Correctness Conditions for Highly Available Replicated Databases

Nancy Lynch, Massachusetts Institute of Technology
and Computer Corporation of America

Barbara Blaustein, Computer Corporation of America

Michael Siegel, Boston University and
Computer Corporation of America

Abstract

Corrcctness conditions are given which describe some of the propertics exhibited by highly available
distributed database systems such as the SHARD (System for Highly Available Replicated Data) system
currently being developed at Computer Corporation of America. This system allows a database application to
continue operation in the face of communication failures, including network partitions. A penalty is paid for
this extra availability: the usual correctness conditions, scriaiimbi]ity of transactions and preservation of
integrity constraints, arc not guaranteced. However, it is still possible to make interesting claims about the
behavior of the system. ‘The kinds of claims which can be proved include bounds on the costs of violation of
integrity constraints, and fairness guarantees. In contrast to serializability’s all-or-nothing character, this work
has a "continuous” flavor: small changes in available information lead to small perturbations in correctness

conditions.

This work is novel, because there has been very little previous success in stating interesting propertics which

are guaranteed by nonscrializable systems.

Keywords and Phrases:
Databascs, availability, nonserializable systems, integrity constraints, resource nonscrializable systems,

integrity constraints, resource allocation, cost bounds, fairness.

©1986 Massachusctts [nstitute of Technology

This work was supported by the Defense Advanced Rescarch Projects Agency of the
Pepartment of Defense and by the Air Force Systems Command at Rome Air Development
Center under Contract No. F30602-84-C-0112. "The views and conclusions contained in this
document are those of the authers and should not be interpreted as necessarily representing the
ofticial policies, cither expressed or implied, of the Defense Advance Research Projects Agency or
the U. S. Government. The work of the first author was also supported in part by the Office of
Naval Rescarch under Contract N00014-85-K-0168. by the Office of Army Rescarch under
Contract DAAG29-84-K-0058. by the National Science Foundation under Grant DCR-83-02391, -
and by the Defense Advanced Rescarch Projects Agency (DARPA) under Contract N00014-83-
K-0125.

1. Introduction

I.1. Background

[n recent years, there has been extensive rescarch on the design and theory of distributed databases. Ncarly
all of this work has been directed towards providing frameworks in which transactions can be processed
concurrently, while preserving integrity constraints on the data. Many of the most important advances in
distributed processing have arisen from this work. including the development of techniques based on locking
and timestamps, and commit protocols. ‘The work has led to clegant system designs, as well as to a very

interesting theory.

It is apparent. however, that there is still a problem. The techniques developed in distributed database
rescarch have not yet been accepted by the commercial world to the extent that researchers might have hoped.
In particular, airline reservation systems, banking systems and inventory control systems (applications which
motivated much of the rescarch), still do not rely on the general mechanisms developed by researchers. ‘The
problem may be fundamental o the general approach. The mechanisms developed in rescarch guarantee
preservation of integrity constraints, but they are inadequate for meeting stringent responsc time and
availability requirements. ‘This inadequacy scems to be an unavoidable result of strong requirements for

synchronization among remote nodes.

Many applications of the sort mentioned above put a high premium on availability and fast performance,
and in order to obtain these, they are willing to sacrifice something in the way of "correctness” or "data
integrity”. ‘I'he research community has so far been unable to provide general frameworks which guarantee
weaker correctaess conditions as well as good performance and availability. As a result, practical systems

development work for these applications is still based on ad hoe methods of concurrency control.

There is a need for system development work, as well as associated theory, to fill this gap. New frameworks
are needed which guarantee good performance and availability, yet provide enough discipline on application
programming so that uscful correctness claims can be proved. When fast response time and high availability
are required, it scems necessary to aflow violations of integrity constraints o occur. In this case, traditional
frameworks do not allow anything interesting to be proved about the behavior of the system. The difficult
part of the problem is to guarantee interesting and useful correctness propertics, cven when integrity

constraints are viclated.

1.2. SHARD

The new SHARD (System for Highly Available Replicated Data) system under development at Computer
Corporation of America (CCA) is designed to address the problems described above. It provides highly
available distributed data processing in the face of communication failures (including network partitions). It
does not guarantee serializability, nor does it preserve integrity constraints, but it does guarantee many

practical and interesting propertics of the databasc.

The reader is referred to [SBK] for a detailed description of the architecture of the SHARD system. Briefly,
the main ideas are as follows. 'The network consists of a collection of nodes, cach of which has a copy of the
complete database. (I7ull replication is a simplifying assumption we have used for our initial prototype; many
of our ideas secem extendible to the case of partial replication, but this cxtension remains to be made.)
Replication allows transactions to be processed locally, thus reducing communication costs and delays, and

providing high availability.

After a transaction is processed al its originating node. information about the transaction is broadcast
reliably to all the other nodes for incorporation into the database copics at those nodes. 'The broadcast
algorithm [G1.BKSS] ensures that, barring permanent communication failures, every node will eventually
receive information about every transaction. While the broadcast algorithm attempts to deliver information
to all sites in as timely a manner as possible, comrmunication and node failures can cause significant dcelays.
Since nodes may continue to initiate transactions during communications failures - indeed, they may not even
be aware that there is a failure somewhere in the network - these delays mean that transactions may run

against out-of-date database states.

When a node receives new information about a transaction, no matter when the transaction was initiated,
this information must be merged into the node’s copy of the database: this merging must be done consistently
at all nodes, to maintain mutual consistency. 'The following mechanism is used to guarantee consistent
merging. Transactions arc totally ordered by a globally-unique timestamp assignment (such as onc based on
local timestamps with node identifiers used for tichreaking), and cach rode uses this total ordering to
determine how to merge information about different transactions. Because all nodes order the transactions in
the same way, they will agree on the result of merging identical sets of transactions. Also, at all times during
execution, cach node's copy of the database always reflects the effects of all the transactions known to that

node, as if they were run according to the global timestamp order.

Since messages about different transactions could arrive at a single node out of timestamp order, keeping
the copy correct entails frequent undoing and redoing of transactions. 'The SHARD system uscs an undo-

redo strategy in licu of any other inter-node concurrency control mechanism. ‘T'his strategy allows the nodes

to achicve mutual consistency without relying on extra network communication. 'There are several
implementation ideas which reduce the amount of undoing and redoing that is actually necessary; some of

thesc are discussed in [BK,.SKS]

Problems arise with the simple scheme described so far in its interactions with the external world. Certain
transactions will trigger external actions. For example, in an airline reservation system, a booking transaction
might determinc that there arc available scats on a flight, and might causc a passenger to be informed that he
has been assigned a scat. Although the transaction is run at different nodes, and possibly undone and redone
many times, the external action should only occur once - at the transaction’s origin node, when the transaction

is initiated.

When a transaction is rerun at a node, it may be necessary to undo all its ettects before redoing it starting
from a different database state. 'This requirement is a serious problem for transactions which trigger external
actions: it is not possible for the system to undo an cxternal action. Morcover, when the transaction is
redone, it might not choose to trigger the same external action. In an airline reservation system, a booking
transaction might decide to inform a passenger of an available scat when the transaction is initiated.
However, if this booking transaction is undone and then redone from a database state in which there do not
appear to be any available seats, it would not grant the scat. Thus, after the undo and redo, the databasé
would not record the fact that the passenger had been granted a seat, even though the passenger has actually
been informed that a scat has been granted. This situation produces an inconsistency between the
information in the database and the information sent to the passenger. We would like to avoid this kind of

inconsistency.

Thus, we find it uscful to limit the interaction of transactions with the external world, by imposing some
extra structure on the transactions. We require that all transactions be divided into two parts: a "dccision”,
which may read data and trigger external actions, but may not modify the database, and an "update”, which

may read and write the database but may not trigger external actions.

The decision part of a transaction is invoked only when the transaction is initiaced. 'This part of (he
transaction may interact with the user, giving some indication of the likely outcome of the completed
transaction. ‘The results returned by the decision determine an update, which is then broadcast to all the
nodes o be merged into all the copices of the database. Only the update is broadcast to the other nodes. The
update is the part of the transaction that may be undone and redone; the decision is cxecuted only once.
Since the decision involves no changes to the database, just broadcasting the update is cnough to insure

mutual consistency of the database copics.

In the example described cartier, the decision part of the booking transaction could read the database at the
Jocal (initiating) node and determine whether there appear to be available seats. 1f there are, the decision
would inform the requesting passenger that he has been granted a seat, and would also cause the system Lo
invoke an update that writes the reservation into the database. When the update is received by the other
nodes, the reservation is also entered into their copies of the database. Thus, every node would correctly

record the fact that the passenger was granted a scat.

Because of the distribution, and because of the possible need for undo and redo, the update part of the
booking transaction may exccute many times, possibly from different database states. No matter what state it
is exccuted from, the update records the facts that the scat was assigned and the passenger was informed of
the assignment. ‘This update records the facts correctly even if it is executed from a state from which a

booking transaction run in its entirety would not choose to grant the passenger a scat.

Because decisions are made with incomplete information about the updates of preceding transactions, it is
possible that the database could reach an undesirable state, ¢.g. a state in which a flight is overbooked.
However, users or application programimers could monitor the database with additional "compensating”
transactions, which invoke appropriate corrective actions. In this example, a transaction might check for
overbooking, and decide on a particular passenger to unscat. ‘The decision part of this transaction would
inform the passenger that his reservation has been rescinded. ‘The update would just record, in the database,
the fact that the particular passenger has been unscated. Of course, applications should be designed to avoid
an cxcessive amount of compensation. The correctness conditions described in this paper should help to
provide application designers with guidelines for coping with these and other problems caused by a lack of

scrializability.

A preliminary design for SHARID has been completed, and is documented in [BK.GI.BKSS,S.SBK,SKS].

Also, a prototypc implementation is completed.

1.3. Correctness Conditions

The SHARD system can be implemented efficiently, and scems capable of expressing the kinds of
transaction behavior actually used in commercial systems. However, if the system is going to be widely used,
it should be possible to make precise claims about its behavior. This paper provides a formal setting in which
such claims can be made, and uses that framework to prove some interesting claims about SHARID)'s

behavior.

It should be clear that SHARD docs not guarantee scrializability of complete transactions. It does

guarantee serializability of the update parts of transactions, but that condition by itsclf docs not say very

[=4Y

much. We believe that we can say more about what is guaranteed by such a system than just what we can

conclude from its weak scrializability propertics.

We take our cue from some of the intended applications of the system, such as airline reservations, banking,
and inventory control. ‘These exemplify different kinds of resource allocation applications. In all these cases,
there are natural integrity constraints which one would want to define; these are usually expressed as
predicates on the database states. In resource allocation applications, one useful integrity constraint would be
that the number of allocated resources be no greater than the number of available resources. Another would
be that the number of allocated resources be no less than the number of available resources, provided there

are enough requests for resources. Both of these conditions are described by predicates on the database state.

However, one can go further: there is often a "cost™ associated with violations of an integrity constraint,
which can be expressed as a function of the database state. In resource allocation applications, the cost of
over-allocation might be some number which is proportional to the excess of the number of allocated
resources over the nunber of available resources. 'The cost of unnecessary under-allocation might be
proportional to the minimum of the number of unsatisfied requests, and the excess of the number of available
resources over the number of allocated resources. Each of the applications listed has its own particular cost

functions, characteristic of that application. In cach case, it is desirable to keep the costs as low as possible.

Thus, one kind of property we would like to prove is a bound on the cost of violations of integrity
constraints. Results of the form "With absolute certainty, the cost remains at most ¢.” would be unreasonably
strong in our setting, because of the uncertainty that arises from delays and failurcs. Rather, it scems much
more appropriate to prove results of the form "With probability p, the cost remains at most ¢.” Results of this
form would be very useful to the application designer, since they would allow him to adjust his design in such

a way as to lower the expected cost bound.

We believe that results of this form, are most convenicntly proved in two parts: (1) conditional results of
the form “If certain conditions hold, then the cost remains at most c.”, and (2) probability distribution
information describing the probability that the conditions hold. Most often, the conditions mentioned in (1)
will be parametrized, e.g. "When cach transaction is initially executed, the database statc includes the cffects
of all but at most k of certain kinds of preceding transactions.”” Similarly, the cost mentioned in the
conclusion of (1) will be parametrized. Thus, results of type (1) will usually be a class of related results, giving
cost bounds for a range of quantitatively different assumptions about system operation. The probability
distribution information in (2) will be obtained by an independent analysis, using information such as delay
characteristics of the message sysiem, and expected rates of transaction processing. [t should be relatively casy

to combine the information in (1) and (2) to get probabilistic statements of the kind we want. In this paper,

we do not carry out the probabilistic analysis required in (2), but instead focus on the parametrized

conditional claims in (1).

Thus, we obtain results of the form "If cach transaction "sees™ all but at most k of certain kinds of
preceding transactions, then the cost remains at most ¢(k)." Such cost bounds limit the damage which can be
caused when transactions operate with a bounded amount of missing information. ‘The cost bounds we obtain
arc, in general, intuitively natural, rather than extremely surprising; our main contribution lics in the fact that
we can actually formulate and prove the intuitive claims. Previously, no claims at all could be made when
information about any transactions was missing. We can make such claims, and our claims become stronger
(i.c. the integrity constraints are better preserved) when information is more complete (i.c. when exccution is
closer to being scrializable). In contrast to scrializability’s all-or-nothing character, our work has a
"continuous” flavor; small changes in available information lead to small perturbations in integrity

constraints.

‘The question of how the costs get defined still remains to be addressed. Assignment of costs is something
that must be done by application programmers, who understand the impact of database behavior on the
organization using the system. It is likely that the cost assignment procedure will be complex and
approximate. Nevertheless, it appears to be what is currently used by organizations, implicitly, in cvuluu[ing‘
the acceptability of database system behavior. Therefore, it scems that such cost assigniments should play an

important role in evaluating database behavior.

Another kind of property which is of interest for resource-allocation applications is "fairness”. Fairness
propertics describe conditions under which a particular request is guaranteed to be granted, or guaranteed not
to be granted. They also deal with relative priority of different requests in obtaining resources. While FIFO
order might be an appropriate fairness condition in a serializable system, weaker fairness conditions are more

appropriate in the SHARD setting, and are still of interest.

In this paper, we begin by providing the basic definitions and vocabulary for discussing the operation of
systems of this type. Then, following the usual organization in traditional concurrency control theory, we
study the correctness conditions in two groups. First, we examine conditions which can be guaranteed by the
system alone (analogous to serializability). 'The system does guarantee to run transactions in some total order.
But whereas serializability would guarantee that cach transaction has total information about the cffects of the
preceding transactions, the SHARID system only guaranices that cach transaction has partial information
about the preceding transactions. Sccond, we cxamine conditions which can be guaranteed by the
transactions (analogous to preservation of integrity constraints). 'T'ransactions might be required not just to

preserve integrity, but also to improve or restore integrity. These two kinds of conditions, those guaranteed

by the system and those guaranteed by the transactions, can be combined 1o allow proof of interesting

properties (cost bounds and fairness) for a running application.

We describe our properties and carry out our proofs in the context of a simple prototypical resource
allocation example. We believe that this example contains many of the clements common to the class of
applications for which SHHARD is suited. "The types of conditions stated and the technigques for proving their
correctness appear likely to extend to the other applications. Wherever possible, we state conditions and

describe proofs in a general way, so that they will be directly applicable to other applications.

Related work includes several other papers which weaken serializability in various ways [I'M, AM, G, B, for
cxample]. Other work that seems related to the SHHARD approach, although in a very different context, is the

work on "virtual time" [J].

The rest of the paper is organized as follows. In Section 2, we describe our database model. In Scction 3,
we describe conditions that can be guaranteed by the system alone. In Section 4, we describe conditions that
can be guaranteed by the transactions alone. In Section 5, we prove some interesting cost bound and fairness
properties for the cxample resource allocation system. These propertics are consequences of both the
conditions guarantced by the system and those guaranteed by the transactions. In Scction 6, we present our

conclusions.

2. Database Model

This section includes formal definitions of database states, integrity constraints, and transactions.

Onc goal of the SHARD design is to keep the distribution and replication of data hidden from the
application. In particular, we attempt to avoid cxplicit mention of distribution and replication in our
correctness conditions. Our general approach is analogous to the usual approach for describing correctness of
distributed databascs [BG. for example]. In the usual approach, correctness of a distributed database requires
that the distributed database give the appearance of a centralized, serial database. In our case, the database

will not appear to be serial, but will still appear to be centralized.

In other database research, certain consistency conditions, called “integrity constraints,” are given for the
database states. These conditions fit into our model in two ways. The most fundamental are modelled as
"weli-formedness” conditions; we will require that transactions always preserve tliese. The other consistency
conditions, which we call "integrity constraints,” represent desirable conditions, but we do not assume that
they are preserved at all times. "To measure how far a database state is from satisfying the integrity constraints,

we impose cost measures on the states with respect to cach constraint, where a greater cost indicates that the

state is further from satisfying the constraint. One goal of SHTARD is to minimize the cost of states that arise

during an exccution.

Our transactions are composed of two parts, a "decision part” and an "update.” As described in the
Introduction, the decision part reads data and may interact with the external world, but does not modify the
databasc. 'The results returned by the decision part determine an update, which can read and write the

database, but does not directly interact with the external world.

In addition to providing gencral definitions in this section, we also define an airline reservation example,

with four transactions. This example will be used throughout the rest of the paper.

2.1. States

The database has a set S of possible dutabase states, among which a particular initial state s is distinguished.
‘There might be some additional structure on the database; for example, it might be composed of a collection
of objects, where a state would consist of a value for cach object. In case X is an object, we let X(s) denote the

valuc of object X in databasc state s.

Among the databasc states, there may be some which fail to satisfy some fundamental consistency
conditions, and we will generally want to omit them entirely from consideration. Therefore, we designate

certain of the database states as well-formed. We assume that the initial state is well-formed.

Example:

Fly-by-Night Airlines is a little-known airline company which has exactly one scheduled flight,
Flight 1. Flight 1 is scheduled to take off next Jan. 1 and will take its lucky 100 passcngers from
Boston to an idyllic resort in the Caribbean.

A database state consists of the following objects:

- ASSIGNED—LIST, a finite ordered list of people who have been notified that they have
scats on Flight i, and

- WAIT—LIST, a finite ordered list of people who have requested scats on Flight 1, but do not
have assigned scats.

The initial state has both lists empty. ‘The well-formed states are those which satisfy the
fundamental consistency condition that ASSIGNED—LIST and WAIT—LIST must contain
disjoint scts of people.

We use the notation Al(s) as a shorthand for JASSIGNED—1IST(s)l, the number of people on the

assigned list in state s; similarly, we use WL(S) for [WATT=LIST(s)|. We will sometimes refer to AL and WL

10

as if they were objects themselves; they are similar to objects, in that they have values in cvery database state.
However, those values are always derived from the values of the "real™ objects, ASSIGNED—LIST and

WAIT-LIST.

2.2. Integrity Constraints

For us, "integrity constraints” represent desirable conditions, but we do not assume that they are prescrved
at all times. Since integrity constraints are not always preserved, we find it useful to mecasure how far a
database state is from satisfying the integrity constraints. In order to do this, we impose nonncgative real-
valued cost measures on the states with respect to cach constraint, where a greater cost indicates that the state
is further from satisfying the constraint. A cost of zero indicates that the constraint is satistied. "The total cost
of a state is the sum of the costs associated with all the constraints. One goal of SHARD is to minimize the

cost of states that arise during an exccution,

More precisely, we assume a finite collection of integrity constraints, indexed by the st 1. fet cost(s.i)
denote the cost of database state s which is attributed to a violation of integrity constraint i. "the cost of s,

cost(s), is then defined as Echost(s,i)
We use the notation X 7. Y to denote max(X-Y,0).

I'xample:

In the Fly-By-Night airline reservation system, there are two integrity constraints in addition to
the well-formedness condition alrcady described.

Integrity Constraint 1: Overbooking should not oceur.

Formally, this says that Al. < 100. While this condition is certainly desirable, we do not
cxpect that it will always hold. If Flight 1 is overbooked, the cost to Fly-by-Night Airlines is
approximately $900 per overbooked passenger. {1his cost covers the price of a {irst-class ticket on
an alternative flight, plus hotel accomodations for a week in the Caribbean.) Thus, we define
cost(s, 1), the cost of state s which is attributed to violating constraint 1, to be 900 (AlL(s) /. 100).

Integrity Constraint 2: Underbooking should not occur, if it is avoidable.

Formally, this says that cither AT, > 100 or else WI. = 0. That is. cither all the scats on Flight
1 are assigned or else there are ne waitlisted passengers. [FFlight 1 is unnecessarily underbooked,
the cost to the airline company is approximately $300 for cach waitlisted passenger who could have
been assigned a scat. (This is the missed profic) Thus, we define cost(s,2), the cost of state s which
is attributed to violating constraint 2, to be 300 min(100 /. Al (s), WI(s)).

The assignment of costs to database states, for violation of particular integrity constraints. is a part of

application design. In practice, it might not always be obvious how to assign such costs. 1Uis possible that the
system could help the application designers, by providing a framework in which the designers could
determine appropriate cost functions. Cost functions often summarize other information which the
application designers might find it casicr to think about. For instance, in many interesting cascs (such as the
airline reservation system), the data is numerical, and the cost functions have some simple (c.g., lincar)
relationship to the data values. Perhaps patterns such as this one could be incorporated into a language for

describing cost assignments. Systematizing cost assignments is a subject for future rescarch.

2.3. Transactions

In this subsection, we describe the structure of transactions. As noted carlier, our transactions arc composed
of two parts, a "decision part” and an "update”. ‘The decision part reads data and may interact with the
external world, but does not modify the database. The results returned by the decision part determine an

update, which can read and write the database, but does not directly interact with the external world.

Formally, an update is any mapping from S to S which preserves well-formedness. 1.ct A denote the sct of
updates. et & denote the set of external actions. A transaction " consists of a decision part l)vl‘ which is a
mapping from the state set S to A X HE). For any databasc state s, l').l.(s) is a pair consisting of the update
which is invoked when T is run from s, and the sct of external actions triggered by ‘I when "1 is run from s.
Where no confusion is likely, we will somctimes write l).l.(s) to denote just the update, ignoring the external

actions.

A transaction is designed to exccute nonatomically; it "observes” some state of the databasc when it is
initially run, but then later it transforms other, possibly different, states. The observation of the database
takes place in the decision part, and the state transformation in the update part. Each of these two parts is
intended to be carried out atomically. ‘The state that a transaction obscrves is to be thought of as embodying
partial information about past updates, such as the information known at the local site at the time the

transaction is first exccuted. This partial information is used to decide on the new update to be generated.

Fxample:

The airline reservation system has only four transactions: a REQUEST for a scat which puts
the passenger on the waiting list, a CANCEL transaction, a MOVE— UP transaction which moves
a waitlisted passenger to the assigned list, and a corresponding MOVE—DOWN transaction which
moves an assigned passenger back to the waiting list. Note that we are departing slightly from the
example discussed in the Introduction: the effects of the booking transaction described there are
achicved by a combination of a REQUES'T transaction and a MOVE— UP transaction.

The four transactions are as follows:

(1) REQUEST(P), where P is a person

This transaction is described by the following program.

Decision: TRUE
Action:
if Pis not on WATT—LIST and P is not on
ASSIGNED—LIST
then add P to end of WATT—IL.IST

‘This program is to be interpreted as follows. l<or any state s, the decision mapping
Dm{(UEST() triggers no external action and invokes the same update A. A operates on any state s’
by adding P o the WAIT—LIST provided that P is not alrcady on cither the WATT—LIST or the
ASSIGNED - LIST, in s In case P is on cither list in s, A does nothing. We refer to the unique
update A invoked by the REQUEST(P) transaction, as the requesy(?) update.

(2) CANCEL(P). where P is a person

This is described by the following program.

Decision; TRUE
Action:
if Pison WAIT—LIST
then remove P from WATT-—LIST
if Pis on ASSIGNED—LIST
then remove P from ASSIGNED—LIST

Again, from any state s, the decision mapping always yiclds the same update. This update,
from any state s', removes P from any list on which it happens to appear. If P is not on cither list,
the update does nothing. We refer to the unique update invoked by the CANCEL(P) transaction,
as the cancel(P) update.

The decision parts of the REQUEST and CANCEIL transactions do not perform any
interesting work: they always invoke the same update, and trigger no external actions. On the
other hand, the following two transactions have decision parts that invoke different updates in
different situations, and they sometimes trigger external actions.

(3) MOVE-UP

Decision: Al <100 and WL > 0 and P is the first person
on WAIT—LIST
External event: inform P that P is now assigned a scat
Action:
if Pis on WAIT—LIST
then
fremove P from WAIT—LIST
add P to end of ASSIGNED—1.1S1]

Here, the decision part, running from state s, tests to see whether there is room on the
ASSIGNED—LIST and a nerson waiting to be assigned. If not, no action is taken. if so, the

13

decision part selects a particular person P (the firston the WATE = LIST in state s) to be moved up
from the WAIT=1IST to the ASSIGNED —LIST. A message is sent to P, and the update is
parametrized by P. From any state s, the update moves P from the waiting list to the end of the
assigned list, provided that I’ is actually on the waiting list in s'. Otherwise (i.c. if P is alrcady on
the assigned Tist, or P is on neither list), no change occurs. We refer to the update generated by the
MOVE— UP transaction when it sclects person P as the move - up(P’) update.

(4) MOVE-DOWN

Diecision: AL > 100 and P is the last person on
ASSIGNED—LIST
External event: inform P that P is now waitlisted
Action:
if Pis on ASSIGNED—LIST
then

[remove P from ASSIGNED—LIST
add P to end of WATT—LIST]

The meaning of this transaction is sytiumetric with the preceding one. We refer to the update
invoked by the MOVE--DOWN transaction when it sclects person P oas the move—down(P)
update.

It is clear that ail the updates, for all four transactions, preserve well-formedness, as required.

Note that cach of the last two transactions contains two conditionals. The two conditionals play different
roles. ‘T'he first conditional in cach casc is used to decide which update and external actions will occur. The
second is part of the exccution of the update. Also note that the transactions are designed to observe the
database statc more than once. For example, in the MOVE—DOWN transaction, the transaction looks at
ASSIGNED - LIST in one state s in order to attempt to sclect a person P to move down. "Then whenever the
move-down(P) update is exccuted, it looks at ASSIGNED — LIST in another state 8™ to determine whethier to

actually move P.

We consider this airline reservation system to be a prototype of a much more genceral class of resource
allocation systems. [t scems that practically all resource allocation systems must have operations of the four
kinds described above: operations that request resources and cancel those requests, as well as operations that
allocate and deallocate the resources. Those operations will behave in somewhat different ways for cach
application. Here, to be specific, we have made a particular set of choices, but we expect that many of the

idcas in this paper will carry over to other resource allocation systems.

We introduce some additional notaticn which will be useful later for describing transactions. I the first
componcnt of l),l.(s) is an update which maps state §° to state s, we will write T(s,8’) = s™. If1(s,;") = §", it

means that if T is initially run from state’s, it causes the system to invoke an update which, if it is ever run

14
from state s", will produice state s™.

3. Conditions Guaranteed by the System

T'his section describes conditions that can be guaranteed by the system alone, i.c. conditions on how the
system will run the transactions. Later, in Section 4, we describe conditions that can be guaranteed by the
transactions alonc. ‘Then in Section 5, we combine these two kinds of conditions to prove propertics of an

application (the Fly-by-Night Airline Reservation System) running on the system.

"This approach is roughly analogous to the usual approach in ordinary concurrency control theory. There,
the scrializability condition (which can be guaranteed by the system alone) is combined with the condition
that individual transactions preserve integrity (which can be guaranteed by the transactions alone), to

conclude that reachable databasc states all satisfy the integrity constraints,

‘The first subscction formally describes the basic guarantees made by SHARD about the way in which
transactions arc run. SHARD guarantees that there is some scrial order for the transactions which it runs.
The system docs not guarantee scrializability of the transactions in this order, but it docs guarantee that cach
transaction "sces” the result of some subsequence of the preceding transactions. While this condition is

fundamental to the semantics of the system, it is oo weak to allow proof of interesting propertics.

The sccond subscction contains refinements of the basic condition. Examples of these refinements are
transitivity and some specific requirements on the subscquences of transactions seen by certain other
transactions. 'The third subscction describes implementation issucs. It shows how SHARD and similar

systems can guarantee the conditions described in the other two subsections.

3.1. The Prefix Subsequence Condition
‘The system guarantees that there is some serial order for the transactions which it runs, and that cach
transaction "sees” the result of some subsequence of the preceding transactions in this serial order. We state

this condition more formally below.

[f's is any sequence, we write s, to denote the ith clement of s. An execution of a sct of transaction instanccs,
consists of a scrial ordering 1 for the transaction instances, together with a sequence A of updates, a sequence
E of sets of external actions, a sequence 9 of finite sequences of integers, and two scquences, s and t, of

database states. An cxcecution is required to satisfy the following conditions.

l.Fori> 1, GJ; is a subscquence of the prefix sequence {1.,...,i-1}.

2. Fori > 0, t, is the state obtained by applying the sequence of updates designated by °J;+1 to the
initial database swte S Chat is, L= /\ik(.../\il(so)), where J’” | = {Il,...,lk}.

15

3 Fori 2 L(AR) = D’I'i([i-l)‘

4. Fori > 0, cach s, is the state obtained by applying the sequence of updates AL A to s, That is,
5. = AGLA(s)

These conditions mean the following. (1) says that cach transaction ', has a corresponding subsequence ‘fl
of its prefix of preceding transactions; these are the preceding transactions that it "sees”. (2) says that cach
state t; describes the cffects of the updates of T, . |'s prefix subsequence; it is the state of the database which

L
determined by its obscrved state L Finally, (4) says that the states 5, describe the actual cffect (not

"sees” when its decision part is run. (3) says that the update and external actions produced by 'l‘i are

necessarily observable by any of the transactions) of running the complete sequence of updates generated by

all transactions through 'l'i.

The systems guarantees to simulate (in some sense which we do not specify here) exccutions of those
transactions which are submitted to it. In particular, it guarantees that the external actions described by

sequence E are actually performed.

We say that the apparent siate before transaction 'l'i 1 is ts and that the apparent state afier transaction 'l'i ol
is statc 'l'iJr 1(ti,ti). Also, the actual state before transaction r[‘i+ | is S and the actual state after transaction Ti i
is state s, = T; ((6s,). We extend this notation to nonempty consecutive sequences of transactions in
place of single transactions: the apparent and actual states before the sequence are just the apparent and
actual states, respectively, before the first transaction in the sequence, while the apparent and actual states
after the sequence are just the apparent and actual states, respectively, after the last transaction in the
sequence. We say that cach of the 5, is reachable from Sy in the given exccution. We call the state S the

complete prefix state for I in the given exccution.

let Al = {ii+1,..} be a scquence of consceutive indices. Then AU is said to be afomiic in an execution
provided that the foliowing hold. (a) Fach Uj,j € AU, includes cach of the other transactions Uk’ k€U, k<,
in its prefix subscquence, and (b) all transactions Uj\j € Al, have the same subset of the transactions with
indices less than i in their prefix subsequences. Atemicity describes the running of several consccutive

transactions without allowing new information about the database to intervene.

The prefix subscquence condition only guarantees that cach transaction sees the result of some subsequence
of its prefix. This condition does not rule out trivial solutions, such as every transaction sceing the initial
database state (the result of the empty subsequence). In order to insure useful behavior, we would like the
system to allow transactions to sce prefixes which arc as large as possiple. Some refinements of the prefix

subsequence condition designed to insure large prefixes aie discussed in the following subscction.

16

Fxample:

This example shows an exccution of the transactions from the airline reservation system, acting
non-serializably, but according to the prefix subsequence condition specified above. 'The left-hand
column lists the successive 'I‘i, while the right-hand column lists the corresponding /\i.

T A

REQUEST(PI) request(P1)
MOVE—UP move—up{P1)
REQUEST(®2) request(P2)
MOVE—UP move—up(P2)
REQUEST(P102) request(P102)
MOVIEE—UP move—up(P’102)
MOVE—DOWN move—down(P101)
CANCEI(P1) cancel(P1) .

This exccution can be obtained by having all the requests, the first 100 MOVE--UP
transactions, and the cancellation operate sceing complete prefixes. ‘The next two MOVE—UP
transactions operate with incomplete prefixes. ‘The first sees the results of the first 99 REQUESTS
and MOVE~UPS, plus the REQUEST for P101, while the second sces the results of the first 99
REQUESTS and MOVE—UPS, plus the REQUEST for P102. Since cach observes a state with
only 99 people on the assigned list, cach chooses to move a person up. Similarly, the
MOVE—DOWN opcrates with an incomplete prefix. [t sces the results of the first 202
transactions only, but not the results of the two transactions involving P102. 'Thus, it sces the
assigned list with 101 people, and moves P101, the person it observes to be last, down.

Now consider the successive reachable states s,. ‘The state after the first 204 transactions, s,
has 102 people on the assigned list, in numerical order, and no onc on the waiting list. After the
MOVE—-DOWN, s, has P10} on the waiting list and P1,P2,....P100,P102 in order on the
assigned list. The final cancellation then leaves the assigned list with exacidy 100 passengers:
P2.....P100,P102,

This exccution differs from a serializable exccution in at least two ways. First, there is a
reachable state (s,,) for which the overbooking cost is nonzero. Sccond, the exccution is not
entirely "fair™ in that P102 requests a scat after P101 (and his request is processed after P1017s),
but P102 is allowed to remain on the assigned list while P101 is moved down.

Notice that there is a danger of "thrashing” in this system. If a MOVE—UP transaction does not scc a
previous request and corresponding MOVE—UP, say for person P, it may move another person Q to the
assigned list. A later MOVEE—DOWN transaction might operate with a complete prefix, observe an
overbooking, and move Q down. Another MOVE—UP might then cxecute, sceing the move—down(Q)
update, but still not sceing the updates missed by the previous MOVE-—UP: it may then reassign Q. A later

MOVE—DOWN might then move Q back down, and so on. 'This kind of thrashing is very undesirable, not

17
just because of its obvious incfficiency, but because of the external effects of the conflicting transactions.

3.2. Additional Conditions

In this subscction, we suggest some conditions which say that particular transactions must include at least
certain other transactions in their prefix subscquences. The conditions presented here are meant to be
cxamples only, and arc not necessarily intended to hold for all SHARD-like systems and all transactions.
‘Ihese restrictions are useful in guaranteeing certain propertics of exccutions, as we demonstrate in Section 5.
On the other hand, they reduce system availability. System and application designers must weigh the

correctness gained by restricting the prefix subsequences against the reductions in availability.

First, we say that execution ¢ is fransitive provided that the following condition holds. Fet 1,1 and 1™ be
transactions (i.c. transaction instances) occurring in ¢. If'I7is in the prefix subsequence of T and "I is in the

e

prefix subsequence of I, then 1™ is in the prefix subsequence of ‘I, ‘Fransitivity is a natural requircment,
ensuring a basic sort of consistency among the prefixes seen by related transactions.

Example:

The exccution in the previous example fails to be transitive, but for a trivial reason. Namcly,
the REQUEST(P101) and REQUEST(P102) transactions arce assumed to exccute with complete
prefixes, Since the MOVE—UP which generates move—-up(P101) sces the clfects of
REQUEST(P101), transitivity would imply that this MOVE—UP should also sec a complete
prefix, which is not what happens. However, note that REQUEST and CANCEL transactions
have only trivial decision parts, so they would cause the same updates to be gencrated no matter
what prefix they sce. ‘Thercefore, we can modify the cxccution slightly, assigning cach of
REQUEST(P101) and REQUEST(P102) the prefix subscquence consisting of the first 198
transactions, without changing the updates generated. ‘T'he resulting modified cxccution is
transitive.

Another restriction which might be uscful in some cascs is to require that some particular transaction T
must run with the complete prefix. ‘This might be useful for very crucial transactions, say for an audit
transaction in a high-finance banking system: it might be desirable for audits to sce the effects of all the
preceding deposit, withdrawal and transfer transactions. Although we have not done so in this paper, it

should be possible to prove strong correctness results about transactions running with complete prefixes.

Requiring a complete prefix is very restrictive. ‘There are some variants on this condition which are less
restrictive but still lead to some very uscful propertics. For example, we might limit the number of previous
transactions which arc not visible to a particular transaction. Namely, transaction 1" is said to be k-complete in
execution ¢ provided that, in ¢, T sees the results of all but at most k of the preceding transactions. 'The
k-completeness condition, for a particular k, does not scem to be a natural requirement to impose on an

implementation, since in general, it scems difficult to guarantee a reliable value for k. (It might be possible to

18

obtain an estimate of this value by considering known characteristics of the message system together with the
expected rate of transaction processing.) However, k-completeness seems to be more useful as a hypothesis
for conditional claims which describe the behavior of the system in different situations, for different values of

k.

Another kind of condition which limits the amount of concurrency is as follows. let G be a group of
trensaction instances. We say that group G is centralized in exccution ¢ provided that, in ¢, cach of the
transactions in G includes in its prefix subscquence all the others from G which precede it in the complete
prefix. For example, it might be useful to centralize all the transactions which could cause the cost of a
particular integrity constraint o become nonzero (e.g. all the withdrawal transactions, in a banking system).
This strategy might be used to guarantee that this cost can never become nonzero. Alternatively, it might be
useful to centraiize all the transactions which affect a particutar object, or a particular portion of the database.

This strategy might be used to guarantee serializable execution for those objects or portions of the database.

If the system guarantees that transactions in G arc centralized, it might be uscful for the application
programmers and uscrs to imagine the existence of a centralized "agent” for G. For instance. it might be
uscful for users of the airline system to think of a single agent who manages all the MOVE—UPs and
MOVE—=DOWN:Ss, i.c. all the movement between WATT - LIST and ASSIGNED—LIST. 'This abstraction
could be useful even if there is actually no such centralized agent, but rather if (using some locking strategy,

for cxample), the agent is implemented in a distributed way.

Some specific groupings for the airline reservation system are discussed in detail in Section 5, along with

cxamples of correctness conditions that result from this requirement.

The final condition presupposes a notion of time. A timed execution is an exccution, together with a
nonnegative real number ("real time™) for cach transaction instance. These real times are intended to model
the times at which the transactions are initiated. In the event that the transaction order is determined by -
timestamps, these real times need not be the same as the timestamps, and in fact the real times need not even
be ordered in the same way as the transaction sequence. However, if the order of real times is monotonic, we
say that the timed exccution is orderly. An cxccution is said to have bounded delay provided that the prefix
subsequence of cach transaction ' includies every transaction in the prefix whose real time is at least £ smaller
than '17s real time. Thus, cach transaction can sce the effect of every other transaction that precedes it in the

transaction ordering and is not oo recent.

19

3.3. Implementation Issues

[tis very natural to use the conditions described in the preceding subscctions as the correctness conditions
for the distributed system described in the Introduction. "The system is able to assign timestamps in some way
50 as to determine a total ordering of the transactions. 'The transactions are initially exccuted at one node, and
then information about the transactions is sent to the other nodes. The nodes can undo and redo actions in
order to ensure that as new updates are scen, cach succeeding update has the effect that it would if executed in
a complete prefix state. 'There are a number of optimizations which allow the system to avoid undoing large

numbers of transactions |[BK], and optimized storage structures make this process even more efficient [SKS].

'I'he updates only are sent around, and arc undone and redone to yield a sequential ordering. The fact that
the decision parts are not redone means that the system does not satisfy the usual notion of serializability;
however, the system does satisly the prefix subscquence property, i.c. that every Lransaction sees the effects of

asubsequence of its prefix.

It should be clear that an appropriate distributed communication protocol could guarantee transitivity,

perhaps by piggybacking information about known transactions on messages.

There arc a number of ways that a system could guarantee the subsequence restrictions described in the
previous subsection. For instance, consider centralization of the transactions in G. It is possible to force all
the transactions in G to run at the same node of a distributed system. Alternatively, a transaction in G with
timestamp ¢ might have to wait till it reccives messages from all nodes saying "1 will issuc no more G
transactions with timestamp carlier than ™ This type of concurrency control might significantly reduce
system availability. The probabilistic concurrency control methods of [S} provide other technigues for

obtaining centralization.

4. Conditions Guaranteed by the Transactions

"This section describes conditions which might be guaranteed by the transactions, analogous to preservation
of integrity constraints in the usual development. We do not intend to require that all of these conditions
hold for all sets of transactions: rather, we expect different conditions to be useful in different applications.
We attempt to formulate the conditions in a general way, so that they might apply to different resource

allocation applications. We describe how the conditions apply to the airline reservation system.

The first subsection defines some conditions involving costs of database states. Update parts of transactions
arc analyzed to determine whether or not they have the potential of incircasing the cost, or arc guaranteed to

decrease the cost, with respect to a particular integrity constraint.

20

The second subscction discusses conditions involving fairness, a property particularly important in
applications in which certain entities compete for access to some resource or service. We define priority

among competing entitics, and prove that certain conditions ensure that transactions preserve priority.

We define an application o consist of a collection of database states, (including designation of initial and
well-formed states), their integrity constraint information (including costs), and a sct of transactions. The

propertics we describe in this section arce properties of applications.

4.1. Conditions Involving Costs
We say that an application is initially zero cost provided that Cost(so) = (. ‘that is, all the integrity

constraints are satisfied in the initial database state. Clearly, the airline system is initially zcro cost.

Another interesting property would be that a transaction 'I' "preserves integrity”, just as it is required to do
in the usual concurrency control theory. A formal statement of this property might be: "If s is a well-formed
state with cost(s) = 0, and if '1'(s,s) = s, then cost(s’) = 0." "T'his says that if T runs so that it changes the same
state that it sces, then it does not cause a violation of the integrity constraints if they were previously satisfied.
(We might say that 'I' does not causc a violation of the integrity constraints "on purpose™) In the present
setting, a more general kind of condition is appropriate, which also involves the behavior of transactions when

the costs arce nonzero.

We begin by describing a very strong property of a transaction 'I' that says that there is no possibility of T
cver causing an increase in the cost for constraint i. An update A is said to be increasing for constraint i
provided that there is some well-formed s for which cost(A(s),i) > cost(s,i). That is, thc update has the
potential of increasing the cost of constraint i, although it nced not actually do so in all circumstances.
Otherwise, i.c. if the update could never increase the cost of constraint i, A is said to be non-increasing for
constraint i. A transaction 1" is safe for constraint i provided that the following holds. If s is a well-formed
statc and l),].(s) = A, then A is nonincreasing for constraint i. Otherwise, i.c. if there is some well-formied s

for which l),l.(s) is increasing, then we say that 'l is unsafe for constraint i.

Iixample:

In the airline system, the request(P) update is nonincreasing for the overbooking constraint,
but is increasing for the underbooking coustraint, since in states with fewer than 100 assigned
pcople. and with P not already waitlisted or assigned, this request causes an increase in cost (of
$300). The cancel(P) update is also nonincreasing for the overbooking constraint, but is increasing
for the underbooking constraint, since in states with at most 100 assigned people (including P) and
sufficiently many waitlisted people, this cancellation causes an increase in cost (of $300). On the
other hand, the move--up(P) update is increasing for the overbooking constraint, since in states

21

with at least 100 assigned people, this move-up causes an increase in cost (0f $900). However, it is
nonincreasing for the underbooking constraint. Finally, the move—down(P) update is
nonincreasing for the overbooking constraint, but is increasing for the underbooking constraint
since in states with at most 100 assigned people. this move-down causes an increase in cost (of
$300).

Iixample:

The only updates that are increasing for the overbooking constraint are those of the form
move —up(P). Since only the MOVIi— UP transaction can generate a move—up(P) update, the
other transactions arc all safe for the overbooking constraint, However, the MOVE—-UP
transaction is unsafe for the overbooking constraint. On the other hand, the MOVE—-UP
transaction is safe for the underbooking constraint, but the other three transactions arc all unsafe
for the underbooking constraint.

A less restrictive, interesting property to consider might be intuitively described as: ™Iransaction T does
not increase the cost of integrity constraint i on purpose.” One simple formal way of stating this property is:
"Ifs is a well-formed state and if '1(s,8) = &, then costis’ 1) < cost(s,i).” For technical reasons, we define a

slightly stronger formulation, as follows.

We say that transaction 1 preserves the cost of constraint i provided that the following holds. If s'is a
well-formed state, 1(s.8) = 5, I)T(s) = A and A is increasing for constraint i, then cost(s’,i) = 0. Thatis, the
decision part of a transaction 'I' will only invoke an update part that (potentially) increases the cost of
constraint i, when the state that I belicves will exist after the update runs, will have a cost of 0 for constraint 1.
It is casy to sce that this condition implics the simpler formulation described above. Also, it is obvious that if

1" is safe for constraint i, then it prescrves constraint i

Example:

We show that all transactions prescrve the cost of the overbooking constraint. Since all
transactions cxcept for the MOVE- UP transaction arc safe for the overbooking constraint, they
preserve the overbooking constraint. The MOVE— UP transaction is unsafe for the overbooking
constraint, su more argument is required in this case. "The MOVE— UP transaction only gencrates
a move—up(P) update from a state s for which Al(s) < 100 and WI(s) > 0. "Then the state s’
resulting from applying the move-—up(P) update to s has Al(s7) < 100, and thus cost(s’,1) = 0.

Now consider the underbooking constraint. The MOVE—UP transaction is safc for the
underbooking constraint, and hence preserves the cost of the underbooking constraint. We also
show that thc MOVE—DOWN transaction preserves the cost of the underbooking constraint.
The MOVE—DOWN transaction only gencrates an update which is increasing for the
underbooking constraint from a state s for which Al(s) > 100. Then the state 8* resulting from
applying the update to s has AL(s") > 100, and thus cost(s’,2) = 0.

22

On the other hand, it is casy to see that REQUEST(P) and CANCEL(P) transactions do not
preserve the cost of the underbooking constraint,

Since we are working in a sctling in which integrity constraints arc not always satisfied. i.c. costs may be
nonzero, another useful property of transactions might be that they actually reducc the cost, not just preserve
it. A transaction which reduces the cost for an integrity constraint can be regarded as a "compensating
transaction” for violations of that integrity constraint. Onc possible formulation is as follows. We say that
transaction 'I' compensates for constraint i provided that the following holds. It s is well-formed, 1(s.8) = s',

and cost(s,1) > 0, then cost(s’,i) < cost(s,i).

Lemma I Assumec that all costs arc integral. Assume that 'I' compensates for constraint i, Then
for any well-formed s, cither cost(s,i) = 0, or there is some integer k > 0 such that '1(s;s) = Sps
I(Sl‘sl) = SZ""‘I(Sk~l“sk~l) = 8, and cnsl(sk,l) =0.

Proof: By repcated application of the definition, 1

This lemima implics that if compensating transactions are run atomically from any point in an exccution,
using any available prefix subsequence, they will eventually result in an apparent state in which the cost of the
constraint is 0. 'This idea can be stated formally as follows.

Corollary 2: Assume that all costs are integral. Assume that ‘T compensates for constraint i. [.et

¢ be any finite execution, W any subscquence of the indices of ¢, and t the result of the updates
indexed by U, applied to 3.

Then cither cost(t.)) = 0, or clse there is an extension of ¢ to another execution, by an atomic
suffix consisting of '{”s only, such that the prefix subsequence of the first T in the suftix is U, ¢ is
the apparent state after the last transaction, and cost(t’,i) = 0.

Iixample:

It is casy to scc that the MOVE — UP transaction compensates for the underbooking constraint,
and the MOVE—DOWN transaclion compensates for the overbooking constraint. In fact, it is
possible to show that from any well-formed state, any atomic sequence of intermingled
MOVE~—UP and MOVE-DOWN transactions which contain sufficiently many of cach will
eventually reach an apparent cost of 0 for both integrity constraints.

Our last property involving costs, bounds the increase in cost that can result fmin the exccution of a
bounded number of transactions. First. we say that s <, ¢ provided that there is a scquence of updates
lecading from 5y W s, and a subscquence of that sequence containing all but at most k of the updates, such that
the result of the subsequence applied to s, is t. That is, state t contains all the information in state s, except
possibly for the effects of at most k updates. Then we say that function £ bounds the cost increase for integrity
constraint i provided that the following holds. For well-formed states s and . if s <, t. then cost(s.i) <

cost(t,i) + fk). Thus, f{k) bounds the increase in the cost of integrity constraint i that can be incurred by

23

transacLions.
Iixample:

In the airline reservation system, it is casy to sce that 900k bounds the cost increase for the
overbooking constraint, while 300k bounds the cost increase for the underbooking constraint.

Lemma 3: et U be an atomic subscquence in execution ¢, 1.et s be the actual state before U,
and s the actual state after U. 1et tbe the apparent state before A, and £ the apparent state alter
U. Ifs <, tthens' <t

Proof: Straightforward. 1

4.2, Conditions Involving Fairness

Another property of interest in some applications, i.c. those in which certain entities compete for access (0
some resource or service, is "fiirness”. In order to be able to state fairness conditions, we extend our
application modecl to include the competing entitics. In cach state, we designate certain entities as "known”
(i.c. currently competing). Also, in cach state, we assume that there is a partial order on the known entitics

which dcscribes priority.

We say that transaction ‘I preserves priority provided that the following condition holds. [f s is a well-
formed state and 'T(s.s) = s, then: (a) If P and Q are both known in s and also in §°, and if P precedes Q in s,
then P precedes Q in s’ (b) IFP is known in s and Q is not, and P and Q are both known in s', then P precedes

Qins'.

Example:

In our example, the people are the competing entitics. In any state s, the known people are
those on the WAIT—=LIST or the ASSIGNED~LIST, in's. For P and Q known in s, we define P
< Q to mean that cither P precedes Q on the WAIT—LIST, or P precedes Q on the
ASSIGNED—LIST, or else P is on the ASSIGNED~LIST and Q is on the WAI'T—LIST. Then
all of the transactions prescrve priority.

A stronger property is also of interest. We say that transaction I strongly preserves priority provided that the
following condition holds. If s and s* arc well-formed states and '1(s,8°) = s”, then: (a) If P and Q are both
known in s’ and also in ", and if P precedes Q in ', then P precedes Q ins”. (b) IFP is known in s” and Q is

not, and P and Q arc both known in s”, then P precedes Q ins™.

Ixample:

It is casy to see that the REQUEST and CANCELL transactions strongly prescrve priority, but
the MOVE—-UP or MOVE—-DOWN transactions do not. For example, consider the
MOVE— UP transaction. Assume that in state s, person P is first on the WAIT—LIST, and that
transaction ‘I, run from state s, gencrates a move—up(P) update. In state s, P is on the

24

WATT—TLIST but is not the first person; person Q is first. Then the move-up(P) action still moves
P to the end of the ASSIGNED = LIST, in this case moving it ahead of Q. We have P> Q in state
s, but P < Q in state s”. Thus, the MOVE—UP transaction is capable of changing the relative
prioritics of P and Q.

Similar remarks hold for the MOVIEE—-DOWN transaction.

5. Properties of the Airline Reservation System
This section illustrates how the ideas presented in the previous sections can be used to prove interesting
propertics of executions of a particular application, the FFly-by-Night Airline System. Where it is possible, we

state the results in a general way, so that they might later be applicd to other examples.

Proving propertics of exccutions of SITARD-like systems is far more difficult than for systems that preserve
serializability, It is necessary to consider how a transaction’s updates will exccute on arbitrary well-formed
datubasc states, not just the database state scen by the decision part. With current techniques, it is not casy to
understand how transactions and updates will behave in all possible situations, just by examining the
transaction code. Even sorme of the relatively simple-sounding results in this section have proofs that are
somewhat delicate. Our hope is that more experience with examples and proofs of this sort will eventually

make the task casier.

The first subscction gives a bricf discussion of some policy decisions affecting priority, that were embodied
in the application design. The sccond subsection proves upper bounds on the costs of database states that
could result from running the airline reservation system. All the bounds in this subscction arc proved using
the assumption that transactions scc the cffects of all but at most k of the preceding transactions. The cost
bounds arc stated in terms of this k. The third subsection refines the necessary conditions for obtaining these
cost bounds and sharpens the bounds. The results in this subsection require only that transactions scc the

results of certain critical preceding transactions, rather than arbitrary transactions.

The fourth subscction proves results which rely on "centralization"” assumptions, i.c. that some transactions
sce all of the preceding transactions of a certain type. Using centralization, we prove that some integrity

constraints can never be violated. The final subscction proves some fairness propertics.

5.1. Policy Decisions
Transactions in cvery application embody certain policy decisions. This subscction contains two examples
which illustrate the policy decisions embodicd in the Fly-by-Night System,
Ixample:

Suppose that two REQUEST(P) transactions occur without an intervening CANCEL{P). Both

25

REQUEST(P) transactions generate request(l’) updates. At some point, it might be necessary to
determine the effect of a sequence of updates including both of these request(P) updates. 'Then
the sccond request(P) would be applied o a state s which reflects the previous occurrence of the
carlicr request(P). "Thus, P might be in WATT—=LIST(s) or ASSIGNED—LIST(s); in this case,
the update is defined to have no effect. The policy embodied in this definition is that if a person P
is alrcady on the WATT—LIST or ASSIGNED = LIST. and makes a duplicate request, the new
request does not change P's original priority. Alternative policy decisions might cause the second
request to alter the priority somchow.

Iixample:

Itis possible for two MOVIE— UP transactions to occur which invoke move —up(P) updates for
the same P, without an intervening CANCEL(P), or MOVE—-DOWN which invokes a
move —down(P) update. 'This could happen if the seccond MOVE—UP transaction is initiated
without the first in its prefix subsequence. At some point, it might be necessary to determine the
cffect of a sequence of updates inctuding both of these move—up(P) updates. Then the second
move—-up(P) would be applied to a state s which reflects the previous occurrence of the carlier
request(P). Then P could be in ASSIGNED —LIST(s); in this case, the update has no effect. The
policy embodicd in this definition is that if a person P s already on the ASSIGNED —~LIST, a new
altempt to assigin him a scat does not alter P's previous priority. Alternative policy decisions might
cause the seccond move—up(P) to alter the priority.

5.2. Cost Bounds Resulting from k-Complecteness

In this subscction, we prove upper bounds on the costs of the states reachable by running the airline system.
All the bounds in this subscction are proved using the k-completeness assumption, i.c. the assumption that
transactions sce the cffects of all but at most k of the preceding transactions. We begin with some preliminary

lemmas.

l.emma 4: et ¢ be an exccution, and T a k-complete transaction instance in ¢. lct s be the
actual state before T and §* the actual state after T, in ¢. Let t be the apparent state before T and U
the apparent state after 1.

L'Thens <, tands’ <, U

2. Let i be a constraint, and assume that { bounds the cost of constraint i. Then cost(s,i) <
cost(t.i) + f{k) and cost(s".i) < cost(t’,i) + (k).

Proof: Straightforward. 1

The following theoremn shows that k-complete transactions that preserve the cost of a constraint are

guaranteed not to make the cost of that constraint larger, (except in the special case that the cost is very small).
Theorem 5: et e be an exccution, and 'T" a k-complete transaction instance in e, l.eti be a
constraint, and assumec that f bounds the cost for constraint i. Assume that 'I" preserves the cost of
constraint i. L.et s be the actual state before T and s° the actual state after T, in ¢. Then cither
cost(s',i) < cost(s,i) or clse cost{s,i) < f{k).
Proof: {.ct t be the apparent state before I and ¢ the apparent state afier 'T. Then £ = "T(t,t).
Assume that T invokes action A in exccution ¢, i.c. that I).l.(t) = A.

26

Assume that cost(s’,i} > cost(s,i). "Then A is increasing for constraint i. Since 'l preserves the cost
of constraint i, it follows that cosi(t’,i) = 0. By Lemma 4, cost(s’ 1) < cost(t’,i) + (k) = {{k).

We can specialize the preceding results to obtain bounds for the airline system.

Corollary 6: .ct ¢ be an exceution of the airline system, and 'l a k-complete transaction instance
in ¢. L.etsbe the actual state before ' and s the actual state after 1, in e

L I7T is any transaction, then cither cost(s’, 1) < cost{s,1) or clse cost(s’, 1) < 900k,

21671 a MOVE—=UP or MOVE—DOWN transaction, then cither cost(s’,2) < cost{s,2) or
clse cost(s’,2) < 300k.

Proof:

1. By Lemma S, the fact that all transactions preserve the overbooking constraint, and the fact
that 900k bounds the cost increasce for the overbooking constraint,

2. By Lemma S, the fact that MOVE—UP and MOVE—DOWN transactions preserve the
underbooking constraint, and the fact that 300k bounds the cost increase for the
underbooking constraint.

The previous results are enough to yield an upper bound for the overbooking cost (although not for the
underbooking cost) in all reachable states. We obtain such an upper bound for the overbooking cost as a

special case of the following morce general thcorem,

Theorem 7: Assume that the application has the property that all transactions prescrve the cost
of constraint i. Let ¢ be an exccution, et bound the cost of constraint i, Assume that all
occurrences of transactions that arc unsafe for constraint i, in ¢, are k-complcte. Let s be any state
reachable in ¢. Then cost(s,i) < f{k).

Proof: The proof is by induction on the length of e, The basis, length 0, is immediate. For the
inductive step, assumec that the length of ¢ is at lcast 1, and that ‘I is the last transaction in ¢, Lets
be the actual state before T, and s° the actual state after T

The inductive assumption implics that cost(s,i) < flk). If cost(s’.i) < cost(s.i), the claim is
immediate. So assume that cost(s’.i) > cost(s,i); then T is unsafe for constraint i, and so 1" is
k-complete in ¢, by assumption. Then Theorem 5 implics that cost(s’,i) < {{k), as nccded. R

Our invariant upper bound on the overbooking cost follows as a corollary.

Corollary 8: [.ct ¢ be an cxccution of the airline system. Assumec that all MOVE—-UP
transactions arc k-complete in ¢. lLet s be any state reachable in e. 'Then cost(s, 1) < 900k.

Proof: By Theorem GENERAL—=INVARIANT—BOUNID, the fact that all transactions
preserve the overbooking constraint, the fact that 900k bounds the cost increase for the
overbooking constraint, and the fact that only MOVE—UP transactions are unsafe for the
overbooking constraint. ¥

We would also like to obtain an analogous invariant upper bound for the underbooking cost.

27

Unfortunately, such a bound does not hold for our airling system, since it can fail in an exccution where many
requests or cancellations arrive in rapid succession without sufficient intervening MOVE—UPs. In order to
prove an upper bound on the underbooking cost, it appears to be necessary to assume something about the

MOVE—UP transactions occurring sufficiently frequently,

To be specific, we define a partition § of the indices of ¢ into groups consisting of consccutive indices to be
a grouping of ¢ for constraint i provided that cach group satisfics one of the following,
(a) It consists of cxactly onc index j, and transaction 'l'j preserves constraint .
(b) If tis the apparent state after the group, then cost(t,i) = 0.
That is, we will consider instances of transactions that preserve the cost of constraint i individuatly, but we will
consider other transactions together, paying special attention to points during the cxccution where the
transactions beiicve they have reduced the cost of the constraint to 0. Of course, not every execution will have
such a grouping, but if the application contains a compensating transaction for constraint i, Lemma 2 implics
that exccutions with such groupings arc abundant. The normal states of ¢, with respect to a particular

grouping. are just those states which are reachable after the groups, i.c. the actual states after the groups.

The next thecorem says that, if we restrict attention to normal states only, an invariant upper bound holds for

the underbooking constraint.

Theorem 9: [.ct ¢ be an exccution and § a grouping of ¢ for constraint i. Assume that f bounds
the cost of constraint i. Assume that all transactions that prescrve the cost of i, as well as all
trapsactions that occur at the ends of groups, arc k-complete in ¢. l.et s be any normal state
reachable in ¢, Then cost(s,i) < (k).

Proof: By induction on the fength of ¢. The basis, length 0, is immediate. For the inductive
step, assume that the length of ¢ is at least 1, and that ‘T is the last transaction in ¢. et s be the
actual state before T, and §° the actual state after ‘1. 1.et t be the apparent state before T, and ¢ the
apparent state after 1. There arce only two cases that need to be considered.

IF T is the last transaction in a group, then cost(t’,i) = 0. Since T is k-complete, [.emma 4
implics that cost(s’,i) < cost(t’,i) + f{k), = {{k), as nceded.

Otherwise, ‘T is a transaction that preserves the cost of constraint i, and occurs alone in a group.
Then s is a normal state in ¢. The inductive assumption implies that cost(s,i) < (k). eost(s’.i) <
cost(s,i), the claim is immediate. So assumce that cost(s’.i) > cost(s.i). "T'hen Theerem 5 implics that
cost(s'.i) < f{k), as nceded. 11

The preceding theorem specializes immediately to our example. The REQUEST and CANCIEL
transactions arc the ones that do not preserve the underbooking constraint, while the MOVE — UP transaction
compensates for that constraint. "T'hus, executions which have groupings for the underbooking constraint can
be constructed by including a sequence of MOVE—~ UP transactions immediately after cach REQUEST and

after cach CANCEI. transaction.

28

Corollary 10: et ¢ be an exccution and § a grouping of ¢ for the underbooking constraint.
Assume that all MOVE-UP and MOVE—DOWN transactions, as well as all transactions that
oceur at the ends of groups, are k-complete in ¢. et s be any normal state reachable in ¢, Then
cost(s,2) < 300k.

Thus, under suitable k-completeness assumptions, combined with assumptions about frequency of
compensating transactions, we can prove invariant upper bounds on the costs in all reachable states (or all

normal reachable states).

The ideas used to prove the preceding results can be used to say more. Consider an exccution ¢ in which
costs become very large (because k-completeness or frequency assumptions fail). 1f there is ever a time during
the execution after which good completeness and frequency propertics begin to hold, it is casy to sce that
correspondingly good upper bounds will be reestablished. For instance, we can get a result of this type for the
underbooking constraint, using the ideas of Corollary AIRFINE—BOUND—4. If we assume that the
required transactions are k-complete from some point on in the execution, then (once the next compensating
group has occurred), the underbooking cost satisfies an upper bound of 300k. On the other hand, if we want
to obtain a similar result for the overbooking cost, we cannot base it on the simple ideas of Corollary 8.
Rather, we would have to use ideas similar to those used for the underbooking cost. At some point after
k-completeness begins to hold in the exceution, we would hypothesize a group of MOVE—DOWNS, bringing
the apparent overbooking cost to 0, in order to compensate for any cxcess overbooking cost. With such a
hypothesis, an eventual 900k bound on the overbooking cost could be proved. We omit formal statements of

these results here,

It is possible to combine the results of Corollarics 8 and AIRLINE - BOUND -4 (o get a single invariant

upper bound on the total cost for the airline system. For example, we obtain the following.

Corollary 11: L.ct e be an execution and ¢ a grouping of ¢ for the underbooking constraint.
Assume that all MOVE—UP and MOVE—DOWN transactions, as well as all transactions that
oceur at the ends of groups, are k-complete in ¢. et s be any normal state rcachable in ¢. 'Then
cost(s) < 900k.

Proof: Immediate from Corollaries 8, AIRLINE—BOUND-—4 and the fact that cvery well-
formed state has cither cost(s,1) = Qorcost(s,2) = 0. 8

We fintsh this subscction with a closer look at the kinds of improvements that are guarantced by
compensating transactions. 'or examplc, it would be nice to have a lemma which says that a k-complete
transaction which compensates for constraint i, is guarantced to actually improve the cost of constraint i,
unless that cost is small. Unfortunately, this is not true. Although the compensating transaction might "try"
to improve matters, it is possible that, because of missing informaiion from its own prefix. it might_not

succeed in doing so. For example, a MOVE—DOWN transaction might obscerve too many pcople on the

29

ASSIGNED = LIST, and might thercfore invoke a move—down update. But if it happens to invoke a

move—down for a person who had actually cancelled in the interim, that move=down will not improve the

actual cost.

We do know, however, that running the transaction scveral times in succession (atomically) can guarantee

actual improvement. More precisely, we obtain the following.

Lemma 12: Assumce that all costs are integral. L.t £ bound the cost of constraint i. Assume that
1" compensates for constraint i. L.et ¢ be any finite execution, U any subsequence of the indices of
¢, containing all but at most k of the indices in ¢, and let s be the actual state after e.

Then cither cost(s,i) < fik), or else there is an extension of ¢ to another execution, by an atomic
suffix consisting of 'I’s only, such that the prefix subsequence of the fiest 1 in the suffix is AU, §7is
the actual state after the last transaction, and cost(s’,i) < f{k).

Proof: 1.ct tbe the result of U applied to s, Thens <, 1. By Corollary 2, cither cost(t,i) = 0, or
clse there is an extension of ¢ to another exccution, by an atomic suffix consisting of 'I”s only, such
that the prefix subsequence of the first 1 in the suffix is A, ¢ is the apparent state after the last
transaction, and cost(t’,i) = 0. If cost(t,i) = 0, then since s gk t, it follows that cost(s.i) < cost(t,i)
+ flk} = f{k), as nceded. Otherwise, L.emma 3 implics that §° gk t', and so cost(s’.i) < cost(t’,i) +
f{k) = f{k), as nceded. &

This theorem specializes to the airline system as follows.

Corollary 13: Lct ¢ be any 0inite exccution of the airline system, AU any subscquence of the
indices of ¢, containing all but at most k of the indices in ¢, and let s be the actual state after e.

1. Either cost(s, 1) < 900k, or clsc there is an extension of ¢ to another exccution, by an atomic
suflix consisting of MOVE--1DOWNSs only, such that the prefix subscquence of the first T’
in the suffix is A, s" is the actual state after the last transaction, and cost(s',1) < 900k.

2. Either cost(s,2) < 300k, or clse there is an extension of ¢ to another exccution, by an atomic
suffix consisting of MOVE— UPs only, such that the prefix subsequence of the first T in the
suffix is U, s is the actual state after the last transaction, and cost(s,2) < 300k.

Thus, the cost bounds of this subsection limit the damage that can be caused when transactions operate with
a bounded amount of missing information. As noted before, the bounds we oblain are intuitive rather than

surprising. However, we know of no way to prove these sorts of intuitive statements in carlicer frameworks.

We note that it is possible to obtain more refined versions of the results in this subsection. Generally, it is
not actually necessary that the indicated transactions sec all but k of the entire sct of preceding transactions.
Rather, only certain types of preceding transactions are important in cach casc, since they suffice to determine
the results of critical decisions. For instance, in Corollary 8, it is not necessary that the MOVE—UPs be
k-complete; for exampic, it would suffice for them to sce all but k of the preceding MOVE—-UP and

REQUEST transuctions. We examine this issuc more closely in the next subsection,

5.3. More Refined Cost Bounds

In this subscction, we reconsider some of the results of the preceding subsection. We sharpen those results
so that they only require that transactions sec the results of certain critical preceding transactions, rather than
arbitrary preceding transactions. The results in this subscction give detailed information that is specialized to
our application; thus, they are not stated in very general terms. However, it scems that the general approach

uscd in this subscction should extend to other applications.

We begin by proving some basic lemmas about sequences of updates. 1t is helplul to think of these results
in terms of an automaton whosc states represent (abstractions of) the global states of the databasce, and whose
state-transitions represent the updates. (The decision parts of transactions are not modcelicd by this
automaton.) ‘The sequence of updates which occur in an execution is modelled by a path in the automaton.
We are interested in identifying subscquences of a scquence of updates, which are guaranteed to Iead to the
same state in the automaton as does the whole scquence. I a transaction exccutes secing only such a

subscquence as its prefix subscquence, it would be guaranteed to have accurate information.

Let A be a sequence of updates (of the Fly-by-Night airline system) and P a person. As assigument witness
for Pin A is an ordered pair of updates, (A,B), from A, satislfying the following conditions.
(a) A is a request(P) update, B is a move—up(P) update, and A precedes B in AL
(b) There arc no cancel(P) updates after A in A.

{c) There are no move—down(P) updates after Bin A,

A waiting witness for P in A is cither of the following:
(1) An updatc A, from A, satisfying thc following conditions.
(a) A is a request(P) update.
(b) There are no cancel(P) or move —up(P) updates after A in A.
(2) A pair (A,B) of updatcs satisfying the following conditions.
(a) A is a request(P) update, B is a move—down(P) update, and A precedes Bin A,
(b) There are no cancel(P) updates after A in A.

(c) There are no move—up(P) updates after Bin A

Recall that a person is known in a given state s if he is cither in ASSIGNED —LIST(s) or WAIT—LIST(s).

Lemma 14: Let A be a sequence of updates, and s the state resulting from applying A to s, Let
P be a person.
{a) P is known in state s exactly if there is a request(P) update in A which is not followed by a
canccl(P) updatc.
(b) Pis in ASSIGNED = LIST(s) exactly if there is an assignment witness for Pin A.
(c) Pisin WALT = LIST(s) exactly if there is a waiting witness for P in A

Proof: By analysis of the possible state transitions, 8

31

For the next several lemmas, we use the following notation. 1.ct A be a finite sequence of updates and let SB
be a subscquence of A. Let s be the state which results from applying A o 8- and let t be the state which

results from applying 9B to So- The next lemmas relate the states s and ¢

Lemma 15: L.ct P be a person. Assume that P is in ASSIGNED —LIST(s), and let (A13) be an
assignment witness for P in 4. Assume that B contains both updates A and B. Then P is in
ASSIGNED— LIST(t).

Proof: By dcfinition of an assignment witness, A is a request(P) update, B is a move—up(P)
update, and A precedes B in A, Also, A contains no canccl(P) updates after A and no
move—down(P) updates after B. Now, 98 contains both A and B, in that order. Also, 9B cannot
contain any cancel(P) updates after A or move —~down(P) updates after B, since there are none in
A, Thus. (AB) is an assignment witness for P in 8. lLemma 14 implics that P is in
ASSIGNED—=LIST(). A

Lemma 16: 1.ct P be a person. Assumc that Pis in WATT=LIST(s). Assume that at least onc of
the following holds.
(a) A is a waiting witness for P in A, and B contains update A.
(b) (A.B) is a wailing witness lor P in A and B contains both updates A and 3.
Then Pis in WATT—=LIST(t).

Proof: Similar to the proof of Lemma TWO. 1

The preceding two lemmas will be applied in cases where A denotes the entire sequence of updates
preceding a particular transaction I, while B denotes the subscquence of updates actually scen by T, The
lemmas imply that if T secs certain of the preceding transactions, and a person P is actually on the
ASSIGNED —LIST or WATT—LIST, then T is guaranteed to know it. On the other hand, the next several
lemmas deal with the opposite implication; they describe circumstances under which a transaction that
believes that a person P is actually on the ASSIGNED — LIST or WAIT—LIST, is guaranteed to be correct.

Lemma 17: Let P be a person. Assume that €8 contains the last cancel(P) update, if any, in A, If
Pis known in t, then P is known in s.

Proof: Assunic P is known in t. 'Then Lemma 14 implics that there is a request(P) update in B
which is not followed by a cancel(P’) update in 8. This request(P) update also occurs in A, and
there arc no cancel(P) updates after the request(P) in A, since B contains the last cancel(P) update
from A. Thercfore, L.emma 14 implics that P is known ins. R

Lemma 18: 1.ct P be a person. Assume that 9B contains the last move —down(P) update, if any,
in 4. Also assumc that B contains the last cancel(P) update, if any, in A, If P is in
ASSIGNED - LIST(t), then P is in ASSIGNED —LIST(s). 4

Proof: Assumec that P is in ASSIGNED —LIST(t). Then lemma 14 implics that there is an
assignment witness (A.B), for P in 8. 'Thus, A is a request(P) update and B is a move-—-up(P)
update, A precedes B in B, there are no cancel(P) updates in @B after A and there arc no
move —down(P) updates in B after B. Updates A and B also appear in A, in that order. 'There are
no cancel(P) updates after A in A, since B contains the last cancel(P) update (if any) in A,
Similarly, there are no move—down(P) updates after B in A, "Thus, (A,B) is an assignment witness
for Pin A. Lemma 14 implics that P is in ASSIGNED - LIST(s). %

Lemma 19: L.et P be a person. Assume that 98 contains the last move - up(P) update, if any. in
A. Also assume that B contains the last cancel(P) update, if any, in A. 1P is in WATT—LIST(0),
then Pis in WATT—-LIST(s). '

d
b

Proof: Analogous to the proof of Lemma ONE, 1

Again, we can apply the preceding three lemmas to the case where A denotes the entire sequence of
updates preceding a particular transaction 'I', and 9@ denotes the sequence of updates actually scen by 1. The
lemmas imply that if T sces certain of the preceding transactions, then ‘I is guaranteed to know that a

particular P is not on the ASSIGNED — LIST or WATT—=LIST.

Now we can prove refined versions of the results of the previous subsection. Since the notation and details

become somewhat unwicldy, we present versions of Corollaries 6 and 13 only, and omit the others.

Theorem 20: Let ¢ be an exccution of the airline system, and ‘T a transaction instance inc. l.ets
be the actual state before T and §” the actual state after ', in c.

1. Assume that there are at most k persons P such that P is in ASSIGNED — LIST(s) but the
prefix subscquence seen by ‘I fails o include an assignment witness for P. ‘Then cither
cost(s’.1) < cost(s, 1) or elsc cost(s’, 1) < 900k.

2. Assume that 't is a MOVE—-UP or MOVE~DOWN transaction. Assumc that there are at
most k persons P such that P is not in ASSIGNED —1.1S1(s) but the prefix subscquence
scen by ‘I fails to include cither the last cancel(P) or the last move —down(P) from A. "Then
cither cost(s’,2) < cost(s,2) or clse cost(s’,2) < 300k.

Proof: 1.ct t be the apparent state before T and ¢ the apparent state after T. Then £ = "T(Lt).
Assume that '{ invokes action A in exccution ¢, i.c. that l),[‘(t) = A.

1. Assumne that cost(s’.1) > cost(s,1). Then T is a MOVE— UP transaction, A is a move—up
update, and Al(t) < 160. For all persons P in ASSIGNED—LIST(s), except for the k
exceptions described in the hypothesis, Lemma 15 implics that P is in
ASSIGNED - LIST(t). Therefore, Al(s) < AL(t) + k<100 + k. It follows that Al(s) <
100 + k. and so cost(s’, 1) < 900k.

2. Assume that cost(s’,2) > cost(s,2). Then T is a MOVE—DOWN transaction, A is a
move—down update, and AL(t) > 100. For all persons P in ASSIGNED — LIST(t), except
for the k exceptions described in the hypothesis, Lemma 18 implics that P is in
ASSIGNED = LIST(s). Therefore, AL(s) > A(t) - k > 100 - k. [t follows that AL(s") > 100
- k, and so cost(s’,2) < 300k.

Theorem 21: let ¢ be any finite exccution of the airline system, U any subscquence of the
indices of ¢, and let s be the actual state after ¢.

1. Assume that there arc at most k persons P such that P is in ASSIGNED—LIST(s) but U
fails to include an assignment witness for P,
Then cither cost(s, 1) << 200k, or clsc there is an extension of ¢ to another exccution, by an
atomic suffix consisting of MOVIE - DOWNs only, such that the prefix subsequence of the
first T in the suffix is U, §" is the actual state after the last transaction, and cost(s’,1) < 900k.

2. Assume that there are at most k persons P such that P is in WATIT—EIST(s) but U fails to
include a waiting witness for P. Also assume that for all but at most k persons P, if P is not

33

in ASSIGNED~LIST(s), then Al includes the last cancel(P?) (if any) from ¢, and U
includes the last move — down(P) (if any) from c.

Then either cost{s,2) < 300k, or ¢lse there is an extension of ¢ to another execution, by an
atomic suffix consisting of MOVE — UPs only, such that the prefix subsequence of the first
T in the suffix is U, s" is the actual state after the last transaction, and cost(s’.2) < 300k.

Proof: et t be the result of QU appliced to Syr

1. By Corollary 2, either cost(t,1) = 0, or elsc there is an extension of ¢ to another exccution, by
an atomic suffix consisting of MOVE~ DOWNSs only, such that the prefix subsequence of the first
T in the suffix is U, such that U is the apparent state after the suffix, and cost(t',1) = 0.

First assume cost(t,1) = 0. Then AL{t) < 100. Let P be any person in ASSIGNED— LIST(s).
If P is not one of the k exceptions described in the hypothesis, then Temma 15 implics that P is in
ASSIGNED - LIST(). 1t follows that AL(s) < AL(t) + k < 100 + k, so cost(s, 1} < 900k, as
neceded.

Sccond, assume that the extension exists. Then ALL(L') < 100. Let the actual state after the
suffix be s let P be any person in ASSIGNED—LIST(s). Then P is also in
ASSIGNED—LIST(s), since the sullix does not add anyone to the assigned list. [f P is not one of
the k cxceptions described in the hypothesis, then Lemma 15 implies that P is in
ASSIGNED —LIST(t). None of the MOVE—DOWNSs in the suffix could have gencrated a
maove —down(P), since if one did, then P would not be in ASSIGNED - LIST(s"). Therefore, P is
in ASSIGNED = LIST(C). 1t follows that AL{s") < AL(L) + k < 100 + k, socost(s’,1) < 900k.

2. By Corollary 2, cither cost(t,2) = 0, or clse there is an extension of ¢ to another execution, by
an atomic suffix consisting of MOVE—UPs only, such that the prefix subsequence of the first 1 in
the suffix is U, t" is the apparent state afier the suffix, and cost(t’,2) = 0.

First assume cost(t,2) = 0. Then cither AL(t) > 100 or clse WI{t) = 0. Let P be any person in
WATT—-LIST(s). If Pis not onc of the k cxceptions described in the hypothesis, then L.emma 16
implics that P is in WATT—=LIST(t). 1t follows that WI.(s) < WI(t) + k. Lct P be any person in
ASSIGNED—LIST(t). If P is not onc of the k exceptions described in the hypothesis, then
Lemma 18 implies that P is in ASSIGNED — LIST(s). 1t follows that Al(t) < AL(s) + k. Thus,
cither Wi(s) < k orelse Al(s) 2> 100 - k. Thus, cost(s,2) < 300k.

Second, assume that the extension exists. Then citdier AL(C) > 100 or ¢lse WIL(t") = 0. lLetthe
actual state after the suffix be §°. Let P be any person in WAIT—LIST(s’). "Then Pis also in
WATT—LIST(s), since the suffix does not add anyone to the wait list. 1f P is not one of the k
exceptions described in the hypothesis, then Temma 16 implics that P is in WATT—LIST(t).
None of the MOVE-UPs in the suffix could have generated a move—up(P), since if one did,
then P would not be in WAIT—LIST($). Therefore, P is in WATT=LIST(). So WI(s) <
WI{) + k.

Now let P be any person in ASSIGNED = LIST(). Then P must be known in t, since otherwise
the move—ups in the surfix could not put P into ASSIGNED—LIST(). 1If P is in
ASSIGNED--LIST(t), and P is not one of the k exceptions described in the hypothesis, then
Lemma 18 implics that P is in ASSIGNED = LIST(s) and hence in ASSIGNED - LIST(s). On
the other hand, if P is in WATT—LIST(1), and P is not one of these same k cxceptions, then

RE:

Lemma 17 implies that P is known in s. Since P is in ASSIGNED —~LIST(t"), a move—up(P)
occurs in the suffix. Then Pis in ASSIGNED —LIST(s"). So Al(s") > AL(t) - k. It follows that
cither WIL(s") < k or AL(s’) > 100 - k. In cither case, cost(s",2) < 300k.

It is also possible to give refined versions of Corollaries 8, 10, and 11, We omit the details.

5.4. Cost Bounds Resulting from Centralization

In this subscction, we give (wo results which describe conditions under which overbooking cannot occur at
all. "These conditions involve fairly strong centralization assumptions. The basic idea is that if all the
move—up decisions are made centrally, it should not be possible to overbook. However, in order to prove
this result, it is necessary for us to make some technical restrictions involving the requests.

Theorem 22: T.et ¢ be a transitive exccution. Assume that the MOVE—UP transactions are
centralized in ¢. Assume that for cach P, the transactions that gencrates updates involving P are
centralized in ¢. et s be any state reachable in ¢. Then cost(s, 1) = 0.

Proof: 'the proof is by induction on the length of ¢. 'I'he base casc, where the fength of ¢ is 0, is
casy. So assumc that the length of e is at least one. Let ' be the last transaction in ¢. Let t be the
apparent state before T and € the apparent state after ‘1. Let s be the actual state before T, and §°
the actual state after 1. Let A be the actual sequence of updates preceding T, and let 9B be the
sequence whose effects are scen by I

The inductive assumption says that cost(s,1) = 0. 'Thc only way that cost(s’,1) can be nonzero is
if 'T'is a MOVE— UP transaction which generates a move —up update. 'Then AL(t) < 100.

We claim that ASSIGNED —LIST(s) € ASSIGNED—LIST(t). 1f this is so, then Al(s) < 100,
50 AL(s") < 100 and cost(s’,1) = 0, as needed.

So fix P in ASSIGNED—LIST(s). ‘Then there is an assignment witness for P in 4. The
move—up(P) of the pair also appears in 9B, since the MOVE-- UP transactions arc ceniralized.
‘The request(P) of the pair appcears in the prefix seen by the move —up(P), since the transactions
generating P updates are centralized. 'Therefore, the request(P) also appears in B, by transitivity.
Thus, B contains the assigiment witness, and Lemma 1S implies that P s in
ASSIGNED - LIST(t). 1

The sccond result of this subscction is just a minor variant of the first, with an alternative technical
restriction on the requests.

Theorem 23: let ¢ be a transitive exccution. Assume that the MOVE—UP transactions arc
centralized in ¢, Assume that for cach P, there is at most one REQUEST(P) transaction ine. Lets
be any state reachable in ¢. Then cost(s, 1) = 0.

Proof: "I'he proof is nearly identical to the preceding onc. The only difference is in the argument
that the requesi(P) is in the subscquence scen by the move—up(P). We know that some
request() appears in the subsequence seen by the move—up{P) action, for otherwise that action
would not have been invoked. Since there is only one such request(P), the claim holds. R

35

Of course, it would be better if we could prove the same result only assuming centralization of MOVE—-UP
transactions and transitivity, and not making any assumptions about the transactions generating updates for
the same person. But this stronger statement is not true, as is shown by the following example.

Ixample:
Consider an exccution which consists of a succession of blocks of 4 transactions cach,

REQUEST(P1), CANCEL(PT). REQUEST(P1), MOVE~-UP,
REQUEST(P2), CANCEL(P2), REQUEST(P2), MOVE-UP,...,
REQUEST(P101), CANCEL(P101), REQUEST(P101), MOVE - UP.

‘The successive MOVE—UP transactions produce updates move —up(P1)...., move—up(P101).
This exccution is possible if cach of the first 100 MOVE— UP transactions sces the first request in
the same block, but not the cancel or the second request. The last MOVE—UP sces all the
previous MOVE—-UP’s and the requests that they sce, plus the cancels. ‘Then this ast
MOVE— UP will think that the carlier MOVE— UP’s acted cerroncously, and that there is really no
one on the assigned list. 1t will therefore decide to move P01 up. ‘The cost after this cxecution is
nonzero.

Similar results to those in this section should be provable, at least in principle, for the underbooking cost.
However, the centralization assumptions that appear to be needed are so strong that the results do not scem

very interesting.

5.5. Fairness
In this subscction, we consider fairness propertics of the airline reservation system. As before, the results

arc stated in terms of the specific example, but the techniques appear to gencralize to other applications.

For this scction, we make the following very strong assumption. We assume that all MOVE—UP and
MOVE—~DOWN transactions arc centralized; thus, there is essentially one "agent” making all decisions
about scat assignment. 1t remains to be seen whether this assumption can be weakened, while still permitting

proof of interesting fairncss claims.

Recall the definition of passenger priority from Section 4.2: we say P< Q, for known P and Q, to mean that
cither P precedes Q on the WATT-LIST. or PP precedes Q on the ASSIGNED—LIST, or clse P is on the

ASSIGNED - LIST and Q is on the WAT'T—LIST.

Lemma 24: 1.ct A be a sequence of updates, and let 8 be a subsequence of A, et Pand Q be
pcople. Assume that 9B contains ail move—up and move-—down updates from A, Also assume
that B contains all the request and cancel updates for P and Q, from A, Let s be the result of A
and t the result of 9B, appliad to Sq- Then P<Qin tifand only if P<Qin s

Proof: The updates in A which are not included in B arc only request and cancel updates for
persons other than P and Q. 'These cannot affect the relative priority of Pand Q. |

36

The following theorem says that, under certain restrictions, the relative priority of two requests is
determined at the time the "agent” for MOVE — UP and MOVE—DOWN transactions first learns about both
requests. Thus, except for an initial period of uncertainty during which the agent has not yet learned about

the requests, their relative priority is fixed.

Theorem 25: let ¢ be a transitive cxecution. Assume that the MOVE—UP and
MOVE—-DOWN transactions arc centralized. Let P and Q be people cach of whom has exactly
onc REQUEST transaction, but no CANCEL transactions, in ¢. let I bec a MOVE—-UP or
MOVE~DOWN transaction having both REQUEST(P) and REQUEST(Q) in its prefix
subscquence. l.et t be the apparent state, and s the actual state, before T ITP < Q in t, then also P
<Qin s and all other actual database states occuring later in e.

Proof: First, we show that P< Q in 5. Lct A be the sequence of updates preceding T, and B the
subscquence actually seen by 1. The centralization assumption implies that B contains all
move—up and move—down updates from A, The other assumptions imply that 8 contains all
the request and cancel updates for P and Q, from A, Then Lemma 24 implics that P< Q in s.

Assume that 'I’l is the first transaction (1" or later) after which it is false that P< Q. I.et t, be the
apparcnt state before 'l‘l and t]’ the apparent state af‘lcr'l']. l.ct) be the actual state before 'l‘l and
s,” the actual state after 'I',, Then P< Q in s, but not in 51" The only possibility is that 'I‘l is a
MOVE—-UP or MOVE—-DOWN transaction that causcs the order of P and Q to become
interchanged; thus, Q< Pins .

We claim that P <.Qin t,. Let A be the sequence of updates preceding T}, and let 8 be the
subscquence actually scen by 'l'l. B contains all the moving updates from A, by the centralization
assumption. Also, % contains the requests for P and Q. since the subsequence seen by T doces, T is
cither equal to 'l‘l orelse is in 'I‘I’s subscquence, and transitivity holds. Thus, applying [.cinma 24,
the orderings in t, and s, are the same, so P<Q in t

Now we claim that Q<P in tl’. This follows using L.emma 24, since Q< P in Sl" Butif P<Qin
g and 'l‘](rl,tl) = tl‘, then P < Q in tl’. since all transactions prescrve priority. 'This yiclds a
contradiction.

We can interpret the preceding theorem as follows. We might imagine that at the actual flight time, next
January 1, the complete exccution becomes known to the check-in attendant. The people that he actually
allows to proceed onto the airplanc are the 100 people who show up, who have the highest priority in the final
databasc state. (CANCEL. transactions can be run for the others, and then sufficiently many MOVE-UP or
MOVE—-DOWN transactions to cause Al. to cqual 100 or WI. to equat 0.) If P and Q had previously become
known to the "agent” for MOVE - UP and MOVE—DOWN transactions. with P < Q, and if P and Q both

show up, if Q gets onto FFlight 1, then so does P.
I'xample:
Our transaction definitions can Iead to the folfowing behavior for passengers” relative prioritics.

Assume that REQUEST(P) precedes REQUEST(Q), but the request(Q) update becomes known
to the "agent” before the request(P) update. 'Then a move - up(Q) can occur, which moves Q up

37

past P. Later, a move —down(Q) can occur. When this happens, our definitions say that Q gets put
at the head of the WATT —LIST, ahcad of P. Subscquently, the moving agent can learn about the
request(P) also. At that point, Q < P, so by Theorem 25, Q remains ahead of . This happens even
though there is sufficient information in the system to allow for Q to be placed on the
WATT—LIST after P, which is in keeping with their timestamp order for requests. 'Thus, the
order obtained in the final state is determined by the order at the time a. MOVE—UP or
MOVE—-DOWN transaction first sces both requests, but is not necessarily determined by the
actual order in which the requests were initially made.

[tis possible to redesign the application to respeet the original request order in this situation. It
suffices to include request timestamps explicitly in the database. Fach of the two lists would
always be kept sorted according to timestamp order. Thus, when the request(P) becomes known
to the agent, he would insert P ahcad of Q on the waiting list. (More precisely, when the
move—down(Q) is run from a state in which P is on the waiting list, Q is not placed at the head of
the waiting list, but rather is inserted in timestamp order, after P.) ‘This relative position would be
maintained trom then on.

Theorem 25 makes a claim about relative prioritics at times after a conceptual "agent™ learns about two
requests. In order for this condition to be meaningful as a correctness claim, the user must have a fairly
detailed and sophisticated conceptual model of system operation, including prefix subsequences and agents.
It might also be interesting to state fairness claims which involves a less detailed conceptual model. For
example, we might want to state a condition which could be paraphrased aa follows. "If a REQUEST(P) is
made sufficiently carlier than a REQUEST(Q), then P must precede Q in the final state.” The following

lemma can be used to infer such a property.

Lemma 26: [.ct ¢ be a transitive execution. Assume that the MOVE— UP and MOVE—-DOWN
transactions are centralized. L.t P and Q be pcople cach of whom has exactly one REQUEST
transaction, but no CANCEL transactions, in ¢. Assume that REQUEST(P) precedes
REQUEST(Q) in ¢. Further assume that any MOVE—UP or MOVE—DOWN transaction that
has REQUEST(Q) in its prefix also has REQUEST(P) in its prefix. Then P < Q in any actual state
reached during ¢ in which both P and Q are known.

Proof: Assume the contrary, and let T be the first transaction in ¢ such that Q < P in the actual
database state after 'I. Let t be the apparent state before and t° the apparent state after . Let s be
the actual state before and s the actual state after . Then Q< P in s’ but not in s.

First, we claim that 'l must be a moving transaction. If'T were a REQUIEST(P) transaction, then
the REQUEST(Q) cannot be reflected in s' since it occurs after REQUEST(P). All other cascs can
be ruled out by similar trivial arguments, So 'l is a moving transaction; thus, P and Q are known
in s, so that P<Q in s. 'T'he only possibilitics are that T is a MOVE— UP transaction that moves Q
up past P, or that T is a MOVE—DOWN transaction that moves P down past Q. For cither of
these to happen, at feast one of request(P) and request(Q) must be in the prefix subsequence of 1.

Case 1: T has both request(P) and request(Q) in its prefix subsequence.
Then both P and Q arc known in t. If P <Q in t, then Theorem 25 implics that P< Q in s, a
contradiction. On the other hand, if Q < P in t, then Theorem 25 implics that Q < P in s, again-a -
contradiction.

38

Case 2: T has only request(I?), but not request(Q), in its prefix subsequence.
Then "I must be a MOVE—=DOWN which moves P down past Q. Therefore, Q must be in
ASSIGNED—LIST(s). But in order for this to occur, there must be some MOVE—-UP
transaction 1" appearing carlier than 1" in ¢, which moves Q up; clearly, request{Q) must be in the
prefix subsequence of 17, 7 is in the prefix subsequence of °F, since the moving transactions are
centralized. By transitivity, request(Q) is in the prefix subsequence of 'l This is a contradiction. I

We can usc this lemma to obtain a theorem of the form we described carlier, i.c. that if REQUEST(P)
occurs sufficiently long before REQUEST(Q) (and other suitable conditions hold), then P retains priority
over Q. All that is needed is an additional assumption that if REQUEST(P) occurs sufficiently long before
REQUEST(Q). then any MOVE—UP or MOVE—DOWN transaction that has request(Q) in its prefix also
has request(P) in its prefix.

Theorem 27: Let ¢ be a transitive, orderly timed cxecution having t-bounded delay, Assume
that the MOVE—UP and MOVE~-DOWN transactions arc centralized. Let P and Q be people
cach of whom has exactly one REQUEST transaction, but no CANCEI, transactions, in c.
Assume that REQUEST(P) precedes REQUEST(Q) by at least time t, in e. Then P < Q in any
actual state reached during ¢ in which both P and Q are known.

Proof: The t-bounded delay assumption and orderliness imply that any MOVE—-UP or
MOVE—-DOWN that has REQUEST(Q) in its prefix also has REQUEST(P) in its prefix, The
previous lemma then yields the result. 1

6. Conclusions

In this paper, we have given precise correctness conditions for a highly available replicated database system
such as CCA’s SHARD. Iirst, we gave basic definitions for the SHARID database and transaction model. We
then described assumptions about how the system runs the transactions, followed by assumptions about
applications. Finally, these two typces of assumptions were combined to prove sume interesting propertics of a
particular running application, an airline reservation system. Although the example is simple, it is illustrative

of a large class of important resource-altocation problems,

The assumptions about how the system must run the transactions (in particular, the pretix subscquence
condition) have been described in a very general way. They embody a new modect for data processing, which
is quite different from, and imposes new structure on, the traditional models used in concurrency control

theory. We expect that this model will prove very fruitful for future rescarch and for application design.

In describing our assumptions about the airline reservation application, we have tried to be as general as
possible. ‘The types of assumptions we have listed scem to be very appropriate for resource allocation
applications, but we do not belicve that they comprise a complete set of interesting application assumptions.

Itis likely that study of additional examples will yield other interesting types of assumptions as well,

39

The particular propertics proved for our application involve bounds on the costs attributable to violations of
integrity constraints, and fairness. IFor other resource allocation applications, similar cost bound and fairness

results should be provable.

The system exhibits nonscrializable behavior, so that being able to prove interesting conditions is an
accomplishment. In the usual development, no guarantees at all can be proved in case information about any
preceding transaction is missing. In contrast, we can prove interesting propertics even with incomplete
information. Morcover, small changes in available information Icad to small changes in costs for integrity

constraints.

The analysis required to obtain some of our results has been very delicate. This is because it is necessary to
consider how updates will execute in many possible situations, not just from the database staic seen by the
decision parts of their transactions. Another difficulty is that SHARD does not impose any a priori
restrictions on the kinds and ordcrs of transactions that are submitted and processed. The need to consider
the bebavior of transactions in the presence of arbitrary preceding transactions, and arbitrary partial
knowledge abont the past, makes the analysis of SHARD transactions more difficult than for ordinary
(serializable) transactions. But this kind of analysis scems unavoidable; -whether or not a formal,
mathematical analysis is carricd out for a particular application, application programmers do need to consider,
at least informally, how transactions will behave in the presence of arbitrary preceding transactions and
arbitrary partial knowledge about the past. We provide a _framework for this kind of analysis, but more nceds

to be done to develop appropriate styles of programining and methods of analysis.

A nextstep in this rescarch should be the consideration of other example applications. Additional resource
allocation examples should be cxamined, such as cxamples from banking and inventory control. Other,
non-resource-allocation. examples should be studied. Some examples appropriate for SHARD might involve
"distributed data structures”. ‘The highly-available distributed dictionary studied i [FM] is cne cxample that
fits the SHARID framework, and there should be others. Also, it has been claimed that name servers such as
Grapevine [B] have interesting but nonserializable behavior; it seems likely that they can be described within

our framework. Still other appropriate examples might arise from real-time control.

For cach of these examples, simple prototypes could be defined, capturing the essential behavior of the
cxample. Study of these prototypes should determine the appropriate propertics to prove in cach case. Cost
bounds and fairness should reappear, but other properties should also be of interest. It is important 0 look

for general methods of programming and analysis.

Other theoretical work also seems possible. For instance, we have described sume interesting automaton

40

structure in Section 5.3. This structure could be studied and gencralized. Also, it should be possible to obtain
complexity results. Particular examples of desirable application behavior could be studied individually, and

costs (¢.g. amount of communication, or local storage) determined for achieving correct behavior.,

On the systems design side, SHARD itself needs to be generalized in at least two important ways. First, the
inessential full replication assumption needs to be removed. Even with only partial replication, it should be
possible to continue to maintain the correetness conditions we describe in this paper, by judicious assignment
of data and transactions to nodes, (i.c. in such a way that cach transaction will have copies of all the data it
requires). 1t should cven be possible to allow some of the data which transactions read to be present in
summary form, rather than in its full detail. Second, the SHARD work needs to be integrated with carlier
work on serializability. It should be possible to build an application system in which certain critical
transactions run scrializably, while the others run in a highly available manner. ‘The application designer
should be able to specify the modes of operation for different transactions. As the system design gets

extended, the theory also needs to be extended to incorporate these two genceralizations.

It is apparent to us that there is an intcresting theory to be developed, for proving propertics of
nonserializable highly available replicated database systems. We believe that this paper gives some uscful

idcas on how to begin.

7. References

[AM]

{B]

[BG]

[BK]

[(FM]

[G1.BKSS]

[SBK]

[SKS]

[Si]

41

Allchin, J. E. and McKendry, M. S., "Synchronization and Recovery of Actions,” Proc. of
the Second Annual ACM Symposium on Principles of Distributed Computing, Montreal,
Qucbec, Canada, August 17-19, 1983, pp. 31-44.

Birrell, A. D.. Levin, R., Needham, R. M., and Schroeder, M. 1D, "Grapevine: An
Exercise in Distributed Computing,” Comm. of the ACM 25.4 (April 1982), pp. 260-274.

Bernstein. P. A.. and Goodman, N., "Concurrency Control in Distributed Database
Systems,” ACM Computing Surveys 13,2 (Junc 1981), pp. 185-221.

Blaustcin. B. T. and Kaufinan, C. W., "Updating Replicated Data During Communication
Failures,” Proc. of the Eleventh Intl. Conf. on Very Large Databases, Stockholm, Sweden,
August 1985, pp. 49-58.

Fischer, M. J. and Michael, A., "Sacrificing Scrializability to Attain High Availability of
Data in an Unrcliable Network," Proc. of the Symposium on Principles of Database
Systems, 1.0s Angeles, California, March 29-31, 1982, pp. 70-75.

Garcia-Molina, H.. "Using Scmantic Knowledge for ‘Transaction Processing in a
Distributed Database,” ‘I'ech. Rep. 285, Princeton Univ. Dept. of Electrical Kngineering
and Computer Scicnce, April 1981, Also appeared in Transactions on Database Systems, 8,
2 (June, 1983), pp. 186-213.

Garcia-Molina, H., Lynch, N. A., Blaustein, B. 1., Kaufman, C. W., Sarin, S. K., and
Shmueli, O., "Notes on a Reliable Broadcast Protocol," CCA technical report, 1985.

Jefferson, 1., "Virtual Time," Transactions on Programming Languages and Systems, (July
1985), 7. 3, pp. 404-425.

Sarin, S. K., "Robust Application Design in Highly Available Distributed Databascs”,
Proc. Fifth Symnp. Reliability in Distributed Software and Database Systems, January 1986,
pp. 87-94.

Sarin, S. K., Blaustein, B. T., and Kaufman, C. W., "System Architecture for Partition-
Tolerant Distributed Databases," [EEE Transactions on Computers C-34, 12 (December
1985), pp. 1158-1163.

Sarin, S. K., Kaufman, C. W., and Somers, J. K., "Using History Information to Process
Delayed Database Updates,” CCA, 1986, submitted for publication.

Sarin, S. K., and Lynch, N. A., "Discarding Obsolete Information in a Replicated Database
System.” CCA, 1986, submitted for publication.

