the definitions. Since t-can(P) has t-fin, it follows by
Lemma 5.11 that t-beh(t-can(P)) is limit-closed. Now 3 and 4 follow by combination of
2 and Lemma 5.9. |

Lemma 5.14 Suppose A and B are timed automata. Then
1. t-can(t-beh(A)) is deterministic and is a t-forest,
2. t-can(t-beh(A)) =41 A,
3. A <& t-can(t-beh(A)), and
4. if A has t-fin then t-can(t-beh(A)) =5 A.

Proof: By combining Lemmas 5.11 and 5.13. |



6 Simulations for Timed Automata

Our aim is to develop proof techniques for showing inclusion between the sets of timed
traces of timed automata. In order to do this, we show how this problem can be reduced
to the problem of proving inclusion between the sets of traces of certain derived automata.
This reduction solves our problem, in a sense, since it allows us to use the various simula-
tion techniques in Section 4 to prove inclusion results for timed automata. The approach
is analogous to that followed for Milner’s CCS [23] where the problem of deciding weak
observation equivalence is reduced to the problem of deciding strong bisimulation. A key
role in our reduction is played by the construction of the closure of a timed automaton.

6.1 t-Closed Timed Automata

In the previous section we have shown that for timed automata the traces contain (in
general) more information than the timed traces. That is, from the traces of a timed
automaton we can retrieve the timed traces (Lemma 5.4), but the reverse is not always
possible (Example 5.1). However, there exist certain classes of timed automata for which
the traces can be retrieved from the timed traces. In this subsection, we will identify one
such a class, namely the t-closed timed automata.

A timed automaton A is said to be t-closed provided that it satisfies the following
closure condition:

T4 If s - s", s'.time < s".time and s” - s, then s —% s.
2 2

The timed automaton Idle of Example 5.1 is t-closed. The timed automata Idle’ and
Idle" of Example 5.1 and Example 5.2, respectively, are not t-closed.

In order to show that the (finite) traces of a t-closed timed automaton can be retrieved
from its (finite) timed traces, we proceed in two steps. First we define an operation prune
that associates to each montonic sequence a normal form. We then show (Lemma 6.1)
that a sequence is a trace of a t-closed automaton if and only if its normal form is. Next,
we define an operation monot that takes a timed sequence pair and transforms it into a
monotonic sequence in normal form. We show (Lemma 6.2) that prune is nothing but
the composition of t-pair, which takes a trace to a timed trace, and monot. In the same
lemma we also prove that if p is a timed trace of a t-closed automaton, monot(p) is a
trace of that automaton. From these results it follows that traces*(A) can be retrieved
from t-traces*(A): traces™(A) consists of all the monotonic sequences whose normal form
equals monot(p) for some timed trace p of A.

Let 3 be a finite monotonic sequence over some set K, and let t € R2° be less than
or equal to all time-passage actions in 3. Then prune(t, ) is the monotonic sequence
obtained from 3 by (1) removing all time-passage events that are either ¢ or preceded (not
necessarily directly) by a time-passage event with the same value, and (2) removing all
time-passage events that are immediately followed by a time-passage event with a higher
value. We write prune(3) for prune(0, 3).

Lemma 6.1 Suppose A is t-closed, s',s € states(A), t = s'.time, 3 is a finite monotonic
sequence over ext(A) with t less or equal than all time-passage actions in (3, and B’ =

prune(t,3). Then S s iff s Ly s.



Proof: Suppose s'£s 5. Then there exists a finite execution fragment, a, of A with
first(a) = &, trace(a) = [ and last(a) = s. Let ay be the execution obtained from
a by removing all idling steps, and let trace(a;) = 3;. By axiom S4 all instanteneous
time-passage steps are idling steps. Using this fact, it is easy to see that the idling steps
in « are in one-one correspondence with the time-passage events in 3 that are either ¢
or preceded by a time-passage event with the same value. This means that f; is the
sequence obtained from 3 by applying pruning step (1). Next, let ay be the execution
fragment obtained from «q by eliminating, through application of axiom T4, all 7-steps
that are immediately preceded by a time-passage step. This transformation does not
affect the trace of the execution fragment: trace(as) = B1. Also both «; and ay start in
s and end in s. Finally, let ag be the execution fragment obtained from ay by contracting
all successive time-passage steps through application of axiom T2. Let 835 = trace(as).
Since 3 does not contain successive time-passage steps, it is obtained from 3, by applying
pruning operation (2). Thus in fact we have 3 = prune(t, ) = . Since a3 also leads
from s’ to s, this implies s’ Z .

Conversely, suppose s'Zs s. Then there exists a finite execution fragment, «, of A
with first(a) = &', trace(a) = prune(t, §) and last(a) = s. Using axioms T1 and T3, we
can simply insert additional time-passage steps in a to obtain another finite execution,

o, of A with first(a') = &', trace(o’) = [ and last(a’) = s. Therefore, L s [

Let ¢ € RZ% and let p = ((ay,t1) -+ (@nytn), tnr1) be a finite timed sequence pair over
K with t < p.ftime. Then the monotonic sequence monot(t,p) is obtained by taking the
sequence tiaq - - - t,a,t, 1 and removing from it all ¢; events that are either ¢ or preceded
by an event ¢; that has the same value. We write monot(p) for monot(0, p).

Lemma 6.2

1. Suppose t € RZ° and 3 is a finite monotonic sequence with t less or equal than all
time-passage actions in 3. Then prune(t, ) = monot(t, t-pair(t, 3)).

2. Suppose A is t-closed, §',s € states(A), t = s'.time, p is a finite timed sequence pair
over vis(A), and 3 = monot(t,p). Then s’ ~& s implies L s

Proof: 1 easily follows from the definitions. For 2, suppose s’ ~%s. Then A has an

execution fragment o from s’ to s with t-trace(a) = p. Let ' = trace(a) and 3" =
prune(t,’). Then s’ z, s, by Lemma 6.1. Using 1 and Lemma 5.4, we derive " =
prune(t, ') = monot(t, t-pair(t, ")) = monot(t,p) = 3. Thus L s [

Corollary 6.3 Suppose B is t-closed. Then A <!\ B & A <.1 B.

Proof: Suppose A <!y Band j € traces*(A). By Corollary 5.5, t-pair(3) € t-traces*(A).

Using A <'; B, we get t-pair(f3) € t-traces*(B). By Lemma 6.2(2), monot(t-pair(j3)) €

traces*(B) and by Lemma 6.2(1), monot(t-pair(3)) = prune(3). Now § € traces*(B) i

a consequence of Lemma 6.1. It follows that A <,r B.
The converse direction follows from Lemma 5.6.

18

We also have the following property involving fin.



Lemma 6.4 Suppose A is t-closed. Then A has t-fin if and only if A has fin.

Proof: Suppose A does not have fin but does have t-fin. Then A has a state s’ and
a sequence 3 such that for infinitely many states s, s’ s. Let p = t-pair(s’.time, 3).
Then, by Lemma 5.4, s’ ~5 s for infinitely many s. Thus A does not have t-fin, which is
a contradiction.

For the other direction, assume that A does not have t-fin but does have fin. Then A
has a state s’ and a timed sequence pair p such that for infinitely many states s, s’ ~5 s.
Let 8 = monot(s'.time,p). Then it follows by Lemma 6.2(2) that s'£s s for infinitely
many s. Thus A does not have fin, which is again a contradiction. [

6.2 Closure of a Timed Automaton

In this subsection, we give a useful construction to extend an arbitrary timed automaton
to a t-closed timed automaton.

Let A be a timed automaton. The closure of A, denoted by ¢l(A), is the structure B
which is exactly the same as A, except that the relation steps(A) is augmented by closing
it under the closure condition given in T4 (simultaneously with T2 to let the result be a
timed automaton again).

Lemma 6.5 cl(A) is a t-closed timed automaton, cl(cl(A)) = cl(A) and cl(A) =5 A,

Lemma 6.6
1. A is deterministic if and only if cl(A) is deterministic.
2. A has t-fin if and only if cl(A) has fin.

Proof: 1 is trivial. Since ¢l(A) is closed, ¢l(A) has fin if and only if it has t-fin
(Lemma 6.4). But ¢/(A) has t-fin if and only if A has t-fin, since it is obvious from
the definition of the closure operation that s" & 4 s & 5" By s. [ |

The importance of the closure construction is a consequence of the following lemmas.
Lemma 6.7 A <!\ B < cl(A) <.r ¢l(B).
Proof: By combination of Lemma 6.5 and Corollary 6.3. |
Lemma 6.8 cl(A) <t cl(B) = A<} B.

Proof: Suppose cl(A) <t cl(B). Lemma 5.6 implies that c/(4) <% cl(B). Then
Lemma 6.5 implies that A <{ B. |

Example 6.1 The reverse implication of Lemma 6.8 does not hold in general. To
obtain a counterexample: take B to be a machine, modeled as a timed automaton, which
nondeterministically chooses a positive natural number n, then does action a at times
1—27%1—-272..,1—2" and then idles for ever. B is a feasible timed automaton
with infinite invisible nondeterminism. Let A be the same as B, except that it may also

Y

choose w at the beginning, in which case it subsequently does action a at times 1 — 271,



1—-272,...,1—-27"... Timed automaton A is not feasible because by choosing w it reaches
a state from where only a Zeno execution is possible and no admissible execution. Timed
automata A and B have the same timed traces, but ¢l(A) has an infinite trace (a, 1 —271),

(a,1 —27%),..., (a,1 —27"),... which ¢l(B) does not have.
It turns out that we do have the reverse of Lemma 6.8 in case B has t-fin.
Lemma 6.9 Suppose B has t-fin. Then cl(A) <t cl(B) & A <Y B.

Proof: By Lemma 6.6 and Proposition 3.4, cl(A) <t cl(B) iff ¢l(A) <.1 ¢l(B). By
Lemma 6.7, c/(A) <.r ¢l(B) is in turn equivalent to A <!y B. Proposition 5.12 gives the
equivalence of A <! B and A < B. |

Corollary 6.10 The following statements are equivalent.
1. A<!y B,
2. cl(A) <pp cl(B),
3. cl(A) <gp cl(B).

If B has t-fin then the following statements are equivalent.
1. A<L B,
2. ¢l(A) <ipg cl(B).

Proof: The equivalence of the first three statements follows by combining Lemma 6.7
with the soundness and completeness results for <pg and <gp (Theorems 4.22, 4.23, 4.29
and 4.30).

The equivalence of the last two statements follows by combining Lemma 6.9 and
Lemma 6.6 with the soundness and completeness result for <;pg (Theorems 4.22 and

1.23). |

In a sense, we have solved our problem now: we have found a way to prove inclusion
of the sets of timed traces of timed automata A and B, under the reasonable assumption
that B has t-fin. All we have to do is to establish an image-2-finite forward-backward
simulation between two closely related timed automata, c¢l(A) and ¢l/(B). The timed
automata c¢l(A) and ¢l(B) are really very similar to A and B: they are the same except
for their step relations, which are just a kind of transitive closure of the step relations of
A and B. Still, it would be more elegant to define the various simulations directly on the
timed automata themselves. This will be done in the next section. A simple lemma will
subsequently relate the new simulations to the simulations between the closures of the
automata.



6.3 Direct Simulations Between Timed Automata

We require two auxiliary definition. First, if A is a timed automaton, s’ and s are states of

A, and 3 is a sequence of elements of vis(A), then we write s s s, or just s’ <% s when

A is clear, if A has a finite execution fragment a with first(«a) = &', trace(a)[vis(A) =
and last(a) = s. Second, if o is any sequence then & is the sequence obtained by removing
all internal and time-passage actions from o.

Suppose A and B are timed automata. A timed refinement from A to B is a function
r: states(A) — states(B) that satisfies:

L. r(s).time = s.time.
2. If s € start(A) then r(s) € start(B).

3. If & —% 4 s then r(s") Spr(s).

A timed forward simulation from A to B is a relation f over states(A) and states(B)
that satisfies:

1. If u € f[s] then u.time = s.time.
2. If s € start(A) then f[s] N start(B) # 0.
3. If ¥ —% 4 s and v’ € f[4], then there exists u € f[s] such that u’ g,

A timed backward simulation from A to B is a total relation b over states(A) and
states(B) that satisfies:

L. If w € b[s] then u.time = s.time.
2. If s € start(A) then b[s] C start(B).
3. If ¥ —% 4 s and u € b[s], then there exists u’ € b[s] such that v’ TN

A timed forward-backward simulation from A to B is a relation g over states(A) and

PN(states(B)) that satisfies:
1. If u is an element of any set in ¢[s] then w.time = s.time.
2. If s € start(A) then there exists S € g[s] such that S C start(B).

3. If ' —% 4 s and S’ € g[s], then there exists S € g[s] such that for every u € S there
exists v’ € S’ such that v % g wu.

A timed backward-forward simulation from A to B is a total relation g over states(A)
and P(states(B)) that satisfies:

1. If u is an element of any set in ¢[s] then w.time = s.time.
2. If s € start(A) then for all S € g[s], S N start(B) # 0.

3. If & —%4 s and S € g[s], then there exists S’ € g[s'] such that for every v’ € 5’
there exists u € S such that v’ <% pgu.



A relation h over states(A) and states(B) is a timed history relation from A to B if it
is a timed forward simulation from A to B and ™! is a timed refinement from B to A.

A relation p over states(A) and states(B) is a timed prophecy relation from A to B if
it is a timed backward simulation from A to B and p~! is a timed refinement from B to
A.

We write A <f; B, A <l B, etc. in case there exists a timed refinement, timed forward
simulation, etc., from A to B.

6.4 Synchronicity

A new feature in the definitions of the various timed simulations is the requirement that
related states have the same time component. In this subsection we explore the conse-
quences of this natural restriction.

Suppose A and B are timed automata. A relation f over states(A) and states(B) is
synchronous if for all (s,u) € f, u.time = s.time. For each relation f over states(A) and
states(B), we define the subrelation syn(f) to be

{(s,u) € f | u.time = s.time}.

Thus, f is synchronous if and only if syn(f) = f.

Similarly, a relation g over states(A) and P(states(B)) is synchronous if for all (s, 5) €
g and all u € S, u.time = s.time. For each relation ¢ over states(A) and P(states(B)),
we define the subrelation syni(g) to be

{(5,5) € g |Yu € S :utime = s.time}.

Thus, ¢ is synchronous if and only if syni(g) = g.
Also, for each relation g over states(A) and P(states(B)), we define the subrelation
syn2(g) to be

{(s,9)3(s, T)y€g:5=Tn{u|u.time = s.time}}
So also ¢ is synchronous if and only if syn2(g) = g.

Obviously, all the timed versions of refinements, forward simulations, etc., that we defined
above are synchronous. The following observation is more interesting. Note that in the
proof below the idling steps play a key role. In fact, the result would not be correct
without them.

Lemma 6.11
1. Any refinement from A to B is synchronous.

2. If f is a forward simulation from A to B, then syn(f) is a synchronous forward
simulation from A to B.

3. Any backward simulation from A to B is synchronous.

4. If g is a forward-backward simulation from A to B, then synl(g) is a synchronous
forward-backward simulation from A to B.



5. If g is a backward-forward simulation from A to B, then syn2(g) is a synchronous
backward-forward simulation from A to B.

6. Any history relation from A to B is synchronous.

7. Any prophecy relation from A to B is synchronous.

Proof: For 1, suppose that r is a refinement from A to B and s is a state of A with
s.timey = t. By axiom T1, s —% 4 5. Thus, since 7 is a refinement, r(s) =% pr(s). From
this it folows, by axioms S2 and S8, that r(s).time =1 = s.time.

For 2, suppose f is a forward simulation from A to B. By the definition of a forward
simulation, if s € start(A), then there is a state u € f[s] that is in start(B). Axiom S1
implies that s.time = u.time = 0, and thus u € syn(f)[s].

Now suppose s’ —%4 s and v’ € syn(f)[s']. Then v'.time = s'.time. Also, u’ € f[s]
and therefore there exists a state u € f[s] such that v’ =% pgu. Then it follows by axioms
S2 and S3 that s.time = u.time. Hence u € syn(f)[s].

For 3, suppose that b is a backward simulation from A to B, and suppose s is a
state of A with s.timey = t. Let u € b[s]. By axiom T1 s—5,4 s. Thus, since b is
a backward simulation there exists v’ € b[s] with v’/ =%pu. By axioms S2 and S3, this
implies u.time =t = s.time.

Parts 4-7 are similar. |

6.5 Relating Timed and Untimed Simulations

In Section 6.2, we showed that (under certain finiteness conditions) there is a one-to-
one correspondence between inclusion of timed traces on the level of timed automata,
and inclusion of traces between the closures of these automata. In this subsection we
observe that there is also a strong connection between timed simulations between timed
automata, and the same functions viewed as untimed simulations between the closures
of these automata. As an immediate consequence of this observation we obtain easy
soundness proofs for all the timed simulations of Section 6.3, since soundness of the timed
simulations reduces to the soundness of the corresponding untimed simulations. Moreover
we obtain “for free” a completeness result for timed forward-backward simulations.

Lemma 6.12 Suppose s,s' € states(A) and a € acts(A) such that if a € R2° then
s.time = a else s.time = s'.time. Then s’ <545 & ' =% (4.

Proof: Easy from the definitions. [

Lemma 6.13 A synchronous relation is a timed refinement from A to B if and only if
it is a refinement from cl(A) to ¢l(B). Moreover, the above property also holds if both
occurrences of the word “refinement” are replaced by “forward simulation”, “backward
simulation”, “forward-backward simulation”, “backward-forward simulation”, “history re-
lation” or “prophecy relation”.

Proof: Here we prove the case of refinements. The other mappings can be handled
similarly.



Suppose r is a timed refinement from A to B. We have to show that r is a refinement
from cl(A) to ¢l(B), and the only thing nontrivial here is to demonstrate that r satsifies
the second clause from the definition of a refinement. For this, suppose s’ —4) s. Then
certainly s’ =% ;4)s, and thus, by Lemma 6.12, s <*4 5. Since r is a timed refinement,
we can use this fact to infer r(s') Spr(s). Now r(s') = p)r(s) follows by another
application of Lemma 6.12.

For the other direction, suppose r is a refinement from ¢l(A) to cl(B). We have to
establish that r is a timed refinement from A to B, and for this again the only nontrivial
part is the second clause in the definition of a timed refinement. So suppose s —% 4 s.
Since the closure construction only adds transitions, this trivially implies 5" —;4) s.
Now we use the fact that r is a refinement from ¢l(A) to ¢l(B) to obtain r(s") =% B)yr(s).
From this r(s") <5 r(s) follows by Lemma 6.12. |

Corollary 6.14 Suppose X € {R, F, iB, B, iF'B, FB, iBF, BF, H, iP, P}. Then A <\ B
iff cl(A) <x cl(B).

Proof: Immediate from Lemmas 6.11 and 6.13. [ |

Proposition 6.15 The relations <y, <p, <g, <ijg, <tp, <irp, <pr: <u, <p and <{p
are all preorders. (However, <lgp is not a preorder.)

Proof: By Lemma6.14, using that the corresponding untimed simulations are preorders.

|
Also the classification of Section 4.5 carries over to the timed setting:

Theorem 6.16 Suppose X,Y € {T,xT, R, F, iB, B, iF'B, F'B, iBF, BF, H, iP, P}. Then
A<t B= A< B for all timed automata A and B if and only if there is a path from
<t to <% in Figure 6 consisting of thin lines. If B has t-fin, then A <\ B = A <{ B
for all automata A and B if and only if there is a path from <% to <% consisting of thin
lines and thick lines.

Proof: Note that except for the superscripts ¢, Figure 6 is the same as Figure 5, which
gives an overview of the relationships in the untimed case. Using Corollary 6.14 and
Lemmas 6.7 and 6.8, the “thin line” inclusions for the timed case follow from the cor-
responding inclusions for the untimed case. For the “thick” line inclusions one needs in
addition Lemmas 6.6 and 6.9.

In order to show that all the inclusions are strict, one can basically just use the same
counterexamples as in the untimed setting. In order to turn the untimed automata into
timed automata one only has to attach a 0-loop to each state. Only for establishing
the difference between <!; and <' the examples of Section 4 are not adequate, and one
has to use Example 5.3 instead. (If A and B° denote the timed automata obtained by
adding 0-loops to all states of the automata A and B of Example 3.1, respectively, then
A° =t BY but, since both timed automata have no admissible traces, also A° =4 B°.) B

Here are two more results that carry over because of the correspondence between the
timed and the untimed case.
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Figure 6: Classification of basic relations between timed automata

Proposition 6.17 Suppose all states of A are reachable, B has t-fin and A <} B. Then
A< B.

Proof: From the definition of the closure construction it is immediate that all states of
cl(A) are reachable. By Lemma 6.6(2), ¢/(B) has fin, and by Lemma 6.13, ¢l(A) <g ¢l(B).
Now we can apply Proposition 4.15, the untimed version of the fact we are proving, to
obtain ¢l(A) <;g ¢l(B). By Lemma 6.11 any backward simulation is synchronous, which
means that we can apply Lemma 6.13 in the other direction to conclude A <lz B. [ |

Theorem 6.18 (Partial completeness of timed forward simulations) Suppose B is deter-
ministic and A <1 B. Then A <} B.

Proof: By Lemma6.6, ¢/(B) is deterministic, and by Lemma 6.7, ¢l(A) <.t ¢l(B). Thus
by the partial completeness result for forward simulations (Theorem 4.9), ¢l(A) <p ¢l(B).
Now Lemmas 6.11 and 6.13 allow us to conclude A <}, B, as required. [

6.6 Additional Results for Timed Automata

The previous sections show how some simple correspondences cause most of the results for
untimed automata to carry over to the timed setting. There are some results about un-
timed automata that do not carry over because of these correspondences, but are nonethe-
less true. Firstly, there are the partial completeness results that involve t-forests. These do
not carry over since the closure construction does not map t-forests to forests. Secondly,
the various results that require the construction of some timed automaton (for instance
the timed version of the Abadi-Lamport result) do not carry over via the correspondence.
This subsection is devoted to establishing these remaining results in the setting of timed
automata.



6.6.1 Partial Completeness Results

Theorem 6.19 (Partial completeness of timed refinements) Suppose A is a t-forest, B
is deterministic and A <! B. Then A <j; B.

Proof: Analogous to the proof of Theorem 4.4. If r = t-after(B) o t-past(A), then r can
be shown to be a timed refinement from A to B. The proof uses Lemmas 5.8 and 5.3. l

Theorem 6.20 (Partial completeness of timed backward simulations) Suppose A is a
t-forest and A <! B. Then

1. A<§ B, and
2. if B has t-fin then A <ig B.

6.6.2 Results Involving an Intermediate Timed Automaton

Theorem 6.21 (Completeness of timed forward and timed backward simulations) Sup-
pose A <!y B. Then

1.3C: A< C <y B, and
2. if B has t-fin then 3C : A <, C <ig B.

Proof: The proof is essentially the same as the proof of Theorem 4.16.

Let C' = t-can(t-beh(A)). By Lemma 5.14, C'is a deterministic t-forest and A =Ly C.
Since €' is deterministic, A < C' by partial completeness of timed forward simulations
(Theorem 6.18), and because C is a t-forest, C' <l B follows by partial completeness of
timed backward simulations (Theorem 6.20(1)). Similarly, if B has t-fin then ' <!z B
follows by Theorem 6.20(2). |

Definition 6.1 Suppose k is a synchronous relation over states(A) and states(B) satis-
fying kN (start(A) x start(B)) # 0. The timed superposition t-sup(A, B, k) of B onto A
via k is the timed automaton C' given by

o states(C) =k,
o start(C) = kN (start(A) x start(B)),
o acts(C) = acts(A) N acts(B), and

o for (s',v'), (s,v) € states(C) and a € acts(C),
(s",0") —Lc (s,v) < & ‘LAS A v fti A Sg A S3 A Sy,

where Sy = « ¢ R2Y = s'.time = s.time, S3 2 a4 € R2° = s .time < a = s.time,
and Sy = a = ' .time = (s =sAv =w).

Theorem 6.22 A <[ B & (3C : A <[; C <k B).



Proof: Suppose A <L B. Let f be a timed forward simulation from A to B, let
C = t-sup(A, B,f) and let 71 and 75 be the projection functions that map states of C
to their first and second components, respectively. Then it is easy to check that 7' is a
timed history relation from A to C' and 73 is a timed refinement from C' to B.

The reverse implication also follows via a standard argument. |

Theorem 6.23
1. A<y Be (3C: A<L C <j B).
2. A<y B & (30 : A< C <b B).

Proof: Similar to the proof of Theorem 6.22, using timed backward simulations instead.

Theorem 6.24 (Completeness of timed history/prophecy relations and refinements) If
A <t B then the following are true.

1.3C,D: A<y C <L D <} B.
2. If B has t-fin then 3C, D : A <}, C <!t D <i B.
3.3C,D: A<, C <4 D<i B.

Proof: Completely analogous to the proofs of Theorem 4.43 and Theorem 4.44. |

6.6.3 Unfold and Guess Constructions
The timed unfolding of A, notation t-unfold(A), is the timed automaton B defined by

states(B) = the set of fat executions of A,
e start(B) = the executions of A that consist of a single start state,
o acts(B) = acts(A), and
e for o/, o € stales(B) and t € R2°,
o —bpa & strip-end(a’) = strip-end(a) A last(a') —5 4 last(a)
and, for a € acts(B) — R2°,
o —bpa & a=dalast(a),

where strip-end(«) is obtained from « by removing the time-passage step (if present)
at the end of a.

(We leave it to the reader to verify that B is a timed automaton.)

Proposition 6.25 t-unfold(A) is a t-forest and A <}y t-unfold(A).



Proof: From the definitions it easily follows that t-unfold(A) is a t-forest. The func-
tion last which maps each fat execution of A to its last state is a timed refinement
from t-unfold(A) to A, and the relation last™! is a timed forward simulation from A to
t-unfold(A). Thus, last™" is a timed history relation from A to t-unfold(A). [

Dual to the timed unfolding is the following timed guess construction. The timed guess
of A, notation t-guess(A), is the timed automaton B defined by

e states(B) = the set of fat execution fragments of A,
o start(B) = the set of fat executions of A,
o acts(B) = acts(A), and

e for o/, o € stales(B) and t € R2°,
o —bpa & strip-begin(a’) = strip-begin(a) A first(a') —5 4 first(a)

and, for a € acts(B) — R2°,

o —bpa & first(a)aa =d,

where strip-begin(«) is obtained from « by removing the time-passage step (if
present) at the begin of a.

(Again we leave it to the reader to verify that B is a timed automaton.)
Proposition 6.26 A <}, t-guess(A).

Proof: Similar to the proof of Proposition 6.25. |

7 Discussion

In this paper, we have presented an automata-theoretic model for timing-based systems,
and have used it to develop a variety of proof techniques for such systems. A considerable
amount of further work remains to be done.

First, there is a technical issue. Some of the other work on simulations (e.g., [21])
includes reachability restrictions in the step correspondence conditions; we would like
theorems justifying the soundness of those simulations in terms of the soundness of our
simulations (without reachability hypotheses).

Refinements and forward simulations have already been used extensively and suc-
cessfully for verifying concurrent algorithms, and backward simulations (in the form of
prophecy variables) have also been shown to be of practical value in some cases. Addi-
tional work remains to determine the practical utility of the various kinds of simulations
studied in this paper, particularly in the case of timing-based systems. This will involve
applying the simulation techniques to a wide range of examples. It may also involve de-
velopment of techniques analogous to the progress measure techniques in [19], based on
extra structure to be added to our timed automaton model.



Finally, it remains to carry out process algebraic work using the same timed automaton
model. A paper in progress [31] contains the beginning of such work, including definitions
of interesting operators on timed automata, and proofs of substitutivity results for the
timed trace semantics. However, much remains to be done.
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