LABORATORY FOR

" INSTITUTE OF
COMPUTER SCIENCE

A TECHNOLOGY

MIT/LCS/TM-341

A MODULAR PROOF OF
CORRECTNESS FOR A
NETWORK SYNCHRONIZER

A. Fekete
N. Lynch
L. Shira

September 1987

545 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02139

A Modular Proof of Correctness
for a Network Synchronizer
A. Fekete
N. Lynch
L. Shrira

Laboratory for Computer Science,

Massachusetts Institute of Technology

Abstract: In this paper we offer a formal, rigorous proof of the correctness of Awerbuch’s
algorithm for network synchronization. We specify both the algorithm and the correctness
condition using the I/O automaton model, which has previously been used to describe and
verify algorithms for concurrency control and resource allocation. We show that the model
is also a powerful tool for reasoning about distributed graph algorithms. Our proof of
correctness follows closely the intuitive arguments made by the designer of the algerithm
by exploiting the model’s natural support for such important design techniques as stepwise
refinement and modularity. In particular, since the algorithm uses simpler algorithms for
synchroniza.tion within and between ‘clusters’ of nodes, our proof can import as lemmas the

correctness of these simpler algorithms.

Keywords: verification, modularity, network protocols, synchronization.

September 1987
(© 1987 Massachusetts Institute of Tecnology

A Modular Proof of Correctness
for a Network Synchronizer!

1 Overview

1.1 Verification methods and models

As computer science has matured as a discipline, its activity has broadened from writing
programs to include reasoning about those programs: proving their correctness and effi-
ciency, and proving bounds on the performance of any program that accomplishes the same
task. Recently distributed computing has begun to broaden in this way (albeit a decade or
two later than the part of computer science concerned with sequential, uniprocessor algo-
rithms). There are several reasons why particular care is necessary to prove the correctness
of algorithms when the algorithms are distributed. First, human thought tends to operate
sequentially, that is, we usually focus our attention on one aspect of a problem at a time.
This leaves us vulnerable when examining distributed protocols, where activity is happening
concurrently in several places in a system, since we can easily fail to consider the subtle
interactions between different activities. For example, unexpected race conditions can lead
to unexpected (and wrong) behavior. Second, distributed protocols are required to cope
with a certain level of nondeterminism in the system, such as variable message delays, vari-
able processor speeds, or even processor failures, and humans find it hard to deal with the
exploding number of different possibilities.

For these reasons one is not surprised that there have been several cases where algorithms

were published (and implemented) that seemed reasonable, but were later found to be in-

!This paper forms part of the first author’s Ph.D. thesis “Topics in Distributed Algorithms”, Department
of Mathematics, Harvard University, August 1§87. A preliminary version of the material of this paper has
appeared in the Proceedings of the 2nd International Workshop on Distributed Algorithms (July 1987). The
work of the second author was supported in part by the Office of Naval Research under Contract N00O14-
85-K-0168, by the Office of Army Research under contract DAAG29-84-K-0058, by the National Science
Foundation under Grants MCS-8306854, DCR-83-02391, and CCR-8611442, and by the Defense Advanced
Research Projects Agency (DARPA) under Contract N00014-83-K-0125. The work of the third author was
supported by an H.T.I. fellowship

I

correct. A famous example is the ARPAnet routing algorithm. We believe that rigorously .
proving the correetness:of distributed algorithms is an important task, especially for algo-.
rithms thatare going to be used as-building blocks of other protocols. For example, when a.
distributed leader-election protocol is used ta choose a primary copy for a replicated relation.
in a distributed’ database; any uncertainty. about: the. behavior of the leader election Wﬂ_l’t,
propagate: to. undermine confidence in- the correctness. of the entire datahase management.
system.

Despite the:reasons presented: above; most:werk. in distributed algorithms contains only
informal correctness arguments and: still omits. rigorous. proofs of correctness for the al-
gorithms described. The claim is often heard that the formal techniques do not support:
intuition and the proofs are: too complex: Obviously, the complexity of the verification is_
related to the conceptual complexity, of the algorithm but it may also be heavily influenced
by the: choice of the specific verification: procedure.

Good tools for distributed systems: analysis have been sought by many researchers for,
P], [HO]) and Floyd-Hoare-style methods (e.g. [0G])

a long time. Temporal logic (e.g. [M:
are among the best known and indeed have been used successfully to verify a number. of
distributed algorithms. While the proofs using these methods do indeed demonstrate cor-
rectness of the algorithms, they often do not help the reader to understand why the algo-
rithms are correct. The reader can be lost in the details of the step by step proof and lose
the intuition and the global picture.

Partially, the problem stems from the fact that the reader faces the full gap. between the
low level implementation and the high level specification of the problem. The designer of
the algorithm, however, when conceiving the algorithm or explaining it, often first argues in
terms of high level activities that comprise the solution, and considers interaction between
those. At subsequent design steps those activities are ‘implemented’ by refining them in turn.
Only at the final step are activities of each node in the system fully specified. The method
allows each refinement to remain manageably simple. To keep the designer’s intuition,
ideally, the verification procedure should follow closely the design process. That is, the
proof should follow the refinements. The verification procedure then would be structured so

that the proof of each refinement could be simple enough and the processes of design and

verification would be brought together. To support the stepwise refinement described above,
the verification method has to be hierarchical.

Another vital feature of verification procedures is exposed when the designer of the
algorithm wishes to change an implementation of some activity, for example for optimization
reasons. This obviously results in a new algorithm. Often though, the redesign of one activity
does not affect others. In such cases, the verification method shonld be ahle to guaraﬁtee
that only the changed part needs to be proved correct anew. That is, the verification
method should be modular or compositional. Compositionality in proofs would also naturally |
support the fundamental ‘off the shelf building block’ technique in algorithm design as it
allows the use of the correctness proof of the ‘building block’ in the proof of the algorithm
without the need to reexamine it. But we must be particularly careful when considering the
intuitive notion of modularity as referred to by algorithm designers. It is too often discussed
informally in terms of several pieces needed to solve ‘subproblems’ although the sense of 'v
‘subproblem’ is not precise. It is not obvious that the pieces fit together in any precise sense,
especially when concurrency is considered. And as the algorithms that one tries to build
become more and more complex, the lack of formal notion of modularity becomes more and
more of a problem. |

The commonly known verification methods do not seem to support both hierarchical and
modular reasoning in natural ways. Thus the invariant assertion method allows hierarchical
stepwise reasoning, but offers poor support for modularity when distributed systems are
concerned. The proofs in temporal logic on the other hand, are composable but leave a large
gap between the implementation and the specification.

In this paper we will prove the correctness of a network algorithm using the I/0 automa-
ton model. The model was introduced by Lynch, Merritt and Tuttle in [LM] and [LT], and
it naturally supports both hierarchical and modular reasoning. From our experience with
this model, we feel that it enables one to provide rigorous proofs of correctness that follow
closely the informal arguments used by the designers of distributed algorithms to expléin
their work. We describe specifications, intermediate refinements and algorithm as I/O au-
tomata, and then show that one ‘implements’ another. Also, the model includes a natural

notion of composition of two automata, that corresponds to the combined use of two algo-

Ll

rithms, and its formal semaritics are compositional, in that the beliavior of the composition:
can be deduced from the behavior of all the component autornata.

An example of hierarchical reasoning in the model can be found in [LT] where it was used
to verify correctness of a distributed resource arbiter. The modularity property of the model
was exploited in [W1] to deduce correctness of an n-processor mutual exclusion algorithm,
from the correctness 6f an arbitrary 2-orocess mutwal exclusion algorithim, which is vsed ag
a subroutine within the main algorithm. The model has also been successfully applied to
describe and verify a number of algorithmis for concutrency control, recovery and replication
management in nested transaction systems, for example [LM},[FEMW],[GL],[HLMW]. In
these, the model’s features are used t6 capture formally sorie intuitions of system designers,
such as ‘the correctiiess of replication mianagement only heeds t6 proved in a serial system,
as the correctnéss of concurrenicy control for the replicas will then ensure that the replication
algorithm is correct in a concurrent system’.

In this paper we démonstrate the ease with which the model allows one to prove the
correctness of a hetwork algorithm that uses a superpesition of two different algorithms
operating concurrently to accomplish alimost independent subgoals, using claiins that express

formally the correctriess of the subalgorithrns.

1.2 Owr proof

The algorithm whose correctness we prove in this paper is & distributed protocol for network
synchronization. In &esigﬁing' algorithims to sclve problems in a distributed computing en-
vironment, it is important to understand the assumptions being made about the processors
and the network connecting them. If fewer assumptions are made, it is more likely that they
will be satisfied by the hardware available, but it is harder to find algorithmis that work
correctly whetiever the assuriptions are satisfied. For example, most networks do not offer
reliable bounds oft the time & message takes to arrive, so it is important to find algorithms
that work correctly in an agynchrondus syster, but it 1s very much easier to design algo-
rithms if the network is synchrorious. Awerbuch ([Aw|) proposed the use of a synchronizer
that would enable one to convert any synchrondus graph algorithm inte an algorithm that

performis correctly i an asynchronous (but failure-free) network. Using a syrichronizer in

this way has proved a successful methodology for solving asynchronous problems in efficient
ways ([Aw2]).

In [Aw], a synchronizer (called v in that paper) is constructed for a network whose
topology is any fixed connected graph provided with a spanning forest subgraph, and a
distributed technique is given for finding a spanning forest subgraph for which the resulting
algorithm has low time and message complexity. The synchronization algorithm given is,
however, asserted to be correct for any spanning forest subgraph. The algorithm is derived
as a superposition of a simple synchronizer (called B) executing within each ‘cluster’ (a
connected component of the spanning forest subgraph), and another simple synchronizer
(called o) that synchronizes between the clusters. This description helps to explain the
detailed algorithm, but no formal proof of correctness is offered in [Aw]. We provide a
formal account of an algorithm closely based on Awerbuch’s, and rigorously prove results
about its correctness. The proof of correctness is modular and hierarchical. It closely follows
the outline of the informal arguments of [Aw], by building on claims that express formally
the correctness of algorithms o and 8. Since these results have also not been formally proved
before, we include such proofs for the sake of completeness.

Our account of the synchronizer is given as follows. First we provide a top level speci-
fication for any network synchronizer by giving a single I/O automaton S that uses global
information about the system. Then we present the 4 algorithm itself, as a system Dist-
SysS of 1/O automata, including one for each node of the graph with access only to local
information and communicating only along the edges of the graph. As this algorithm is
a superposition of two algorithms o and B, following Awerbuch’s informal reasoning we
divide each node-automaton into two automata, one containing the state and operations
contributing to intercluster synchronization and the other containing the state and opera-
tions contributing to the intracluster synchronization. The two components do not interact
at all, except when the node is the root (‘leader’) of its cluster.

In the language of our model, to verify the correctness of the algorithm we need to prove
that the system DistSysS of I/O automata implements the specification automaton S. We
proceed in the proof by refining the global specification according to Awerbuch’s intuitive

construction and defining for each refinement the corresponding correctness claim that needs

to be proved, until the:level of node:algorithms is.reached: We. start, with the, gt‘:loha:l_ specifi:.
cation S (see Fig: 1);and: refine-it: following: the construction.im. [Aw] by a.system SysS.that.
consists of one automaton. SL, for: each: cluster; specifying the:intracluster. synchronization.
behavior, and also: a: single: coordinator- automaton: CS: that. specifies. intercluster. synchro-.
nization (see:Fig. 2).. The correctness claim.for this-refinement is. that: all executions of the.
composed systern: SysS: are acceptable: beltaviors. of: the: global specification. S,

In the above refinement;. automaton: SL. provides, a. specification, for. the intracluster syn-.
chronization. According: to, [Aw]: the intracluster synchronization. is. implemented; by. algo-.
rithm 4. Thus, we further refine: the intermediate specification, SL. by, the distributed: spec-
ification SysSL. (see: Fig. 3),. that medels. the synchronizer B (a. simple. synchronizer. using -
communication: over a tree). The: specification: includes. a. separate node. automata NDSL; for.
each node in a cluster and: a.special autemation LESL for the leader, as well as an automaton,
LISL to represent each: link. The correctness: claim for this, refinement, is. in. fact established: '-
by the correctness proof for the algorithm @. If it. were already carried out in our model, we,
could use it here as is.

Next, we consider the specification for the global intercluster synchronization coordinator.
CS. In [Aw] it is implemented by a distributed algorithm a, in which each cluster is a
participant. Thus we refine the global coordinator specification CS with a distributed one
SysCS (see Fig. 4}, where clusters are modeled by automata CLCS that interact according to
algorithm o (a simple synchronizer, using all the edges of the graph). Thus, the correctness
claim of this refinement is established by the correctness proof of algerithm o. Here again
the proof could be imported if it were available in the medel. |

Finally we consider the behavior of a cluster participating in o, which is specified by
automaton CLCS. Following [Aw| we refine it by a distributed specification SysCLCS that
specifies for each node in a cluster its behavior contributing to the cluster’s part in algorithm
a leader automaton LECS for the leader node, as well as automata LICS for the links (see
Fig. 5). The correctness claim for this refinement then requires a proof that the the composed
system SysCLCS implements the cluster specification CLCS. This is the last claim for the

correctness proof of the network synchronizer. It is due to the support for modularity and

OK(p,i

GO(p.i

S(G)
OK(q.i
GO(q,i

Figure 1: S(G)

hierarchical reasoning provided by the model of [LT], that the results described are sufficient
to establish that the detailed node level specification DistSysS correctly implements the high
level specification S.

The above discussion has dealt with the safety properties of the algorithm. We also give
proofs bf the liveness and complexity analysis of the algorithm, by reasoning directly about
executions of the detailed system.

This paper shows how the properties of the I/O automaton model enable us to capture
formally some of the important intuitions uséd in designing algorithms. We believe that with
this model, it will not be difficult to prove the correctness of other algorithms whose design
was guided by these principles of stepwise refinement and modularity. We also hope that
the insights into the precise nature of modularity that are gained from this formalization

will be useful to the algorithm designers themselves.

2 I/O Automata

The following is a brief introduction to a model that is proving useful for describing and
reasoning about distributed systems. The model is developed at length, with extensions to

express fairness properties, in [LT], where proofs can be found of many of the claims made

L

CLUSTEROK(D;)

Figure 2: $y=8(G)

~~N|CLUSTEROK(C,i)
LESL(C)

/

CLUSTERGO(C,i)

. @ .
.

send(q,p’)
PULSE(q,i)

Figure 3: SysSL(C)

L

CLCS(D)

sosreny || CLCS(CY)

10

CLUSTEROK(Ci) [~
LECS(C)

N

CLUSTERGO(C,i)

send(q,p’
LUSTERSAFE(q,i)

ICS(q,p’)

send(p,q)

rec(q,p’)
READY(p,i

CLUSTERSAFE(q,i)

rec(s,p)
CLUSTERSAFE(s,i

Figure 5: SysCLCS(C)

11

Ll

here.

All components in our system will be modeled by I/O automata. An I/O automaton:
A has a set of states, some of which are designated :as initial states. It has operations,
each classified as either an input operation or an output operation, or an internal operation.
Finally, it has a transition relation, which is a set of triples of the form (s’,,s), where s’
and s are states, and « is an operation. This triple means that in state &’, the antomaton
can atomically do operation n and change to state s. An element of the transition relation
is called a step of the automaton. The output operations are intended to model the actions
that are triggered by the automaton itself, while the input operations model the actions that
are triggered by the environment of the automaton. Internal operations are used to model
communication within the automaton (when we form an automaton from components, this
will include communication between pieces of the automaton). We will always give the
transition relation of an automaton by giving pre- and postconditions for each operation =.
We give the preconditions as predicates depending on s’, and the postconditions as predicates
depending possibly on both s’ and s. These are to be understoed as saying that (8',m,8) is
in the transition relationship exactly when the preconditions are true of state s’ and the
postconditions are true of s’ and s.

Given a state s’ and an operation , we say that x is enabled in s’ if there is a state s for
which (s’,7,8) is a step. We require the following condition.
Input Condition: Each input operation = is enabled in each state s’.
This condition says that an I/O automaton must be prepared to receive any input operation
at any time. This .is reflected in the fact that input operations have empty preconditions.

An ezecution of A is a (finite or infinite) alternating sequence $0sT1s STy yT0,SN 50
of states and operations of 4, beginning with a state, and (if finite) ending with a state.
Furthermore, s is a start state of A, and each triple (8’,7,8) that occurs as a consecutive
subsequence is a step of 4. From any execution, we can extract the schedule, which is the
subsequence of the execution consisting of operations only. Because transitions to different
states may have the same operation, different executions may have the same schedule. We
say that a schedule o of A can leave A in state s if there is some execution of A with schedule

« and final state s. We say that an operation x is enabled after a schedule « of A if there

exists a state s such that a can leave £ in state s and x is enabled in s.

Given a schedule a of automaton 4, we define the corresponding ezternal schedule ext(a)
to be the subsequence of a consisting of those events that are occurrences of output oper-
ations or input operations (that is, we form ext(a) by removing from a the internal opera-
fions). We define the behavior of A, beh(A), to be the set of all sequences that are external
schedules of A. Formally, beh(4) = {ext(a) : « is a schedule of 4}, If 4 and B are 1/O
automata, we say that 8 implements 4 if A and B have the same output and input opera-
tions, and beh(B) C beh(4). The intuitive meaning of this is that B can be safely used for
any task for which A is satisfactory. It is clear that implementation is transitive, that is, if
8 implements A and C implements B then C implements 4. When 3 implements A and A
implements 8, then we say that A and B are equivalent. -

We describe systems as consisting of interacting components, each of which is an I/O
automaton. It is convenient and natural to view a system itself as an I/O automaton. Thus,
we define a composition operation for I/O automata, to yield a new I/O automaton. A set
of I/O automata may be composed if, for each component A the set of internal operations of
A is disjoint from the set of all operations of the other components, and in addition, the sets
of output operations of the various automata are pairwise disjoint. A state of the composed
automaton is a tuple of states, one for each component, and the start states are tuples
consisting of start states of the components. The operations of the composed automaton
are those of the component automata. Thus, each operation of the composed automaton is
an operation of a subset of the set of component automata. An operation is an output of
the composed automaton exactly if it is an output of some component. An operation of the
composed automaton is an internal operation exactly if it is an internal operation of some
component. An operation of the composed automaton is an input operation exactly if it is
not an output or internal operation of any component. (The output operations of a system
are intended to be exactly those that are triggered by components of the system, while
the input operations of a system are those that are triggered by the system’s environment.)
During an operation 7 of a composed automaton, each of the components that has operation
7 carries out the operation, while the remainder stay in the same state.

An ezecution or schedule of a system is defined to be an execution or schedule of the

13

I

automaton composed of the individual automata of the system. If a is a schedule of a
system with component A, then we denote by a/| A the subsequence of & containing all the
operations of 4. Clearly, |4 is a schedule of 4. The following lemma expresses formally

the idea that an operation is under the control of the component of which it is an output.

Lemma 1 Let o/ be a schedule of a system S, and let o = o'n, where 7 is an output

operation of component A. If al A is a schedule of A, then o is a schedule of §.

We now give the lemma that states that implementation is a compositional property.
This is a major reason why modeling algorithms by I/O automata permits modular proofs

of correctness.

Lemma 2 Suppose the automaton A is the result of composing A o and B 1is the result of

composing B. If B; implements A; for each index i, then B implements 4.

When we consider a system composed of several componerits, we are often not interested
in the internal working of the system, and so we wish to ignore the operations that model
communication between the components. We therefore introduce the hiding transformatioti.
If A is an automaton and 7 an output operation of 4, then the result of hiding 7 in 4 i8
the automaton with the same states, operations and transition relation as A, but with 7
classified as an internal operation instead of an output operation. Note that the schedules of
the automaton after hiding are exactly the same as the schedules of the original automaton,
but the behavior, which is invelved in proving implementation, has changed. Clearly if is
an operation of exactly one component of a system, the result of hiding # in that component
and then composing the automata, is the same as composing the automata and then hiding
in the composition. We alse introduce the transformation that renames an operation of an
automaton. So long as the renaming is done consistently throughout a system of automaiﬁa,
and the new name is not already used for any operation of any component, then the result
of renaming an operation and then composing is the same as the result of composing and
then renaming. Finally we observe that renaming an internal operation of an autormaton, as
long as the new name is not already used for an operation of the automaton, does not alter

the behavior of the automaton.

14

2.1 Distributed Solutions

We will use I/O automata to model both a global specification of the synchronizer, and
the local components of the distributed solution that we will give. Since the fundamental
composition mechanism described above is the simultaneous occurrence at several automata
of an operation, we have to be careful when modeling asynchronous communication. For
example, we would not represent message passing as a single operation shared by sender and
receiver. Instead we give explicit automata to represent the communication links, just as we
give an explicit automaton to represent each node. Sending a message is an operation that
occurs simultaneously at the sender and the link. Similarly, receipt of a message is a shared
operation between the link and the recipient. We use nondeterminism within the automaton
for the link to capture the asynchrony of the communication network. Thus, we model an
asynchronous unidirectional link from p to g, conveying messages from the set M, by the
following automaton.

Link Automaton: LIy (p,q)

Inputs:

send(p,q)M forM € M
Outputs:

rec(p,q)M for M € M

state:

multiset contents, initially empty

transitions:

send(p,q)M
Postconditions

s.contents = s’.contents UM

rec(p,q)M

Preconditions

15

M € 8’.contents
Posteonditions

s.contents = s’.contents — M

Suppose we are given a distribut.ed problem. This will be specified by an automaton
whose schedules are acceptable behaviors for a solution, together with a graph G describing
the topology of the network on which a solution has to run, and an assignment locale, that
gives for each operation of the specification ahtomaﬁon. the node of the network at which it
occurs. We now define what it means to say that a system of automata provides a distributed
solution to this problem. This means that the automaton that results from composing
the members of the system and then hiding all operations that are not operations of the
specification, is an implementation of the specification in the sense of the previous section,

and in addition, the system satisfies the following conditions:

1. The system consists of an automaton NODE(p) for each node p of the graph, together
with, for each edge (p,q) of the graph G, two link automata LK(p,q) and LI(q,p} as

given above for a suitable choice of message set.

2. For each operation r of the system, either there is a node p such that is an operation
of the node automaton NODE(p) (and no other component), or there are nodes p and
q so that = is an input of NODE(p} and an output of LI{q,p} (and an operation of no
other component), or there are nodes p and q so that # is an output of NODE(p) and

an input of LI{p,q) (and an operation of no other component).

3. Each operation r of the specification automaton is an operation of NODE(p), where
p=locale(r) is the node to which the operation is assigned, and of no other component.
3 The Algorithm

The algorithm will run on a network whose topology is given as a connected graph G,
described by giving for each node p a set of nodes neighbors(p). The nodes are partitioned

into clusters, so that each cluster is connected. Each cluster’s subgraph has a distinguished

16

rooted spanning tree. This data is given as follows: for each cluster C there is a node
leader(C), and for each node p € C there is another node parent(p), which is the next node
on the path to leader(C). If p = leader(C) then parent(p) = nil. We let children(p) denote
the set of nodes q such that parent(q) = p. We say that cluster D is a neighbor of cluster
C, written D € Neighbors(C), if there are nodes p and q with p € C, q € D, and q €
neighbors(p). For each pair of neighboring clusters, a single distinguished ‘preferred’ edge
is chosen between them. This is indicated by giving for each node p a set preferred(p) of
nodes that are neighbors of p along preferred edges. We say that a node is special if any of
its descendants in the tree (that is, itself, or its children, or its children’s children, etc.) have
neighbors along preferred edges. We let specialchildren(p) denote the subset of children(p)
containing special nodes. Thus when there are at least two clusters, the special nodes form
the least subtree of a cluster’s tree that has the same root and contains all the endpoints of

preferred edges.

3.1 The Use of the Synchronizer

We briefly discuss the architecture of the context in which the synchronizer is placed, and
show how I/O automata can be used to model all the pieces of such a system. At each node
of the asynchronous network is a proccess that executes the code for a graph algorithm in
a synchronous system. We model the process at node p by an I/O automaton CLIENT(p),
whose operations are synch-receive(p,i)N¥ and synch-send(p,i)N, where N is a collection
of messages tagged with source or destination information. Round i of the synchronous
algorithm at node p is begun when the automaton CLIENT(p) receives an input operation .
synch-receive(p,i) N, where the messages in the set N are those that were included with
destination p in the sets of messages in preceding synch-send(q,i-1) operations. When the
node has finished local processing of these messages, it performs an output operation synch-
send(p,i) N' for a new set of messages and destinations. Different synchronous algorithms
will be described by different I/O automata, and we do not constrain the choice except
by simple syntactic conditions, such as requiring each p not to perform a synch-send(p,i)
operation unless a synch-receive(p,i) operation had occurred earlier, and not to perform a

synch-send(p,i) operation if a synch-send(p,i) operation had already occurred.

17

L

At each node of the network there is also a process that.uses the asynchrenous: communi-.
cation system to transmit the messages.of the:client:algerithm; and:alsoto'send and Teceive:
acknowledgements.for such messages: This process-has the respensibility of notifying the syn-.
chronizer when all the round i messages of the client:algorithm have-been -acknowledged; and:
1t must also delay deliveringthe collected client algerithmround i messages until the synchro..
nizer has given permission forthe start:of round:i+1. at:that.noda. We.model this process.at:
node p by an I/ O automaton FRONT-END(p), The operations.of ‘CLIENT(p) include synch-.
send(p,i) M and synch-receive(p;i) ¥, which are-shared: with. CLIENT (p): FRONT-END(p).
also has operations:send(p,q)M(i);. res(q;p)M’(i); send(p;q) ACK-M’(i), and rec(q,p)ACK-.
M(i), where' M and: M’ are round: i messages. of the: client: algorithm, These operations are:
shared with link' automata:between: p:and q, Ein-a:llﬁy’tfl'terint*erractiomwith;bhe»«sy_nchroni_z,_e_n is.
modelled by input. operations GO(p;,i); which:indicate that:all roundi-1 messages being sent;
to p have already arrived’ (and! that: therefore they can be bundled into-a;set: and. delivered.
to the client algorithm:at: any time once the client has. finistied: round: i-1), and: by output,
operations' OK(p;i); which: indicate: to ttie synchronizer that: acknowledgements: have. been,
received at p:for all round! i messages, of the client algorithm that were sent from. p.

We give here the explicit. construction: of the L/O: automaton FRONT-END(p). We.
use the notations: described earlier; and also: we will: assume;, for: this. and for all other. I/O
automata that we:give, that the postconditions.of each: operation:include implicitly the clause.
s.v = g’.v for each component: v of the state s whenever that component: s.v is not mentioned
in the explicitly given postconditions.

Front-end: FRONT-ENB/(p)

Inputs:

synch-send(p,i) N, for ¥ a multiset of (message,node) pairs, i positive
rec(q,p)M(i), for ¢ a nede, M a message, i positive

rec(q,p)ACK-M(i}, for ¢ a node, M a message, i positive

GO(p,i), for i pasitive

Outputs:

synch-receive(p,i} ¥, for X a multiset of (message,node) pairs, i positive

send(p,q)M(i}, for q a node, M a message, i positive

18

send(q,p) ACK-M(i), for q a node, M a message, i positive
OK(p,i), for i positive

State:

array GOrecli], initially all false
array OKsent(i], initially all false
array synchsend[i], initially all false
array synchreceive(i], initially all false
multiset mess, initially empty
multiset ack, initially empty

multiset unacked, initially empty

array of multisets mess-received|i], initially all empty

transitions:

synch-send(p,i) ¥

Postconditions
s.synchsend[i] = true

s.mess = s’.mess U {(p,q)M(i) : (M,q) € ¥}

rec(q,p)M(i)
Postconditions
s.ack = s’.ack U {(p,q)JACK-M(i)}

s.mess-received[i] = s’.mess-received[i] U {(M,q)}

rec(q,p)ACK-M(i)
Postconditions

s.unacked = s’.unacked — {(p,q)M(i)}

GO(p,i)

8.GOrecli] = true

19

L

synch-receive(p;i)N
Preconditions

8’.GOrecli] = true

s synchreceiveli] = false

Postconditions

s.synchrecéiveli] = true

send(p,q)M(i)

Preconditions
(p:a)M(i) € ¥'mess

Posteonditions
s.miess = & .smeds = {{pa)Mi)}
s.unacked = ¢ .utacked U {{pg)M)}

send(p;q) ACK-MI(1)
Preconditions
Postconditions

s.ack = &' ek = {(ZPsQ)M@}

OK(p;i)

Preconditiois
& synchvend[i] = Yrue
8 unacked | 4 fress cotaing o elenet
8" OKweritfi] = Talse

Postconditions

5 OKsenit]i] = itrue

20

o) NI{) For any qor M

In the next section we will give a specification synchronizer automaton S(G), which uses
global information about the OK(q,i) operations at all nodes to determine when to perform
GO(p,i+1). In particular, S(G) does not perform GO(p,i+1) until OK(q,i) has occurred
for all q € neighbors(p). In Fig. 6 we illustrate all these automata. When S(G) performs
GO(p,i+1), every neighbor of p has received an acknowledgement for every round i message
sent. In particular, acknowledgements have been received for every round i message sent
to p, and therefore every such message must have arrived at p. Thus FRONT-END(p) will
correctly deliver to CLIENT(p) all the round i messages in the synch-receive(p,i+1) opera-
tion. It is straightforward to use the techniques of [LM] to turn this argument into a formal
proof that the system illustrated behaves (as far as each CLIENT automaton can tell) just
like a synchronous system, that is, one in which the clients share their operations with a
single communication system automaton, that accepts collections of messages in synch-send
input operations from all nodes, sorts out the destinations appropriately, and bundles the
messages and delivers them in synch-receive output operations after all client nodes have
finished the previous round. In this paper, we concentrate on the problem of showing that
a complicated but distributed synchronizer implements the simple but centralized specifica-
tion synchronizer, where we illustrate the I/O automata model’s support for compositional

modularity.

3.2 Specification

We give a single specification automaton S{G), called a synchronizer for t;he graph G. This
has an input operation OK(p,i), which is an indication from the front-end at node p that
every message it sent in round i has arrived at its destination. When every neighbor q of a
node p has issued its OK(q,i-1) operation, the synchronizer can issue an output operation
GO(p,i), which indicates to the front-end at node p that it can commence round i of the
synchronous algorithm as soon as the client has finished its local processing for round i-1,

since there can be no more round i-1 messages in transit to p.

Synchronizer: S(G)

21

L

|:60(g)

5(G)

Figure 6: The whole system

22

Inputs:

OK(p,i) for p € G, i positive
Outputs:

GO(p,i) for p € G, i positive

State:
array OKrec|p,i|, initially all false
array GOsent[p,i], initially all false

transitions:
OK(p,i)
Postconditions

8.0Krec[p,i] = true

GO(p,i)

Preconditions
i =1 or (s’.0Krec[q,i-1] = true for all q € neighbors(p))
i = 1 or s’.GOsent|p,i-1] = true
8’.GOsent|[p,i] = false

Postconditions

8.GOsent[p,i] = true

3.3 The Detailed Distributed Algorithm

We now give the distributed solution that is closely based on Awerbuch’s algorithm 4+,
translated into the I/O automaton model. We give an automaton ND(p) for each node p of
the graph that is not a leader of a cluster, and an automaton LE(C) for the leader of each
cluster C. We also give link automata for each edge of the graph G. The detailed code is
given in Appendix I, together with an account of the relationship between it and the code

in [Aw].

23

L)

To help the reader understand the algorithm, we give-an informal account, paraphrasing.
[Aw], of the low level working of the system. Once a node p that is: a leaf of its cluster’s
tree has received the OK(p,i) input-operation (indicating that the node is safe, that is, every
message that node sent in the:i-th round has been received). p sends a SAFE(p,i) message
to its parent in'the tree. Any node p. that is not a leaf nor the leader sends a SAFE(p,i)

message to its parent only after it has both reccived the. OX(p,i) input and also received
SAFE(q;i) messages from all its:children. Thus SAFE(p,i) is not sent until every node.in the
tree that is a descendant of p is-safe: This pattern of communication, with a node passing a
message to its' parent only after receiving it from all its: children, is a common paradigm in
distributed graph algorithms, and: is called: convergecast. When the leader of cluster C has
received SAFE(q;i) messages from all its children q, and also.is known to. be safe itself (that
is, has received OK(p,i)), it issues the CLUSTEROK(C,i) operation.

Once CLUSTEROK(C,i) has occurred, intercluster synchronization begins. The leader
sends each of its special children a CLUSTERSAFE(p,i) message. In addition it sends.
CLUSTERSAFE(p,i) messages over any preferred edges that originate at the leader. Each
node p in the tree, after receiving a8 CLUSTERSAFE(q,i) message from its parent q, sends
CLUSTERSAFE(p,i) to its special children, and also along any preferred edges. Thus the
CLUSTERSAFE miessages are broadeast over the subtree of special nodes (this is another
standard communication pattern}, and are also sent to neighboring trees. The cluster C uses
a convergecast of READY (p,i} messages (over the subtree containing only special children) to
detect the fact that CLUSTERSAFE(q,i) messages have been received from all neighboring
trees along preferred edges. When the leader of the cluster has received READY/(q,i) from
each of its children, and also has received CLUSTERSAFE(q’,i) along any preferred edges
that go directly from the leader to neighboring trees, it issues the CLUSTERGO(C,i+1)
operation, which indicates the completion of intercluster synchronization for cluster C.

Once the CLUSTERGO(C,i+1) operation has occurred, and also the whole cluster is
known to be safe (because the leader has received SAFE(q,i) messages from all its children,
and also it has received OK(p,i) itself) the leader p can issue GO(p,i+1) (informing node p
that the next round can begin) and it can also send PULSE(p,i+1) messages to each of its

children. The PULSE(p,i+1) messages are broadcast over the tree, and when they arrive at

24

each node, that node is able to issue the GO(p,i+1) operation.

We claim that the collection of automata, consisting of all the automata LE(C) for all C,
ND(p) for all non-leader nodes p, and LI(p,q) for all p and q such that (p,q) is an edge of G,
is a distributed solution to the problem specified by the automaton S(G), the graph G, and
the requirement that the operations GO(p,i) and OK(p,i) be assigned to node p. Since it is
clear that the system is preperly distributed, all that remains is to show that the automaton
DistSysS(G), the result of composing the automata and then hiding all operations except
GO(p,i) and OK(p,i), implements S(G). This will be done in Theorem 10.

4 The Verification

We now begin the process of verifying that the algorithm given implements the specifica-
tion. First we divide the code at each node into two pieces, containing the operations and
state relevant to inter- and intracluster synchronization, respectively. Then we give the
specification SL for an intracluster synchronizer, and remark that the actual code gives an
implementation of this using algorithm #. Similarly we note that the collection of automata
doing intercluster synchronization in one cluster implements the representative CLCS. In
turn, CLCS acts as the whole cluster should, as a piece contributing to intercluster synchro-
nization using algorithm «. Then we give the specification of the coordinator CS, which
represents intercluster synchronization, and note that algorithm « is a correct implemen-
tation of this. We prove formally that the combination of CS with the automata SL(C)
implements the specification S, that is, that synchronization can be achieved by combining
intra- and intercluster synchronization. Finally we combine all these results to see that the
distributed algorithm - as described by the detailed code implemenﬁs the global specification
S.

Although the subsidiary claims are given here in a particular bottom-up order, we note
that these results are independent, and could be carried out separately and in any order, or

even imported from other work (if available).

25

L

4.1 The Division between Inter- and Intracluster Algorithms

Following Awerbuch’s: informal correctness arguments, we will regard the activity of the
system as consisting of beth imter- and intracluster synchronization. The messages CLUS-
TERSAFE(p,i) and READY(p,i} are used for intercluster synchronization, while the mes-
sages SAFE(p,i) and PULSE(p;i), as well as the operations OK(p,i) and GO(p,i} are part},
of intracluster synchronization. Lhe aperation CLUSTEROK(C,i) serves to communicate
from the intracluster synchronizer to the intercluster synchronizer; while CLUSTERGO(C,i)
communicates the other way. Thus we give two sets of automata: NDCS(p), LECS(C) and
LICS(p,q) to represent the-intercluster synchronization, NDSL(p), LESL(C) and LISL(p,q)
to represent the intracluster synchronization. The detailed code can be found in Appendix
I, as it is extremely similar to the code of the.full algorithm. Essentially we divide the opera-
tions, state variables and transition relationships of ND(p) between NDCS(p) and NDSL(p) -
so that each gets the operations, state variables and transitions relevant to its own part of -
the synchronization. Similarly we divide LE(C) into. LECS(C), and LESL(C), and LI{p,q)
into LICS(p,q) and LISL(p,q).

It is clear that the composition of the automata NDCS(p) and NDSL(p) is equivalent to.
the automaton ND(p). The only difference, in fact, is that the composition has two multisets
for outgoing messages, while ND(p) has only one multiset buffer. Similarly the composition
of LECS(C) and LESL(C) is equivalent to LE(C), and the composition of LICS(p,q) and
LISL(p,q) is equivalent to LI(p,q). Therefore DistSysS(G) is equivalent to DistSysS(G)’, the
result of composing all the automata mentioned in this subsection, and then hiding all the
operations except GO(p,i} and OK(p,i}. Our task will thus be to prove that DistSysS(G)’

implements S(G).

4.2 An Intracluster Synchronizer

The collection of automata that perform intracluster synchronization for a cluster € use
algorithm 8. The combined activity of these automata is to synchronize the cluster, and
in addition to inform the intercluster synchronizer (via CLUSTEROK(C,i)) when the whole
cluster is safe, and to delay the GO(p,i) at any node until all neighboring clusters are known

to be safe. (The intercluster synchronizer reports this by CLUSTERGO(C,i).) Thus the

26

behavior of the cluster as a whole can be specified by the following automaton:
Modified Synchronizer for cluster C: SL(C)
{This is a slightly modified synchronizer specified, with extra operations that interact with

the intercluster synchronizer.}

Inputs:

OK(p,i) for p € C, i positive
CLUSTERGO(C,i) for i positive
Outputs:

GO(p,i) for p € C, i positive
CLUSTEROK(C,i) for i positive

State:

array OKrec|p,i], initially all false

array GOsent|p,i], initially all false

array CLUSTEROKSsentli], initially all false
array CLUSTERGOrecli], initially all false

transitions:
OK(p,i)
Postconditions

s.0Krec[p,i] = true

CLUSTERGO(C,i)
Postconditions

s.CLUSTERGOTrec|i] = true

GO(p:i)

Preconditions
i =1 or (s".OKrec[q,i-1] = true for all q € Neighbors(p) N C)
1= 1 or 8’.GOsent[p,i-1] = true

27

L

§’.CLUSTERGOrec[i] = true
8’.GOsent[p;i] = false
Postconditions

8.GOsent{p,i] = true

CLUSTERGXK(C,i)
Preconditions
8".0Krec|p,i] = true for all p € C
s”.CLUSTEROKsentli] = false
Postconditions

s.CLUSTEROKserit]i] = true

In order to express formally the fact that the algorithm g is correct, we let SysSL(C)
denote the result of composing the automata LESL(C), NDSL{p) for all p € C except
leader(C), and LISL(p,q) for all p and q so that (p.q) is an edge of G and both p and g are
nodes of C, and then hiding all the operations that are not operations of SL(C), Then we

have the following lemma, whose proof is found in section 5.1.

Lemma 3 SysSL(C) implements SL(C).

4.3 A Cluster Representative for Intercluster Synchronization

In giving his informal account of this algorithm, Awerbuch refers to the intercluster syn-
chronization being performed by using algorithm o between the clusters. Thus, we give, for
each cluster C, an automaton that specifies the activity of the whole cluster as a participant
in intercluster synchronization, using algorithm «. Thus the cluster sends messages to its
neighbors once it has heard (from CLUSTEROK(C,i)) that the cluster is safe, it receives
messages from its neighbors indicating that they are safe, and performs CLUSTERGO(C,1)
once all the neighboring clusters are known to be safe.

Cluster representative: CLCS{C)

Inputas:

28

CLUSTEROK(C,i) for i a number
rec(D,C)CLUSTERSAFE(D,i) for D € Neighbors(C), i positive
Outputs:

CLUSTERGO(C,i) for i positive
send(C,D)CLUSTERSAFE(C,i) for D € Neighbors(C), i positive

state:
array CLUSTERG Osent(i], initially all false
array CLUSTERSAF Erec[D,i], initially all false

multiset mess, initially empty

transitions:
CLUSTEROK(C,i)
Postconditions

s.mess = ¢’.mess U {(C,D)CLUSTERSAFE(C,i) : D € Neighbors(C)}

rec(D,C) CLUSTERSAFE(D,i)
Postconditions

s.CLUSTERSAFErec[D,i] = true

CLUSTERGO(C,i)

Preconditions
i =1 or (s.CLUSTERSAFErec|D,i-1] = true for all D € Neighbors(C))
i =1 or 8>.CLUSTERGOsent[i] = true
s’.CLUSTERG Osent[i] = false

Postconditions

s.CLUSTERGOsent[i] = true

send(C,D)CLUSTERSAFE(C,)

Preconditions

29

L

(C,D)CLUSTERSAFE(C,i) € s’.mess
Postconditions

s.mess = 8’ .mess — {(C,D)CLUSTERSAFE(C,i)}

We denote by SysCLCS(C) the system formed by composing all the antomata TECS(C),
NDCS(p) for p € C — leader(C), and LICS{p,q) for p and q in C such that (p,q) is-an-edge
of G, then renaming send(p,q)CLUSTERSAFE(p,i) as send{C,D)CLUSTERSAFE(C;i) and
rec(q,p) CLUSTERSAFE(q,i) as rec(D,C)CLUSTERSAFE(D,i) when (p,q) is the preferred
edge between C and D, and finally hiding all operations that are not operations.of CLCS(C).
Then we have the following claim, that the detailed algorithm in each cluster implements

the required behavior. Its proof is found in section 5.2.

Lemma 4 SysCLCS(C) implements CLCS(C).

4.4 An Intercluster Synchrenizer

If we consider all the automata CLCS(C) for each cluster C, together with link automata
LICS(C,D) (each of these is just LICS(p,q) for (p,q) the preferred edge between C and D
with operations renamed, with p replaced by C and q replaced by D), then these together
perform algorithm o to synchronize between the clusters. Thus we introduce an automaton
that is just a specification synchronizer for the quotient graph formed by identifying all
the nodes in a cluster together, except that each state and operation name is prefixed by
‘cluster’.

Intercluster Synchronizer: 08

Inputs:

CLUSTEROK(C,i) for C a cluster, i positive
Outputs:

CLUSTERGO(C,i) for C a cluster, i positive

State: '
array CLUSTEROKrec[C,i], initially all false

30

array CLUSTERG Osent[C,i], initially all false

transitions:
CLUSTEROK(C,i)
Postconditions

s.CLUSTEROKTrec|C,i] = true

CLUSTERGO(C,i)

Preconditions
i =1 or (s.CLUSTEROKTrec|D,i-1} = true for all D € Neighbors(C))
i =1 or (s’.CLUSTERGOsent|C,i-1] =true)
s’.CLUSTERGOsent[C,i] = false

Postconditions

s.CLUSTERGOsent|C,i] = true

We denote by SysCS the automaton formed by composing the automata CLCS(C) for
all clusters C, and LICS(C,D) for all pairs of clusters C and D that are neighbors, and then
hiding all operations that are not operations of CS. The fact that algorithm « is correct is

expressed simply by the following lemma, whose proof is given in section 5.3.

Lemma 5 SysCS implements CS.

4.5 High Level Structure

Consider an automaton SysS(G), which is formed by composing the intracluster synchro-
nizers SL(C) for all clusters C, together with the intercluster synchronizer CS, and then
hiding all the operations except GO(p,i) and OK(p,i). The fact that performing inter- and
intracluster synchronization is a way to synchronize the whole graph, is expressed in the
following simple statement: SysS(G) implements S(G). In order to-prove this statement, we
first give several re;ults that relate the schedules of the automata involved to the states in

which the automata are left. First we discuss the specification automaton S(G).

31

Lemma 6 Let « be a schedule of S{(G), and let s be the state of S(G) after a. Then

1. s.OKrec[p,ij=true if and only if & contains OK(p,i).

2. s.GOsentlp,ij=true if and only if a contains GO(p,i).
Proof: We give the proof of (1), as the proof of (2) is almost the same. We use induction
ot the length of e If oris exapty, thew it does not containy OK({p;i), and s is the initial state,
for which s.OKree[p,ij=false. Thus suppose o = o'r, and let s’ be the state of S(G) after
o. I n is OK(p,i), then a contains OK(p,i), and by the postcondition of the operation
OK(p,i), s.OKrec[p,i] = true. Otherwise n is aw operation whose postconditions do not
mention OKrec[p,i], and so we have s.0Krec[p,i| = true if and only if *.OKrec[p,i] = true,
which by the induction hypothesis occurs if and only if of contains OK(p,i). But (since x is
not OK{(p,i)) we-also have in this situation that o contains OK (p;i) if and only if & contains'
OK(p,i). This' completes the proof of (1). Q.ED.

We next give the lemmas: about the: state of the components: of SysS(G). The proofs are:

almost identical to that for Lemma 6, and so are left to the reader.
Lemima 7 Let o be a schedule of CS, and let & be the state of CS after o. Then

1. s.CLUSTEROKrec[C,i|=true if ond only if v contasivs CLUS TEROK(C,3).

2. s.CLUSTERGOsent[C,i|=true if and only:if a contains CLUSTERGO{(C,3).
Lemma 8 Let o be: @ schedule of SL(C);. and: let' s be the state of SL(C); after a. Then

1. s.OKrec[p;ij=trueif and only if o contuins OK(p;1).

2. 9.GOsent[p;ij=trve if and: only if o contains: GO(p;1).

3. s.CLUSTEROKsent{i]=true if and’ onlyif o contains CLUSTEROK(C,3).

4. 8.CLUSTERGOrecfij=true if: and! onlip if o containg CLUSTERGO(C:):

Now we can prove tlie claim: above; which: says that intracluster synchronization:and inter-

cluster synchronization combine to provide synchronization. for: the whole: graph G-

Lemma 9 SysS(G) implements S(G).

32

Proof: Since every input and output operation of S(G) is an input or output of some
component SL(C) from which the system SysS(G) is formed, we only need to prove that
whenever a is a schedule of SysS(G), and 8 denotes the subsequence of o consisting of the
operations of S(G), then 8 is a schedule of S(G). This is proved by induction on the length
of o. If a is empty, then so is 3, so that 8 is a schedule of S(G). So let us assume that «
= o/n. Letting B’ denote the subsequence of &' consisting of operations of S(G), we have by
the induction hypothesis that 3’ is a schedule of S(G). If 7 is not an operation of S(G), then
B = f', and we are done. Otherwise § = #'x. If x is OK(p,i), then = is an input to S(G),
and so is enabled after any schedule of S(G), by the Input Condition, and therefore 8 is a
schedule of S(G).

Thus we suppose that 7 is GO(p,i). Let s denote the state of SL(C) after o', where C is
the cluster containing p. Let t denote the state of S(G) after #'. We have that 7 is enabled
(as an operation of SL(C)) in t, and we will deduce that it is enabled (as an operation of
S(G)) in s. By the preconditions for #, t.GOsent[p,i] = false, and thus by Lemma 8 o
does not contain GO(p,i). Therefore 8’ does not contain GO(p,i), and so by Lemma 6,
3.GOsent[p,i] = false. Also by the preconditions, either i = 1 or t.GOsent[p,i] = true. If
i # 1, by Lemma 8 o contains GO(p,i-1), and thus ' contains GO(p,i-1). Therefore, by
Lemma 6, either i = 1 or s.GOsent[p,i-1] = true.

Suppose that i # 1. Then the preconditions of 7 as an operation of SL(C) imply that
t.CLUSTERGOrec|i] = true and that t.OKrec[q,i-1] = true for all q € Neighbors(p) N C. By
Lemma 8, o' contains CLUSTERGO(C,i) and OK(q,i) for all q € Neighbors(p) N C. Now,
by examining the preconditions for the operation CLUSTERGO(C,i) of the intercluster syn-
chronizer CS, and Lemma 7, we see that the prefix of o preceding the CLUSTERGO(C,i)
operation must contain CLUSTEROK(D,i-1) for all clusters D that are neighbors of C.
Therefore, by the preconditions of the operation CLUSTEROK(D,i-1) of SL(D) and Lemma
8, we deduce that the prefix of o preceding each CLUSTEROK(D,i-1) contains the opera-
tions OK(q,i~1) for all nodes q in cluster D. Thus a' (and hence ') contains OK(q,i-1) for all
q € Neighbors(p), as any such q is either in Neighbors(p) N C, or else is a member of a cluster

D that is in Neighbors(C). By Lemma 6, s.OKrec[q,i-1] = true for any q € Neighbors(p).

33

L

Thus we have shown that s.GOsent{p;i] = false, that i = 1 or 8.GOsent[p,i-1] = true, and
that i=1 or (s.OKrec[q;i-1] = true for all g € Neighbors(p)). That is, we have slown that =
is enabled in state s; completing the proof. Q.E.D.

4.6 The Main Theorem:

We can now combine the results: given above to verify the correctness of the detailed alge-

rithm for network synchronization.
Theorem 10" DistSysS(G) implements S(G).

Proof: We first consider DistSysCS, the automaton that results from composing all the:
automata NDCS(p), LECS(C) and LICS(p,q), and then hiding all epeﬂra.tfionsexc.ept‘ CLUS-
TERGO(C,i) and CLUSTEROK(C,i). By the associativity of composition (and the fact -
that renaming and hiding behave well in compositioh)f, this is' equivalent to composing all ‘
the automata SysCLCS(C) and LICS(C,D), and then hiding the remaining operations except ‘
CLUSTERGO(C,i) and CLUSTEROK(C,i). Since by Lemma 4, SysCLCS(C) implements.
CLCS(C) for each C, we have that DistSysCS implements SysCS by Lemma 2. Since by
Lemma 5, SysCS implements CS, we deduce that DistSysCS implements CS.

Now DistSysS(G) is equivalent to DistSysS(G)’, the result of composing all the automata
NDCS(p), NDSL(p), LECS(C), LESL(C), LICS(p,q) and LISL(p,q), and then hiding all
operations except GO(p,i) and OK(p,i). But DistSysS(G)’ is, by the associativity of com-
position, equivalent to the result of composing DistSysCS with all the automata SysSL(C),
and then hiding operations. Since by Lemma 3 SysSL{C) implements SL(C), and, as we saw
above, DistSysCS implemenﬁs CS, we can deduce from Lemma 2 that DistSysS(G)’ imple-
ments SysS(G), the result of composing CS with all the automata SL(C) and then hiding
all operations except GO(p,i) and OK(p,i). By Lemma 9, SysS(G) implements S(G), and
therefore DistSysS(G)’ implements S(G). Thus DistSysS(G) implements S(G). Q.E.D.

5 Subsidiary Correctness Proofs

We will now give the proofs of the claims made and used in the previous section about the

correctness of the simpler algorithms such as synchronizers a and f. First, we prove the

34

fundamental lemmas about the behavior of a l_ink automaton, as these are used repeatedly

in the following proofs.

Lemma 11 Let a be a schedule of LIy (p,q), and let s be the state of LIy (p,q) after a.
Then for M € M, the multiplicity of M as an element of s.contents is z—y, where z is

the number of occurrences in a of send(p,q)M and y is the number of occurrences in a of

rec(p,q¢) M.

Proof: By induction on the length of a. The base case, when « is empty, is trivial since
then s is the initial state, so s.contents is empty and the multiplicity of M is zero. On the
other hand x and y are also both zero. Thus we suppose a = o', and let s’ be the state of
LIy (p,q) after &'. If = is send(p,q)M’ or rec(p,q)M’ for M’ # M, then by the postconditions
above the multiplicity of M is the same in s.contents as in s’.contents. Also the number of .
occurrences of send(p,q)M and rec(p,q)M are the same in « as in o'. Thus the lemma follows
from the inductive hypothesis that the multiplicity of M in s’.contents equals the difference
between the number of occurrences of send(p,q)M and rec(p,q)M in «'.

If x is send(p,q)M, the multiplicity of M in s.contents is one more than its multiplicity
in s’.contents. On the other hand a contains one more occurrence of send(p,q)M than o,
and o and o' contain the same number of occurrences of rec(p,q)M. Therefore the lemma
follows from the induction hypothesis. If r is rec(p,q)M the multiplicity of M in s.contents
1s one less than its multiplicity in s’.contents but a contains the same number of occurrences
of send(p,q)M than o', and a contains one more occurrence of rec(p,q)M than o'. Thus the

lemma follows from the induction hypothesis. An ok;\;idh.éuéonsequence of this lemma is the

following:

Lemma 12 Let a be a schedule of LIy (p,q) and let M € M. Then a contains at least as
many occurrences of send(p,q)M as of rec(p,q)M.

5.1 Correctness of Intracluster Synchronization

We prove Lemma 3, which says that algorithm B is correct.

We first study the components out of which SysSL(C) is formed.

Lemma 13 Let a be a schedule of NDSL(p) and let s be the state of NDSL(p) after a. Then

35

L

. 8.0Krec[p,ij=true if and only if o contains OK{(p,i).

8.8AFErec/q,i]=true if and only if o contains rec(q,p)SAFE(q,i).

3.GOsent[p,i]=true if and only if ca@tafz;ns GO(p,i).

s.pulsefi/=true if and only if o contains rec(parent(p),0)PULSE (parent{p),s).

The multiplicity of (p,q) PULSE(p,i) as an element of s.mess equals z—y where z is the
number of oceurrences of rec(parent(p),p)PULSE (parent(p),i) in o and y-is the number
of occurrences of send(p,q)PULSE(p,i) in c.

The multiplicity of (p,parent(p))SAFE(p,i) as an element of s.mess equals z—y where z
is the number of occurrencesin a— f of any of operations OK(p,) or rec(q,p)8AFE(q,i)
for q € children(p) (where B is the longest prefix of o not containing at least ‘one oe-
currence of each of the operations OK(p,1) and rec(q,p)SAFE(q,i) for q € children(p)),
and y 1s the number of occurrences of send(p,parent(p))SAFE(p,i) in .

Immediate consequences of the previous lemma are given next.

Lemma 14 Let ¢ € children(p). If is a schedule of NDSL(p) then o contains at least as
many occurrences of rec(parent(p),p)PULSE(parent(p),i) as of send(p,q) PULSE(p,i).

Lemma 15 If « is a schedule of NDSL(p) that contains send(p,parent(p))SAFE(p,i) then
a contains rec(q,p)SAFE(q,i) for all ¢ € children(p), and & also contains OK{p,i) .

Lemma 16 Let a be a schedule of LESL(C) and let s be the state of LESL{C) ufter a. Then

s

o

. 8.OKrec[q,i]=true if and only if @ contains OK{(q,i).

s8.GOsent[q,i]=true if and only if a contains GO(g,i).
8.SAFErec(q,i]=true if and only if o contains rec(q,p)SAFE(p,i), where p=leader(C).
8.CLUSTERGOrec[q,i]=true if and only if o contains CLUSTERGO(C,i).

s.clustersafefi/=true if and only if a contains OK(p,i} and rec(q,p)SAFE(q,;) for p=
leader(C) and all g € children(p). -

s.pulsefij=true if and only if o contains CLUSTERGO(C,i} and either i=1 or s.cluster-
safefi-1]=true. '

36

7. 8. CLUSTEROKsent[i/=true if and only if a contains CLUSTEROK(C,i).

8. For p = leader(C), the multiplicity of (p,q)PULSE(p,i) as an element of s.mess equals
z—y where z i3 the number of occurrences in a—pf of any of the operations CLUS-
TERGO(C,i), OK(p,i-1) or rec(q,p)SAFE(q,i-1) (where B is the longest prefiz of a
not containing CLUSTERGO(C,i) and (if i # 1) at least one occurrence of each of
OK(p,i-1) and rec(q,p)SAFE(q,i-1) for ¢ € children(p)), and y is the number of occur-
rences of send(p,q)PULSE(p,i) in a.

We next give an immediate consequence of part (7) of the Lemma above.

Lemma 17 Let p = leader(C), and q € children(p). If o is a schedule of LESL(C) that
contains send(p,q)PULSE(p,i) then a contains CLUSTERGO(C,i) and (if i # 1) OK(p,i-1)
and rec(q,p)SAFE(q,i-1) for all g € children(p).

The next result is an immediate consequences of the preconditions for CLUSTEROK(C,i)
as an operation of LESL(C), and (5) of Lemma 16.

Lemma 18 Let p =leader(C). If @ i3 a schedule of LESL(C) that contains CLUSTEROK(C,i),
then o contains OK(p,i) and rec(q,p)SAFE(q,i) for all g € children(p).

We next prove the fundamental invariants of the system SysSL(C) that capture the
principles of the broadcast and convergecast paradigms of message flow. We recall that
SysSL(C) is formed by composing NDSL(p) for p € C — leader(C), LESL(C), and LISL(p,q)
for p and q in C, and then hiding certain operations, so its schedules are just schedules of

the composition.

Lemma 19 Let o be a schedule of the automaton that results form composing NDSL(p) for p
€ C — leader(C), LESL(C), and LISL(p,q) for p and g in C. If a contains send(p,parent(p))-
SAFE(p,i) for some p such that p € C, p # leader(C), then a contains OK(q’ i) for all ¢’
such that ¢’ is a descendant of p in the tree of C.

Proof: We use induction on the height of p in the tree of C. The basis case, when p has
height 1, is when p is a leaf of the tree. In this case we need only check that a contains

OK(p,i), as p has no descendants except itself. This case is immediate from Lemma 15. So

37

L}

suppose that the Lemma has been proved for all non-leader nodes of height at most k, and
that p has height k-+1, for k > 1. By Lemma 15, o contains rec(q,p)SAFE(q,i) for all g &
children(p), and also OK(p,i). By Lemma 12, & must contain send(p’,p)SAFE(p’,i) for all p’
€ children(p), but such p’ have height at most k,-and none is leader(C). Thus the induction
hypothesis implies that o contains’'OK(q’;i) for all q’ such that q’ is a descendant of p’ where
p’ is a child of p. However any q’ that is a descendant of p is either p itself or a descendarit
of a child of p. Thus a contains OK(q’,i) for all q’ that are descendants of p in the tree.

Q.E.D.

Lemma 20 Let « be a schedule of the automaton that results form composing NDSL(p) for
p € C — leader(C), LESL(C), and LISL(p,q) for p and g in C. Let s be the state of LESL{C)
after o. If s.clustersafefi/=true then o contains OK(q’,i) for all ¢’ € C.

Proof: By Lemma 16 «a contains an OK(p;,i) for p=leader(C) and a rec(q,p)SAFE(q,i) for
all q € children(p). By Lemma 12 « contains a send(q,p)SAFE(q,i) for all q € children(p)
that then by Lemma 19 implies that a contains OK(q’;i) for all q’ descendants of all q &
children(p). Thus we have shown that e contains OK(q’,i) for all ¢’ € C . QE.D.

Lemma 21 Let o be a schedule of the automaton that results form composing NDSL(p) for
p € C — leader(C), LESL(C), and LISL(p,q) for p and q in C. Suppose that s.pulsefij=true,
where s is the state of the NDSL(p) (or LESL(C) if p=leader(C)) after a. Then a contains
CLUSTERGO(C,i) and also, either i=1 or o contains OK(q,i-1) for all g € C. |

Proof: We use induction on the depth of p in the tree of C. The basis case, when p has
depth 1, is when p=leader(C). From Lemrr;a. 16, we see that a contains CLUSTERGO(C,i)
and that either i=1 or else s.clustersafe(i-1]=true. By Lemma 20, either i=1 or « contains
OK({q,i-1) for all q € C. Thus we suppose that the lemma has been Aproved for all ncdes
of depth at most k, and that p has depth k+1, for k > 1. Then p is not the leader of
C. By Lemma 13 s.pulsefi]=true implies a contains rec(parent(p),p)PULSE(parent(p),i),

which by Lemma 12 implies that « contains a send(parent(p),p)PULSE(parent(p),i). Now _

the preconditions of send(parent(p),p)PULSE(parent(p),i) imply s’.pulse[i]=true, where ¢’
is the state of NDSL(parent{p)) (or LESL(C), if parent(p)=leader(C)), immediately before
the operation send(parent(p),p) PULSE(parent(p),i). But parent(p) has depth k, and so the

38

induction hypothesis implies that a prefix of @, and thus a itself, contains CLUSTERGO(C,i)
and also that either i=1 or a contains OK(q,i-1) for all q € C. Q.E.D.
Now we are ready to prove the claim, given as Lemma 3, that SysSL(C) acts as a modified

synchronizer for the whole cluster C, by following algorithm 8.
Lemma 22 SysSL(C) implements SL(C).

Proof: Since every input and output operation of SL(C) is an input or output of SysSL(C),
we only need to prove that whenever a is a schedule of the composition SysSL(C), and 8
denotes the subsequence of a consisting of operations of SL(C), then § is a schedule of SL(C).
This is proved by induction on the length of a. If « is empty, then so is 3, so that S is a
schedule of SL(C). Therefore let us assume that a = a'w. Letting 8' denote the subsequence
of o' consisting of operations of SL, we have by the induction hypothesis that 8’ is a schedule
of SL. If 7 is not an operation of SL, then 8 = §', and we are done. Otherwise § = g'r. f x
is CLUSTERGO(C,i) or OK(p,i) where then 7 is an input to SL(C), and so is enabled after -
any schedule of SL(C), by the Input Condition, and therefore 8 is a schedule of SL(C).

¥ = is CLUSTEROK(C,i), then by preconditions for = as operation of LESL(C) and
Lemma 16, o’ must not contain CLUSTEROK(C,i) and also s.clustersafe(i)=true, where
s is the state of LESL(C) after o/. By Lemma 20, o/ contains OK(p,i) for all p € C .
Therefore, transferring these facts to 3', we see that 8’ contains OK(p,i) for all p € C, and
that 8’ does not contain CLUSTEROK(C,i). Let t denote the state of SL(C) after §'. By
Lemma 8, t.OKsent(p,ij=true for all p € C, and t.CLUSTEROKsent[i|=false. Examining
the preconditions for 7 as an operation of SL(C), we see that « is enabled after ', and thus
B is a schedule of SL(C).

If 7 is GO(p,i), then let s denote the state after a' of NDSL(p) (or LESL(C) if p=leader(C)).
By the preconditions for 7 as an operation of NDSL(p) or LESL(C), and Lemma 16 or Lemma
13, o does not contain GO(p,i) and also, if i#1, o' contains GO(p,i-1). Also, the precon-
dition s.pulse[i]=true for 7 as an operation of NDSL(p) or LESL(C), implies by Lemma 21
that o' contains CLUSTERGO(C,i) and also that, if i # 1, o' contains OK(q,i-1) for all
q € C. Thus ' does not contain GO(p,i) and contains CLUSTERGO(C,i), and if i # 1,
also contains GO(p,i-1) and OK(q,i-1) for all q € C. Now, by the preconditions forv7r as an
operation of SL(C), and by Lemma 8, we have that x is enabled after 8', so § is a schedule

39

L

of SL(C) as required. QE.D.

5.2 Correctness of the Cluster Representative

Now we prove Lemma 4, which says that the broadcast and cenvergecast, used by the

automata NDCS(p) and LECS(C) te communicate within a cluster C, work as the cluster

automata involved to the states in ‘which the automata are left.

Lemma 23 Let o be a schedule of CLOS(C), end let s be the state of CLCS(C) after.a.
Then

1. 8. CLUSTERGOsent]i|=true if and only 4f & conteins CLUSTERGO(C,1).

2. 8.CLUSTERSAFErec|D;d]=truef and only if a contains rec(D,C)CLUS TERSAFE(D;3).

8. the multiplicity of (C,D)CLUSTERSAFE(C,i) as an element of s.mess equals z—y, .
where z 18 the number of occurrences of CLUSTEROK(C,i) in o and y is the number
of occurrences of send(C,D)CLUSTERSAFE(C,i) in a.

For later use, we observe the following immediate consequence of (3) .above.

Lemma 24 Let o be g achedule of CLOS(C). Then o contains at least as many ocenrrences
of CLUSTEROK(C,i) as of send(C,D}CLUSTERSAFE(C;3).

We now study ‘the.components.out .of which SysCLOS(C) .is-formed.

Lemma 25 Let o ibe .o schedule of NDCS(p) and let s 'be the .state .af NDCS{p) after ..

Then

1. s.CLUSTERSA¥Erecfqs|=trueif and onlyif a contains tec(q,p) CLUSTERSAFE(q;3).
2. 8. READYrec[gsif=tnueif and .only if .« contains READY (q;3).

8. If q € specidlehiliren{p):U Preferred(p), the multiplicity .of {(p,q) CLUSTERSAFE{p;i)
as anelement.of s.mess.qquals a—y.where is:the numiber.of occurrences of rec(parent(; P).p)-
CLUSTERSAFE (parent(p);i) in .« .and .y is the number .of .occurrences .of send(p,q)-
CLUSTERSAFE(p;i)an .«.

40

4. The multiplicity of (p,parent(p))READY (p,i) as an element of s.mess equals z—y where
z 18 the number of occurrences in a—f of any of the operations rec(q,p)READY(q,1) for
g € specialchildren(p) or rec(q’,p)CLUSTERSAFE(q’,i) for ¢’ € Preferred(p}, {where
B is the longest prefiz of & not containing at least one occurrence of all the operations
rec(q,p)READY(q,i) for q € specialchildren(p) and rec(q’,p)CLUSTERSAFE(q’3) for
¢’ € Preferred(p)), and y is the number of occurrences of send(p,parent(p))READY (p,i)

n a.
Immediate consequences of (3) and (4) of the previous lemma are given next.

Lemma 26 Let ¢ € children(p) U Preferred(p). If a is a schedule of NDCS(p) then o

contains at least as many occurrences of rec(parent(p),p) CLUSTERSAFE(parent(p),i) as of
send(p,q) CLUSTERSAFE(p,i).

Lemma 27 If a is a schedule of NDCS(p) that contains send(p,parent(p))READY (p,3)
then o contains rec(q,p)READY(q,i) for all q € specialchildren(p), and o also contains
rec(q’,p)CLUSTERSAFE(q’3) for all ¢’ € Preferred(p).

We similarly study LECS(C).

Lemma 28 Let a be a schedule of LECS(C) and let s be the state of LECS(C) after c.
Then
1. s.READYrec[q,ij=true if and only if o contains rec(q,p)READY (q,i), where p=leader(C).

2. s. CLUSTERSAFErec(q,i/=true if and only if a contains rec(q,p)CLUSTERSAFE(q,1),
where p=leader(C). »

8. s.CLUSTERGOsent[i|=true if and only if a contains CLUSTERGO(C,i).

4. For p = leader(C) and q € specialchildren(p) U Preferred(p), the multiplicity of (p,q)-
CLUSTERSAFE(p,i) as an element of s.mess equals z—y where z is the number of

occurrences of CLUSTEROK(C,i) in o and y is the number of occurrences of send{p,q)-
CLUSTERSAFE(p,i) in a.

We next give an immediate consequence of (4) above.

41

L

Lemma 29 Let p = leader(C), and q € children(p) U Preferred(p). If a is a schedule
of LECS(C) then a contains at least as many occurrences of CLUSTEROK(C,i) as of
send(p,q) CLUSTERSAFE((p,1).

The next result is an immediate consequence of the preconditions for CLUSTERGO(C,i) as
an operation of LECS(C), and (2)-of Lemma 28.

Lemma 30 Let p = leader(C). Ifaisa schedule of LECS(C) that contains CLUSTERGO(C,1)
for a value i > 1, then o contains rec(q,p)READY(q,i-1) for all ¢ € specialchildren(p), and
« also contains rec(q’,p) CLUSTERSAFE(q’i-1) for all ¢’ € Preferred(p).

We next prove the fundamental invariants of the system SysCLCS(C) that capture the
principles of the broadcast and convergecast paradigms of message flow. We recall that
SysCLCS(C) is formed by composing NDCS(p) for p € C — leader(C), LECS(C), and
LICS(p,q) for p and q in C, and then renaming and hiding certain operations.

Lemma 31 Let o be a schedule of the automaton that results form composing NDCS(p) for
p € C — leader(C), LECS(C), and LICS(p,q) for p and q in C. Let p and q be such that p €
C and q € specialchildren(p} U Preferred(p). Then o contains at least as many occurrences

of CLUSTEROK(C,i) as of send(p,q) CLUSTERSAFE(p,z).

Proof: We use induction on the depth of p in the tree of C. The basis case, when p
has depth 1, is when p=leader(C). This case is immediate from Lemma 29. So suppose
that the lemma has been proved for all nodes of depth at most k, and that p has depth
k+1, for k > 1. Then p is not the leader of C. Let x denote the number of occurrences
of send(p,q) CLUSTERSAFE(p,i) in «. By Lemma 26, a contains at least x occurrences
of rec(parent(p),p)CLUSTERSAFE(parent(p),i), and therefore by Lemma 12, it contains at
least x occurrences of send(parent(p),p)CLUSTERSAFE(parent{p),i). However parent(p)
has depth k, and so the induction hypothesis implies that « contains at least x occurrences

of CLUSTEROK(C,i), as required. Q.E.D.

- Lemma 32 Let « be a schedule of the automaton that results form composing NDCS(p) for p
€ C — leader(C), LECS(C), and LICS(p,q) for p and q in C. If o contains send(p,parent{p))-
READY(p,i) for some p such that p € C, p # leader(C), then o contains rec{q,q9’)CLUSTER-

42

SAFE(q,3) for all q and ¢’ such that ¢’ is a descendant of p in the tree of C, and ¢ €
Preferred(q’).

Proof: We use induction on the height of p in the tree of C. The basis case, when p has
height 1, is when p is a leaf of the tree. In this case we need only check that a contains
rec(q,p) CLUSTERSAFE(q,i) for q € Preferred(p), as p has no descendants except itself. This
case is immediate from Lemma 27. So suppose that the Lemma has been proved for all non-
leader nodes of height at most k, and that p has height k+1, for k > 1. By Lemma 27, & con-
tains rec(q,p) CLUSTERSAFE(q,i) for all q € Preferred(p), and also rec(p’,p)READY(p’,i)
for all p’ € specialchildren(p). By Lemma 12, o must contain send(p’,p)READY (p’,i) for all
p’ € children(p), but such p’ have height at most k, and none is leader(C). Thus the induc-
tion hypothesis implies that o contains rec(q,q’)CLUSTERSAFE(q,i) for all q and q’ such

that g’ is a descendant of p’ where p’ is a special child of p, and such that q € Preferred(q’). .

However for any q’ that is a descendant of p and for which q € Preferred(q’), q’ is either p
itself or a descendant of a special child of p. Thus we have completed the proof. Q.E.D.
Now we are ready to prove the claim, Lemma 4 that SysCLCS(C) acts as a representative

of the whole cluster C, within algorithm «.
Lemma 33 SysCLCS(C) implements CLCS(C).

Proof: Since every input and output operation of CLCS(C) is an input or output of
SysCLCS(C), we only need to prove that whenever « is a schedule of the composition
SysCLcg(C), and 8 denotes the subsequence of a consisting of operations of CLCS(C),
then @ is a schedule of CLCS(C). This is proved by induction on the length of . If o is
empty, then so is B3, so that # is a schedule of CLCS(C). Therefore let us assume that o = o'7.
Letting 8’ denote the subsequence of o consisting of operations of CS, we have by the induc-
tion hypothesis that 8" is a schedule of CS. If 7 is not an operation of CS, then # = ', and we
are done. Otherwise § = g'z. If = is CLUSTEROK(C,i) or rec(D,C)CLUSTERSAFE(D,i)
where then 7 is an input to CLCS(C), and so is enabled after any schedule of CLCS(C), by
the Input Condition, and therefore 8 is a schedule of CLCS(C).

If 7 is send(C,D)CLUSTERSAFE(C,i), then before renaming (as an operation of the
automaton that results form composing NDCS(p) for p € C ~ leader(C), LECS(C), and

43

L

LICS(p,q) for p and q in C), = was send(p,q)CLUSTERSAFE(p,i) where p € C, q € Pre-
ferred(p), and q € D. Then by Lemma 31, & (and hence o' and §') contains at least x occur-
rences of CLUSTEROK(C,i), where x is the number of occurrences of send(C,D)CLUSTER-
SAFE(C,i) in «, since these were exactly the occurrences of send(p,q) CLUSTERSAFE(p;i)
before renaming. Thus ' contains x-1 occurrences of send(C,DJCLUSTERSAFE(C,i). By
Lemma 23, (C,D)CLUSTERSAFE(C,i) is an element of t.mess, where t is the state of
CLCS(C) after #', and thus = is enabled in state t. Thus S is a schedule of CLCS(C).

If # is CLUSTERGO(C,i), then before renaming (as an operation of the automaton that
results form composing NDCS(p) for p € C — leader(C), LECS(C), and LICS(p,q) for p and q
in C), = was also CLUSTERGO(C,i). By the preconditions for 7 as an operation of LECS(C)
and Lemma 28, o' must not contain CLUSTERGO(C,i). Also, if i#1, & (before renaming)
must contain CLUSTERGO(C,i-1) and rec(q,p) CLUSTERSAFE(q,i-1) for p = leader(C) and
all q € Preferred(p), and rec(p’,p)READY (p’,i-1) for p = leader(C) and all p’ € children(p).
Then, by Lemma 12, o' (before renaming) contains send(p’,p)READY (p’,i-1) for all p’ € chil-
dren(p), and hence (by Lemma 32) before renaming, o' contains rec(q,q")CLUSTERSAFE(q,i-
1) for all g’ descended from a child of p, and q € Preferred(q’). Thus we have shown that,
before renaming, o' contains rec(q,q’)CLUSTERSAFE(q,i-1) for all g’ descended from o)
(that is, all g’ € C), and all q € Preferred(q’). Therefore (after renaming) o contains
CLUSTERGO(C,i-1) and rec(D,C)CLUSTERSAFE(D;i-1) for all D € Neighbors(C). We
can transfer all the above conclusions to B', deducing that 4 does not contain CLUS-
TERGO(C,i), and if i # 1, ' contains CLUSTERGO(C,i-1) and rec(D,C)CLUSTERSAFE(D, -
1) for all D &€ Neighbors(C). By the preconditions for 7 as an operation of CLCS(C) and
Lemma 23, we have that = is enabled after 4/, so 8 is a schedule of CLCS(C) as required.

Q.E.D.

5.3 Correctness of Intercluster Synchronization

We next prove the claim of Lemma 5, that algorithm « provides correct synchronization

between the clusters.

Lemma 34 SysCS implements CS.

44

Proof: Since every input and output operation of CS is an input or output of SysCS, we
only need to prove that whenever « is a schedule of SysCS, and B denotes the subsequence of
o consisting of the operations of CS, then § is a schedule of CS. This is proved by induction
on the length of . If o is empty, then so is 8, so that 8 is a schedule of CS. Therefore let
us assume that o = o/#. Letting 3' denote the subsequence of o' consisting of operations of
CS, we have by the induction hypothesis that 8’ is a schedule of CS. If = is not an operation
of CS, then 8 = B', and we are done. Otherwise § = f'r. If # is CLUSTEROK(C,i), then =
is an input to CS, and so is enabled after any schedule of CS, by the Input Condition, and
therefore 8 is a schedule of CS. »

Thus we suppose that 7 is CLUSTERGO(C,i). Let s denote the state of CLCS(C) after
o'. Let t denote the state of CS after '. We have that = is enabled (as an operation
of CLCS(C)) in t, and we will deduce that it is enabled (as an operation of CS) in s.
By the preconditions for 7, t.CLUSTERGOsent[i] = false, and thus by Lemma 23 o does
not contain CLUSTERGO(C,i). Therefore 8’ does not contain CLUSTERGO(C,i), and
so by Lemma 7, s. CLUSTERGOsent[C,i] = false. Also by the preconditions, either i = 1
or t.CLUSTERGOsent[i] = true. If i # 1, by Lemma 23 & contains CLUSTERGO(C,i-
1), and thus B' contains CLUSTERGO(C,i-1). Therefore, by Lemma 7, either i = 1 or
s.CLUSTERGOsent[C,i-1] = true.

Suppose that i # 1. Then the preconditions of = as an operation of CLCS(C) imply
that t.CLUSTERSAFErec|D,i-1] = true for all D € Neighbors(C). Thus by Lemma 23 o
contains rec(D,C)CLUSTERSAFE(D,i-1) for all D € Neighbors(C), and hence by Lemma 12
o contains send(D,C)CLUSTERSAFE(D,i-1). By Lemma 24 applied to CLCS(D), o' con-
tains CLUSTEROK(D,i-1). Therefore §' contains CLUSTEROK(D,i-1), and so by Lemma
7 s.CLUSTEROKTrec|D,i-1] = true for all D € Neighbors(C).

Thus we have shown that s. CLUSTERGOsent[C,i] = false, that i = 1 or s. CLUSTERGO-
sent[C,i-1] = true, and that i=1 or (s.CLUSTEROKTrec[D,i-1] = true for all D € Neigh-
bors(C)). That is, we have shown that is enabled in state s, completing the proof. Q.E.D.

45

L

6 Message and Time Analysis

We will now show that operational reasoning in the I/O model can be used to prove results.
about the message and time performance of the algorithm, as well as the safety property.
of implementing a specification. In order to do this, however we will need to restrict the:
environment of the system, that is, the ways in which the input operations OK(p,i) arrive.
We say that a schedule of the distributed synchronization system DistSysS(G) is well-formed:
if any occurrence of OK(p,i) is preceded by GO(p,i) and is not preceded by OK(p,i). Thusa
well-formed schedule reflects the behavior of the system when the environment is issuing only
one OK message at each node for each round, and is not issuing that until the synchronizer
has allowed the round to start.

We now show that in a well-formed schedule every operation can occur at most once.

Lemma 35 Let o be a well-formed schedule of DistSysS(G). Then o contains at most one

occurrence of each operation.

Proof: Since the DistSysS(G) is equivalent to DistSysS(G), we can and will regard o as
a schedule of DistSysS(G)’. We use induction on the length of «. The basis case, when «
is empty, is trivial. Thus we suppose a=c'w, and that o' contains at most one occurrence
of each operation. In order to show the same for «, we need only prove that o does not
contain 7.

If x is OK(p,i) this is immediate from the definition of well-formed.

If m is rec(p,q)M for some message M, this follows from Lemma 12, since by the induction
hypothesis o' (and thus «) contains at most one occurrence of send(q,p)M.

If 7 is GO(p,i) or CLUSTERGO(C,i) or CLUSTEROK(C,i), this is a consequence of the
preconditions for 7 as an operation of the appropriate component automaton. Each of these
operations has a precondition that checks that the operation has not already occurred, for
example s’.GOsentl[i]=false is a precondition for GO(p,i), and by Lemma 13 this means that
o' does not contain GO(p,i). ‘

If x is send(p,q)PULSE(p,i) and p is not the root of its tree, this follows from part
(56) of Lemma 13, since the multiplicity of a message In a multiset cannot be negative,

and by the induction hypothesis o' (and hence a) contains at most one occurrence of

46

rec(parent(p),p) PULSE(parent(p),i). If is send(p,q)PULSE(p,i) where p=leader(C), the
lemma follows similarly from part (8) of Lemma 16, since by the induction hypothesis each
operation CLUSTERGO(C,i), OK(p,i-1) and rec(q’,p)SAFE(q’,i-1) can occur at most once
'in o and so all except one of these (namely the one that occurs last) occur in a prefix of &
not containing all éf themn.

If 7 is send(p,q)SAFE(p,i) the lemma follows from part (6) of Lemma 13, since the
multiplicity of a message in a multiset is non-negative, and only the last one of the operations
OK(p,i) or rec(q’,p)SAFE(q’i) for ¢’ € children(p), will not occur in a prefix of a not
containing all of these operations.

If 7 is send(p,q)READY(p,i) the lemma follows from part (4) of Lemma 25 in the same
way.

If 7 is send(p,q) CLUSTERSAFE(p,i) the lemma follows from part (4) of Lemma 28, or
part (3) of Lemma 25, depending on whether or not p is the leader of its tree.

Thus we have proved the lemma for each possibility for «. Q.E.D.

6.1 Message Complexity

We now show how we can bound the number of messages sent in an execution of the al-
gorithm. We will speak of the messages PULSE(p,i), SAFE(p,i-1), CLUSTERSAFE(p,i-1)
and READY(p,i-1) as all belonging to round i, because they are sent in preparation for is-
suing a GO(p,i) operation. We note that if « is a schedule of DistSysS(G) containing an
operation send(p,q)M for a message M belonging to round i, and i # 1, then a contains
at least one operation OK(p’,i-1). If M is SAFE(p,i-1) this is proved in Lemma 19. If
M is CLUSTERSAFE(p,i-1) then Lemma 31 implies that o contains CLUSTEROK(C,i-1),
whose precondition s’ .clustersafe[i-1]=true implies by Lemma 20 that « contains OK(p,i-1)
as desired. If M is READY(p,i-1) then Lemma 32 shows that o contains some rec(q’,q”)-
CLUSTERSAFE(q’,i-1) operation, for q’ a descendant of P, and thus a send(q’,q” JCLUSTER-
SAFE(q’,i-1) operation, and hence some OK(p’,i-1) operation, by the above. Finally if M is
PULSE(p,i) then « contains OK(q’,i-1) for all ¢’ in p’s cluster, by Lemma 21. This result
implies for a well-formed schedule of DistSysS(G), that if it contains a message belonging to

round i, then it contains GO(p,i-1) for some p.

47

L)

Now we can prove that the number of messages used per round is bounded by four times
the number of edges that are preferred edges or tree edges. We say that round i is commenced

in the execution « if & contains some GO(p,i) operation.

Lemma 36 Suppose o is a well-formed schedule of DistSysS(G) for which iy is ‘the largest
round number commenced. Then the number of send(q,q’)M operations in o ts at ‘most

{(ig+1) times the number of tree or preferred edges.

Proof: The observations above show that o contains no operation send(q,q’)M where M
is a message belonging to a round greater than ig+1. Since no the link automata on ‘edges,
other than tree or preferred edges, have empty message sets, and each of the two automata
on a preferred or tree edge has at most 2 messages belonging to each round in its message

set, the result is immediate from Lemma 35. Q.E.D.

6.2 Time Complexity and Liveness

In order to discuss the time complexity of the algorithm, we introduce the idea of a ‘timed
execution’. We call the combination of an execution sq,7y,s1,79,89,... of automaten £ and
a nondecreasing sequence of nonnegative real numbers (‘times’) t1,592,-..,, where there are
the same number of t; as there are operations m; in the execution, a timed ezecution of 4.
Intuitively, we understand this combination as indicating that m; occurred at time t—i. Asa
convention we put tg = 0. For any nonnegative t, we say that s; is a state of the automaton
at time t if t; <t < t; 1. Note that since the times need not be strictly increasing; there
may be several states at a given time. We refer to the subsequence of the execution up to,
but not including, the first operation 7y for which t; > T, as the execution up to time T;
so that the state s;_; that ends this is the last state of the automaton at time T. Thus the

operations 7; that occur in the execution up to time T are exactly those whose times t; afe |
less than or equal to T. In order to prove any bounds on the time the synchronizer algorithm
takes, we will need to assume that the component automata take steps promptly. Thus we

introduce the notion of a 1-admissible timed execution of an automaton 4. We say that a

timed execution of A is I-admissible? if whenever there is an output or internal operdtion

2This is a special case of a more general definition due to Tuttle.

48

. is a state of the automaton at time T and = 1s

7, a state s and a time T, such that s = s;

enabled in state s, then there is some index j > i such that the operation 7 = 7 and tj <
T+1. In particular, in a 1-admissible timed execution, any operation {other than an input)
enabled in a state at time T, occurs in the execution of the system up to time T+1.

Now, an output or internal operation is enabled for an automaton formed by composing
components and hiding operations, exactly when it is enabled for the unique component
automaton of which the operation is not an input operation. It follows that in applying the
definition of 1-admissible timed execution to the system DistSysS(G), we can consider the
states of the component automata separately. For example, when we consider the link au-
tomaton LI (p,q), we see that the definition implies that in a 1-admissible timed execution
of a distributed solution, any message sent is delivered within one unit of time. We also
remark that all the automata discussed in this paper have the property that once an output

or internal operation is enabled, it remains enabled until it occurs.

We first prove that the system DistSysS(G) begins by issuing GO(p,1) operations promptly.

Lemma 37 Let H be the greatest depth of a tree in the spanning forest for G. Then any
1-admassible timed execution of DistSysS({G) contains GO(p,1) for all p, in the ezecution up
to time 2H.

Proof: We prove that for any node p, the operations GO(p,1) and send(p,q)PULSE(p,1)
occur in the execution up to time 2k, where k is the depth of p in its cluster’s tree. This
statement clearly implies the truth of the lemma, and we will prove it by induction on k.

The basis case, when k=1, is when p=leader(C) for some cluster C. Notice that for
each cluster C, the operation CLUSTERGO(C,1) of LE(C) is enabled in the initial state
of the system, and so is enabled in a state at time 0. Therefore the operation occurs
by time 1. Examining the postconditions of CLUSTERGO(C,1), and the preconditions of
GO(p,1) and send(p,q)PULSE(p,1) for q € children(p), we see that each operation GO(p,1)
and send(p,q)PULSE(p,1) is enabled in the last state of the system at time 1, unless it has
occurred already in the execution up to time 1. In either case, we deduce that each operation
GO(p,1) and send(p,q)PULSE(p,1) occurs in the execution up to time 2.

Now we suppose the statement proved for all nodes of depth k-1, and prove it for a node

p of depth k, for some value k > 1. Since k # 1, p is not leader(C), so let p’=parent(p). Then

49

L

p’ has depth k-1, the induction hypothesis shows that the execution up to time 2k-2 contains:
send(p’,p)PULSE(p’,1). Therefore, considering the preconditions for rec(p’,p)PULSE(p’ 1)’
as an operation of LI(p’,p), rec(p’,p)PULSE(p’,1) is enabled in the last state of the system
at time 2k-2 unless rec(p’,p)PULSE(p’,1) has occurred in the execution to time: 2k-2. In:
any case, rec(p’,p)PULSE(p’,1) must occur in the execution up to time 2k-1. Examining the
poétconditions of rec(p’,p)PULSE(p’,1) as an operation of ND(p), we see that the precon-
ditions of each of the operations GO(p,1) and send(p,q)PULSE(p,1) for q € children(p) are.
satisfled in the last state at time 2k-1, unless the operation in question has already occurred:
in the execution up- to-time 2k-1. In any case, each operation must occur in the execution
up to time 2k. This completes the inductive step of the proof of the statement, and thus
completes j;he proof of the lemma. Q.E.D:

Now we prove that the algorithm has good time performance, as claimed in [Aw].

Lemma 38 Let H be the greatest depth of a tree in the spanning forest for G. Suppose 1 is
a positive integer. Then any I-admissible well-formed timed execution of DistSysS({G) that
contains OK(p,i) for every node p in the execution up to time T, contains GO(p,i+1) for

every node p in the execution up to time T-+8H.

Proof: We first prove the statement that for any node p, whose height in its cluster’s. tree;
is k, the execution up to time T+2k-2 contains rec(p’,p)SAFE(p’,i) for all p’ € children(p).
This is proved by induction on the height k. The basis case, when k=1, is when p is a.
leaf. This case is trivial as there are no elements of children(p). Therefore we assume that
k > 1, and that the statement has been proved for all nodes of height less than k. Fix
any p’ € children(p), so p” has height at most k-1, and so by the induction hypothesis,
the execution up to time T+2k-4 contains rec(p”,p’)SAFE(p” i} for every p” € children(p”).
Examining the postconditions of the operations OK(p’,i) and rec(p”,p’)SAFE(p” i), we see
that the last of these to occur causes (p’,p)SAFE(p’,i) to be placed in the outgoing message:
buffer of ND(p’), and so (since all have occurred in the execution to time T+2k-4) the
operation send(p’,p)SAFE(p’,i) is enabled in the last state at time T+2k-4, unless it has
already occurred in the execution to time T+2k-4. In any case send(p’,p)SAFE(p’,i) must -
occur in the execution to time T+2k-3. Considering the link automaton LI(p’,p), we see

that rec(p’,p)SAFE(p’,i) is enabled in the last state at time T+2k-3, unless it has already

50

occurred, and so rec{p’,p)SAFE(p’,i) must occur in the execution to time T-+2k-2. Since p’
was an arbitrary child of p, this establishes the truth of the statement.

Next we prove the statement that for any special node p, whose depth in its cluster’s
tree is k, the execution up to time T-+2H+2k-2 contains send(p,q) CLUSTERSAFE(p,i) for
every q € specialchildren{p) U Preferred(p). This time we use induction on the depth k.
The basis case, when k=1, is when p=leader{C). Examining the preconditions of the CLUS-
TEROK(C,i) operation of the automaton LE(C), we deduce from the previous statement
(since p has height at most H in its tree) that CLUSTEROK(C,1) is enabled in the last state
at time T+2H-2, unless it has occurred earlier. In any case, CLUSTEROK(C,i) must oc-
cur in the execution to time T+2H-1. Examining the postconditions of CLUSTEROK(C,i),
we see that, for every q € specialchildren(p) U Preferred(p), send(p,q) CLUSTERSAFE(p,i)
is enabled in the last state at time T+42H-1, unless it has occurred already. In any case,
send(p,q)CLUSTERSAFE(p,i) occurs in the execution up to time T+2H, proving the state-
ment for k=1. Assuming the result proved for nodes of depth less than k, we prove
the statement for a special node p of depth k > 1. Since parent(p) is special, and has
depth k-1, the induction hypothesis implies that the execution to time T+2H+2k-4 contains
send(parent(p),p) CLUSTERSAFE(parent(p),i). Thus the execution up to time T+2H+2k-
3 contains rec(parent(p),p) CLUSTERSAFE(parent(p),i). Examining the postconditions of
this operation of ND(p), we see that each operation send(p,q)CLUSTERSAFE(p,i) for q €
specialchildren(p) U Preferred(p) is enabled in the last state at time T+2H+2k-3, unless it
has already occurred. In any case each of these operations must occur in the execution to
time T+42H+2k-2, completing the proof of this statement.

Next we prove the statement that for every special node p, whose height in its cluster’s
tree is k, the execution up to time T+4H+2k-3 contains rec(p’,p)READY(p’,i) for all p’ €
specialchildren(p). The basis case, when k=1, is trivial, as then p is a leaf of the tree and has
no children at all. Therefore, we assume that k > 1, and that the statement has been proved
for all special nodes of height less than k. Fix any p’ € specialchildren(p), so p’ has height
at most k-1. Examining the postconditions of all the operations rec(q,p’YREADY(q,i) for q
€ specialchildren(p’), and rec(q’,p’)CLUSTERSAFE(q’,i) for q’ € Preferred(p’), we see that
the last of these to occur causes (p’,p)READY(p’,i) to be placed in the outgoing message

51

L

buffer of ND(p’). However each of rec(q,p’)READY(q,i) occurs in the execution up to.
time T+4H+2k-5, by the induction hypothesis, and each of rec(q’,p")CLUSTERSAFE(q’,i)
occurs in the execution up to time T+4H-1 since send(q’,p’)CLUSTERSAFE(q’,i) occurs in
the execution up to time T+4H-2 (by the previous statement). Since p is special, the set df
events rec(q,p’)READY (q,i) for q € specialchildren(p’) and rec(q’,p’JCLUSTERSAFE(q’ i}
for @’ € Preferred(p’), is not empty, and so send(p’,p)READY(p’,i) is enabled in the state at
time T+4H+2k-5 unless it occurred already. In any case, send(p’,p)READY(p’,i) occurs in
the execution up to time T+4H~+2k-4, and so rec(p’,p)READY(p’,i) occurs in the execution
up to time T+4H+2k-3.

' Finally we observe that we can prove by induction on the depth, that for any node. p,
whose depth in its cluster’s tree is k, and any q € children(p), the operations G‘O(p,i-{—l)}
and send(p,q)PULSE(p,i+1) occur in the execution up to time T+6H+2k-3. This statement
clearly implies the truth of the lemma. The basis case, when k=1, is when p=leader(C) for
some cluster C. Since the schedule we are considering is well formed, it contaius GO(p’,i)
for every p’ € G, and therefore (considering the preconditions for GO(p,i)), also contains
CLUSTERGO(C,i). Thus the operation CLUSTERGO(C,i+1) of LE(C) is enabled in the
last state at time T+6H-3, unless it has occurred already, since the execution up to time
T+6H-3 contains rec(p’,p)READY(p’,i) for all p’ € specialchildren(p), by the previous state-
ment, and the execution up te time T+4H-1 contains rec(q’,p)CLUSTERSAFE(q’,i) for all
q’ € Preferred(p), because send(q’,p)CLUSTERSAFE(q’ 1) occurred by time T-+4H-2. We
can deduce that CLUSTERGO(C,i+1) occurs in the execution up to time T+6H-2. Exam-
ining the postconditions of whichever oceurs last of the operations CLUSTERGO(C,i+1),
OK(p,i) and rec(p’,p)SAFE(p’,i) for p’ € children(p), we see that each of the operations
GO(p,i+1) and send(p,q)PULSE(p,i+1) is enabled in the last state of the system at time
T+6H-2, unless it has occurred already. Therefore each occurs in the execution up to time
T+6H-1. The case where k > 1 is straightforward, since then parent (p) has depth k-1, and
so the induction hypothesis says that send(parent(p),p)PULSE(parent(p),i+1) occurs in the
execution up to time T+6H+2k-5, and thus rec(parent(p) ,p)PULSE (parent(p}),i+1) oceurs
by time T+6H+2k-4. The postconditions of this operation show that each of GO(p,i+1)
and send(p,q)PULSE(p,i+1) is enabled in the last state at time T+6H+2k-4, unless it has

52

occurred earlier, and so each occurs by time T+68H+2k-3, as required. Q.E.D.

Even without assuming that the system performs actions within time 1, as we did above,
we can show that the system satisfies a liveness condition, as long as each output or inter-
nal operation is performed eventually, once it is enabled. Thus we say that an execution
80,71,81,79,... 18 admaissible if for every 1 and every operation « that is enabled in state Si)
there is an index j with j > i such that A= The following lemmas have proofs that are
almost identical to those of the two previous lemmas concerning timed executions, except

that references to specific times are deleted, and instead operations are deduced to occur

‘eventually’.

Lemma 39 Any admissible ezecution of DistSysS(G) contains GO(p,1) for all p.

Lemma 40 Suppose i is a positive integer. Any admissible well-formed ezecution of Dist-

SysS(G) that contains OK(p,i) for every node p, contains GO(p,i+1) for every node p.

7 Summary and Further Directions

In this paper we have offered a formal, rigorous proof of the correctness of Awerbuch’s al-
gorithm for network synchronization. We specified both the algorithm and the correctness
condition using the I/O automaton model. Our proof of correctness followed closely the
intuitive arguments made by the designer of the algorithm by exploiting the model’s natural
support for such important design techniques as stepwise refinement and modularity. In
particular, since the algorithm uses simpler algorithms for synchronization within and be-
tween ‘clusters’ of nodes, our proof could have imported as lemmas the correctness of these
simpler algorithms, if these had been proved before. Alternatively, the understanding of the
modularity that the proof gives us would allow us to see how to safely change the choices
of implementation of the separate parts of the synchronizer, independently of one another.
Also, we clearly benefit from having carried out the correctness proof in the I/O automaton
model which supports modularity, since the network synchronizer is often used as an ‘off-
the-shelf building block’ component in a larger system, and proofs of the correctness of the

system will be able to use our proof without change.

53

In the future, we hope to study other network protocols in the same way. We still need
to understand how to use the model to capture the intuition behind other, less clear-cut,
forms of ‘modularity’. For example many network algorithms operate over spanning forests
that change with time, and so seem to be hard to represent as intermediate specifications-
implemented by collections: of automata. Nonetheless, we expect that the I/O automaton:
model will provide support for verifying many protocols; once we understand the precise

nature of the modularity.

8 Bibliography
[Aw] Awerbuch, B., ‘Complexity of Network Synchronization,” JACM, 82, 4, 804-823 (1985);.

[Aw2] Awerbuch; B., ‘Rediucing Complexities of Distributed Maximum Flow and Breadth-
First Search Algorithms by means of Network Synchronization,” Networks,. 15, 425-437
(1985). '

[FLMW)] Fekete, A., Lynch, N., Merritt, M., and’ Weikl, W., ‘Nested Transactions and.
Read/Write Locking,” Proceedinigs of 6th ACM Symposium on Principles of Database
Systems, 1987.

[GL] Goldman, K., and Lyneh, N., ‘Nested Transactions and Quorum Consensus,” Proceed-

ings of 6th ACM Symposium on: Principles of Distributed Computation, 1987.

[HLMW] Herlihy, M., Lynch, N., Merritt, M., and Weihl, W., ‘Correctness of Orphan
Elimination Algorithims,” Proceedings of 17th IEEE Symposiur on Fault-Tolerant
Computing, 1987.

[HO] Hailpern, B., and Owicki, S., ‘Verifying Network Protocols Using Temporal Logic,”
Proceedings of IEEE Conference on Trends and Applications: 1980, Computer Network
Protocols.

[LM] Lynch, N., and Merritt, M., ‘Introduction to the Theory of Nested Tramsactions,’

Technical Report MIT/LCS/TR-367, MIT Laboratory for Computer Science, Cam-
bridge, MA., July 1986.

54

[LT] Lynch, N., and Tuttle, M., ‘Hierarchical Correctness Proofs for Distributed Algo-
rithms,’ Proceedings of 6th ACM Symposium on Principles of Distributed Computa-
tion, 1987.

[MP] Manna, Z., and Pnueli, A., ‘Verification of Concurrent Programs: the Temporal
framework,” In The Correctness Problem in Computer Science, R. Boyer and J. Moore,

eds, Academic Press, 1981.

[OG] Owicki, S., and Gries, D., ‘An Axiomatic Proof Technique for Parallel Programs I’
" Acta Informatica 6, 4, 319-340 (19786).

[W1] Welch, J., ‘Synthesis of Efficient Mutual Exclusion Algorithms,” manuscript

Appendix I: The Detailed Code for the Synchronization Al-

gorithm

We give the code for each automaton ND(p) for a non-leader node p, and also for each
automaton LE(Q) for the leader node of cluster C. Afterwards, we discuss the code for two
operations, to give the interested reader some feeling for the model. We also discuss the way
our algorithm is developed from the code in [Aw], which is written for an interrupt-driven
model.

Non-leader node: ND(p)

Inputs:

rec(q,p)READY(q,1) for q € children(p), i positive
rec(q,p)CLUSTERSAFE(q,i) for q € Preferred(p) or q = parent(p), i positive
OK(p,i) for i positive

rec(q,p)SAFE(q,i) for q € children(p), i positive

rec(q,p)PULSE(q,1) for q = parent(p), i positive

Outputs:

send(p,q)READY(p,i) for q = parent(p), i positive
send(p,q)CLUSTERSAFE(p,i) for q € children(p) U Preferred(p), i positive
GO(p,i), for i positive

55

L

send(p,q)SAFE(pi) for q = parent(p), i positive
send(p,q)PULSE(p,i) for q € children(p), i positive

state:

array CLUSTERSAFErec|q,i], initially all false
array READYrec[q,i], initially all false

array OKrec[i], initially all false

array GOsent[i], initially all false

array SAFErec[q,i], initially all false

array pulse[i], initially all false:

multiset mess, initially empty

transitions:
rec(q,p)READY(q,i)
Postconditions
s.READYrec|q,i] = true
if g € specialchildren(p)
and (s’ READYrec[q’,i] = true for all q € (%pemalchlldr@n(p)—{q}))
and (s’.CLUSTERSAFErec[q’,i|] = true for all g’ € Preferred(p))
then s.mess = s’.mess U {(p,parent(p))READY(p,l)}

rec{q,p) CLUSTERSAFE(q,i)
Postconditions
s.CLUSTERSAFEreC[q,i] = true
if q = parent(p) |
then s.mess = s’.mess U { (p,p’)CLUSTERSAFE(p,i) : p’ € specialehildren(p) U Preferred(p)}
if g € Preferred(p)
and (s READYrec[q’,i] = true for all q € Specialchildrﬂ?n(?))
and (s’.CLUSTERSAFErec[q’,i] = true for all ¢’ € (Preferred(p)-{q}))
then s.mess = s’.mess U {(p,parent(p))READY (p,i)}

56

OK(p,i)

Postconditions
s.0Krecli] = true
if (s’.SAFErec[q,i] = true for all q € children(p))
then s.mess = s’.mess U {(p,parent(p))SAFE(p,i)}

rec(q,p)SAFE(q,i)
Postconditions
s.SAFErec[q,i] = true
if (s’.SAFErec[q’,i] = true for all q’ € children(p)-{q}
and s’.OKrecli] = true)

_ then s.mess = s’.mess U {(p,parent(p))SAFE(p,i)}

rec(q,p) PULSE(q,i)
Postconditions
s.pulse[i] = true

s.mess = s’.mess U {(p,p’)PULSE(p,i) : p’ € children(p)}

send(p,q)READY(p,i)
Preconditions
(p,q)READY(p,i) € s’.mess

Postconditions

s.mess = s’.mess — {(p,q)READY(p,i)}

send(p,q)CLUSTERSAFE(p,i)
~ Preconditions
(p,q)CLUSTERSAFE(p,i) € s’.mess

Postconditions

s.mess = s’.mess — {(p,q)CLUSTERSAFE(p,i)}

57

L

GO(p,i)
Preconditions
s’.pulse[i] = true
1= 1 or 8’.GOsent[i-1] = true
s’.GOsentli] = false
Postconditions

5.GOsent[i] = true

send(p,q)SAFE(p,i)

Preconditions
(p,q)SAFE(p,i) € s’.mess

Postconditions

s.mess = s’.mess — {(p,q)SAFE(p,i)}

send(p,q)PULSE(p,i)
Preconditions

(p,q)PULSE(p,i) € s’.mess
Postconditions

s.mess = s’.mess — {(p,q)PULSE(p,i)}

Leader: LE(C)

Inputs:

rec(q,p)READY(q,i) for p = leader(C), q € children(p), i positive
rec(q,p) CLUSTERSAFE(q,i) for p = leader(C), q € preferred(p}, i positive

OK(p,i) for p = leader(C), 1 positive

rec(q,p)SAFE(q,i) for p = leader(C}, q € children(p), i positive

Outputs:
CLUSTERGO(C,i) for i positive

58

send(p,q) CLUSTERSAFE(p,i} for p = leader(C), q € children(p) U preferred(p), i positive
GO(p,i), for p = leader(C), i positive

CLUSTEROK(C,i) for i positive

send(p,q)PULSE(p,i) for p = leader(C), q € children(p), i positive

state:

array READYrec|q,i], initially all false

array CLUSTERSAFErec|q,i|, initially all false
array clustergoli|, initially all false

array OKrecli], initially all false

array GOsentli], initially all false

array SAFErec|q,i], initially all false

array clustersafe[i], initially all false

array pulseli], initially all false

array CLUSTEROKSsent|i], initially all false

multiset mess, initially empty

transitions:
rec(q,p)READY(q,i)
Postconditions

s.READYrec[q,i] = true

rec(q,p) CLUSTERSAFE(q,i)
Postconditions

s.CLUSTERSAFErec|q,i] = true

OK(p,i) -
Postconditions
s.OKrecli] = true

if (s”.SAFErec|q,i] = true for all q € children(p))

59

L

then (s.clustersafe[i] = true

if (s’.SAFErec[q,i] = true for all q € children(p)
and s’.clustergo[i+1] = true)

then (s.mess = s’.mess U {(p,q)PULSE(p,i+1) : p € children(p)}
and s.pulse[i+1] = true))

rec(q,p)SAFE(q,i)
Postconditions
s.SAFErec[q,i] = true
if (s’.SAFErec|[q’,i] = true for all @’ € children(p)-{q}
and s’.OKrec[i] = true)
then s.clustersafeli] = true
if (s’.SAFErec[q’,i] = true for all g’ € children(p)-{q}
and 8’.OKrecli] = true and s’.clustergo[i+1] = true)
then (s.mess = s’.mess U {(p,q)PULSE(p,i+1) : p € children(p)}
and s.pulse[i+1] = true)

CLUSTERGO(G,i)
- Preconditions
i=1or ((s" READYrec[q,i-1] = true for all q € specialchildren(p)) _
and (s’.CLUSTERSAFErec|q,i-1] = true for all q € Preferred(p)))v
i =1 or s’.clustergo[i-1] = true
s’.clustergo[i] = false
Postconditions
s.clusterg-o[i] = true
if (i = 1 or s’.clustersafe[i-1] = true)
then (s.mess = s’.mess U {(p,p’)PULSE(p,i) : p’ € children(p)}

and s.pulsefi] = true)
send(p,q) CLUSTERSAFE(p,i)

60

Preconditions
(p,q) CLUSTERSAFE(p,i) € s’.mess
Postconditions

s.mess = s’.mess — {(p,q) CLUSTERSAFE(p,i)}

GO(p,i)
Preconditions
s’.pulse[i] = true
1= 1 or s’.GOsent[i-1] = true
8’.GOsent|i] = false
Postconditions

s.GOsent[i] = true

CLUSTEROXK(C,j)
Preconditions
s’.clustersafe(i] = true
s’.CLUSTEROKSsent[i] = false
Postconditions

s.CLUSTERTOKsent|[i] = true
s.mess = s’.mess U {(p,q)CLUSTERSAFE(p,i): q € (specialchildren(p) U Preferred(p))}

send(p,q)PULSE(p,i)
Preconditions
(p,a)PULSE(p;i) € s”.mess

Postconditions

s.mess = s’.mess — {(p,q)PULSE(p,i)}

For each p and q for which (p,q) is an edge of G, we let LI(p,q) be a link automaton
from p to q, for the message set M described next: if (p,q) is a preferred edge, then M is
the set of messages CLUSTERSAFE(p,i) for positive i; if p = parent{q) then M is the set

61

L}

of CLUSTERSAFE(p,i) and PULSE(p,i) for positive i; if p € children(q) then M is the set
of READY(p,i) and SAFE(p,i) for positive i; if (p,q) is neither a preferred edge nor a. tree
edge then M is the empty set (so in this case the link automaton is the trivial automaton
with no operations!).

As an aid in understanding the code above, we consider the pre- and postconditions
for the operation rec(q,p)CLUSTERSAFE(q,i) of the non-leader node automaton ND(kp,);.
This is an input operation, and so it has no preconditions, since it can occur at any time.
When it occurs, the fact that it; has happened is recorded in the state by setting the value of
CLUSTERSAFErec[q,i] to true. The other effects depend on whether this is a message béiﬂg
broadcast over p’s own cluster (this is the case if q is p’s parent) or whether this'is a message
from a neighboring cluster (when q is a neighbor of p over a preferred edge). In the first
case, a CLUSTERSAFE(p,i) message to p’ is added to the multiset of outgoing messages, for
each p’ among p’s children and also for each p’ that is a neighbor along a preferred edge. In
the second case, the node checks to see whether all the conditions are now satisfied, in order
to play its part in the convergecast of READY messages. The convergecast.can occur if a
READY(q’,i) message has been received from every special child q’ (as recorded ‘in the state
of the READYrec[q’,i] variables) and if a CLUSTERSAFE(q’,i) message has been received
from every neighbor q’ along a preferred edge (except, of course, for q itself). I all of these
have been received, the node places a READY(p,i) message for its parent, in its buffer of
outgoing messages.

As another example, consider the operation GO(p,i) for a non-leader node p. This cé.n
occur provided the PULSE(q,i) message has arrived from p’s parent (a fact reflected by the
variable pulse[i] being true) and if the previous GO operation (if any) has already occuirred,
and if the GO(p,i) itself has not occurred (this is necessary as the other conditions once true,
remain true forever). The fact that the operation has occurred is reflected in the state by

setting GOsent[i] to true.

The Relationship to Awerbuch’s Original Algorithm

We have given the detailed algorithm for network synchronization by using I/0 automata,

where a node changes state after receiving a message, and a message can be sent (and the

62

node’s state can change accordingly) whenever the send(p,q)M operation is enabled. In his
account, Awerbuch used the interrupt-driven model that is more common among designers of
network algorithms, where the effects of a message receipt include (atomically) both changes
in the state of the node involved and the sending of messages from that node, but where
messages are not generated spontaneously. As the reader can see, we have expressed the
interrupt-driven code ‘on receipt of M from q: change the value of variable v from v-old to v-
new = f(v-old), and send My to q1, Mg to qg, etc.” by an input operation rec(q,p)M with no
precondition, and postcondition s.v = f(s’.v), s.mess = s’.mess U {(p,q1)My,(p,a2)Ma,...}.
Also we have, for example, an output operation send(p,q1)Mj with precondition (p,q;)M;
€ s’.mess and postcondition s.mess = s’.mess — (p,q1)M7j. Thus our model does not send
out messages atomically on receipt of a trigger message, but rather places them in a multiset
of outgoing messages, and sends them at some later time. We note that this difference is not
important for the correctness of the algorithm. After all, even in the interrupt-driven model,
the time of message receipt is delayed arbitrarily, and so additional uncertainty, about the
delay before the message is sent, does not cause trouble.

Some other differences between our presentation of the algorithm and the original version
in [Aw] should be mentioned. The first is that we have ‘hard-wired’ the distinction between
the leader of a cluster and other nodes, while Awerbuch gives a uniform algorithm for every
node that branches, depending on whether or not the node is a leader. Also Awerbuch uses
several subroutines that are called from different places, whereas we have included these
‘in-line’ at every occurrence. Another minor difference is that the events that we call CLUS-
TERGO(C,i) and CLUSTEROK(C,i), and treat as operations of the leader of cluster C, are
regarded by Awerbuch as the leader sending itself a message (PULSE and CLUSTERSAFE,
respectively). None of these differences is at all significant for the correctness or performance
of the algorithm.

There is one respect, however, in which our algorithm is significantly altered from the
one given by Awerbuch. In that version, each node delayed sending the READY message
to its parent until it had received the CLUSTERSAFE message for its own cluster, as well
as the CLUSTERSAFE message for every neighboring cluster along a preferred edge and
the READY message from every child. In contrast, we allow the READY messages to be

63

sent without waiting for the cluster itself to be safe. Instead we check only at: the leader,
before commencing the broadcast of PULSE messages. We therefore use only: the subtree,
containing special nodes, rather than the whole tree, for the convergecast. Smulaﬂy, the.
CLUSTERSAFE messages are broadcast only over the subtree of special nodes, This alter-
ation does not affect correctness;, and: may improve running time by allowing %;hgconvergeeaat
of READY messages to overlap the broadcast of CLUSTERSAEE messages, It may. aléq_
reduce the number of messages sent. The change also makes the verification simpler, ,,‘as, it

increases the degree of independence between the inter- and intracluster synchronization.

Appendix II: Detailed Code for the Divided Algorithm
Non-leader node: NDCS(p)

Inputs:

rec(q,p)READY(q,i) for q € children(p), i positive
rec(q,p)CLUSTERSAFE(q,i) for q € Preferred(p) or q = parent(p), i positive
Outputs: |

send(p,q)READY(p,i) for q = parent(p), i positive

send(p,q) CLUSTERSAFE(p,i) for q € children(p) U Preferred(p), i positive

state:
array CLUSTERSAF Erec|q,i], initially all false
array READ Yrec|q], initially all false

multiset mess, initially empty

transitions:
rec(q,p)READY(q;i)
Postconditions
\s.READYpec[q;i] = ‘true
if q € specialchildren(p)
and (s’ READYrec|q’,i] = true for all ¢’ € (specialchildren(p)-{q}))

64

and (s".CLUSTERSAFErec|q’,i] = true for all g’ € Preferred(p))
then s.mess = s’.mess U {(p,parent(p))READY(p,i)}

rec(q,p) CLUSTERSAFE(q,i)
Postconditions
s.CLUSTERSAFErec|q,i] = true
if ¢ = parent(p)
then s.mess = s’.mess U {(p,p’)CLUSTERSAFE(p,i) : p’ € specialchildren(p) U Preferred(p)}
if q € Preferred(p)
and (s’.READYrec[q’,i] = true for all q’ € specialchildren(p))
and (s’.CLUSTERSAFErec|q’,i] = true for all q’ € (Preferred(p)-{q}))
then s.mess = s’.mess U {(p,parent(p))READY(p,i)}

send(p,q)READY(p,i)
Preconditions

(p,9)READY(p,i) € s’.mess
Postconditions

s.mess = s’.mess — {(p,q)READY(p,i)}

send(p,q) CLUSTERSAFE(p,i)
Preconditions

(p,q)CLUSTERSAFE(p,i) € s’.mess
Postconditions

s.mess = s’.mess — {(p,q)CLUSTERSAFE(p,i)}

Leader: LECS(C)

Inputs:
CLUSTEROK(C,i) for i positive
rec(q,p)READY(q,i) for p = leader(C), q € children(p), i positive

65

rec(q,p) CLUSTERSAFE(q,i) for p = leader(C), q € preferred(p), i positive

Outputs:

CLUSTERGO(C,i) for i positive ‘
send(p,q) CLUSTERSAFE(p,i) for p = leader(C), q & children(p) U preferred(p), i positive

state:

array READYrec|q,i], initially all false

array CLUSTERSAFErec|q,i], initially all false
array CLUSTERG Osentli], initially all false

multiset mess, initially empty

transitions:
rec(q,p)READY(q,i)
~ Postconditions

s.READYrec|q,i] = true

rec(q,p) CLUSTERSAFE(q,i)
Postconditions

s.CLUSTERSAFErec|q,i] = true

CLUSTEROK(C,i)
Postconditions
- s.mess = s’.mess U {(p,q)CLU’S.TERSAFE(p,i) i q € (specialchildren(p) U Preferied(p))}

CLUSTERGO(C,i)
Preconditions

i = 1or ((s’. READYrec|q,i-1] = true for all q € specialchildren(p))

' and (s".CLUSTERSAFEreclq,i-1] = true for all q & Preferred(p)))
t =1 or 8. CLUSTERGOsent/[i-1] = true
8. CLUSTERG Osent[i] = false

Postconditions

66

s.CLUSTERGOsent[i] = true

send(p,q) CLUSTERSAFE(p,i)
Preconditions

(p,q)CLUSTERSAFE(p,i) € s’.mess
Postconditions

s.mess = s’.mess — {(p,q) CLUSTERSAFE(p,i)}

Tree Link: LICS(p,q)

If q € children(p), this is a link automaton from p to q for the messages CLUSTERSAFE(p,i).

If g = parent(p), thisis a link automaton from p to q for the messages READY(p,i). If (p,q) is

a preferred edge, this is a link automaton from p to q for the messages CLUSTERSAFE(p,i).

Otherwise, this is a link automaton for no messages.

Non-leader node: NDSL(p)

Inputs:'

OK(p,i) for i positive

rec(q,p)SAFE(q,i) for bq € children(p), i positive
rec(q,p)PULSE(q,i) for q = parent(p), i positive
Outputs: A
GO(p,i), for i positive

send(p,q)SAFE(p,i) for q = parent(p), i positive
send(p,q)PULSE(p,i) for q € children(p), i positive

state:

array OKrec[i], initially all false
array GOsentli], initially all false
array SAFErec|q,i], initially all false
array pulse[i], initially all false

multiset mess, initially empty

67

transitions:
OK(p,i)
Posteonditions
s.OKrecli] = true
if (s”.SAFEreclq,i} = true for all q € children(p))
~ then s.mess = s’.mess U { (-’p,p,arem(?p)‘);SAFE‘(‘P,i)}

rec(q,p)SAFE(q,i)
Postconditions
8.SAFErec[q,i] = true
if (S’-SAIE‘,E'lrec,[:q’,,i]'E = true for all ¢’ € children(p)-{q}
and s’.OKrec[ﬂ = t;ue)

then s.mess = s’.mess U {(p,parent(p))SAFE(p,i)}

rec(q,p)PULSE(g;i)
Postconditions

s.pulse[i] = true

s.mess = s”.mess U {(p,p’)PULSE(p,i) : p’ € children(p)}
GO(p,i)
Preconditions

s’.pulseli] = true
i=1or s’ .GOsent[i-1] = true

s’.GOsent[i] = false
Postconditions
s.GOsent[i] = true

send(p,q)SAFE(p,i)

Preconditions

68

(p,q)SAFE(p,i) € s’.mess
Postconditions

s.mess = s”.mess — {(p,q)SAFE(p,i)}

send(p,q)PULSE(p,i)
Preconditions
(p,Q)PULSE(p,l) € s’.mess

Postconditions

s.mess = s’.mess — {(p,q)PULSE(p,i)}

Leader: LESL(C)

Inputs:

-OK(p,i) for p = leader(C), i positive

CLUSTERGO(C,i) for i a number

rec{q,p)SAFE(q,i) for p = leader(C), q € children(p), i positive
Outputs:

GO(p.,i), for p = leader(C), i positive

CLUSTEROK(C,i) for i positive

send(p,q)PULSE(p,i) for p = leader(C}, q € children(p), i positive

state:

array OKrec[i], initially all false

array GOsentli], initially all false

array SAFErec[q,i], initially all false

array CLUSTERGOrecli], initially all false
array clustersafe[i], initially all false

array pulseli], initially all false

array CLUSTEROKSsent[i], initially all false

multiset mess, initially empty

69

L

transitions:
OK(p,i)
Postconditions:
s:OKrec[i] = true.
if (" SAFErec(q,i]' = true for all q & children(p))
then (s.clustersafefi] = true.
if (s?.8AF Erec{q,i]:= true.for. all.q; € children(p):
and 8”.CLUSTERGOreci+1] = true)

and s.pulseli-1] = true))

rec(q,p)SAFE (i)
Postconditions;
s.SAFErec[q}] = true
if (s".SAFErec(q’,]] = true for alt q> € children(p)-{q}
and s*OKrecli]: = true)
then s.clustersafeli] = true
if (s7.SAPErec(q,i] = true for all ¢ € children(p)-fa}
and s”.Orecli] = true and " CLUSTERGOrecfi+1] = true)
then (s.mess = s”.mess U {(p,q)PULSE(p,i+1) : p € children(p)}
and s.pulsefi+1] = true)

CLUSTERGQ(GJ)
Postconditions
s.CLUSTERGOrec[i] = true
if(i=1or s*'..@sl;u;s;ﬁ;@r;ﬁaie[i:l;] = true)
then (s.mess = s’.mess U {(p,p’)PULSE(p,i) : p’ € children(p)}

and s.pulse[i] = true)

70

GO(p,i)
Preconditions
s’.pulsefi] = true
i=1 or s’.GOsent[i-1] = true
s’.GOsent|i] = false
Postconditions

8.GOsentli] = true

CLUSTEROK(C,i)
Preconditions
s’.clustersafe[i] = true
s’.CLUSTEROKsent[i] = false
Postconditions

s.CLUSTERTOKsent[i] = true

send(p,q)PULSE(p,i)

Preconditions
(p,q)PULSE(p,i) € s’.mess

Postconditions

s.mess = s’.mess — {(p,q)PULSE(p,i)}

Tree Link: LISL(p,q)
If q € children(p), this is a link automaton from p to q for the messages PULSE(p,i). If q
= parent(p), this is a link automaton from p to q for the messages SAFE(p,i). Otherwise,

this is a link automaton for no messages.

71

L

