THE BYZANTINE PIRING SQUAD PROBLEM

JAMES E. BURNS

Indiana Unveristy

and

NANCY A. LYNCH

Massachusetts Institute of Technology

A new problem, the Byzantine Firing Squad problem, is defined and solved in
two versions, Permissive and Strict. Both problems provide for synchronisation
of initially unsynchronized processors in a synchronous network, in the absznce
of a common clock and in the presence of a limited number of faulty processors.
Solutions ure given which take the same number of rounds as Byzantine Agreement
but might transmit r times as many bits, where ¢ is the number of rounds used.
Additiona’ solutions are provided which use at most one (Permissive) or two (Strict)
additional rounds and send at most n? bits plus four times the number of bits sent
by a chosen Byszantine Agreement algorithm.

Categories and Subject Descriptors: C.2.4 [Compﬁter-Communication Net-
works): Distributed Systems; D.1.3 [Programming Techniques]: Concurrent
Programming; D.4.1 [Operating Systems]: Process Management—synchronisa-
tion; D.4.5 [Operating Systems]: Reliability—fault tolerance; D.4.7 [Operating
Systems): Organization and Design—distributed systems; real-time systems

General Terms: Reliability

Additional Key Words and Phrases: Agreement, Byzantine Generals problem, Fir-
ing Squad problem

1. INTRODUCTION

We consider » problem of synchronizing a collection of processors, some of
which might be faulty. We assume that the processors are connected by a com-

plete, synchronous network. Although communication is synchronous, we will not

This work was supported in part by the following grants: ARO DAAG23-84-
K-0058, DARPA N00014-83-K-0125, and NSF 8302391-A01-DCR.

Author’s addresses: J.E. Burns, Computer Science Department, 101 Lindley
Hall, Indiana University, Bloomington, Indiana 47401; N.A. Lynch, 545 Technology
Square NE-43-525, Cambridge, Massachusetts 02139.

1

assume the global availability of a “current time.® A solution fo this synchronisa-
tion problem, which we call the “Bysantine Firing Squad” problem, would be useful
in the following types of gituations.

(a) Real-time pro;:esaing. It might be mecessary for several processors to carry
out some external action simuitaneously, perhaps after the occurrence of a
particular unpredictable event. For example, several processors on board an
aircraft might be responsible for causing several actuators o perform a specific
action in concert, in response to a signal from the pilot. The signal might
arrive at the different processors at different times. A Bysantine Firing Squad

algorithm could be used to synchronige the processors’ actions.

(b) Distributed initiation. Most synchronous parallel distributed algorithms as-
sume that all processors begin their protocols together. If we would like to use
guch algorithms in a network in which there is no common notion of time, we
need to cause the processors participating in the algorithm to synchronise their
gtart times. A preliminary Byszantine Firing Squad algorithm could be used to

accomplish this.

(¢} Distributed termination. In certain algorithms (e.g., synchronous probabilistic
agreement {1], approximate agreement (3]}, individual processors might com-
plete their parts of the algorithm at different times. If it is necessary to guar-
antee simultaneous termination, a Bysantine Firing Squad algorithm could be

run after the main algorithm.

This synchronization problem can be considered o be a combination of two
well-known problems: $he Firing Squad Synchronization problem and the Bysantine
Generals problem. Accordingly, we call the new problem the Bygzantine Firing
Squad problem.

The Firing Squad Synchronization problem was first proposed in about 1957 by
John Myhill and described by Edward Moore in 1062 [8]. In the original problem, a
finite pumber of finite state machines connected in a line are to be programmex| so
that they all go §o a particular state (*fire”) aiximltaneously after a “start® signal
is given by one of the machines at the end of the line, the *General®. Over the
years, this problem has been generalized and widely studied (see the bibliography
in Nishitari and Honda [10]). In our problem, the finite state machines are repliced

by (not necessarily finite) automata connected by a complete network.

The Byzantine Generals problem was first proposed by Pease, Shostak and
Lamport [11], although it did not receive that name until a later work appeared. [8].
For a recent bibliography of work on the problem see Fischer [5]. The Bysantine
Generals problem car be paraphrased as follows. The General, must broadczst a
value o the remaining processors, even though some processors might be faulty.
If the General is a reliable processor, then all reliable processors must correctly
determine the value. Even if the General is faulty, all reliable processors must zgree
on some (arbitrary) value. (A reliable processor always behaves according to a
given protocol, while a faulty processor can behave in an arbitrary way.) We will
assume that all processors are acting as Generals, broadcasting a local value to the
others, 80 that at the end of the algorithm all reliable processors agree on a vector of
values. Thus, Bysantine Agreement for broadcasting a local value of each processor
is reached if and only if at the end of the algorithm the following conditions hold:

(A1) Agreement: All reliable processors agree on the same vector of values,

(A2) Validity: If processor 1 is reliable, then +*? component of the agreed upon vector
ie the value that s broadcast.

A Byzantine Agreement algorithm is called f-resilient if Byzantine Agreement

3

is reached for any number of faulty processors nf;t exceeding f. We will use f for
the number of faulty processors and n for the total number of processors for the

remainder of the paper.

The Bysantine Firing Squad problem combines the Firing Squad problem with
the Bygantine Generals problem. Initially, all the (reliable) processors are “quies-
cent® (not communicating). At an unpredictable time, we can require the system
to begin the firing protocol. This is done by sending special START signals to some
of the processors (possibly at different times). Within a finite number of rounds,
all of the reliable processors must simultaneously send special FIRE signals, even

though a limited number of processors might exhibit “Byzantine” failure.

Section 2 gives a more formal description of two versions, Permissive and Strict,
of the Byzantine Firing Squad problem. The versions differ in the number of START
signals which the external source must send to force firing. Section 3 presents
a family of solutions to these Byzantine Firing Squad problems; each solution is
based on a chosen Byzantine Agreement algorithm. These solutions take no more
rounds than the chosen algorithm, but might require sending r times as many bits
as sent by the Byzantine Agreement algorithm. We show in section 4 how to reduce
this to only n? bits plus four times as many bits as sent by Byzantine Agreement
with the addition of only one preliminary round for the Permissive case and two

preliminary rounds for the Strict case.

We hope that our solutions will seem simple and clear to the reader, but this
ghould not imply that the algorithms are easily obtained. Indeed, a direct solution
to the problem is not immediately obvious. Instead, we give an example of a reduc-
tion between distributed problems (it would be nice to have more such examples).
We encourage the reader to consider the problem carefully before examining the

solutions in sections 3 and 4.

2. THE DEFINITION OF THE PROBLEM

We model a synchronous system by a state transition system. We will not
burden the reader with a lot of notational detail, but trust that the following de-
scription is sufficient to construct the formal state transition system that we have
in mind.

A synchronous system consists of a set of processors, an initial state for cach
processor, and transition functions which determine the protocols of the procestors.
In each transition (also referred to as a round), a processor receives a message
from every other processor and an external source, sends a message to every other

processor and an external destination, and goes to a new state.

The reliable processors always send the messages specified by their protocols,
but the faulty processors can send any messages. In particular, we do not assume
that processors can append unforgeable signatures to their messages. For results on
the Byzantine Firing Squad problem with signatures refer to Coan, Dolev, Dwork
and Stockmeyer [2].

In a synchronous system, information can be conveyed by the absence of a
signal as well as by an explicit signal. Thus, we distinguish a particular message,
called the null message; all other messages are simply called signals. A processor is
said to be quiescent at a certain state if, in any transition from that state in which
it receives only null messages, it sends only null messages and remains in the same

state. If a processor is not quiescent then it is awake.

We require that all processors be quiescent in their initial states. Initial qui-
escence guarantees that no signals will be sent by any reliable processor until the
external nource or a faulty processor sends a signal to some reliable processor,

For the Byzantine Firing Squad problem, the only signal which is ever sent by

5

the external source is a special START signal, which is used to initiate the firing
protocol. The only signal which is ever sent to the external destination is a special
FIRE signal, indicating that the processor has fired.

The Bysantine Firing Squad problem admits several variations depending on
how we wish to force firing. We might want firing to occur if just a single START
signal {from the external source) is received by any reliable processor. Note that
this implies that a faulty processor can cause firing by pretending to be a reliable
processor which has received a START signal. On the other hand, if we prohibit fir-
ing until some reliable processor has received a START signal, then a single START
signal is not sufficient to guarantee firing, since a lone processor cannot (in general)
convince the others that it is reliable. We term these two variations Permissive and
Strict. (An algorithm which solves one of these does not solve the other.)

An f-resilient Permissive Bysantine F_‘irigg Squad algorithm must satisfy the

following conditions whenever the number of faulty pmcessoré does not exceed f:

" (C1) Agreement: If any reliable processor sends a FIRE message in some round, then

all reliable processors send a FIRE message in that round.

(C2) Permissive Validity: If any reliable processor receives a START signal, then

some reliable processor eventually sends a FIRE message.

An f-resilient Strict Bysantine Firing Squad algorithm will satisfy (C1) and
the following additional condition whenever the number of faulty processors does

not exceed f:

(C2%) Strict Validity:
a) If at least f + 1 reliable processors receive a START signal, then some

reliable processor eventually sends a FIRE message.

6

b) K any reliable processor sends a FIRE message, then some reliable processor
previously received a START signal.

We wish to measure the efficiency of communication of our algorithms. It is not
useful to measure the direct costs incurred by faulty processors since these might
be unbounded. We also wish to avoid charging for “preliminary rounds® which are
caused by faulty processors and do not lead to termination. We therefore introduce

the concept of “measured portion of a computation.”

Let A be an algorithm. If 4 is a Bysantine Agreement algorithm, then the
entire computation from initial state to termination is measured. If 4 is a Permissive
Byszantine Firing Squad algorithm, then the measured portion of the computation
is from the first reception of a START message by a reliable processor until a
reliable processor fires. If A is a Strict Bysantine Firing Squad algorithm, then
the measured portion of the computation is from the round in which the f .+ 1
reliable processor receives a START signal until a reliable processor fires. Now we
can define our time measure, Rosnds{ 4) simply as the worst case number of rounds
in the measured portion of the computation. Many communication measures are
possible. We shall use Bits(A) as the worst case total number of bits sent by all the
reliable processors in the measured portion of the computation. We assume that
variable length messages are used so that the shortest, non-null message that can

be sent costs one bit.

3. TIME EFFICIENT SOLUTIONS TO THE BYZANTINE FIRING SQUAD PROB-
LEMS

Our solutions are based on an arbitrary Byzantine Agreement algorithm (which
satisfies the restriction specified below). Our algorithms inherit most of the char-

acteristics of the chosen agreement algorithm, so that behavior can be tailored

7

as desired (e.g., minimising Rounds or Bits). Also, the resiliency of the derived
Bysantine Firing Squad algorithm is identical to that of the Bysantine Agreement
algorithm. Since it is known that n > 3f is sufficient for Byzantine Agreement {8],
the Byzantine Firing Squad problem can also be solved whenever n > 3f. It has
also been shown [2], by reducing Lamport’s Weak Bysantine Agreement problem 17
to the Bysantine Firing Squad problem, that the latter problem cannot be solved

unless n > 3f.

All of the deterministic Byzantine Agreement algorithms that we know of sat-
isfy the following condition:

{A3) Rounds(A) is bounded.

In this case, we say A is a Bounded Byzantine Agreement algorithm. (Note that
(A3) need not imply that A is “immediate® as defined by Dolev, et al. [4].) In the
remainder of the paper, we will let Rounds(4) = r.

Let 4 be a Bounded Byzantine Agreement algorithm. We use 4 to construct
new algorithms Bp(4) and B s(A) which solve the Permissive and Strict Bysantine
Firing Squad problem, respectively. When £ is understood from context, we simply
refer to Bp and Bgs. Also, since Bp and Bs are very similar, it is convenient to
use B to refer to them jointly. In algorithm B p, the reliable processors will all fire
within at most r rounds after the first reliable processor receives a START signal.
In algorithm B all reliable processors fire in at most v rounds after f + 1 reliable

processors have received a START signal.

We begin by describing algorithms Bp(A) and B5(4) which satisfy all the
required conditions for a slightly more general model in which the processors are
not required to be quiescent initially. The basic idea of algorithm B'(A) is to

simulate a copy of algorithm £ starting in each round. Each simulation runs for

R R

R

exactly r rounds, so that at any time only r are in progress. The messages from the
¢ active simulations of algorithm A are coded into a single message for algorithm B8’
in a straightforward way. At each time, each processor begins participating in a
gimulation cf algorithm 4 in which it sends a value which is coded to mean 0: “Not
Ready® or L: *Ready.” A processor becomes Ready upon the receipt of a START
signal and remains Ready thereafter. At time ¢ + ¢ this simulation terminates, and
a vector of values is computed. For B’p, all reliable processors fire if the vector is

pot all sero. For BY, they fire if there are at least f+ 1 non-sero elements.

Theorem 1. Let A be an f-resilient Bounded Bysantine Agreement algorithm.
Then algorithms 8'(4) and B's(A) are f-resilient and satisfy conditions (C1) and
(C2), and (C1) and (C2’), respectively. Also, Rounds(B's(A)) = Rounds(4) and
Bits(B'5(4)) < Rounds{A)x Bits(A) hold for B'», while Rounds(B's(4)) = Rounds(4)
and Bits(B's(4)) < Rounds(A) x Bits(A) bold for Bs.

Proof: The f-resilency of B and B follow directly from the f-resilicncy
of A. By assumption, A satisfies (A1), (A2), and (A3). By (A1), all reliable
processors use the same vector $o make their firing decisions in each round, so
(C1) is satisfied (for both B’ and B%). By (A2), this vector will be non-sero for the
gimulatior beginning with the round in which the first reliable processor receives
a START signal, so (C2) is satisfied for Bp; furthermore, by (A3), firing occurs
within # rounds after the first reception of a START signal by a reliable processor,
80 Round:(8's(4)) = Rounds(A).

Algorithm B% satisfies (C2’b) since if no reliable processor ever receives a
START signal, then no vector can be computed with more than f ones (by (A2)), so
no reliabl: processor will fire. Condition (C2’a) is also satisfied since if f+1 reliable
processors have received START signals by round ¢, then a vector will be computed

9

by round ¢+ ¢ which has at least f+ 1 ones, causing some reliable processor to fire.
Also, firing must éccur within r rounds after f -+ 1 reliable processors have received
a START signal, Rounds(B’5(4A)) = Rounds(4).

The composite message transmitted by a reliable processor in one round fm-
cludes exactly one message from each round of 2 simulation of A, 80 the number
of bits sent by all reliable processors in any round (using 3 suitable encoding) is
bounded by Bits{4). Since at most v rounds occur in the measured portion of the
computation, Bits(B'(A)) < Rounds(4) x Bits{A), for both Ep and Bs.

We now show how $o modify the B algorithms to obtain 3 algorithms which
meet the condition of initial quiescence required by our model. The dificulty is that
when a reliable processor receives its first signal, some simulations might already

be in progress. However, a great deal can be inferred about these computations.

Consider the specific computation of algorithm £ in which all processors are
reliable and each sends value 0. We call thie computation the sero compuiation and
refer to the messages that are sent as sero measages. These computations and their

messages are completely defined and precomputable.

Any one-to-one encoding of meanings to messages can be used without affecting
the behavior of an algorithm. We choose to code a special meaning into the null
message. A null message is interpreted to consist of sero messages for each of the r
gimulations in progress. Now consider the particular computation of algorithm B’
using this coding in which all processes are reliable and no START signal is received
from the external source. After r rounds, all processors begin sending null messages
and continue to do so throughout the remainder of the computation. At this point,
all processors are quiescent, according to our definition. We $herefore define the B
algorithms to be identical to the B' algorithms except that the initial states of the

processors are chosen to be the states reached using algorithm B’ after r rounds of

10

the particular computation described above.

Theorem 2. Let A be an f-resilient Bounded Bysantine Agreement algorithm.
Then algorithms Bp(A) and Bgs(A) are f-resilient solutions to the Permissive
and Strict Bysantine Firing Squad problems, respectively. Furthermore, we have
Rounds(Bp(A)) = Rounds(Bs(A)) = Rounds(A), and both Bits(Bp(A)) and
Bits(B s(A)) are less than or equal to Rounds(A) x Bits(A).

Proof: By construction, all processors are quiescent in their initial states, so
the initial condition required by the model is satisfied both for Bp and Bs. The

remaining conditions follow directly from Theorem 1. O

4. COMMUNICATION EFFICIENT SOLUTIONS TO THE BYZANTINE FIRING
SQUAD PROBLEMS

The solutions presented in the preceding section send up to r times as many
bits as the chosen Byzantine Agreement algorithm. Since it is known that v > f
6], this is a significant increase in communication cost. Various coding tricks (such
as using short codes for expected messages and taking advantage of knowledge
of which processors are faulty when possible) could be used to reduce this cost.
However, we will show how to reduce the increase in cost to a constant factor (and
an additional n3 bits) without any sophisticated coding. Our method requiré at
most one additional round for the Permissive problem and two additional rounds

for the Strict problem.

We wish to define new algorithms, Cp(A) and Cs(4), which are similar to
Br(A) and Bs(A), respectively, but send many fewer bits than A. We begin by
defining auxiliary algorithms Cp(4) and C's(4) which are identical to Bp(A) and
B s(A) except in the way that Ready is defined and the condition under which firing

11

occurs. The (' algorithms also use some preliminary messages to establish the
Ready condition. We will then show how to modify the C’ algorithms to get the C
algorithms. '

In Cp, a processor becomes Ready upon receiving any signal, rather than only
upon receiving a START signal as in Bp. The firing condition is changed to *fire if
there are at least f+ 1 non-gero elements in the computed vector.” The first time a
reliable processor receives a signal and becomes Ready, it sends a special GO signal
to every other processor. At most n? GO signals will be sent.

In C’, a processor sends the GO signal to every processor after receiving eithei-
a START signal or GO signals from f+ 1 other processors (which implies that some
reliable processor has received a START signal). A reliable processor sends GO
signals only the first time such a condition occurs and sends only null messages
otherwise until it becomes Ready. A reliai:le processor becomes Ready only after
receiving GO signals from at least 2f + 1 processors (perhaps including itself). The
firing condition for Cs is the same as for Cp: *fire if there are at least f+1 non-sero

elements in the computed vector.”

Theorem 8. Let A be an f-resilient Bounded Bysantine Agreement algorithm.
Then C'p{4) and C'5(4) are f-resilient and satisfy conditions (C1) and (C2), and
(C1) and (C2’), respectively. Furthermore, Rounds(Cp(A)) < Rounds(A) + 1 and
Rounds(C's(A)) < Rounds(4) + 2.

Proof: Since Cp and CY simulate A and all processors use the same firing

condition, both are f-resilient and (C1) is satisfied for both.

Let ¢ be the round in which the first reliable processor receives a START mes-
sage in C’p. Then at least f + 1 reliable processors will be Ready by round ¢ + 1,

and all reliable processors will fire no later than round ¢ + r + 1. Thus, C}p satisfies

12

(C2) and Rounds(Cp(A)) < Rounds(4) + 1.

Let ¢ be the round in which the f+ 1°* processor receives a START message in
C’s. Then by round £ +1 every reliable processor will have received GO signals from
at least f+1 pmémrs, and by round ¢ + 2 every reliable processor will be Ready
(since at least 2f + 1 processors will have sent GO signals). Thus, firing will occur
by round ¢ + r + 2, and (s satisfies (C2'a) and Rounds(B’s(A)) < Rounds(A4) + 2.
Finally, if 10 reliable processor receives a START signal, then no reliable processor
will send a GO signal and no reliable processor will become Ready, hence firing will
pot occur and (C2'b) is satisfied. [J

We now show how to derive C from €’ by reducing the number of simulations of
A. We take advantage of the fact that all reliable proceasors become Ready within

a time period of at most two rounds, which is shown by the following lemma.

Lemma &. In either Cp or Cs, if a reliable processor becomes Ready in round ¢
then all reliable processors become Ready in either rounds t and ¢ — 1 or in rounds

¢ and £+ 1.

Proof: Let ¢ be the first round in which a reliable processor becomes Ready. In
Cp, all reliable processors which are not Ready in round t will receive a GO signal
and become Ready in round ¢ + 1. In Cs, since some reliable processor received
2f + 1 GO signals by round ¢, every reliable processor must have received f+ 1 GO
signals by round ¢. Thus, every reliable processor will send 2 GO signal in round ¢
if not before, and every reliable processor will be Ready no later than round £ + 1.

0

Let us denote the gimulation which will terminate in round ¢ + r (and hence
conceptually began in round ¢) by ;. If simulation S, would cause firing if carried

to completion (i.e., the computed vector will have more than f non-zero values),

13

then we say that S; will fire. In our revfmon of {’, a processor will not send the
messages of all r simulations that are used in C'. If processor p does send the
messages of simulation S;, then we say that p participates in simulation 8.

Suppose processor p becomes Ready in round ¢. Then, by Lemma 4, p can
deduce that Sy, will fire eince all reliable précesaom will be Ready no later than
round ¢ + 1. Also, by Lemma 4, S;_5 will not fire since no reliable processor can
have been Ready in that round, implying that at most f ones will be in the vector
computed. Computations 3, S-1, S, and Sy41 are the only ones which p needs

$o comsider.

Algorithm C is identical to algorithm ¢’ except that if processor p becomes
}ieady in round ¢ then p will participate only in simulations S-3, Si-1, S, and
Sp41. Also, p will ignore the result of S:_ and only act (fire or not) on the
results of S, St, and Si4y. There is no difficulty in coding the four (at most)
messages of algorithm 4 so that each receiving processor can match them up with

the appropriate simulations.

Theorem 5. Let A be an f-resilient Bounded Bysantine Agreement algorithm.
Then algorithm Cp(4A) and Cs(A) are f-resilient eolutions to the Permissive and
Strict Bysantine Firing Squad problems. For Cp, Rounds(C p{A)) € Rounds(A) +1
and for Cs, Rounds(Cs(4)) < Rounds(A) + 2. Both Bits(Cr(4)) and Bits(C3(A))
are at most n? + 4 x Bite().

Proof: Suppose that round ¢ is the first round in which a reliable processor
becomes Ready. (If no reliable processor becomes Ready, then the theorem is vac-
uously true.) For Cs, round ¢ is also the first round of the measured portion of the
computation. For Cp, the first round of the measured portion of the computation

is round ¢ — 1. By Lemma 4, all reliable processors awaken in either round ¢ or t+1.

14

Call the former early and the latter late.

Early processors will participate in simulations $;_3, 53, S, and S;4;. How-
ever, since they will not act on the result of S;_3, the messages which are input
to these simulations are irrelevant. Late proceasors will participate in simulations
Se—1, Sty Se41, and Sz, Since all reliable processors participate in simulations
Se—1, S¢, and S¢4q, the resulting vectors that they compute must satisfy conditions
(A1) and (A2). This implies that (C1) is satisfied by both Cp and Cs and that
both € algorithms are f-resilient.

Since all reliable processors are Ready by round ¢ 4 1, S;4, is guaranteed to
fire. By the definition of Ready for Cp, condition (C2) is satisfied by Cp, and firing
will occur within 4 1 rounds after a reliable processor receives a START signal (or

any other signal), so Rounds{(Cp) < Rounds(A) + 1.

In Cs, if £+ 1 reliable processors receive a START signal in round ¢, then
some reliable will become Ready by round ¢’ + 1. By the foregoing discussion,
some reliable processor will fire by round ¢ + r + 2, so condition (C2’a) holds and
Rounds(Cs) < Rounds{A)+2. On the other hand, if no reliable processor receives a
START signal, then no reliable processor will send a GO signal and hence no reliable
proceasor will become Ready, so (C2’b) holds.

Each processor participates in at most four simulations of algorithm A. There
is no difficulty in coding the messages of these simulations to use at most four times
the number of bits used by algorithm A. The GO messages can usually *piggyback®
at no cost in {s and sometimes do so in Cp since any non-null message will do to

communicate a GO signal. Otherwise a single bit will suffice to send a GO signal,
g0, Bits(C(A)) < n? + 4 x Bits{A), and Bits(Cs(A)) < n? + 4 x Bits(A). U

15

Acknowledgment: We wish to thank Mike Fischer for suggestions on the presen-

tation of these ideas, and Brian Coan and John Franco for their criticiam of early

drafts of this paper.

REFERENCES

1.

BEN-OR, M. Another advantage of free choice: Completely asynchronous
agreement protocols (extended abstract). In Proceedings of the Second Annual
ACM Symposium on Principles of Distributed Computing (Montreal, Quebec,
Canada, August 17-19, 1983). ACM, New York, 1983, pp. 27-44.

COAN, B., DoLev, D., DWORK, C. AND STOCKMEYER, L. The dis-
tributed firing squad problem. To appear in ACM Symposium on the Theory
of Computing, 1985.

DoLev, D., LYNCH, N., PINTER, S., STARK, E., AND WEmHL, W.
Reaching approximate agreement in the presence of faults. In Proceedings
of 3rd Annual IEEE Symposium on Reliability in Distributed Software and
Database Systems. IEEE, New York, 1983.

DoLEV, D., REISCHUK, R., AND STRonG, H.R. ‘Eventual’mearher than
‘immediate.’ In Proceedings 23rd Annual Symposium on Foundations of Com-
puter Science (Chicago, IL, November 3-5, 1982). IEEE, New York, 1982,
pp. 196-202.

FISCHER, M.J. The consensus problem in unreliable distributed systems (A
brief survey). YALEU/DCS/RR-273, Yale University, New Haven, CT, June

1083.
FISCHER, M.J. AND LYNCH, N.A. A lower bound for the time to assure

interactive consistency. Information Processing Letters 14, 4, (June 1982), pp.

183~186.
LAMPORT, L. The weak Byzantine generals problem. Jourznal of the ACM 30,

3 (July 1983}, 668-676.
LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Bysantine generals
problem. ACM Transactions on Programming Languages and Systems 4, 3

16

(July 1082), 382-401. (Also see: The Bysantine generals problem, Tech. Report
54, Computer Science Lab., SRI International, 1980.)

9. MOORE, E.F. The firing squad synchronisation problem. In Sequential Ma-
chines, Selected Papers. MOORE, E.F., Ed., Addison-Wesley, Reading, MA,
1064, pp. 213-214.

10. NISHITANI, Y., AND HONDA, N. The firing squad synchronisation problem
for graphs. Theoretical Computer Science 14, (1981), 30-61.

11. PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching agreement m the
presence of faults. Journal of the ACM 27, 2 (Apr. 1980), 228-234.

17

