&P MASSACHUSETTS
[} INSTITUTE OF
{{ TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS/TM-361

A LATTICE-STRUCTURED
PROOF TECHNIQUE APPLIED
TO A MINIMUM SPANNING

| TREE ALGORITHM

Jennifer Lundelius Welch
Leslie Lamport
Nancy Lynch

June 1988

543 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

A Lattice-Structured Proof Technique
Applied to a
Minimum Spanning Tree Algorithm

Jennifer Lundelius Welch
Laboratory for Computer Science, Massachusetts Institute of Technology

Leslie Lamport
Digital Equipment Corporation, Systems Research Center

Nancy Lynch
Laboratory for Computer Science, Massachusetts Institute of Technology

Abstract: Highly-optimized concurrent algorithms are often hard to prove correct
because they have no natural decomposition into separately pfovable parts. This
paper presents a proof technique for the modular verification of such non-modular
algorithms. It generalizes existing verification techniques based on a totally-ordered
hierarchy of refinements to allow a partially-ordered hierarchy—that is, a lattice of
different views of the algorithm. The technique is applied to the well-known dis-
tributed minimum spanning tree algorithm of Gallager, Humblet and Spira, which
has until recently lacked a rigorous proof.

Keywords: Distributed algorithms, verification, modularity, partially-ordered re-

finements, liveness proofs, minimum spanning tree.

The work of Lynch and Welch was supported in part by the Office of Naval Re-
search under Contract N00014-85-K-0168, by the National Science Foundation un-
der Grant CCR-8611442, and by the Defense Advanced Research Projects Agency
under Contract N00014-83-K-0125. '

Section 1: Introduction

1. Introduction

The proliferation of distributed computer systems gives increasing importance
to correctness proofs of distributed algorithms. Techniques for verifying sequential
algorithms have been extended to handle concurrent and distributed ones—for ex-
ample, by Owicki arid Gries [0G], Manna and Pnueli [MP], Lamport and Schneider
[LSc], and Alpern and Schneider [AS]. Practical algorithms are usually optimized
for efficiency rather than simplicity, and proving them correct may be feasible only if
the proofs can be structured. For a sequential algorithm, the proof is structured by
developing a hierarchy of increasingly detailed versions of the algorithm and prov-
ing that each correctly implements the next higher-level version. This approach
has been extended to concurrent algorithms by Lamport [L], Stark [S], Harel [H],
Kurshan [K], and Lynch and Tuttle [LT], where a single action in a higher-level
fepresentation can represent a sequence of lower-level actions. The higher-level ver-
sions usually provide a global view of the algorithm, with progress made in large
atomic steps and a large amount of nondeterminism allowed. At the lowest level is
the original algorithm, which takes a purely local view, has more atomic steps, and

usually has more constraints on the order of events.

With its totally ordered chain of versions, this hierarchical approach usually
does not allow one to focus on a single task in the algorithm. The method described
in this paper extends the hierarchical approach to a lattice of versions. At the
bottom of the lattice is the original algorithm, which is a refinement of all other
versions. However, two versions in the lattice may be incommeasurable, neither one
being a refinement of the other.

Multiple higher-level versions of a communication protocol, each focusing on

a different function, were considered by Lam and Shankar [LSh]. They called each

higher-level version a “projection”. If the original protocol is sufficiently modular,

then it can be represented as the composition of the projections, and the correctness

of the original algorithm follows immediately from the correctness of the projections.

This approach was used by Fekete, Lynch, and Shrira [FLS}] to prove the correctness
of Awerbuch’s synchronizer [Al].

 Not all algorithms are modular. In practical algorithms, modularity is often
destroyed by optimizations. The correctness of a non-modular algorithm is not an
immediate consequence of the correctness of its higher-level versions. The method
presented in this paper uses the correctness of higher-level versions of an algorithm
to simplify its proof. The proofs of correctness of all the versions in the lattice

2

Section 1: Introduction

(in which the original algorithm is the lowest-level version) constitute a structured
-proof of the algorithm.

Any 4pa,th through our lattice of representations ending at the original algo-
rithm is a totally-ordered hierarchy of versions that can be used in a conventional
hierarchical proof. Why do we need the rest of the lattice? Each version in the
lattice allows us to formulate and prove invariants about a separate task performed
by the algorithm. These invariants will appear somewhere in any assertional proof
of the original algorithm. Our method permits us to prove them at as high a level
of abstraction as possible.

The method proceeds inductively, top-down through the lattice. First, the
highest-level version is shown directly to have the original algorithm’s desired prop-
erty, which involves proving that it satisfies some invariant. Next, let 4 be any
algorithm in the lattice, let By,...,B; (i > 1) be the algorithms immediately above
A in the lattice, and let Q,...,Q; be their invariants. We prove that A satisfies
the same safety properties as each B j» and that a particular predicate P is invariant
for A. The invariant P has the form QAQ; A---A @ for some predicate Q. In this
way, the invariants @; are carried down to the proof of l--wer-level algorithms, and
@ introduces information that cannot appear any higher in the lattice—information
about details of the algorithm that do not appear at higher levels, and relations be-
tween the B;. We provide two sets of sufficient conditions for verifying these safety
properties, one set for the case i = 1, and the other for i > 1. We also provide
three techniques for verifying liveness properties; only one of them makes use of the
lattice structure.

The technique is used to prove Gallager, Humblet and Spira’s distributed min-
imum spanning tree algorithm [GHS]. This algorithm has been of great interest for
some time. There appears in [GHS] an intuitive description of why the algorithm
should work, but no rigorous proof. There are several reasons for giving a formal
proof. First, the algorithm has important applications in distributed systems, so
its correctness is of concern. Second, the algorithm often appears as part of other
algorithms [A2,AG], and the correctness of these algorithms depends upon the cor-
rectness of the minimum spanning tree algorithm. Finally, many concepts and
techniques have been taken from the algorithm, out of context, and used in other
algorithms [A2,CT,G]. Yet the pieces of the algorithm interact in subtle ways, some
of which are not explained in the original paper. A careful proof of the entire
algorithm can indicate the dependencies between the pieces.

Our proof method helped us to find the correct invariants; it allowed us to

3

Section 2: Foundatioﬁs

describe the algorithm at a high level, yet precisely, and to use our intuition about
the algorithm to reason at an appropriate level of abstraction. A by-product of our
proof was a better understanding of the purpose and importance of certain parts of
the algorithm, enabling us to discover a slight optimization.

The complete proof of the correctness of this minimum spanning tree algorithm
is very long and can be found in [W]. One reason for its length is the intricacy of the
algorithm. Another reason is the duplication inherent in the approach: the code
in all the versions is repetitive, because of carry-over from a higher-level version
to its refinement, and because the original algorithm cannot be presented as a
true composition of its immediate projections; the repetition in the code leads to
repetition in the proof. The full proof also includes extremely detailed arguments—
detailed enough so we hope that, in the not too distant, future, they will be machine-
checkable. This level of detail seems necessary to catch small bugs in the program
and the proof.

Two other proofs of this algorithm have recently been developed. Stomp and
de Roever [SAR] used the notion of communication-closed layers, introduced by
Elrad and Francez [EF]. Chou and Gafni [CG] prove the correctness of a simpler,
more sequential version of the algorithm and then prove that every execution of the
ori'ginal algorithm is equivalent to an execution of the more sequential version.

2. Foundations

This section contains the definitions and results that form the basis for our
lattice-structured proof method. Our method can be used with any state-based,
assertional verification technique. In this paper, we formulate it in terms of the
I/O automaton model of Lynch, Merritt, and Tuttle [LT,LM], which provides a
convenient, ready-made “language” for our use. A summary of the I/0O automaton
model appears in the Appendix.

The first step is to design the lattice, using one’s intuition about the algorithm.
-Each element in the lattice is a version of the algorithm, described as an I/0 au-
tomaton, and has associated with it a predicate. The bottom element of the lattice
is the original algorithm. Next, we must show that all the predicates in the lattice -
are invariants. The invariant for the top element of the lattice must be shown di-
rectly. Assuming that Qy,...,Q; are invariants for the versions B; y+ -, By directly
‘above A4 in the lattice, we verify that predicate P = QA Qi A---AQ; is invariant for
A, by demonstrating mappings that preserve) and take executions of 4 to execu-
tions of By, ..., B; (thus preserve ¢J; A--- A Q). (Finding these mappings requires

4

Section 2:: Foundations

insight about the algorithm.) Finally, the lattice is used to show that the original
~algorithm solves the problem of interest by showing directly that the top element
in the lattice solves the problem, and showing a path 4;, ..., A in the lattice from
top to bottom such that each version in the path satisfies its predecessor. To show
that A; satisfies A;_1, we show that for every fair execution of A;, there is a fair
execution of A;_; with the same sequence of external actions. The mapping used
to verify the invariants takes executions to executions; by adding some additional
_constraints on the mapping, we can prove, using the invariants, that it takes fair
executions to fair executions with the same sequence of external actions, i.e., that
liveness properties are preserved.

Section 2.1 deals with safety properties. First, suppose there are two automata,
A and B, where B is offered as a “more abstract” version of A. We define a mapping
from executions of A to sequences of alternating states and actions of B; if the
mapping obeys certain conditions, we say A simulates B. Lemma 1 proves that this
definition preserves important safety properties, namely that executions of A map to
executions of B, and that a certain predicate is an invariant for 4. Next we suppose
that there are several higher-level versions, 4;, A,, etc., of one more concrete
automaton A. There are situations in which it is difficult to show independently
that A simulates A; and A simulates A,, but invariants about states of Ay can help
show a mapping from A to Ai, and invariants about states of A; can help show
a mapping from A to A;. To capture this, we define a notion of simultaneously
simulates, which Lemma 2 proves preserves the same safety properties as in Lemma
1. Of course, to be able to apply Lemma 2, we must know what the invariants of
Az and Aj are, which may require having already shown that 4; and A, simulate
other automata.

Section 2.2 considers liveness properties. Given automata A and B , and a
locally-controlled action ¢ of B, a definition of A being eguitable for @ is given;
Lemmas 3 and 4 show that this definition implies that in the execution of B obtained
from a fair execution of A by either of the simulation mappings, once ¢ becomes
enabled, it either occurs or becomes disabled. We are on our way to verifying the
fairness of the induced execution of B.

Three methods of showing that A is equitable for locally-controlled action ¢
of B are described. The first method is to show that there is an action pof A
that is enabled whenever ¢ is, and whose occurrence implies ¢’s occurrence. {Cf.
Lemma 5.)

The second method uses a definition of A being progressive for . The intu-

5

Section 2.1: Safety

ition behind the definition is that there is a set of “helping” actions of A that are
guaranteed to occur, and which make progress toward an occurrence of @ in the
induced execution of B. Lemma 6 shows that progressive implies equitable.

The third method for checking the equitable condition can be useful when
various automata are arranged in a lattice. (See Figure 1.) Suppose B and C are
" more abstract versions of A, and D is a more abstract version of C. In order to
show that A is equitable for action ¢ of B, we demonstrate an action p of D that
is “similar” to ¢, such that C is progressive for p using a set ¥ of helping actions,
and A is equitable for all the helping actions in ¥. (Cf. Lemma 7.)

Figure 1

Theorems 8 and 9 in Section 2.3 relate the definitions of simulates, simultane-
ously simulates, and equitable to the notion of satisfaction.

2.1 Safety

Let A and B be automata. Throughout this paper, we only consider automata
such that each locally-controlled action is in a separate class of the action partition.
(The definitions and results of this section can be generalized to avoid this assump-
tion, but the statements and proofs are more complicated, and the generalization
is not needed for the proof of the [GHS] algorithm.) Let alt-seq(B) be the set of
all finite sequences of alternating actions of B and states of B that begin and end
with an action, including the empty sequence (and the sequence of a single action).
An abstrection mapping M from 4 to B is a pair of functions, S and 4, where S
maps states(A) to states(B) and A maps pairs (s, 7), of states s of A and actions
. m of A enabled in s, to alt-seq(B). , o ”

Section 2.1: Safety
Given execution fragment e = sqmys; ... of 4, define M(e) as follows.
o If ¢ = s, then M(e) = S(s0).

e Suppose e = Sg...8j—1m;8i, ¢ > 0. If A(si_y,m;) is empty, then M(e) =
M(sg...8i-1). IF A(si—1,7) = p1t1.. . tm—1¥Pm, then M(e) = M(sq...8;-1)
P1t1 . t_19mS(85). The t; are called interpolated states of M(e).

e If e is infinite, then M(e) is the limit of M(sgmys1 ... s;) as ¢ increases without

bound.

We now define a particular kind of abstraction mapping, one tailored for show-
ing inductively that a certain predicate is an invariant of A, and that executions
of A map to (nontrivial) executions of B. (A predicate is a Boolean-valued func-
tion. If Q is a predicate on states(B), and S maps states(A) to states(B), then
(Q o S), applied to state s of A, is the predicate “Q is true in S(s),” and is also
written (Q(S(s)).) We give two sets of conditions on abstraction mappings, both of
which imply that executions map to executions, with the same sequence of external
actions. The first set of conditions applies when there is a single higher-level au-
tomaton immediately above. As formalized in Lemma 1, condition (2) ensures that
the sequences of external actions are the same, and conditions (1) and (3) ensure
that executions map to executions, and that a certain predicate is an invariant for
the lower-level algorithm. A key point about this predicate is that it includes the
higher-level invariant. Condition (1) is the basis step. Condition (3) is the inductive
step, in which the predicate, including the high-level invariant, may be used; part
(a) shows the low-level predicate is invariant, while parts (b) and (c¢) show execu-
tions map to executions, by ensuring that if there is no corresponding high-level
action, then the high-level state is unchanged, and if there is a corresponding high-
level action, then it is enabled in the previous high-level state and its effects are
mirrored in the subsequent high-level state. Since executions map to executions,
the high-level invariant, when composed with the state mapping, is also invariant

for A.

Definition: Let A and B be automata with the same external action signature. Let
M = (S, A) be an abstraction mapping from A to B, P be a predicate on states(4),
and @ be a predicate true of all reachable states of B. We say A simulates B via
M, P, and Q if the following three conditions are true.

(1) If s is in start(A), then
(a) P(s) is true, and

Section 2.1: Safety
(b) 8(s) is in start(B).

(2) If s is a state of A such that Q(S(s)) and P(s) are true, and = is any action of
A enabled in s, then A(s, 7)|ezt(B) = m|ext(4).

(3) Let (s',m,5) be a step of A such that Q(S(s")) and P(s') are true. Then

(a) P(s) is true,

(b) if A(s', 7) is empty, then S(s) = S(s'), and

(c) if A(s",7) = @1t1...tm_10m, then S(s)p1t1 ... tm_10mS(s) is an execu-
tion fragment of B. ' O

- The first lemma verifies that if A simulates B via M, then M(e) is an execution
of B and a certain predicate is true of all states of e.

Lemma 1: If A simulates B via M = (S, A), P and Q, then the following are true
for any execution e of A.

(1) M(e) is an execution of B.
(2) (Q 0 8§) A P is true in every state of e.

Proof: Let ¢ = somys;.... If (1) and (2) are true for every finite prefix e; = 80.. .8
of e, then (1) and (2) are true for e. We proceed by induction on 7. We need to
strengthen the inductive hypothesis for (1) to be the following:

(1) M(e;) is an execution of B and S(s;) = t, where ¢ is the final state in M(e;).

(Throughout this proof, “conditions (1), (2) and (3)” refer to the conditions in
the definition of “simulates”.)

Basis: + = 0. (1) M(eo) = S(so). Since eg is an execution of A, sg is in
start(A). Condition (1b) implies that S(s;) is in start(B), so M(eg) is an execution
of B. Obviously, the assertion about the final states is true.

(2) Condition (1a) states that P is true in so. Since S (s0) is in start(B), it is
a reachable state of B, and Q(S(sp)) is true.

Induction: i > 0. By the inductive hypothesis for (2), @(S(si-1)) and P(s;_;)
are true. Thus, conditions (3a), (3b) and (3c¢) are true.

(1) Let M(e;—1) = toprt .. .t; and M(e;) = topo1ty ... thy. Obviously, m > j.

8

Section 2.1: Safety

Suppose m = j. Then M(e;) = M(ei—1) and is an execution of B by the
inductive hypothesis for (1). We deduce that A(s;_1,7;) is empty, so by condition
(3b), S(s;) = S(si_1), and by the inductive hypothesis for (1), S(si-1) = ¢;.

Suppose m > j. By construction of M(e;), A(si—1,7i) = @jt1tjt1 - - tm-1Pm;
and t,, = S(s;). By the inductive hypothesis for (1), S(s;-1) = t;. By condition
(3¢), tj@j+1 .- Pmtm is an execution fragment of B. Thus, M(e;) is an execution
of B. Obviously, the assertion about the final states is true.

(2) By the inductive hypothesis for (2), (@ o S) A P is true in every state of
e, except (possibly) s;. By condition (3a), P(s;) is true. The final state in M(e;)
is S(s;). Since, by part (1), M(e;) is an execution of B and S(s;) equals the final
state of M(e;), S(s;) is a reachable state of B. By definition of @, Q(S(s:)) is
true. ' a

Next we suppose that there are several higher-level versions, say B; and By, of
automaton 4, each focusing on a different task. There are situations in which it is
impossible to show that A simulates By without using invariants about By’s task,
and it is impossible to show that A simulates By without using invariants about
By’s task. One could cast the invariants about Bj’s task as predicates of A, and
use the previous definition to show A simulates By, but this violates the spirit of
the lattice. Instead, we define a notion of simultaneously simulates, which allows
invariants about both tasks to be used in showing that A simulates B; and Bj.
The definition differs from simply requiring A to simulate By and A to simulate
B, in one important way: steps of 4 only need to be reflected properly.in each
higher-level algorithm when all the higher-level invariants are true (cf. condition

(3))-

Definition: Let I be an index set. Let 4 and A,, r € I, be automata with the
same external action signature. For all r € I, let M, = (S, A;) be an abstraction
mapping from A to A,, and let @, be a predicate true of all reachable states of A,.
Let P be a predicate on states(A). We say A simultaneously simulates {A, :r € I}
via {M, :r € I}, P, and {Q, : v € I} if the following three conditions are true.

(1) If s is in start(A), then
(a) P(s) is true, and
(b) S,(s) is in start(A,) for all 7 € I.

(2) If s is a state of A such that A, c; @-(S:(s)) and P(s) are true, and 7 is any
action of A enabled in s then A.(s,n)lezt(A,) = w|ext(A) for all r € I.

.

Section 2.2: Liveness '

(3) Let (s, 7,s) be a stepof A such that A,¢; @(S- (s')) and P(s') are true. Then
(a) P(s) is true,
(b) if A.(s',7) is empty, then S.(s) = §-(s), for all r € I, and
(c) if A(s',7) = ¢1t1 ... tm19Pm, then Sr(s)p1ty - tme10mSe(s) is an exe-
cution fragment of A,, for all r € I.

The statement “A simultaneously simulates {4y, A3} via {M;, My}, P and
{@1,Q2}” is weaker than the statement “A simulates A; via My, P and @1, and
A simulates A; via My, P and Q,” because the hypotheses of conditions (2) and
(3) in the simultaneous definition require that a stronger predicate be true.

Lemma 2 shows that the safety properties of interest are still preserved.

Lemma 2: Let I be an index set. If A simultaneously simulates {A, : r € I} via
{M,:r eI}, P, and {Q, : r € I}, where M, = (S, A;) for all r € I, then the

following are true of any execution e of A.
(1) M.(e) is an execution of A, for allT € I.

(2) Nper(@Qr 0 Sr) A P is true in every state of e.

2.2 Liveness

The following notation is introduced to define the basic liveness notion, “equi-
table”, and to verify that this definition has the desired properties.

 We define an execution e = sgmy 8y ... of automaton A to satisfy S — (T, X),
where S and T are subsets of states(A) and X is a subset of states(A4) x acts(4),
if for all 1 with s; € S, there is a j > ¢ such that either s; € T or (sj,7j41) € X.
In words, starting at any state of e, eventually either a state in T is reached, or a
state-action pair in X is reached.

If M = (8,A) is an abstraction mapping from A to B, then for each locally-
controlled action ¢ of B, we make the following definitions: E, is the set of all
states s of A such that ¢ is enabled in S(s); Dy, is states(A) — Ey; D), is the set of
all states t of B such that ¢ is not enabled in #; X,, is the set of all pairs (s,7) of
states s of A and actions 7 of A such that ¢ is in A(s, 7); and X, is states(B) x {¢}.

Definition: Suppose M is an abstraction mapping from A to B. Let ¢ be a locally-
controlled action of B. If every fair execution of A satisfies states(A4) — (D, X,),
then A is equitable for ¢ via M. If A is equitable for ¢ via M for every locally-
controlled action ¢ of B, then 4 is equitable for B. O

10

Section 2.2: Liveness

The next lemma motivates the equitable definition — in the induced execution
of B, if ¢ is ever enabled, then eventually ¢ either occurs or becomes disabled.

Lemma 3: Suppose A simulates B via M. Let ¢ be a locally-controlled action of
B. If A is equitable for ¢ via M, then M(e) satisfies states(B) — (D, X,), for
every fair execution e of A.

Proof: Let M = (S, A). Let e = somisy... be a fair execution of A4, and let
M(e) = topity.... For any i > 0, define index(:) to be j such that M(so...s;) =
to...t;. Choose s > 0.

Case 1: t; is not interpolated. Choose any ! be such that indez(l) = i. Then
t; = 8(s1), as argued in the proof of Lemma 1. Suppose there is an m 2> ! such that
$m € D,. Then thereis a j = indez(m) > i such that ¢; = S(sm), and by definition
of Dy, t; is in D;,. Suppose there is an m = I such that (sp,Tm+1) € X,. Then
there is a j = indez(m) > i such that ¢; = ¢, by definition of X, and (t:0541)
is in X,.

Case 2: t; is interpolated. Let i’ be the smallest integer greater than ¢ such
that ¢y is not interpolated. If either a state in D/, or ¢ occurs between 7 and ¢ in
M(e), then we are done. Suppose not. Then the argument in Case 1, applied to t;,
shows that eventually after ¢;/, and thus after t;, either a state in D, or ¢ occurs

in M(e). 0

The next lemma is the analog of Lemma 3 for simultaneously simulates. (D,
and X, are defined with respect to M,.) '

Lemma 4: Suppose A simultaneously simulates {A, : r € I} via {M, : r € I}.
Let ¢ be a locally-controlled action of A, for some r. If A is equitable for ¢ via
M., then M,(e) satisfies states(B) — (D!, X,), for every fair execution e of A.

The rest of this subsection describes three methods of verifying that A is eq-
uitable for action ¢ of B. Lemma 5 describes the first method, which is to identify
an action of A that is essentially the “same” as .

Lemma 5: Suppose M = (S, A) is an abstraction mapping from A to B, ¢ is a
locally-controlled action of B, and p is a locally-controlled action of A such that,
for all reachable states s of A,

(1) p is enabled in s if and only if ¢ is enabled in state S(s) of B, and
(2) if p is enabled in s, then ¢ is included in A(s, p).

1

Section 2.2: Liveness
Then A is equitable for ¢ via M.

Proof: Let e = somys;... be a fair execution of A. Choose ¢ > 0. If s; € D, we
are done. Suppose s; € E,. By assumption, p is enabled in s;. Since e is fair, there
exists j > ¢ such that either 7; = p, in which case A(s;_1,7;) includes ¢, or else
‘p is not enabled in s;, in which case ¢ is not enabled in S(s;). Thus, e satisfles
states(A) — (Dy,, X). O

The second method uses the following definition, which is shown in Lemma 6
to imply equitable.

 Definition: Suppose M = (&, .A4) is an abstraction mapping from 4 to B. If ¢ is
a locally-controlled action of B, then we say A is progressive for ¢ via M if there
is a set ¥ of pairs (s,%) of states s of A and locally-controlled actions 1 of A, and
a function v from states(A4) to a well-founded set such that the following are true.

(1) For any reachable state s € E, of A, some action ¢ is enabled in s such that
(s,¢)isin ¥.

(2) For any step (s',7,s) of A, where s is reachable and in E,, (s',7) € X, and
s € E,,

(a) v(s) < v(s'),

(b) if (s',7) € ¥, then v(s) < v(s'), and

(c)if (s',7) € ¥, % is enabled in s', and (s',¢) is in ¥, then 1 is enabled in s
and (s,%) isin T. O

Lemma 6: If A is progressive for ¢ via M, then A is equitable for ¢ via M.

Proof: Let M = (S, A). By assumption, ¢ is a locally-controlled action of B, and
there exist ¥ and v satisfying conditions (1) and (2) in the definition of “progres-

sive”.

Let e = s¢m181 ... be a fair execution of A. Choose ¢ > 0. If 5; € D, we are
done. Suppose s; € E,. Assume in contradiction that for all § > 1, (s;,mj41) € X,
and s; € E,. By condition (1), there is an action 3 enabled in s; such that (s;,%)
is in ¥. By condition (2c), as long as (s;,7;41) € ¥, ¢ is enabled in s;4; and
(8j+1,%) € ¥, for j > 4. Since e is fair, there is iy > ¢ such that (s;,_1,7;,) € 0.
By conditions (2a) and (2b), v(s;,) < v(s;). Similarly, we can show that there is
- 42 > 13 such that v(s;,) < v(s;,). We can continue this indefinitely, contradicting
the range of v being a well-founded set. ‘ : O

12

Section 2.2: Liveness

The next lemma demonstrates a third technique for showing that A is equitable
for locally-controlled action ¢ of B, in a situation when there are multiple highér—
level algorithms. The main idea is to show that there is some action p of D that
is “similar” to ¢ (cf. conditions (2) and (3)) such that C is progressive for p using
certain helping actions (cf. condition (4)), and 4 is equitable for all the helping
actions for p (cf. condition (5)). By “similar”, we mean that if ¢ is enabled in the
B-image of state s of A, then p is enabled in the D-image of the C-image of s; and
if p occurs in the D-image of the C-image of the pair (s',7), then ¢ occurs in the
B-image of (s, 7). Condition (1) is needed for technical reasons. (For convenience,
we define abstraction function M applied to the empty sequence to be the empty
sequence. To avoid ambiguity, we add the superscript AB to E,, D,, and X, when
they are defined with respect to the abstraction function from 4 to B.)

Lemma 7: Let A, B, C and D be automata such that M 5 = (SAB;AAB) is an
abstraction function from A to B, and similarly for M 4c and Mgp. Let ¢ be a
locally-controlled action of B. Suppose the following conditions are true.

(1) M ac(e) is an execution of C for every execution e of A.

(2) There is a locally-controlled action p of D such that for any reachable state
sof A, ifs € E{S‘B, then Sac(s) € E’?D.

(3) If (s',m,s) is a step of A, s’ is reachable, and p is in Mep(Mac(s'ns)),
then ¢ isin Asp(s’, 7).

4) C is progressive for p via M¢p, using the set ¥, and the function v.,.
g P g P P

(5) A is equitable for v via M ac, for all actions v of C such that (t,¥) € ¥,
for some statet of C.

Then A is equitable for ¢ via M 4p.

Proof: Let e = sgw181... be a fair execution of 4. Let Mac(e) = top1ty.... By
assumption (1), ¢, is a reachable state of C for all m > 0. For any i > 0, define
index(t) to be m such that Mac(som1-..8;) = tows ... tm.

Choose 7 > 0. If s; € DﬁB, we are done. Suppose s; € EéB. Assume in
contradiction that for all j > 4, (s;,7;41) € X272 and s; € EZB. Let m = indea(s).
By assumption (2), there is a locally-controlled action p of D such that ¢, € EED
for all n > m. By assumption (3), (¢n, ¥nt1) & XPCD for all n > m.

13

Section 3: Prob}em Statement -

By assumption (4), €' is progressive for p via M¢p, using set ¥ » and function
v,. Thus, there is a locally-controlled action 1 of C enabled in S ac(s;i) = tm such
that (tm, %) € ¥,. By assumption (5), A is equitable for 9 via M 4c. Since e is fair
and s; € Eﬁc, by Lemma 3 there exists 7; > ¢ such that either ($iy—1,m;,) € X,j}o
or si; € DAC. Let my = index(sy).

Case 1: (s5,-1,7;,) € 'X{jc. Then A4c(si;—1,7;,) includes ?. Since ¢, is
reachable, t, € E,?D, and (tn,@n+1) & X,?D for all n > m, we conclude that
Vp(tm,) < vp(tm), by parts (2a) and (2b) of the definition of “progressive”.

Case 2: s;, € D{éc. Since t,, is reachable, ¢, € EED, and (tn, 0nt1) & XED
for all n 2 m, by part (2¢) of the definition of “ progressive”, the only way % can
go from enabled in t,, to disabled in tm, is for some action in ¥, to occur between
¢m+1 and @m,. By part (2b) of the definition of “progressive”, v,(tm,) < 0 (tm).

Similarly, we can show that there exists i, > ¢; such that v,(Sac(si,)) <
v,(Sac(si,)). We can continue this indefinitely, contradicting the range of v, being
a well-founded set. O

2.3 Satisfaction

The next theorem shows that our definitions of simulate and equitable are
sufficient for showing that A satisfies B.

Theorem 8: If A simulates B via M, P and Q and if A is equitable for B via M,
then A satisfies B.

Proof: We must show that for any fair execution e of A, there is a fair execution
[of B such that sched(e)lext(A) = sched(f)|ext(B). Given e, let f be M(e). We
verify that M(e) is a fair execution of B with the desired property. Lemma 1, part
(1), implies that f is an execution of B. Choose any locally-controlled action @ of
B. By Lemma 3, if ¢ is enabled in any state of f, then subsequently in f, either
a state occurs in which ¢ is not enabled, or ¢ occurs. Thus, f is fair. Finally,

sched(e)lezt(A) = sched(f)|ext(B) because of condition (2) in the definition of
“simulates”. ‘ o

The next theorem is the analog of Theorem 7 for simultaneously simulates.

Theorem 9: Let I be an index set. £ A simultaneously simulates {Ar:rerl } via
My:rell,Pand {Q, :r € I}, and if A is equitable for A, via M, for some
r € I, then A satisfies A,.

14

Section 3: Problem Statement
3. Problem Statement
We define the minimum spanning tree probiem as an external schedule module.

For the rest of this paper, let G be a connected undirected graph, with at
least two nodes and for each edge, a unique weight chosen from a totally ordered
set. Nodes are V(G) and edges are E(G). For each edge (p,q) in E(G), there are
two links (i.e., directed edges), (p, ¢) and (g, p). The set of all links of G is denoted
L(G). The set of all links leaving p is denoted L,(G). The weight of (p, ¢) is denoted
wt(p,q); wi({p,q)) is defined to be wt(p,q); and wi(nil) is defined to be co.

The following facts about minimum spanning trees will be useful.
Lemma 10: (Property 2 in [GHS]) The minimum spanning tree of G is unique.

Proof: Suppose in contradiction that 77 and T3 are both minimum spanning trees
of G and Ty # T;. Let e be the minimum-weight edge that is in one of the trees
but not both. Without loss of generality, suppose e is in E(7}). The set of edges
{e} U E(T,) must contain a cycle, and at least one edge, say ¢, of this cycle is not
in E(T}). Since e # ¢' and €' is in one but not both of the trees, wi(e) < wi(e').
Thus replacing e’ with e in E(T3) yields a spanning tree of G with smaller weight
than 75, contradicting the assumption. O

Let T(G) be the (unique) minimum spanning tree of G.

An ezternal edge (p, ¢) of subgraph F' of G is an edge of G such that p € V(F)
and g & V(F).

Lemma 11: (Property 1 in [GHS]) If F is a subgraph of T(G), and e is the
minimum-weight external edge of F, then e is in T(G).

Proof: Suppose in contradiction that e is not in T(G). Then a cycle is formed by
e together with some subset of the edges of T(G). At least one other edge ¢’ of this
cycle is also an external edge of F. By choice of e, wt(e) < wt(e’). Thus, replacing
¢ with e in the edge set of T(G) produces a spanning tree of G with smaller weight
than T(G), which is a contradiction. 0

The M ST(G) problem is the following external schedule module. Input actions
are {Start(p) : p € V(G)}. Output actions are {InTree(l), NotInTree(l) : | €
L(G)}. Schedules are all sequences of actions such that

e no output action occurs unless an input action occurs;

15

Section 4: Proof of Correctness

¢ if an input action occﬁfs, then exactly one output action occurs for each [€

L(GY;
¢ if InTree((p, q)) occurs, then (p, ¢) is in T(G); and

o if NotInTree({p,q)) occurs, then (p,q) is not in T(G).

4. Proof of Correctness

The verification of Gallager, Humblet and Spira’s minimum-spanning tree al-
gorithm [GHS] uses several automata, arranged into a lattice as in Figure 2.

! HI

r
N \\
X\

Figure 2: The Lattice

Each element of the lattice is a complete algorithm. However, the level of detail
in which the actions and state of the original algorithm are represented varies.
Working down the lattice takes us from a description of the algorithm that uses
global information about the state of the graph, and powerful, atomic actions, to a
fully distributed algorithm, in which each node can only access its local variables,
and many actions are needed to implement a single higher level action. A brief
overview of each algorithm is given below; a fuller description of each appears later.

"HI is a very high-level description of the algorithm, and is easily shown in
Section 4.1 to solve the MST(G) problem. GHS is the detailed algorithm from

16

Section 4: Proof of Correctness

[GHS]. We show a path in the lattice from GHS to HI, where each automaton in
the path satisfies the automaton above it. By transitivity of satisfaction, then GH S
- will have been shown to solve M ST(G).

The essential feature of the state of HI is a set of subgraphs of G, initially
the set of singleton nodes of G. Subgraphs combine, in a single action, along
- minimum-weight external edges, until only one subgraph, the minimum spanning
tree, remains.

The COM automaton introduces fragments, each of which corresponds to a
subgraph of HI, plus extra information about the global level and core (or identity)
of the subgraph. Two ways to combine fragments are distinguished, merging and
absorbing, and two milestones that a fragment must reach before combining are
identified. The first milestone is computing the minimum-weight external link of
the fragment, and the second is indicating readiness to combine. \

The GC automaton expands on the process of finding the minimum-weight
external link of a fragment, by introducing for each fragment a set testset of nodes
that are participating in the search. Once a node has found its local minimum-
weight external link, it is removed from the testset.

TAR and DC expand on GC in complementary ways. DC focuses on how the
nodes of a fragment cooperate to find the minimum-weight external link of the whole
fragment in a distributed fashion. It describes the flow of messages throughout
the fragments: first a broadcast informs nodes that they should find their local
minimum-weight external links, and then a convergecast reports the results back.
In contrast, TAR is unconcerned with specifying exactly when each node finds its
local minimum-weight external link, and concentrates on the details of the protocol
performed by a node to find this link.

NOT is arefinement of COM that expands on the method by which the global
level and core information for a fragment is implemented by variables local to each
node. Messages attempt to notify nodes of the level and core of the nodes’ current
fragment.

CON, an orthogonal refinement of COM, concentrates on how messages are
used to implement what happens between the time the minimum-weight external
link of an entire fragment is computed, and the time the fragment is combined with
another one.

17

Section 4.1: HI Solves MST(G)

Finally, the entire, fully distributed, algorithm is represented in automaton
GHS. It expands on and unites TAR, DC, NOT and CON.

The path chosen through the lattice is HI, COM, GC, TAR, GHS. Why
this path? Obviously, GHS must be shown to satisfy one of TAR, DC, NOT
and CON. However, it cannot be done in isolation; that is, invariants about the
other three are necessary to show that GH S satisfies one. (As mentioned in Section
2.1, the invariants about the other three could be made predicates about GHS,
but this approach does not take advantage of abstraction.) Thus, we show that
GH S simultaneously simulates those four automata. To show this, however, we
need to verify that certain predicates really are invariants for the four. In order to
do this, we show that TAR and DC (independently) simulate GC, and that NOT
and CON (independently) simulate COM. Likewise, in order to show these facts,
we need to know that certain predicates are invariants of GC' and COM, and the
way we do that is to show that GC simulates COM, and that COM simulates H1I.
Thus, it is necessary to show safety relationships along every edge in the lattice.

The liveness relationships only need to be shown along one path from GHS to
HT. After inspecting GHS and the four automata directly above it, we decided on
pragmatic grounds that it would be easiest to show that GH S is equitable for TAR.
One consideration was that the output actions have exactly the same preconditions |
in GHS and in TAR, and thus showing GH S is equitable for those actions is trivial.
Once TAR was chosen, the rest of the path was fixed.

First, the necessary safety properties are verified in Section 4.2. We show that
COM simulates HI (Section 4.2.1), that GC simulates COM (Section 4.2.2), that
TAR simulates GC' (Section 4.2.3), that DC simulates GC (Section 4.2.4), that
NOT simulates COM (Section 4.2.5), that CON simulates COM (Section 4.2.6),
and that GH S simultaneously simulates TAR, DC, NOT and CON (Section 4.2.7).

Sectionn 4.3 contains the liveness arguments. To show the desired chain of
satisfaction, we show that COM is equitable for HI (Section 4.3.1), that GC is
equitable for COM (Section 4.3.2), that T AR is equitable for GC (Section 4.3.3),
and that GH S is equitable for TAR (Section 4.3.6). In Section 4.3.6, the technique
of Lemma 7 is used in several places; thus we need to show that DC is progressive
for an action of GC (Section 4.3.4), and that CON is progressive for several actions
of COM (Section 4.3.5).

Section 4.4 puts the pieces Logether to show that GHS solves MST(G).

18

Section 4.1: HI Solves MST(G)
4.1 HI Solves MST(G)

The main feature of the HI state is the data structure FST (for “forest”),
which consists of a set of subgraphs of G, partitioning V(G). The idea is that
the subgraphs of G are connected subgraphs of the minimum spanning tree T(G).
Two subgraphs can combine if the minimum-weight external link of one leads to
the other. The awake variable is used to make sure that no output action occurs
unless an input action occurs. The answered variables are used to ensure that at
most one output action occurs for each link. InTree({p,g)) can only occur if (p, ¢} is
already in a subgraph, or is the minimum-weight external edge of a subgraph (i.e.,
is destined to be in a subgraph). NotInTree({p,q)) can only occur if p and ¢ are in
the same subgraph but the edge between them is not.

Define automaton HI (for “High Level”) as follows.

The state consists of a set FST of subgraphs of G, a Boolean variable
answered(l) for each | € L(G), and a Boolean variable awake.

In the start state of HI, FST is the set of single-node graphs, one for each
p € V(@), every answered(l) is false, and awake is false.

Input actions:

o Stari(p), p € V(G)
Effects:
awaeke := true

Output actions:

o InTree({p,q)), (p,q) € L(G)

Preconditions:
awake = true
(p,q) € F or (p, q) is the minimum-weight external edge of F,
for some F' € FST
answered({p, q)) = false

Effects:
answered((p, q)) := true

o NotInTree({p,q)), {p,q) € L(G)
Preconditions:

awake = true

19

Section 4.1: HI Solves MST(G) |

p,q € F and (p,q) ¢ F, for some F € FST
answered({p, q)) = false
Effects:

answered({p, g)) := true
Internal actions:

» Combine(F,F' e), F,F' € FST, e € E(G)

Preconditions:

awake = true

F £ F'

e is an external edge of F

¢ is the minimum-weight external edge of F’
Effects:

FST :=FST - {F,F'} U{FUF Ue}

Define the following predicates on states(HI). (A minimum spanning forest
of G is a set of disjoint subgraphs of G that span V(G) and form a subgraph of a
minimum spanning tree of G.)

o HI-A: Each F in F'ST is connected.
o HI-B: F ST is a minimum spanning forest of G.

Let Pgy = HI-A A HI-B. HI-B implies that the elements of F ST form a par-
tition of V(G). Lemma 10 and HI-B imply that F'ST is a subgraph of T(G).

Theorem 12: HI solves the M ST(G) problem, and Py is true in every reachable
state of HI.

Proof: First we show that Pgy is true in every reachable state of HI. If s is a
start state of HI, then Py is obviously true. Suppose (s',7,s) is a step of HI and
Py is true in s'. If w # Combine(F, F', e), then, since FST is unchanged, Py is
obviously true in s as well. '

Suppose m = Combine(F,F',e). By the precondition, F # F', e is the
minimum-weight external edge of F’, and e is an external edge of F in s'. By
HI-A, F and F' are each connected in s'; thus, the new fragment formed in s by
joining F" and F’ along e is connected, and HI-A is true. Since by HI-B and Lemma
10, F and F' are subgraphs of T'(G), and since by Lemma 11 e is in T(G), the new
FST is a minimum spanning forest of G, and HI-B is true.

20

Section 4.1: HI Solves MST(G)

We now show that H1I solves M ST(G). Let ¢ be a fair execution of HI. The
use of the variable awake ensures that no output action occursin e unless an input
action occurs in e. The use of the variables answered(l) ensures that at most one
output action occurs in e for each link {. Suppose InTree((p,q)) occursin e. Then
in the preceding state, either (p,q) is in F or (p, ¢) is the minimum-weight external
edge of F, for some F' € FST. By HI-B and Lemmas 10 and 11, (p,q) is in T(G).
Suppose NotInTree({p,q)) occurs in e. Then in the preceding state, p and ¢ are in
F and (p, q) is not in F, for some F' € F.ST. By HI-A, there is path from p to ¢ in
F. By HI-B and Lemma 10, this path is in T(G). Thus (p,q) cannot be in T(G),
or else there would be a cycle.

~Suppose an input action occurs in e. We show that an output action occurs in
e for each link. Let e = sgmys1.... Obviously, 7; is an input action. Only a finite
number of output actions can occur in e. Choose m such that =, is the last output
action occurring in e. (Let m = 1 if there is no output action in e.) It is easy to
see that s,, = s; for all ¢ > m. Since an input action occurs in e before s,,, awake
= true in $p,. |FST| =1 in s,,, because otherwise some Combine(F, F',e') action
would be enabled in s,,, contradicting e being fair. Let F'ST = {F'}. By HI-A and
HI-B, F = T(G) in $y,. Furthermore, answered(l) is true in s,, for each I, because
otherwise some output action for [would be enabled in s,,, contradicting e being
fair. Yet the only way aenswered(l) can be true in s,, is if an output action for [
occurs in e. O

4:2 Safety

Each algorithm in the lattice below HI is presented in a separate subsection.
Each subsection is organized as follows. First, an informal description of the algo-
rithm is given, together with a discussion of any particularly interesting aspects.
Then comes a description of the state of the automaton, both explicit variables, and
derived variables (if any). A derived variable is a variable that is not an explicit
element of the state, but is a function of the explicit variables. We employ the con-
vention that whenever the definition of a derived variable is not unique or sensible,
then the derived variable is undefined. The actions of the automaton are specified
~ next. Then predicates to be shown invariant for this automaton are listed. The
abstraction mapping to be used for simulating the higher-level .automaton is de-
fined next. All our state mappings conform to the rule that variables with the same
name have the same value in all the algorithms. The only potential problem that
might arise with this rule is if a derived variable is mapped to an explicit variable,
but the derived variable is undefined. Although we will prove that this situation

21

Section 4.2.1: CcCOoOM 'Simulates HI

never occurs in states we are interested in, for completeness of the definition of
state mapping one can simply choose some default value for the explicit variable.
Often it is useful to derive some predicates about this automaton’s state that follow
from the invariant for this automaton and the higher-level one; these predicates
aré true of any state of this automaton satisfying the invariant and mapping to a
reachable state of the higher-level algorithm. The proof of simulation completes the
subsection.

4.2.1 COM Simulates HI

The COM algorithm still takes a completely global view of the algorithm,
but some intermediate steps leading to combining are identified,-and the state is
expanded to include extra information about the subgraphs. The COM state con-
sists of a set of fragments, a data structure used throughout the rest of the lattice.
Fach fragment f has associated with it a subgraph of G, as well as other informa-
tion: level(f), core(f), minlink(f), and rootchanged(f). Two milestones must be
reached before a fragment can combine. First, the ComputeMin(f) action causes
the minimum-weight external link of fragment f to be identified as minlink(f), and
second, the ChangeRoot(f) action indicates that fragment f is ready to combine,
by setting the variable rootchanged(f). This automaton distinguishes two ways that
fragments (and hence, their associated subgraphs) can combine. The Merge(f,g)
action causes two fragments, f and g, at the same level with the same minimum-
weight external edge, to combine; the new fragment has a higher level and a new
core (i.e., identifying edge). The Absorb(f, g) action causes a fragment g to be en-
gulfed by the fragment f at the other end of minlink(g), provided f is at a higher
level than g.

Define automaton COM (for “Common”) as follows.

The state consists of a set fragments. Each element f of the _Set is called a
fragment, and has the following components: ‘

o subtree(f), a subgraph of G;

o core(f), an edge of G or nil;

o level(f), a nonnegative integer;
o minlink(f), a link of G or nil;

» rooichanged(f), a Boolean.

Section 4.2.1: COM Simulates HI

The state also contains Boolean variables, answered(l) one for each [€ L(G), and
Boolean variable awake.

In the start state of COM, fragments has one element for each node in V(G); for
fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level(f) =0,
minlink(f) is the minimum-weight link adjacent to p, and reotchanged(f) is false.
Each answered(]) is false and awake is false.

Two fragments will be considered the same if either they have the same single-
node subtree, or they have the same nonnil core.

We define the following derived variables.

e For node p, fragment(p) is the element f of fragmenis such that p is in
subtree(f).

e A link (p,q) is an ezternal link of p and of fragment(p) if fragmeni(p) #
‘ fragment(q); otherwise the link is internal.

o If minlink(f) = (p, q), then minedge(f) is the edge (p,q), minnode(f) = p, and
root(f) is the endpoint of core(f) closest to p.

o If {p,) is the minimum-weight external link of fragment f, then mw-minnode(f)
= p and mw-root(f) is the endpoint of core(f) closest to p.

e subtree(p) is all nodes and edges of subtree(fragment(p)) on the opposite side
of p from core(fragment(p)).

e g is a child of p if ¢ € subtree(p) and (p, q) € subiree(fragment(p)).
Input actions:

e Start(p), p € V(G)
Effects:
awake := true

Output actions:

o InTree((p,q)), {p,q) € L(G)
Preconditions:

awake = true
(p,q) € subtree(fragment(p)) or (p, q) = minlink(fragment(p))

23

Section 4.2.1: COM _Simulates HI

answered({p, ¢)) = false
Effects:
answered((p, q)) := true

& NotInTree({p,q)), (p,q) € L(G)
Preconditions:
fragmenit(p) = fragment(q) and (p, q) & subtree(fragmeni(p))
answered({p, q)) = false
Effects:
answered({p,q)) := true

Internal actions:

o ComputeMin(f), f € fragments
Preconditions:
manlink(f) = nil
[is the minimum-weight external link of f
level(f) < level(fragment(target(l)))
Effects:
minlink(f) := 1

& ChangeRool(f), f € fragments
Preconditions:
awake = true
rootchanged(f) = false
manlink(f) # nil
Effects:
rootchanged(f) := true

e Merge(f,g), f,g € fragments
Preconditions:
f#9
rootchanged(f) = rootchanged(g) = true
minedge(f) = minedge(g)
Effects:
add a new element h to fragments
subtree(h) 1= subtree(f) U subiree(g) U minedge(f)
core(h) := minedge(f)
level(h) := level(f) + 1
manlink(h) := nil

24

Section 4.2.1: COM Simulates HI

rootchanged(h) := false
delete f and ¢ from fragments

o Absorbd(f,g), f,g € fragmendts
Preconditions:

rootchanged(g) = true

level(g) < level(f)
fragment(target(minlink(g))) = f
Effects:
subtree(f) := subtree(f) U subtree(g) U minedge(g)
delete ¢ from fragments

Define the following predicates on states of COM. (All free variables are uni-
versally quantified.)

¢ COM-A: U minlink(f) = [, then [is the minimum-weight external link of f,
and level(f) < level(fragment(target(l))).

¢ COM-B: If rootchanged(f) = true, then minlink(f) # nil.

o COM-C: If awake = false, then minlink(f) # nil, rootchanged(f) = false, and
subtree(f) = {p} for some p.

o COM-D: If f # g, then subtree(f) # subtree(g).
¢ COM-E: If subtree(f) = {p} for some p, then minkink(f) # nil.

o COM-F: If |nodes(f)| = 1, then level(f) = 0 and core(f) = nil; if |nodes(f)| >
1, then level(f) > 0 and core(f) € subtree(f).

Let Pcoa be the conjunction of COM-A through COM-F.

In order to show that COM simulates HI, we define an abstraction mapping
My = (81, A1) from COM to HI. Define the function §; from states(COM) to
states(HI) as follows. In conformance with our convention (cf. the beginning of
Section 4.2), the values of awake and answered(l) (for all 1) in S;(s) are the same
as in s. The value of F'ST in S;(s) is the multiset {subtree(f): f € fragments}.

~ Define the function A; as follows. Let s be a state of COM and 7 an action
of COM enabled in s.

o If # = Stari(p), InTree(l), or NotInTree(l), then A;(s,7) = 7.

25

Section 4.2.1: COM Simulates HI
o If 7 = ComputeMin(f) or ChangeRoot(f), then A;(s,7) is empty.

o = Merge(f,g) or Absorb(f,g), then A;(s,7) = Combine(F, F',¢), where
F = subtree(f) in s, F' = subtree(g) in s, and e = minedge(g) in s.

The following predicate is true in every state of COM satisfying (Pyy o S1) A
Peopy- (le., it is deducible from Pooas and the HI predicates.)

- COM-G: The multiset {subtree(f): f € fragments} forms a partition of V(@),
and fragment(p) is well-defined.

Proof: Let s be a state of COM satisfying (PrroS1) A Pooy. In S1(s), FST =
{subtree(f) : f € fragmenis}. By HI-B, F.ST forms a partition of V(G). By COM-
D, the multiset {subtree(f): f € fragments} = FST, and thus it forms a partition
of V(G). Consequently, fragment(p) is well-defined. O

Lemima 13: COM simulates HI via My, Pcou, and Pyj.

Proof: By inspection, the types of COM, HI, M; and Pcoys are correct. By
Theorem 12, Py is a predicate true in every reachable state of HI.

(1) Let s be in start(COM). Obviously, Pcoas is true in s, and S1(s) is in
start(HI). .

(2) Obviously, A;(s, 7)|ezt(HI) = n|ext(COM) for any state s of A.

(3) Let (s), m,3) be a step of COM such that Py is true of S1(s") and Pooys
is true of s'. We consider each possible value of .

i) = is Start(p), InTree(l), or NotInTree(l). A;(s',7) = =. Obviously,
Pcowm is true in s, and 81(s")w8:1(s) is an execution fragment of H 1.

- ii) 7 is ComputeMin(f) or ChangeRoot(f). A;(s', 7) is empty. Obviously,
- S1(s") = 81(s). Obviously, COM-A, COM-B, COM-D and COM-F are true in s.
By COM-C for ComputeMin(f) and by precondition for ChangeRoot(f), awake =
true in s’, and also in s; thus, COM-C is true in s.

Obviously, COM-E is true in s for any fragment f’ # f. i n = ComputeMin(f),
then manlink(f)} # nil in s, and COM-E is vacuously true in s for fo fn =
ChangeRoot(f), then by COM-B, minlink(f) # nil in s’ and also in s, so COM-E
is vacuously true in s for f.

26

Section 4.2.1: COM Simulates HI
iii) 7 is Merge(f,g).

(3¢) Ay(s',7) = Combine(F, F',¢), where F = subtree(f) in s', F' = subtree(g)
in s, and e = minedge(g) in s, for some fragments f and g.

Claims about s':

f # g, by precondition.

rootchanged(f) = rootchanged(g) = true, by precondition.

minedge(f) = minedge(g), by precondition.

ewake = true, by Claim 2 and COM-C.

minedge(f) # nil and minedge(g) # nil, by Claim 2 and COM-B

minlink(f) is an external link of f, by COM-A and Claim 5.

minlink(g) is the minimum-weight external link of g, by COM-A and Claim 3.

N O ok W

Let F = subtree(f), F' = subtree(g) and e = minedge(g).
Claims about S;(s'): (All depend on the definition of S;.)

8. awake = true, by Claim 4.

~ 9. F # F', by Claim 1 and COM-D.

10. e is an external edge of F', by Claims 3 and 6.

11. e is the minimum-weight external edge of F’, by Claim 7.

By Claims 8 through 11, Combine(F, F', e) is enabled in §1(s'). Obviously, its
effects are mirrored in S1(s).

(3a) More claims about s':

12. level(f) 2 0, by COM-F.
13. subtree(f') and subtree(g') are disjoint, for all f’ # ¢', by COM-G.

Claims about s:

14. subtree(h) = subtree(f) U subtree(g) U minedge(f), by code.

15. core(h) = minedge(f), by code.

16. level(h) = level(f) + 1, by code.

17. minlink(h) = n:l, by code.

18. rootchanged(h) = false, by code.

19. f and ¢ are removed from fragments, by code.

20. awake = true, by Claim 4.

21. subtree(f') and subtree(g') are disjoint, for all f' # ¢, by Claims 13, 14 and 19.

27

Section 4.2.1: COM Simulates HI

22. |nodes(h)| > 1, by Claim 14.
93. level(h) > 1, by Claims 12 and 16.
24. core(h) € subtree(h), by Claims 14 and 15.

COM-A is vacuously true for h by Claim 17. COM-B is vacuously true for h
by Claim 18. COM-C is vacuously true by Claim 20. COM-D is true by Claim 21.
COM.E is vacuously true for A by Claim 22. COM-F is true for k by Claims 22, 23
and 24.

iv) = is Absorb(f,g).

(3¢) Ai(s',7) = Combine(F, F',e), where F = subtree(f) in ', F' = subtree(g)
in s, and e = minedge(g) in s', for some fragments f and g.

Claims about 8’;

rootchanged(g) = true, by precondition.

. level(g) < level(f), by precondition.

fmgment‘(target(mz’nlz’nk(g))) = f, by precondition.

f # g, by Claim 2.

minlink(g) is an external link of f, by Claims 3 and 4.

minlink(g) # nil, by Claim 3.

minlink(g) is the minimum-weight external link of ¢, by Claim 6 and COM-A.
awake = true, by Claim 1 and COM-C.

o N e o e

Let F' = subtree(f), F' = subtree(g) and e = minedge(g).
Claims about S1(s"): (All depend on the definition of S1.)

9. gqwaeke = true, by Claim &.

10. F # F', by Claim 4 and COM-D.

11. e is an external edge of F', by Claim 5.

19. e is the minimum-weight external edge of F', by Claim 7.

By Claims 9 through 12, Combine(F, F',e) is enabled in Sy (s'). Obviously, its
effects are mirrored in S;1(s).

(3a) COM-A: If minlink(f) = nil in ', then the same is true in s, and COM—A
is vacuously true for f. Suppose minlink(f Y=1lin s Let f' = fragment(target(l)).

More claims about s':

28

Section 4.2.2: GC Simulates COM

13. level(f) < level(f'), by COM-A.

14. f' # g, by Claims 2 and 13.

15. minedge(f) # minedge(g), by Claim 14.

16. minlink(f) is the minimum-weight external link of f, by COM-A.

17. If €' # minedge(g) is an external edge of g, then wi(e') > wi(minedge(f)). Pf:
wt(e') > wi(minedge(g)) by Claim 7, and wt(minedge(g)) > wt(minedge(f)) by
Claims 5, 15 and 16.

Since minlink(f) is the same in s as in s, Claims 16 and 17 imply that in s,
manlink(f) is the minimum-weight external link of f. The only fragment whose level
changes in going from s’ to s is ¢ (since g disappears). Thus, Claim 14 implies that
in s, level(f) < level(f'). Finally, COM-A is true in s.

The next claims are used to verify COM-B through COM-F.
More claims about s':

18. subtree(f') and subtree(g') are disjoint, for all f' # ¢', by COM-G.
19. level(g) > 0, by COM-F.

20. level(f) > 0, by Claims 2 and 19.

21. |nodes(f)| > 1, by Claim 20 and COM-F.

22. core(f) € subtree(f), by Claim 21 and COM-F.

Claims about s:

23. awake = true, by Claim 1.

24. subtree(f) in s is equal to subtree(f) U subtree(g) U minedge(g) in s’, by code.
25. subtree(f') and subiree(g') are disjoint, for all f’' # ¢', by Claims 18 and 24.
26. |nodes(f)| > 1, by Claims 21 and 24.

27. level(f) > 0, by Claim 20.

28. core(f) € subtree(f), by Claims 22 and 24.

COM-B is unaffected. COM-C is vacuously true by Claim 23. COM-D is true
by Claim 25. COM-E is vacuously true for f by Claim 26. COM-F is true for f by
Claims 26, 27 and 28. !

Let Pé’OM = (PHI o] 81) A Poowum.
Corollary 14: P[y,, is true in every reachable state of COM.
Proof: By Lemmas 1 and 13. a

29

Section 4.2.2: GC S_imulates" COM
4.2.2 GC Simulates COM

The GC automaton expands on the process of finding the minimum-weight
external link of a fragment, by introducing for each fragment f a set testse#(f) of
nodes that are participating in the search. Once a node in f has found its minimum-
weight external link, it is removed from testset(f). A new action, TestNode(p), is
added, by which a node p atomically finds its minimum-weight external link —
however, the fragment at the other end of the link cannot be at a lower level than
p’s fragment in order for this action to occur. The new variable acemin(f) (for
“accumulated minlink”) stores the link with the minimum weight over all links
external to nodes of f no longer in testsei(f). ComputeMin{ f) cannot occur until
testset(f) is empty. When an Absorb(f,g) action occurs, all the nodes formerly in
g are added to testset(f) if and only if the target of minlink(g) is in testset(f). This
version of the algorithm is still totally global in approach.

Define automaton GC (for “Global ComputeMin”) as follows.

The state consists of a set fragments. Each element f of the set is called a
fragment, and has the following components:

o subtree(f), a subgraph of G;

e core(f), an edge of G or nil;

e level(f), a nonnegative integer;

e minlink(f), a link of G or nil;

. robtchanged(f), a Boolean;

e testset(f), a subset of V(G); and
o accmin(f), a link of G or nil.

The state also contains Boolean variables, answered(l), one for each I € L(G), and
Boolean variable awake.

In the start state of COM, fragments has one element for each node in V(G);
for fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level(f)=
0, minlink(f) is the minimum-weight link adjacent to p, rootchanged(f) is false,

testset(f) is empty, and accmin(f) is nil. Each answered(l) is false and awake is
false.

30

Section 4.2.2: GC Simulates COM

Input actions:

o Start(p), p € V(G)
Effects:
awaeke := true

Qutput actions:

o InTree((p,q)), {p,q) € L(G)
Preconditions:

awake = true
(p, q) € subtree(fragment(p)) or (p, ¢} = minlink(fragment(p))
answered({p, q)) = false

Effects:
answered({p, q)) := true

e NotInTree({(p,q}), {p,q) € L(G)
Preconditions:

fragment(p) = fragmeni(q) and (p,q) & subtree(fragment(p))
answered({p, q)) = false

Effects: -
answered((p, q)) := true

Internal actions:

o TestNode(p), p € V(G)
- Preconditions:

— let f = fragmeni(p) —

p € testset(f)

if (p, ¢}, the minimum-weight external link of p, exists
then level(f) < level(fragment(q))

Effects:
testset(f) := testset(f) — {p}
if (p, ¢}, the minimum-weight external link of p, exists
and wi(p, ¢) < wt(accmin(f))

then acemin(f) := (p, q)

o ComputeMin(f), f € fragments
Preconditions:
manlink(f) = nil

31

Section 4.2.2: GC Simulates COM

aceman(f) # nil
testset(f) = 0

Effects:
minlink(f) := accman(f)
accmin(f) := nil

o ChangeRoot(f), f € fragments
Preconditions:
awake = true
rootchanged(f} = false
manlink() # nil
Effects:
rootchanged(f) = true

o Merge(f,9), f,g € fragments
Preconditions:

f#y
rootchanged(f) = rootchanged(yg) = true
minedge(f} = minedge(g) # nil
Effects:
add a new element h to fragments
subiree(h) := subtree(f) U subtree(g) U minedge(f)
core(h) 1= minedge(f)
level(h) 1= level(f) + 1
minlink(h) := nil
rootchanged(h) := false
testset(h) := nodes(h)
acemin(h) = nil
delete f and g from fragments

o Absorb(f,g), f,g9 € fragments

Preconditions:
rootchanged(g) = true
level(g) < level(f)
— let p = target(minlink(g)) —
fragment(p) =

Effects:
subtree(f) := subtree(f) U subtree(g) U minedge(g)
if p € testset(f) then testset(f) := testset(f) U testset(g)

32

Section 4.2.2: GC Simulates COM
delete g from fragments

Define the following predicates on the states of GC. (All free variables are
universally quantified.) '

o GC-A: If acemin(f) = (p,q), then (p,q) is the minimum-weight external link
of any node in nodes(f) — testset(f), and level(f) < level(fragment(q)).

o GC-B: If there is an external link of f, if minlink(f) = nil, and if testset(f)
0, then acemin(f) # nil.

o GC-C: If testset(f) # 0, then minlink(f) = nal.
Let Pgc = GC-A A GC-B A GC-C.

In order to show that GC simulates COM, we define an abstraction mapping
My = (8,3, Ap) from GC to COM. Define the function 8, from states(GC) to
states(COM) by simply ignoring the variables acemin(f) and testset(f) for all
fragments f when going from a state of GC to a state of COM.

Define the function A, as follows. Let s be a state of GC and 7 an action of GC
enabled in s. If © = TestNode(p), then Az(s,m) is empty. Otherwise, Ay(s,7) = .

Recall that Phoy = (Prro S1) A Peom. I Poop(S2(s)) is true, then the
COM predicates are true in Sa(s), and the HI predicates are true in S1(S2(s)).

Lemma 15:'GC simulates COM via Mz, Pac, and Ppoyy-

Proof: By inspection, the types of GC, COM, Mj, and Pgc are correct. By
Corollary 14, P, ,, is a predicate true in every reachable state of COM.

(1) Let s be in start(GC). Obviously, Pgc is true in s, and Sy(s) is in
start{(COM).

(2) Obviously, Az(s, 7)lext(COM) = wlext(GC).

(3) Let (s',7,s) be a step of GC such that Pgg,y is true of S3(s’) and Pgc is
true of s'.

i) 7 is Start(p), InTree(l), NotInTree(l), or ChangeRoot(f). Obviously,
S2(s")7S,(s) is an execution fragment of COM, and FPgc is true in s.

ii) 7 is ComputeMin(f).

33

Section 4.2.2: GC Simulates COM

(3a) Obviously, Pgc is still true in s for any f' # f. GC-A is vacuously true
for f in s, since accmin(f) is set to nil. GC-B is vacuously true for f in s, since
minlink(f) # nil. By COM-C, aswake = true in S3(s') and thus in s'; the same is
true in s, so GC-C(a) is true in s for f. GC-C(b) is vacuously true for f in s, since

testset(f) = 0.
(3c) Az(s',7) = .
Claims about s':

1. testset(f) = @, by precondition.

2. acemin(f) # nil, by precondition.

3. level(f) < level(fragment(target(acemin(f)))), by Claim 2 and GC-A.

4. gcemin(f) is the minimum-we