Proving Time Bounds for Randomized Distributed Algorithms

Nancy Lynch

Isaac Saias

*

Roberto Segala

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

A method of analyzing time bounds for randomized dis-
tributed algorithms is presented, in the context of a new
and general framework for describing and reasoning about
randomized algorithms. The method consists of proving

auxiliary statements of the form U LN U’, which means
P

that whenever the algorithm begins in a state in set U, with
probability p, it will reach a state in set U’ within time t.
The power of the method is illustrated by its use in prov-
ing a constant upper bound on the expected time for some
process to reach its critical region, in Lehmann and Rabin’s
Dining Philosophers algorithm.

1 Introduction

Randomization has proved to be a useful tool in the design
of distributed algorithms, sometimes yielding efficient solu-
tions to problems that are inherently complex, or even un-
solvable, in the setting of deterministic algorithms [1, 2, 8, 9].
But this powerful tool has a price: even simple randomized
algorithms can be extremely hard to verify and analyze. Be-
cause of this, many randomized distributed algorithms ap-
pear in the literature with only informal proofs of correct-
ness, and only informal derivation of complexity bounds. In
fact, it is sometimes hard for the reader to ascertain that
the proofs and complexity bounds presented are really cor-
rect. Even where proofs are carefully and correctly done,
the arguments tend to be ad hoc.

A key difficulty in reasoning about randomized algo-
rithms is the fact that their executions usually contain a
combination of nondeterministic and probabilistic choices,
with subtle interactions between them. The probabilistic
choices are typically only those that involve an explicit use
of randomness by the algorithm (e.g., by using a random-
number generator). All other choices (e.g., the order of pro-
cess steps, the times at which requests arrive) are usually
considered to be nondeterministic. It is customary to define
an adversary as a way of modeling the entity that resolves

*Supported by NSF grant CCR-89-15206, and CCR-92-25124, by
DARPA contracts N00014-89-J-1988 and N00014-92-J-4033, and by
ONR contract N00014-91-J-1046.

the nondeterministic choices.! In defining an adversary, one
must be especially careful to specify the knowledge of the ex-
ecution that the adversary is permitted to use in resolving
nondeterministic choices. This might range from no knowl-
edge at all, in which case the adversary is said to be oblivious,
to complete knowledge of the past execution (including past
random choices).

Even after one has defined the desired notion of adver-
sary, 1t is still not easy to carry out correctness proofs and
complexity analyses for randomized algorithms; most exist-
ing proofs seem rather ad hoc. It would be useful to have a
collection of general proof rules and methods, which could
be established once and for all, and then applied in a reason-
ably systematic way to verify and analyze numerous algo-
rithms. Some examples of work that has already been done
on the development of such methods are [4,6,11,12]. The
work of [11] presents a technique, based on progress func-
tions defined on states, for establishing liveness properties
for randomized algorithms; the work of [12] extends UNITY
[3] to handle probability, and provides a completeness result
for some properties that hold with probability 1; the work
of [4, 6] presents model checking techniques.

In this paper, we present such a new method: a way of
proving upper bounds on time for randomized algorithms.
Our method consists of proving auxiliary statements of the

form U —— U’, which means that whenever the algorithm
P

begins in a state in set U, with probability p, it will reach
a state in set U’ within time t. Of course, this method can
only be used for randomized algorithms that include tim-
ing assumptions. A key theorem about our method is the

composability of these U . arrows, as expressed by

P
Theorem 3.4. This composability result holds in the case of
(many classes of) oblivious as well as non-oblivious adver-
saries.

We also present two complementary proof rules that help
in reasoning about sets of distinct random choices. Inde-
pendence arguments about such choices are often crucial
to correctness proofs, yet there are subtle ways in which
a non-oblivious adversary can introduce dependencies. For
example, a non-oblivious adversary has the power to use the
outcome of one random choice to decide whether to schedule
another random choice. Our proof rules help to systematize
certain kinds of reasoning about independence.

Our proof rules are presented in the context of a new

1In this paper, we ignore the possibility that the adversary itself
uses randomness.

and general formal framework [14] for describing and rea-
soning about randomized algorithms. This framework inte-
grates randomness and nondeterminism into one model, and
permits the modeling of timed as well as untimed systems.
The model of [14] is, in turn, based on existing models for
untimed and timed distributed systems [7,10], and adopts
many ideas from the probabilistic models of [6,16].

In order to illustrate our method, we use it in this paper
to prove an upper bound for Lehmann and Rabin’s Dining
Philosophers algorithm [9], in the face of an adversary with
complete knowledge of the past. This upper bound asserts

that 7 11—/3&; C, where T is the set of states in which some

process is in its trying region, while C is the set of states in
which some process is in its critical region. That is, when-
ever the algorithm is in a state in which some process is
in the trying region, with probability 1/8, within time 13,
it will reach a state in which some process is in its critical
region. This bound depends on the timing assumption that
processes never wait more then time 1 between steps. A
consequence of this claim is an upper bound (of 63) on the
expected time for some process to reach its critical region.

For comparison, we note that [9] contains only proof
sketches of the results claimed. The paper [11] contains a
proof that Lehmann and Rabin’s algorithm satisfies an even-
tual progress condition, in the presence of an adversary with
complete knowledge of the past; this proof is carried out as
an instance of Pnueli and Zuck’s general method, based on
a notion of extreme fairness, for proving liveness properties.
Our results about this protocol can be regarded as a refine-
ment of the results of Pnueli and Zuck, in that we obtain
explicit constant time bounds rather than liveness proper-
ties. It is worth noting that the method based on extreme
fariness can be embedded in our model. Similarly, the state
chart representation that is used in [11] can be adapted to
our proof method.

The rest of the paper is organized as follows. Section 2
presents a simplified version of the model of [14]. Sec-
tion 3 presents our main proof technique based on time-
bound statements. Section 4 presents the additional proof
rules for independence of distinct probabilistic choices. Sec-
tion 5 presents the Lehmann-Rabin algorithm. Section 6.2
formalizes the algorithm in terms of the model of Section 2,
and gives an overview of our time bound proof, and Section 7
contains the details of the time bound proof. Section 8 gives
some concluding remarks.

2 The Model

In this section, we present the model that is used to for-
mulate our proof technique. It is a simplified version of
the probabilistic automaton model of [14]. Here we only
give the parts of the model that we need to describe our
proof method and its application to the Lehmann-Rabin al-
gorithm; we refer the reader to the full version of this paper
and to [14] for more details.

Definition 2.1 A probability space is a triplet (Q,F, P)
where € is a set, F i1s a collection of subsets of € that
is closed under complement and countable union and such
that € € F, and P is a function from F to [0,1] such that
P[] =1 and for any collection {C;}; of at most countably
many pairwise disjoint elements of F, P[U;Ci] =)", P[C;].

A probability space (Q,F, P)is discrete® if F = 2% and
for each C C Q, P[C] = Zmec P[{z}]. Tt is immediate
to verify that for every discrete probability space there are
at most countably many points with a positive probability
measure. |

Definition 2.2 A probabilistic automaton® M consists of
four components:

o a set states(M) of states.
e a nonempty set start(M) C states(M) of start states.

e an action signature sig(M) = (ext(M), int(M)) where
ext(M) and int(M) are disjoint sets of external and
internal actions, respectively.

o a transition relation steps(M) C states(M)x acts(M)x
Probs(states(M)), where the set Probs(states(M)) is
the set of discrete probability spaces (£2,F, P) such
that @ C states(M). Discreteness is needed for tech-
nical convenience.

A probabilistic automaton is fully probabilistic if it has a
unique start state and from each state there is at most one
step enabled. |

Thus, a probabilistic automaton is a state machine with a
labeled transition relation such that the state reached during
a step is determined by some probability distribution. For
example, the process of flipping a coin is represented by
a step labeled with an action f£lip where the next state
contains the outcome of the coin flip and is determined by a
probability distribution over the two possible outcomes. A
probabilistic automaton also allows nondeterministic choices
over steps. An example of nondeterminism is the choice of
which process takes the next step in a multi-process system.

A reader familiar with other models for randomized com-
putation may be puzzled because we do not put any restric-
tion on the size of € in our probability spaces. The reader
may assume that € finite without compromising the under-
standing of the paper; however, such a restriction is not
necessary for any of our results, and thus we do not include
it in Definition 2.2.

An execution fragment o of a probabilistic automaton
M is a (finite or infinite) sequence of alternating states
and actions starting with a state and, if the execution frag-
ment is finite, ending in a state, o = spa1$1a282 - -+, where
for each ¢ there exists a probability space (Q,F,P) such
that (s;, aiy1, (2, F,P)) € steps(M) and si41 € Q. Denote
by fstate(a) the first state of o and, if « is finite, denote
by lIstate(a) the last state of a. Furthermore, denote by
frag® (M) and frag(M) the sets of finite and all execution
fragments of M, respectively. An ezecution is an execu-
tion fragment whose first state is a start state. Denote by
exec* (M) and exec(M) the sets of finite and all executions of
M, respectively. A state s of M is reachable if there exists a
finite execution of M that ends in s. Denote by rstates(M)
the set of reachable states of M.

A finite execution fragment a1 = sga181 - ansp of M
and an execution fragment as = S$p@n418nt1 -+ of M can

2If we accept the Axiom of Choice, then the requirement F = 2%

is sufficient.

3In [14] the probabilistic automata of this definition are called
simple probabilistic automata. This is because [14] also includes the
case of randomized adversaries.

be concatenated. The concatenation, written a;~az, 1s the
execution fragment s0a181 -« @nSn@ntiSntl - AN execu-
tion fragment a1 of M is a prefirx of an execution fragment
ay of M, written a1 < ag, if either a; = a2 or «a; is finite
and there exists an execution fragment o) of M such that
o2 — (X1 /\aﬂ.

In order to study the probabilistic behavior of a prob-
abilistic automaton, some mechanism to remove nondeter-
minism is necessary. To give an idea of why the nondeter-
ministic behavior should be removed, consider a probabilis-
tic automaton with three states sg, s1, $2 and with two steps
enabled from its start state so; the first step moves to state
s1 with probability 1/2 and to sz with probability 1/2; the
second step moves to state s; with probability 1/3 and to
s2 with probability 2/3. What is the probability of reaching
state s17 The answer depends on how the nondeterminism
between the two steps is resolved. If the first step is cho-
sen, then the probability of reaching state si is 1/2; if the
second step is chosen, then the probability of reaching state
s11s 1/3. We call the mechanism that removes the nonde-
terminism an adversary, because it is often viewed as trying
to thwart the efforts of a system to reach its goals. In dis-
tributed systems the adversary is often called the scheduler,
because its main job may be to decide which process should
take the next step.

Definition 2.3 An adversary for a probabilistic automaton
M is a function A taking a finite execution fragment of M
and giving back either nothing (represented as §) or one of
the enabled steps of M if there are any. Denote the set of
adversaries for M by Advs(M)*. [|

Once an adversary is chosen, a probabilistic automaton
can run under the control of the chosen adversary. The re-
sult of the interaction is called an execution automaton. The
definition of an execution automaton, given below, is rather
complicated because an execution automaton must contain
all the information about the different choices of the adver-
sary, and thus the states of an execution automaton must
contain the complete history of a probabilistic automaton.
Note that there are no nondeterministic choices left in an
execution automaton.

Definition 2.4 An ewvecution automaton H of a probabilis-
tic automaton M is a fully probabilistic automaton such
that

1. states(H) C frag*(M). Denote a generic state of H by
q4,41,92, - .-

2. for each step (¢, a, (9, F, P)) of H there exists a step
(Istate(q), a, (', F', P")) of M, called the correspond-
ing step, such that Q = {qas|s € @'} and P'[gas] =
P[s] for each s € Q.

3. each state of H is reachable, i.e., for each ¢ € states(H)
there exists an execution of H leading to state q. W

Definition 2.5 Given a probabilistic automaton M, an ad-
versary A € Advs(M), and an execution fragment o €
frag® (M), the execution H(M, A, «a) of M under adversary
A with starting fragment o is the execution automaton of
M whose start state is o and such that

*In [14] the adversaries of this definition are denoted by
DAdvs(M), where D stands for Deterministic. The adversaries of
[14] are allowed to use randomness.

1. for each state ¢ there is a step enabled iff A(q) # L;

2. for each state ¢, if there is a step (q,q,(Q,F, P)) €
steps(H (M, A, «)), then its corresponding step is A(q).
|

Given an execution automaton H, an event is expressed
by means of a set of maximal executions of H, where a max-
imal execution of H is either infinite, or it is finite and its
last state does not enable any step in H. For example, the
event “eventually action @ occurs” is the set of maximal ex-
ecutions of H where action a¢ does occur. A more formal
definition follows. The sample space €2z is the set of max-
imal executions of H. The o-algebra Fx is the smallest o-
algebra that contains the set of rectangles R., consisting of
the executions of Qg having « as a prefix®. The probability
measure Pz is the unique extension of the probability mea-
sure defined on rectangles as follows: Pg[Rs] is the product
of the probabilities of each step of H generating o. In [14] it
is shown that there is a unique probability measure having
the property above, and thus (g, Fg, Pg) is a well defined
probability space. A similar probability space is built in
[6,16] for automata with a finitely branching transition re-
lations. For the rest of this paper we do not need to refer to
this formal definition any more.

Events of Fz are not sufficient for the analysis of a prob-
abilistic automaton. Events are defined over execution au-
tomata, but a probabilistic automaton may generate several
execution automata depending on the adversary it interacts
with. Thus a more general notion of event is needed that
can deal with all execution automata. Specific examples are
given in Section 3.

Definition 2.6 An event schema e for a probabilistic au-
tomaton M is a function associating an event of Fy with
each execution automaton H of M. [|

We now discuss briefly a simple way to handle time
within probabilistic automata. The idea is to add a time
component to the states of a probabilistic automaton (de-
note the time component of a state s by s.now), to assume
that the time at a start state is 0, to add a special non-
visible action v modeling the passage of time, and to add
arbitrary time passage steps to each state. A time passage
step should be non-probabilistic and should change only the
time component of a state by adding any arbitrary positive
real value to it. This construction is called the patient con-
struction in [5,15]. At this point the theory for the timed
model works in the same identical way as the theory for the
untimed model. A technical detail arises in the definition of
an execution automaton, where the start state o is forced to
have time 0 and the time of each other state ¢ is defined to
be Istate(q).now — Istate(qo).now. The timed model can be
generalized even further in the same style as in [10], and the
theory for the untimed model applies directly as well. The
only restriction that we need to impose is that all the time
passage steps are non-probabilistic. The reader is referred
to [14] for more details about the general model.

We close this section with one final definition. Our time
bound property for the Lehmann-Rabin algorithm states
that if some process is in its trying region, then no matter
how the steps of the system are scheduled, some process en-
ters its critical region within time ¢ with probability at least

5Note that a rectangle R, can be used to express the fact that the
finite execution a occurs.

p. However, this claim can only be valid if each process has
sufficiently frequent chances to perform a step of its local
program. Thus, we need a way to state our properties in
terms of specific sets of adversaries, rather than all possible
adversaries. We call any arbitrary subset of Advs(M) an ad-
versary schema, and we denote a generic adversary schema
by Advs. Any scheduling policy can be defined by means
of an adversary schema: it is enough to consider only those
adversaries whose choices agree with the specific scheduling
policy. The adversary schema Unit — Time of Section 6.2
identifies any scheduling policy for which at any time each
process in its trying region is given a chance to perform a
step of its program within time 1.

3 The Proof Method

In this section, we introduce our key statement U Lmdm U’
p

and the composability theorem, which is our main theorem
about the proof method.

The meaning of the statement U Lmdm U’ is that, start-
p

ing from any state of U and under any adversary A of Advs,
the probability of reaching a state of U’ within time ¢ is at
least p. The suffix Advs is omitted whenever we think it is
clear from the context.

Definition 3.1 Let ey be the event schema that, applied
to an execution automaton H, returns the set of maximal ex-
ecutions « of H where there exists some state ¢ with ¢g.now <

t and Istate(q) € U'. Then U LAMS U’ iff for each s € U
p
and each A € Advs, Py 4 slevr (H(M, A, s))] > p. [|

Proposition 3.2 Let U, U',U" be sets of states of a proba-
bilistic automaton M .

FU S U, thenUUU"” = U UU".]
P

p

In order to compose time bound statements, we need
a restriction for adversary schemas stating that the power
of the adversary schema is not reduced if a prefix of the
past history of an execution is not known. Most adversary
schemas that appear in the literature satisfy this restriction.

Definition 3.3 An adversary schema Adwvs for a probabilis-
tic automaton M is ewecution closed if, for each A € Advs
and each finite execution fragment o € frag*(M), there
exists an adversary A’ € Advs such that for each execu-
tion fragment o' € frag*(M) with Istate(a) = fstate(a'),
A'(a") = A(a~a'). [|

Theorem 3.4 Let Advs be an execution closed adversary
schema for a probabilistic timed automaton M, and let U, U’,
and U" be sets of states of M.

t1 to t1+to
If U —Advs U/ and U/ —Adus U”, then U — Advs U”.
P b2 pP1pP2

Proof sketch. Consider an adversary A € Advs that acts
on M starting from a state s of U. The execution automa-
ton H(M, A, s) contains executions where a state from U’ is
reached within time ¢;. Consider one of those executions o
and consider the part H of H(M, A, s) after the first occur-
rence of a state from U’ in a. The key idea of the proof is to
use execution closure of Advs to show that there is an adver-
sary that generates H without knowing the finite prefix of

« that lead to U’, to use U’ imm U"” to show that in H a
P2

state from U" is reached within time ¢ with probability at
least p2, and to integrate this last result in the computation
of the probability of reaching a state from U" in H(M, A, s)
within time 1 + ¢5. [|

4 Independence

Example 4.1 Consider any distributed system where each
process is allowed to flip fair coins. It is common to say
“If the next coin flip of process P yields head and the next
coin flip of process @ yields tail, then some good property
¢ holds.” Can we conclude that the probability for ¢ to
hold is 1/47 That is, can we assume that the coin flips of
processes P and @ are independent? The two coin flips are
indeed independent of each other, but the presence of non-
oblivious adversaries may introduce some dependence. An
adversary can schedule process P to flip its coin and then
schedule process @ only if the coin flip of process P yielded
head. As a result, if both P and @ flip a coin, the probability
that P yields head and Q yields tasl is 1/2. |

Thus, it is necessary to be extremely careful about inde-
pendence assumptions. It is also important to pay attention
to potential ambiguities of informal arguments. For exam-
ple, does ¢ hold if process P flips a coin yielding head and
process @ does not flip any coin? Certainly such an ambi-
guity can be avoided by expressing each event in a formal
model.

In this section we present two event schemas that play a
key role in the detailed time bound proof for the Lehmann-
Rabin algorithm (cf. Section 7), and we show some partial
independence properties for them. The first event schema is
a generalization of the informal statement of Example 4.1,
where a coin flip is replaced by a generic action a, and where
it is assumed that an event contains all the executions where
@ is not scheduled; the second event schema is used to ana-
lyze the outcome of the first random draw that occurs among
a fixed set of random draws. A consequence of the partial
independence results that we show below is that under any
adversary the property ¢ of Example 4.1 holds with proba-
bility at least 1/4.

Let (a,U) be a pair consisting of an action of M and
a set of states of M. The event schema FIRST(a,U) is the
function that, given an execution automaton H, returns the
set of maximal executions of H where either action a does
not occur, or action @ occurs and the state reached after the
first occurrence of a is a state of U. This event schema is
used to express properties like “the ' coin yields left”.
For example a can be £1ip and U can be the set of states
of M where the result of the coin flip is left.

Let (a1,U1),...,(@n,Uyn) be a sequence of pairs consist-
ing of an action of M and a set of states of M such that for
each ¢,5, 1 <1t < j < n, a; # a;. Define the event schema
NEXT((@1,U1), ..., (an,Un)) to be the function that applied
to an execution automaton H gives the set of maximal ex-
ecutions of H where either no action from {ai,...,an} oc-
curs, or at least one action from {a1,...,an} occurs and, if
a; 1s the first action that occurs, the state reached after the
first occurrence of a; is in U;. This kind of event schema is
used to express properties like “the first coin that is flipped
yields left.”

Proposition 4.2 Let H be an execution automaton of a
probabilistic automaton M, and let (a1,U1),. .., (an,Un) be
pairs consisting of an action of M and a set of states of
M such that for each 1,7, 1 <1 < 3 < n, a; # a;. Let
P1,...,pn be real numbers between 0 and 1 such that for
eachi, 1 <1< n, and each step (s,a,(Q, F, P)) € steps(M)
with a = a;, the probability P[U; "] is greater than or equal
to pi, i.e., P[U; N Q] > p;. Then

1. Py[(FrsT(a1,U1)N- - -NFRST(an, Un))(H)] > p1- - Pn,

2. Py[NEXT((a1,U1),..., (an, Un))(H)] > min(p1,...,pn)-

Of course, other event schemas can be defined and other
properties can be proved about them. An example of an-
other event schema is the one that given an execution au-
tomaton H returns the set of maximal executions of H that
satisfy the extreme fairness condition of [11]. An interesting
direction for further research is to define a whole collection
of useful event schemas, possibly through the analysis of
other examples.

5 The Lehmann-Rabin Algorithm

The Lehmann-Rabin algorithm is a randomized algorithm
for the Dining Philosophers problem. This problem involves
the allocation of n resources among n competing processes
arranged in a ring. The resources are considered to be in-
terspersed between the processes, and each process requires
both its adjacent resources in order to reach its critical sec-
tion. All processes are identical; the algorithm breaks sym-
metry by using randomization. The algorithm ensures the
required exclusive possession of resources, and also ensures
that, with probability 1, some process is always permitted
to make progress into its critical region.

Figure 1 shows the code for a generic process 1. The n re-
sources are represented by n shared variables Resi, ..., Res,,
each of which can assume values in {free, taken}. FEach
process i ignores its own name, 7, and the names, Res;_;
and Res;, of its adjacent resources. However, each process ¢
is able to refer to its adjacent resources by relative names:
Res(; 1e1t) is the resource located to the left (clockwise), and
Res(; rignt) is the resource to the right (counterclockwise) of
1. Each process has a private variable u;, which can assume
a value in {left,right}, and is used to keep track of the
first resource to be handled. For notational convenience we
define an operator opp that complements the value of its
argument, i.e., opp(right) = left and opp(left) = right.

The atomic actions of the code are individual resource
accesses, and they are represented in the form <atomic-
action> in Figure 1. We assume that at most one process
has access to the shared resource at each time.

An informal description of the procedure is “choose a
side randomly in each iteration. Wait for the resource on
the chosen side, and, after getting it, just check once for the
second resource. If this check succeeds, then proceed to the
critical region. Otherwise, put down the first resource and
try again with a new random choice.”

Each process exchanges messages with an external user.
In its idle state, a process is in its remainder region R. When
triggered by a try message from the user, it enters the com-
petition to get its resources: we say that it enters its trying
region T'. When the resources are obtained, it sends a crit

message informing the user of the possession of these re-
sources: we then say that the process is in its critical region
C. When triggered by an exit message from the user, it be-
gins relinquishing its resources: we then say that the process
is in its exit region £. When the resources are relinquished
its sends a rem message to the user and enters its remainder
region.

6 Overview of the Proof

In this section, we give our high-level overview of the proof.
We first introduce some notation, then sketch the proof
strategy at a high level. Details of the proof appear in the
Appendix.

6.1 Notation

In this section we define a probabilistic automaton M which
describes the system of Section 5. We assume that process
1+ 1 is on the right of process ¢ and that resource Res; is
between processes ¢ and 1+1. We also identify labels modulo
n so that, for instance, process n + 1 coincides with process
1.

A state s of M is a tuple (X1,..., X, Resy, ..., Resy, t)
containing the local state X; of each process i, the value
of each resource Res;, and the current time ¢. Each local
state X; is a pair (pc;, u;) consisting of a program counter
pc,; and the local variable «;. The program counter of each
process keeps track of the current instruction in the code of
Figure 1. Rather then representing the value of the program
counter with a number, we use a more suggestive notation
which 1s explained in the table below. Also, the execution of
each instruction is represented by an action. Only actions
try,, crit;, rem;, exit; below are external actions.

Nr. pc; Action Informal meaning

0 R try, Reminder region

1 F flip, Ready to Flip

2 W wait; Waiting for first resource

3 S second; Checking for Second resource
4 D drop, Dropping first resource

5 P crit; Pre-critical region

6 C exit; Critical region

7 Er dropf, Exit: drop First resource

8 Es drops, Exit: drop Second resource

9 Fr rem; Exit: move to Reminder region

The start state of M assigns the value free to all the
shared variables Res;, the value R to each program counter
pc;, and an arbitrary value to each variable u;. The transi-
tion relation of M is derived directly from Figure 1. For ex-
ample, for each state where pc, = F' there is an internal step
f1lip, that changes pc; into W and assigns left to u; with
probability 1/2 and right to u; with probability 1/2; from
each state where X; = (W, left) there is a step wait; that
does not change the state if Res(; 1er1) = taken, and changes
pc; into S and Res(; 1ert) into taken if Res(; 1er1) = free;
for each state where pc, = Er there are two steps with ac-
tion dropf;: one step sets u; to right and makes Res; 1e£1)
free, and the other step sets u; to left makes Res(; rignt)
free. The two separate steps correspond to a nondetermin-
istic choice that is left to the adversary. For time passage
steps we assume that at any point an arbitrary amount of

Shared variables: Res; € {free, taken}, j = 1,...,n, initially free.

Local variables: u; € {left,right}, 1 =1,...,n

Code for process i:

0. try
1. < u; — random>
2. < if Res(; ;) = free then

Res(; ;) 1= taken
else goto 2. >

3. < if Res(i opp(u;)) = free then
€S(i,opp(u;)) = takem,
goto 5. >

4. < Res(; 4,) := free; goto 1.>
5. crit

** Critical Section **
6. exit
7. < u; «— left or right

Res(i app(ui)) 1= free >

8. < Res(gu,) := free >
9. rem

** Remainder Section **

** beginning of Trying Section
** choose left or right with equal probability

** pick up first resource

** pick up second resource

** put down first resource
** end of Trying Section

** beginning of Exit Section
** nondeterministic choice

** put down first resources
** put down second resources
** end of Exit Section

Figure 1: The Lehmann-Rabin algorithm

time can pass; thus, from each state of M and each posi-
tive 6 there is a time passage step that increases the time
component of § and does not affect the rest of the state.
The value of each pair X; can be represented concisely
by the value of pc; and an arrow (to the left or to the right)
which describes the value of u;. Thus, informally, a process
iis in state S or D (resp. S or D) when i is in state S or
— — — —
D while holding its right (resp. left) resource; process i is in
state W (resp. VL/) when i is waiting for its right (resp. left)

resource to become free; process 1 is in state Eg (resp. Es)
— —

when 1 is in its exit region and it is still holding its right
(resp. left) resource. Sometimes we are interested in sets
of pairs; for example, whenever pc, = F' the value of w; is
irrelevant. With the simple value of pc, we denote the set
of the two pairs {(pc;,left), (pc,,right)}. Finally, with the
symbol # we denote any pair where pc, € {W, S, D}. The
arrow notation is used as before.

For each state s = (Xg,..., Xn—1,Resy, ..., Resp_1,t) of
M we denote by X;(s) the pair X; and by Res;(s) the value
of the shared variable Res; in state s. Also, for any set S
of states of a process ¢, we denote by X; € 5, or alterna-
tively X; = S the set of states s of M such that X;(s) € S.
Sometimes we abuse notation in the sense that we write ex-
pressions like X; € {F, D} with the meaning X; € F U D.
Finally, we write X; = E for X; = {Ep, Fs, Er}, and we
write X; =T for X; € {F,W, S, D, P}.

A first basic lemma states that a reachable state of M
is uniquely determined by the local states its processes and
the current time. Based on this lemma, our further speci-
fications of state sets will not refer to the shared variables;
however, we consider only reachable states for the analysis.
The proof of the lemma is a standard proof of invariants.

Lemma 6.1 For each reachable state s of M and each 1,
1 <4< n, Res; = taken iff Xi(s) € {5, D, P,C, Er, s}

or Xit1(s) € {E,Q,P,C,EF,E_s}. Moreover, for each

reachable state s of M and each 1, 1 < t < n, it is not
the case that X;(s) € {E,Q,P, C, Ep,lzg} and Xiy1(s) €

{E,Q,P, C, Ep,l;_s}, i.e., only one process at a time can

hold one resource. [|

6.2 Proof Sketch

In this section we show that the RL-algorithm guarantees
time bounded progress, i.e., that from every state where
some process is in its trying region, some process subse-
quently enters its critical region within an expected constant
time bound. We assume that each process that is ready to
perform a step does so within time 1: process ¢ is ready to
perform a step whenever it enables an action different from
try, or exit;. Actions try, and exit; are supposed to be
under the control of the user, and hence, by assumption,
under the control of the adversary.

Formally, consider the probabilistic timed automaton M
of Section 6.1. Define Unit — Time to be the set of ad-
versaries .4 for M having the properties that, for every fi-
nite execution fragment o of M and every execution o' of
H(M,A «), 1) the time in o’ is not bounded and 2) for
every process ¢ and every state of o’ enabling an action of
process ¢ different from try, and exit;, there exists a step
in o' involving process ¢ within time 1. Then Unit — Time
is execution-closed according to Definition 3.3. An infor-
mal justification of this fact is that the constraint that each
ready process is scheduled within time 1 knowing that o~a’
has occurred only reinforces the constraint that each ready
process is scheduled within time 1 knowing that o’ has oc-
curred. Let

T £ {s € rstates(M) | 3, X,(s) € {T}}

denote the sets of reachable states of M where some process

is in its trying region, and let
C = {se rstates(M) | 3; X;(s) = C}

denote the sets of reachable states of M where some process
is in its critical region. We show that

13
T Unit— Time Ca
1/8

i.e., that, starting from any reachable state where some
process is in its trying region, for all the adversaries of
Unit — Time, with probability at least 1/8, some process
enters its critical region within time 13. Note that this
property is trivially satisfied if some process is initially in
its critical region.

Our proof is divided into several phases, each one con-
cerned with the property of making a partial time bounded
progress toward a “success state”, i.e., a state of C. The sets
of states associated with the different phases are expressed

in terms of 7, R7,F,G, P, and C. Here,
RT = {seT|V:X,(s) € {Er,R,T}}

is the set of states where at least one process is in its trying
region and where no process is in its critical region or holds
resources while being in its exit region.

F 2 {seRT|3Xi(s)=F}

is the set of states of R7 where some process is ready to flip
a coin.

P = {s e rstates(M) | 3, X(s) = P}

is the sets of reachable states of M where some process is
in its pre-critical region. The set G is the most important
for the analysis. It parallels the set of “Good Pairs”in [11]
or the set described in Lemma 4 of [9]. To motivate the
definition, we define the following notions. We say that a
process 1 is committed if X; € {W, S}, and that a process 1
potentially controls Res; (resp. Res;_1) if X; € {V_>V, i, 2}
(resp. X; € {W, S, D}). Informally said, a state in RT is
— 7 —
in G if and only if there is a committed process whose second

resource 1s not potentially controlled by another process.
Such a process is called a good process. Formally,

G £ {seRT|3
Xi(s) €{W, S} and Xiy1(s) € {Er, R, F, #}, or
Xi(s) €e{W, 5} and Xi_1(s) € {ER, R, F, ﬁ}}

Reaching a state of G is a substantial progress toward reach-
ing a state of C. Actually, the proof of Proposition 7.11
establishes that, if + a is good process, then, with probabil-
ity 1/4, one of the three processes 1 — 1,1 and 7 + 1 soon
succeeds in getting its two resources. The hard part is to
establish that, with constant probability, within a constant
time, G is reached from any state in 7. A close inspection of
the proof given in [11] shows that, there, the timed version
of the techniques used is unable to deliver this result. The
phases of our proof are formally described below.

T2 RTUC
RT 2 FUGUP

Proposition 7.3),
Proposition 7.15),

(

(
F %/; GuPp (Proposition 7.14),
g %/; P (Proposition 7.11),
y (Proposition 7.1).

The first statement states that, within time 2, every process
in its exit region relinquishes its resources. By combining
the statements above by means of Proposition 3.2 and The-
orem 3.4 we obtain
72 ¢,
1/8

which is the property that was to be proven. Using the
results of the proof summary above, we can furthermore
derive a constant upper bound on the expected time required
to reach a state of C when departing from a state of 7. Note
that, departing from a state in R7, with probability at least
1/8, P is reached in time (at most) 10; with probability
at most 1/2, time 5 is spent before failing to reach G U P
(“failure at the third arrow”); with probability at most 7/8,
time 10 is spent before failing to reach P (“failure at the
fourth arrow”). If failure occurs, then the state is back into
RT. Let V denote arandom variable satisfying the following
induction

V=1/8-104+1/2(5+Vi)+3/8(10 +V3),

where V4 and V5 are random variables having the same dis-
tribution as V. The previous discussion shows that the
expected time spent from R7 to P is at most E[V]. By
taking expectation in the previous equation, and using that
E[V] = E[Vi] = E[V2], we obtain that F[V] = 60 is an up-
per bound on the expected time spent from R7 to P, and
that, consequently, the expected time for progress starting
from a state of 7 is at most 63.

7 The Detailed Proof

In this appendix we prove the five relations used in Sec-
tion 6.2. However, for the sake of clarity, we do not prove the
relations in the order they were presented. Throughout the
proof we abuse notation by writing expressions of the kind
FIRST(flip,, left) for the event schema FIRST(flip,, {s €
states(M) | Xi(s) = W}).

Proposition 7.1 If some process is in P, then, within time
1, it enters C, i.e.,

P —C.

1

Proof. This step corresponds to the action crit: within
time 1, process ¢ informs the user that the critical region is
free. |

Lemma 7.2 If some process is in its Fxil region, then, within
time 3, it will enter R.

Proof. The process needs to take first two steps to relin-

quish its two resources, and then one step to send a rem
message to the user. |

Proposition 7.3 7 2. RTUC.

Proof. From Lemma 7.2 within time 2 every process that
begins in Er or Es relinquishes its resources. If no process
begins in C' or enters C' in the meantime, then the state
reached at this point is a state of R7; otherwise, the starting
state or the state reached when the first process enters C' is
a state of C. |

We now turn to the proof of G 1—j4> P. The following

lemmas form a detailed cases analysis of the different situ-
ations that can arise in states of G. Informally, each lemma
shows that some event of the form of Proposition 4.2 is a
sub-event of the properties of reaching some other state.

Lemma 7.4
1. Let Xi—1 € {Er,R, F} and X; = V<_V If

FIRST(flip,_,,left),
then, within time 1, either X,_1 = P or X; = S.

2 lLet Xi_1 =D and X; = VL/ If FIRST(f1lip, ,,left),
then, within time 2, either X;—1 = P or X; = 5.

3 Let Xi_1 =85 and X; = VL/ If FIRST(f1lip, ,,left),
then, within time 3, either X;_1 = P or X; = 5.

4. Let Xioy =W and X; = V<_V If FIRST(f1lip,_,, left),
then, within time 4, either X,_1 = P or X; = 5.

Proof. The four proofs start in the same way. Let s be a
state of M satisfying the respective properties of items 1 or
2 or 3 or 4. Let f be an adversary of Unit — Time, and let
« be the execution of M that corresponds to an execution of
H(M,{s}, f) where the result of the first coin flip of process
1 —11is left.

1. By hypothesis, ¢+ — 1 does not hold any resource at
the beginning of o and has to obtain Res;_» (its left
resource) before pursuing Res;—1. Within time 1, ¢
takes a step in . If ¢+ —1 does not hold Res;—1 when
1 takes this step, then ¢ progresses into configuration
S. If not, it must be the case that : — 1 succeeded in
getting it in the meanwhile. But, in this case, Res;_3
was the second resource needed by ¢+ — 1 and ¢+ — 1
therefore entered P.

2. If X; = S within time 1, then we are done. Other-
wise, after one unit of time, X; is still equal to V<_V, ie.,

Xi(s') = V<_V for all states s’ reached in time 1. How-

ever, also process ¢ — 1 takes a step within time 1. Let
o = a3~az such that the last step of a7 is the first
step taken by process i—1. Then X;_; (fstate(az)) = F
and X;(fstate(az)) = V<_V Since process ¢ — 1 did not

flip any coin during a1, from the execution closure of
Unit — Time and item 1 we conclude.

3. If X; = S within time 1, then we are done. Other-
wise, after one unit of time, X; is still equal to V<_V, ie.,

Xi(s') = V<_V for all states s’ reached in time 1. How-

ever, also process ¢ — 1 takes a step within time 1. Let
o = a3~az such that the last step of a7 is the first
step taken by process 1 — 1. If X;_1(fstate(az)) = P
then we are also done. Otherwise it must be the case
that X;_1(fstate(az)) = D and X;(fstate(az)) = V<_V
Since process ¢ — 1 did not flip any coin during aq,
from the execution closure of Unit — Time and item 2
we conclude.

4. If X; = 5 within time 1, then we are done. Other-
wise, after one unit of time, X; is still equal to V<_V,

e, X(s') = V<_V for all states s’ reached in time 1.

However, since within time 1 process ¢ checks its left
resource and fails, process 1 — 1 gets its right resource
within time 1, and hence reaches at least state S.
Let @ = a1~az where the last step of a7 i1s the first
step of « that leads process ¢ — 1 to state S. Then
Xi—1(fstate(az)) = S and X;i(fstate(az)) = W. Since
process ¢ — 1 did not flip any coin during «s, from
the execution closure of Unit — Time and item 3 we
conclude. |

Lemma 7.5 Assume that X;_1 € {Fr,R, T} and X; = V<_V

If FIRsT(f1lip, ,,left), then, within time 4, either X;_1 =
PorX,=2S5.

Proof. The lemma follows immediately from Lemma 7.4
after observing that X;_1 € {Egr,R,T} is equivalent to
Xic1 € {Er,R, F,W,S D, P}. |
The next lemma is a useful tool for the proofs of Lemmas 7.7,
7.8, and 7.9.

Lemma 7.6 Let Xi € {W, S} or X € {Er, R, F, D} with
FIRST(flip,, left). Furthermore, let X;y1 € {VK,E} or
Xiy1 € {Egr,R, F,Q} with FIRST(£lip,,,right). Then
the first of the two processes v or ¢ + 1 testing its second

resource enters P after having performed this test (if this
time ever comes).

Proof. By Lemma 6.1 Res; is free. Moreover, Res; 1s the
second resource needed by both ¢ and ¢4+ 1. Whichever tests
for it first gets it and enters P. |

Lemma 7.7 If X; = ﬁ and X411 € {VK,E} then, within
time 1, one of the two processest or 1 + 1 enters P. The

same result holds if X; € {V<_V, ﬁ} and Xiy1 = i

Proof. Being in state .5, process 1 tests its second resource
within time 1. An application of Lemma 7.6 finishes the
proof. |

Lemma 7.8 Let Xi = 5 and Xip1 € {ER,R,F,Q}. If
FIRST(flip,,,,right), then, within time 1, one of the two

processest or it + 1 enters P. The same result holds if X; €
{Fr,R,F,D}, Xiy1 = i and FIRST(f1ip,, left).

Proof. Being in state .5, process 1 tests its second resource
within time 1. An application of Lemma 7.6 finishes the
proof. |

Lemma 7.9 Assume that Xioy € {Er, R, T}, Xi = W,
and X;41 € {ERr, R, F,VK,Q}. If FIRsT(flip, ,,left) and

FIRST(£lip, ,,right), then within time 5 one of the three
processest — 1,1 or i+ 1 enters P.

Proof. Let s be a state of M such that X;_1(s) € {Er, R, T},
Xi(s) = V<_V, and Xiy1(s) € {Er, R, F,VK,Q}. Let f be an
adversary of Unit — Time, and let o be the execution of M
that corresponds to an execution of H (M, {s}, f) where the

result of the first coin flip of process ¢ — 1 is 1left and the
result of the first coin flip of process + + 1 is right. By

Lemma 7.5, within time 4 either process ¢ — 1 reaches con-
figuration P in « or process i reaches configuration S in
—

a. If + — 1 reaches configuration P, then we are done. If
not, then let @ = ai~az such that Istate(a;) is the first
state s’ of o with X;(s) = 5. If i+ 1 enters P before the
end of oy, then we are done. Otherwise, X;y1(fstate(az))
is either in {W, S} or it is in {Er, R, F, D} and process
— — —
t + 1 has not flipped any coin yet in «. From execution clo-
sure of Unit — Time we can then apply Lemma 7.6: within
one more time process ¢ tests its second resource and by
Lemma 7.6 process ¢ enters P if process ¢ + 1 did not check
its second resource in the meantime. If process ¢ + 1 checks
its second resource before process ¢ does the same, then by
Lemma 7.6 process ¢+ 1 enters P. Since process ¢ checks its
second resource within time 1, process ¢+ 1 enters P within
time 1. |

Lemma 7.10 Assume that Xiy» € {Fgr, R, T}, Xiy1 =
W, and X; € {Er, R, F,W, D}. If FIRST(flip,, left) and
— — =

FIRST(flip,,,,right), then within time 5 one of the three
processes i, 1+ 1 or i+ 2, enters P.

Proof. The proof is analogous to the one of Lemma 7.9.
This lemma is the symmetric case of Lemma 7.9. |

Proposition 7.11 Starting from a global configuration in
G, then, with probability at least 1/4 and within time at most
5, some process enters P. Equivalently:

g —P.

1/4

Proof. Lemmas 7.7 and 7.8 jointly treat the case where
X, = ﬁ and X;41 € {ERr, R, F, ﬁ} and the case where X; €
{Fr,R,F, ﬁ} and X;41 = i; Lemmas 7.9 and 7.10 jointly
treat the case where Xi = W and Xi11 € {Fr, R, W, 2}
and the symmetric case where X; € {Fr, R, F, V<_V, 2} and
Xig1=W.

Specgcally, each lemma shows that a compound event
of the kind FIRST(f1lip,, =) and FIRST(flip],y) leads to P.

Each of the basic events FIRST(£1ip,, z) has probability 1/2.
From Proposition 4.2 each of the compound events has prob-
ability at least 1/4. Thus the probability of reaching P
within time 5 is at least 1/4.]

We now turn to F %/; G U P. The proof is divided in
two parts and constitute the global argument of the proof

of progress.

Lemma 7.12 Start with a state s of F. If there exists a
process 1 for which X;(s) = F and (Xi—1, Xig1) # (ﬁ, f),

then, with probability at least 1/2 a state of G UP is reached
within time 1.

Proof. If s € G U P, then the result is trivial. Let s be
a state of F — (G U P) and let ¢ be such that X;(s) = F

and (Xi—1, Xiq1) # (ﬁ, ﬁ) Assume without loss of gen-
erality that X411 # ﬁ, ie., Xiy1 € {Egr, R, F,ﬁ} The
case for X;_1 # # is similar. Furthermore, we can as-
sume that X1 E_%ER,R, F,Q} since if X;41 € {VK,E}

then s is already in G. We show that the event schema

NEXT((f1ip;, left), (flip,,,, right)),
which by Proposition 4.2 has probability at least 1/2, leads
in time at most 1 to a state of GUP. Let f be an adversary
of Unit — Time, and let o be the execution of M that cor-
responds to an execution of H(M, {s}, f) where if process
¢t flips before process ¢ + 1 then process ¢ flips left, and if
process ¢ + 1 flips before process ¢ then process ¢ + 1 flips
right.

Within time 1, ¢ takes one step and reaches W. Let
j € {1,1+ 1} be the first of ¢ and ¢ + 1 that reaches W
and let s; be the state reached after the first time process j
reaches W. If some process reached P in the meantime, then
we are done. Otherwise there are two cases to consider. If
J =1, then, flip, gives left and X;(s1) = V<_V whereas X;41

is (still) in {Er, R, F,Q} Therefore, s1 € G. If j = ¢+ 1,
then f1ip,, gives right and Xit1(s1) = V_>V whereas X;(s1)
is (still) F'. Therefore, s1 € G. |

Lemma 7.13 Start with a state s of F. If there exists a
process © for which X;(s) = F and (X;-1(s),Xit1(s)) =
(ﬁ, f) Then, with probability at least 1/2, within time 2,
a state of G U P is reached.

Proof. The hypothesis can be summarized into the form
(Xi—1(s), Xi(s), Xig1(s)) = (ﬁ, F, ﬁ) Since i —1and i +1
point in different directions, by moving to the right of ¢ + 1
there is a process k pointing to the left such that process k+1
either points to the right orisin {Er, R, F, P}, i.e., Xi(s) €
{V<_Va éa 2} and Xk+1(s) € {ER, R, F, V_>Va ia Qa P}

If Xi(s) € {V<_V, ﬁ} and Xy41(s) # P then s € G and we

are done; if X;11(s) = P then s € P and we are done. Thus,
we can restrict our attention to the case where Xk(s) = Q

We show that the event schema
NEXT((£1lip,, left), (flip, ,,right)),
which by Proposition 4.2 has probability at least 1/2, leads
in time at most 2 to G U P. Let f be an adversary of
Unit — Time, and let o be the execution of M that cor-
responds to an execution of H(M, {s}, f) where if process
k flips before process k 4+ 1 then process k flips left, and if
process k + 1 flips before process k then process k + 1 flips
right.

Within time 2, process k takes at least two steps and
hence goes to configuration W. Let j € {k,k + 1} be the
first of ¥ and & 4+ 1 that reaches W and let s; be the state
reached after the first time process j reaches W. If some
process reached P in the meantime, then we are done. Oth-
erwise there are two cases to consider. If 5 = k, then,
flip, gives left and Xix(s1) = VL/ whereas X4 is (still)

in {Fr, R, F,ﬁ} Therefore, s1 € G. If j = k + 1, then
£lip, 4 gives right and Xi41(s1) = V_}V whereas Xy (s1) is
(still) in {Q, F'}. Therefore, s1 € G. |
Proposition 7.14 Start with a state s of F. Then, with

probability at least 1/2, within time 2, a state of GU P is
reached. Equivalently:

F=guPp.
1/2

Proof. The hypothesis of Lemmas 7.12 and 7.13 form a
partition of F. |

Finally, we prove RT 2. FuUguP.

Proposition 7.15 Starting from a state s of R7T, then,
within time 3, a state of FUGUP is reached. Equivalently:

RT 2. FUGUP.

Proof. Let s be a state of R7. If s € F UG U P, then we
are trivially done. Suppose that s ¢ UG UP. Then in s
each process is in {Fgr, R, W, S, D} and there exists at least
process in {W, S, D}. Let f be an adversary of Unit — Time,
and let o be the execution of M that corresponds to an
execution of H(M,{s}, f).

We first argue that within time 1 some process reaches
a state of {S, D, F'} in . This is trivially true if in state
s there is some process in {5, D}. If this is not the case,
then all processes are either in Fr or R or W. Within time
1 some process in R or W takes a step. If the first process
not in F'r taking a step started in Fr or R, then it reaches
F and we are done; if the first process taking a step is in
W, then it reaches S since in s no resource is held. Once a
process ¢ is in {5, D, F'}, then within two more time units
process i reaches either state F' or P, and we are done. W

8 Concluding Remarks

This paper has presented a formal model and a formal proof
technique for the estimation of time performance of random-
ized algorithms that run under the control of general classes
of adversaries. The salient aspect of this technique is to
prove probabilistic time bounded progress properties and to
compose them by means of a powerful composability theo-
rem. The power of the proof method has been illustrated
by proving a constant upper bound on the expected time
for progress in the Lehmann-Rabin Dining Philosophers al-
gorithm.

We believe that this technique is applicable towards the
time analysis of many randomized protocols. It is desirable
that the general model and this technique be used for the
analysis of other algorithms, so that the power of the method
can be tested and/or increased by means of other additional
tools. In particular, it is very likely that new event schemas
and partial independence results similar to those of Section 4
can be developed.

The specific results about the Lehmann-Rabin Dining
Philosophers algorithm can be complemented and extended
in many ways. We cite two. First, it would be very satisfying
to derive a non trivial lower bound on the time for progress,
which should be lower than our upper bound since the upper
bound could be easily improved by means of a finer analysis.
Second, it would be interesting to consider topologies that
are more general than rings.

Acknowledgments. We thank Lenore Zuck for valuable crit-
icism on a draft version of this paper and in particular for
pointing out that the state chart notation of [11] can be
adapted to our proof method.

References

[1] J. Aspnes and M.P. Herlihy. Fast randomized con-
sensus using shared memory. Journal of Algorithms,
15(1):441-460, September 1990.

[2] M. Ben-Or. Another advantage of free choice: com-
pletely asynchronous agreement protocols. In Proceed-
ings of the 2% Annual ACM Symposium on Principles

[10]

[11]

[12]

[13]

[14]

[15]

[16]

of Distributed Computing, Montreal, Quebec, Canada,
August 1983.

K.M. Chandi and J. Misra”. Parallel Program Design:
A Foundation. Addison-Wesley, 1988.

L. Christoff and 1. Christoff. Efficient algorithms for
verification of equivalences for probabilistic processes.
In Proceedings of the 3rd Workshop on Computer-Aided
Verification, 1991.

R. Gawlhck, R. Segala, J.F. Sggaard-Andersen, and
N. Lynch. Liveness in timed and untimed systems.
Technical Report MIT/LCS/TR-587, Laboratory for
Computer Science, MIT, Cambridge, MA, November
1993.

H. Hansson. Time and Probability in Formal Design of
Distributed Systems. PhD thesis, Department of Com-
puter Science, Uppsala University, 1991.

C.A.R. Hoare. Communicating Sequential Processes.
Prentice-Hall International, Englewood Cliffs, 1985.

E. Kushilevitz and M. Rabin. Randomized mutual ex-
clusion algorithms revisited. In Proceedings of the 11"
Annual ACM Symposium on Principles of Distributed

Computing, Quebec, Canada, pages 275-284, 1992.

D. Lehmann and M. Rabin. On the advantage of free
choice: a symmetric and fully distributed solution to
the dining philosophers problem. In Proceedings of the
8™ Annual ACM Symposium on Principles of Program-
ming Languages, pages 133-138, January 1981.

N.A. Lynch and F.W. Vaandrager. Forward and back-
ward simulations — part II: Timing-based systems.
Technical Report MIT/LCS/TM-487, Laboratory for
Computer Science, MIT, Cambridge, MA, September
1993.

A. Pnueli and L. Zuck.
cess probabilistic protocols.
1(1):53-72, 1986.

J.R. Rao. Reasoning about probabilistic algorithms.
In Proceedings of the 9" Annual ACM Symposium on
Principles of Distributed Computing, Quebec, Canada,
August 1990.

Verification of multipro-
Distributed Computing,

1. Saias. Proving probabilistic correctness: the case of
Rabin’s algorithm for mutual exclusion. In Proceedings
of the 11" Annual ACM Symposium on Principles of
Distributed Computing, Quebec, Canada, August 1992.

R. Segala and N. Lynch. A model for randomized con-
current systems. Manuscript, 1994.

F.W. Vaandrager and N.A. Lynch. Action transduc-
ers and timed automata. In W.R. Cleaveland, editor,
Proceedings CONCUR 92, Stony Brook, NY, USA, vol-
ume 630 of Lecture Notes in Computer Science, pages
436—-455. Springer-Verlag, 1992.

M. Y. Vardi. Automatic verification of probabilistic
concurrent finite-state programs. In Proceedings of 26th
IEEE Symposium on Foundations of Computer Science,
pages 327-338, Portland, OR, 1985.

