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ABSTRACT
Easy proofs are given, of the impossibility of solving several consensus problems (Byzarntine agreement,
weak agreement, Byzantine firing squad, approximate agreement and clock synchronization) in certain
communication graphs. It is shown that, in the presence of m faults, no solution to these problems exists for
communication graphs with fewer than 3m+ 1 nodes or less than 2m + 1 connectivity. While some of these
= results had previously been proved, the new proofs are much simpler, provide considerably more insight,

apply to more general models of computation, and (particularly in the case of clock synchronization)
significantly strengthen the results.
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1. Introduction

In this paper, we present casy proofs for the impossibility'of solving scveral consensus problems in
particular communication graphs. We prove results for Byzantine agreement, weak agreement, the Byzantine
firing squad problem, approximate agrcement and clock synchronization. The bounds are all the same:
tolerating m faults requires at least 3m + 1 nodes, and requircs at least 2m + 1 conncctivity in the
commuanication graph. (The connectivity of a graph is the minimum number of nodes whose removal
disconnccts the graph. Also, we assume throughout that graphs have at least three nodes.) For a given value

of m, we call graphs with fewer than 3m+ 1 nodes or less than 2m + 1 connectivity inadequate graphs.

Each of our proofs is an argument by contradiction. We assume that a given problem can be solved in a
system wich an inadequate communication graph, and construct a set of system behaviors, which cannot all
satisfy the correctness conditions for the given problem, although they are required to do so. Versions of
many of the results were already known, with proofs of this same general form. Our proofs differ from the
carlier preofs in the technique we use to construct the set of behaviors. Our technique is simpler, and applies

to more gencral models of distributed computation.

For Byzantine agreement, both bounds were alrcady known [PSL,D]. The 3m + 1 node lower bound in
[PSL] was proved only for a particular synchronous modcl of computation. Although carcfully done, the
proof is somewhat complicated and not as intuitive as one might like. In contrast, our proof is simplc and
transparent, and applics td gencral models of computation. A proof of the 2m + 1 connectivity Jower bound

was presented informally in [D]; we prove that bound more formally and for morc general modcls.

For weak Byzantine agreement, the requircment of 3m + 1 nodes was known [L], but was proved using a
complicated construction. The new proof is casy and extends to more general models (although not as
general as those for Byzantine agreement and approximate agreement). The 2m + 1 connectivity
requirement was previously unknown. The result for the Byzantine firing squad problem follows from a
reduction to weak agreement in [CDDS]. We provide a direct proof. For approximate agrcement, the 3m +
1 bound was noted, but not proved, in [DI.PSW}, while the 2m + 1 connectivity requirement was previously

unknown.

For clock synchronization, the 3m + 1 node bound was proved in [DHS), with a complicated proof. The
authors of [DHS] also claimed that they knew how to prove the corresponding 2m + 1 conncctivity lower
bound, but we presume that such a proof would also be complicated. We prove both the 3m + ‘1 node and
the 2m + 1 conncctivity bounds, for a much more general notion of clock synchronization than in [DHS).
These synchronization bounds assume that there is no dircct way nodes can measure the passage of time,

other than by reading their inaccurate hardwarce clocks.



Since we obtain the same lower bounds for cach pmblém. one might think that the problems are cquivalent
in some sense. This is not the case. We sce that the bounds for the different problems require different
assumptions about the underlying model.  For example, the lower bounds for Byzantine and approximate
agreement work with virtually any rcasonable computational modecl, while the lower bound for weak
agrecment requires a special assumption, placing a bound on the rate of propagation of information through
the system. The bound for clock synchronization requires a different assumption about how devices can
measure time. Many of the results are sensitive to small differences in underlying assumptions (about such

factors as communication delay or the behaviors of faulty nodes). This paper helps to clarify these issugs.

2. A Model of Distributed Systems

In order to make the impossibility results clear, concise and gencral, we introduce a simple model of

distributed systems.

A communication graph is a directed graph G with node set nodes(G) and cdge set edges(G), such that the
directed edges occur in pairs; edge (u,v) € edges(G) if and only if (v,u) € edges(G). (We consider a pair of
directed cdges rather than a single undirccted edge in order to modcl the communication in each direction
separatcly). We call the edge (u,v) an outedge of u, and an inedge of v. Given U a subsct-of nodes(G), the
suhgraph GU induced by U is the graph containing all the nodes in U and all the edges between nodes in U,
The inedge border of GU is the sct of edges from nodes outside U into U; that is, edges(G) M ((nodes(G)\U)

X U).

A system § is a communication graph G with an assignment of a device and an input to cach node of G.
Devices arc undefined primitive objects. The specific inputs we consider are encodings of Booleans, real
numbers or real-valucd functions of time (c.g. local clocks). The particular type of input depends on the
agreement problem addressed. If a node is assigned device A in system §, we say that the node runs A. A

subsystem U of § is any subgraph G ; of G with the associated devices and inputs.

Every system § has a system behavior, 8, which is a tuple containing a behavior of every node and edge in
G. (We also describe 8 as a behavior of- the communication graph G. Note that a system has exactly one
behavior, while a graph may have several, dcpending on the devices and inputs assigned to the nodes.) The

restriction of a system bchavior € to the behaviors of the nodes and cdges of a subgraph GU of G is the

scenario SU of GU in§.

For now, we take nodc and edge behaviors as primitives. In more concrete and familiar models, a node or
edge behavior might bé a finite or infinite scquence of states, or a mapping from the positive reals to some

state set, denoting state as a function of time. (We usc the latter interpretation for later results). Less familiar




models might interpret behaviors as mappings from reals to states, or from transfinite ordinals to states. To
obtain our first results, the precise interpretation of node and cdge behaviors is unimportant, We need only
restrict our madel so that the following two axioms hold, (We assume these two axioms throughout the paper.

Some of the later results require additional assumptions.)

Locality Axiom  Let § and G’ be systems with behaviors 8 and &', respectively, and isomorphic subsystems
Q, and U, (with vertex scts U and U'). If the corresponding behaviors of the inedge
borders of U and U’ in 8 and &’ arc identical, then scenarios SU and SU. arc identical.

At heart, the Locality axiom says that communication only takes place over the edges of the communication
graph. In particular, it expresses the following property: The only parameters affecting the behavior of any
local portion of a system are the devices and inputs at each local node, together with any information
incoming over edges from the remainder of the system. If these parameters are the same in two behaviors, the
local behaviors (scenarios) are the samc.IClcarly, some such locality property must hold, or agrccment is

trivially achievable by having devices read other device’s inputs directly.

Fault Axiom Let A be any device. Let E 1 ,F be d edge behaviors, such that cach El is the behavior of
‘ the i'th outedge, in some systcm bchavxor S‘ of a node running A. Let u be any node with
d outedges (u,v ), Sy ) There is a device FF such that in any system in which u runs F,
the behavior of each outcdgc (u,v. ) is E

[11 this case, we write F A(El""’E d) for F. This axiom expresscs a powerful masquerading capability of failed
devices. Any behavior exhibited by a device over different edges in different system behaviors can be
exhibited by a failed device in a single system behavior. When this axiom is significantly weakened (say, by

adding an unforgeable signature assumption), the following impossibility results do not hold {LSP,PSL].

In order to establish the relevance of our impossibility results to more concrcte models of distributed
systems, it is sufficicnt to interpret our definitions in the particular model and then to prove the Locality and
Fault axioms.

/

Our proofs utilize the graph-theoretic notion of a covering. For any graph G, let neighbors = {{u,V) |uisa
node of G and V is the set of all nodes v such that there is an edge from v to u in G}. A graph S covers G if
there is a mapping @ from the nodes of S to the nodes of G that prescrves "neighbors.” That is, if node u of §
PV and @(u) = w for anode w of G, then w has d neighbors XXy and cp(vi) =X for 1
< i< d. Under such a mapping, S looks locally like G.

has d ncighbors v

lFor weak agreement and the firing squad problemn, we need o extend this locality property to include tinie, s well,
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Graph coverings play an important role in our understanding of the interaction of nctwork topology and
distributed computation. A discussion appears in [A], and indeed, some of our proofs are surprisingly similar

to Angluin's. Similar techniques also appear in [IR], [B} and clsewhere.

3. Byzantine Agreement
We say that Byzantinc agreement is possible in a graph G (with n nodes) if there exist n devices A 1,...,An

(which we call agreement devices), with the following properties.

Each agrcement device A takes a Boolcan input and chooses 1 or 0 as a result. (To model choosing a
result, assume there is a function CHOOSE from behaviors of nodes running agreement devices to the set
{0,1}.) A node u of G is correct in a behavior & of G if node u runs A | in 8. Any system behavior 8 of G in
which at least n - m nodes are correct is a correct system behavior, Correct system behaviors must satisfy the

following conditions.
Agrecment: Every correct node chooses the same value.
Validity: Ifall the correct nodes have the same input, that input must be the value chosen.

Theorem 1: Byzantine agreement is not possible in inadequate graphs.

3.1. Number of Nodes

We begin with the lower bound of 3m + 1 for the number of nodes required for Byzantine agreement.
First consider the case where |G} = n = 3 and m = 1. Assume that the problem can be solved for the
communication graph G consisting of three nodes fully connected by communication edges. Let the three
nodes of G be a, b and ¢, and assume that they run agreement devices A, B and C, respectively. We represent

each pair of directed edges by a single undirccted edge, and label the nodes with the devices they run.

U~-v--w--X=--y--Z
This graph looks locally like G under the mapping ¢ defined by e(u) = @(x) = a, p(v) = ¢(y) = band
p(w) = @(2) =c.



Now specify the system by assigning devices and inputs for the nodes in S as follows.

By this we mean that node u runs device A with input 0, node v runs B with input 0, and so on. Let ¥
denote the resulting behavior of the system; ¥ includes a behavior for cach of the six nodes and twelve
directed edges in S.

Now coasider scenarios .‘fvw, .‘fwx

nodcs in S, along with the activity over the two connccting edges. We arguc that each of these scenarios is

and .‘fxy in ¥, where cach consists of the behaviors of the two indicated

identical to a scenario in a correct behavior of G.

The first scenario va is shown below.

f 8,

e b el \ [ \
A--B--C--A--B--C F--8--C
0 0 0 1 1 1 0 0
-==-1 ===
“ww ‘va

This scenario is the behavior in  of nodes v and w, together with that of the communication cdges between
v and w. Now consider the behavior 8, of G in which node b runs B on input 0, node ¢ runs C on input 0,
and node a runs a device that mimics node u in talking to b, and mimics node x in talking to ¢. Formally, if
F,(u’v) and_ b(x.w)
just Fin the figure). This device exists, by the Fault axiom, and in the resulting behavior, edges from node a

arc the indicated edge behaviors in ¥, node a runs device F A(E(u.v).E( x’w)) (we have written

to node b and to node ¢ have behaviors E(u v and E(x e respectively. By the Locality axiom, the scenario

containing b and ¢’s behaviors in 81 is identical to ¥ _ . Validity requirements insure that node b and node ¢

must choose 0 in 8 I Since their behavior is identical in ¥, v and w choose 0 in J.

Next, consider scenario ?wx.
¥ 82
[mmmmmmm e \ [---=- \
A--B~-C~-~-A--B~--C A--F--C
0 0 0 1 1 1 1 0
===~ N
'wa ywx

This scenario includes the behavior of nodes w and x in ¥, It is also the behavior of nodes a and ¢ in a
behavior 82 of G which results when they run their devices A and C on inputs 1 and 0, rcs’pcctivcly, and node
b is faulty, exhibiting the same behavior to node x that v exhibits to w in £, and the same behavior to node a
that y cxhibits to x in ¥. The behavior of node ¢ in 82 is identical to that 6f node w in ¥, so nodeé ¢ chooses 0 in

&,, from the argument above.” By agreement, node a decides 0 in €,. Thus node x decides 0 in .
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Now consider the third scenario, :fxy.

g 8,
fmmmmmmmmmmmnan \ /---=- \
A--B--C--A--B--C A--B--F
000 1 1 1 11

=== ===
:fx.‘l :fx.V

This scenario is the behavior of nodes x and y in £, It is also the behavior of nodes a and b in a correct
behavior 83 of G which results when they both run their devices on input 1, and node ¢ is faulty, cxhibiting
the same behavior to node a that w exhibits to x in ¥, and the same behavior to node b that z exhibits to y in ¥.
Validity requircments insure that nodes a and b must choose 1. Thus nodes x and y choose 1. But we have

already established that node x must choose 0, a contradiction.

-

Now consider the general case of |G| = n < 3m. Partition the nodes of G into three sets, a, b and ¢, so that
a, b and ¢ have at least 1 and at most m nodes. This mcans that any two scts together contain at least n-m
nodes. The nodes in each set are running agreement devices, and we denote by A the set of devices running
at the nodes in a, and similarly forB and C. Now construct the covering graph S in the obvious way. Briefly,
take two copies of G, and label the sets a, b and ¢ in cach copy by u, vand w, rcspéctively. in one copy, and X,
y and z in the other. Now replace the edges between nodes in u and w and between nodes in x and z by
corresponding edges between u and z and between x and w. Assign devices to nodes of S according to their
corresponding node in G. We represent the covering graph S and assigned devices cxactly as abovc,'so that
the cdges depicted between two sets of nodes in S, say scts u and v, arc now a shorthand representation for all
the cdges in S between nodes in set u and nodes in set v. The inputs depicted for the sets of devices A, B and
C arc assigned to all the devices in the respective sets. ‘The arguments procecd cxactly as in the preceding

pictures. We consider only one in detail.

g 8,
Jammmmmm e \ fmmm- \
A--B--C--A--B--C F--B--C
00 0 1 11 00

This scenario is now the behavior of the sets of nodes in v and w in the behavior J. It is the same as the
behavior of the sets b and ¢ in a behavior 8, of G in which all nodes in both sets run their devices with input 0
and the nodes in set a exhibit the same behavior to members of b that the corresponding nodes in sct u exhibit
to the members of v in ¥, and the same behavior to nodes in ¢ that the corresponding nodes in y exhibit to the
thembers of x in ¥, Since sets b and ¢ together contain at least n-m correct nodcs, Sl is a correct behavior of

G. Thus. all the nodes in b and ¢ must decide 0, by the validity condition, and ¢ contains at lcast onc node, by




construction.

3.2. Connectivity
Now we carry out the 2m + 1 connectivity lower bound proof. Let ¢(G) = conncctivity of G. We assume

we can achieve Byzantine agreement in a graph G with ¢(G) < 2m, and derive a contradiction.

For now, we consider the case m=1 and the communication graph G of four nodes a, b, ¢ and d, running

devices A, B, Cand D, as indicated below.

The connectivity of G is two; the two nodes b and d disconncect G into two picces, the nodes a and c.

We consider the following system, with the eight-node graph S and devices and inputs as indicated.
R G EE PR \ '

| /e \ /-===\|
A--B--C--D--A--B--C--D
0 00 0 11t 1

The resulting behavior of the system is . We consider three scenarios in 3’1, :f)_ and .‘!3. _

The first scenario, £,, is shown below.

£ l’

g g,
fmmommmm e \ e \
| /-=--- \ /====\] | /--==\]
A--B--C--D--A--B--C--D A--B--C--F
0000 1 1 1 ¢ 0 0 0

This is also a scenario in a correct behavior 81 of G. In 81’ nodes a, b and ¢ are correct. Node d is faulty,
cxhibiting the same.behavior to node a as one node running D in the covering graph, and the same behavior
to b and c as the other node running D exhibits in the covering graph. Then nodes a, b and ¢ must choose 0 in
81, and so must the nodes running A, Band C in .‘fl.

Now consider the second scenario, 32.

g 8,
Jommmmm e \ R \
| /--=-- \ /-==-\| | /7--==\]
A--B--C--D--A--B--C--D A--F--C--D
00 00 1 1 1 1 1 0 0

This scenario in ¥ is also a scenario in a correct behavior 82 of G in which nodcs ¢, d and a are correct. This
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time, node b is faulty, exhibiting the same behavior to nodes ¢ and d as onc node running B in the covering,
and the same behavior to node a as the other node running B. So nedes a, ¢ and d mustagree in 8.2, and sv do
the corresponding nodes in £,. Since the node running C chooses 0 from the argument above, the nodes
running D and A in 3’2 choose 0, too.

Finally, consider the last scenario ff3.

g 8,
[emmmmmmmm s \ fmmmmmme \
| /=-=-- \ /-==-\| | /7-==-\]
A--B--C--D--A--B--C--D A--B--C--F
0000 1 1t 11 111

This scenario is again the same as a scenario in a behavior 83 of G in which nodes a, b and ¢ are correct, but
have input 1. Node d is faulty, exhibiting the same bchavior to node a that one node running D in the
covering graph exhibits, and the same behavior to nodes b and ¢ as the other D in the covering exhibits. Then
nodes a, b and ¢ choose 1 in 83. and so must the nodes running A, B and C in :f3, contradicting the argument

above that the node running A chooses 0.

The general case for arbitrary ¢o(G) < 2m is an easy gencralization of tﬁe case for m = 1. The same pictures
are used. Just choose b and d to be sets consisting of at most m nodes each, such that removing the nodesin b
and d from G disconnects two nodes u and v of G, Let G be the graph obtained by removing b and d from
G, let the sct a contain those nodes connected to u, and the set ¢ contain the remaining nodes of G’ (c contains
at least onc node, v). Construct S as beforc, by taking two copies of G and rearranging cdges between the’a’
sets and their neighbors. The nodes and edges in our figures are now a shorthand for the actual nodes and

edges of G and S.
This completes the proof of Theorem 1. O

The succeeding impossibility results for other conscnsus problems follow the same general form as the two
arguments above. Wc assume a problem can be solved by specific devices in an inadequate graph, G, install
the devices in a graph S that covers G, and pro.vidc appropriaté inputs. Using the Locality and Fault axioms,
we argue the existence of' a sequence of correct behaviors of G that have node and cdge behaviors identical to
some of those in the behavior of S. (This sequence was (&, 82, 83), in the arguments above) By the
agrce'ment condition, correct nodes in each of the behaviors of G have to agree. Because each successive pair
of system behaviors has a correct node behavior in common, alt of the correct nodes in all the behaviors in the
sequence have to agree. But by the validity condition, correct nodes in the first behavior in the scquence must

choose different vatues than those in the last behavior, a contradiction.




As we indicated in the introduction, a less general version of Theorem 1 was previously known, and the
structure of our proof is very similar to that of carlicr proofs [PSL], [ID]. Our proof differs in the construction
of the system bchaviolrs €. 8, and &,. Larlicr results construct these behaviors. inductively, in less gencral
models of distributed systems. The detailed assumptions of the models are necessary to carry out the tedious

and involved constructions.

Rather than construct the behaviors explicitly, we build them from picces (node and edge behaviors)
extracted from actual runs of the devices in a covering graph. The Locality and Fault axioms imply that

scenarios in the covering graph are also found in correct behaviors of the original inadequate graph.

The model used to obtain these results is an extremely general one, but it does assume that systems behave
deterministically. (For cvery sct of inputs, a system has a single behavior). By considering a system and
inputs as detcrmining a set of behaviors, nondeterminism may be introduced in a straightforward manner,
One changes the Locality axiom to express the following; if there exist behaviors of two systems in which the
incdge borders of two isomorphic subsystems are identical, there exist such behaviors in which the behaviors
of the subsystems are also idcntica}. Using this axiom, the same proofs suffice to show that nondeterministic

algorithms cannot guarantce Byzantine agreement.

4. Weak Agreement

Now we give our impossibility resuits for the weak agreement problem. As in the Byzantine agrecinent
. casc, nodcs have Boolcan inputs, and must choose a Boolean output. The agrecement condition is the same as
for Byzantine agreement--all correct nodes must choose the same output. The validity condition is weaker,

however,
Agreement: Every correct node chooses the same value.
Validity: If all nodes are correct and have the same input, that input must be the value chosen.

The weaker validity condition has an interesting impact on the agreement problem. If any correct node

observes disagreement or faulty behavior, then all are free to choose a default value, so long as they still agree.

Lamport notes that there are devices for reaching a form of approximate weak consensus, which work when
IG] < 3m. Running these for an infinite time produces cxact consensus (at the limit) [L]. In such infinite
behaviors, if any correct node observes disagreement or faulty behavior, it has plenty of time to notify the
others before they choose a value. Thus, strengthening the choice condition, to prohibit such infinite

solutions, is nccessary to obtain the lower bound.
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We must also bound communication delays away from zero, or a similar type of infinite behavior is
possible. In fact, if we assume there is no lower bound on transmission delay, and that devices can control the
delay and have synchronized clocks, we have found an algorithm for reaching weak consensus. 'This
algorithm requires at most two broadcasts Apcr nodc, all with non-zero transmission delay, and works with any
number of faults. Again, this is becausc any ‘correct node which observes disagreement or faulty behavior has
plenty of time to notify the others before they choose a value.2 [n more realistic models it is impossible to
reach weak consensus in inadequate graphs. To show this, the minimal scmantics introduccd in the previous
sections must be extended to exclude these infinitary solutions. We do this as follows. Previously, behaviors
of nodes and edges were clements of some arbitrary sct. Henccforth, we consider them to be mappings from

[0,00). (our definition of time), to arbitrary state sets. Thus, if E is a behavior of node u, then u is in state E(t)

at time t.
We add the following condition to the weak agreement problem.
Choice: A correct node must choose 0 or 1 after a finite amount of time.

This means there is a function CHOOSE from behaviors of nodes running weak agreement devices to {0,1},
with the following property: Every such behavior E has a finite prefix E, (E restricted to the interval [0,t])
such that all behaviors E’ extending E, have CHOOSE(E) = CHOOSE(E').

'I'his choice condition prohibits Lamport’s infinite solution. To prohibit the second solution, we bound the
rate at which information can traverse the network. To do so, we add the following stronger locality axiom to

our model.

Bounded-Delay Locality Axiom :
There exists a positive constant § such that the following is true. Let § and §’ be systems
with behaviors 8 and &', respectively, and isomorphic subsystems U and U, (with vertex
sets U and U"). If the corresponding behaviors of the inedge borders of U and U’ in € and
&’ are identical through time t, then scenarios SU and SU, arc identical through time t+4.

Thus, news of events k edges away from some subgraph G’ takes time at least k§ to arrive at G’. In amodel
. with explicit messages, this axiom could be proven from an assumption that the transmission delay is at least
8, and the edge behaviors in our model would correspond to state descriptions of the transmitting end of cach

communications link.

2Nodcs start at time 0, and decide at time 1. They broadcast their value at time 0, specifying it to arrive at time 1/2. If a node first
deleets disagreement or failure (at time 1-t), it broadeasts a “failure detected, choose default value™ message, specifying il to arrive at time
1-t/2. ‘The obvious dccision is made by everyone at time 1,
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Theorem 2: Weak agreement is not possible in inadequate graphs for modcls satisfving the
Bounded-1)clay Locality axiom.

Again, we first sketch the 3m + 1 node bound. In this case, the previously published proof [1.] was very
difficult. As before, we restrict our attention to the case |G| = n = 3, m = 1. (T'he case for gencral m follows

immediately, just as above.)

Assumc there are weak agreement devices A, B and C, for the triangle graph G containing nodzs a, b and c.
Consider the two behaviors of G in which all nodes are correct, and all have input 0 or all have input 1. Lett
be an upper bound on the time it takes all nodes to choose 0 or 1 in both behaviors. Choosek > t'/8tobea

multiple of 3.

The covering graph S consists of 4k nodes, arranged in a ring and assigned devices and inputs as follows:

e \
A--B--C...B--C--A--B...A--B--C--A--B--C...B--C--A--B,, A--B--C
c 00 0O0O0O0O 00O0T1 11 1111 111

Consider the resulting behavior £, and each pair of successive two-node scenarios, such as the two below.

ve.==C--A--B--C--A--..,
111 1 1

As before, cach scenario is identical to a scenario in a behavior in G of the appropriate two weak consensus
devices. Since each pair of succcssive scenarios overlaps in one node behavior (here, that of the node running
B), all the nodes in both scenarios must choose the same value in G and in S. By induction, every nodein S
must choose the same value. Without loss of generality, assume they choose 1.

Consider the k scenarios indicated bclow.

Let 8 be the behavior of G in which a, b and ¢ are correct and cach has input 0, and denote the resulting

behaviors of a, b and ¢ by Ea, Eb and E, respectively.

Lemma 3: The behavior in scenario , of a node running device A (or B or C) is identical to Ea
(or B or E ) through time id.
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Proof: 'The proof is an casy induction using the Bounded-Delay Locality axiom. O

By Lemma 3, the nodes running devices C and A in scenario f have behaviors identical to k_ and F,a
through time k8. Since nodes ¢ and a in G have chosen output 0 by this time, so have the correspoitding

nodesin £, a contradiction.
The general case of |G| < 3m and the connectivity bound follow as for Byzantine agreement. 0

‘There are strong similaritics between this argument and a proof by Angluin, concerning leader elections in
" rings and arbitrarily long lines of processors [A]. Both results depend crucially on the cxistence of a lower
bound on the rate of information flow. Under this assumption, devices in different communication networks

can be shown to see the same local behavior for some fixed time.

5. Byzantine Firing Squad

The Byzantine firing squad problem addresses a form of synchronization in the presence of Byzantine
failurcs. The problem is to synchronize a response to an input stimulus. The response is to enter a designated
FIRE state. The problem was sm&icd originally in [BL}. In [CDDS], a reduction of weak agreement to the
Byzantine firing squad problem demonstrates that the latter is impossibk.j to solve in inadequate graphs. We
provide a direct proof that a simple variant of the original problem is impossible to solve in inadequate
graphs. (In the original version, the stimulus can arrive at any time. We require it to arrive at time 0, or not at

all. Our validity condition is slightly different.) The proof is very similar to that for weak agreement.

Onc or more devices may receive a stimulus at time 0. We model the stimulus as an input of 1, and absence

of the stimulus as an input of 0. Correct exccutions must satisfy the following conditions.

Agrecment: If a correct node enters the FIRE state at time t, every cotrect node enters the FIRE state at
time t.

Validity: If all nodes are correct and the stimulus occurs at any node, they enter the FIRE state after some

finite delay. If the stimulus does not occur and all nodes are correct, no node cver enters the FIRE state.

As in the case of weak agreement, solutions to the Byzantine firing squad problem exist in models in which
there is no minimum communication dclay. Thus the following result requires the Bounded-Delay Locality

axioti, in addition to the Fault axiom.

Theorem 4: The Byzantine firing squad problem cannot be solved in inadequate graphs for
models satisfying the Bounded-Delay Locality axiom.
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We sketch the 3m + 1 node bound. As before, we examine thecase |Gl = n=3,m = 1.

Assume there are Byzantine firing squad devices A, B and C for the triangle graph G containing nodes a, b
and ¢. Consider the two behaviors of G in which all nodes are correct, and all have input 0 or alf have input 1.
Let t be the time at which the correct devices enter the FIRE state in the case that the stimulus occurred (the
input 1 casc). Since the correct nodes never enter the FIRE state in the absence of the stimulus, they certainly
do not enter the FIRE state at time t. Choose k 2> t/8 to be a multiple of 3. (Recall that 8 is the minilﬁuh

transmission delay defined in the Bounded-Delay Locality axiom).

"The covering graph S consists of 4k nodes, arranged in a ring and assigned devices and inputs as follows:

[ == e e e e e e \
A--B-~C...B--C--A--B...A--B--C--A--B-~C,,.B--C--A--B,, ,A=-B~~C
000 0000 0001 11 1111 111

Similarly to the proof for weak agreement, the middle two devices receiving the stimulus enter the FIRE
state at time t, as their behavior through vtimc t is the same as that of the correct nodes in G which have
reccived the stimulus and fire at time t. Bcecause of the communication delay, there is not enough time for
"news” from the distant nodes to «reach these devices. By repeated use of the agreement property, all the
devices in S must fire at time t. But through time t, the middle two devices not recciving the stimulus behave
exactly as correct nodes in G which do not reccive the stimulus (the input 0 case). Thus they do not fire at

time t, a contradiction. OJ

6. Approximate Agrcement

Next, we turn to two versions of the approximate agreement problem [DLPSW,MS]. We call them simple
approximate agreement and (¢,8,v)-agreement. In thesc problems, nodes have rcal values as inputs and
choose rcal numbers as a resuit. The goal is to have the results close to cach other and to the inputs. In order

to obtain the strongest possible impossibility result, we formulate very weak versions of the problems.

For the following two theorems we usc only the Locality and Fault axioms. We do not need the Bounded-

Delay Locality axiom uscd for the weak agreement and firing squad resuits.

6.1, Simple Approximate Agreement

First, we turn to the simple approximate agreement problem [DLPSW]. The version we examine is based
on that in [DLPSW]. Each correct node has a real value from the interval [0,1] as input, runs its device and
chooses a real value, Correct behaviors (those in which at least n - m nodes are correct) must satisfy the

following conditions.
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Agreement: The maximum difference between values chosen by correct nodes must be strictly smaller than

the maximum difference between the inputs, or be equal to the latter difference if it is zero.

Validity: Each correct node chooses a value within the range of the inputs of the nodes.
Theorem 5: Simple approximate agreement is not possible in inadequate graphs.

The proof is almost exactly that for Byzantine agrcement. Here, we consider devices which take as inputs
numbers from the interval [0,1], and choose a value from [0,1] to output. (Outputs are modeled by a function
CHOOSE from behaviors of nodes running the devices to the interval [0,1]) As before, assume simple
approximate agreement can be reached in the triangle graph G. Consider the following three scenarios from

the indicated behavior in the covering graph S.

c o0 o0 1 1 1

Again, each scenario is also a scenario in a correct behavior of G. In the first scenario, the only value C can
choose is 0. In the third, the only value A can choose is 1. This means the values chosen by A and Cin the

the sccond scenario are 0 and 1, so that the outputs are no closer than the inputs, violating the agreement

condition.

The general casc of |G| < 3m and the connectivity bounds follow as for Byzantine agreement.

6.2.(,, )Agreement
‘This version of approximatc agrcement is based on that in [MS]. Let ¢, 8 and y be positive real numbers.

The correct nodes receive real numbers as inputs, with r_. and M the smallest and largest such inputs,
respectively. These inputs are all at most & apart (i.e. the interval of inputs [rmin, rmax] has length at most §).

They must choose a real number as output, such that correct behaviors (thosc in which at least n - m nodes are

correct) satisfy the following conditions.
Agreement: The values chosen by correct nodes are all at most € apart.

Validity: Each correct node chooscs a value in the interval [r_. -v.r, max +v}

Note that if ¢ > 8, (¢,8,y)-agrcement can be achieved trivially by choosing the input valuc as output.




15

Theorem 6: 1f £ < 4. (e.8,y)-agreement is not possible in inadequate graphs.

Proof: 1.cte. § and y be positive real numbers with € < 8. We prove only the 3m+ 1 bound on the number
of nodes. Assume that devices A, B and C exist which solve the (e,8,y)-approximate agreement problem in

the complete graph G on three nodes, for particular values of €, § and y, where e < 8.

Choose k sufficiently large that § > 2y/(k-1) + e, and k+2 is divisible by threc. The covering graph S

contains k+2 nodcs arranged in a ring, with devices and inputs assigned to create the following system.

[mmm e ——————— \
A---mm- B-- --B------ c
node 0 1 k k+1
input 0 § kK& (k+1)8

Let 5, for 0 < i <k, denote the two-node scenario in ¥ containing the behaviors of nodes i and i+ 1. By
the Fault Axiom, each scenario ¥; is a scenario of a correct behavior of G, in which the largest input value to a

correct node is (i+1)8.

Lemma 7: For 0 < i < k,'the value chosen by the device at node i+ 1 is at most § + y + ie.
Proof: The proofis a simple induction. The device at node 1 chooses at most 8 + v, by validity applicd to
scenario 3’0. Assume inductively that the device at node i chooses at most'd + y + (i-1)e, for 0 <i<k+1. By

agreement applied to scenario f, the device at node i+1 choosesat most § + y + ie. O

In particular, Lemma 7 implics the device at node k chooses at most § + y + (k-1)e. But validity applied
to scenario ¥, implies the device at node k chooses at least k8 - y. Sokd -y < & + vy + (k-1)e. This implies
8 < 2v/(k-1) + &, acontradiction.

The general case of |G| < 3m and the connectivity bounds follow as in previous proofs. O

7. Clock Synchronization

Each node has a hardware clock and-maintains a logical clock. The hardware clocks are real-valued,
invertible and increasing functions of time. In general, different hardwarce clocks run at different rates, and
the nodes wish to synchronize their logical clocks more closely than their hardware clocks. We also want the
logical clocks to be reasonably close to recal time--setting them to be constantly zero should probably be

forbidden. Thus, we require the logical clocks to stay within some envelope of the hardware clocks.

"This problem was studied in [DHS] for the case of linear clock and envelope functions, where it was shown
that it is impossible to synchronize to within a constant in inadequate graphs. Some questions concerning

more general synchronization problems were raised. It was pointed out, for example, that diverging lincar
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clocks can casily be synchronized to within a constant if nodes can run their logical clocks as the logarithm of
their hardware clocks. For a large class of clock and envelope functions (increasing and invertible clocks,
non-decreasing envelopes), we are able to characterize the best synchronization possible in inadequate graphs.

‘This synchronization requires no communication whatsoever.

We model node i's hardware clock, D;, as an input to the device at node i that has value 1D(t) at time t. The
value of the hardware clock at time t is assumed to be part of the state of the node at time t. ‘The time on node
i's logical clock at real time t is given by a function of the eatire state of node i. Thus, if Ei is a behavior of

node i (such that node i is in state F,i(t) at time t), then we express i's logical clock value at time t as Ci(}ii(t)).

We assume that any aspect of the system which is dependent upon time (such as transmission delay,
minimum step time, maximum rate of message transmission) is a function of the states of the hardware clocks.
Having made this assumption, it is clear that speeding up or slowing down the hardwarc clocks uniformly in
differcnt behaviors cannot be observable to the nodes, so the only impact on the behaviors should be that they

speed up or slow down in the same way as the hardware clocks.

To formalize this assumption, w;: nced to talk about scaling clocks and behaviors. Let h be any invertible
ﬁmctidn of time. If E is a behavior (of a edge or node), then Eh, the behavior E scaled by h, is such that
Eh(t) = E(h(t)), for all times t. Similarly, Dh is the hardware clock D scaled by h: Dh(ty=D(h(t)). If8isa
system bchavior or scenario, 8h is the system behavior or scenario obtained by scaling every node and cdge
behavior in & by h. Similarly, if ¥is a system, then Jh is the system obtaincd by scaling every clock in £ by h.
Intuitively, a scaled clock ‘or behavior is in the statc at time t that the corresponding unscaled clock or

behavior is in at time h(t).
Scaling Axiom  If§ is the behavior of system ¥, then 8h is the behavior of system $h. O

If this axiom is significantly weakened, as by bounding the transmission delay, clock synchronization may

be possible in inadequatc graphs.

In the following we use the Locality, Fault and Scaling axioms. We do not nced the Bounded-Delay

Locality axiom used for the weak agreement and firing squad results.

The synchronization problem can be stated as follows. Let correct hardware clocks run cither at f{t) or g(t),
where fand g are increasing, invertible functions, with f{t) < g(t), for all t. Let the envelope functions Fand u

be non-decreasing functions such that 1(t) < u(t), for alt t.

Consider what happens if cveryone runs their logical clocks at the lower cavelope, CE(t)=KD(t)). Then
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the logical clocks arc synchronized to within (g())R1). The goal then, is to improve this trivial
synchronization.  We show that logical clocks cannot be synchronized to within Kg(O)(Rt)-a, for any

positive a.

That is, nontrivial synchronization is achicved by synchronization devices in G if there exist positive

constant a and time t’ such that cvery correct system behavior 8 satisfics the following conditions.

Agreement: For any two correct nodesiandjin 8,
IC(E(V) - Cj(}ij(t))l < Kg(®) - K RD) - a, for all times t > ¢,

Validity: For any correct node i in 8, with hardware clock Di and resulting behavior Ei. K < Ci(F,i(t))
< u(g(t)).

Theorem 8: Nontrivial synchronization is not possible in inadequate graphs for models satisfying
the Scaling axiom,

We show that for every intcger k>2, there is a behavior € of G in which node i is correct, has hardware clock
. = f(that s, D(t) = f{t)), and in which C(F (t ) 2 () + ka. For k big enough, this violates the upper
cnvelope condition, C, (F (t N < ulg(t)).

Define h = £lg. (Thatis, h(t) = £1(2(V)).) Thenh’! = g''f. Note that h(t) > t for all t, since (1) < g(b).
We begin with the three node, one fault casc. The argument is very similar to the proof of Theorem 6.

Assume the existence of devices A, B and C, time ¢ and positive constant a such that logical ciocks of

correct nodes obcy the agreement and validity conditions:
|Ci(Ei(t)) - Cj(Ej(t))l <Ig®) - (A1) - a, for all times t > ',
1) < C(E(1)) < ulg()), for all times .

Choose an integer k > 2, su—ch thatk+2isa muldple of three, and such that {f(t')) + ke > u(g(t)). The
covering graph S contains k+2 nodes arranged in a ring, with devices and clock inputs assigned to create the

following system.
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Jommmmm e \
A-----~ B-- ... -=B~--r-~ C
node 0 1 ces k k+1
clock g gh™? gh™®  gh (k1)
behavior E, B, ... £ st

Let ¢ be the behavior of this system.  An initially troubling concern is that the hardware clocks in ¥ are
much slower in most of the devices in the ¥ than they would be in a correct behavior in G. But consider S’i,

the two-node scenario containing the behaviors of nodes i and i+ 1, where 0 €1 < k.

co o mm=Amsme-m B---
node i i+l
hardware clocks gh™? gh~(i*D)
resulting behavior E; B

en o= mAmmmmm- B---
node i i+l
hardware clocks q f
resulting behavior e’ E N ,

In this scenario, the hardwarce clocks have values within the constraints for correct behaviors of G. Thus we

have the following.

Lemma 9; Scenario $1', for 0 < i < k, is a scenario containing the behaviors of two correct
nodes in a correct behavior of G. ‘

Lemma 10: Foralli, 0 < i <k and all t > h(t), IC;, (B, ) - CEON < Ne®)) -
(RL(©) - a.

Proof: Fixt 2> hi(t’). Then h'i(t) > ¢. By Lemma 9, i and i-+1 are correct in ffihi, so by the agreement
assumption C, , (B, , ;h(h"(9)) - CEN ()] < e @) - KAN'(V)) - . The resultis immediate. I

Lettime t" = hX(t’). Note thatt" > h'(t), fori < k. |

Lemma 11: Forall i, 1 i € k+1, C(EX") > g () + (-Da

Proof: The proof is by induction on i. By Lemma 9, scenario .‘fo is a scenario in G of correct nodes a and b,
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with hardware clocks g and f, respectively. From the validity wndmun forallt, C i(E (D) 2 (L), Setting t
= 1", and substituting gh for £, we have the basis step: C(l (t"))>l(gh .

Now make the inductive assumption Ci(lii(t")) 2 I(gh'i(L")) + (i-Da, for <i <k
Since " 2 h(c), from I.emma 10, we know [C, , (I5, (t") - CUELN < Hgh™@) - (M) - a
Thisimplies C; (K, (") > C(E") - Ugh(t")) + (")) + a.

Substituting for C(! (t")) using the inductive assumption gives us C‘ . l(F +1([")) 2 g’ '(t")) I(gh’ (t"))
+ I(fh'(t (")) + ia = [ ‘(t")) + ia. Noting that f = gh , we have the result, C, +1(FIH(U')) >
Igh + D) + ia. O

Proof of Theorem 8:
Lemma 11 implies C, (B, , /(") > Igh™®*D") + ka. Since t* = h¥(t), we have Cor 1By ) =
7 Kooy ke L+ 1) ke - s
Cor 1By (0O = C (B, h¥0O) > Kgh ™ * VX)) + ka = RD)) + ka,

But the upper envelope constraint for the scaled scenario :fkhk (in which k+1‘ is correct and has hardware
clock (t)) implies that Ck +1(Ek +1h"(t‘)) < u(gt)). Thus, (RY)) + ka < u(g(t)). This violates the assumed
bound on k, () + ka > u(g(t)).

Once again, the general case of |G| < 3m is a simple extension of this argument. The connectivity bound

also follows casily, as with the carlier results. {1

7.1. Linear Envelope Synchronization and other Corollaries

Lincar envelope synchronization, as defined in [DHS], examines the synchronization problem when the
clocks and envelope functions are linear functions (g()=rt, (=t ) =at+b and u()=ct+d). It requircs
correct logical clocks to remain within a constant of cach other, so that the agreement condition is IC (E ) -

(FJ(L))I < a, for all times t, instead of our weaker condition lC (E. (t)) C (F () < art-at - a, for all times t
2 t. Our validity condition is slightly weaker, as well. Thus, the proof of [DHS] shows that logical clocks
. cannot be synchronized to within a constant; we show that that the synchronization of logical clocks cannot be
improved by a constant over the synchronization (art - at) that can be achieved trivially. Thus the following
corollary follows immediately from Theorem 8. (Each of the four corollardies below holds . for models

satisfying the Scaling axiom.)

Corollary 12: Linear envelope synchronization is not possible in inadcquate graphs.
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We also get the following results immediately from Theorem 8, by choosing specific values for the clock
and lower envelope functions. Note that the particular choice of the upper cnvelope function does not affect
the minimal synchronization possible in inadequate graphs, although the existence of some upper envelope

function is necessary to obtain our impussibility proofs.

Corollary 13: If At)=t, g(t)=rt, and }(t)=at+b, no devices can synchronize a constant closer
than art-at in inadequatc graphs.

Corollary 14: If R)=t, g(t)=t+c and (t)=at-+b, no devices can synchronize a constant closer
than ac in inadequate graphs.

Corollary 15: If f{t)=t, g(t)=rt and l(t)-—-logz(t), no devices can synchronize a constant closer
than logz(r) in inadequate graphs.

In general, the best possible synchronization in inadequate graphs can be achicved without any

communication at all. The best nodes can do is run their logical clocks as slowly as they arc permitted, C(E(1)

= {(D(V)).

8. Conclusion _

Most of the results we have presented were previously known. Our proofs are simpler than earlier proofs,
and hold in more general models, but this is not their main contribution. While simplicity and gencrality are
important goals, in this instance they are the welcome byproduct of our attcmpt to identify the fundamental

issues and assumptions behind a collection of similar results.

One important contribution is to clucidate the relationship between the unrestricted, or Byzantine failure
assumption, and inadcquate graphs. As is clear from our proofs, this fault assumption permits faulty nodes to
mimic executions of disparate nctwork topologies. If the network is inadequate, a covering graph can be
constructed so that correct devices cannot distinguish the exccution in the original graph from one in the

covering graph.

A sccond contribution is related to the gencrality of our results. Nowhere do we restrict state scts or
transitions to be finite, or even to reflect the outcome of effective computations. The inability to solve
conscnsus problems in inadequate graphs has nothing to do with computation per-se, but rather with
distribution. It is the distinction between local and global state, and the uncertainty introduced by the

presence of Byzantine faults, which result in this limitation.

Finally, we have identified a small, natural set of assumptions upon which the impossibility results depend.
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For cxample, in the casc of weak agreement and the firing squad problem, the correctness conditions are
sensitive to the actions of faulty nodes. Instantancous notification of the detection of fault events would allow
one to solve these problems. An assumption that there are minimum delays in discovering and relaying

information about faults is sufficicnt to make these problems unsolvable.
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