THE IMPACT OF SYNCHRONOUS
COMMUNICATION ON THE PROBLEM
OF ELECTING A LEADER
IN A RING

Greg N. Frederickson

Depariment of Computer Sciences
Purdue University
West Lafayette, IN 47907

(ABSTRACT)
We consider the problem of electing a leader in a
synchronous ring of n processors. We obtain both positive
and negative results.

On the one hand, we show that if processor ID's are chosen
from some countable set, then there is an algorithm which
uses only O{n) messages in the worst case.

On the other hand, we obtain two lower bound results? i the
algorithm is restricted to use only comparisons of ID's, then
we obtain an (n log n) lower bound for the number of
messages required in the worst case. Alternatively, thereis a
{very fast-growing) function t with the following property. If
the number of rounds is required to be bounded by some tin
the worst case, and [D's are chosen {rom any set having at
teast f(n,t) elements, than any algorithm requires {i(n log n)
meséages in the worst case.

1. introduction

Communication in a network can be performed in either a
synchronous or asynchronous nérode. How does the choice of
communication mode affect the computational resources
required to solve a problem? We examine this question by

The work of the first author was supported by the National Science
Foundation under grant MCS-8201083. The work of the second author
was supported by the NSF under Grant No. MCS79-24370, and Advanced
Research Projecis Agency of the Departmen! of Delense Contract
& NODD14-75-C-0661.

Nancy A. Lynch

Laboratory for Computer Science

Massachusetis Institute of Technology
Cambridge, MA 02139
considering the problem ot elecling a leader in a ring-shaped
network. In this problem there are n processors, which azre
identical except that each has its own unigue identifier. At
various points in time.. one or more of the processors "wake
up”, and iniliate their participation in an election to decide on
a leader. The relevant resources for such a distributed
computation are the total number of messages used and the
amount of time expended from the time that the first processer
wakes up.

The problem of electing a leader efficiently has been studied
by a number of researchers [B,CR,DKR,GHS,HS,IR,LP). The
best previous deterministic algorithms have used O(n log n)
messages for either bidirectional rings [HS,GHS,B] or
unidirectional rings [DKR,P]. These algorithms work for both
the synchronous and asynchronous models, and use
comparisons of 1D's only. In addition, Burns has established a
fower bournd of @(n log n) on the number_of messages
required if communication is asynchronous [B]. However, the
proof in [B] does not extend to the case of synchronous
communication. It is, therefore, quite natural to ask whether
the Q(n log n) lower bound can be achieved in the
synchronous case as well as the asynchronous, or whether
there are algorithins that somehow make use of the synchrony
1o limit the number of messages transmitted.

We obtain both positive and negative answers 1o our
question of whether synchrony helps. On the one hand, we
show that if processor ID’s are chosen from some tountable
set {such as the integers), then there is an algorithm which _
uses only O(n) messages in the worst case. The processo:sA
may initiate the algorithm at different rounds, and do not know
the value of n. Our algorithm s thus an improvement on a
probabilistic algorithm of [IR] that uses O(n) messages on
average and assumes that the processors do know the value
n. Unlike !h_e earlier algorithms, our algorithm does not only

use comparisons on ID's - it uses the numerical value of the
ID's to count rounds. However, the number of synchronous
rounds used by our algorithm can be very large in the worst
case. An algorithm similar to ours has been developed
independently by Vitanyi and appears in [V].

On the other hand, we show that both the departure from the
comparison model, and the possibility of using a large number
of rounds, are necessary in order to obtain a flinear
communication algorithm. More specifically, if the algorithm is
restricled to use only comparisons of ID's, then we obtain an
Q(n tog n) lower bound for the number of messages required
in the worst case. Allernatively, if the number of rounds is
required 1o be bounded by some t in the worst case, then there
is a (very fast-growing) function f(n,tj which has the following
very interesting property. If ID's are chosen from any set T
having at least (n.t) elements, then any t-bounded algorithm
reqﬁires Q(n log n) messages in the worst case. (in particular,
tis a function of n, say t(n), then any t(n)-bounded algorithm
for a set T with at least #(n,t(n)) elements exhibits the given
lower bound on messages.) We achieve this result by giving a
transformation from any algorithm in what we call free form,
over such a set T, to a comparison-based algorithm. (The
ideas for this transformation are derived from earlier work of
Snir {S1]) Both of our lower bound results hold even in the
case that the number of processors in the ring is known to

each processor, and all the processors are known to start at

the same round.

2. The Algorithm

in this section, we present an algorithm for electing a leader
in a synchronous ring, that uses O(n) messages, but may
require a very large number of rounds. The elected processor
(and no other prbcessor) eventually enters one of a set of
distinguished “elected" states. The total number of messages
ever used (including any messages which might be sent after
the winner is elected) is O(n). The algorithm presented is for a
unidirectional fing, with communication assuhed to be
counterciockwise. Of course, a variant will work on a
bidirectional ring. We assume that the unique ID of each
processor is an integer. This assumption is reasonable if
communication is implemented by transmitting packets of bits.

in the description of the algorithm, we shall refer to the

processor with ID i as "processor i*,

At the beginning of the algorithm, each processor which
chooses to participate in the election (hencelorth calied a

“participating processor"} spawns a message process, which
moves around the ring, carrying the ID of the originating
processor. The message process is charged one message for
each edge which it traverses.

Our algorithm uses several ideas. The first is that message

: Processes that originate at different processors are

transmitied at different rates: the message process carrying
processor ID i travels at the rate of one message transmission
every 2' rounds. (More specilically, each processor delays for
2 . 1 rounds before transmilting message process i) Any
slower message process that is overtaken by a faster message
process is killed. Also, a message process carrying 1D |
arriving at processor jis killed it j <i and processor | has also
spawned a message process. A message process which
returns to its originator causes that originator to become
elected.

Suppose that all participating processors were to wake up at
the same round. The strategy above would then guarantee
that the total number of Mmessages is O(n). For, assume i is the

. smallest ID of any participating processor. Message process i

traverses all edges, for a total cost of n. Consider any other
dnessage process, j. During message process i's circuit, either
message process i overtakes message process j, or else
message process j reaches processor i, in either case,
message process j is killed by the time I's circuit is completed.
Because of the different rates of travel, message process j
could travel at most distance n/(2‘") during the time i travels
distance n. Thus, the message process carrying the smallest
D, i, must use more messages than all others combined.
Since message process i uses n messages, the total number of
messages expended would be less than 2n.

However, this variable rate of transmission scheme is by
itself not enough to realize Of(n) messages, in the case that not
all participating processors wake up at the same time® The
processors with smaller ID's could wake up correspondingly
later, and spawn méssage processes that would chase and
ultimately overtake the slower message processes, but not
before Q(n) messages had been expended by each of Q(n)
message processes.

The second idea is to have a preliminary phase, before the
variable rate phase begins. In this phase, all message
Processes trave! at the same rate, one message transmission
perround. When a processor decides R wants to participate,
Spawng is message process and sends it off to its neighbor.
The message process is transmitted around the ring, until it

R Y

e

encouniers the next participaling processor. At this point, the
message process continues into the second phase, moving at
its varinble rate, and acting as previously described. if a
processor awakens afier & message process has already
passed by, then that processor will not participate in the
election.

We now show that the total number of messages used in all

phases of the computation is less than 4n.

Lemma 1: Afier no more than n rounds from the
time the first processor awakens, the ressage
process of the evenlual winner enters its second
phase.

Proof: If i and | are two processors in the ring, let
d(i.j) denote the counterclockwise distance from i
to j. Let i be the first processor 1o awaken, and let j
be the eventual winner. Then a message process
must arrive at j by the end of round d(j).
Therefore, message process j must traverse its first
edge by round d(i,j) + 1. Then message process j
enlers its second phase by the time it reaches i (or
some closer participating processor), at most d(j,i)
rounds later, i.e. by the end of round n. i

We now divide the messages into three categories, and
bound each category separately. The categories are (-1) the
first phase messages, (2) the second phase messages sent
before the eventual winner enters its second phase, and (3)
the second phase messages sent after the eventua! winner
enters its second phase. Let i denote the eventual winner. *

For (1), it is easy to see that the total number of first phase
messages is exactly n. Next, consider (2). Lemma 1 implies

that at most n rounds need to be considered. Moreover,
message process | sends no second phase messages dunng

the rounds under consideration. The-smallest possible ID for
the processors which are not everuat winmevs i 1, and the
maximum number of second phase messages for message
process j in these rounds is n/(2). Thus, the total number of
messages sent for all the message processes in these rounds
8 lessthann,

Finally, consider (3). The argument+ssimilac to the one used
for the case in which all processors awaken at the same
round. That is, mge process i makes a circuit, for a total
cost of n. Consider any other message process j- During
message process I's circuit, either message process |
overiakes message process j, or else message process |
meaches processor I; in either case, message process j is killed
by the time I's circukt is completed. Because of the different

éumdmvel.nmgeprmicouldnendﬁmodn/(ﬂ
phase two messages during the time i travels distance n. Thus,
&3 before, the total number of messages expended is legs than

2n. Themmnumberdmesageshr&!imtegorieshhu
than4n.

Although the number of messages is guite amall, the time
required may be rather large. lis @asy o see that he number
of rounds expended is O(n 2}), where i is the iD of the eventual

winner. Thus, we obtain;
Lemma 2: There is an algorithm which alects a

leader in a synchronous ring of n processors using
fewer than 4n messages, and O(n 2} time, whers |
is the ID of the eventual winner.

The bound of 4n messages for the algorithm above Is
reasonably tight. Consider tﬁe following example, where H{n)
= log n - log fog n. Let processor 1 be pne link from processor
0, and lef processork, k = 2,...5(n), be

k+ L@ nr2.)3

links from processor 0. Let processors 1 and 2 awaken &t
round 1, and each processor k, k = 3..8(n), awakan the
round before it would be-visited by a first phase message.
Similarly, let processor 0 awaken the round before it would be
visited. Then processor k, k = 1,....5(n), will start its second
phase at round 2 + L(2* - 2)n/(2¥ - 1)1, and wil! traverse &t
teast n/(2* - 1) - 2 links before any message process overiakes

" it. There will be n first phase messages, at lgast

Zat,.am @-1-2

second phase messages for processors k = 1....5n). and n
- 1 second phase messages for processor 0. For largs n, this
gives slightly more than 3.6n messages in ail.

it is possible to reduce the number of messages at the
expense of the number of rounds by using powers of ¢, for any
constant ¢ > 1, rather than powers of 2. As belore, there will
be exactly n messages in category {1). in category (2}, thers
willbe fewer than £ _ . n/c! = n/(c-1) messages, while in

 category (3), there will be fewer than £ o a/c = ne/(e-1)

messages. Thus, we obtain an aigorithm which slects a leadesr
in a synchronous ring of n processors using fewer than
2cn/(c-1) messages, and using &t most O{n ¢') rounds, where |
is the ID of the eventual winner. Moreover, the leader elected
by the algorithm is guaranteed to be one of the participating
Processors.

If we are willing to allow any processor to become electsd,
rather than just the participating processors, then it ig poasible
to retain the 2cn/(c-1) message bound, while reducing the

time 10 O(n c'), where i is the minimum ID of all processors in
the ring. Tbebasicideaistoullowuchprooessormm
and begin its algorithm {spawning its message process) ss

soon as it receives any message from its neighbor, if it has not

siready awakened on its own. We thus obtain:
Theorem 3: Let ¢ > 1. There is an algorithm
which elects a leader in a synchronous ring of n
processors using fewer than 2cn/(c-1) messages,
and O(n ¢') time, where i is the smaliest ID of any of
the processors in the ring.

We can also elect 8 leader from among the set of

participating processors, while maintaining the O(n) message
behavior and the dependence of the time on the smallest ID in
the ring. All we need to do is to follow an algorithm which
elects an arbitrary processor with an additional phase which
elects a participating processor. in this additional phase, the
originally elected processor just originates a message which
circulates twice around the ring, determining the participating
processor with the smallest ID.

Note that the algorithm works correctly in the case where
communication is purely asynchronous. &t is only s
complexity that depends on the synchrony. in the general,
asynchronous, case, the dgorithm is essentially the same as
that of [CR], and so exhibits & worst-case message behavior
which is O(n?).

. 3. Framework for Lower Bound Probfs

in this section, we describe the assumptions we use for our
lower bound results. We require a formal mode} for the lower
bound results; we present the necessary definitions in this
section as well. Finally, we define a special kind of algorithm
called & "free” aigorithm, and show that there is no loss of
generality in restricting to free algorithms.
3.1. Assumptions T

We assume that the communication is bidirectional. (Our
prool may easily be adapted for unidirectional-rings.) We
assume that the value of n is a power of 2, and is known by
each processor. All processors are assumed to awaken at the
same time, round 1. '

For the algorithm, we counted the total number of messages
sent during an execution, including those sent after a
processor got elected. For our lower bound results, on the
other hand, we measure only the messages sent up to the
point where a processor becomes elacted.

Except for the restriction to powers of 2, our dssumptions
gerve 10 strengthen the model, and hence the lower bound
results.

3.2. Ring Algotithms
Each processor is modelied as an automaton that behaves

- as follows. At each round, each processor examines its state
'nnddecideswhethertoaendnmasagehuchdm

neighbors, and what message {0 gend. Then each processor
receives any messages sent to it in that round. Each
processor uses its current state and these new messages to
update its state. ’

We now introduce formal definitions. An ID space is any
fotally ordered set. In this paper, T will denote an iD space.
Let A denote a finite decision alphabet. Let M denote an
alphabet of possible messages.

A ring algorithm over T and A is an automaton {Q.1.0p,8),
where

- Qisaset of states,
- 1 C Q is the set of initiar states, pariitioned into nonempty

setsli.oneforeachtET.

- D C Q is the set of decision states. partitioned into D, & €
A, the set of a-decision states,

- u is a message generation function, mapping Q x
{leftright} — MU {null},

and

. § is a transition function, mapping (M U {null) x@x (MU
{nult}) - Q.

The decision states are the means by which the sutomata
produce output. We sssume that the various sets D‘ of
decision states are “closed” under the operation of the
transition function. Thus, once a decision has been reached,
the same decision must persist.

The mapping s Gecides, for each of the automaton’s two

:mighbors.whetherornotamesageistobeaent.whme
‘former case, which message is to be senl. The mapping &

determines a new state from the oid state and any messages
arriving from the automaton's two neighbors.

3.3. Executions

We number the processors in the ring counterclockwise, a3
0,...n-1. We count indices modulo n. For the remainder of this
paper, “processor | will denote the processor numbered | in
this counterclockwise numbering. We let <n> denote the set of
integers (0,....n-1}.

A configuration of width n is an n-tuple of elements of Q,
rapresenting the states for the n processors 0.,...n-1, in order.
A message vector of width n is an n-tuple of ordered pairs of

elements of M U {null}. R represents the messages sent loft

mﬁghtbyeachdmenmm

An execulion of width n is an infinite sequence of h'iploo
{C,N.C)), where C, and C, are configurations and N is a
message vector, all of width n. An execution fragment is any
finite prefix of an execution. We require executions {0 satisly
several properties.

First, the initial configuration must consist of initial states.
Each execution and execution fragment therefore has an ID
vectorin T_ which is the vector of T-values represented by the
vector of initial states in the initial configuration. That is, #
component i of the initial configuration is in l.. then component
i of the 1D vector is &. We require that the different components
of the 1D vector of an execution all be distinct. (This condition
models the distinciness of the processors’ ID's.) We also
require that each triple in an execution be “consistent” with
the message generation and transition functions. Finally, the
configurations in consecutive triples must "match up®.

. Each exscution has & decision vector in (A U {nulf})",
representing the eventual decisions made by all the
component processors. That is, component i of the
configurations in the execution is eventually in D, then
component i of the decision vector is a. F component | never
enters anyD‘. then component i of the decision vector is null.

A message instance is a quadruple (r.i.m,d). whereris a
nonnegetive integer denoting a round number, i is a processor
index, m € M U {null}, and d € {left,right). A message
instance (r.i,m,d) I8 said to occur in execution (or execution
'fragmene) & provided that in &, at round r, processor | sends
message i in diraction d.

The following definitions aliow us to describe information
flow viz nonnull messages. For nonnegative integer k, we
define a right &-chain in execution (or execution fragment) e 1o
be a sequences =

(rdm, right).(r i+ 1,m, right),..., (r, 4+ k-1,m_right)

of message instances occurring in e, where the rounds r, are
strictly increasing, and the m, are nonnull messages. in this
case, we say that the k-chain s feads to processor i +
. Symmetric definitions are made for left k-chains.

" Now, we define our complexity measures. For any sxecution
e, let finishtimele) denote the number of the first found sfter
which the eventual decisions in e have ail bosn mede (i.e.
each component which has a nonnull entry, a, in the decigion
vector, is in a state in B,). Let messagesfe) denots the
humber of messages sent during e, up to and including round
finishtime(e). We say that an algorithm requires no more than
time t provided that finishtime(e) < t for all executions, 3. We
say that the algorithm uses no more than s messages provided
that messages{e) < s for each execution, @.

3.4. Problems

Now, we consider the sense in which a ring algorithm soives
& problem. A problem of width n over T and A is a mapping
from length n vectors of distinct values in T to subsets of (A U
{null})". A problem represents, for each particular D vactor,
the aliowable decision vectors.

For the problem of electing an arbitrary leader, we define the
mapping 8o that it assigns to any vector, the set consisting of
all vectors with exactly one 1, and all other posiiions null. For
the problem of electing the processor with the minimum 1D,
the mapping would assign to any vector, the set consisting of
the single vector which has 1 in the position corresponding o
the minimum value in T and null elsewhere.

- Two length n vectors, x and y, of T-elements are said io be
order-squivalent provided that the elements in corresponding
positions in x and y satisfy the same ordering relations. That
is, for each pair of positions, i and j, we have x, < X, exactly i Y,
< ¥, and similarly for the relations = and >. A problem, P, is
order-invariant provided that whenever two vectors, x and Y.
over T are order-equi'valenl. their images, P(x) and P(y) are
identical, i.e. exactly the same set of vectors is permitted as
output. The problem of electing a leader and the problem of
electing the processor with the minimum ID are both order-
invariant.

We say that a ring algorithm over T and A soives a problem,
P, of width n, provided that [T] > n, and that for esch
execution, e, of the algorithm, the following holds. ¥f e's ID
vactorisxﬁnno’sdecisionvectorisandememolﬂiam
P(x) of aliowable output vectors.

3.5. Free Algorithms _

it will be convenient to assume that algorithms are in a
particular “tree™ form, In which the states of processors
mmmmm,mmmofmm?mmemd.u

&l messages contain the entire state of the Sending processor.

We show in this subsection that we can assume such a form.

The most natura! way to represent such history information
is by means of LISP S-expressions. The S-expressions that
arise during computation are of a special type. The atoms are
t € T and NIL. The well-formed S-ekpressions are just the
following: (1) the elements of T, and (2) those of the form
(8,8,8,), where 8, is a well-formed S-expression, and 8, end
8, are either well-lormed S-expressions or NIL.

An algorithm is free provided that its state set and Hs
message alphabet are both just the set of well-formed 8-

expressions. Also, the initial states are just the atoms in T (the

1D's). Moreover, the message sent in either direction from any
state q is either just the state q or null, and the new state
arising from state q with messages m, and m, arriving from the
feft and right respectively is just the S-expression (m,,q.mz).
(i gither m, orm, is null, then we use NIL.)

The parts of the algorithm which are still undetermined are
whether, for each state and each direction, a message is sant,
which of the states are decision states, and how the decision
states are partitioned into D, for various a For ‘a free
slgorithm, it is helpful to define a subsidiary message function,
#'. which maps Q x {left,right}) — {ves,no}, depending on
whethcramessageiswpposédhbennthho
corresponding directioﬁ from that state. (If a message is sent,

. #ts actual contents are determined by the state of the sender.)

The foliowing lemma says that for the complexity measuras
eonsideredhmispapef.mereisnolossdgemnmyh

restricting attention to free aigorithms.

Lomma 4: Let A be a ring algorithm, over T end
A,mchsolvesprobleumingnomoremm
t. and no more than & messages. Then there s a
free aigorithm, L', over T and A, which solves P
using no more then time t, and no more than g
messages.

Proot: We use notation Q, eic. from the definition
of 8 ring aigorithm, 10 refer to aigorithm L. For
each 1 € T, let q(t) be a designated initial state in |,

We dofine svai(s), for each well-formed S
exprassion, g, %, be u particular siate in Q. We do
this inductively. First, wefine evallt), for t an atom,
%0 be q(t). Next,ifg = (8,5,.8,), then define eval(g)
0 be 8(a1.eval(s2).aa). where a, = null if 5, = NiL,

and a, = pleval(s)right) ctherwise, while a, =
nult “33 = NIL, and 8y = p(eval(s,).leﬂ) otherwmse.

" Now, we aflow .’ t0 send a message left lrom
slale s provided that 4 sends a message left from
state eval(s), and analogously for messages sent
right. Similarly, state s is an a-decision state
exactly if state eval(s) is an a-decision state.

it should be clear that .{' “simuiates” the

. behavior of L. Therefore, # is straightforward to

.check that .4’ also solves P in time ¢, and uses no
more than s messages.

f we were interested in counting, say, the fotal number of
bits of communication, it would not be sufficient to restrict
attention to free &igorithms, since the slgorithm
transformation described in the preceding lemma can causs 8
large increase in the size of messages.

We require one more simple but imbonant lemma about free
algorithms. This lemma imposes & limit on the propagation of
information by failing to send messages.

Lemma §: Let A be any free algorithm which has
no right k,-chains and no left ky-chains leading to
processor i in execution fragment e. If a is a T-value
which is in the state of processor i at the end of e,
then 2 was the initial value of some processor J,
wherei-k, + 1€j<i+ Ky - 1.

Proof: Straightiorward. 8

4. Lower Bound for Comparison
Algorithms

In this section, we restrict attention to algorithms which use
comparisons only. We present our first lower bound, of @{n
fog n), iormenumberofmmgesrequiredioneompm

. algorithm, 1o elect a leader in a synchronous ring.

6.1. Comparison Aigorithms -
in this subsection, we define “comparison algorithms”,

We say that two S-expressions are order-equivalent provided
that they are identical except for the particular stoms which
OCcupy various positions within the expressions, and

corresponding atoms satisfy the same ordering relations in the
two expressions. A free algorithm is a comparison slgorithm

provided that if s and s' are order-equivalent well-formed S-
expressions, then processors with states Q and g’ transmit

) messages in the same direction or diractions and are in the

same sef of decision states (if any). (That is, p'(qleft) =
#(Q" left), p'(q.right) = #'(a’ right), and for each a € A, qisin
D‘ ex_:acﬂy Hagisin D,. Recall that #' is the subsidiary

message function which decides whether or not to send &
message, but does not say exactly which message is sent.)

4.2. Preliminary Results

in this subsection, we assume that n is a power of 2, and let
T* be the 1D space consisting of the set <nd, with the usual
ordering.

For any m < log n, define a function m-high from <nd o @™

" g0 that m-high(j) is the integer represented by the m high-

order bits of i. Extend the m-high mapping to the set of &
expressions over T°, by replacing every non-NiL atom, i, with
m-highl).

For i € <n, let reversefi) denote the integer whose binary
representation is the reverse of the binary representation of
i. We assign processor iD's so that the values are arranged
consecutively, counterclockwise around the ring in order of
increasing reverse(i) values. Thus, for each m < log n, the
values repeatedly cycle through the 2™ possible patterns olm
high-order bits. This pattern ex;hibits a large amount of “local
symmetry™ which we exploit for our results.

For the remainder of this subsection, assume that A is any
particular comparison algorithm over T°. Also assume that @
i an execution fragment of some execution of A -whose 1D
‘wector is given by the pattern described above.

The next lemma says that, if the sum of the lengths of the
maximum right chain and maximum left chain leading to &
processor is strictly less than 2™, then all ordering information
about the T°-glements which the processor has as aloms in its
state is determined solely by the m high-order bits.

Lemma 6: Let m ¢ log n. Assume that, n
execution fragment e, the sum of the lengths of the
maximum right chain and the maximum feft chain
leading to a processor, i, is less than 2™. Letaand
b be any two T°.elements occurring in processor
I's state &t the end of e. Then

(8) m-high(a) = m-high(b) if and only fa = b,
{o) m-high(a) < m-high(b) if and only ifa < b,
end "

{c) m-high(a) > m-high{b) if and only fa>b.

Proof: Lemma 5 and the distribution of 1D's
shows that m-high(a) = m-high{b) implies a =
b. The cther cases follow immediately. §

Assimpleconsequeneedmmuced’mgbmmahm

following. :
temma 7: Let m < log n. Assume that, in
execution fragment e, the sum of the lengths of the
maximum right chain and the maximum left chain
leading to processor i is less than 2™ and similarty
for processor j.Let q and q' be the states of
processors i and §, respectively, after e. Assume
that m-high{q) = m-high(a’). Then g and Q' &8
order-equivalent.
Proot: Follows easily from Lemma & B
The following key claim shows how Umited message
propagation forces certain corresponding processors to be in
corresponding States.
temma B: Let m < jog n. Assume that, in
execution fragment e, for each processor, the sum
of the lengths of the maximum right chain and the
maximum lelt chain leading 1o the processor is less
than 2™. Let q and ' be states of processors i and
i + 2™, respectively, afler e has been executed.

Then (a) m-high(q) = m-high(g'). -
(b)lfa€ A thengisin D. exactiyifq'isin D..

{c) p'(alelt) = p'laleft) and g'lqright) =
#'lq’ right).

Proof: We proceed by induction on the length of
e

Base: e is of length 0

initia! states consist only of T* elements, and the
chosen pattern ensures that processors which are
exactly distance 2™ apart have the same m high-
order bits. This shows (a). Then (b) and {c) foliow
becausge A is a comparison algorithm.

inductive Step: e is of length >0

By inductive hypothesis, processors iand | ¢ >
are in m-high equivalent states prior to the last step
of e, as are processors | - 1 and i - 1 + 2" and
procasorsl+1mdi+1¢2"‘.uoreover.nm
tast step of e, processors |- 1and i - 1 <« 2™ gither
both generate right messages of else neither does.
Similarly, at the last step of &, processors | + 1 and
i + 1 + 2™ sither both generate left messages OF
eise neither does. Therefore, q and q' are easily
seen 1o be m-high equivalent, showing (2). Then
Lemma 7 implies that q and g’ are order-equivalent.
Then(b)md(c)ioﬂowbecam.tisacompubon
slgorithm.

) |

4.3. The Main Result

in this section, we prove the main lower bound theorem. We
require one more (fairly obvious) lemma sbout comparison
algorithms.

Lemma 8: Let T ancd T’ be arbitrary iD spaces, b
any integer. Assume that A is a comparison
algorithm over T which elects a leader in a ring of
size n and uses at most 8 messages. Then thers
exists & comparison aigorithm A’ over T" which
electsaleaderinnringofsizenand uses al most s
messages.

Proof: We define A’ as follows. For each well-
formed S-expression, L', with atoms inT,letL be
an order-equivalent S-expression with atoms in
Y. Define the values of the message decision
function and the decision status for L' 1o be the
same as the corresponding values for L. The fact
that A is 8 comparison algorithm assures that this
definition is unique.

Myinpmveclor.y.oflb‘sh'r'isorder-
equivalent to some input vector, x, of iD's in T. The
computation of A’ on input y therelore imitates the
computation of A on input x, sending messages at
the same times, and entering decision states at
corresponding times. Since a leader is elected in
the computation of L on x, it follows that a leader is
elected in the computation of A’ on y, and the
message requirements sre bounded by the
corresponding requirements for Aonx

Now, we pfoveme main result.

Theorem 10: Assume n is 8 power ofl2 Let sk
be a comparison sigorithm over an arbitrary 1D
space, T, which elects 8 teader in a synchronous
ring of size n. Then there is an execution, @, of A
for which messages{e) 2 (n/2)(log n + 1).

Proof: Lemma 9 implies that it suffices to
consider T = T°. Let e be the execution on the
distribution of D's given in the preceding
subsection. Let ¢’ be the execution fragment of @
which terminates just when the elected processor
enters astate in D, {i.e. an elecisd state).

We first claim that in ¢', sSome processor i must
have the sum of the lengths of the maximum right-
chain and the maximum left.chain leading to it, at
least n/2. For if not, then Lemma B implies that any
pair of diametrically opposed processes would
have the same decision status at the end of o,
making it impossible to electa teader.

For any prefix, e”, of ¢, let maxright(e’) denote
the maximum length of any right chain in e", and
analogously for maxieft(e™). Let sum(e”) denote
maxrightie™) + maxleft(e”). The claim above
implies that sum(e’) 2> n/2. Thus, sum(e™) starts
out with a welue of 0, when e" is the empty
sequence, and intreases until it reaches at least
n/2, whene” = ¢,

Consider any siep at which sum(e"') increases. it
is only possible for maxright(e”') to increase by 1 at
one step, and similarly for maxieft(e”). Assume, for
some particular m < log n, that sum(e”) < 2™ at the
beginning of this step. We consider three cases.

Case 1: maxright(e”) Increases by 1 and
maxleft(e”) does not increass.

Then someone sends a message to the right at
this step. Therefore, by Lemma B, all processorns
which are separated from this processor by
multiples of 2™ also send messages 10 the right at
this step. Thus, at least n/(2™) messages are sont
{0 the right at this step.

-Case 2 maxieft(e”) increases by 1 and
maxright{e”’} does not increase.

An argument similar to the one for Case 1. shows
that at least n/(2™) messages are sent to the leht at
this step. :

Case 3: Both maxright(e') and maxieft{e’)
increase by 1 at this step.

Then a similar argument fo the previous two
cases shows that at least n/(2™) messages are sont
right, and also at least n/(2™) messages are sent
left al this step.

Thus, & cost of at least n/(2™) messages is
incurred for each increase of 1 in sum(e”),
whenever the sum before the increase is less than
2™, Therefore, increasing sumf{e”) from 0 %0 1
requires n messages to be sent. increasing -
sum(e") from 1 to 2 reguires n/2 additional
messages, from 2 to 3 .requires at isast n/4
additional messages, from 3 fo 4 requires at least
n/4 additional messages, from 4 to 5 requires n/8
messages, etc. In other words, n/2 messages are
required to increase sum{e”} from 2 10 4, from 4 to
8, and in general, from any 2" t0 2™* ', So the total
number of messages required to increase sum{e™)
from O to n/2 is at least n + (n/2)(log n - 1) =
(n/2){log n + 1), as required.

5. Lower Bound for Time-Bounded
Algorithms

in this section, we prove our lower bound for time-bounded
algorithms. We use the lower bound for comparison
algorithms to do this. First, we show how to map from time-
bounded algorithms to comparison aigorithms. This result,
presented in the paracomputer model, is due Snir [S1].
(Snir [S2] credits Yao [Y] with inspiration for this result) For
completeness, we present a careful proof in our setting, even
though basically the same proof appears in [S1]. We then
infer the lower bound for time-bounded algorithms.

8.1. Definitions

in order to map fom Hme-bounded to comparison
algorithms, we require definitions describing the behavior of
an algorithm within a bounded amount of time.

We say that & free sigorithin Is & t-comparison algorithm
provided that both of the following conditions hold.

(1) i ¢ and &' are order-equivalent S-expressions of
parenthesis depth at most 11, then g'(sleft) = p'(s' Jeft) and

" p(s.right) = p'(s’ sight).

(2) il 5 and &' are order-equivalent S-expressions of depth &t
'mostLandaeA.thensisinD‘exacﬁst‘islnD.. -

During execution of a free algorithm, the S.expressions
which appear as states at the end of any round ¢ have depth
exactly t. Thus, this definition says that the algorithm behaves

as 8 comparison algorithm up to the end of the firsttrounds.
We also add the qualifier “on inputs from U” to this

definition, provided that the appropriate conditions hokd for

those S-expressions which use atoms chosen from the set U.

5.2. Mapping & Time-Bounded Algorithmtoa
Compatiscn Algorithm '

in this subsaction, we show how fo convert a time-boundad
algorithm to & comparison algorithm. The first step is 1o show
that any free algorithm behaves as 2 comparison algorithm on
& subset of it inputs. For the first lemma, we use a particuiar
tast-growing function §n.t). The precise definition of f
depends on Ramsey's Thaorem, and is implicit in the proo! of
the lamma.)

Lemma 11: Fix n, t. Let £ be any free aigorithm
over D space T and aiphabet A, where T has at
least i{n,) elements. Then there exists a subset U
dT,o!aizemieastn.wchM.lhlt-
comparison algorithm, on inputs from u.

Proof: For any set V, tet L{V) denote the set of
woli-formed S-expressions over stoms in V, of
depth up to t The order-equivalence relation spiits
the st L(T) into finitely many equivalence classes,
E,..E,. We build a ssquence of sets U, each
contained in the previous, such that the following
property s satisfied. # s and & are two &
expressions in L(UI.) n E'. then:

(1) plsistt) = p(s'left) and p(sright) =

ple’ right),

and

(@ foranyainA, s €D, exactyifs’ €D,
LetiingU = Uuthan yields the needed result.

initially, let U, = T.We now describe how o
generate U‘.. assuming that UH has been defined.

“Yhere are only ¢ = 4(JA] + 1) possibie
combinations of choices that can be made for each
expression in E: whether & message is sent left,
whether a message is sent right, and the decision
status.

Suppose that the expressions in € contain m
distinct atoms. For each size m subset, X, of U;ri'
there is a unique expression, L(X), in El containing
the elements of X as atoms. We "color” X with &
color corresponding 1o the choices made for the
expression L{X). Thus, we obtain a c-coloring of
the collection of size m subsets of UH..‘

According to Ramsey's Theorem [BE], there b a
subset of UH, which we cal! U, such that all m-
element subsets of U, are colored the same color;
Ui can be chosen to Le of any predetermined size
provided that UH is sufficiently large.

Thisu’husltyaoentohavememedod
properties.

]
The next lemma gives the mapping from free time-bounded

algorithms to comparison gigorithms. :

Lemma 12: Fix n and t. Let A be a free algorithm
uverlepaceTandalphabetA.whereThasn
least §(n.1) elements. Let P be an order-invariant
probiem.ofsizen.ﬂ.&so!vesPintrounds.wng
nmostsnmgeshmeworstcase.mm
exists a comparison algorithm L', which soives P in
lrounds,mingatmastsmesageshmm
case. ‘

Proof: The prool is similar to that of Lemma O.
We are going to construct A’ which "simulates”
the behavior of A for the first t rounds. Since A
arrives at all the proper decisions by the end of
round t, A will also do s0. Thus, we can allow A’
to carry out only trivial activity after round t.

All the states which arise in algorithm A up to the
end of round t have expression depth which is at
most t Thus, we define the méssage generation
function to yvield "null™ for any expression of depth
greater than or equal to t.In order to make sure
that the aigorithm satisfies the required “ciosure”
condition for sets of decision states, we define a
well-formed S-expression of depth greater than 1 {0
be in D‘ provided that its middle component i in
D . His clear that these conventions are consistent

h the fact that A’ is & comparison algorithm.

Now we must describe the message decision
function of L’ for expressions of depth up o and
including 1 - 1, and decision status for expressions
of depth up to and including 1.’ .

Lemma 11 says that there exists a subset, U, of T,
dsizeltieastn.suchmaﬂorinputslromu.me
aigorithm A is & t-comparison algorithm. Consider
any S-expression, L, of depth less than t, with
stoms in T.Define the value ol the message
decision function on this expression to be that of
ﬂ\emesagedecisionfuncﬁond.lonmys-
expression, L', with atoms from U, which is order-
equivalent to L. The {act that A is a t-comparison
aigorithm on inputs from U ensures that this value
is uniquely defined. Similarly, for any S-expression
ofdeptha!mostt.withltomshT.deﬁne
membership in any D.I according to membership in
D_ of any order-equivalent S-expression with atoms
in U. It is obvious that ' is a comparison algorithm.

Now, we argue that £’ solves P in t rounds. Any
fength n 1D vector, y, over T, is order-equivalent o
some ID vector, x, over U. The computation of L' -
on input y therefore imitates the computation of A
u‘lhputx.uptomeendofroundt.eendm
messages al the same times, and entering decision
states at corresponding times. Since A solves P in
t rounds, the vector of states after t rourids of the
computation of .4 on input x has the decision status
of all components corresponding to some vector in
(AU {null})" in the set afiowed by P for input x. The’
vector of states afier t rounds of the computation of
A’ on input y therefore has the decision status of all
components corresponding 10 the same vector.
Since P is an order-invariant problem, this vector is
in the set allowsd by P for input y. Therefore, A’
solves P in 1 rounds.

Finally, we consider the number of messages sent
before reaching final decision status. Say that A
on input y reaches its final decision status after
round f. @ must be that t < tThen the
computation of 4 on input x reaches its final
decision status after round {' aiso. So the numbers
of messages correspond as required. 8

We can combine the immediately preceding result with

- Lemma 4 1o obtain the foliowing.

temma 13: Fix n and t Let A be any algorithm
over ID space T and alphabet A, where T has at
teast #{n1) elements. Let P be an order-invariant
problem, of size n. if 4 solves P in t rounds, using
nmostsmessagesinmeworstcase.menthem
exists & comparison algorithm ', which solves P in
trounds.usingatmostsmgeslnmem
case.

The immediately preceding result appears to be of much
_wider applicability 4.2~ just to this work and Snir's. This
result, or variants, should ve very useful for the study of other
order-invariant problems on many different tinds of
computation modeis.

6.3. The Main Rosuli
Finally, we present our lower bound for Sime-bounded
aigorithms. -

Theorem 14: Fix n, t, where n is a power of 2

) Lethemarbivarlespacewithuleasﬂ(n.t)
elements. Let A be any aigorithm over T which
elects a leader in a synchronous ring of size m,

_ using no more than time t Then there i3 an
execution, 8, of A for which messages{e) &
{(n/2)(logn +).

Proof: Assume the contrary - that there exists an
aigorithm A over T which elects & leader in &
synchronous ring of size n, using no more than
time t, and using fewer than (n/2)(log n + 1)
messages in the worst case. Then Lemma
13 implies that there exists a comparison algorithm
which elects a leader in t rounds and uses fewer
than (n/2)(log n + 1) messages in the worst case.
However, this contradicts Theorem 0. 8

6. Remaining Questions

There are several directions for further work.

First, the given bound is still not tight. The best known upper
bound appears in [DKRR], and is approximately 1.4 n log
n. Our lower bound is approximately 1/2 n log n. it wouid be
interesting to close this gap.

Second. the lower bounds in this paper rely on n being &
power of 2. Unlike most other cases where such &n
assumption is made, in this case the assumption seems io be
crucial. Whereas Bums' lower bound of @ for the
asynchronous case appiies for all values of n, we do not know
what happens in the synchronous case for non-powers of 2. it
seems likely that the lower bound proof should extend in some
way, but the extension appears to be nontrivial.

Third.nwwidbehteremingtoseewheﬁmhm
techniques in this paper provide lower bounds for other order-
hvariantproblemsbesidesbstelecﬁono!lhader. Soms
preliminary work in this direction has already been carried out
{cLTWZ].

Fourth, it would be interesting to consider results for election
daleadermdoxhefordev-invariamproblemhmgonﬂd
classes of graphs. For exampie, Angluin [A] characterizes
oraphshtermsolmepossibilityandimpossbilityddecﬁnqa
feader, in the ahsence of unique identifiers. Our techniques
might be useful for proving lower bounds for the number ot
messages required 10 elect a leader in various kinds of graphs,
even if the processors do have unique lD‘é. .

Acknowledgements:

The authors thank Cynthia Dwork for making us aware of the
very interesting results of Snir, and noting their connection to
our work. Thanks aslso go to Mike Fischer for several

suggestions on improving the presentation,

References:

[A)

[8]

[BE]

ICR]

[DKR]

[GHs]

[GLTWZ]

Hs)

fR)

ft]

(3]

[s1]

D. Angluin, Local and Global Properties

in Networks of Processors,

Proceedings of the 12th Annual ACM Symposium
on Theory of Computing

{1980), pp. 82-83.}

J. E. Burns, A formal model for message passing
systems, TR-81,
Indiana University (September 1880).

C. Berge, Graphs and hypergraphs, North-Holland,
Amsterdam, 1873,

€. Chang and R. Roberts, An improved algorithm
for decentralized extrema-finding in circular
configurations of processes,

{1979) 281-283.

0. Dolev, M. Klawe and M. Rodeh,
An O {n log n) unidirectiona!
distributed algorithm for extrema
finding in a circle,

J. Algorithms 3,3 (September 1082)
245.280,

R. G. Gallager, P. A. Humblet and P. M. Spira,

A distributed afgorithm for minimum-weight .
sgpanning trees, ACM Trans. Prog. Lang. Sys. 5, 1

{January 18983) 86-77.

E. Gaini, M. Loui, P. Tiwari, D. West and
8. Zaks, Lower boynds on common kn
in distributed algorithms (ABSTRACT).

D. 8. Hirschberg and J. B, Sinclair,
Decentralized extrema-finding in circular
configurations of processes, Comm. ACM 23
{November 1980) 627-828.

A. i and M. Redeh,

G. LeLann, Distributed systems - toward a
formal approach, information Processing 77,
North Holland, Amsterdam

{1877} 155-180.

G.L. Peterson, An O (n log n)

unidirectional algorithm for the circular
extrema problem, Trans. Prog. Lang. Sys. 4, 4
{1882) 758-762.

M. Snir, On perallel searching, Hebrew University
of Jerusalem, Department of Computer Science,
RR 83-21 (June 1883).

M. Snir, Personal communication (1963).

P. Vitanyi, Distributed elections Archimedean
Ring of Processors, This Proceedings.

A. Yao, Should tables be sorted?

‘. ACM 28, 3 (July 1881) 615-628.

