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of hybrid systems. We are applying our results in a number of projects in theareas of personal rapid transit [14, 10, 20], intelligent vehicle highway systems,and consumer electronics [5].Within the theory of reactive systems, which has been developed in computerscience during the last 20 years, it is common to represent both a system and itsproperties as abstract machines (see, for instance [11, 4, 9]). A system is thende�ned to be correct i� the abstract machine for the system implements theabstract machine for the speci�cation in the sense that the set of behaviors of the�rst is included in that of the second. A major reason why this approach has beensuccessful is that it supports stepwise re�nement: systems can be speci�ed in auniform way at many levels of abstraction, from a description of their highest-level properties to a description of their implementation in terms of circuitry,and the various speci�cations can be related formally using the implementationrelation. In this paper we generalize this and related ideas from the theory ofreactive systems to the setting of hybrid systems. More speci�cally, we proposeanswers to the following four questions:1. What system model do we use?2. What implementation relation do we use?3. How do we compose systems?4. What does it mean for a system to be receptive?The system model. Our new hybrid I/O automaton (HIOA) model is based onin�nite state machines. The model allows both discrete state jumps, describedby a set of labelled transitions, and continuous state changes, described by a setof trajectories. To describe the external interface of a system, the state variablesare partioned into input, output and internal variables, and the transition labels(or actions) are partitioned into input, output and internal actions. Our modelis very general and contains no �niteness restrictions. More structure will haveto be added in order to deal with applications, but the general model that wepropose allows us to answer questions 2{4. HIOA's are inspired by the timedI/O automata of [12, 7] and the phase transition system models of [15, 2]. Themain di�erence between HIOA's and timed I/O automata is that, as in phasetransition systems, trajectories are primitive in our model and not a derivednotion. In the work on phase transition systems the main emphasis thus farhas been on temporal logics and model checking. Questions 2{4 have not beenaddressed and perhaps for this reason the external interface is not an integralpart of a phase transition system.The implementation relation. The implementation relation that we propose issimply inclusion of the sets of hybrid traces. A hybrid trace records occurrencesof input and output actions, and the evolution of input and output variablesduring an execution of a system. Thus HIOA B implements HIOA A if everybehavior of B is allowed by A. In this case, B is typically more deterministic thanA, both at the discrete and the continuous level. For instance, A might producean output at an arbitrary time before noon, whereas B produces an output



sometime between 10 and 11AM. Or A might allow any smooth trajectory foroutput variable y with :y2 [0; 2], whereas B only allows trajectories with :y= 1.Within computer science, simulation relations provide a major technical toolto prove inclusion of behaviors between systems (see [13] for an overview). Inthis paper we propose a de�nition of a simulation between HIOA's and showthat existence of a simulation implies the implementation relation.Composition. Within computer science various notions of composition have beenproposed for models based on transition systems. One popular approach is touse the product construction from classical automata theory and to synchronizeon common transition labels (\actions") [11]. In other approaches there are notransition labels to synchronize on, and communication between system compo-nents is achieved via shared variables [16, 9]. Shared action and shared variablecommunication are equally expressive, and the relationships between the twomechanisms are well understood: it depends on the application which of the twois more convenient to use. In control theory studies of dynamic feedback, commu-nication between components is typically achieved via a connection map, whichspeci�es how outputs and inputs of components are wired [19]. This communica-tion mechanism can be expressed naturally using shared variables. Since we �ndit convenient to use communication via shared actions in the applications thatwe work on, our model supports both shared action and shared variable com-munication. Whereas shared actions always correspond to discrete transitions,shared variables can be used equally well for communication of continuouslyvarying signals and for signals that can only change value upon occurrence of adiscrete transition.We prove that our composition operator respects the implementation rela-tion: if A1 implements A2 then A1 composed with B implements A2 composedwith B. Such a result is essential for compositional design and veri�cation ofsystems.Receptiveness. The class of HIOA's is very general and allows for systems withbizarre timing behavior. We can describe systems in which time cannot advanceat all or in which time advances in successively smaller increments but neverbeyond a certain bound, so called Zeno behavior. We do not want to acceptsuch systems as valid implementations of any speci�cation since, clearly, theywill have no physical realization. Therefore we only accept receptive HIOA's asimplementations, i.e., HIOA's in which time can advance to in�nity indepen-dently of the input provided by the environment. Inspired by earlier work of[6, 1, 7] on (timed) discrete event systems, we de�ne receptivity in terms of agame between system and environment in which the goal of the system is toconstruct an in�nite, nonZeno execution, and the goal of the environment is toprevent this. It is interesting to compare our games with the games of Nerodeand Yakhnis [17]. Since the purpose of the latter games is the extraction ofdigital control to meet performance speci�cations, the environment player maychoose all disturbances. Irrespective of the disturbances the system should real-ize a given performance speci�cation. The purpose of our games is to show that



regardless of the input provided by its environment, a HIOA can exhibit properbehavior. Therefore, in our games the system resolves all nondeterminism dueto internal disturbances (which express implementation freedom), even thoughthe environment may choose all the input signals.The main technical result that we prove about receptivity is that, assumingcertain compatibility conditions, receptiveness is preserved by composition.2 Hybrid I/O Automata and Their BehaviorIn this section we introduce HIOA's and de�ne an implementation relation be-tween these automata. Since the notion of a trajectory plays an important role inthe model, we start out with the de�nition of trajectories and some operationson them.2.1 TrajectoriesThroughout this paper, we �x a time axis T , which is a subgroup of (R;+),the real numbers with addition. Usually, T = R or Z, but also the degeneratedtime axis T = f0g is allowed. An interval I is a convex subset of T . We denoteintervals as usual: [t1; t2] = ft 2 T j t1 � t � t2g, etc. For I an interval andt 2 T , we de�ne I + t �= ft0 + t j t0 2 Ig.We assume a universal set V of variables. Variables in V are typed, where thetype of a variable, such as reals, integers, etc., indicates the domain over whichthe variable ranges. Let Z � V. A valuation of Z is a mapping that associatesto each variable of Z a value in its domain. We write Z for the set of valuationsof Z. Often, valuations will be referred to as states.A trajectory over Z is a mapping w : I ! Z, where I is a left-closed intervalof T with left endpoint equal to 0. With dom(w) we denote the domain of wand with trajs(Z ) the collection of all trajectories over Z. If w is a trajectorythen w:ltime, the limit time of w, is the supremum of dom(w). Similarly, de�new:fstate, the �rst state of w, to be w(0), and if dom(w) is right-closed, de�new:lstate, the last state of w, to be w(w:ltime). A trajectory with domain [0; 0] iscalled a point trajectory. If s is a state then de�ne }(s) to be the point trajectorythat maps 0 to s.For w a trajectory and t 2 T�0, we de�ne w � t �= w d [0; t] and w � t �=w d [0; t). (Here d denotes the restriction of a function to a subset of its domain.)Note that w � 0 is not a trajectory. By convention, w � 1 = w � 1 �= w.Similarly we de�ne, for w a trajectory and I a left-closed interval with minimalelement l, the restriction w y I to be the function with domain (I \ dom(w))� lgiven by w y I (t) �= w(t+ l). Note that w y I is a trajectory i� l 2 dom(w).If w is a trajectory over Z and Z 0 � Z, then the projection w # Z0 is thetrajectory over Z 0 with domain dom(w) de�ned by w # Z0 (t)(z) �= w(t)(z). Theprojection operation is extended to sets of trajectories by pointwise extension.



Also, if w is a trajectory over Z and z 2 Z, then the projection w # z is thefunction from dom(w) to the domain of z de�ned by w # z (t) �= w(t)(z).If w is a trajectory with a right-closed domain I = [0; u], w0 is a trajectorywith domain I 0, and if w:lstate = w0:fstate, then we de�ne the concatenationw _ w0 to be the trajectory with domain I [ (I 0 + u) given byw _ w0 (t) �= �w(t) if t 2 I;w0(t� u) otherwise.We extend the concatenation operator to a countable sequence of trajectories: ifwi is a trajectory with domain Ii, 1 � i <1, where all Ii are right-closed, and ifwi:lstate = wi+1:fstate for all i, then we de�ne the in�nite concatenation, writtenw1_w2_w3 : : :, to be the least function w such that w(t+Pj<iwj:ltime) = wi(t)for all t 2 Ii.A trajectory w is closed if its domain is a (�nite) closed interval and full ifits domain equals T�0. For W a set of trajectories, Closed(W ) and Full(W )denote the subsets of closed and full trajectories in W , respectively. Trajectoryw is a pre�x of trajectory w0, notation w � w0, if either w = w0 or w0 =w _ w00, for some trajectory w00. With Pref (W ) we denote the pre�x-closure ofW : Pref (W ) �= fw j 9w0 2W : w � w0g. SetW is pre�x closed ifW = Pref (W ).A trajectory in W is maximal if it is not a pre�x of any other trajectory in W .We write Max (W ) for the subset of maximal trajectories in W .2.2 Hybrid I/O AutomataA hybrid I/O automaton (HIOA) A = (U;X; Y;�in; �int; �out; �;D;W) con-sists of the following components:{ Three disjoint sets U ,X and Y of variables, called input , internal and outputvariables, respectively.Variables in E �= U [ Y are called external , and variables in L �= X [ Y arecalled locally controlled . We write V �= U [ L.{ Three disjoint sets �in, �int, �out of input , internal and output actions,respectively.We assume that �in contains a special element e, the environment action,which represents the occurrence of a discrete transition outside the systemthat is unobservable, except (possibly) through its e�ect on the input vari-ables. Actions in �ext �= �in [ �out are called external , and actions in�loc �= �int [�out are called locally controlled . We write � �= �in [�loc.{ A nonempty set � � V of initial states satisfyingInit (start states closed under change of input variables)8s; s0 2 V : s 2 � ^ sdL = s0dL ) s0 2 �{ A set D � V� � �V of discrete transitions satisfyingD1 (input action enabling)8s 2 V; a 2 �in 9s0 2 V : s a�! s0D2 (environment action only a�ect inputs)8s; s0 2 V : s e�! s0 ) sdL = s0dL



D3 (input variable change enabling)8s; s0; s00 2 V; a 2 � : s a�! s0 ^ s0dL = s00dL ) s a�! s00Here we used s a�! s0 as shorthand for (s; a; s0) 2 D.{ A set W of trajectories over V satisfyingT1 (existence of point trajectories)8s 2 V : }(s) 2 WT2 (closure under subintervals)8w 2 W; I left-closed, non-empty subinterval of dom(w): w y I 2 WT3 (completeness)(8t 2 T�0 : w y [0; t] 2 W)) w 2 WAxiom Init says that a system has no control over the initial values of its inputvariables: if one valuation is allowed then any other valuation is allowed also.Axiom D1 is a slight generalization of the input enabling condition of the(classical) I/O automaton model: it says that in each state each input action isenabled, including the environment action e. The second axiom D2 says that ecannot change locally controlled variables. AxiomD3 expresses that, since inputvariables are not under control of the system, these variables may be changedin an arbitrary way after any discrete action. The three axioms together implythe converse of D2, i.e., if two states only di�er in their input variables thenthere exists an e transition between them. Axioms D1-3 play a crucial role inour study of parallel composition. In particular D2 and D3 are used to avoidcyclic constraints during the interaction of two systems.AxiomsT1-3 state some natural conditions on the set of trajectories that weneed to set up our theory: existence of point trajectories, closure under subin-tervals, and the fact that a full trajectory is inW i� all its pre�xes are inW.Notation Let A be a HIOA as described above. If s 2 V and l 2 L, then wewrite s a�! l i� there exists an s0 2 V such that s a�! s0 and s0dL = l. In thesequel, the components of a HIOA A will be denoted by VA, UA, �A, �A, etc.Sometimes, the components of a HIOA Ai will also be denoted by Vi, Ui, �i,�i, etc.2.3 Hybrid ExecutionsA hybrid execution fragment of A is a �nite or in�nite alternating sequence� = w0a1w1a2w2 � � �, where:1. Each wi is a trajectory in WA and each ai is an action in �A.2. If � is a �nite sequence then it ends with a trajectory.3. If wi is not the last trajectory in � then its domain is a right-closed intervaland wi:lstate ai+1�!A wi+1:fstate.An execution fragment records all the discrete changes that occur in the evolutionof a system, plus the \continuous" state changes that take place in between. Thethird item says that the discrete actions in � span between successive trajectories.We write h-frag(A) for the set of all hybrid execution fragments of A.



If � = w0a1w1a2w2 � � � is a hybrid execution fragment then we de�ne thelimit time of �, notation �:ltime, to be Pi wi:ltime. Further, we de�ne the �rststate of �, �:fstate, to be w0:fstate.We distinguish several sorts of hybrid execution fragments. A hybrid execu-tion fragment � is de�ned to be{ an execution if the �rst state of � is an initial state,{ �nite if � is a �nite sequence and the domain of its �nal trajectory is aright-closed interval,{ admissible if �:ltime =1,{ Zeno if � is neither �nite nor admissible, and{ a sentence if � is a �nite execution that ends with a point trajectory.If � = w0a1w1 � � �anwn is a �nite hybrid execution fragment then we de�ne thelast state of �, notation �:lstate, to be wn:lstate. A state of A is de�ned to bereachable if it is the last state of some �nite hybrid execution of A.A �nite hybrid execution fragment � = w0a1w1a2w2 � � �anwn and a hybridexecution fragment �0 = w00a01w01a02w02 � � � of A can be concatenated if wn _ w00is de�ned and a trajectory of A. In this case, the concatenation � _ �0 is thehybrid execution fragment de�ned by�_ �0 �= w0a1w1a2w2 � � �an(wn _ w00)a01w01a02w02 � � �2.4 Hybrid TracesSuppose � = w0a1w1a2w2 � � � is a hybrid execution fragment of A. In order tode�ne the hybrid trace of �, let
 = (w0 # EA)vis(a1 )(w1 # EA)vis(a2 )(w2 # EA) � � � ;where, for a an action, vis(a) is de�ned equal to � if a is an internal action or e,and equal to a otherwise. Here � is a special symbol which, as in the theory ofprocess algebra, plays the role of the `generic' invisible action. An occurrence of �in 
 is called inert if the �nal state of the trajectory that precedes the � equals the�rst state of the trajectory that follows it (after hiding of the internal variables).The hybrid trace of �, written htrace(�), is de�ned to be the sequence obtainedfrom 
 by removing all inert � 's and concatenating the surrounding trajectories.The hybrid traces of A are the hybrid traces that arise from all the �nite andadmissible hybrid executions of A. We write h-traces(A) for the set of hybridtraces of A.HIOA's A1 and A2 are comparable if they have the same external interface,i.e.,U1 = U2, Y1 = Y2, �in1 = �in2 and �out1 = �out2 . If A1 and A2 are comparablethen A1 � A2 is de�ned to mean that the hybrid traces of A1 are included inthose of A2: A1 � A2 �= h-traces(A1 ) � h-traces(A2 ).



3 Simulation RelationsLet A and B be comparable HIOA's. A simulation from A to B is a relationR � VA�VB satisfying the following conditions, for all states r and s of A andB, respectively:1. If r 2 �A then there exists s 2 �B such that r R s.2. If r a�!A r0 and r R s then B has a �nite execution fragment � with s =�:fstate, htrace(}(r) a }(r 0)) = htrace(�) and r0 R �:lstate.3. If r R s and w is a closed trajectory of A with r = w:fstate then B has a�nite execution fragment � with s = �:fstate, htrace(w) = htrace(�) andw:lstate R �:lstate.Note that by Condition 3 and the existence of point trajectories (axiom T1),r R s implies that rdEA = sdEB .Theorem1. If A and B are comparable HIOA's and there is a simulation fromA to B, then A � B.4 Parallel Composition and HidingWe say that HIOA's A1 and A2 are compatible if, for i 6= j,Xi \ Vj = Yi \ Yj = �inti \�j = �outi \�outj = ;:If A1 and A2 are compatible then their composition A1kA2 is de�ned to be thetuple A = (U;X; Y;�in; �int; �out; �;D;W) given by{ U = (U1 [U2) � (Y1 [ Y2), X = X1 [X2, Y = Y1 [ Y2{ �in = (�in1 [�in2 )� (�out1 [�out2 ), �int = �int1 [�int2 , �out = �out1 [�out2{ � = fs 2 V j sdV1 2 �1 ^ sdV2 2 �2g{ De�ne, for i 2 f1; 2g, projection function �i : � ! �i by �i(a) �= a if a 2 �iand �i(a) �= e otherwise. Then D is the subset of V � � �V given by(s; a; s0) 2 D , sdV1 �1(a)�!1 s0dV1 ^ sdV2 �2(a)�!2 s0dV2{ W is the set of trajectories over V given byw 2 W , w # V1 2W1 ^w # V2 2 W2Proposition2. A1kA2 is a HIOA.Theorem3. Suppose A1; A2 and B are HIOA's with A1 � A2, and each of A1and A2 is compatible with B. Then A1kB � A2kB.Two natural hiding operations can be de�ned on any HIOA A:(1) If S � �outA , then ActHide(S;A) is the HIOA B that is equal to A exceptthat �outB = �outA � S and �intB = �intA [ S.(2) If Z � YA, then VarHide(Z;A) is the HIOA B that is the equal to A exceptthat YB = YA � Z and XB = XA [ Z.



Theorem4. Suppose A and B are HIOA's with A � B, and let S � �outA andZ � YA.Then ActHide(S;A) � ActHide(S;B) and VarHide(Z;A) � VarHide(Z;B).5 ReceptivenessWe call a HIOA feasible if any �nite execution can be extended to an admissibleexecution. The main signi�cance of feasibility is to guarantee that a HIOA ismeaningful in the sense that it cannot block time. Unfortunately feasibility isnot preserved by parallel composition, and thus we need to impose additionalrestrictions on a HIOA so that the feasibility property is guaranteed to be pre-served by parallel composition. Our ideal objective would be to �nd the weakestrestrictions that need to be imposed; here we just propose some restrictions,although we have not proved that they are the weakest. Below we de�ne a no-tion of receptiveness and prove that it is preserved by composition under somereasonable assumptions.5.1 I/O BehaviorsThe concept of an I/O behavior plays an important role in the de�nition ofreceptiveness. Intuitively, an I/O behavior is a set of trajectories that arise froman HIOA after choosing initial values for the local variables and resolving allinternal nondeterminism.We assume, for each variable v 2 V, a dynamic type Fv, which is a nonemptycollection of functions from T to the domain of v. We require the sets Fv to betime-invariant : for each f 2 Fv and each t 2 T , also f t 2 Fv, where f t is thefunction from T to the domain of v given by f t(t0) �= f(t0 + t). Intuitively, thedynamic type Fv gives the collection of allowed trajectories for v. For instance,if T = R and v has domain R, then Fv will be the set of all continuous or smoothfunctions, or the set of all measurable locally essentially bounded functions [19].If v is a \discrete" variable (in the sense of [15]), then Fv is the set of all theconstant functions. If Z � V then we write F-trajs(Z ) for the set of trajectoriesw over Z with the property that for all z 2 Z, w # z 2 Fzddom(w).An I/O behavior is a triple P = (U; Y;B), where{ U is a set of typed input variables;{ Y is a set of typed output variables with U \ Y = ;; we write V �= U [ Y ;{ B � F-trajs(V ) is a pre�x closed set of trajectories satisfyingB1 (functional dependence of outputs from inputs)For all w;w0 2 B and for all t 2 dom(w) \ dom(w 0),(w � t) # U = (w0 � t) # U ) w(t)dY = w0(t)dYB2 (freedom of inputs)8w 2 Full(F-trajs(U )) 9w0 2 Max (B) : w0 # U � wB3 (nonZenoness)Max (B) � Closed(B) [ Full(B)



Axiom B1 says that the output at time t is fully determined by the inputs attimes up to, but not including, t. Roughly speaking, axiomB2 expresses that theinput is a signal that is imposed by the environment and over which the systemhas no control. However, in a hybrid world a continuous phase of a system canbe interrupted at any time by the occurrence of a discrete transition. A systemmay, for instance, perform a locally controlled discrete action as soon as theinput reaches a threshold value. Therefore, axiomB2 only requires that for eachfull input signal there exists a maximal trajectory that, when projected on itsinput, forms a pre�x of this input signal. Axiom B3 states that each maximaltrajectory is either closed or full. Together, B2 and B3 imply that in an I/Obehavior each input signal is accepted up to and including some �nite time t orup to 1. Note that for any I/O behavior P there is an output state s 2 Y suchthat all trajectories w in B begin with s, i.e., w(0)dY = s.Our I/O behaviors can be viewed as a special case of the I/O behaviors ofSontag [19]. Sontag de�nes I/O behaviors in terms of a response map from inputsignals up to time t to the output at time t, but this presentation is equivalent toour de�nition in terms of trajectories over both inputs and outputs. Technically,we found it a bit easier to use trajectories in this paper. In [19], no assumptionsare made about possible input signals and the length of maximal trajectories(our axioms B2 and B3). However, [19] singles out the so-called V-completeI/O behaviors, which are I/O behaviors that accept any input of type V.In the sequel, the components of an I/O behavior P will be denoted byVP , UP , YP and BP . Also, if no confusion can arise, the components of an I/Obehavior Pi will be denoted by Vi, Ui, Yi and Bi, etc.Two I/O behaviors P1 and P2 are compatible if Y1 \ Y2 = ;. In this case, wede�ne the composition P1kP2 to be the structure P = (U; Y;B) where{ U = (U1 [U2) � (Y1 [ Y2),{ Y = Y1 [ Y2, and{ B � F-trajs(U [Y ) is given by w 2 B , w # V1 2 B1 ^ w # V2 2 B2.In general, the composition of two compatible I/O behaviors need not be an I/Obehavior since there may be \too many solutions":Example 1. Suppose T = R. For u; y variables whose dynamic type is the set offunctions from R to R that have left-hand limits, de�ne Copy(u; y) to be the I/Obehavior that, for t > 0, copies input u to output y, and with the initial valueof y set to 0. Then the composition of Copy(u; y) and Copy(y; u) has no inputvariables and therefore just one full input trajectory is allowed. However, thereis more than one output trajectory and thus the composition does not satisfyaxiom B1.It may also occur that the composition of two compatible I/O behaviorsyields an I/O behavior, even though there exists no \solution" in the sense thatmaximal trajectories can be merged. This motivates the following de�nition.Two compatible I/O behaviors P1 and P2 are strongly compatible if P =P1kP2 is an I/O behavior and, for each trajectory w of P ,w 2 Max (BP ), (w # V1 2 Max (B1) _ w # V2 2Max (B2)):



Example 2. Suppose T = R. For u; y variables whose dynamic type is the setof functions from R to R that have left-hand limits, de�ne Add1(u; y) to be theI/O behavior whose output y is, for t > 0, equal to the input u incremented by1, and with the initial value of y set to 0. Then the I/O behaviors Add1(u; y)and Add1(y; u) are compatible but not strongly compatible, even though theircomposition is an I/O behavior.Let A be a HIOA and let l 2 LA be a valuation of the local variables of A.A nonempty set W of trajectories of A is called an l-process (or process) of A if(UA; LA;W ) is an I/O behavior and, for all w 2W , w(0)dLA = l, i.e., the initialstates of all trajectories in W agree with l.Two compatible HIOA's A1 and A2 are strongly compatible if for each reach-able state s of A1kA2, for each (sdL1)-process W1 of A1, and for each (sdL2)-process W2 of A2, the I/O behaviors (U1; L1;W1) and (U2; L2;W2) are stronglycompatible.5.2 Games and StrategiesIntuitively, a system is receptive if time can advance to in�nity independently ofthe input provided by its environment, or equivalently, if it does not constrainits environment. In [6, 1, 7] various notions of receptivity have been de�ned interms of games. Below, we extend these ideas to the setting of HIOA's. Theinteraction between a system and its environment is represented as a two persongame in which the goal of the system is to construct an admissible execution,and the goal of the environment is to prevent this. The system is receptive if ithas a strategy by which it can always win the game, irrespective of the behaviorof the environment.Formally, a strategy � for A is a function that speci�es, for each sentence �of A with l = �:lstatedLA,1. an l-process W� of A,2. a function g� : Closed(W �)� �inA ! LA satisfyingg�(w; a) = l) w:lstate a�!A l:3. a function f� : Closed(Max (W �))! (�locA � LA) satisfyingf�(w) = (a; l)) w:lstate a�!A l;At the beginning and immediately after each discrete transition, a strategy pro-duces a process W that starts in the current local state. By doing this, a strategyresolves all nondeterminism for the next continuous phase. Typically, choosinga process amounts to �xing the trajectories for certain internal variables thatrepresent disturbances, and deciding at which time the next locally controlledaction will be performed. Once a process has been selected, the input signal fullydetermines the next trajectory in the execution of the system. Since at any pointthe environment may produce a discrete input action, a strategy also speci�es,through the function g, what will be the next local state after such an action.



The values of the input variables after a discrete step are determined by theenvironment. Through the function f , a strategy speci�es, for each maximal andclosed trajectory of the selected process, which locally controlled step will beperformed at the end of this trajectory.In the game between the environment and the system the behavior of theenvironment is represented by an environment sequence. This is an in�nite al-ternating sequenceI = w1 a1 b1 w2 a2 b2 � � �of closed or full trajectories wi 2 F-trajs(UA), actions ai 2 �inA , and booleansbi 2 fT;FgIn the i-th move of the game, the environment produces input signal wi. Ifwi is �nite then the environment produces discrete action ai right after signalwi. The boolean bi serves to break ties in case the environment and the systemboth want to perform a discrete action at the same time: if bi = T then theenvironment is allowed to make a move and otherwise the system may performan action. As in [7], our game starts after a �nite execution �. The outcome ofthe game is described formally in the following de�nition.Let A be a HIOA, � a strategy for A, I an environment sequence for A (with� and I as de�ned above), and let � be a �nite hybrid execution of A. We de�nethe outcome O�;I(�) as the limit of the sequence (�i)i�0 of hybrid executionsthat is constructed inductively below. Each �i is either a sentence or admissible.Let l = �:lstatedLA. Then �0 �= � e }(w1(0) [ l).Here we extend � in a trivial way to a sentence in order to get into a situationwhere strategy � can be applied in combination with environment sequence I.In the de�nition, [ is the operation that takes the union of two functions, eachviewed as a set of pairs. The �rst argument of [ yields the values for the inputvariables and the second argument the values for the locally controlled variables.For i > 0, de�ne �i in terms of �i�1 as follows.If �i�1 is admissible then �i �= �i�1.Otherwise, �i�1 is a sentence. Pick any full trajectory w+i 2 F-trajs(UA)with wi � w+i . Then by axiom B2 there is a maximal execution w0i 2 W� withw0i # UA � w+i . By axiom B1, w0i is uniquely determined by the choice of w+i .Let t = wi:ltime and t0 = w0i:ltime. We distinguish between three cases:1. If t = t0 =1 then�i �= �i�1 _ w0i:This is the case where both the system and the environment have decidednot to perform any discrete action.2. If t < t0 or t = t0 <1^ bi = T, then�i �= �i�1 _ ((w0i � t) ai }(wi+1(0) [ g�i(w0i � t; ai))):This is the case where, after an initial fragment of w0i, the environmentproduces an input action ai. The resulting state after this action is obtained



by taking the union of the �rst state of the next input trajectory and thelocal state that is speci�ed by the g-part of the strategy.3. If t0 < t or t = t0 <1^ bi = F and if we let f�i(w0i) = (a0i; li), then�i �= �i�1 _ (w0i a0i }(wi+1(0) [ li)):This is the case where, after w0i has been completed, the system performs alocally controlled step as speci�ed by the f-part of the strategy.Note that the de�nition of �i does not depend on the choice of w+i since byaxiom B1 the pre�x w0i � t of w0i that is used in the construction is determineduniquely by the �xed pre�x wi of w+i .Proposition5. O�;I(�) is a Zeno or admissible hybrid execution of A.A hybrid execution � of a HIOA A is Zeno-tolerant i� it is Zeno, containsin�nitely many input actions and only �nitely many locally controlled actions.A strategy � for A is Zeno-tolerant if for each environment sequence I and foreach �nite execution �, O�;I(�) is either admissible or Zeno-tolerant. We call Areceptive i� there exists a Zeno-tolerant strategy for A. Note that each receptiveHIOA is trivially feasible.We now come to the main result of this paper.Theorem6. Suppose A1 and A2 are strongly compatible, receptive HIOA's.Then A1kA2 is receptive.The corresponding result for the hiding operations is much easier to prove:Theorem7. Suppose A is a receptive HIOA, and let S � �outA and Z � YA.Then ActHide(S;A) and VarHide(Z;A) are receptive.5.3 Strong Compatibility vs. CompatibilityIn order to apply Theorem 6, one has to establish that the HIOA's A1 andA2 are strongly compatible. From control theory it is well-known that this isa di�cult problem in general. However, it is possible to identify certain classesof I/O behaviors for which strong compatibility reduces to compatibility. Thismeans that for all processes of A1 and A2 in such a class, the condition of strongcompatibility in Theorem 6, which in general is hard to check, reduces to thesyntactic condition of compatibility.A �rst example can be obtained by considering what we call autistic I/Obehaviors. These are I/O behaviors that accept any input but produce an outputthat is totally unrelated to this input. Formally, an I/O behavior is called autisticif it satis�es the axiomB4 8w;w0 2 B : dom(w) = dom(w 0) ) w # Y = w0 # Y



It is easy to verify that two autistic processes are strongly compatible i� theyare compatible. From the perspective of classical control theory autistic processesare de�nitely of no interest: why have an input if it is not used at all? In a hybridsetting, however, an automaton that does not process its input in a continuousmanner can still monitor this input and perform a discrete transition when somethreshold is reached. In linear hybrid automata [3, 2], for instance, there is nocontinuous processing of inputs and all underlying processes are autistic.Less trivial examples of classes of I/O behaviors for which strong compati-bility reduces to compatibility can be found in the literature on control theory[19]. In control theory it is common to express the continuous behavior of asystem by means of di�erential equations; thus, to be sure that a system is welldescribed, the di�erential equations need to admit a unique solution for eachpossible starting condition of the system. A typical approach is to describe asystem through di�erential equations of the formE �= � :x = f(x; u)y = g(x)where u; y; and x are the input, output, and internal vectors of variables, re-spectively. It is known from calculus that if f is globally Lipschitz and u is C1,then for each �xed starting condition x(0) = x0 there is a unique solution to theequations of E, de�ned on a maximal neighborhood of 0, such that x(0) = x0.Suppose that the dynamic type of each input variable is the set of all C1 func-tions. Consider the set W of all the solutions to E for each possible choice of x0and of u(t), and let (U;X [ Y;W 0) be any I/O behavior whose trajectories arepre�xes of trajectories in W . We say that (U;X [ Y;W 0) is an I/O behavior ofE. Consider now two systems, described by equations E1 and E2 with the sameform as E, and suppose there are no common locally controlled variables in E1and E2. The interaction between E1 and E2 can be described by a new set ofequations E3 obtained by considering together the equations of E1 and E2. Ifalso the g functions of E1 and E2 are globally Lipschitz, then it is easy to showthat E3 can be represented in the same form as E where f and g are globallyLipschitz. Furthermore, let P1 and P2 be any two I/O behaviors of E1 and E2,respectively. Then it is the case that P1 and P2 are strongly compatible and thatP3 is an I/O behavior of E3.Therefore, if we choose the dynamic type of each variable to be the set of all C1functions, then strong compatibility reduces to compatibility for I/O behaviorsof systems of equations E, where f and g are globally Lipschitz. In general,any choice of conditions on f and u that guarantee local existence of uniquesolutions and that are preserved by interaction between systems can be used asa basis to de�ne a class of processes for which strong compatibility reduces tocompatibility.Acknowledgment We thank Jan van Schuppen for constructive criticism.
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