Modelling Shared State in a Shared Action Model

Kenneth J. Goldman and N ancy A. Lynch

March 15, 1990

Abstract

The I/O automaton model of Lynch and Tuttle is extended to allow modelling of shared memory
systems, as well as systems that include both shared memory and shared action communication.
A full range of types of atomic accesses to shared memory is allowed, from basic reads and writes
to read-modify-write. The extended model supports system description, verification and analysis.
As an example, Dijkstra’s classical shared memory mutual exclusion algorithm is presented and
proved correct. '

Keywords: shared memory, formal models, distributed computing, distributed algorithms, mu-
tual exclusion, input/output automata

(©1989 Massachusetts Institute of Technology, Cambridge, MA 02139

This work was supported in part by the National Science Foundation under Grant CCR-86-11442,
by the Office of Naval Research under Contract N 00014-85-K-0168, and by the Defense Advanced
Research Projects Agency (DARPA) under Contract N00014-83-K-0125.

1 Introduction

‘Reasoning about algorithms for asynchronous concurrent systems is difficult, primarily because of
the arbitrary interleaving of process steps that may occur in an execution. As a result, researchers
have turned to formal models in order to define problems precisely, give unambiguous descriptions
of algorithms, and construct careful proofs for safety and progress properties. These models allow
one to be explicit about the possible interleavings that may occur in a distributed system and may
specify which of those interleavings are to be considered “fair” to the individual system components.
Examples include CSP [4], in which system components communicate by sending messages over
synchronous channels, and UNITY [1], in which components communicate by reading and modifying
shared variables. ' ' ,

The I/O automaton model [7, 8] is particularly well-suited for modelling distributed algorithms
described using message passing. The I/O automaton model is a (not necessarily finite) state
machine model that provides extra support for classifying actions as input or output and for de-
scribing fairness conditions. Precise problem statements are defined in terms of the input and
‘output actions that occur at the boundary between the algorithm and its “environment.” These
problem statements may include nontrivial liveness constraints on the behavior of the algorithm.
Careful algorithm descriptions are constructed by specifying the states and transition relations of
I/0 automata. A range of proof techniques, from simple assertional reasoning to hierarchical pos-
sibilities mappings, may be used to verify an algorithm satisfies a problem statement. In addition,
the model can be used for carrying out complexity analysis and for proving impossibility results.
The communication mechanism in a distributed system is modeled as an explicit I/O automaton
that shares actions with the other system components. Therefore, the model can accommodate a
variety of message-passing systems, from systems with strictly FIFO message delivery to those in
which messages may be delivered out of order or not at all. :

Although the I/O automaton model provides excellent support for modelling message-passing
algorithms, many of the important asynchronous concurrent algorithms are described using shared
memory. And in some cases one might wish to use both shared-memory and message-passing to
describe different parts of an algorithm. Therefore, it would appear that introducing a shared-
memory mechanism into the I/O automaton model would be a useful unification of these two
approaches. The shared memory model of Lynch and Fischer [5] introduced the separation of input
and output actions, and was a precursor of the current I/0O automaton model. However, until now
it has not been clear how to integrate the two basic approaches. .

In this paper, we extend the I/0 automaton model to allow modelling of shared memory systems,
as well as systems that have both shared memory and shared action communication. A full range
of types of atomic accesses to shared memory is allowed, from basic reads and writes to atomic
read-modify-write. We define a special class of actions, called “shared memory actions,” to model
atomic accesses to shared memory. Each shared memory action contains extra information that
corresponds to the contents of the shared memory before and after the action occurs. A “shared
memory automaton” is then defined to be an I/0 automaton that satisfies certain natural conditions
regarding its shared memory actions. For example, one condition captures the idea that an access
to shared memory must be prepared to observe any value in the memory.

Since shared memory automata are simply special cases of I/0O automata, all the I/0 automa-
ton model definitions and properties (notably composition and fairness) apply to shared memory
automata as well. We show that composing of a collection of shared memory automata (for a given
set of shared variables) yields another shared memory automaton (for the same set of variables).
To combine shared memory automata having different (not necessarily disjoint) sets of shared vari-
ables, we define an “augmentation” operator that is used to expand the set of shared variables

for each component before composing. We show that the natural compositionality results hold
when we combine shared memory automata in this way. For example, projecting the execution
of a composition on the individual components yields executions of those components. Since we
expose the observed state of shared memory in the behavior of an automaton, we also achieve
compositionality of the behaviors of shared memory automata. That is, in the standard sense of
I/0 automaton composition, the behaviors of a composition of shared memory automata are the
same as the composition of the behaviors of the individual automata. '

Shared memory automata operate in a system in which the environment is free to change the
contents of the shared memory at any time. We define a “closeout” operator, which takes a shared
memory automaton and a set of variables and produces a new shared memory automaton in which
the given set of variables is made private, absorbed into the local state. In this way, we restrict
the set of components in a system that may access portions of the shared memory.! We provide an
analogous closeout operator on sets of behaviors, and we show that the behaviors of a closed out
automaton are the same as the closed out behaviors of the original automaton.

Just as does the original I/O automaton model, our extended model supports careful prob-
lem specification (including both safety and progress properties), unambiguous system description,
verification and analysis. Both safety and progress properties of algorithms may be shown using
standard proof techniques (e.g., invariant assertions and variant functions). To illustrate these tech-
niques, we present and prove the correctness of Dijkstra’s classical shared memory mutual exclusion
algorithm using the shared memory I/O automaton model. 4 .

The first author is currently developing the Spectrum Simulation System, a research tool for
the design of distributed algorithms [3]. Spectrum consists of a language and simulator based on
the I/O automaton model. Users express distributed algorithms as I/O automata and simulate
them directly, using the semantics of the formal model. A graphical interface is provided for con-
structing systems of automata and animating their executions. Using I/0 automaton composition,
Spectrum users may define’ composed types hierarchically, study simulations at varying levels of
detail, and create specialized debugging and analysis devices. Incorporating the shared memory
extensions (specifically, the closeout operator) into this system will allow simulation of message-
passing algorithms, shared memory algorithms, and hybrid algorithms all within a single formal
framework. This is an added benefit of building a powerful unified model that accommodates both
message-passing and shared memory communication. Although Spectrum does not yet support the
closeout operator, we were able to use Spectrum to simulate the example algorithm presented in
Section 4 by explicitly constructing the closed out automaton. The invariants and variant function
were mechanically checked for random executions of the algorithm.

The remainder of the paper is organized as follows. In Section 2, we review the I/O automaton
model. We define our extensions for shared memory in Section 3 and show some important prop-
erties that follow from these definitions. In Section 4, the extended model is used to present and
prove correct Dijkstra’s shared memory mutual exclusion algorithm. The paper concludes with a
summary and discussion.

2 The I/O Automaton Model

The following introduction to the I/0 automaton model is adapted from [8], which explains the
model in more detail, presents examples, and includes comparisons to other models.

!The ability to closeout with respect to a subset of the shared variables (as opposed to the entire set) may be
likened to lexical scoping of variable declarations in a conventional programming language.

2.1 1I/O Automata

I/O automata are best suited for modelling systems in which the components operate asyn-
chronously. Each system component is modeled as an I/O automaton, which is essentially a
nondeterministic (possibly infinite state) automaton with an action labeling each transition. An
automaton’s actions are classified as either ‘input’, ‘output’, or ‘internal’. An automaton can es-
tablish restrictions on when it will perform an output or internal action, but it is unable to block
the performance of an input action. An automaton is said to be closed if it has no input actions;
it models a closed system that does not interact with its environment, »

Formally, an action signature S is a partition of a set acts(S) of actions into three disjoint
sets in(S5), out(S), and int(S) of input actions, output actions, and internal actions, respectively.
We denote by ext(S§) = in(S) U out(S) the set of external actions. We denote by local(S) =
out(§)Uint(S) the set of locally-controlled actions. An I /O automaton consists of five components:

o an action signature sig(A), '

®

a set states(A) of states,
¢ a nonempty set start(A) C states(A) of start states,

® a transition relation steps(A) C states(A) x acts(4) x states(A) with the property that for
every state s’ and input action 7 there is a transition (s’,,s) in steps(A), and

L]

an equivalence relation part(A) partitioning the set local(A) into at most a countable number
of equivalence classes.

The equivalence relation part(A) will be used in the definition of fair computation. Each class of
the partition may be thought of as a separate process. We refer to an element (¢',7,8) of steps(A)
as a step of A. If (s', 7, s) is a step of A, then r is said to be enabled in s'. Since every input action
is enabled in every state, automata are said to be input-enabled. This means that the automaton
'is unable to block its input. , ,

An ezecution of A is a finite sequence sq, 7y, 51, .. . » Tn, Sn OF an infinite sequence sg, 7y, 81,79, . ..
of alternating states and actions of A4 such that (8iyMig1,841) is a step of A for every i and
so € stari(A). The schedule of an execution e is the subsequence of « consisting of the actions
appearing in . The behavior of an execution or schedule o of A4 is the subsequence of « consisting of
-external actions. The sets of executions, finite executions, schedules, finite schedules, behaviors, and
finite behaviors are denoted ezecs(A), finezecs(A), scheds(A), finscheds(A), behs(A), and finbehs(A),
respectively. The same action may occur several times in an execution or a schedule; we refer to a
particular occurrence of an action as an event. '

The separation of input and output actions will be important in our shared memory extensions
for two reasons. First, the fact that each action is under the control of exactly one component
means that by simply using actions to model updates to the shared memory, we capture the notion
of a single module making an atomic update to shared memory (without any active participation
by other modules). Second, the fact that input actions are always enabled means that we can
use shared memory input actions to construct modules that passively observe the shared memory
accesses by others without interfering. We will return to these points in Section 3.7,

2.2 Composition

We can construct an automaton modelling a complex system by composing automata, modelling
the simpler system components. When we compose a collection of automata, we identify an output

3.

i

action 7 of one automaton with the input action 7 of each automaton having 7 as an input action.
Consequently, when one automaton having 7 as an output action performs 7 , all automata having
© as an action perform 7 simultaneously (automata not having 7 as an action do nothing).

Since we require that most one system component controls the performance of any given action,
* we must place some compatibility restrictions on the collections of automata that may be composed.
A countable collection {S;};c; of action signatures is said to be strongly compatible if for all 4,5 € I

satisfying ¢ # 7 we have
1. out(S;) N out(S;) =0,
2. int(8;) N acts(S;) = 0, and
3. no action is contained in infinitely many sets‘ acts(S;).

‘We say that a collection of automata are strongly compatible if their action signatures are strongly

compatible. _
The composition S = [1;¢; Si of a countable collection of strongly compatible action signatures

{8i};e; is defined to be the action signature with
o in(S) = Uierin(S:) — Uierout(Si),
o out(S) = Uierout(S:), and
o int(S) = Userint(5;).

The composition A = [Lier Ai of a countable collection of strongly compatible automata {A4;};; is
the automaton defined as follows:2

o sig(A) = [Lier sig(As),
s states(A) = [Lies states(4;),
o start(A) = [lier start(A;),

o steps(A)is the set of triples (57,7, §2) such that, foralli € I,if 7 € acts(A;) then (si[i], 7, $2[i]) €
steps(A;), and if © & acts(A;) then §i[i] = $3[i], and

o part(A) = Uierpart(4;).

Given an execution a = somsi... of A, let a]A; (read “a projected on A;”) be the sequence
obtained by deleting 7;5; when 7; ¢ acts(A;) and replacing the remaining §; by §;[3).

In defining the behaviors of a composition, it is sometimes convenient to hide actions, making
them internal actions of the composition. The hidden actions are usually locally controlled actions
of the composition that are also inputs to some of its own components.

2Here start(A) and states(A) are defined in terms of the ordinary Cartesian product, while sig(A) is dedned in
terms of the composition of actions signatures just defined. Also, we use the notation 3(i] to denote the ith component
of the state vector 3. :

2.3 Fairness

Of all the executions of an I/0 automaton, we are primarily interested in the ‘fair’ executions —
those that permit each of the automaton’s primitive components (i.e., its classes or processes) to
have infinitely many chances to perform output or internal actions. The definition of automaton
composition says that an equivalence class of a component automaton becomes an equivalence
class of a composition, and hence that composition retains the essential structure of the system’s
primitive components. In the model, therefore, being fair to each component means being fair to
each equivalence class of locally-controlled actions. A fair ezecution of an automaton A is defined
to be an execution a of A such that the following conditions hold for each class (' of part(A):

1. If « is finite, then no action of C is enabled in the final state of a.

2. If o is infinite, then either o contains infinitely many events from C, or « contains infinitely
many occurrences of states in which no action of C is enabled.

We denote the set of fair executions of 4 by fairezecs(A). We say that 8 is a fair behavior of A if 8
is the behavior of a fair execution of 4, and we denote the set of fair behaviors of A by fairbehs(A).
Similarly, 8 is a fair schedule of A if B is the schedule of a fair execution of A, and we denote the
set of fair schedules of 4 by fairscheds(A).

In our example progress proof of Dijkstra’s mutual exclusion algorithm, we will rely on the
built-in fairness feature of the I/O automaton model in order to reason about progress in a system
containing several active, non-failing processes accessing passive shared memory.

2.4 Problem Specification

A ‘problem’ to be solved by an I/O automaton is formalized as a set of (finite and infinite) sequences
of external actions. An automaton is said to solve a problem P provided that its set of fair behaviors
is a subset of P. Although the model does not allow an automaton to block its environment or
eliminate undesirable inputs, we can formulate our problems (i.e., correctness conditions) to require
that an automaton exhibits some behavior only when the environment observes certain restrictions
on the production of inputs.

We want a problem specification to be an interface together with a set of behaviors. We therefore
define a schedule module H to consist of two components, an action signature sig(H), and a set
scheds(H) of schedules. Each schedule in scheds(H) is a finite or infinite sequence of actions of J.
Subject to the same restrictions as automata, schedule modules may be composed to form other
schedule modules. The resulting signature is defined as for automata, and the schedules scheds(H)
is the set of sequences f of actions of H such that for every module H' in the composition, BlH' is
a schedule of H'.

It is often the case that an automaton behaves correctly only in the context of certain restrictions
on its input. A useful notion for discussing such restrictions is that of a module ‘preserving’ a
property of behaviors. A set of sequences P is said to be prefiz-closed if B € P whenever both 4
is a prefix of @ and @ € P. A module M (either an automaton or schedule module) is said to be
prefiz-closed provided that finbehs(M) is prefix-closed. Let M be a prefix-closed module and let P
be a nonempty, prefix-closed set of sequences of actions from a set & satisfying @ N int(M) = 0.
We say that M preserves P if B7|® € P whenever 5|® € P, 1 € out(M), and fr|M € finbehs(M).
Informally, a module preserves a property P iff the module is not the first to violate P: as long
as the environment only provides inputs such that the cumulative behavior satisfies P, the module
will only perform outputs such that the cumulative behavior satisfies P. One can prove that a

composition preserves a property by showing that each of the component automata preserves the

property.

3 Shared Memory Definitions

In this section, we present a set of definitions that extends the I/O automaton model in order to
allow modelling shared memory algorithms. We do not redefine any concepts, but simply add new
.concepts to the existing model. We model each system component that accesses shared memory as
a restricted I/O automaton called a “shared memory automaton”. The fact that shared memory
automata are simply special cases of I/O automata means that all the standard definitions and
properties of I/O automata (e.g., composition and fairness) can be used directly in descriptions
and proofs of shared memory algorithms.

3.1 Variables

We will model shared memory in terms of a collection of variables, so the first step is to define
what is meant by a variable. We define a varigble ¢ to have a domain dom(z) of values and an
initial value init(z) € dom(z). Given a set X of variables, we model a state of X by an assignment
mapping for X, denoted fx, that maps each variable z € X to a value in dom(z). We let Fx denote
the set of all possible assignment mappings for X. We define init(X) to be the assignment mapping
fx € Fx such that Yz € X, fx(z) = init(z). If X and Y are sets of variables such that ¥ C X,
we define fx|Y to be the assignment mapping fy € Fy such that for allye?, fir(y) = fx(y). If
X and Y are disjoint sets of variables, and Sy, Sy are sets of assignment mappings for X and Y,
respectively, then we define Sx o Sy to be the set of assignment mappings S for X UY such that for
all s € 9,8|X € Sx and s|Y € Sy. As shorthand, we may represent a singleton set of assignment
mappings by its only element. For example, if fx is an assignment mapping for X, we write fx o Sy
instead of {fx} o Sy. Analogously, for fx € Fx and fy € Fy, welet fx o fy represent its only
element when it is clear from context that a mapping (rather than a set of mappings) is called for.
If fe Fx,z € X, and v € dom(z), we define fl,-,) to be the assignment mapping f" such that

FIX\Az}) = X\ {=}) and f'(z) = v.

3.2 Shared Memory Actions

Since the only “sharing” that occurs in the I/O automaton model is the sharing of actions, we
construct shared memory on top of the existing shared action mechanism. We begin by defining a
special type of action called a “shared memory action” that will be used to model accesses to the
shared variables®. »

We fix £, a universal set of access labels. Let X be a set of variables. We define a shared
memory action for X to be a triple of the form (f%,a, fx), where f%, fx € Fx and a € £.* We let
sm-acts(X) denote the set of all possible shared memory actions for X. We say that = is a shared
memory action iff it is a shared memory action for some X. We say o is a shared memory step (for
X)) iff its contained action is a shared memory action (for X). :

To construct signatures for shared memory automata, we need the following technical definition.
Let TI be a set of actions and X a set of variables. We say that II is complete for X iff Vr € II, if

3In some sense; this is the reverse of what is often done to incorporate message passing into a shared memory
model. In UNITY [1], for example, shared queue variables are declared to model “channels” and atomic accesses to
these shared quenes model “sending” and “receiving” data across the channels.

“These triples are action names, not to be confused with the steps of an automaton.

T = (fk,a, fx) is a shared memory action for X, then Vf},f:x € Fx,(fx,a, f};) e1l.

Let X and Y be sets of variables such that Y C X. If 1 = (fxa, fx) is a shared memory action
for X, we define its projection on Y, denoted Y, to be (f%|Y,a, fx|Y), a shared memory action
for Y. If 8 is a sequence of actions, all of whose shared memory actions are shared memory actions
for X, then we define 8]Y to be the sequence that results from replacing each shared memory
action of 8 by its projection on Y. Projections on sets of shared memory actions, signatures
containing shared memory actions, and sets of sequences containing shared memory actions are
defined analogously. If o = (s',7,s) is a step with 7 a shared memory action for X, then oY is
defined to be (&', 7Y, s). .

3.3 Shared Memory Automata

Let X be a set of variables, and let 4 be an I/0 automaton all of whose shared memory actions are
external shared memory actions for X. Let shared-in(A) denote the set of shared memory actions
that are inputs to A, and let shared-out(A) denote the shared memory actions that are outputs of
A. We say that A is a shared memory automaton for X iff it satisfies the following conditions:

1. The sets of actions shared-in(A) and shared-out(A) are each complete for X.

2. For all steps (¢, (fy,q, fx),s) € steps(A),
if (fk,a, fx) € shared-out(A), then for all f% € Fx, there exists a state § and some fx € Fx
such that (s, (fi,a, fx),3) € steps(A).

3. In the equivalence relation part(A), any two output actions (f%,a, fx) and (f},a, fx) are
elements of the same equivalence class. -

The first condition says that if A has a shared memory action with a given label a, then it has all
possible shared memory actions with label a. For input actions, this means that A must be prepared
to handle any value it may observe in the shared variables (since inputs are always enabled). For
output actions, this condition is simply a technical restriction that makes composition of shared
memory automata work out properly, as we will see later. The condition also makes describing the
signatures of shared memory automata more convenient, since we need not list all the allowable
values of the shared variables for each shared memory action label used.

The second condition says that for each shared memory output step, there exists a step from
the same state for each possible assignment of the shared variables. In essence, this says that the
preconditions of an output action may not depend on the values of the shared variables. This
corresponds with the notion that one cannot observe the values of shared variables except by
accessing them, and that one must be prepared to handle any value that might be observed.

The third condition says that the equivalence class membership of an output action may not
depend upon the values of the external variables. This is a technical condition that prevents
a nonsensical situation in which executions must be “fair” to the different values of the shared
variables.

Since a shared memory automaton is an I/O automaton, all the standard I/O automaton
definitions for executions, schedules, behaviors, composition, and fairness carry over to shared
memory automata. ‘

Theorem 1: The composition of a strongly compatible collection of shared memory automata for
X is a shared memory automaton for X. '

Proof: We know that the composition of a strongly compatible collection of I/O automata is
an I/O automaton. Furthermore, since external actions of the components are external actions

[

of the composition, we know that all of the shared memory actions are external actions in the
composition. All of these are shared memory actions for X. It remains to be shown that the
composition satisfies the three conditions imposed on shared memory automata for X. Condition
1 holds, since the union of complete sets of actions is clearly a complete set. For condition 2, we
note that composition does not introduce any new output actions, nor does it remove any existing
output actions. Furthermore, input-enabling and the definition of composition imply that for each
output step (s}, 7, s;) of a component A;, for all states s’ of the composition A, if s'|A; = s, then
there exists a state s of A such that (s',7,s) is a step of A. Thus, Condition 2 holds. Since
the equivalence relation of the composition is the union of the individual equivalence relations of
the components, any two actions in the same equivalence class in a component are in the same
equivalence class in the composition. Since the set of shared memory output actions for each
component is complete, strong compatibility assures us that no two shared memory output actions
with the same label occur in different classes of the composition. This guarantees Condition 3. =

So far, we have given a general set of definitions for modelling collections of modules that access
.shared memory. Our accesses allow a module to atomically read the entire contents of memory,
perform some local computation (possibly resulting in a state transition), and update the entire
contents of shared memory. This general type of shared memory access is, of course, an expensive
operation to implement. Therefore, we would like to define systems in which the shared memory
accesses are more restricted. For example, in the most restricted case, we might only allow read or
write accesses to single shared variables. ‘ ,

Let A be a shared memory automaton for X, let a be an access label of A, and let z € X. We
say that a is a :

1. read access to z it V(s',(f',a, f),s) € steps(A),

(a) f= f" and v
(b) Vf € Fx such that f(z) = f/(2), (s'(f,a,), s) € steps(A).

9. write access to z with value v iff V(s',(f',a, f), s) € steps(A),.

(a) f= f[’xm] and
(b) ¥/ € Fx, (s',(f, a,f[x=v]),s) € steps(A).

In a read access to z, the shared memory is unmodified and the new state of A depends only
upon the value observed in variable z. In a write access to z, the “before” and “after” states of
shared memory differ only in the value of variable z, and the new state of A and the new value of
¢ are independent of the “before” state of shared memory. _

We now define a restricted class of shared memory automata called “single-variable read-write
automata.” In such automata, each access label for a shared memory output is constrained to be a
read access or a write access to a single variable. Let A be a shared memory automaton for X, and
let 4 be a partition of the access labels for actions in shared-out(A) such that there exist exactly
two classes in 1 for each variable in 2 € X, denoted ¥,(z) and ¥, (z). The partition 1 is called the
access partition of A. We say that A is a single-variable read-write automaton under iffve € X,
¥r(z) contains only read accesses to z and 1, (z) contains only write accesses to z. We say that
such an automaton can read x iff 1,() is nonempty, and can write iff ¥, (z) is nonempty. If () is
a collection of single-variable read-write automata, then a component of @ is said to own a variable
¢ if it is the only component that can write z; in this case, & is said to be a single-writer variable.
Multi-writer, single-reader, and multi-reader variables are defined in the obvious way.

Other classes of shared memory automata could be constructed in a similar manner. For
example, one might define test-and-set or memory-to-memory-swap accesses and define automata
in which the access labels are appropriately partitioned into additional classes. In fact, this style of
definition can be used to define shared memory accesses for operations on arbitrary data types, such
as enqueue and dequeue. Of course, any shared memory algorithm could be expressed and studied
using the general shared memory automaton definition only, but being specific about the types of
shared memory accesses allowed makes the assumptions about the underlying shared memory more
explicit, and also may help simplify reasoning about the algorithm.

3.4 Augmentation and Augmented-Composition

In building up I/O automaton systems, we may wish to compose collections of shared memory
automata having different (either intersecting or disjoint) sets of shared variables. We would like
the result of this composition to be a shared memory automaton for Z, where Z is the union of
the sets of shared variables of the automata being composed. In order to accomplish this, we first
“augment” each of the automata with additional shared variables so that its set of shared variables
is Z. Then we compose as usual.’

We now define what is meant by augmenting an automaton. Let X and Z be sets of variables,
with X C Z. Given a shared memory automaton A for X , we define augment(A, Z), read “the
augmentation of 4 to Z,” to be the automaton B as follows:

o in(B) = {r €sm-acts(Z) : x| X €shared-in(A)} U
(in(A)\shared-in(A)).
o out(B) = {r €sm-acts(Z) : 7| X €shared-out(A)} U
(out(A)\shared-out(A)).
o int(B) = int(A).
¢ states(B) = states(A).
e start(B) = start(A).
e steps(B) = all steps ¢ = (s, 7, s) such that either
1. o € steps(A) and 7 is not a shared memory action, or
2. 0|X € steps(A) and 7 €shared-in(B), or
3. o|X € steps(A), * = (fY,a, f2) €shared-out(B), and f3|(Z - X) = fz|(Z - X).
» pari(B) = {C C local(B) : C|X € part(A)} such that part(B) forms a partition of the
locally-controlled actions of B.

Essentially, we augment 4 by making the signature complete for Z, while leaving the set of states
unchanged. For each step involving a shared memory action 7 for X, we substitute the set of all
steps in which « is replaced by a shared memory action for Z (call it ') such that 7’| X = r. For
cutput actions steps, we make the further restriction that if 7/ = (f%,a, fz), then f% and fz differ
only in their assignments to the variables of X. This models the fact that outputs of B only change
the values of shared variables in X. We do not make this restriction for input actions because

SWhen composing a shared memory automaton with an “ordinary” I/O automaton, no augmentation is necessary,
since an ordinary I/O automaton is by definition an SMA for any set of variables X.

Hi

they are always enabled. This also highlights the fact that the shared memory accesses of B are
independent of all shared variables other than those in X. The partltmn of B is constructed from
that of A to reflect the differences in their signatures.

Theorem 2: Let X and Z be sets of variables, with X C Z, and let A be a shared memory
automaton for X. Then augment(A, Z) is a shared memory automaton for Z.
Proof: Immediate from the definitions of augmentation and shared memory automata. =

Our next result, Theorem 5, says that augmentation does not (in any significant way) affect the
behavior of an automaton. This is proved using the following lemmas.

Lemma 3: Let X and Z be sets of variables such that X C Z. If A is a shared memory automaton
for X and a4 is an execution of A, then there exists an execution ap of B = augment(A, Z) such
that aglX = a4. 4

Proof Clearly, if a4 contains no actions, the claim holds. For the inductive hypothesis, let
ag = aymas be an execution of A, and let o’ be the execution of B such that o5|X = o).
"'Clearly the state of A after oy is the same as the state of B after oz, Let this state be s'. It
“remains to be shown that some 7p is enabled from s’ in B, resulting in state s, where 75| X = 74.
If 74 is not a shared memory action, then the result is trivial, since the steps of 4 and B differ
“only with respect to shared memory actions. If 74 is a shared memory action (f%,a, fx), then by
‘the definition of augmentation, there must be a step (s', 75 = (f%,a, fz),s) € steps(B) such that
mB|X =ma. . =

Lemma 4: Let X and Z be sets of variables such that X C Z. If A is a shared memory automaton
for X and ap is an execution of B = augment(A, Z), then there emsts an execution a4 of A such
that ay = aglX.

Proof: If ap has no actions, the claim holds. For the inductive hypothesis, let ag = ag7gs
be an execution of B, and let ¢y be the execution of A such that o/4|X = ;. Clearly the state
of B after o/y is the same as the state of A after o/y. Let this state be s'. It remains to be shown
that some 74 is enabled from s’ in A, resulting in state s, where 74 = 7p|X. If 7p is not a shared
memory action, then the result is trivial as before. If np is a shared memory action (f%,a, fz),
then by the definition of augmentation, the step (', (f5|X,a, fz]X),s) € steps(A). Therefore, the
second claim holds. "

Theorem 5: Let X and Z be sets of variables such that X C Z. If A is a shared memory
automaton for X, then

1. behs(augment(A, Z))|X = behs(A), and
2. fairbehs(augment(A,Z))lX = fairbehs(A).

Proof: Part 1 is immediate from Lemmas 3 and 4.

For Part 2, let oy be a fair execution of A, and let 84 = beh(ay). From Lemma 3, we know
that there exists an execution ap of B = augment(A4, Z) such that ag|X = a4. To show that
ap is fair, we apply the definition of augmentation. From the construction of steps(B), a shared
memory action m € acts(B) is enabled in state s of B only if 7| X is enabled in state s of A. The
remaining actions 7 € acts(B) are enabled in in state s of B only if 7 is enabled in state s of A.
Furthermore, any two actions 7 and 7’ are in the same equivalence class of B iff | X and =’]X are
in the same equivalence class of A. So, since a4 is fair, ap is fair.

Now, to show the other direction, let ap be a fair execution of B. By Lemma 4, there exists an
execution a4 of A such that ag = ap|X. To show that ay is fair, we argue similarly to above. =

10

We can now define augmented-composition, making use of the augmentation definition and stan-
dard I/0 automaton composition.

Augmented—Composition: Let {Xi};er be a collection of (not necessarily disjoint) sets of vari-
ables, let Z = U;e1X;, let each A; be a shared memory automaton for X;, and let the collection
{ augment(A;)};c; be strongly compatible. We define the augmented composition Hj—e 1 A; to be the
ordinary I/O automaton composition [Lier augment(A;, Z). :

Theorem 6: Let {Xi}icr be a collection of (not necessarily disjoint) sets of variables, let Z =
UierXi, let each A; be a shared memory automaton for Xi, and suppose that the collection of
automata {augment(A;, Z)},; is strongly compatible. ‘Then the augmented composition I'L?Le 1 A;
is a shared memory automaton for Z. .

Proof: By Theorem 2, for each A;, augment(A;, Z) is a shared memory automaton for Z.
Therefore, by Theorem 1, the result holds. ‘]

The following three compositionality results follow immediately from the corresponding results in
(8], together with Theorems 5 and 6. The first result says that an execution of an augmented-
composition induces executions of the component shared memory automata.

Corollary 7: Let {X},c; be a collection of sets of variables, where Z = UierX;. Let {A;};c; bea
collection of automata such that each A; is a shared memory automaton for X;. Let the collection
of automata {augment(4;, Z)};; be strongly compatible, and let A = [IE Ai. If o € ezecs(A)
then (alaugment(A;, Z))|X; € ezecs(A;) for every i € I. Moreover, the same result holds if ezecs()
is replaced by fairezecs(), scheds(), fairscheds(), behs(), or Jairbehs(). :

The next result says that executions of component shared memory automata can often be pasted
together to form an execution of the augmented-composition.

Corollary 8: Let {X;},; be a collection of sets of variables, where Z = UierXi. Let {A;};c; bea
collection of automata such that each A; is a shared memory automaton for X, . Let the collection
of automata {augment(4;, Z)};er be strongly compatible, and let A = Hj‘e 1 4i. Suppose q; is a
(fair) execution of A; for every i € I, and let B be a sequence of actions in acts(A) such that
(Blaugment(A;, Z))|X; = sched(a;) for every i € I. Then there is a (fair) execution o of A such
that 8 = sched(a) and o; = (o|augment(A;, Z))|X; for every i € I. Moreover, the same result
holds when acts() and scheds() are replaced by ext() and beh(). ‘

Finally, schedules and behaviors of component shared memory automata can also be pasted together
to form schedules and behaviors of the augmented-composition.

Corollary 9: Let {X;},.; be a collection of sets of variables, where Z = U;e1X;. Let {Ai}icr
be a collection of automata such that each A; is a shared memory automaton for X;. Let the
collection of automata, {augment(A.;,Z)}ie 7 be strongly compatible, and let 4 = Hj‘e 1Ai. Let 8
be a sequence of actions in acts(A). If (Blaugment(A;, Z))|X; € scheds(A;) for every i € T , then

B € scheds(A). Moreover, the same result holds when acts() and scheds() are replaced by ezt()

and behs(), respectively, and similarly when replaced by acts() and fairscheds() or by ext() and
fairbehs(). :

11

L

3.5 The Closeout Operator

So far, we have introduced shared memory actions to model accesses to shared variables, and we
have defined a special kind of I/O automaton containing shared memory actions in its signature.
We have interpreted the first triple of each action as the “before state” of shared memory and
the third component as the “after state.” However, we have not yet placed any restrictions on
the the relationship between the “after state” of one shared memory action and the “before state”
of the next. A shared memory automaton is not guaranteed that the value it writes to a given
shared variable will be the value observed by the next system component reading that variable. In
otlier words, we permit the environment to freely modify the values in shared memory. We would
like to construct systems in which the set of components that may modify a particular shared
variable is fixed, closed to the environment. We therefore define a “closeout” operator, which takes
a shared memory automaton A and produces a new automaton B such that some or all of the
shared variables of A become part of the local state of B. In this way, the “absorbed” variables can
be touched only the by the actions of B. Since A may be the result of composing several shared
memory automata, the closeout operator achieves the desired result of restnctmg shared variable
accesses to a particular collection of system modules.

We now define the closeout operator C. Since the state of an automaton may be thought of as
a mapping from a set of variables to a set of values, we will feel free to operate on states as if they
were assignment mappings. Let X and Y be disjoint sets of variables, let Z = X UY, and let A be
a shared memory automaton for Z. We define B = C(4, X)) as follows:

e sig(B) = sig(A)Y

e states(B) = states(A) o Fy,

o start(B) = start(A) o init(X),

¢ steps(B) contains exactly thé following set of steps: for each step (s',7,s) in steps(A),

1. if # = (f},a, fz) is a shared memory action, then
(s o (F51X), (f5IY, 0, f2[Y), s 0 (f21X)) € steps(B),

2. if 7 is not a shared memory action, then _
{(8’0 fxv a, SOfX) : fX € FX} -C-: Steps(‘B)a and

e part(B) = paft(‘A), where each class is projected on Y.

~ Essentially, the variables in X are absorbed into the internal state of the “closed out” automaton.
If z € X, we use the familiar record notation s.z to refer to the value of = in a particular state s
of B. That is, if sg = s4 o fx, where s4 is a state of A, then sp.z = fx(z).
Given the definition of the closeout operator, we get the following natural result.

Theorem 10: Let A be a shared memory automaton for Z and let X and Y be disjoint ~ets of :
variables such that Z = X UY. Then B = C(A4, X)is a shared memory automaton for Y. '

Proof: To show that B is an I/0 automaton, we must demonstrate that for all states s’ and
input actions = of B, there exists a state s’ of B such that (s, 7,s) € steps(B). Since this property
is true of A, and since shared-in(A) is complete, this property is also true of B by the construction
of steps(B). (When we construct the steps of B, completeness of shared-in{ A) guarantees that we
include all possible values for X in the “before states” of the steps for each input action.)

We now show that I/O automaton B is a shared memory automaton for Y. Clearly, all the
shared memory actions of B are external shared memory actions for Y. We now show that each

12

of the three conditions in the definition of a shared memory automaton hold for B. For the first
condition, since shared-in(A) is complete for Z, shared-in(B) = shared-in(A)|Y must be complete for
Y. Similarly, for shared-out(B). The second condition requires that for every step (¢, (ff,a, fy), s)
in steps(B), if (fy,a, fr) € shared-out(B), then for all f;’, € Fy, there exists a state § and some
fv € Fy such that (s',(f;’,, a, fy), 8) is in steps(B). Since this condition is true for A, we know that
for each shared memory output action label a, there exists a step (s/, (fi o firya, fx o fr),s) for
every possible assignment mapping fi o fy for Z. Therefore, when we project on Y in constructing
steps(B), we have a step (s, (f¥1a, fr),s) for each possible assignment mapping f{, for Y. The
third condition, regarding membership of equivalence classes, is obviously true of B. 'm

3.6 Closeout for behaviors

We now give a closeout definition for behaviors that is analogous to the one for automata.
Let X and Z be sets of variables with X C Z. If B is a sequence of actions of a shared memory
automaton A for Z, then we say that B is consistent for X iff the following conditions hold:

1. if (f%, a, fz) is the first shared memory action in B, then fZ|X = init(X), and '

2.if (f7, a1, f4) and (f%,aa, fz) are shared memory actions in B such that no shared memory
action occurs between them, then fj|X = fzlX.

If ¥ is a set of sequenées of actions of a shared memory automaton for Z , then we define C(Z, X)
to be the set Xx|(Z — X), where Ly is the subset of 5 containing exactly those sequences that are
consistent for X.

Lemma 11: Let X and Z be sets of variables such that X C Z. Let A be a shared memory
automaton for Z, and let ap be an execution of B = C (A, X) with behavior 8g. Then there exists
an execution a4 of A, with behavior 84 consistent for X » such that S4|(Z - X) = 8p.

Proof: LetY = Z — X. We construct the sequence a4 from ag as follows. For each step
(8o fx,my80 fx) in ap, if 7 = (fy»a, fr) is a shared memory action of B, then we let the
corresponding step in ay be (s',(f} o f,a, fy o fx),8); and if 7 is not a shared memory action,
we let the corresponding step in a4 be (8,7,).

Let B = beh(ay). Clearly, BBlY = (4. It remains to be shown that a4 is an execution
of A and that (4 is consistent for X. We show that @4 is an execution of A by showing that
each step of ay is in steps(A). Let o = (s'o f, 7,50 fx)beastepof B. f r = (f¥,a, fr) is
a shared memory action of B, then by the construction of steps(B) in the definition of closeout,
(8, (fy-ofy,a, fyo fx),8) must be a step of A. Similarly, if 7 is not a shared memory action, then
(¢',7,8) must be a step of A. Therefore, the construction produces an execution of A.

Finally, we show that 84 is consistent for X. Since every initial state of C(4, X)is in states(A)o
init(X), it must be that the first shared memory action (f2,a, fz) of Bg has f'|X = init(X), so
the first consistency condition is satisfied. We know that the second consistency condition must
be satisfied, since any two successive steps (s",m1,s") and (s',73,5) of any execution must have
" = &', the assignments to the variables of X are part of the state of C(4, X), and the only actions
that may change the values for X in the state of C (A4, X) correspond to shared memory actions for
for Z.]

Lemma 12: Let X and Z be sets of variables such that X C Z. Let A be a shared memory
automaton for Z and let a4 be an execution of 4 with behavior B4. If B4 is consistent for X, then
there exists an execution ag of B = C(A, X) such that B4|(Z - X) is the behavior of ap.

13

Proof: Let Y = Z — X. Let ap be the execution constructed from a4 as follows. For each
shared memory action 7 in a4, let the corresponding action in ap be 7|Y. Leave the remaining
actions as in a4. For each state 8 in a4, let the corresponding state in ap be so(fz|X), where fz
is the third component of the preceding shared memory action in ay (or fz = init(Z) if there is
no preceding shared memory action).

Clearly BalY = beh(ap). We claim that ap is an execution of B. To prove this claim, we
. proceed by mductmn on the length of ap, showing that each action is enabled from the state in

“which it occurs. Clearly, if e contains no actions, then the claim holds. Let (s, 7, s4) be a step of
a4, and let @y be the portion of ap up to (but not including) the action 7|Y for the corresponding
step in . We wish to show that if ay ends in state sz, then the step (s, 7|Y, sB) € steps(B),
where sg is the next state of ag. By the construction, we know that sy = sy o (f5|X), where f5
is the third component of the preceding shared memory action in a4 (or f4 = init(Z) if there is
no preceding shared memory action), and similarly for sg. There are two cases for =:

1. If is not a shared memeory action, then clearly it is enabled from s/, since (by the construc-
tion) sy and sy are identical except that s/, does not assign values to the variables in X.
Furthermore, since 7 is not a shared memory action, sg|X = s|X, so the step exists by the

definition of the closeout operator.

2. f = (f%,a, fz) is a shared memory action, then consistency of B4 requires that fo be
the third component of the preceding shared memory action in a4 (or init(Z) if there is no
such preceding action). By the definition of closeout, we know steps(B) contains the step
(sl 0 (f71X), (f5Y,a, f2]Y), sa 0 (fz|X)). And by the construction, s}, o (fz1X) = s and
sa o {(fz|X) = sp. Therefore, the desired step exists. ,

In both cases, n|Y is enabled and leads to state sg. B

Theorem 13: Let X and Z be sets of variables such that X C Z. If Aisa shared memory
automaton for Z, then »

1. behs(C(A, X)) = C(beﬁs(A) X), and
2. fazrbehs(C(A X)) = C(fairbehs(A), X).

Proof: Part 1: Let Y = Z — X. By Lemma 11, we know that if 8|Y is a behavior of C(4, X),
then S is a behavior of A that is consistent for X. Therefore 8|Y € C(behs(A), X), by definition. If
BlY € C(behs(A), X), then by definition of closeout on behaviors, 8 is consistent for X Therefore, _
. Lemma 12 tells us that B|Y € behs(C(A4, X)).

Part 2: First, we show that fairbehs(C(A4, X)) contains C(fairbehs(A),X). Let Bp be a fair
behavior of B = C(A4,X), and let ap be an execution of B with beh(ap) = fp. Construct
execution a4 of A from ap as in the proof of Lemma 11 such that beh(e4)|(Z — X) = Bp. Since
A is a shared memory automaton, we know that shared-out(A) is complete and that for any given
access label a € £, all shared memory actions with label a belong to the same class. Furthermore,
by the definition of closeout, 74 and 7’ belong to the same equivalence class in A iff 74]3" and
74| X belong to the same equivalence class in B. Therefore, given that ap is fair, we can show
that a4 is fair by arguing that an action 74 is enabled in state s4 of a4 iff 74]X is enabled in
the corresponding state sp of ap. This is easily seen from the construction of steps(B), since
sa = sp|(Z - X). ;

Now, we show that C(fairbehs(A), X) contains the set fairbehs(C(A,X)). Let 84 be a fair
behavior of A that is consistent for X, and let a4 be an execution of A with beh(ay) = Sa.

- Construct execution ap of C(A4, X) from a4 as in the proof of Lemma 12 such that S4/(Z - X) =
beh{ap). The remainder of the proof is argued as above. v B

14

3.7 . Discussion

Important in defining our shared memory extensions were the built-in features of the I/O automaton
model, most notably composition and the separation of inputs and outputs. By using the built-in
notion of an output action being under the control of a single process, we were able to capture
the idea of a single module making an atomic update to shared memory (without any active
participation by other modules). In addition, by exposing the values of the shared variables as
part of the shared memory accesses, we were able to not only carry forward the compositionality
properties of I/O automaton behaviors but also provide a useful notion of a shared memory action
as an input. We expect normal communication through shared variables to be modeled using
output actions only, but the input actions allow a module to passively observe the accesses to
shared memory made by other processes. We see two potential uses for this feature. First, one
might use shared memory actions as inputs to construct external processes that are not part of
the algorithm but monitor the use of shared memory (possibly as a means to check algorithms in
a simulation system). Second, in a modular algorithm design, it may be appropriate to divide a
task into several I/0O automaton components such that only one component accesses the shared
~ memory while the others are kept “informed” of these accesses by receiving them as inputs (e.g.,
to model a collection of processes “snooping” on a memory bus to update local caches).

4 Example: Dijkstra’s mutual exclusion algorithm

In order to illustrate the shared memory extensions just presented, we apply them to Dijkstra’s
classical shared memory mutual exclusion algorithm. We begin by defining the mutual exclusion
problem in terms of the I/O automaton model. We then present Dijkstra’s algorithm as a compo-
sition of shared memory automata. The safety and progress proofs that follow demonstrate how
proofs using standard assertional techniques may be expressed straightforwardly using this model.

4.1 The Mutual Exclusion Problem

Fix n, a positive integer, and let 7 = {1,2,...,n}. We define schedule module M with sig(M) as
follows: , ' .
Inputs: UserTry;, s €Z Outputs: Crit;,;€ 7
UserExit;, 1 € 7 Rem;,ie€ T

Schedule module M interacts with an environment that may be thought of as a collection of n
user processes u;, ¢ € Z, where each process u; has outputs UserTry; and UserExit;, and has inputs
Crit; and Rem;. A UserTry; action means that process u; wishes to enter its critical section. A
Crit; action by M gives u; permission to enter its critical section. A UserExit; action means that
process u; is leaving its critical section. Finally, the Rem; action gives u; permission to continue
with the remainder of its program. If 8 is a sequence of actions of M , then we define 8|4 to be
the subsequence of 3 containing exactly the UserTry;, Crit;, UserExit;, and Rem; actions. Before
defining the allowable schedules of M, we define the set of well-formed and user-live sequerices_ of
‘actions of M. Let f be a sequence of actions in sig(M). We say that 8 is well-formed iff for all i € T ,
all prefixes of B|¢ are prefixes of the infinite sequence UserTry;, Crit;, UserExit;, Rem;, UserTry;,
Crit;,.... This says, for example, that a process will not issue a try request while in its critical
section. If B is a sequence of actions of S, we say that 3 is user-live iff for all i € T , B|¢ is either
infinite or does not end with Crit;. Informally, this says that no user u; stops in its critical section.
An execution is said to be well-formed (user-live) iff its behavior is well-formed (user-live).

15

Hi

We define the set scheds(M), the allowable external behaviors of M, as follows. Let 3 be a
sequence of actions in sig(M). Then 8 € scheds(M) iff the following conditions hold:

1. M preserves well-formedness in .
2. If B is well-fornied, then

(a) (mutual exclusion) V4, j € Z, if Crit; and Crit; occur in 8 (in that order), then UserExit;
v occurs between them. '
(b) (‘pmgxsess-)} if B is user-live, then either § is infinite or Vi, Bl ends with Rem;..

Condition (2a) is the safety property: no two processes are in their critical sections simulta-
neously. Condition (2b) is the progress property: either all processes eventually end up in their
remainder regions or some process enters the critical region infinitely often. Both properties are
'guaranteed only if the user processes preserve well-formedness, and the progress condition is guaran-
‘teed only if user processes eventually exit the critical region. In this variant of the mutual exclusion
problem, only a very weak progress requirement is made. For example, correct solutiens to this
problem admit executions in which a process is locked out of the critical section.

4.2 Dijkstr‘a'”ls Mutual Exclusion Algorithm

In this section, we model Dijkstra’s shared memery mutual exclusion algorithm [2] as an il-
lustration of our shared memory extensions to the I/O automaton model. As presented here, the
variable names and structure more closely follow the description in [6], although the algorithm is
the same. o : . . .

We implement schedule module M by a collection of n automata pi, t € I, where each p;
interacts with u; through shared actions and interacts with the other p;’s using shared variables.
Each p; has three state components: stage € {try, read, check, set, control2, final_check, failed, crit,
- exit, done, remainder}; k, an integer in the range 1 to n; and checked, a set of integers in the range
1to % Initially, stage = remainder, k is arbitrary, and checked is the empty set. Automaton p; is a
shared memory automaton for V, where V has the following variables: k, an integer in the range 1
to n; and control[j] for j € T, which take on values from {0,1,2}. Initially, k has an arbitrary value
and all control variables are 0. The code for automaton p; is shown in Figure 1. Shared memory
actions are listed by their access labels and distinguished by daggers () all other actions are listed
by their action names. All actions of p; are outputs, except UserTry; and UserExit;, which are
its inputs. “Pre” and “Eff” denote “precondition” and “effect”, respectively. For shared memory
actions, the step (&', (v',a,v),s) is in steps(p;) exactly when the precondition for a is satisfied in
state o and s and v are derived from s’ and v’ according to the effect clause. For all other output
actions, the step (&', 7, s) is in steps(p;) exactly when the precondition for = is satisfied in state s’
and state s is derived from state s’ according to the effect clause. If an action has no precondition,
it is always enabled. If a state component or variable is not mentioned in the effect clause it is
left unchanged by the action. The partition consists of a class for each i € 7 that contains all the
output actions of p;. A

Essentially, the algorithm proceeds in two stages. After receiving a UserTry; input, p; sets its
control variable to 1 and enters stage one. In stage one, it continually reads k and checks to see if
control[k] is 0. If it finds a 0 in control[k], it sets k to its own index i. If it reads k and finds it equal
to 1, p; proceeds to stage two and sets its control variable to 2. In stage two, p; performs a final
check by examining the control variables of all the other processes. If any of these control variables
are found to be 2, then p; fails and returns to stage one (where it sets its control variable back 1).

16

UserTry;
Eff: s.stage; = try

Try;
Pre: s'.stage; € {try, failed}
Eff: v.control[i] =1
s.checked; = {i}
s.stage; = read

Read;
Pre: s'stage; = read
Eff: ski=vk
© if 8.ki = i then
. s.stage; = control2
else ‘
s.stage; = check

Check(5);
Pre: s'.stage; = check
= 8"k :
Eff: - if v’.control[j] = 0 then
s.stage; = set
else _
s.stage; = read

Set;
Pre: s'.stage; = set
Eff: ovk=1i
s.stage; = read
Control2;

Pre: s'.stage; = control2
Eff: v.controlfi] = 2
s.stage; = final_check
FinalCheck(j):
© Pre: s'.stage; = final_check
7 € &' .checked;
Eff: if v'.controlj] = 2 then
s.stage; = failed
else
. s.checked; = s’.checked; U {;}
Crit; - :
Pre: - ¢'.stage; = final_check
|s’.checked;| = n
Eff: s.stage; = crit
UserExit;
Eff: s.stage; = exit
s.checked; = {i}
Reset;
Pre: s'.stage; = exit
Eff: = v.controlfi] =0
s.stage; = done
Remg
Pre: s'.stage; = done
Eff: s.stage; = remainder

Figure 1: Transition Relation for p; in Dijkstra’s Algorithm

17

i

Otherwise, p; finds all the control variables to be less than 2 and issues a Crit; action, allowing u;
to proceed to the critical section. After u; leaves the critical section (and issues a UserExit; action),
p; resets its control variable to 0 and issues a Rem; action. : ‘ . ,
We associate with each p; an access partition ¥t as follows: For each j € Z, v:i(control(j])
contains the labels Check(j); and FinalCheck(j);. Also, ¥}, (control[i]) contains the labels Try;,
Control2;, and Reset;. And for each j # i, ¥i,(control[j]) is empty. Finally, ¥}(k) contains Read;
and 9% (k) contains Set;. The following result follows immediately from inspection of the code.

Lemma 14: For all i € Z, automaton p; is a single-variable read-write automaton under Pt

We let system § = C(Ii<i<npi, {k, controli],i € I}) be the composition of the processes of
Dijkstra’s algorithm, closed out on k and the conirol variables. Furthermore, we hide all shared
memory actions of § so that the external signatures of M and § are the same. One may note thai
all the p;’s in system S can read and write shared variable k, whereas the variable control[i] may
be written only by p; and read by the other p;’s. That is, each control[i] is owned by p;, while & is
a. multi-writer variable. "

We wish to show that system S solves schedule module M. The proof has three parts. First, we
show that § preserves well-formedness in all executions, Condition (1) of module M. In Section 4.3,

“we give the safety proof, Condition (2a). Finally, we present the progress proof, Condition (2b), in
Section 4.4. |

¥f 7 is a process index and s is a state of system 5, we say that process p; is a contender in state

s, written contender(i, s), iff s.stage; € {read, check, set, control2, final_check, failed}.

Lemma 15: Let a be an execution of system § with behavior 8. Then system S preserves well-

formeadness in . '
Proof: By induction on the length of a. For the base case, if o contains no actions, then it is

well-formed. Let o = o'sr, where beh(a') is well-formed and = is an output action of §. There are

two cases.

¢ If r is a Crit; action, then by the preconditions of that action it must be that p; is a (;ontendef
in state s. Therefore, the last action in beh(o)|¢i must be UserTry;, for any other action would
leave p; in a non-contender state. - :

e If 7 is a Rem; action, then by the preconditions of that action it must be that stage; = done
in state s. Therefore, the last action in (’|¢ must be Reset;, for any other action would leave
“p; in a state with stage; # done. Since Reset; is only enabled when stage; = exit, the last
action in beh(8")|¢ must be UserExit;, for any other action would leave p; in a state with
stage; # exit.

In both cases, B is well-formed. n

The following lemma will be used in the safety proof to rule out the occurrence of UserTry and
UserExit actions from certain states,

Lemma 16: Let a be an execution of system S with behavior 8. If 8 is well-formed, then for
all states s in «, if s is immediately followed by a UserTry; (UserExit;) action, then s.stage; is
remainder (crit). :

Proof: I s is followed by UserTry;, then by definition of well-formedness, the preceding action
in B¢ is a Rem; action, and a Rem; action leaves stage; = remainder. Furthermore, no output
actions of p; are enabled while stage; = remainder. If s is followed by UserExit;, then by definition
of well-formedness, the preceding action in 3|7 is a Crit; action, and a Crit; action leaves stage; =
erit. Furthermore, no output actions of p; are enabled while stage; = crit. "

18

4.3 Safety Proof

Let s be a state of system §. To denote the set of processes in (or about to enter) their critical
sections, we define the set ready(s) = {i : (s.stage; = crit) Vv (|s.checked;| = n)}. The proof is
based on a set of invariants, proved in the following Lemma.® Using Spectrum, this Lemma was
checked mechanically for all states of random executions of the algorithm.

Lemma 17: Let a be a well-formed execution of system §. In states s of for all processes p;
and p;, the following facts hold: ‘ ‘

1. s.control[i] = 2 iff s.stage; € {final check, failed, crit, exit}.
2. If s.checked; # {i} then s.stage; € {final_check, failed, crit}.
3. If ¢ # j, then i € s.checked; = j ¢ s.checked;.

4. If i € ready(s) then s.checked; = {1,2,...n}.

5. If s.stage; € {control2, final_check, failed, crit, exit, done}, then s.k; = i.

Proof: In the initial state of S, Vi € Z, control[i] = 0, checked; = {¢}, and stage; = remainder.
Therefore, all the facts hold in the initial state. Let o = a'rs, and assume that the facts hold in ;
all states of o/, and specifically in the last state s’ of /. We consider each fact in turn, showing
that it must hold in state s as well. '

1: If s'.control[i] = 2, then by the induction hypothesis s’ -stage; € § = {final_check, failed,
crit, exit}. Therefore, 7 must be either Tryi, FinalCheck(j);, Crit;, UserExit;, or Reset;.
(Lemma 16 rules out UserTry;.) The actions FinalCheck, Crit;, and UserExit; do not change
the value of control[¢] and result in s.stage; € §. The actions Try; and Reset; both cause
s.control[i] # 2, but also result in s.stage; ¢ S. Therefore, the property is preserved if

§'.control[i] = 2. ,
If s'.control[i] # 2, then by the induction hypothesis s'.stage; ¢ §. Therefore, 7 must be -
either UserTry;, Try;, Read;, Check();, Set;, Control2;, or Rem;. (By Lemma 16, UserExit;
is ruled out.) Actions UserTry;, Read;, Check(5);, Set;, and Rem; do not change the value
of control[i] and result in s.stage; ¢ S. Furthermore, the action Try; sets control[:] = 1 and
results in s.stage; ¢ S. Finally, the action Control2; sets control[i] = 2, but also results in
s.stage; € S. Therefore, the property is preserved if s .controlf[s] # 2. '

2: If s'.checked; = {3}, then the only possibility for 7 which could cause s'.checked; # {i} is
FinalCheck(7);. This action is only enabled if s stage[s] = final check. The FinalCheck(j);
either does not change stage; or sets s.stage; = failed. Therefore, the property is preserved.

If s'.checked; # {i}, then by the induction hypothesis, s’.stage; € {final_check, failed, crit}.
Therefore, the only possibilities for 7 which could cause s.stage; ¢ {final_check, failed, crit}
are Try; and UserExit;. (The action UserTry; is ruled out by Lemma 16.) However, in both
cases, s.checked; = {i}, so the property is preserved. :

3: The proof is by contradiction. Suppose 3¢ # j such that i € s.checked; and j € s,checked;.
Without loss of generality, suppose that i € o .checked;, and let 7 be the action that adds jto
checked;. (By the induction hypothesis, we know that ; ¢ s'.checked;.) The only possibility

‘®Although the last invariant of Lemma 17 is used only in the liveness proof, we present it here because of its
similarity to the others. '

19

for 7 is FinalCheck(5);. By the transition relation, v can only.add j to checked; if &' .control{j]
2. However, by the induction hypothesis (Fact 2), we know that &'.stage; € {final .check,
failed, crit}, since s'.checked; # {j}. Therefore, by Fact 1, we know that ' .control[j] = 2, a
contradiction.

4: Recall, from the definition, that 4 € ready(s) iff s.stage; = «crit V |s.checked;| = m.” By &
pigeonhole atgument, the fact «clearly holds when |s.checked;| = m. If &'.stage; # crit, then
the only possibility for = to make s.stage; = crit is the Crit; action. That action has as a
precondition that |checked;| = =, and does not change the value of checked;. Therefore, the
property is preserved. If s'.stage; = crit, then the only possibility for 7 to make |s.checked;| #
n is UserExit;, but this also results in stage; = exit.

5: If s'.stage; € {control2, final check, failed, crit, exit, done}, then by the inductive hypothesis,
s'k; = i. Furthermore, the only action which can change %, is a Read; aaction, which is only
enabled if stage; = read, so s.k; = §'&; = 1. If &' :stage; ¢ {control2, final check, failed, crit,
exit, done}, then the only possible action for = which could cause s.stage; to be in that set
is a Read; action. (Lemma 16 Tules out UserExit;.) However, the Read; action can -only set
s.stage; = control? if s.k; = 4. Thus, the property is preserved.

All five facts hold in state s. : A -
We can now show that no two processes may be in {(or about to-enter) their critical sections.

Theorem 18: If s is astate of system .9, |ready(s)| < 1.

Proof: By contradiction. Suppose that |ready(s)| > 1. Then by Fact 4 of Lemma 17, there
must exist two processes p; and p; such that sichecked; = s.checked; = {1,2, ..n}. However, this
contradicts Fact 3-of Lemma 17. ’ ™

It follows that the algorithm satisfies mutual exclusion.

Corollary 18: Let a be a well-formed execution of system §. Then ¥i,j € T, Crit; and Crit;
occur in-e (in‘that order), then UserExit; occurs between them. :

Proof: By well-formedness -and inspection of the code for system 5, if a Crit; :action occurs in
o then stage; = rcrit in all states up until the next UserExit; action. Suppose {(for «contradiction)
that there exist two processes p; and p; such that Crit; and Crit; occur in @ {(in that order) and no
UserExit; occurs between them. Then :after Crit; wocuss, stage; = «crit and stage; = «crit. However,
by Theorem 18 and the definition -of ready, this is impessible. ™

4.4 Pmrgvéss Proof

In this section, we show that Dijkstra’s algorithm makes progress: if a process is attempting to
enter the critical section, then eventually it ‘or some other process will «enter the critical section.
We define a “no-progress execution” «of system .5 and ‘then show ‘that no such executions-exist. The
proof is by contradiction: We define a well-founded variant function, or progress metric. Than we
show that in no-progress executions the function is nonincreasing and must eventually -decrease.
Since no infinite-length decreasing «chains are possible, this shows that no-progress :executions do
not exist. The notion of fairness, which we inherit “for free” from the original 1/0G automaton
model, is used to show that the variant function eventually decreases.

Let v = af be a fair well-formed user-live execution of system §. Furthermore, let none of the
following actions occur in 4: UserTry, Crit, UserExit, Rem. If 8 begins with a state in which some
process has stage # remainder, then 3 is said to be a no-progress ezecution syffiz.and y is said to
be a no-progress evecution.

20

Lemma 20: Let 3 be a no-progress execution suffix, and let s be a state in B. Then Vi € Z,
s.stage; ¢ {crit, exit, done}. .
Proof: Immediate from the definitions of no-progress execution suffix, fairness, and p;.]

Before defining the variant function, we identify an important predicate on system states. If s
is a state of §, we say that s is consistent, denoted consistent(s), iff for all ¢ € Z, contender(s, s)
= s.k; = s.k.

We now define the variant function. Given state s of system S, we define

f(s) = (A’B’C7‘D’E’F7G’H,I,J,K),
where each tuple component ha,s the nonnegative integer value defined as follows:

A= [{i: sstage; = try}|.

B = |{i: s.stage; = read}| if —contender(s.k, s),
0 otherwise. ’ :

C = |{i: s.stage; = check A —contender(s.k;, s)}|.
D = 0 if contender(s.k, s), 1 otherwise. -

E = |{i: s.stage; = set}].

F = |{i: s.stage; = control2 A i # s.k}.

G = [{i: s.stage; = final check A i # s.k}.

H= I{i : contender(i,s) A k; # s.k}.

I = Xi(n — |checked;|), for all i # s.k such that
s.stage; = final_check.

J=|{i: s.stage; = failed A 1 # s.k}|.

K = nif (~consistent(s) V s.stage, s # final _check),
n — |checked, ;| otherwise.

We define a lexicographic total order on the elements in the range of f. We will show that f
is nonincreasing and will eventually decrease in a no-progress execution suffix, but first we explain
the components of f. The components A, E, F, G, and J simply count the number of processes in
a certain stage (in some cases ignoring the process whose index is the value of the shared variable
k). These components measure progress of the contenders through the different stages of the
algorithm. Components B and C serve a similar purpose for the “read” and “check” stages, but
are more complicated because contenders may cycle through these two stages while they wait for
some other process to “get out of the way.” Component B’s purpose is to count the number of
processes in the “read” stage; however, when the shared variable % is the index of a contender,
B = 0. In this way, the value of B does not increase when a contender “backs off” to read k again.
Component C counts the number of processes in the “check” stage whose local k variables contain
indices of non-contenders. , ‘ .

Component D becomes 0 when the shared variable k is set to the index of a contender, and
remains 1 otherwise. Components I and X both count down the number of indices that are missing

21

il

from the checked sets of processes whose stage is “final_check.” Component I hold the sum of this
count for all the contenders whose indices are not equal to the shared variable k. Component K
holds this count for the (at most one) contender whose index is equal to the shared variable k, but
only starts counting down after all other contenders are “out of the way,” meaning that their local

k’s are equal to the shared k.
" In studying the variant function, two important progress “landmarks” should be noted. The

first is when component D reaches 0, after which point the value of k is always the index of a
contender. After D reaches 0, the second landmark is when component H reaches 0, meaning
that all later states are consistent. After this point, all processes other than pi cannot escape the
Read-Check cycle, so nothing stands in pz’s way.

We now show that the value of the variant function f is nonincreasing in no-progress execution
suffixes, and that only certain steps leave f unchanged. Using Spectrum, this lemma (and earlier
incorrect versions of it) was checked for random algorithm executions. That is, for each step it was
mechanically verified that either (1) progress was being made (see Lemma 20), or (2) the variant
function decreased, or (3) the variant function was unchanged and one of the exceptions held.

Lemma 21: Consider any state s’ in (3, a no-progress execution suffix. If action 7w of process p;
occurs from state s’ producing state s, then the following conditions hold: :

1. f(s") > f(s), and
2. either f(s') > f(s) or one of the following hold:

{a) 7 is a Read action and s'.k; = s'.k, a contender, or
(b) 7 is a Check action and s'.k; is a contender, or

(c) 7 is a Try action, i = s'.k, and s'.stage; = failed, or
{d) is a Control2 action and ¢ = s'.k, or

(e) m is a FinalCheck action, ¢ = s'.k, and
-consistent(s’).

Condition (1) says that the variant function is nonincreasing. Condition (2) says that every action
must decrease the variant function, except for a few special cases. Exceptions (2a) and (2b) handle
the case of a process cycling through the “read” and “check” stages, waiting for some other process
to get out of the way. Note the relationship between items (2a) and (2b) and the variant function
components B and C, respectively. A process does not make progress when it reads the same value
of the shared variable k that it read the previous time. Similarly, a process does not make progress
if it discovers that the control variable corresponding to its local k is nonzero. Exceptions (2¢),
(24}, and (2e) pertain only to the contender whose index is the value of the shared variable .
Process py may “back off” several times before it finally enters the critical section, and the variant
function is carefully constructed not to change when p; backs off. These last three exceptions are
the necessary result. '

Proof: By case analysis. For each possible action, we note the changes in the components of
the variant function f. (We will use A’ and A to denote the first components of f(s') and (s),
respectively. Similarly for B’ and B, etc.) Each case may be verified by Lemma 20 and inspection
of the preconditions and effects of the action under consideration.

o If r = (v, Try;, v), there are three cases:
(1) If s'.stage; = try, then A’ > A, decreasing f.

22

(2) If '.stage; = failed and ¢ # s'.k, then J' > J, and no components increase. (Component
B cannot increase because Fact (5) from Lemma 17 tells us that if stage; = failed, then k; = 1,
a contender by definition.) Therefore, f is decreased. '

(3) If &'.stage; = failed and ¢ = s'.k, then f(s') = f(s), satisfying Condition 1 and exception
2c. :

e If 7 = (v/, Read;, v), there are three cases: 1
(1) If s'.k is not a contender, then B’ > B and A4 is unchanged, so f decreases.
(2)If ' .k; # &'.k, then H' > H and no higher order components are increased, so f decreases.
(3) If §'.k; = .k, a contender, then f(s") = f(s), satisfying Condition 1 and exception 2a.

o If 7 = (', Check(j);, v), there are two cases:
(1) If s'.k; is a contender, then f(s') = f (s), satisfying Condition 1 and exception 2b.
(2) Otherwise, C' > C, and A and B are unchanged, so f is decreased.

o If 7 = (v, Set, v), then B =0, D = 0, E' > E, and A and C are unchénged. Therefore f
decreases. '

o If 7 = (v', Control2;, v), there are two cases:
(1) If i = s'.k then f(s') = f(s), satisfying Condition 1 and exception 2d. ‘
(2) Otherwise, F’ > F and no higher order components are changed, so f decreases.

e If 7 = (v', FinalCheck();, v), there are three cases: : : .
(1) ¢ # ¢'.k, then I’ > I and no higher order components are changed, so f decreases.
(2) If i = &'k and —consistent(s’), then f(s') = f(s), so Condition 1 and exception 2d are
satisfied.
(3)If i = s'.k and consistent(s’), then K is the only component that may change. Suppose,
for contradiction, that K does not decrease. By the effects of FinalCheck and the definition
of K, the only way for this to happen is for s'.control[5] = 2. If &'.control[j] = 2, then Fact
1 of Lemma 17 tells us that &' .stage[j] € {final check, failed, crit, exit}. Therefore, by Fact
5 of the same Lemma, &’ .kj = j. Since s’ is consistent, s’ .k; = 8.k, and we have stated that
s'.k = i. So, by transitivity, j = 4. By the preconditions on FinalCheck, j ¢ s'.checked;.
But ¢ € ¢'.checked;, since i € checked; initially and no action may remove it from that set.
Therefore j # 4, a contradiction.

In each case, the Lemma holds. The set of cases is complete by Lemma 20 and the definition of a
no-progress execution. , L

We have just shown that the value of the variant function f never increases in a no-progress
execution suffix, and that only certain steps leave its value unchanged. Now we will show that a fair
execution cannot proceed using only those certain steps, so the function must eventually decrease.

Corollary 22: Let o be 3 no-progress execution suffix. Then f must eventually decrease in a.
Proof: Suppose that f is fixed in o » a suffix of &. Then, by Lemma 21 for all states s’ of o ,
if 7 occurs from ', then one of the following hold:

¢ 7is a Read action and s'.k; = ' .k, a contender, or
e 7 is a Check action and s'.k; is a contender, or

e 7is a Try action, i = ¢'.k, and s’ -stage; = failed, or

23

e 7 is a Control2 action and i = s'.k, and
e 7 is a FinalCheck action, i = s’.k, and ~consistent(s’).

Since no action in o is a Set action, the shared variable k is fixed in o/. Fairness tells us that all
contenders must continue taking steps. (Inspection of the code will reveal that a contender always
has some step enabled.) Therefore, by the four conditions above, all contenders other than p;
must have stage € {read, check}; otherwise their steps would decrease the value of f, contradicting
our assumption that f is fixed. Therefore, by the same fairness argument, a Read action must
eventially occur for each of these contenders, after which point its local value of k matches the
shared k. ' :

Let o be the suffix of o after which all contenders other than pj have their local k’s equal
" to the shared k. Now, consider pi, which must continue to take steps in o, and let s” be a state
in o from which pj takes a step. If pi takes a FinalCheck step, then by Fact 5 of Lemma 17,
§" .k = s".k. However, this implies that s” is consistent. Therefore, the conditions above imply
that no FinalCheck actions can occur. If py takes a Control2 step, then a FinalCheck action will
become enabled and remain enabled until it occurs, so fairness tells us that a PFinalCheck action
will eventually occur, but we have just ruled this out. The only remaining actions for p; are Read,
Check, and Try. If pi takes a Read step, then it will observe that the shared k contains its own
index and proceed to stage = control2, meaning that it must eventually take a Control2 step, which
we have already ruled out. If py takes a Check step, then since (by statement 2 above) s".ky is
"a contender, it will proceed to stage = read, meaning that it must eventually take a Read step,
which we have just ruled out. Finally, if px takes a Try step, it will also proceed to stage = read.
Therefore, if p; continues to take steps, it eventually will decrease the value of f, giving us our
contradiction. ‘ ' &

Our main liveness result follows immediately.

‘Theorem 23: The set of no-progress executions for Dijkstra’s algorithm is empty.

Proof: By Lemma 21, we know that the value of the variant function f is nonincreasing in a
no-progress execution suffix. Furthermore, by Lemma 22, the value of f never reaches a fixed point.
Thersfore, since f cannot infinitely decrease, the theorem holds. :]

Finally, we show that the above theorem implies that Dijkstra’s algorithm satisfies the required
progress property. '

 Clorellary 24: Let o be a fair well-formed user-live execution of system B. Then either Vi, ali
ends with Rem;, or 3i such that ot is infinite.

Proof- By contradiction. Suppose that a is finite and that there exists some { € Z such that afi
does not end with Rem;. Then there exists a suffix of « in which p; has stage # remainder and afi
is empty for all 4. This is a no-progress execution suffix, by definition. Therefore a is a no-pr ogress:
execution, which is a contradiction of Theorem 23. ' ' : "

5 Conclusion

We have extended the I/0 automaton model to allow modelling of shared memory systems, as
well as systems that include both shared memory and shared action communication. The extended
model was shown to support all types of atomic accesses to shared memory, from the very restrictive
single-variable reads and writes to operations on arbitrary abstract data types. By building our

24

shared memory model on top of I/O automata, we could take advantage of the fairness definitions
and compositionality properties already present in that model. This resulted in a unified model
with relatively few new concepts. An example algorithm, Dijkstra’s classical shared memory mutual
exclusion algorithm, was presented in this model and its safety and progress properties were shown
using standard assertional and variant function techniques.

Acknowledgment

We thank Kathy Yelick for her careful reading of an earlier draft.

References

[1] K. Mani Chandy and Jayadev Misra. A Foundation of Parallel Program Design. Addison—
Wesley, Reading, MA, 1988. '

[2] E.W. Dijkstra. Solutions of a problem in concurrent programming control. C’ommum’cati’o‘ns of
the ACM, 8(9):569, September 1965.

[3] Kenneth J. Goldman. Distributed algorithm simulation using input/output automata. Ph.D.
Thesis, M.I.T. Laboratory for Computer Science, in progress.

[4] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Englewood
Cliffs, New Jersey, 1985.

[5] Nancy A. Lynch and Michael J. Fischer. On describing the behavior and implementation of a
distributed system. Theoretical Computer Science, 13:17-43, 1981.

[6] Nancy A. Lynch and Kenneth J. Goldman. Distributed Algorithms. Technical Re-
port MIT/LCS/RSS-5, M.I.T. Laboratory for Compuer Science, May 1989. MIT Research
Seminar Series.

[7] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proceedings of the 6th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, pages 137-151, August 1987. A full version is available as MIT Technical Report
MIT/LCS/TR~387. '

[8] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI-
Quarterly, 2(3), 1989.

25

