
Proving Time Bounds for Randomized Distributed Algorithms �Nancy Lynch Isaac Saias Roberto SegalaLaboratory for Computer ScienceMassachusetts Institute of TechnologyCambridge, MA 02139AbstractA method of analyzing time bounds for randomized dis-tributed algorithms is presented, in the context of a newand general framework for describing and reasoning aboutrandomized algorithms. The method consists of provingauxiliary statements of the form U t�!p U 0, which meansthat whenever the algorithm begins in a state in set U , withprobability p, it will reach a state in set U 0 within time t.The power of the method is illustrated by its use in prov-ing a constant upper bound on the expected time for someprocess to reach its critical region, in Lehmann and Rabin'sDining Philosophers algorithm.1 IntroductionRandomization has proved to be a useful tool in the designof distributed algorithms, sometimes yielding e�cient solu-tions to problems that are inherently complex, or even un-solvable, in the setting of deterministic algorithms [1, 2, 8, 9].But this powerful tool has a price: even simple randomizedalgorithms can be extremely hard to verify and analyze. Be-cause of this, many randomized distributed algorithms ap-pear in the literature with only informal proofs of correct-ness, and only informal derivation of complexity bounds. Infact, it is sometimes hard for the reader to ascertain thatthe proofs and complexity bounds presented are really cor-rect. Even where proofs are carefully and correctly done,the arguments tend to be ad hoc.A key di�culty in reasoning about randomized algo-rithms is the fact that their executions usually contain acombination of nondeterministic and probabilistic choices,with subtle interactions between them. The probabilisticchoices are typically only those that involve an explicit useof randomness by the algorithm (e.g., by using a random-number generator). All other choices (e.g., the order of pro-cess steps, the times at which requests arrive) are usuallyconsidered to be nondeterministic. It is customary to de�nean adversary as a way of modeling the entity that resolves�Supported by NSF grant CCR-89-15206, and CCR-92-25124, byDARPA contracts N00014-89-J-1988 and N00014-92-J-4033, and byONR contract N00014-91-J-1046.

the nondeterministic choices.1 In de�ning an adversary, onemust be especially careful to specify the knowledge of the ex-ecution that the adversary is permitted to use in resolvingnondeterministic choices. This might range from no knowl-edge at all, in which case the adversary is said to be oblivious,to complete knowledge of the past execution (including pastrandom choices).Even after one has de�ned the desired notion of adver-sary, it is still not easy to carry out correctness proofs andcomplexity analyses for randomized algorithms; most exist-ing proofs seem rather ad hoc. It would be useful to have acollection of general proof rules and methods, which couldbe established once and for all, and then applied in a reason-ably systematic way to verify and analyze numerous algo-rithms. Some examples of work that has already been doneon the development of such methods are [4, 6, 11, 12]. Thework of [11] presents a technique, based on progress func-tions de�ned on states, for establishing liveness propertiesfor randomized algorithms; the work of [12] extends UNITY[3] to handle probability, and provides a completeness resultfor some properties that hold with probability 1; the workof [4, 6] presents model checking techniques.In this paper, we present such a new method: a way ofproving upper bounds on time for randomized algorithms.Our method consists of proving auxiliary statements of theform U t�!p U 0, which means that whenever the algorithmbegins in a state in set U , with probability p, it will reacha state in set U 0 within time t. Of course, this method canonly be used for randomized algorithms that include tim-ing assumptions. A key theorem about our method is thecomposability of these U t�!p U 0 arrows, as expressed byTheorem 3.4. This composability result holds in the case of(many classes of) oblivious as well as non-oblivious adver-saries.We also present two complementary proof rules that helpin reasoning about sets of distinct random choices. Inde-pendence arguments about such choices are often crucialto correctness proofs, yet there are subtle ways in whicha non-oblivious adversary can introduce dependencies. Forexample, a non-oblivious adversary has the power to use theoutcome of one random choice to decide whether to scheduleanother random choice. Our proof rules help to systematizecertain kinds of reasoning about independence.Our proof rules are presented in the context of a new1In this paper, we ignore the possibility that the adversary itselfuses randomness.

and general formal framework [14] for describing and rea-soning about randomized algorithms. This framework inte-grates randomness and nondeterminism into one model, andpermits the modeling of timed as well as untimed systems.The model of [14] is, in turn, based on existing models foruntimed and timed distributed systems [7, 10], and adoptsmany ideas from the probabilistic models of [6, 16].In order to illustrate our method, we use it in this paperto prove an upper bound for Lehmann and Rabin's DiningPhilosophers algorithm [9], in the face of an adversary withcomplete knowledge of the past. This upper bound assertsthat T 13�!1=8 C, where T is the set of states in which someprocess is in its trying region, while C is the set of states inwhich some process is in its critical region. That is, when-ever the algorithm is in a state in which some process isin the trying region, with probability 1=8, within time 13,it will reach a state in which some process is in its criticalregion. This bound depends on the timing assumption thatprocesses never wait more then time 1 between steps. Aconsequence of this claim is an upper bound (of 63) on theexpected time for some process to reach its critical region.For comparison, we note that [9] contains only proofsketches of the results claimed. The paper [11] contains aproof that Lehmann and Rabin's algorithm satis�es an even-tual progress condition, in the presence of an adversary withcomplete knowledge of the past; this proof is carried out asan instance of Pnueli and Zuck's general method, based ona notion of extreme fairness, for proving liveness properties.Our results about this protocol can be regarded as a re�ne-ment of the results of Pnueli and Zuck, in that we obtainexplicit constant time bounds rather than liveness proper-ties. It is worth noting that the method based on extremefariness can be embedded in our model. Similarly, the statechart representation that is used in [11] can be adapted toour proof method.The rest of the paper is organized as follows. Section 2presents a simpli�ed version of the model of [14]. Sec-tion 3 presents our main proof technique based on time-bound statements. Section 4 presents the additional proofrules for independence of distinct probabilistic choices. Sec-tion 5 presents the Lehmann-Rabin algorithm. Section 6.2formalizes the algorithm in terms of the model of Section 2,and gives an overview of our time bound proof, and Section 7contains the details of the time bound proof. Section 8 givessome concluding remarks.2 The ModelIn this section, we present the model that is used to for-mulate our proof technique. It is a simpli�ed version ofthe probabilistic automaton model of [14]. Here we onlygive the parts of the model that we need to describe ourproof method and its application to the Lehmann-Rabin al-gorithm; we refer the reader to the full version of this paperand to [14] for more details.De�nition 2.1 A probability space is a triplet (
;F ; P)where
 is a set, F is a collection of subsets of
 thatis closed under complement and countable union and suchthat
 2 F , and P is a function from F to [0; 1] such thatP [
] = 1 and for any collection fCigi of at most countablymany pairwise disjoint elements of F , P [[iCi] =Pi P [Ci].

A probability space (
;F ; P) is discrete2 if F = 2
 andfor each C �
, P [C] = Px2C P [fxg]. It is immediateto verify that for every discrete probability space there areat most countably many points with a positive probabilitymeasure.De�nition 2.2 A probabilistic automaton3 M consists offour components:� a set states(M) of states.� a nonempty set start(M) � states(M) of start states.� an action signature sig(M) = (ext(M); int(M)) whereext(M) and int(M) are disjoint sets of external andinternal actions, respectively.� a transition relation steps(M) � states(M)�acts(M)�Probs(states(M)), where the set Probs(states(M)) isthe set of discrete probability spaces (
;F ;P) suchthat
 � states(M). Discreteness is needed for tech-nical convenience.A probabilistic automaton is fully probabilistic if it has aunique start state and from each state there is at most onestep enabled.Thus, a probabilistic automaton is a state machine with alabeled transition relation such that the state reached duringa step is determined by some probability distribution. Forexample, the process of
ipping a coin is represented bya step labeled with an action flip where the next statecontains the outcome of the coin
ip and is determined by aprobability distribution over the two possible outcomes. Aprobabilistic automaton also allows nondeterministic choicesover steps. An example of nondeterminism is the choice ofwhich process takes the next step in a multi-process system.A reader familiar with other models for randomized com-putation may be puzzled because we do not put any restric-tion on the size of
 in our probability spaces. The readermay assume that
 �nite without compromising the under-standing of the paper; however, such a restriction is notnecessary for any of our results, and thus we do not includeit in De�nition 2.2.An execution fragment � of a probabilistic automatonM is a (�nite or in�nite) sequence of alternating statesand actions starting with a state and, if the execution frag-ment is �nite, ending in a state, � = s0a1s1a2s2 � � �, wherefor each i there exists a probability space (
;F ;P) suchthat (si; ai+1; (
;F ;P)) 2 steps(M) and si+1 2
. Denoteby fstate(�) the �rst state of � and, if � is �nite, denoteby lstate(�) the last state of �. Furthermore, denote byfrag�(M) and frag(M) the sets of �nite and all executionfragments of M , respectively. An execution is an execu-tion fragment whose �rst state is a start state. Denote byexec�(M) and exec(M) the sets of �nite and all executions ofM , respectively. A state s ofM is reachable if there exists a�nite execution of M that ends in s. Denote by rstates(M)the set of reachable states of M .A �nite execution fragment �1 = s0a1s1 � � � ansn of Mand an execution fragment �2 = snan+1sn+1 � � � of M can2If we accept the Axiom of Choice, then the requirement F = 2
is su�cient.3In [14] the probabilistic automata of this de�nition are calledsimple probabilistic automata . This is because [14] also includes thecase of randomized adversaries.

be concatenated. The concatenation, written �1a�2, is theexecution fragment s0a1s1 � � � ansnan+1sn+1 � � �. An execu-tion fragment �1 of M is a pre�x of an execution fragment�2 of M , written �1 � �2, if either �1 = �2 or �1 is �niteand there exists an execution fragment �01 of M such that�2 = �1a�01.In order to study the probabilistic behavior of a prob-abilistic automaton, some mechanism to remove nondeter-minism is necessary. To give an idea of why the nondeter-ministic behavior should be removed, consider a probabilis-tic automaton with three states s0; s1; s2 and with two stepsenabled from its start state s0; the �rst step moves to states1 with probability 1=2 and to s2 with probability 1=2; thesecond step moves to state s1 with probability 1=3 and tos2 with probability 2=3. What is the probability of reachingstate s1? The answer depends on how the nondeterminismbetween the two steps is resolved. If the �rst step is cho-sen, then the probability of reaching state s1 is 1=2; if thesecond step is chosen, then the probability of reaching states1 is 1=3. We call the mechanism that removes the nonde-terminism an adversary, because it is often viewed as tryingto thwart the e�orts of a system to reach its goals. In dis-tributed systems the adversary is often called the scheduler ,because its main job may be to decide which process shouldtake the next step.De�nition 2.3 An adversary for a probabilistic automatonM is a function A taking a �nite execution fragment of Mand giving back either nothing (represented as �) or one ofthe enabled steps of M if there are any. Denote the set ofadversaries for M by Advs(M)4.Once an adversary is chosen, a probabilistic automatoncan run under the control of the chosen adversary. The re-sult of the interaction is called an execution automaton. Thede�nition of an execution automaton, given below, is rathercomplicated because an execution automaton must containall the information about the di�erent choices of the adver-sary, and thus the states of an execution automaton mustcontain the complete history of a probabilistic automaton.Note that there are no nondeterministic choices left in anexecution automaton.De�nition 2.4 An execution automaton H of a probabilis-tic automaton M is a fully probabilistic automaton suchthat1. states(H) � frag�(M). Denote a generic state of H byq; q1; q2; : : :2. for each step (q; a; (
;F ;P)) of H there exists a step(lstate(q); a; (
0;F 0; P 0)) of M , called the correspond-ing step, such that
 = fqasjs 2
0g and P 0[qas] =P [s] for each s 2
0.3. each state ofH is reachable, i.e., for each q 2 states(H)there exists an execution of H leading to state q.De�nition 2.5 Given a probabilistic automatonM , an ad-versary A 2 Advs(M), and an execution fragment � 2frag�(M), the execution H(M;A; �) of M under adversaryA with starting fragment � is the execution automaton ofM whose start state is � and such that4In [14] the adversaries of this de�nition are denoted byDAdvs(M), where D stands for Deterministic. The adversaries of[14] are allowed to use randomness.

1. for each state q there is a step enabled i� A(q) 6= ?;2. for each state q, if there is a step (q; a; (
;F ; P)) 2steps(H(M;A; �)), then its corresponding step isA(q).Given an execution automaton H, an event is expressedby means of a set of maximal executions of H, where a max-imal execution of H is either in�nite, or it is �nite and itslast state does not enable any step in H. For example, theevent \eventually action a occurs" is the set of maximal ex-ecutions of H where action a does occur. A more formalde�nition follows. The sample space
H is the set of max-imal executions of H. The �-algebra FH is the smallest �-algebra that contains the set of rectangles R�, consisting ofthe executions of
H having � as a pre�x5. The probabilitymeasure PH is the unique extension of the probability mea-sure de�ned on rectangles as follows: PH [R�] is the productof the probabilities of each step of H generating �. In [14] itis shown that there is a unique probability measure havingthe property above, and thus (
H;FH ; PH) is a well de�nedprobability space. A similar probability space is built in[6, 16] for automata with a �nitely branching transition re-lations. For the rest of this paper we do not need to refer tothis formal de�nition any more.Events of FH are not su�cient for the analysis of a prob-abilistic automaton. Events are de�ned over execution au-tomata, but a probabilistic automaton may generate severalexecution automata depending on the adversary it interactswith. Thus a more general notion of event is needed thatcan deal with all execution automata. Speci�c examples aregiven in Section 3.De�nition 2.6 An event schema e for a probabilistic au-tomaton M is a function associating an event of FH witheach execution automaton H of M .We now discuss brie
y a simple way to handle timewithin probabilistic automata. The idea is to add a timecomponent to the states of a probabilistic automaton (de-note the time component of a state s by s:now), to assumethat the time at a start state is 0, to add a special non-visible action � modeling the passage of time, and to addarbitrary time passage steps to each state. A time passagestep should be non-probabilistic and should change only thetime component of a state by adding any arbitrary positivereal value to it. This construction is called the patient con-struction in [5, 15]. At this point the theory for the timedmodel works in the same identical way as the theory for theuntimed model. A technical detail arises in the de�nition ofan execution automaton, where the start state q0 is forced tohave time 0 and the time of each other state q is de�ned tobe lstate(q):now � lstate(q0):now . The timed model can begeneralized even further in the same style as in [10], and thetheory for the untimed model applies directly as well. Theonly restriction that we need to impose is that all the timepassage steps are non-probabilistic. The reader is referredto [14] for more details about the general model.We close this section with one �nal de�nition. Our timebound property for the Lehmann-Rabin algorithm statesthat if some process is in its trying region, then no matterhow the steps of the system are scheduled, some process en-ters its critical region within time t with probability at least5Note that a rectangle R� can be used to express the fact that the�nite execution � occurs.

p. However, this claim can only be valid if each process hassu�ciently frequent chances to perform a step of its localprogram. Thus, we need a way to state our properties interms of speci�c sets of adversaries, rather than all possibleadversaries. We call any arbitrary subset of Advs(M) an ad-versary schema, and we denote a generic adversary schemaby Advs. Any scheduling policy can be de�ned by meansof an adversary schema: it is enough to consider only thoseadversaries whose choices agree with the speci�c schedulingpolicy. The adversary schema Unit � Time of Section 6.2identi�es any scheduling policy for which at any time eachprocess in its trying region is given a chance to perform astep of its program within time 1.3 The Proof MethodIn this section, we introduce our key statement U t�!p Advs U 0and the composability theorem, which is our main theoremabout the proof method.The meaning of the statement U t�!p Advs U 0 is that, start-ing from any state of U and under any adversary A of Advs,the probability of reaching a state of U 0 within time t is atleast p. The su�x Advs is omitted whenever we think it isclear from the context.De�nition 3.1 Let eU 0;t be the event schema that, appliedto an execution automaton H, returns the set of maximal ex-ecutions � ofH where there exists some state q with q:now �t and lstate(q) 2 U 0. Then U t�!p Advs U 0 i� for each s 2 Uand each A 2 Advs, PH(M;A;s)[eU 0;t(H(M;A; s))] � p.Proposition 3.2 Let U;U 0; U 00 be sets of states of a proba-bilistic automaton M .If U t�!p U 0, then U [U 00 t�!p U 0 [U 00.In order to compose time bound statements, we needa restriction for adversary schemas stating that the powerof the adversary schema is not reduced if a pre�x of thepast history of an execution is not known. Most adversaryschemas that appear in the literature satisfy this restriction.De�nition 3.3 An adversary schema Advs for a probabilis-tic automaton M is execution closed if, for each A 2 Advsand each �nite execution fragment � 2 frag�(M), thereexists an adversary A0 2 Advs such that for each execu-tion fragment �0 2 frag�(M) with lstate(�) = fstate(�0),A0(�0) = A(�a�0).Theorem 3.4 Let Advs be an execution closed adversaryschema for a probabilistic timed automatonM , and let U;U 0,and U 00 be sets of states of M .If U t1�!p1 Advs U 0 and U 0 t2�!p2 Advs U 00, then U t1+t2�!p1p2Advs U 00.Proof sketch. Consider an adversary A 2 Advs that actson M starting from a state s of U . The execution automa-ton H(M;A; s) contains executions where a state from U 0 isreached within time t1. Consider one of those executions �and consider the part H of H(M;A; s) after the �rst occur-rence of a state from U 0 in �. The key idea of the proof is touse execution closure of Advs to show that there is an adver-sary that generates H without knowing the �nite pre�x of

� that lead to U 0, to use U 0 t2�!p2 Advs U 00 to show that in H astate from U 00 is reached within time t2 with probability atleast p2, and to integrate this last result in the computationof the probability of reaching a state from U 00 in H(M;A; s)within time t1 + t2.4 IndependenceExample 4.1 Consider any distributed system where eachprocess is allowed to
ip fair coins. It is common to say\If the next coin
ip of process P yields head and the nextcoin
ip of process Q yields tail , then some good property� holds." Can we conclude that the probability for � tohold is 1=4? That is, can we assume that the coin
ips ofprocesses P and Q are independent? The two coin
ips areindeed independent of each other, but the presence of non-oblivious adversaries may introduce some dependence. Anadversary can schedule process P to
ip its coin and thenschedule process Q only if the coin
ip of process P yieldedhead . As a result, if both P and Q
ip a coin, the probabilitythat P yields head and Q yields tail is 1=2.Thus, it is necessary to be extremely careful about inde-pendence assumptions. It is also important to pay attentionto potential ambiguities of informal arguments. For exam-ple, does � hold if process P
ips a coin yielding head andprocess Q does not
ip any coin? Certainly such an ambi-guity can be avoided by expressing each event in a formalmodel.In this section we present two event schemas that play akey role in the detailed time bound proof for the Lehmann-Rabin algorithm (cf. Section 7), and we show some partialindependence properties for them. The �rst event schema isa generalization of the informal statement of Example 4.1,where a coin
ip is replaced by a generic action a, and whereit is assumed that an event contains all the executions wherea is not scheduled; the second event schema is used to ana-lyze the outcome of the �rst random draw that occurs amonga �xed set of random draws. A consequence of the partialindependence results that we show below is that under anyadversary the property � of Example 4.1 holds with proba-bility at least 1=4.Let (a; U) be a pair consisting of an action of M anda set of states of M . The event schema first(a;U) is thefunction that, given an execution automaton H, returns theset of maximal executions of H where either action a doesnot occur, or action a occurs and the state reached after the�rst occurrence of a is a state of U . This event schema isused to express properties like \the ith coin yields left".For example a can be flip and U can be the set of statesof M where the result of the coin
ip is left.Let (a1; U1); : : : ; (an; Un) be a sequence of pairs consist-ing of an action of M and a set of states of M such that foreach i; j, 1 � i < j � n, ai 6= aj . De�ne the event schemanext((a1; U1); : : : ; (an; Un)) to be the function that appliedto an execution automaton H gives the set of maximal ex-ecutions of H where either no action from fa1; : : : ; ang oc-curs, or at least one action from fa1; : : : ; ang occurs and, ifai is the �rst action that occurs, the state reached after the�rst occurrence of ai is in Ui. This kind of event schema isused to express properties like \the �rst coin that is
ippedyields left."

Proposition 4.2 Let H be an execution automaton of aprobabilistic automaton M , and let (a1; U1); : : : ; (an; Un) bepairs consisting of an action of M and a set of states ofM such that for each i; j, 1 � i < j � n, ai 6= aj . Letp1; : : : ; pn be real numbers between 0 and 1 such that foreach i, 1 � i � n, and each step (s; a; (
;F ;P)) 2 steps(M)with a = ai, the probability P [Ui\
] is greater than or equalto pi, i.e., P [Ui \
] � pi. Then1. PH[(first(a1; U1)\� � �\first(an; Un))(H)] � p1 � � � pn,2. PH[next((a1; U1); : : : ; (an; Un))(H)]� min(p1; : : : ; pn).Of course, other event schemas can be de�ned and otherproperties can be proved about them. An example of an-other event schema is the one that given an execution au-tomaton H returns the set of maximal executions of H thatsatisfy the extreme fairness condition of [11]. An interestingdirection for further research is to de�ne a whole collectionof useful event schemas, possibly through the analysis ofother examples.5 The Lehmann-Rabin AlgorithmThe Lehmann-Rabin algorithm is a randomized algorithmfor the Dining Philosophers problem. This problem involvesthe allocation of n resources among n competing processesarranged in a ring. The resources are considered to be in-terspersed between the processes, and each process requiresboth its adjacent resources in order to reach its critical sec-tion. All processes are identical; the algorithm breaks sym-metry by using randomization. The algorithm ensures therequired exclusive possession of resources, and also ensuresthat, with probability 1, some process is always permittedto make progress into its critical region.Figure 1 shows the code for a generic process i. The n re-sources are represented by n shared variables Res1; : : : ;Resn,each of which can assume values in ffree; takeng. Eachprocess i ignores its own name, i, and the names, Resi�1and Resi, of its adjacent resources. However, each process iis able to refer to its adjacent resources by relative names:Res(i;left) is the resource located to the left (clockwise), andRes(i;right) is the resource to the right (counterclockwise) ofi. Each process has a private variable ui, which can assumea value in fleft; rightg, and is used to keep track of the�rst resource to be handled. For notational convenience wede�ne an operator opp that complements the value of itsargument, i.e., opp(right) = left and opp(left) = right.The atomic actions of the code are individual resourceaccesses, and they are represented in the form <atomic-action> in Figure 1. We assume that at most one processhas access to the shared resource at each time.An informal description of the procedure is \choose aside randomly in each iteration. Wait for the resource onthe chosen side, and, after getting it, just check once for thesecond resource. If this check succeeds, then proceed to thecritical region. Otherwise, put down the �rst resource andtry again with a new random choice."Each process exchanges messages with an external user.In its idle state, a process is in its remainder region R. Whentriggered by a try message from the user, it enters the com-petition to get its resources: we say that it enters its tryingregion T . When the resources are obtained, it sends a crit

message informing the user of the possession of these re-sources: we then say that the process is in its critical regionC. When triggered by an exitmessage from the user, it be-gins relinquishing its resources: we then say that the processis in its exit region E. When the resources are relinquishedits sends a rem message to the user and enters its remainderregion.6 Overview of the ProofIn this section, we give our high-level overview of the proof.We �rst introduce some notation, then sketch the proofstrategy at a high level. Details of the proof appear in theAppendix.6.1 NotationIn this section we de�ne a probabilistic automatonM whichdescribes the system of Section 5. We assume that processi + 1 is on the right of process i and that resource Resi isbetween processes i and i+1. We also identify labels modulon so that, for instance, process n+1 coincides with process1. A state s of M is a tuple (X1; : : : ;Xn;Res1; : : : ;Resn; t)containing the local state Xi of each process i, the valueof each resource Resi, and the current time t. Each localstate Xi is a pair (pci; ui) consisting of a program counterpci and the local variable ui. The program counter of eachprocess keeps track of the current instruction in the code ofFigure 1. Rather then representing the value of the programcounter with a number, we use a more suggestive notationwhich is explained in the table below. Also, the execution ofeach instruction is represented by an action. Only actionstryi, criti, remi, exiti below are external actions.Nr. pci Action Informal meaning0 R tryi Reminder region1 F flipi Ready to Flip2 W waiti Waiting for �rst resource3 S secondi Checking for Second resource4 D dropi Dropping �rst resource5 P criti Pre-critical region6 C exiti Critical region7 EF dropfi Exit: drop First resource8 ES dropsi Exit: drop Second resource9 ER remi Exit: move to Reminder regionThe start state of M assigns the value free to all theshared variables Resi, the value R to each program counterpci, and an arbitrary value to each variable ui. The transi-tion relation ofM is derived directly from Figure 1. For ex-ample, for each state where pci = F there is an internal stepflipi that changes pci into W and assigns left to ui withprobability 1=2 and right to ui with probability 1=2; fromeach state where Xi = (W; left) there is a step waiti thatdoes not change the state if Res(i;left) = taken, and changespci into S and Res(i;left) into taken if Res(i;left) = free;for each state where pci = EF there are two steps with ac-tion dropfi: one step sets ui to right and makes Res(i;left)free, and the other step sets ui to left makes Res(i;right)free. The two separate steps correspond to a nondetermin-istic choice that is left to the adversary. For time passagesteps we assume that at any point an arbitrary amount of

Shared variables: Resj 2 ffree; takeng; j = 1; : : : ; n, initially free.Local variables: ui 2 fleft; rightg; i = 1; : : : ; nCode for process i:0. try ** beginning of Trying Section **1. < ui random> ** choose left or right with equal probability **2. < if Res(i;ui) = free thenRes(i;ui) := taken ** pick up �rst resource **else goto 2. >3. < if Res(i;opp(ui)) = free thenRes(i;opp(ui)) := taken; ** pick up second resource **goto 5. >4. < Res(i;ui) := free; goto 1.> ** put down �rst resource **5. crit ** end of Trying Section **** Critical Section **6. exit ** beginning of Exit Section **7. < ui left or right ** nondeterministic choice **Res(i;opp(ui)) := free > ** put down �rst resources **8. < Res(i;ui) := free > ** put down second resources **9. rem ** end of Exit Section **** Remainder Section ** Figure 1: The Lehmann-Rabin algorithmtime can pass; thus, from each state of M and each posi-tive � there is a time passage step that increases the timecomponent of � and does not a�ect the rest of the state.The value of each pair Xi can be represented conciselyby the value of pci and an arrow (to the left or to the right)which describes the value of ui. Thus, informally, a processi is in state S! or D! (resp. S or D) when i is in state S orD while holding its right (resp. left) resource; process i is instate W! (resp. W) when i is waiting for its right (resp. left)resource to become free; process i is in state ES! (resp. ES)when i is in its exit region and it is still holding its right(resp. left) resource. Sometimes we are interested in setsof pairs; for example, whenever pci = F the value of ui isirrelevant. With the simple value of pci we denote the setof the two pairs f(pci; left); (pci; right)g. Finally, with thesymbol # we denote any pair where pci 2 fW;S;Dg. Thearrow notation is used as before.For each state s = (X0; : : : ;Xn�1;Res1; : : : ;Resn�1; t) ofM we denote by Xi(s) the pair Xi and by Resi(s) the valueof the shared variable Resi in state s. Also, for any set Sof states of a process i, we denote by Xi 2 S, or alterna-tively Xi = S the set of states s of M such that Xi(s) 2 S.Sometimes we abuse notation in the sense that we write ex-pressions like Xi 2 fF;Dg with the meaning Xi 2 F [D.Finally, we write Xi = E for Xi = fEF ; ES ; ERg, and wewrite Xi = T for Xi 2 fF;W; S;D;Pg.A �rst basic lemma states that a reachable state of Mis uniquely determined by the local states its processes andthe current time. Based on this lemma, our further speci-�cations of state sets will not refer to the shared variables;however, we consider only reachable states for the analysis.The proof of the lemma is a standard proof of invariants.Lemma 6.1 For each reachable state s of M and each i,1 � i � n, Resi = taken i� Xi(s) 2 f S!; D!; P;C;EF ; ES!gor Xi+1(s) 2 f S ; D ; P;C;EF ; ES g. Moreover, for each

reachable state s of M and each i, 1 � i � n, it is notthe case that Xi(s) 2 fS!; D!; P;C;EF ; ES!g and Xi+1(s) 2f S ; D ; P;C;EF ; ES g, i.e., only one process at a time canhold one resource.6.2 Proof SketchIn this section we show that the RL-algorithm guaranteestime bounded progress, i.e., that from every state wheresome process is in its trying region, some process subse-quently enters its critical region within an expected constanttime bound. We assume that each process that is ready toperform a step does so within time 1: process i is ready toperform a step whenever it enables an action di�erent fromtryi or exiti. Actions tryi and exiti are supposed to beunder the control of the user, and hence, by assumption,under the control of the adversary.Formally, consider the probabilistic timed automaton Mof Section 6.1. De�ne Unit � Time to be the set of ad-versaries A for M having the properties that, for every �-nite execution fragment � of M and every execution �0 ofH(M;A; �), 1) the time in �0 is not bounded and 2) forevery process i and every state of �0 enabling an action ofprocess i di�erent from tryi and exiti, there exists a stepin �0 involving process i within time 1. Then Unit �Timeis execution-closed according to De�nition 3.3. An infor-mal justi�cation of this fact is that the constraint that eachready process is scheduled within time 1 knowing that �a�0has occurred only reinforces the constraint that each readyprocess is scheduled within time 1 knowing that �0 has oc-curred. LetT 4= fs 2 rstates(M) j 9iXi(s) 2 fTggdenote the sets of reachable states ofM where some process

is in its trying region, and letC 4= fs 2 rstates(M) j 9iXi(s) = Cgdenote the sets of reachable states ofM where some processis in its critical region. We show thatT 13�!1=8Unit�Time C;i.e., that, starting from any reachable state where someprocess is in its trying region, for all the adversaries ofUnit �Time, with probability at least 1=8, some processenters its critical region within time 13. Note that thisproperty is trivially satis�ed if some process is initially inits critical region.Our proof is divided into several phases, each one con-cerned with the property of making a partial time boundedprogress toward a \success state", i.e., a state of C. The setsof states associated with the di�erent phases are expressedin terms of T ;RT ;F ;G;P; and C. Here,RT 4= fs 2 T j 8iXi(s) 2 fER; R; Tggis the set of states where at least one process is in its tryingregion and where no process is in its critical region or holdsresources while being in its exit region.F 4= fs 2 RT j 9iXi(s) = Fgis the set of states of RT where some process is ready to
ipa coin. P 4= fs 2 rstates(M) j 9iXi(s) = Pgis the sets of reachable states of M where some process isin its pre-critical region. The set G is the most importantfor the analysis. It parallels the set of \Good Pairs"in [11]or the set described in Lemma 4 of [9]. To motivate thede�nition, we de�ne the following notions. We say that aprocess i is committed if Xi 2 fW; Sg, and that a process ipotentially controls Resi (resp. Resi�1) if Xi 2 fW!; S!; D!g(resp. Xi 2 fW ; S ; D g). Informally said, a state in RT isin G if and only if there is a committed process whose secondresource is not potentially controlled by another process.Such a process is called a good process. Formally,G 4= fs 2 RT j 9iXi(s) 2 fW ; S g and Xi+1(s) 2 fER; R; F;#!g; orXi(s) 2 fW!; S!g and Xi�1(s) 2 fER; R;F;# ggReaching a state of G is a substantial progress toward reach-ing a state of C. Actually, the proof of Proposition 7.11establishes that, if i a is good process, then, with probabil-ity 1/4, one of the three processes i � 1; i and i + 1 soonsucceeds in getting its two resources. The hard part is toestablish that, with constant probability, within a constanttime, G is reached from any state in T . A close inspection ofthe proof given in [11] shows that, there, the timed versionof the techniques used is unable to deliver this result. Thephases of our proof are formally described below.

T 2�! RT [C (Proposition 7.3),RT 3�! F [G [P (Proposition 7.15),F 2�!1=2 G [P (Proposition 7.14),G 5�!1=4 P (Proposition 7.11),P 1�! C (Proposition 7.1).The �rst statement states that, within time 2, every processin its exit region relinquishes its resources. By combiningthe statements above by means of Proposition 3.2 and The-orem 3.4 we obtain T 13�!1=8 C;which is the property that was to be proven. Using theresults of the proof summary above, we can furthermorederive a constant upper bound on the expected time requiredto reach a state of C when departing from a state of T . Notethat, departing from a state in RT , with probability at least1=8, P is reached in time (at most) 10; with probabilityat most 1=2, time 5 is spent before failing to reach G [P(\failure at the third arrow"); with probability at most 7=8,time 10 is spent before failing to reach P (\failure at thefourth arrow"). If failure occurs, then the state is back intoRT . Let V denote a random variable satisfying the followinginductionV = 1=8 � 10 + 1=2 (5 + V1) + 3=8 (10 + V2) ;where V1 and V2 are random variables having the same dis-tribution as V . The previous discussion shows that theexpected time spent from RT to P is at most E[V]. Bytaking expectation in the previous equation, and using thatE[V] = E[V1] = E[V2], we obtain that E[V] = 60 is an up-per bound on the expected time spent from RT to P, andthat, consequently, the expected time for progress startingfrom a state of T is at most 63.7 The Detailed ProofIn this appendix we prove the �ve relations used in Sec-tion 6.2. However, for the sake of clarity, we do not prove therelations in the order they were presented. Throughout theproof we abuse notation by writing expressions of the kindfirst(flipi; left) for the event schema first(flipi; fs 2states(M) j Xi(s) = W g).Proposition 7.1 If some process is in P , then, within time1, it enters C, i.e., P 1�!1 C:Proof. This step corresponds to the action crit: withintime 1, process i informs the user that the critical region isfree.Lemma 7.2 If some process is in its Exit region, then, withintime 3, it will enter R.Proof. The process needs to take �rst two steps to relin-quish its two resources, and then one step to send a remmessage to the user.Proposition 7.3 T 2�! RT [C.

Proof. From Lemma 7.2 within time 2 every process thatbegins in EF or ES relinquishes its resources. If no processbegins in C or enters C in the meantime, then the statereached at this point is a state ofRT ; otherwise, the startingstate or the state reached when the �rst process enters C isa state of C.We now turn to the proof of G 5�!1=4 P. The followinglemmas form a detailed cases analysis of the di�erent situ-ations that can arise in states of G. Informally, each lemmashows that some event of the form of Proposition 4.2 is asub-event of the properties of reaching some other state.Lemma 7.41. Let Xi�1 2 fER; R; Fg and Xi =W . Iffirst(flipi�1; left),then, within time 1, either Xi�1 = P or Xi = S.2. Let Xi�1 = D and Xi = W . If first(flipi�1; left),then, within time 2, either Xi�1 = P or Xi = S.3. Let Xi�1 = S and Xi = W . If first(flipi�1; left),then, within time 3, either Xi�1 = P or Xi = S.4. Let Xi�1 = W and Xi = W . If first(flipi�1; left),then, within time 4, either Xi�1 = P or Xi = S.Proof. The four proofs start in the same way. Let s be astate of M satisfying the respective properties of items 1 or2 or 3 or 4 . Let f be an adversary of Unit �Time, and let� be the execution ofM that corresponds to an execution ofH(M; fsg; f) where the result of the �rst coin
ip of processi � 1 is left.1. By hypothesis, i � 1 does not hold any resource atthe beginning of � and has to obtain Resi�2 (its leftresource) before pursuing Resi�1. Within time 1, itakes a step in �. If i � 1 does not hold Resi�1 wheni takes this step, then i progresses into con�gurationS. If not, it must be the case that i � 1 succeeded ingetting it in the meanwhile. But, in this case, Resi�1was the second resource needed by i � 1 and i � 1therefore entered P .2. If Xi = S within time 1, then we are done. Other-wise, after one unit of time, Xi is still equal to W , i.e.,Xi(s0) = W for all states s0 reached in time 1. How-ever, also process i� 1 takes a step within time 1. Let� = �1a�2 such that the last step of �1 is the �rststep taken by process i�1. Then Xi�1(fstate(�2)) = Fand Xi(fstate(�2)) = W . Since process i � 1 did not
ip any coin during �1, from the execution closure ofUnit � Time and item 1 we conclude.3. If Xi = S within time 1, then we are done. Other-wise, after one unit of time, Xi is still equal to W , i.e.,Xi(s0) = W for all states s0 reached in time 1. How-ever, also process i� 1 takes a step within time 1. Let� = �1a�2 such that the last step of �1 is the �rststep taken by process i � 1. If Xi�1(fstate(�2)) = Pthen we are also done. Otherwise it must be the casethat Xi�1(fstate(�2)) = D and Xi(fstate(�2)) = W .Since process i � 1 did not
ip any coin during �1,from the execution closure of Unit �Time and item 2we conclude.

4. If Xi = S within time 1, then we are done. Other-wise, after one unit of time, Xi is still equal to W ,i.e., Xi(s0) = W for all states s0 reached in time 1.However, since within time 1 process i checks its leftresource and fails, process i � 1 gets its right resourcewithin time 1, and hence reaches at least state S.Let � = �1a�2 where the last step of �1 is the �rststep of � that leads process i � 1 to state S. ThenXi�1(fstate(�2)) = S and Xi(fstate(�2)) = W . Sinceprocess i � 1 did not
ip any coin during �1, fromthe execution closure of Unit � Time and item 3 weconclude.Lemma 7.5 Assume that Xi�1 2 fER; R; Tg and Xi = W .If first(flipi�1; left), then, within time 4, either Xi�1 =P or Xi = S.Proof. The lemma follows immediately from Lemma 7.4after observing that Xi�1 2 fER; R; Tg is equivalent toXi�1 2 fER; R;F;W;S;D;Pg.The next lemma is a useful tool for the proofs of Lemmas 7.7,7.8, and 7.9.Lemma 7.6 Let Xi 2 fW ; S g or Xi 2 fER; R; F; D g withfirst(flipi; left). Furthermore, let Xi+1 2 fW!; S!g orXi+1 2 fER; R;F; D!g with first(flipi+1; right). Thenthe �rst of the two processes i or i + 1 testing its secondresource enters P after having performed this test (if thistime ever comes).Proof. By Lemma 6.1 Resi is free. Moreover, Resi is thesecond resource needed by both i and i+1. Whichever testsfor it �rst gets it and enters P .Lemma 7.7 If Xi = S and Xi+1 2 fW!; S!g then, withintime 1, one of the two processes i or i + 1 enters P . Thesame result holds if Xi 2 fW ; S g and Xi+1 = S!.Proof. Being in state S, process i tests its second resourcewithin time 1. An application of Lemma 7.6 �nishes theproof.Lemma 7.8 Let Xi = S and Xi+1 2 fER; R;F; D!g. Iffirst(flipi+1; right), then, within time 1, one of the twoprocesses i or i+ 1 enters P . The same result holds if Xi 2fER; R;F;Dg, Xi+1 = S! and first(flipi; left).Proof. Being in state S, process i tests its second resourcewithin time 1. An application of Lemma 7.6 �nishes theproof.Lemma 7.9 Assume that Xi�1 2 fER; R; Tg, Xi = W ,and Xi+1 2 fER; R;F;W!; D!g. If first(flipi�1; left) andfirst(flipi+1; right), then within time 5 one of the threeprocesses i � 1, i or i + 1 enters P .Proof. Let s be a state ofM such thatXi�1(s) 2 fER; R; Tg,Xi(s) = W , and Xi+1(s) 2 fER; R; F;W!; D!g. Let f be anadversary of Unit �Time, and let � be the execution of Mthat corresponds to an execution of H(M; fsg; f) where theresult of the �rst coin
ip of process i � 1 is left and theresult of the �rst coin
ip of process i + 1 is right. By

Lemma 7.5, within time 4 either process i � 1 reaches con-�guration P in � or process i reaches con�guration S in�. If i � 1 reaches con�guration P , then we are done. Ifnot, then let � = �1a�2 such that lstate(�1) is the �rststate s0 of � with Xi(s0) = S . If i + 1 enters P before theend of �1, then we are done. Otherwise, Xi+1(fstate(�2))is either in fW!; S!g or it is in fER; R;F; D!g and processi+1 has not
ipped any coin yet in �. From execution clo-sure of Unit � Time we can then apply Lemma 7.6: withinone more time process i tests its second resource and byLemma 7.6 process i enters P if process i+ 1 did not checkits second resource in the meantime. If process i+ 1 checksits second resource before process i does the same, then byLemma 7.6 process i+1 enters P . Since process i checks itssecond resource within time 1, process i+1 enters P withintime 1.Lemma 7.10 Assume that Xi+2 2 fER; R; Tg, Xi+1 =W!, and Xi 2 fER; R;F;W ; D g. If first(flipi; left) andfirst(flipi+2; right), then within time 5 one of the threeprocesses i, i + 1 or i + 2, enters P .Proof. The proof is analogous to the one of Lemma 7.9.This lemma is the symmetric case of Lemma 7.9.Proposition 7.11 Starting from a global con�guration inG, then, with probability at least 1=4 and within time at most5, some process enters P . Equivalently:G 5�!1=4 P:Proof. Lemmas 7.7 and 7.8 jointly treat the case whereXi = S and Xi+1 2 fER; R;F;#!g and the case where Xi 2fER; R;F;# g and Xi+1 = S!; Lemmas 7.9 and 7.10 jointlytreat the case where Xi =W and Xi+1 2 fER; R; F;W!; D!gand the symmetric case where Xi 2 fER; R;F;W ; D g andXi+1 = W!.Speci�cally, each lemma shows that a compound eventof the kind first(flipi; x) and first(flipj ; y) leads to P.Each of the basic events first(flipi; x) has probability 1=2.From Proposition 4.2 each of the compound events has prob-ability at least 1=4. Thus the probability of reaching Pwithin time 5 is at least 1=4.We now turn to F 2�!1=2 G [P. The proof is divided intwo parts and constitute the global argument of the proofof progress.Lemma 7.12 Start with a state s of F . If there exists aprocess i for which Xi(s) = F and (Xi�1;Xi+1) 6= (#!; #),then, with probability at least 1=2 a state of G [P is reachedwithin time 1.Proof. If s 2 G [P, then the result is trivial. Let s bea state of F � (G [P) and let i be such that Xi(s) = Fand (Xi�1;Xi+1) 6= (#!;#). Assume without loss of gen-erality that Xi+1 6= # , i.e., Xi+1 2 fER; R; F;#!g. Thecase for Xi�1 6= #! is similar. Furthermore, we can as-sume that Xi+1 2 fER; R;F; D!g since if Xi+1 2 fW!; S!gthen s is already in G. We show that the event schema

next((flipi; left); (flipi+1; right)),which by Proposition 4.2 has probability at least 1=2, leadsin time at most 1 to a state of G [P. Let f be an adversaryof Unit � Time, and let � be the execution of M that cor-responds to an execution of H(M; fsg; f) where if processi
ips before process i + 1 then process i
ips left, and ifprocess i + 1
ips before process i then process i + 1
ipsright.Within time 1, i takes one step and reaches W . Letj 2 fi; i + 1g be the �rst of i and i + 1 that reaches Wand let s1 be the state reached after the �rst time process jreachesW . If some process reached P in the meantime, thenwe are done. Otherwise there are two cases to consider. Ifj = i, then, flipi gives left and Xi(s1) =W whereas Xi+1is (still) in fER; R;F; D!g. Therefore, s1 2 G. If j = i + 1,then flipi+1 gives right and Xi+1(s1) =W! whereas Xi(s1)is (still) F . Therefore, s1 2 G.Lemma 7.13 Start with a state s of F . If there exists aprocess i for which Xi(s) = F and (Xi�1(s);Xi+1(s)) =(#!; #). Then, with probability at least 1=2, within time 2,a state of G [P is reached.Proof. The hypothesis can be summarized into the form(Xi�1(s);Xi(s);Xi+1(s)) = (#!; F;#). Since i� 1 and i+1point in di�erent directions, by moving to the right of i+ 1there is a process k pointing to the left such that process k+1either points to the right or is in fER; R; F;Pg, i.e., Xk(s) 2fW ; S ; D g and Xk+1(s) 2 fER; R;F;W!; S!; D!; Pg.If Xk(s) 2 fW ; S g and Xk+1(s) 6= P then s 2 G and weare done; if Xk+1(s) = P then s 2 P and we are done. Thus,we can restrict our attention to the case where Xk(s) = D .We show that the event schemanext((flipk; left); (flipk+1; right)),which by Proposition 4.2 has probability at least 1=2, leadsin time at most 2 to G [P. Let f be an adversary ofUnit �Time, and let � be the execution of M that cor-responds to an execution of H(M; fsg; f) where if processk
ips before process k + 1 then process k
ips left, and ifprocess k + 1
ips before process k then process k + 1
ipsright.Within time 2, process k takes at least two steps andhence goes to con�guration W . Let j 2 fk; k + 1g be the�rst of k and k + 1 that reaches W and let s1 be the statereached after the �rst time process j reaches W . If someprocess reached P in the meantime, then we are done. Oth-erwise there are two cases to consider. If j = k, then,flipk gives left and Xk(s1) = W whereas Xk+1 is (still)in fER; R;F;#!g. Therefore, s1 2 G. If j = k + 1, thenflipk+1 gives right and Xk+1(s1) = W! whereas Xk(s1) is(still) in fD ; Fg. Therefore, s1 2 G.Proposition 7.14 Start with a state s of F . Then, withprobability at least 1=2, within time 2, a state of G [P isreached. Equivalently: F 2�!1=2 G [P:Proof. The hypothesis of Lemmas 7.12 and 7.13 form apartition of F .Finally, we prove RT 3�! F [G [P.

Proposition 7.15 Starting from a state s of RT , then,within time 3, a state of F [G [P is reached. Equivalently:RT 3�! F [G [P:Proof. Let s be a state of RT . If s 2 F [G [P, then weare trivially done. Suppose that s =2 F [G [P. Then in seach process is in fER; R;W;S;Dg and there exists at leastprocess in fW;S;Dg. Let f be an adversary of Unit � Time,and let � be the execution of M that corresponds to anexecution of H(M;fsg; f).We �rst argue that within time 1 some process reachesa state of fS;D;Fg in �. This is trivially true if in states there is some process in fS;Dg. If this is not the case,then all processes are either in ER or R or W . Within time1 some process in R or W takes a step. If the �rst processnot in ER taking a step started in ER or R, then it reachesF and we are done; if the �rst process taking a step is inW , then it reaches S since in s no resource is held. Once aprocess i is in fS;D;Fg, then within two more time unitsprocess i reaches either state F or P , and we are done.8 Concluding RemarksThis paper has presented a formal model and a formal prooftechnique for the estimation of time performance of random-ized algorithms that run under the control of general classesof adversaries. The salient aspect of this technique is toprove probabilistic time bounded progress properties and tocompose them by means of a powerful composability theo-rem. The power of the proof method has been illustratedby proving a constant upper bound on the expected timefor progress in the Lehmann-Rabin Dining Philosophers al-gorithm.We believe that this technique is applicable towards thetime analysis of many randomized protocols. It is desirablethat the general model and this technique be used for theanalysis of other algorithms, so that the power of the methodcan be tested and/or increased by means of other additionaltools. In particular, it is very likely that new event schemasand partial independence results similar to those of Section 4can be developed.The speci�c results about the Lehmann-Rabin DiningPhilosophers algorithm can be complemented and extendedin many ways. We cite two. First, it would be very satisfyingto derive a non trivial lower bound on the time for progress,which should be lower than our upper bound since the upperbound could be easily improved by means of a �ner analysis.Second, it would be interesting to consider topologies thatare more general than rings.Acknowledgments. We thank Lenore Zuck for valuable crit-icism on a draft version of this paper and in particular forpointing out that the state chart notation of [11] can beadapted to our proof method.References[1] J. Aspnes and M.P. Herlihy. Fast randomized con-sensus using shared memory. Journal of Algorithms,15(1):441{460, September 1990.[2] M. Ben-Or. Another advantage of free choice: com-pletely asynchronous agreement protocols. In Proceed-ings of the 2nd Annual ACM Symposium on Principles

of Distributed Computing, Montreal, Quebec, Canada,August 1983.[3] K.M. Chandi and J. Misra". Parallel Program Design:A Foundation. Addison-Wesley, 1988.[4] L. Christo� and I. Christo�. E�cient algorithms forveri�cation of equivalences for probabilistic processes.In Proceedings of the 3rd Workshop on Computer-AidedVeri�cation, 1991.[5] R. Gawlick, R. Segala, J.F. S�gaard-Andersen, andN. Lynch. Liveness in timed and untimed systems.Technical Report MIT/LCS/TR-587, Laboratory forComputer Science, MIT, Cambridge, MA, November1993.[6] H. Hansson. Time and Probability in Formal Design ofDistributed Systems. PhD thesis, Department of Com-puter Science, Uppsala University, 1991.[7] C.A.R. Hoare. Communicating Sequential Processes.Prentice-Hall International, Englewood Cli�s, 1985.[8] E. Kushilevitz and M. Rabin. Randomized mutual ex-clusion algorithms revisited. In Proceedings of the 11thAnnual ACM Symposium on Principles of DistributedComputing, Quebec, Canada, pages 275{284, 1992.[9] D. Lehmann and M. Rabin. On the advantage of freechoice: a symmetric and fully distributed solution tothe dining philosophers problem. In Proceedings of the8th Annual ACM Symposium on Principles of Program-ming Languages, pages 133{138, January 1981.[10] N.A. Lynch and F.W. Vaandrager. Forward and back-ward simulations { part II: Timing-based systems.Technical Report MIT/LCS/TM-487, Laboratory forComputer Science, MIT, Cambridge, MA, September1993.[11] A. Pnueli and L. Zuck. Veri�cation of multipro-cess probabilistic protocols. Distributed Computing,1(1):53{72, 1986.[12] J.R. Rao. Reasoning about probabilistic algorithms.In Proceedings of the 9th Annual ACM Symposium onPrinciples of Distributed Computing, Quebec, Canada,August 1990.[13] I. Saias. Proving probabilistic correctness: the case ofRabin's algorithm for mutual exclusion. In Proceedingsof the 11th Annual ACM Symposium on Principles ofDistributed Computing, Quebec, Canada, August 1992.[14] R. Segala and N. Lynch. A model for randomized con-current systems. Manuscript, 1994.[15] F.W. Vaandrager and N.A. Lynch. Action transduc-ers and timed automata. In W.R. Cleaveland, editor,Proceedings CONCUR 92, Stony Brook, NY, USA, vol-ume 630 of Lecture Notes in Computer Science, pages436{455. Springer-Verlag, 1992.[16] M. Y. Vardi. Automatic veri�cation of probabilisticconcurrent �nite-state programs. In Proceedings of 26thIEEE Symposium on Foundations of Computer Science,pages 327{338, Portland, OR, 1985.

