LABORATORY FOR %% A A 1>
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/RSS 16
Research Seminar Series

DISTRIBUTED ALGORITHMS

Lecture Notes for 6.852

Fall 1990

Nancy A. Lynch

Isaac Saias

February 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Distributed Algorithms
Lecture Notes for 6.852
" Fall Semester, 1990

Nancy A. Lynch

Isaac Saias

L]

Contents

Preface

Acknowledgements

Course Syllabus

Lecture 1: September 11

1.1 Introductiontothe Course« v o v oo . e '

1.1.1 What are Distributed Algorithms?
1.1.2 Structure of the COUTSE . « v v e v v e e e e e e e et e e e
1.1.3 Summaryt e e e e e e e
1.2 Asynchronous Systems: Models and Proof Techniques
1.2.1 I/O Automata. e e e e
1.2.2 The Alternating Bit Protocol
1.2.3 ABP with Sequence Numbers (ABP-S) E
Lecture 2: September'13
2.1 T/OAutomata. o v it e e
2.1.1 Introduction i e e e e
2.1.2 OverviewoftheModelo
2.1.3 ~ Formal description of the Input/Output Automaton Model
2.1.4 Composition vt it i e e e
5.0.5 Fairness 0 i i i e e e e e e e e e
8.0.6 Problem Specification. oo
9.0.7 Proof Techniques oo
Lecture 3: September 18
3.1 Liveness o v v v v v v e
3.2 ABPInvariants« o i i i e e e e e e e e e e e e e
3.3 Abstraction Mappingso e e
3.3.1 Whatarethey? e

1

-
— o

—
—o
—

O Gt QN = e el

13
13
13
15
16
19
21
21
26
26
26
28
28

332 Anexample

3.4 Introduction to Multivalued Mappings ’
Lecture 4: September 20

4.1 Possibilities Mapping

4.1.1 A Multivalued Mapping Proof

4.1.2 Livenessof ABP L .

4.2 Mutual Exclusion Using Shared Memory

421 Introduction

Lecture 5: September 25

5.1 - Dijkstra’s algorithm . . = e e e e e

5.2 Improved Mutual Exclusion Algorithms

5.2.1 Eisenberg-McGuire Mutual Exclusion Algorithm

5.2.2 Burns’ Mutual Exclusion Algorithm
Lecture 6: September 27

6.1 Lamport’s “Bakery” Mutual Exclusion Algorithm

6.1.1 Atomic and Safe Registers . . . e

6.1.2 Overview of Lamport’s Algorithm

- 6.1.3 Properties e e e e e

6.2 Peterson-Fischer algorithm e e e e e e

6.2.1 The 2-Process algorithm e e e

6.2.2 The n-Process algorithm L

Lecture 7: October 2

7.1 Peterson-Fischer n-Process Algorithm (Cont.)

7.1.1 Progress and no lockout e e e e e e e e e e

7.1.2 Complexity Analysis i it

7.1.3 Space Analysis

714 Time Analysis e

7.2 Mutual Exclusion Requires n read/write Variables

Lecture 8: October 4

8.1 Burns-Lynch’s read/write Lower Bound (Cont.)
8.2 Test-and-Set Algorithms P
8.2.1 Burns-Lynch’s test-and-set Lower Bound (Cont.)
8.2.2 An upper bound about test-and-set Algorithms

8.2.3 Another Lower Bound about test-and-set Algorithms

29
30

31
31
32
35
37
37

41
41
47
48

53
33
55
56
87
58
60
61

]

Lecture 9: October 12 85
9.1 Randomized Algorithms 86

9.2 Rabin’s Mutual Exclusion Algorithm 88
9.3 Appendix 102
Lecture 10: October 18 103
10.1 General Resource Allocation Problem 103
10.1.1 Problem Description 103
10.2 Dining Philosophers Problem 104
10.2.1 Problem Description 105
10.2.2 Shared Memory concepts 106
10.3 A simple approach that deadlocks 106
19.3.1 Properties of the algorithm. e 106
- 10.4 Dijkstra’s Solution 108
10.4.1 Properties of the algorithm. e e e e e e e e . 108
Lecture 11: October 18 _ 112
11.1 Symmetric algorithms: an impossibilityresult 112
11.2 Left-Right Algorithm (Burns) 113
- 11.2.1 Properties 114
11.3 Generalizing LR — Lynch’s method e e 115
11.3.1 Constructing a “good” total ordering 116 -
11.3.2 Timeanalysis 117 -
11.3.3 Open questions v i it 118
11.4 Rabin-Lehmann Algorithm 118
11.4.1 Correctness e e e [P 119
Lecture 12: October 30 1122
12.1 Leader Election Algorithms e e e e e e P 122
12.1.1 Le Lann-Chang-Roberts Leader Election Algorithm 123
12.1.2 Hirshberg-Sinclair’s Leader Election Algorithm 127
12.2 Peterson’s Leader Election Algorithm 129
12.2.1 An Impossibility Result, and a Lower Bound Result 132
Lecture 13: October 25 141
13.1 Concurrent Read/Write Registers 141
13.1.1 Register Types 141
13.2 Implementation Relationships for Registers 142
13.3 Register Constructions 143
13.3.1 N-Reader Registers from 1-Reader Registers 144

13.3.2 Wait-Free Registers J 146

13.3.3 K-ary Safe Registers from Binary Safe Registers 146

13.3.4 Binary Regular Register from Binary Safe Register 147

13.3.5 K-ary Regular Register from Binary Regular Register 149

Lecture 14: October 30 ‘ 152

14.1 Register Constructions: the End of the 1-writercase. 152

14.1.1 1-Reader K-ary Atomic Register frorn Regular Register - 152

14.2 Multi-writer Register oo oo e 154

14.3 Bloom’s 2-writer Construction e 155

14.3.1 Correctness v v v v i it e e e e e e 157

Lecture 15: November 1 160

15.1 Bloom’s 2-writer Construction - Continued 160
15.2 Vitanyi-Awerbuch’s n-writer Constructiono 161

15.3 Herlihy Impossibility Result 163

15.3.1 The Asynchronous Consensus Problem 164

15.3.2 Proof of Theorem 15.2 165

Lecture 16: November 6 _ 168

16.1 Atomic Snapshots e e e e e e e e e e e e e 168

16.1.1 Unbounded Single-Writer Algorithm e e e e e e 168

16.1.2 Bounded Single-Writer Algorithm e 171

16.2 Gallager-Humblet-Spira Minimum-Weight Spanning Tree Algorithm 173

16.2.1 A High-Level Description of the Algorithm 175

Lecture 17: November 8 ‘ 180

17.1 Gallager-Humblet-Spira Minimum-Weight Spanning Tree Algorithm, cont. . 180

17.1.1 A High-Level Description of the Algorithm, cont. 180

17.2 Mutual Exclusion in Distributed Networks PR 189

17.2.1 Modeling o 190

17.2.2 Le Lann 1977 o . o i i e e e e 191

17.23 Lamport 1978 e e e 193

17.2.4 Ricart & Agrawala 1981 195

17.2.5 Carvalho & Roucairol 1983 196

Lecture 18: November 13 197

18.1 Resource Allocation in Networks o L. 197

18.2 Lynch’s Approach v o v v v i it 198

18.3 Chandy-Misra dining philosophers 198

18.3.1 Correctness v v v i e e e e e e e e e e e e e e e e e e e 199

M

18.4 Chandy-Misra drinking philosophers
184.1 Example
18.4.2 Lynch version of Chandy-Misra solution
18.4.3 Drinking Philosophers Algorithm
18.4.4 Correctness . . . v v v v v v vt i

Lecture 19: November 15
19.1 Consensus in Asynchronous Systems
19.1.1 The Consensus Problem
19.1.2 Modeling the System
19.1.3 Impossibility Result

19.2 Randomized Consensus Algorithm
19.2.1 Ben-Or’s Randomized Algorithm
19.2.2 Improving Expected Time

- 19.2.3 Randomized Consensus in Asynchronous Networks
19.3 Dynamic Network Algorithms: Distributed Snapshots
19.3.1 Architecture of Global Snapshots

..........
.............

.....................

Lecture 20: November 20 .
20.1 Chandry-Lamport Global Snapshots, ...
20.1.1 The One Dollar Bank
20.1.2 Algorithm e
20.1.3 The Two Dollar Bank
20.1.4 Stable Property Detection e e
20.2 Datalink Protocol Impossibility Result
20.2.1 Impossibility Result. e e e

Lecture 21: November 29
21.1 Synchronous Algorithms,
21.2 Distributed consensus e e

21.2.2 Byzantine Agreement L

21.2.3 Algorithm for Byzantine Agreement

21.2.4 Non-Byzantine failures

...................

..........................

Lecture 22: December 4
22.1 Lower Bounds for Agreement
22.1.1 Number of Processes for Byzantine Agreement

22.1.2 Byzantine Agreement in General Graphs

22.1.3 Weak Byzantine Agreement

.............

................

.......................

22.1.4 Number of Rounds with Stopping Faults 246

Lecture 23: December 11 253
23.1 Multivalued vs. Binary Byzantine Agreement 253
23.1.1 Turpin & Coan’s Algorithm 253

93.1.2 COITECtNeSS . o v v v ot e e e e e e e e e e e e e e e e e 253

23.2 Time Dependent Algorithms 255
23.2.1 I/O AutomatonasaModel 256

23.2.2 Fitting Bounds into I/O automata Model 256

23.2.3 . Timed schedules and timed behaviors 258
Homework 1 . 259
Homework 2 260
Homework 3 _ _ : 261
Homework 4 . ' 262
Homework 5 - ‘ 263
Homework 6 | 264
Homework 7 ‘ - 265
Homework 8 : | 266
Homework 9 ‘ ' 267
- Homework 10 268

Bibliography 269

[

Preface

The MIT subject 6.852 Distributed Algorithms is a graduate level introduction to the theory
of distributed computing. Students taking the course are assumed to have a substantial
background in both mathematics and computer science. Course material is drawn from
many of the important research papers. An emphasis is placed on formal techniques for:
defining problems (correctness conditions), describing algorithms, and constructing correct-
ness proofs. Also, several important impossibility results are presented. As there is not time
in one semester to cover all the important papers in the area, the material varies from year
to year.

Two sets of references are included: The course syllabus, which appears before Lecture 1,
is a list of papers organized by topic. An alphabetized bibliography follows Lecture 23. To
assist readers in finding a particular topic, we have provided an alphabetic index in addition
to the table of contents.

~ This set of notes was written by students attending the course in the Fall Semester of
1990. Although we have tried to check the notes carefully, there are likely to be errors and
omissions, particularly with regard to the references. Readers finding errors in the notes
are encouraged to notify us by electronic mail (bug-6852Qtds.lcs.mit.edu) so that later
versions may be corrected.

L

Acknowledgments

This compilation of notes would not have been possible without the hard work of the
following students: Robert D. Blumofe, Anna Charny, Ken Chiang, Andrew Chou, Ken De-
canio, Rainer Gawlick, David Goldstone, Shen-wei Huang, Marc Leblanc, S. J. Lee, Philippe
Park, Boaz Patt, Roberto Segala, Jory Tsai, Suwei Wu, David Wald and Mary Ellen Zurko.

Very special thanks also are due to all the people that went in terra incognita in 1988
~ and produced the first set of lecture notes. We are in particular specially indebted to Ken
Goldman who was the the TA in 1988. We thank also all the students of 1988 who contributed
indirectly (and in some instances directly) to the compilation of these notes: Boaz Ben-Zvi,
Azer Bestavros, Chris Colby, Mike Eisenberg, Jeff Fried, Sanjay Ghemawat, John Keen,
- Magda Nour, Jeff Palmucci, Mike Parker, Sharon Perl, Steve Ponzio, Jon Riecke, Atul

Shrivastava, Rick Stille, Andrew Sutherland, Mark Tuttle, and George Varghese.
’ We thank Leslie Lamport and Baruch Awerbuch for their “guest” lectures.

Finally, we thank Anna Wiseman for her unfaltering energy and help throughout the

class and Joanne Talbot for her help in the final editing.

i1

1

Course Syllabus

1 Introduction

[1] L. Lamport and N. Lynch. Distributed Computing. = Chapter of Handbook on
Theoretical Computer Science. North-Holland. Also, appeared as Technical Memo
MIT/LCS/TM-384, Laboratory for Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, MA, February 1989.

2 Asynchronous Systems

2.2 Models and Proof Techniques

(1] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
CWI-Quarterly, 2(3), 1989.

[2] N. Lynch and M. Tuttle. 'Hierarchical_ correctness proofs for distributed algorithms. In
Proceedings of 6th ACM Symposium on Principles of Distributed Computation, pages 137-
151, August 1987. Expanded version available as Technical Report MIT/LCS/TR-
387, Laboratory for Computer Science, Massachusetts Institute Technology, Cambridge,
MA., April 1987.

[3] N.Lynch and M. Fischer. On describing the behavior and implementation of distributed -
systems. Theoretical Computer Science, 13:17-43, 1981.

[4] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1984.

[5] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6(4):319-340, 1976.

[6] L. Lamport. Specifying concurrent program modules. ACM Transactions on Progmm'—
ming Languages and Systems, 5(2):190-222, - April 1983.

[7] K. M. Chandy and J. Misra. Parallel program design: a foundation. Addison-Wesley,
1988.

[8] M. Staskauskas. The formal specification and design of a distributed electronic funds-
transfer system. JEEE Transactions on Computers, 37(12):515-528, December 1988.

[9] N. Lynch and E. Stark. A Proof of the Kahn Principle for Input/Output Automata.
Technical Memo MIT/LCS/TM-349, Massachusetts Institute Technology, January 1988.

il

2.2 Shared Memory Algorithms
2.2.1 Mutual Exclusion

[1] M. Raynal. Algorithms for Mutual Ezclusion. M.L.T. Press, 1986.

[2] E.W. Dijkstra. Solution of a problem in concurrent programming control. Communi-
cations of the ACM, 8(9):569, September 1965.

[3] Kenneth Goldman and Nancy Lynch. Modelling Shared State in a Shared Action Model.

Proceedings 5th Annual IEEE Symposium on Logic in Computer Science, pages 450-463,
June 1990. .

[4] D.E. Knuth. Additional comments on a problem in concurrent programming control.
Communications of the ACM, 9(5):321-322, 1966.

[5] J.G. DeBruijn. Additional comments on a problem in concurrent programming control.

Communications of the ACM, 10(3):137-138, 1967.

[6] M. Eisenberg and M. McGuire. Further comments on Dijkstra’s concurrent program-
ming control. Communications of the ACM, 15(11):999, 1972.

[7] James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual exclublon
Manuscript 1990.

[8] L. Lamport. A new solution of Dijkstra’s concurrent programming problem Commu-
nications of the ACM, 17(8):453-455, 1974.

[9] L. Lamport. The mutual exclusion problem. Journal of the ACM, 33(2):313-326,
327-348, 1986.

[10] G. Peterson and M. Fischer. Economical solutions for the critical section problem in a
distributed system. In Proceedings of 9th ACM Symposium on Theory of Compuling,
pages 91-97, May 1977.

[11] J. Burns, M. Fischer, P. Jackson, N. Lynch, and G. Peterson. Data requirements for

implementation of n-process mutual exclusion using a single shared variable. Journal
of the ACM, 29(1):183-205, 1982.

[12.] M. Fischer, N. Lynch, J. Burns, and A. Borodin. Resource allocation with immunity

to limited process failure. In Proceedings of 20th IEEE Symosium on Foundations of
Computer Science, pages 234-254, October 1985.

v

L]

(13] M. Fischer, N. Lynch, J. Burns, and A. Borodin. Distributed FIFO Allocation of Iden-
tical Resources Using Small Shared Space. Tech Memo MIT/LCS/TM-290, Laboratory
for Computer Science, Massachusetts Institute Technology, Cambridge, MA 02139, Oc-
tober, 1985. Also, ACM Transactions on Programming Languages and Systems, Vol
11, No. 1, January 1989, pages 90-114.

[14] D. Dolev, E. Gafni, and N. Shavit. Toward a non-atomic era: lLexclusion as a test case.
In Proceedings of 20th ACM Symposium on Theory of Computing, pages 78-92, May
1988.

[15] M.O. Rabin. N-process mutual exclusion with bounded waiting by 4 log N- shared
variable. Journal of Computation and Systems Sciences, 25:66-75, 1982.

2.2.2 Dining Philosophers

[1] E.W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica, 115-
138, 1971. '

[2] N. Lynch. Upper bounds for static resource allocation in a distributed system. Journal
Of Computer And Systems Sciences, 23(2):254-278, October 1981.

[3] M. Rabin and D. Lehmann. On the advantages of free choice: a symmetric and fully
distributed solution to the dining philosophers problem. In Proceedings of 8th ACM
Symposium on Principles of Programming Languages, pages 133-138, 1981.

2.2.3 Atomic Registers

(1] G.L. Peterson. Concurrent reading while writing. ACM Transactions on Programming
Languages and Systems, 5(1):46-55, 1983.

2} L. Lamport. On interprocess communication. Distributed Computin , 1(1):77-85,
puiing
86-101, 1986. Digital Systems Research TM-8.

[3] B. Bloom. Constructing two-writer atomic registers. In Proceedings of 6th ACM
Symposium on Principles of Distributed Computing, pages 249-259, Vancouver, British
Columbia, Canada, August 1987. Also, to appear in special issue IEEE Transactions
On Computers.

[4] P. Vitanyi and B. Awerbuch. Atomic shared register access by asynchronous hardware.
In Proceedings 27th Annual IEEE Symposium on Theory of Computing, pages 233-
243, Toronto, Ontario, Canada, May 1986. Also, MIT/LCS/TM-314, Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, MA., 1986. Cor-
rigenda in Proceedings of 28th Annual IEEE Symposium on Theory of Computing, page
487, 1987.

[5] Russel Schaffer and Bard Bloom. On the Correctness of Atomic Multi-writer Regis-
ters. Technical Memo MIT/LCS/TM-364, MIT Laboratory for Computer Sc1ence, '
June 1988.

[6] M. Loui and H. Abu-Amara. - Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research, 4:163-183, 1987.

[7] M. P. Herlihy. Impossibility and universality results for wait-free synchronization.
In Proceedings of the 7th ACM Symposium on Principles of Distributed Computing,
pages 276-290, August 1988.

[8] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots
of shared memory. In Proceedings of the 9** Annual ACM Symposium on Princi-
ples of Distributed Computing, Quebec, Canada, August 1990. Also, Technical Memo
MIT/LCS/TM-429, Laboratory for Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, MA, May 1990. Submitted to Journal of the ACM.

[9] Soma Chaudhuri and Jennifer Welch. Bounds on the Costs of Register Implementations.
Technical Report TR90-025, University of North Carolina at Chapel Hill, June 1990.

[10] H. Attiya, N. Lynch, and N. Shavit. Are wait-free algorithms fast? To appear in 1990
. Symposium on the Foundation of Computer Science.

[11] Karl Abrahamson. On Achieving Consensus Using a Shared Memory. In Proceedings of
the T** Annual ACM Symposium on Principles of Distributed Computmg, pages 291-302,
Toronto, Canada, August 1988.

2.3 Aynchronous Message Passing Algorithms
2.3.1 Computing in Static Graphs

Computing in a Ring

[1] G. LeLann. Distributed systems, towards a formal approach. In IFIP Congress,
pages 155-160, Toronto, 1977.

[2] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding

in circular configurations of processes. Communications of the ACM, 22:281-283, May
1979.

[3] D. Hirschberg and J. Sinclair. Decentralized extrema-finding in circular configuarations
of processes. Communications of the ACM, 23:627-628, November 1980.

vi

]

[4] G.L. Peterson. An O(nlogn) unidirectional distributed algorithm for the circular

extrema problem. ACM Transactions on Programming Languages and Systems, 4:758-
762, October 1982,

[5] D. Dolev, M. Klawe, and M. Rodeh. An O(nlogn) unidirectional distributed algorithm
for extrema finding in a circle. Research Report RJ3185, IBM, July 1981. J. Algerithms,
3:245-260, 1982.

[6] J. Burns. A formal model for message passing systems. Technical Report TR-91,
Computer Science Dept., Indiana University, May 1980.

[7] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilistic Solitude
Detection I: Ring Size Known Approzimately. Technical Report 87-8, University of
British Columbia, Vancouver, B.C., Canada, March 1987. '

[8] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilistic Solitude
Detection II: Ring Size Known Ezactly. Technical Report 87-11, University of British
Columbia, Vancouver, B.C., Canada, April 1987. '

Computing in Complete Graphs

1] E. Korach, S. Moran, and S. Zaks. Tight lower and upper bounds for some distributed
algorithms for a complete network of processors. In In Proceedings of 3rd ACM Sym- .
posium on Principles of Distributed Computing, pages 199-207, 1984. ‘

[2] Y. Afek and E. Gafni. Time and message bounds for election in synchronous and
asynchronous complete networks. In Proceedings of jth ACM Symposium on Principles
of Distributed Computing, pages 186-195, Minaki, Ontario, August 1985.

Computing in Arbitrary Graphs

[1] D. Angluin. Local and global properties in networks of processors. In Proceedings of
12th ACM Symposium on Theory of Computing, pages 82-93, 1980.

[2] R. Gallager, P. Humblet, and P. Spira. A distributed algorithm for minimum-weight
spanning trees. ACM Transactions on Programming Languages and Systems, 5(1):66- -
77, January 1983.

[3] P. Humblet. A distributed algorithm for minimum weight directed spanning trees.
IEEE Transactions on Computers, COM-31(6):756-762, 1983. MIT-LIDS-P-1149.

2.3.2 Logical Time

vii

L

[1] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 27(7):558-565, 1978.

2.3.3 Resource Allocation

[1] G. Ricart and A. Agrawala. An optimal algorithm for mutual exclusion in computer
networks. Communications of the ACM, 24(1):9-17, 1981. Corrigendum in Communi-
cations of the ACM, 24(9). :

[2] O. Carvalho and G. Roucairol. Assertion, decomposition and partial correctness of
distributed control algorithms. Distributed Computing Systems, 67-93, 1983.

[3] O. Carvalho and G. Roucairol. On mutual exclusion in computer networks. Commu-
nications of the ACM, 26(2):146-148, 1983.

[4] K. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions on
Programming Languages and Systems, 6(4):632-646, October 1984.

2.3.4 Communication

Datalink Protocols

[1] A. Aho, J. Ullman, A. Wyner, and M. Yannakakis. Bounds on the size and transmis-
sion rate of communication protocols. Computers and Mathematics with Applwatwns,
8(3):205-214, 1982.

[2] Joseph Y. Halpern and Lenore D. Zuck. A little knowledge goes a long way: simple
knowledge-based derivations and correctness proofs for a family of protocols. In Pro-
ceedings of the 6" Annual ACM Symposium on Principles of Distributed Computing,
pages 269-280, August 1987.

[3] N. Lynch, Y. Mansour, and A. Fekete. The data link layer: two impossibility re-
sults. In Proceedings of 7th ACM Symposium on Principles of Distributed Computation,
pages 149-170, Toronto, Canada, August 1988. Also, Technical Memo MIT/LCS/TM-
355, May 1988.

[4] A. Fekete, N. Lynch, Y. Mansour, and J Spinelli. The Data Link Layer: The Impos-
sibility of Implementation in Face of Crashes. Technical Memo MIT/LCS/TM-355.b,
Massachusetts Instifute of Technology, Laboratory for Computer Science, August 1989.
Submitted for publication.

[5] Da-Wei Wang and Lenore Zuck. Tight bounds for the sequence transmission prob-
lem. In Proceedings of the 8" Annual ACM Symposium on Principles of Distributed
Computing, pages 73-83, August 1989.

viii

L}

(6] Ewan Tempero and Richard Ladner. Tight bounds for weakly bounded protocols. In
Proceedings of the 9** Annual ACM Symposium on Principles of Distributed Computing,
pages 205-212, Quebec, Canada, August 1990.

[7] A. Fekete and N. Lynch. The need for headers: an impossibility result for communica-
tion over unreliable channels. Also, Technical Memo MIT/LCS/TM-428, Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, MA, May,
1990. Submitted for publication. To appear in CONCUR. 1990.

[8] Yehuda Afek, Hagit Attiya, Alan Fekete, Nancy Lynch, Yishay Mansour, Da-Wei Wang,
and Lenore Zuck. Reliable Communication over Unreliable Channels. Manuscript.

End-to-End Protocols

[1] Yehuda Afek, Eli Gafni, and Adi Rosen. Slide - a technique for communication in
unreliable networks (extended abstract). 1990. '

[2] Yehuda Afek and Eli Gafni. Bootstrap network resynchronization: an effecient tech-
nique for end-to end communication. 1990. '

Broadcast

[1] Baruch Awerbuch, Oded Goldreich, David Peleg, and Ronen Vainish. A tradeoff be-
tween information and communication in broadcast protocols. 1990. To appear in

JACM. '
2.3.5 Detection of Stable Properties

Termination

[1] E. Dijkstra and C. Scholten. Termination detection for diffusing computations. Infor-
mation Processing Letters, 11(1), August 1980.

[2] K. M. Chdndy and J. Misra. On proofs of distributed algorithms, with application to
the problem of termination detection. Manuscript.

Global Snapshots

[1] K. Chandy and L. Lamport. Distributed snapshots: determining global states of dis-
tributed systems. ACM Transactions on Computer Systems, 3(1):63-75, February 1985.

[2] M. Fischer, N. Griffeth, and N. Lynch. Global states of a distributed system. IEEE
Transactions on Software Engineering, SE-8(3):198-202, May 1982. Also, in Proceed-
tngs of IEEE Symposium on Reliability in Distributed Software and Database Systems,
Pittsburgh, PA, July 1981, 33-38.

1X

Deadlock

[1] D. Menasce and R. Muntz. Locking and deadlock detection in distributed databases.
IEEF Transactions on Software Engineering, SE-5(3):195-202, May 1979. :

[2] V. Gligor and S. Shattuck. On deadlock detection in distributed systefns. IEEE
Transactions on Software Engineering, SE-6(5):435-439, September 1980.

[3] R. Obermarck. Distributed deadlock detection algorithm. ACM Transactions on
Database Systems, 7(2):187-208, June 1982.

[4] G. Ho and C. Ramamoorthy. Protocols for deadlock detection in distributed database
systems. IEEE Transactions on Software Engineering, SE-8(6):554-557, November
1982.

[5] K. Chandy, J. Misra, and L. Haas. Distributed deadlock detection. ACM Transactions
on Programming Languages and Systems, 1(2):144-156, May 1983.

[6] G. Bracha and S. Toueg. A distributed algorithm for generalized deadlock detection.
Distributed Computing, 2:127-138, 1987.

[7] D. Mitchell and M. Merritt. A distributed algorithm for deadlock detection and resolu-
tion. In Proceedings of 3rd ACM Symposium on Principles of Distributed Computing,
pages 282-284, Vancouver, B.C., Canada, August 1984.

2.3.6 Consensus

[1] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one family faulty process. Journal of the ACM, 32(2):374-382, April 1985.

[2] S. Moran and Y. Wolfstahl. Extended impossibility results for asynchronous complete
networks. Information Processing Letters, 26:145-151, 1987.

[3] M. Bridgeland and R. W'étro. Fault tolerant decision making in totally asynchronous
distributed systems. In Proceedings of 6th ACM Symposium on Principles of Distributed
Computing, pages 52-63, August 1987.

[4] O. Biran, S. Moran, and S. Zaks. A combinatorial characterization of the distributed
tasks which are solvable in the presence of one faulty processor. In Proceedings of 7th
ACM Symposium on Principles of Distributed Computing, pages 263-275, August 1988.

[5] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Repaming in an asyn-
_chronous environment. J. ACM, 37(3), July 1990.

X

L]

[6] M. Ben-Or. Another advantage of free choice: completely asynchronous agreement pro-
tocols. In Proceedings of 2nd ACM Symposium on Principles of Distributed Computing,
pages 27-30, August 1983.

[7] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for
distributed consensus. Journal of the ACM, 34(1):77-97, 1987.

[8] J.L. Welch. Simulating synchronous processors. Information and Computation,
74(2):159-171, August 1987.

2.3.7 Fault-Tolerance

[1] Gil Neiger and Sam Toueg. Automatically Increasing the Fault-tolerance for Distributed
Algorithms. Technical Report TR90-1081, Cornell University, January 1990.

2.3.8 Self-Stabilization

[1) Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cation of the ACM, 17(11):643-644, November 1974.

[2] James Burns and Jan Pachl. Uniform self-stabilizing rings. Journal of ACM, 11(2):330- |
344, April 1989. ' : '

[3] Shmuel Katz and Kenneth J. Perry. Self-stabilizing extensions for message-passing
systems. In Proceedings of the 9" Annual ACM Symposium on Principles of Distributed
Computing, pages 91-101, Quebec, Canada, August 1990.

[4] James Burns, Mohamed Gouda, and Raymond Miller. Stdbz'lz'zation and Pseudo-
stabilization. Technical report TR-90-13, University of Texas at Austin, May 1990.

[5] Mohamed Gouda and Nicholas Multari. Stabilizing Communication Protocols. Techni-
cal report ‘TR-90-20, University of Texas at Austin, June 1990.
3 Synchronous Systems
3.1 Synchronous Message-Passing Algorithms

3.1.1 Computing in a Ring

[1] G: Frederickson and N. Lynch. Electing a leader in a synchronous ring. Journal of the
ACM, 34(1):98-115, January 1987. Also, MIT/LCS/TM-277, July 1985.

xi

ul

[2] H. Attiya, M. Snir, and M. Warmuth. Computing in an anonymous ring. Journal of
the ACM, 35(4):845-876, October 1988.

3.1.2 Distributed Consensus

Basic Results

[1] J. Gray. Notes on Data Base Operating Systems. Technical Report IBM Report
RJ2183(30001), IBM, February 1978. (Also in Operating Systems: An Advanced
Course, Springer-Verlag Lecture Notes in Computer Science #60.).

[2] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382-401, July 1982.

[3] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228-234, April 1980. '

[4] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and Raymond Strong. Shifting geafs:
changing algorithms on the fly to expedite Byzantine agreement. June 27 1990.

[5] D. Dolev and H. Strong. Authenticated algorithms for Byzantine agreement. SIAM J.
- Computing, 12(4):656-666, November 1983.

[6] T. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distributed Computing, 2:80-94, 1987.

[7] R. Turpin and B. Coan. Extending binary Byzantine agreement to multivalued Byzan-
tine agreement. Information Processing Letters, 18(2):73-76, 1984. Also, Technical
Report MIT/LCS/TR-315, Laboratory for Computer Science, Massachusetts Institute
Technology, Cambridge, MA, April 1984. Also, revised in B. Coan, Achieving consensus
in fault-tolerant distributed computing systems, Ph.D. thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology,1987.

Number of Processes
[1] D. Dolev. The Byzantine generals strike again. Journal of Algorithms, 3:14-30, 1982.

[2] M. Fischer, N. Lynch, and M. Merritt. Easy impossibility proofs for distributed con-
sensus problems. Distributed Computing, 1:26-39, 1986.

[3] L. Lamport. The weak Byzantine generals problem. Journal of the ACM, 30(3):669-
676, 1983.

x1i

]

(4] D. Dolev, J. Halpern, and R. Strong. On the possiblity and impossibility of achieving
clock synchronization. In Proceedings of 16th Symposium on Theory of Computing,
pages 504-510, May 1984. Journal of Computer and System Sciences, 32:230-250,
1986.

Time

[1] M. Fischer and N. Lynch. A lower bound for the time to assure interactive consistency.
Information Processing Letters, 14(4):183-186, June 1982.

[2] C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine environ-
ment I: crash failures. In Proceedings of Conference on Theoretical Aspects of Reasoning
about Knowledge, 1986. Also, to appear in Information and Computation.

[3] Y. Moses and M. Tuttle. Programming simultaneous actions using common knowledge.
Algorithmica, 3:249-259, 1988.

Communication

[1] B.A. Coan. A communication-efficient canonical from for fault-tolerant distributed
protocols. In Proceedings of the 5th ACM Symposium on Principles of Distributed
Computing, pages 63-72, August 1986. Also, revised in B. Coan, Achieving consensus
in fault-tolerant distributed computing systems, Ph.D. thesis, Department of Electrical .
Engineering and Computer Science, Massachusetts Institute of Technology, 1987.

[2] Y. Moses and O. Waarts. Coordinated traversal: (¢ + 1)-round Byzantine agreement
in polynomial time. In Proceedings of 29th Symposium on Foundations of Computer
Science, pages 246-255, October 1988. '

[3] Piotr Berman and Juan Garay. Cloture voting: n/4-resilient distributed consensus in
t+1 rounds. 1990. '

Randomized Algorithms

(1] B. Chor and B. Coan. A simple and efficient randomized Byzantine agreement algo-
rithm. In IEEE Transactions on Software Engineering, pages 531-539, 1985. Also,.
revised in B. Coan, Achieving consensus in fault-tolerant distributed computing sys-
tems, Ph.D. thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, 1987.

[2] M.O. Rabin. Randomized Byzantine generals. In Proceedings of 24th Symposium on
Foundations of Computer Science, pages 403-409, November 1983.

xiii

[3] I. Saias and N. Lynch. An analysis of Rabin’s randomized mutual exclusion algorithm.
MIT/LCS/TM-462, December 1991.

[4] G. Bracha. An O(logn) expected rounds randomized Byzantine generals algorithm.
In Proceedings of 17th Symposium on Theory of Computing, pages 316-326, May 1935.
Journal of ACM, 34(4):910-920,1987.

[5] P. Feldman. Optimal Byzantine agreement. Ph.D. thesis, Department of Mathematics,
Massachusetts Institute of Technology, 1988. '

[6] Benny Chor and Cynthia Dwork. Randomization in Byzantine agreement. Advances
in Computing Research, 5:443-497, 1989.

Approximate Agreement

[1] D. Dolev, N. Lynch, S. Pinter, E. Stark, and W. Weihl. Reaching approximate agree- |
ment in the presence of faults.” Journal of the ACM, 33(3):449-516, 1986.

Firing Squad

[1] J. Burns and N. Lynch. The Byzantine Firing Squad Problem. Technical Memo MIT/LCS/TM- -
275, Laboratory for Computer Science,Massachusetts Institute Technology, April 1985.

~ [2] B. Coan, D. Dolev, C. Dwork, and L Stockmeyer. The distributed firing squad problem.
In Proceedings of the 17th ACM Symposium on Theory of Computing, pages 335-345,
May 1985. ' ' :

Commit

[1] C. Dwork and D. Skeen. The inherent cost of nonblocking commitment. In Proceedings
of the 2nd Annual ACM Symposium on Principles of Distributed Computing, pages 1-11,
August 1983.

[2] B. Coan and J. Lundelius. Transaction commit in a realistic fault model. In Proceedings
of 5th Annual ACM Symposium on Principles of Distributed Computing, pages 40-51,
Calgary, Alberta, Canada, August 1986. [Nancy. Synchronous]

The Knowledge Approach

[1} J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed envi-
ronment. In Proceedings of 3rd ACM Symposium on Principles of Distributed Comput-
ing, pages 50-61, 1984. Revised as IBM Research Report, IBM-RJ-4421.

X1v

i

[2] C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine environ-
ment: crash failures. Information and Computation, 1988. To appear.

[3] K. Chandy and J. Misra. How processes learn. Distributed Computing, 1(1):40-52,
1986.

3.2 Synchronous vs. Asynchronous Systems

[1] E. Arjomandi, M. Fischer, and N. Lynch. Efficiency of synchronous versus asynchronous
distributed systems. Journal of the ACM, 30(3):449-456, July 1983.

[2] Baruch Awerbuch. Complexity of network synchronization. Journal of ACM, 32(4):804-
823, October 1985.

[3] B. Awerbuch. Reducing complexities of distributed maximum flow and breadth-first
search algorithms by means of network synchronization. Networks, 15:425-437, 1985.

[4] B. Awerbuch and M. Sipser. Dynamic networks are as fast as static networks. In
Proceedings of the 29th IEEE Symposium on Foundations of Computer Science, IEEE,
October 1988. '

4 Timing-Based Systems
4.1 Models and Proof Techniques

[1] Michael Merritt, Francesmary Modugno, and Mark Tuttle. Time constraﬁned automata.
July 23 1990.

[2] Nancy Lynch and Hagit Attiya. Using mappings to prove timing properties. In Proceed-
ings of the 9t Annual ACM Symposium on Principles of Distributed Computing, Que-
bec, Canada, August 1990. Expanded version: Technical Memo MIT/LCS/TM-412.b,
Laboratory for Computer Science, Massachusetts Institute of Technology, December
1989. Submitted for publication. '

4.2 Algorithms and Bounds

4.2.1 Synchronization
(1] L. Lamport and P. Melliar-Smith. Byzantine clock synchronization. In Proceedings
of 3rd ACM Symposium on Principles of Distributed Computing, pages 68-74, August
1984.

Xv

[2] J. Lundelius and N. Lynch. A new fault-tolerant algorithm for clock synchronization.
Information and Computation, 77:1-36, 1988.

[3] J. Lundelius and N. Lynch. An upper and lower bound for clock synchronization.
Information and Control, 62(2-3):190-204, August/September 1984.

[4] J. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-tolerant clock synchronization.

In Proceedings of the 3rd ACM Symposium on Principles of Distributed Computing,
pages 89-102, August 1984.

[5] S. Mahaney and F. Schneider. Inexact agreement: accuracy, precision, and grace-
ful degradation. In Proceedings of 4th ACM Symposium on Principles of Distributed
Computing, pages 237-249, August 1985.

[6] Hagit Attiya and Marios Mavronicolas Efficiency of Asynchronous vs. Semi-Synchronous

Network submitted to the 28th annual Allerton Conference on Communication, Control
and Computing, 1990 '

| 4.2.2 Resource Allocation

[1] H. Attiya and N. Lynch Time Bounds for Real-Time Process Control in the Presence of
Timing Uncertainty In Proceedings of the 10th IEEE Real-Time Systems Symposium,
pages 268-284, December 1989.

4.2.3 Communication
[1] Amir Herzberg and Shay Kutten. Fast isolation of arbitrary forwarding-faults. 1989.
4.2.4 Consensus |

[1] C.Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM, 35(2):288-323, 1988.

[2] Leslie Lamport. The Part-Time Parliament. Technical Memo 49, Digital Systems
Research Center, September 1 1989. '

[3] H. Attiya, C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Bounds on the time to reach
agreement in the presence of timing uncertainty.

[4] Ray Strong, Danny Dolev, and Flaviu Cristian. New latency bounds for atomic broad-
cast. April 1990. '

5 Concurrency Control

xvi

L]

[1] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1986.

[2] N.Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic transactions. Book in progress.

xvil

1l

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 1: September 11
Lecturer: Nancy A. Lynch Seribe: David Wald

1.1 Introduction to the Course

'1.1.1 What are Distributed Algorithms?

The heading of Distributed Algorithms includes algorithms for many different models of
concurrency. The possible characteristics of these models include

e Shared Memory;

o Message Passing;

e Synchronous, Asynchronous and Partially Synchronous processing;

e Dataflow; and

¢ Databases
among others. One type of algorithm that is specifically excluded from this course is the
sort of tightly-coupled parallelism in which all the processes are programmed together to
solve a single problem, with the processes generally working over a tight, reliable network;
this sort of model is covered in depth in Charles Leiserson and Tom Leighton’s courses
1 6.848/18.435J and 6.849/18.436J. In contrast, the loosely-coupled parallelism covered in
this class is characterized by independence of activity, including

e independent inputs and outputs at- multiple locations;

¢ several processes executing at once under independent control;

e independent creation and termination of processes;

® occurrence of failures; and

timing assumptions.

2 Lecture 1: September 11

Above all, the hallmark of these algorithms is dealing with uncertainty.

These algorithms are often very complex. Even when the actual program code is short,
the complications of distributed execution can make analysis extremely difficult. Rather than
attempting to describe everything about the behavior of an algorithm, one basic method we
will use is to attempt to prove certain global assertions about the algorithms execution.

Among the complications an algorithm might have to deal with are

¢ synchronization;

e the many possible interleavings of internal actions;

e inherent nondeterminism;

e action at multiple sites;

o order of interactibns with the surrounding environment;

o failures; |

e timing, including constraints on the duration of events; and
e continued operation (e.g., operating systems).

We will need formal models if we want to precisely describe problems or algorithms to solve
problems, and even more if we want to prove the correctness, complexity or impossibility
of solutions to problems. Clearly any model we use must be able to account for the above
complications. Unfortunately, there’s no single accepted model in the literature of distributed
algorithms, which may be why there’s no textbook: for the field. The model we’ll be using
in the course is that of I/O Automata.

1.1.2 Structure of the Course

The following outline closely parallels the outline of the course bibliography (Handout 2).
In general, the course material is divided according to timing assumptions. The three basic
categories covered are:

o Asynchronous: separate components take steps in arbitrary order.
e Synchronous: components take steps simultaneously.
o Partially Synchronous (timing-based): in between, with some restrictions.

Within each category we’ll consider several different problem domains.

2. Asynchronous Systems

]

Introduction to the Course 3

2.1.

2.2,

Models and Proof Techniques

We'll begin with two lectures introducing I/O automata as a model for asyn-
chronous systems, and showing how the model can be used to describe systems,
specify properties of systems, and construct correctness proofs. The techniques
used for the proofs include invariant assertions, mappings, and liveness and safety
properties. We’ll discuss a couple of typical examples (leader election and the Al-
ternating Bit Protocol).

We’ll then move on to asynchronous algorithms, dividing these into Shared Mem-
ory and Message Passing algorithms. Both of these styles can be modeled using
I/O automata.

Shared Memory

The earliest work' in this field arose from work on multiprocessing operating sys-
tems for uniprocessors. While these had only simulated parallelism, the concept
of a process was found to be useful in programming. Research continues on shared
memory algorithms, thanks to newer machines which, while truly parallel, con-
tinue to use a shared memory space available to all processors. -

2.2.1. Mutual Exclusion

This very basic problem concerns the control of access to a single resource.
We'll discuss the major algorithms, starting with the basic algorithm of Dijk- |
stra. This simple problem will introduce many of the ideas mentioned above,
including progress, fairness, fault-tolerance, randomization; and analysis of
upper and lower bounds on time and memory.

2.2.2. Dining Philosophers

We’ll move on to this more general resource allocation problem.

2.2.3. Atomic Registers

2.3.

This topic deals with implementing shared memory while making weaker
assumptions about the actual primitives we have available. One characteristic
of these implementations is that-they ‘can be wait-free, never requiring one
process to wait for another in order to synchronize.

Message Passing

Message Passing algorithms operate over a network. They can be modeled as
graphs with processes at the nodes, and communication taking place by means of
messages sent over the edges. This model is more loosely-coupled than the shared
memory model, and thus allows both more independence and more uncertainty.

2.3.1. Computing in Static Graphs

Assume a fixed graph with fixed inputs and no failures, and compute some-
thing over this network.

2.3.2. Timestamps

2.3.3.

2.3.4.

2.3.5.

2.3.6.

2.3.7.

il

Lecture 1: September 11

Resource Allocation

This includes the Mutual Exclusion and Dining Philosophers problems.
Communication ‘

Baruch Awerbuch’s course 6.855/18.438J covers this in great detail, so we’ll
just touch on a few basic and interesting results, including datalink, end-to-
end and broadcast protocols.

Detection of Stable Properties

Designing one algorithm to monitor certain properties of another, including
checking for termination or deadlock, or taking a global snapshot of the current
machine state.

Consensus

Getting processes to agree. This is easy in the absence of failures, but when
we add failures we get some of our first impossibility proofs.
Self-Stabilization ,

Making a protocol that can recover from an arbitrary state. -

3. Synchronous Systems

This is a simpler model, in which actions take place in a neat, round-by-round fash- -
jon. It might be a higher-level view, describing a system implemented on top of an
~asynchronous system. Note that this is not the same as a Parallel Random Access Ma-
chine (PRAM) model, since our synchronous systems usually communicate by message
passing rather than shared memory, and can include the possibility of failures.

3.1. Typical Problems

3.1.1.

3.1.2.

Computing Functions on a Ring

Leader election and other problems.

Consensus v

This is much easier than on asynchronous systems, and is often solvable
(though not necessarily easy) in the presence of failures. The failures that
we can deal with include processes stopping, and Byzantine failure, in which
processes can do arbitrary, possibly malicious, communication. (The lat-
ter problem is closely related to material covered in Silvio Micali’s courses
6.875/18.425] and 6.876/18.426].)

We'll look at several results in this area, involving different kinds of resource
restrictions.

3.2. Synchronous vs. Asynchronous Systems

How are the two models related, in terms of the problems that can be solved
on each? In particular, we’ll compare a result by Awerbuch, showing that a
synchronous systems can be simulated efficiently by asynchronous systems, with

m

Asynchronous Systems: Models and Proof Techniques 5

an apparently conflicting result by Arjomandi, Fischer and Lynch and we’ll discuss
the differences in the models involved.

4. Timing-Based Systems

These systems fall between synchronous and asynchronous systems, allowing bounds
to be specified for the time taken by process steps, message delivery, and possibly
clocks, if we incorporate these into our models. We’ll again cover problems including
synchronization, resource allocation, communication, and consensus.

5. Concurrency Control

This will receive little or no time in the course, in order to make time for timing-based
systems. However, we may cover it to some extent, if there is sufficient interest.

1.1.3 Summary

In general, the course is intended to provide

o familiarity with many of the most important distributed algorithms and impossibility
proofs; : '

¢ familiarity with some of the models and proof techniques;
. éppreciation for the characteristic difficulties of designing such algorithms; and
e perhaps inspiration toward further work. There’s a lot to be done.

- So, let’s begin. ..

1.2 Asynchronous Systems: Models and Proof Tech-
niques

Distributed protocols can easily get complicated, even when there’s very little code involved,
and it’s very easy (and fairly common) to make mistakes when reasoning about them. For
this reason, it’s useful to have a formal model to reason with. Many models have been
proposed (about one for each researcher), several of which are listed in the bibliography. In
this course we’ll be using I/0 Automata.

il

6 ’ | Lecture 1: September 11

tr tr
» send-pkt (m,p) 1 rec—-pkt (m,b)
send-msg(nf)) l_channet (/\ rec-msg(m) _
A

WA

rec-pkt n (b) send-pkt rt(b)

Figure 1.1: Network for the Alternating Bit Protocol

1.2.1 I/O Automata

I/0 automata are similar to the automata in automata theory, being defined set-theoretically
in terms of states, actions and transitions. The model has no concrete syntax, and thus
differs from many other models, like Unity, CSP, and temporal logic, which are defined in
terms of a basic syntax and syntactic transformation rules. This syntax-independence allows
I/0 automata to be used to describe algorithms in many different languages, as long as there
is a way to extract the definitions of the automata from the program code. In general, this
can make correctness arguments much simpler.

A full definition of I/O automata is given in Handout 4. We will go into more detail in
. the next lecture, but we’ll first look at an example of a simple distributed algorithm, the
Alternating Bit Protocol. (The following is essentially the same as Handout 5).

1.2.2 The Alternating Bit Protocol

Say we have two automata, A’ and A", and two channels, channel'™ and channel™, between
them (see Figure 1.1). Further assume that the channels are FIFO (first in, first out), but
unreliable. That is, messages that are sent may or may not arrive, but any two messages
that do arrive will arrive in the same order in which they were sent. The problem is to design
an algorithm so that all messages sent by A* will be reliably received by A".

" The Alternating Bit Protocol is designed to give reliable data link level message delivery,
for a given message alphabet M. The input actions are send_msg(m), m € M, and the
output actions are receive_msg(m), m € M. That is, the interface of the protocol to the
outside world is:

Inputs:
send_-msg(m),m € M
Outputs:
recetve_msg(m),m € M

Asynchronous Systems: Models and Proof Techniques : 7

Architecture

The architecture for an implementation consists of a transmitter automaton A', a receiver
automaton A", and two unreliable FIFO physical channels, channel’” and channel™. The
channel channel® has input actions send_pkt'"(m, b) and output actions receive_pkt'"(m,d),
where m € M and b is a Boolean. The channel channel™ has input actions send_pkt™(b)
and output actions receive_pkt™(b), where b is a Boolean. The system is modeled by the

composition of these automata, with all actions except send_msg(m) and receive.msg(m)
hidden.

Channels

The channels are fairly ordinary FIFO queues, except that the effect of a send_pkt'™ or
send_pkt™ action is to put any finite number (possibly zero) copies of the data packet at the
end of the queue. The effect of a receive pkt'” or receive_pkt™, however, is always to remove
exactly one copy. Moreover, if infinitely many “packets” are sent, then infinitely many
are received. This can be described as the behavior of an I/Q automaton (see Figures 1.2
and 1.3).

The Algorithm

The algorithm itself is fairly simple. In essence, A* will send a packet, along with an identi-
fying bit, and continue sending that packet with its bit until it receives that bit back from
A", whereupon it will begin sending the next packet with a different bit. A", in turn, will
remember the bit of the last packet in received, and continue sending that bit until it receives
a packet with a different identifying bit, which it can consider to be a new packet. Thus,
both A® and A" keep sending their last message until they receive confirmation that their
message has been received.

The Description

The automata described in Figures 1.2 and 1.3 are presented in several parts, each describing
a different aspect of an automaton. The interface lists the input and output actions of an
automaton that are “visible” to the external system. The state contains the internal variables
that, taken together, can be considered to be the state of the automaton. The steps section
gives a more detailed description of the behavior of the actions, including any preconditions
and internal effects of each of them. Any step is considered able to act at any time, provided
its preconditions are satisfied. The partitions divide the output actions into sets, each of
which must be given a fair chance to execute (for some definition of “fair,” to be given later).
This gives a way of insuring that no one action is executed constantly, locking out all others.

ul

Interface:

Inputs:
send_msg(m),m e M
receive_pkt™(b), b a Boolean
Outputs:
send_pkt'"(m,b),m € M,b a Boolean

The state consists of the following components:
buffer, a finite queue of elements of M, initially empty, and
flag, a Boolean, initially 1.

The steps are:
send_msg(m),m € M
Effect:
add m to buffer.

send_pkt*"(m,b),m € M, b a Boolean
Precondition:
m is first on buffer.
b = flag
Effect:
None.

recetve_pkt™(b), b a Boolean
Effect:
if b = flag then
[remove first element (if any) from buffer;
flag := flag + 1 mod 2]

Partition:
all send_pkt'" actions are in one class.

Figure 1.2: ABP Transmitter A® -

Lecture 1: September 11

LI

Asynchronous Systems: Models and Proof Techniques

Interface:

Inputs:
receive_pkt'"(m,b),n € M, b a Boolean
Outputs:
receive.msg(m),m € M
send_pkt™(b), b a Boolean

State:
~ buffer, a finite queue of elements of M, initially empty, and
flag, a Boolean, initially 0.

Steps:
receive.msg(m),m e M
Precondition:
m is first on buffer.
Effect:

remove first element from buffer.

recetve_pkt'"(m,b),m € M,b a Boolean
Effect:
if b # flag then
[add m to buffer;
flag := flag + 1 mod 2]

send_pkt™(b), b a Boolean
Precondition:

Partition:
all send_pkt™ actions are in one class, and
all receive_msg actions are in another class.

Figure 1.3: ABP Receiver A"

il

10 Lecture 1: September 11

This description of the automata corresponds to the technical definitions described below,
and gives a fairly clean way of describing a protocol.

1.2.3 ABP with Sequence Numbers (ABP-S)

This is a simple variant of the ABP that uses sequence numbers instead of bits (see Figures
1.4 and 1.5). As before, the transmitter continues to send the same message just until it
' receives an acknowledgment with that message’s tag; then it goes on to the next message.
The receiver, on the other hand, keeps acknowledging the last message it has received, just
until it gets the next message. It’s presented here because it may be a little easier to prove
correct than ABP, and it has a simple relationship to ABP.

The channels used here are the same as for the ABP, except that they transmit packets
- with integer tags rather than Boolean tags.

T

Asynchronous Systems: Models and Proof Techniques

Interface:

Inputs:

send_-msg(m),m € M

receive_pkt™ (i), a nonnegative integer
Outputs:

send_pkt'"(m,i),m € M,7 a nonnegative integer

State:
buffer, a finite queue of elements of M, initially empty, and
integer, a nonnegative integer, initially 1.

Steps:
send_msg(m),m € M
Effect:
add m to buffer.

send_pkt'"(m,i),m € M,7 a nonnegative integer
Precondition:
m is first on buffer.
1 = integer
Effect:

None.

receive_pkt™(7),i a nonnegative integer
Effect:
if ¢ = integer then
[remove first element (if any) from buffer;
integer := integer + 1]

Partition:
all send_pkt' actions are in one class.

Figure 1.4: ABP-S Transmitter A®

11

L

12

Interface:

Inputs:

recetve_pkt'"(m,1),n € M, a nonnegative integer
Outputs:

receive.msg(m),m € M

send_pkt™(7),¢ a nonnegative integer

State:
buffer, a finite queue of elements of M, initially empty, and
integer, a nonnegative integer, initially 0.

Steps: o
receive.msg(m),m € M
Precondition:
- m is first on buffer.
Effect:
remove first element from buffer.

recetve_pkt'"(m,i),m € M, ¢ a nonnegative integer
Effect:
if 2 = integer + 1 then
[add m to buffer;
integer := integer + 1]

send_pkt™(7),i a nonnegative integer
Precondition: v
1 = integer
Effect:
None.

Partition:
all send_pkt™ actions
all recetve.msg actions

Figure 1.5: ABP-S Receiver A”

Lecture 1: September 11

|

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 2: September 13 |
Lecturer: Nancy A. Lynch Seribe: Jory Tsai

2.1 I/0 Automata

2.1.1 Introduction

The Input/Output Automaton (1/O Automata) model has been defined as a tool for modeling
concurrent and distributed discrete event systems in computer science. Since its introduc-
tion, the model has been used for describing and reasoning about several different types
of systems, including network resource allocation algorithms, communication algorithms,
concurrent database systems, shared atomic objects, and dataflow architectures.

2.1.2° Overview of the Model

I/O automata provide an appropriate model for discrete event systems consisting of concurrently-
operating components. Such systems continuously receive input from and react to their
environment. :

~ We list the goals, characteristics, and properties of the I/ 0 Automata model before we
start looking into more details.

¢ The primary goal behind the design of the /O Automata model is to get a unified way
of expressing distributed algorithms .

e I/0 also allow to support system complexity analysis, to evaluate upper and lower
bounds in the system’s and components’ efficiency, and to prove impossibility results.
The model also can be used as a formal basis for algorithm correctness proofs—proofs
that particular algorithms solve particular problems.

o Characteristics and Properties:

1. Inputs are always enabled — This fundamental property of the model is about
the way an automaton relates to its environment. For a given automaton A,
an action is considered a local action if its being enabled depends solely of the
state of A. Otherwise it is classified as an input action to the automaton A

'Based on lecture notes from 1988 scribed by John Keen.

13

14

il

Lecture 2: September 13

otherwise. The assumption of the model is then that input actions are unable
to be blocked by any automaton: the I/O Automata model does not allow an
automaton to block its environment or eliminate undesirable inputs. Suppose
we wish to guarantee that an automaton exhibits some behavior only when the
environment observes certain restrictions on the production of inputs. Instead of
allowing the automaton to block the bad inputs, we permit these inputs to occur,
but also permit the automaton to exhibit arbitrary behavior when they do.

. Correctness — model correctness conditions can often be expressed loosely as being

of the form “if the environment behaves correctly, then the automaton behaves
correctly”. Alternatively, our correctness condition may require the automaton
to delete bad inputs and response to them with error messages.

. Nondeterminism - 1/O automaton may be nondeterministic, and indeed the non-

determinism is an important part of the model’s descriptive power. Describing
algorithms as nondeterministically as possible tends to make results about the
algorithms quite general, since many results about nondeterministic algorithms
apply a fortiori to all algorithms obtained by restricting the nondeterministic
choices. Moreover, the use of nondeterminism helps to avoid cluttering algorithm
descriptions and proofs with inessential details. ‘

. Compdsition — we can compose a collection of automata: first, we identify the

same-named actions of the different automata{ The composition guarantees that if
one automaton has 7 as an output action, then 7 is an input action of all remaining
automata having 7 as an action. As a result, an automaton generating an output

-action does so autonomously, and this output is transmitted instantaneously to

all other automata having the same action as an input. All such components are’
passive recipients of the input, and react simultaneously with the output action.

. Fairness — When I/O automata are run, they generate “executions” (alternat-

ing sequences of states and actions). We are primarily interested in the “fair”
executions-those that permit each of the automaton’s primitive components to
have infinitely many chances to perform output or internal actions. The behavior
corresponding to a fair execution of an automaton will be called also a fair be-
havior. It is defined as being the subsequence of the fair execution consisting of
the external (input and output) actions.

. Problem Specification -We can define a problem as a set of “allowable” behaviors.

A machine will be said to “solve” a given problem if its behaviors are within that
given set. ‘

. Abstraction Mapping - the model permits description of algorithms and systems

at different levels of abstraction. Informally, abstraction mappings map automata
that include implementation detail to more abstract automata that suppress some

il

I/O Automata 15

of the details. Such mappings can be used as aids in correctness proofs for al-
gorithms: if automaton A is an image of B under an appropriate qbstraction
mapping and if A solves problem P, then B also solves P.

2.1.3 Formal description of the Input/Output Automaton Model

In this section we formally define the I/O Automata model of computation. We then show
how it can be used to model a system, and to prove that a given I/O Automata system
satisfies some specification.

Actions and Action Signatures

We assume a universal set of actions. Sequences of actions are used in this work, for describ-
ing the behavior of modules in concurrent systems. Since the same action may occur several
times in a sequence, it is convenient to distinguish the different occurrences. Thus, we refer
to a particular occurrence of an action in a sequence as an event.

The actions of each automaton are classified as either ‘input’, ‘output’, or ‘internal’. The
distinctions are that input actions are not under the automaton’s control, output actions are
under the automaton’s control and externally observable, and internal actions are under the
_ automaton’s control but not externally observable. In order to describe this classification,
each automaton comes equipped with an ‘action signature’.

An action signature S is an ordered triple consisting of three pairwise-disjoint sets of
actions. We write in(S), out(S) and int(S) for the three components of S, and refer to
the actions in the three sets as the input actions, output actions and internal actions of S,
respectively. We let ezt(S) = in(S) U out(S) and refer to the actions in ext(S) as the ezternal
actions of S. Also, we let local(S) = out(S) U int(S), and refer to the actions in local(S) as
the locally-controlled actions of S. Finally, we let acts(S) = in(S) U out(S) U int(S), and
refer to the actions in acts(S) as the actions of S. An external action signature is an action
signature consisting entirely of external actions, that is, having no internal actions. If S is an
action signature, then the external action signature of S is the action signature extsig(S) =

(in(S),0ut(S),8), i.e., the action signature that is obtained from S by removing the internal
actions.

Input/Output Automata

Now we are ready to define the basic component of our model. An input/output automaton
A (also called an 1/0 automaton or simply an automaton) consists of five components:

® an action signature sig(4),

e a set states(A) of states,

il

16 Lecture 2: September 13

e a nonempty set start(A) C states(A) of start states,

e atransition relation steps(A) C states(A) x acts(sig(A)) x states(A), with the property
that for every state s’ and input action 7 there is a transition (s’, 7, s) in steps(A), and

¢ an equivalence relation part(A) on local(sig(A)), having at most countably many equiv-
alence classes.

We refer to an element (s',7,s) of steps(A) as a step of A. The step (s/,7,s) is called
an input step of A if 7 is an input action. Qutput steps, internal steps, external steps and
locally-controlled steps are defined analogously. If (s’,7,s) is a step of A, then 7 is said to
be enabled in s’. Since every input action is enabled in every state, automata are said to
be input-enabled. The input-enabling property means that the automaton is not able to
block input actions. The partition part(A) is what was described in the introduction as an
abstract description of the ‘components’ of the automaton. It is used to define fairness.

An ezecution fragment of A is a finite sequencc so,m,51,72,...,7n,8, Or an infinite sequence
50,71,81,% 2,0+, FnySny... Of alternating states and actions of A such that (s;,7;41,8i41) is a step
of A for every i. An execution fragment beginning with a start state is called an ezecution.
We denote the set of executions of A by ezecs(A), and the set of finite executions of A by
- finezecs(A). A state is said to be reachable in A if it is the final state of a finite execution of
A. '

The schedule of an execution fragment a of A is the subsequence of «-consisting of
actions, and is denoted by sched(cr). We say that 3 is a schedule of A if 8 is the schedule
of an execution of A. We denote the set of schedules of A by scheds(A) and the set of
finite schedules of A by finscheds(A). The behavior of an execution or schedule a of A is the
subsequence of a consisting of external actions, and is denoted by beh(a). We say that 3 is
a behavior of A if 3 is the behavior of an execution of A. We denote the set of behaviors of

A by behs(A) and the set of finite behaviors of A by finbehs(A).

2.1.4 Composition

As a motivation, let’s consider the ABP model. We can think of this model as being the
construction of four automata. We already saw two of them: the transmitter and the
receiver. Both of them were described as I/O automata. The other two are two unreliable
FIFO channels. These two could also be given as [/O automata. (But in describing them as
such, we must be careful to make sure that their fair behaviors satisfy the liveness property:
a channel has to deliver eventually something! The notions of behavior and of fairness will
be introduced formally in the sequel.) Hence we see that the ABP model can be thought of
as an I/O automaton, being itself the composition of four more primitive I/O automata.
Generally speaking, we can construct an automaton modeling a complex system by com-
posing automata modeling the simpler system components. The essence of this composition

i

I/0 Automata 17

is quite simple: when we compose a collection of automata, we identify an output action =
of one automaton with the input action 7 of each automaton having = as an input action.
Consequently, when one automaton having = as an output action performs 7 , all automata
having 7 as an input action perform 7 simultaneously (automata not having 7 as an action
do nothing).

We impose certain restrictions on the composition of automata. Since internal actions
of an automaton A are intended to be unobservable by any other automaton B, we cannot
allow A to be composed with B unless the internal actions of A are disjoint from the actions
of B, since otherwise one of A’s internal actions could force B to take a step. Furthermore,
in keeping with our philosophy that at most one system component controls the performance
of any given action, we cannot allow A and B to be composed unless the output actions of
A and B form disjoint sets. Finally, since we do not preclude the possibility of composing
a countable collection of automata, each action of a composition must be an action of only
finitely many of the composition’s components. Note that with infinite products we can
handle systems that can create processes dynamically.

Since the action signature of a composition (the composition’s interface with its environ-
ment) is determined uniquely by the action signatures of its components, it is convenient
to define a composition of action signatures before defining the composition of automata.
The preceding discussion motivates the following definition. A countable collection S;¢; of
action signatures is said to be strongly compatible if for all 7, j € I satisfying i #j we have

1. out(S;) Nout(S;) =0,
2. 1nt(S;) N acts(S;) = 0, and
3. no action is contained in infinitely many sets acts(S;).

We say that a collection of automata are strongly compatible if their action signatures are
strongly compatible.

When we compose a collection of automata, internal actions of the components become
internal actions of the composition, output actions become output actions, and all other
actions (each of which can only an input action of a component) become input actions.

As motivation for this decision, consider one automaton A having 7 as an output action
and two automata B; and B, having 7 as an input action. Notice that = is essentially a
broadcast from A to B; and B, in the composition A- B, - B; of the three automata. Notice,
however, that if we hide communication, then the composition (A- B)) - By would not be
the same as the composition A - B; - B, since 7 would be made internal to A - B; before
composing with B;, and hence = would no longer be a broadcast to both B; and B,. This
is problematic if we want to reason about the system A - B; - B, in a modular way by first
reasoning about A-B; and then reasoning about A- B, - B,. We will define another operation
to hide such communication actions explicitly.

L

18 | Lecture 2: September 13

The preceding discussion motivates the following definitions. The composition S =
[Ticr S: of a countable collection of strongly compatible action signatures {S;}ier is defined
to be the action signature with

o in(S) = Uierin(S;) — Uierout(S;),
o out(S) = Ujerout(S;), and
. mt(S) = U,'ejint(S,').

As an illustration consider the ABP model being the composition of four different au-
tomata. The output actions of this composition are all the actions of the components except
send_msg which are the only input actions; the internal actions are send_pkt™, send_pkt*",
receive_pkt™, receive_pkt'”. When for instance a send_pkt'” occurs, it is atomically “shared”
by the transmitter and the channel channel® .

The composition A = [];c; A: of a countable collection of strongly compatible automata
{A;}ier is the automaton defined as follows:?

o sig(A) = [Licr sig(As),
o states(A) = [Lis states(Ai),
‘o start(A) = [1;e; start(A;),

o steps(A) is the set of triples (s1,7,$3) such that, for all i € I, if 7 € acts(A;) then
(1[3], 7, 52[2]) € steps(A;), and if © & acts(A;) then §i[i] = $3[¢], and '

e part(A) = Uierpart(A;).

When [is the finite set 1,...,n, we often denote [];c; A; by Ay ----- An.

Notice that since the automata A; are input-enabled, so is their composition. The par-
tition of the composition’s locally-controlled actions is formed by taking the union of the
components’ partitions (that is, each equivalence class of each component becomes an equiv-
alence class of the composition). :

Three basic results relate the executions, schedules, and behaviors of a composition to
those of the composition’s components. The first says, for example, that an execution of
a composition induces executions of the component automata. Given an execution a =
$0m181- .. of A, let a|A; be the sequence obtained by deleting 7;5; when =; is not an action
of A; and replacing the remaining $; by $j[¢].

2Here start(A) and states(A) are defined in terms of the ordinary Cartesian product, while sig(A) is
defined in terms of the composition of actions signatures just defined. Also, we use the notation §i} to
denote the ith component of the state vector 5.

1]

I/0 Automata : 19

Proposition 3 Let {A;}ie; be a strongly compatible collection of automata and let A =
[Ler Ai. If o € execs(A) then a|A; € execs(A;) for every i € I. Moreover, the same result
holds if execs is replaced by it finezecs, scheds, finscheds, behs, or finbehs.

Certain converses of the preceding proposition are also true. The following proposition
says that executions of component automata can often be pasted together to form an exe-
cution of the composition.

Proposition 4 Let {A;}ic; be a strongly compatible collection of automata and let A =
[Ticr Ai. Suppose o is an execution of A; for every i € I, and suppose B is a sequence of
actions in acts(A) such that B|A; = sched(e;) for everyi € I. Then there is an ezecution a
of A such that B = sched(a) and a; = a|A; for every i € I. Moreover, the same result holds
when acts and sched are replaced by ezt and beh, respectively.

As a corollary, schedules and behaviors of component automata can also be pasted together
to form schedules and behaviors of the composition. '

Proposition 5 Let {A;}ic1 be a strongly compatible collection of automata and let A =
[Ticr Ai. Let B be a sequence of actions in acts(A). If B|A; € scheds(A;) for every i € 1,
then B € scheds(A). Moreover, the same result holds when acts and scheds are replaced by
ext and behs, respectively.

As promised, we now define an operation that ‘hides’ actions of an automaton by con-
verting them to internal actions. This operation is useful for redefining what the external
actions of a composit'ion are. We begin with a hiding operation for action signatures: if
S is an action signature and ¥ C acts(S), then hidexS = S’ where in(S’') = in(S) — I,
out(S’) = out(S) — T and int(S’) = int(S) U L. We now define a hiding operation for au-
tomata: if A is an automaton and ¥ C acts(A), then hidex A is the automaton A’ obtained
from A by replacing sig(A) with sig(A') = hidexsig(A).

5.0.5 Fairness

We are in general only interested in the executions of a composition in which all components
are treated fairly. While what it means for a component to be treated fairly may vary from
context to context, it seems that any reasonable definition should have the property that
infinitely often the component is given the opportunity to perform one of its locally-controlled
actions. In this section we define such a notion of fairness.

As we have mentioned, the partition of an automaton’s locally-controlled actions is in-
tended to capture some of the structure of the system the automaton is modeling. Each
class of actions is intended to represent the set of locally-controlled actions of some system
component.

i

20 Lecture 2: September 13

The definition of automaton composition guarantees that an equivalence class of a compo-
nent automaton becomes an equivalence class of a composition, and hence that composition
retains the essential structure of the system’s primitive components.! In our model, therefore,
being fair to each component means being fair to each equivalence class of locally-controlled
actions. This motivates the following definition.

A fair execution of an automaton A is defined to be an execution a of A such that the
following conditions hold for each class C of part(A):

1. If « is finite, then no action of C is enabled in the final state of a.

2. If « is infinite, then either o contains infinitely many events from C, or a contains
infinitely many occurrences of states in which no action of C is enabled.

This says that a fair execution gives fair turns to each class C of part(A), and therefore to
each component of the system being modeled. Infinitely often the automaton attempts to
perform an action from the class C'. On each attempt, either an action of C is performed, or
no action from C can be performed since no action from C is enabled. For example, we may
view a finite fair execution as an execution at the end of which the automaton repeatedly
cycles through the classes in round-robin order attempting to perform an action from each
class, but failing each time since no action is enabled from the final state. o
- We denote the set of fair executions of A by fairezecs(A). We say that 8 is a fair schedule
of A if B is the schedule of a fair execution of A, and we denote the set of fair schedules
of A by fairscheds(A). We say that 8 is a fair behavior of A if § is the behavior of a fair
execution of A, and we denote the set of fair behaviors of A by fairbehs(A). »

Let’s give some examples. First let’s consider executions of the automaton A* of the ABP:
model.

The execution consisting of the single state (empty buffer, 1) is a fair (trivial!) execution:
nothing is enabled. The two following behaviors are also fair behaviors of A

send-msg(m) receive_pkt™(0) send_pkt'"(m, 1) send_pkt"(m,1) send_pkt'"(m,1)...

send_msg(m)receive_pkt™(0) send_pkt'"(m, 1) send_pkt'"(m,1) recetve_pkt™(1).
but not:

send_msg(m) receive_pkt™(0) send_pkt''(m,1) send_pkt'"(m,1) send_pkt'(m,1).

Let’s turn to A™. Then:
receive pkt™(m,1) send_pkt™(1) send_pkt™(1) receive_msg(m) send_pkt™(1)... is a fair
behavior; but not

It might be argued that retaining this partition is a bad thing to do since it destroys some aspects of
abstraction. Notice, however, that any reasonable definition of fairness must lead to some breakdown of
abstraction since being fair means being fair to the primitive components which must somehow be modeled.

I]

I/O Automata 21

recetve_pkt™(m, 1) send_pkt (1) send.pkt (1) send_pkt™*(1)... or
receive_pki(m, 1) send_pkt™(1) send_pkt™(1) send_pkt"(1) receivemsg(m).

Let’s return to our general exposition. We can prove the following analogues to Propo-
sitions 1-3 in the preceding section:

Proposition 6 Let {A:}ics be a strongly compatible collection of automata and let A =
[lie1 Ai. If a € fairezecs(A) then a|A; € fairezecs(A;) for every i € 1. Moreover, the same
result holds if fairezecs is replaced by fairscheds or fairbehs.

Proposition 7 Let {A;}icr be a strongly compatible collection of automata and let A =
[Licr Ai. Suppose a; is a fair execution of A; for every i € I, and suppose B is a sequence of
actions in acts(A) such that B|A; = sched(q;) for everyi € I. Then there is a fair ezecution
a of A such that B = sched(a) and o; = a|A; for every i € I. Moreover, the same result
holds when acts and sched are replaced by ext and beh, respectively.

Proposition 8 Let {A:}ic1 be a strongly compatible collection of automata and let A =
[licr Ai. Let B be a sequence of actions in acts(A). If B|A; € fairscheds(A;) for every i € I,
then B € fairscheds(A). Moreover, the same result holds when acts() and fairscheds() are
replaced by ext and fairbehs, respectively.

We state these results because analogous results often do not hold in other models. As we
will see in the following section, the fact that the fair behavior of a composition is uniquely
determined by the fair behavior of the components makes it possible to reason about the
fair behavior of a system in a modular way. ‘ '

8.0.6 Problem Specification

We want to say that a problem specification is simply a set of allowable ‘behaviors,’ and
that an automaton solves the specification if each of its ‘behaviors’ is contained in this
set. The automaton solves the problem in the sense that every ‘behavior’ it exhibits is a
‘behavior’ allowed by the problem specification (but notice that there is no single ‘behavior’
the automaton is required to exhibit). The appropriate notion of ‘behavior’ (e.g., finite
behavior, infinite behavior, fair behavior, etc.) used in such a definition depends to some
extent on the nature of the problem specification.

Safety properties are informally characterized by the fact that they specify a property
that must hold in every state of a computation. Since an infinite computation satisfies a
safety property if and only if every finite prefix of the computation does so, the notion of
‘behavior’ most useful in this context seems to be finite behaviors.

Liveness properties are informally characterized by the fact that they specify events that
must eventually be performed. A reliable candy machine, for example, should satisfy the
liveness condition that if a button is pushed, then a candy bar (of the correct type) is

il

22 Lecture 2: September 13

eventually dispensed. Clearly this is a property of infinite behaviors, and not finite behaviors.
In fact, this is a property that can only be satisfied by fair behaviors, since a candy machine
cannot dispense the required candy bar if it is not given the chance to do so. The notion of
‘behavior’ most useful in this context, therefore, seems to be fair behaviors.

Consequently, we would like to say that a specification is a set of allowable behaviors, and
that an automaton solves the specification if all finite or fair behaviors (depending on the
context) of the automaton are contained in the set. In addition to a set of allowable behaviors,
however, a problem specification must specify the required interface between a solution and
its environment. That is, we want a problem specification to be a set of behaviors together
with an action signature.

We therefore define a schedule module H to consist of two components:

e an action signature sig(H), and
o a set scheds(H) of schedules.

Each schedule in scheds(H) is a finite or infinite sequence of actions of H. We denote
by finscheds(H) the set of finite schedules of H. The behavior of a schedule 8 of H is
the subsequence of 3 consisting of external actions, and is denoted by beh(B). We say
that B is a behavior of H if B is the behavior of a schedule of H. We denote the set of
behaviors of H by behs(H) and the set of finite behaviors of H by finbehs(H). We extend
the definitions of fair schedules and fair behaviors to schedule modules in a trivial way, letting
fairscheds(H) = scheds(H) and fairbehs(H) = behs(H). We will use the term module to
refer to either an automaton or a schedule module. ‘

~ As an example let’s consider once more our ABP model. In order to define the ABP.
specification set, we consider the external actions to be only the send-msg and receivemsg
actions. The problem consists of the set of sequences in which the set of send_msg events
matches the set of receive_msg events and in which an receive_msg event must occur. after
its corresponding send_msg event. It is often useful to differentiate between two types of
specifications since different techniques are usually used to prove that such specifications are
satisfied.

There are several natural schedule modules that we often wish to associate with an
automaton. They correspond to the automaton’s schedules, finite schedules, fair sched-
ules, behaviors, finite behaviors and fair behaviors. For each automaton A, let Scheds(A),
Finscheds(A) and Fairscheds(A) be the schedule modules having action signature sig(A)
and having schedules scheds(A), finscheds(A) and fairscheds(A), respectively. Also, for
each module M (either an automaton or schedule module), let Behs(M), Finbehs(M) and
Fairbehs(M) be the schedule modules having the external action signature extsig(M) and
having schedules behs(M), finbehs(M) and fairbehs(M), respectively. (Here and elsewhere,
we follow the convention of denoting sets of schedules with lower case names and correspond-
ing schedule modules with corresponding upper case names.)

[

I/O Automata 23

It is convenient to define two operations for schedule modules. Corresponding to our
composition operation for automata, we define the composition of a countable collection
of strongly compatible schedule modules {H;}icr to be the schedule module H = [Tier H:
where: ‘

o sig(H) = [1;c; sig(Hs),

o scheds(H) is the set of sequences 8 of actions of H such that 8|H; is a schedule of H,
"~ foreveryie I ‘

The following proposition shows how compositibn of schedule modules corresponds to com-
position of automata.

Proposition 9 Let {A;}icr be a strongly compatible collection of automata and let A =
[lier Ai. Then Scheds(A) = [1;e; Scheds(A;), Fairscheds(A) = [T;c; Fairscheds(A;), Behs(A)
[licr Behs(A;) and Fairbehs(A) = [1ic; Fairbehs(A;).

Corresponding to our hiding operation for automata, we define hide hides H to be the sched-
ule module H' obtained from H by replacing sig(H) with sig(H') = hidegsig(H).

Finally, we are ready to define a problem specification and what it means for an automa-
ton to satisfy a specification. A problem is simply a schedule module P. An automaton A
solves' a problem P if A and P have the same external action signature and fairbehs(A) C
fairbehs(P). An automaton A implements a problem P if A and P have the same external
action signature (that is, the same external interface) and finbehs(A) C finbehs(P). No-
tice that if A solves P, then A cannot be a trivial solution of P since the fact that A is
input-enabled ensures that fairbehs(A) contains a response by A to every possible sequence
of input actions. For analogous reasons, the same is true if A implements P. '

As an example let’s consider the ABP specifications that we defined on last page, and
let’s see how the ABP model can solve this problem. We get a solution by hiding all the
actions of the composition but the send_msg and receive_msg actions. Actually, to really
prove this, we still should have to argue about the fair executions.

- Since we may want to carry out correctness proofs hierarchically in several stages, it is
convenient to state the definitions of ‘solves’ and ‘implements’ more generally. For example,
we may want to prove that one automaton solves a problem by showing that the automaton
‘solves’ another automaton, which in turn ‘solves’ another automaton, and so on, until
some final automaton solves the original problem. Therefore, let M and M’ be modules
(either automata or schedule modules) with the same external action signature. We say that
M solves M' if fairbehs(M) C fairbehs(M') and that M implements M’ if finbehs(M) C
finbehs(M").

As we have seen, there are many ways to argue that an automaton A solves a problem
P. We now turn our attention to two more general techniques.

1This concept is sometimes called satisfying.

ul

24 : ' Lecture 2: September 13

9.0.7 Proof Techniques
Modular Decomposition

One common technique for reasoning about the behavior of an automaton is modular de-
composition, in which we reason about the behavior of a composition by reasoning about the
behavior of the component automata individually.

It is often the case that an automaton behaves correctly only in the context of certain
restrictions on its input. These restrictions may be guaranteed in the context of the compo-
sition with other automata comprising the remainder of the system, or may be restrictions
defined by a problem statement describing conditions under which a solution is required to
behave correctly. A useful notion for discussing such restrictions is that of a module ‘pre-
serving’ a property of behaviors: as long as the environment does not violate this property,
neither does the module.

In practice, this notion is of most interest when the property is prefix-closed, and when
the property does not concern the module’s internal actions. A set of sequences P is said to
be prefiz-closed if B € P whenever both j is a prefix of a and a € P. A module M (either
an automaton or schedule module) is said to be prefiz-closed provided that finbehs(M) is
prefix-closed. '

Let M be a prefix-closed module and let P be a nonempty, prefix-closed set of sequences
. of actions from a set ® satisfying ® N int(M) = . We say that M preserves P if gz|® € P
whenever 8|® € P, = € out(M), and Br|M € finbehs(M).

In general, if a module preserves a property P, then the module is not the first to vxolate
P: as long as the environment only provides inputs such that the cumulative behavior
satisfies P, the module will only perform outputs such that the cumulative behavior satisfies
P. This definition, however, deserves closer inspection. First, notice that we consider only
sequences B with the property that Sr|M € finbehs(M). This implies that we consider only
sequences (3 that contain no internal actions of M. Second, notice that we require sequences
B to satisfy only 3|® € P rather than the stronger property 8 € P. Suppose, for example,
that P is a property of the actions ® at one of two interfaces to the module M. In this case,
it may be that for no 8 € P and = € out(M) is it the case that S7|M € finbehs(M), since
all finite behaviors of M containing outputs include activity at both interfaces to M. By
considering 3 satisfying only 5|® € P, we consider all sequences determining finite behaviors
of M that, at the interface concerning P, do not violate the property P.

One can prove that a composition preserves a property by showing that each of the
component automata preserves the property:

Proposition 10 Let {A;}icr be a strongly compatible collection of automata and let A =
[Lier Ai. If A; preserves P for every i € I, then A preserves P.

In fact, we can prove a slightly stronger result. An automaton is said to be closed if it
has no input actions. In other words, it models a closed system that does not interact with

T

I/O Automata : 25

its environment.

Proposition 11 Let A be a closed automaton. Let P be a set of sequences over ®. lf A
preserves P, then finbehs(A)|® C P.

In the special case that ¢ is the set of external actions of A, the conclusion of this
proposition reduces to the fact that finbehs(A) C P. The proof of the proposition depends
on the fact that ® does not contain any of A’s input actions, and hence that if the property
P is violated then it is not an input action of A committing the violation. In fact, this
proposition follows as a corollary from the following slightly more general statement: If A
preserves P and in(A) N ® = @, then finbehs(A)|® C P.
~ Combining Propositions 10 and 11, we have the following technique for proving that an
automaton implements a problem:

Corollary 11.1 Let { A;}ic1 be a strongly compatible collection of automata with the property
that A = [l;cr Ai ts a closed automaton. Let P be a problem with the external action signature
of A. If A; preserves finbehs(P) for all i € I, then A implements P.

That is, if we can prove that each component A; preserves the external behavior re-
quired by the problem P, then we will have shown that the composition A preserves the
desired external behavior; and since A has no input actions that could be responsible for vi-
olating the behavior required by P, it follows that all finite behaviors of A are behaviors of P.

Hierarchical Decomposition

A second common technique for proving that an automaton solves a problem is hierarchical
decomposition in which we prove that the given automaton solves a second, that the second
solves a third, and so on until the final automaton solves the given problem. One way of
proving that one automaton A solves another automaton B is to establish a relationship
between the states of A and B and use this relationship to argue that the fair behaviors of
A are fair behaviors of B. In order to establish such a relationship in between two automata
we can use abstraction mappings. But this will be defined on next lecture.

i

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 3: September 18
Lecturer: Nancy A. Lynch Scribe: David J. Goldstone

3.1 Liveness

The concept of liveness was introduced in lecture two. Given a set A, the alphabet of action
symbols, we say that L, a set of finite and infinite sequences of A, is a liveness property
provided that every finite sequence has some extension in L. Note that we say that L is a
liveness property, rather than L has a liveness property. We think of it as a set of sequences
which happen to share an attribute rather than as an attribute of sequences. Sets are easier
to deal with than attributes. .

An example of the liveness property may be shown for the Alternating Bit Protocol
(ABP). The attribute of the liveness property is that the number of receives equals the num-
ber of sends. Recall that the attribute of the safety property, S, is that there is consistency
between sends and receives. As shown in handout six, there is a correctness property which

.consists of SN L.

3.2 ABP Invariants

In making the various correctness arguments about the Input-Output Automata, it is handy -
to have some invariants around. These invariants are properties which are true for all
reachable states (not sequences). They will usually be proven by induction.

In order to state such invariants, we should have an explicit representation of the channels
as automata. This is not entirely trivial, because of the liveness requirements. Here I will
consider simplified “non-live” versions of the channels; each channel has only one component,
a FIFO queue, in its state. A send_pkt(p) action adds any finite number of copies of p to
the end of queue, while a receive_pkt(p) is enabled when p is the first element on the queue
and has the effect of removing this element.!

Lemma 3.1 The following is true about every reachable state of ABP — S. Consider the
sequence consisting of the indices in queue™ (in order from first to last on the queue), followed
by integer”, followed by the indices in queue', followed by integer®. (In other words, the

1The live version of the channels will augment this queue component with other components that are
used to ensure that, in an infinite sequence of send_pkt events, infinitely many of the send_pkt events result
in a nonzero number of packets being placed on queue.

26

[

ABP Invariants 27

sequence starting at queue™, and tracing the indices all the way back to the transmitter
automaton.) The indices in this sequence are nondecreasing; furthermore, the difference
between the first and last indez in this sequence is at most 1.

Proof: The proof proceeds by induction on the number of steps in the finite execution
leading to the given reachable state. The base case is where there are no steps, which means
we have to show this to be true in the initial state. In the initial state, the channels are
empty, integer' = 1 and integer” = 0. Thus, the specified sequence is 0,1, which has the
required properties.

For the inductive step, suppose that the condition is true in state s’, and consider a step
(s',7,8) of the algorithm. We consider cases, based on «.

- 1. 7 is a send_msg or receive_msg event. Then none of the components involved in the
stated condition is changed by the step, so the condition is true after the step.

2. 7 is a send_pkt" (m,1) event, for some m. Then queue is the only one of the four
relevant components of the global state that can change. We have s.queue’ equal to
s’.queue'” with the addition of a finite number of copies of (m,). But ¢ = s'.integer?
by the preconditions of the action. Since those new i’s are placed consecutively in the
concatenated sequence with s.integer® = i, the properties are all preserved.

3. m is a receivepkt™(i) event. If i # s'.integer' then the only change is to remove
an element in the concatenated sequence, so all properties are preserved. On the
other hand, if i = s'.integer! then the inductive hypothesis implies that the entire
concatenated sequence in state s’ must consist of 7’s. The only changes are to remove
one ¢ from the beginning of the sequence and add one i +1 to the end (since s.integer! =
i + 1, by the effect of the action). Thus, the new sequence consists of all 7’s followed
by one i + 1, so the property is satisfied.

4. 7 is a send_pkt™ event. Similar to the case for send_pkt',

9. 7 is a receive_pkt'"(m,i) event. If i # s'.integer” + 1 then the only change is to remove
an element in the concatenated sequence, so all properties are preserved. On the
other hand, if { = s’.integer” + 1 then the inductive hypothesis implies that the entire
concatenated sequence in state s’ must consist of i — 1’s up to and including &'.integer™,
followed entirely by i’s. The only changes are to change the value of integer” from i — 1
to z, by the effect of the action; this still has the required properties.

Lemma 3.2 The following is true about every reachable state of ABP — S. If, in the

concatenated sequence, integer' appears anywhere other than in the transmitter’s state, then
buffer® is nonempty.

i

28 Lecture 3: September 18

Proof: By induction. The only interesting cases are:

1. send.pkt': easy by precondition

2. receive_pkt™: If the packet is accepted, then the first element gets removed from
buffer’. But then the inductive hypothesis and the precondition imply that in state s,
all the elements of the concatenated sequence are equal. In state s, integer’ goes up
by 1, so is different from all integers elsewhere in the concatenated sequence, and the
result is vacuously true.

Lemma 3.3 The following is true about every reachable state of ABP — S. All packets in
queue™ with integer tag equal to integer' have their message component equal to the first
element of bujfer’.

Proof: A similar induction. : - n
Thus, we are beginning to accumulate a body of invariants which we will use in further
proofs. '

3.3 Abstraction Mappings
3.3.1 What are t.hey?

-Abstraction mappings are functions which we use in order to depend on automata we un-
derstand to describe automata we do not understand. ‘

Definition Suppose A and B are input/output automata with the same external action

signature, and suppose f is a mapping from states(A) to states(B). f is an abstraction |
mapping from A to B provided:

1. If 5o € start(A) then f(so) € start(B); and

2. If s is a reachable state of A, and f(s’) is a reachable state of B, and (s, 7, s) is a step
of A, then there is an ‘extended step’ (f(s'),~, f(s)) such that ylext(B) = =|ext(A).

An extended step of an automaton A is a triple of the form (s',4,s), where s’ and s are
states of A, B is a finite sequence of actions of A, and there is an execution fragment of A
having s’ as its first state, s as its last state, and # as its schedule. The following theorem
is the core of this paragraph:

Theorem 3.4 If there is an abstraction mapping from A to B, then behs(A) C behs(B).

The proof of this theorem is asked in homework 2.

I

Abstraction Mappings ' 29

3.3.2 An example

Now we will show that ABP — S satisfies the safety property given by the specification: that
the sequence of messages occurring in receive_pkt events is consistent with the sequence of
messages occurring in send_pkt events. A nice way to do this is by showing a mapping to
another automaton, M(Q) representing a message queue. MQ has the signature:

Inputs:
send_msg(m)

Outputs:
receive_msg(m)

The state has one component, mgueue. The send_msg(m) action simply adds a single
copy of m to the end of mqueue, while the recetve.msg(m) is enabled when m is first on
mqueve and removes the message. : ,

We prove a (single-valued) mapping from ABP — S to M . More precisely, we de-
fine the mapping f from states of ABP — S to states of MQ@. Given a reachable state
s of ABP — S (which includes states of the transmitter, receiver and both channels), if
s.integer’ = s.integer”, then the mqueuve in state f(s) is constructed by first removing the
first element of buffer’ and then concatenating buffer” and the “reduced” buffer’, in that
order. (Note: Lemma 3.2 implies that s.buffert is nonempty.) Otherwise, the mgueue is
just the concatenation of buffer” and buffer. (We can define the mapping arbitrarily for
non-reachable states; it doesn’t matter anyway.) '

Now we show that f is an abstraction mapping, as defined in class. The correspondence
of initial states is easy because all queues are empty. o '

Inductive step: Given (s'ym,s), and v’ = f(s'), we consider the following cases.

1. send-msg(m): Let u = f(s). We must show that (¥, 7,u) is a step of MQ. This is
true because the send_msg event modifies both queues in the same way.

2. recetvemsg(m): Let u = f(s). We must show (u',7m,u) is a step of MQ. Since 7 is
enabled in s’, m is first on s’.buffer”, so m is also first on u'.buffer”, so 7 is also enabled
in «'. Both queues are modified in the same way.

3. send_pkt: Then we must show that v’ = f(s). This is true because the action doesn’t
change the virtual queue.

4. receive_pkt(m,i): We show that u' = f (s). The only case of interest is if the packet
is accepted. This means i = s'.integer” + 1, so in state s’, the two integers are different,
s0 f(s') = u' is the concatenation of s'.buffer” and s’ buffert.

Then in s, the integers are equal, and m is added to the end of buffer™. So f(s) is
determined by removing the first element of s.buffer' and then concatenating with

L

30 ' Lecture 3: September 18

s.buﬂér’. Then in order to see that f(s) is the same as v/, it suffices to note that m is
the same as the first element in s'.buffert. But Invariant 3.1 implies that : = s'.integer?,
and then Invariant 3.3 implies that m is the same as the first element in s’ buffert, as
needed.

5. receive_pkt™(i): Again we show that u’ = f(s). The only case of interest is if the packet
is accepted. This means ¢ = s'.integer?, which implies that s'.integert = s'.integer’.
This means that f(s') is the concatenation of s'.buffer” and s'.buffert, with the first
element of s'.buffer’ removed. Then s.integer’ = s.integer” + 1, so f(s) is just the
concatenation of s.buffer’ and s.buffer”. But s.buffer’ is obtained from s".buffer’ by
removing the first element, so that f(s) = «'.

Since f is an abstraction mapping, the theorem implies that all behaviors of ABP — S
are also behaviors of MQ, and so satisfy the safety property that the sequence of messages
in receive_msg events is consistent with the sequence of messages in send_msg events. In.
particular, the fair behaviors of ABP — S satisfy this safety property. -

3.4 Introduction to Multivalued Mappings

. Multivalued mappings are similar to abstraction mappings. In essence, a multivalued map-

ping f is a function which maps a state s of a machine A which we don’t understand
" completely to a set of states f(s) of a machine B we do understand completely. Typically, B
is an “inefficient” (in the sense that its state space is big), but conceptually simple algorithm,
whereas A has an “optimized” state space. A good example of the directionality inherent in
these mappings is garbage collection, because states exist in the un-garbage collected ma-
chine (B) which don’t exist in the clean machine (A). Another example we saw in class is

B = ABP-S, A = ABP.

]

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 4: September 20
Lecturer: Nancy A. Lynch Scribe: Mary Ellen Zurko?

4.1 Possibilities Mapping

Definition - Suppose A and B are I/O Automata (IOA) with the same external action
signature, and suppose f is a mapping from states(A) to the power set of states(B). Then f
is a possibilities mapping provided that:

OO

Figure 4.1: A mapping from A to B via f

1. If so € start(A) then 3 start state to of B s.t. to € f(s0)

2. If &’ is a reachable state of A, t' € f(s') is a reachable state of B, and if (s',7,s) is a
step of A then there is an extended step (t',v,t) of B s.t. vylezt(B) = w|ext(A) and
te f(s).

_ Note that states(B) can be infinite even though states(A) is finite; also, for two distinct
elements z and z' of A, we do not exclude the fact that f(z) and f(z') might intersect.

Theorem 4.1 If there is a possibilities mapping from A to B, then behs(A) C behs(B).
Proof: Let m € behs(A), 7 = mym2... Call P(m) =mmy ... k.

e We prove by inductioin on k that there is an execution e} of B whose behavior is Py (7):

k = 0: This is part 1 of the definition.

Assume this is true for k. Hence we have found an execution e}, correéponding to Pi(r).
Let t} be the final state of B after ej. Let (¢}, vk+1,tx+1) be the extended step of B

?Based on lecture notes from 1988 scribed by Chris Colby.

31

Dining Philosophers Problem 105

®
® 5

Figure 10.1: Dining Philosophers problem (n = 5)

10.2.1 Problem Description

There are n philosophers seated around a table. Each philosopher, is either thinking (R},
hungry (T'), eating (C) or just finished eating (E). In order to eat, each philosopher-needs
two forks; n forks are placed on the table such that there is one fork on the left and one to
the right of each philosopher. Each philosopher can pick up forks located immediately to his
left or right only when the neighbor, with whom the fork is shared does not have the fork.

We denote each philosopher by p; and the forks to the left of each p; by F; and to the
right of p; by Fi_;. Thus, p; needs F;NF;_; (po needs F,, N Fy) to eat (C). After eating, each
p; puts down both forks (E) and resumes thinking (R). Figure 10.1 describes the seating
arrangement for n = 5 philosophers.

The exclusion set for n dining philosophers is

£= {{pi,pH-l})i € {0,... ;n}}

Various algorithms are known that solve the Dining Philosophers problem. The first
solution, presented by Dijkstra (1971) uses operating system concepts such as semaphores.
Chang presented the first distributed solution to the problem. Burns’ algorithm gave bet-
ter time bounds for the Dining Philosopher’s problem. Lynch (1981) presented a general
solution to the static resource allocation problem. A randomized algorithm to solve the
Dining Philosophers problem was proposed by Rabin and Lehmann (1981). All of the above

Possibilities Mapping 33

packet in C*" in u, then (m,7mod2) is the j** packet in C*" in s. Also, C"* has the
same number of packets in s and u. Moreover, for any j, if 7 is the j* packet in C™ iy
u, then 1mod? is the j** packet in C in s.

Theorem 4.2 g above is a possibilities mapping.

Proof: By induction. For the base, let s be the start state of ABP and u the start
state of ABP — 5. First, all the buffers are empty, which suffices. Second, s.flag' = 1 =
u.integer' mod2 and s.flag” = 0 and u.integer”™ = 0, which is as needed. Third, both channels
are empty.

Now show the inductive step. Suppose (s',7,s) is a step of ABP and v’ € g(s'). We
consider cases based on «. .

1. ™ = send-msg(m)

Choose u to be the unique state such that (u/,7,u) is a step of ABP — §. We must
show that u € g(s). The only condition that is affected by the step is the first, for
the buffer’ component. However, the action affects both s.buffer® and u.buffer in the
same way, so the correspondence holds.

2. © = recetve_msg(m)

Since 7 is enabled in s', m is the first value on s'.buffer”. Since u’ € g(s'), m is also
the first value on u'.buffer”, which implies that 7 is enabled in u’. Now choose u
to be the unique state such that (v/,7,u) is a step of ABP — S. All conditions are
unaffected except for the first for buffer”, and buffer” is changed in the same way in

both algorithms, so the correspondence holds. ‘

3. 7 = send_pkt'"(m, b)

Since 7 is enabled in s', b = s'.flag' and m is the first element on s'.buffer’. Let
i = u'.integer’. Since u’ € ¢(s'), m is also the first element on w’.buffer'. It follows
that 7 = send_pkt'"(m, i) is enabled in u’.

Now choose u so that (u/,%,u) is a step of ABP — S and such that this step puts the
same number of packets in C* as does the step (s, 7, s). We must show that u € g(s).
The only interesting condition is the third, for C*". By inductive hypothesis and the
fact that the two steps insert the same number of packets, it is easy to see that C*" has
the same number of packets in s and u. Moreover, the new packets get added with tag ¢
in state v and with tag b in state s; since ¥’ € g(s’), we have s'.flag’ = '.integermod?2,
i.e., b = tmod2, which implies the result.

4. ™ = receive_pkt'"(m,b)

34

Wl

Lecture 4: September 20

Since 7 is enabled in ', (m,b) is the first element in C* in s’. Since v’ € g(s'),
(m,1) is the first element in C' in u/, for some integer ¢ with b = imod2. Let @ =
recetve_pkt' (m,1); then 7 is enabled in u'. Let u be the unique state such that (v’, 7, u)
is a step of ABP — S. We must show that u € g(s).

It is easy to see that the third condition is preserved, since each of 7 and # simply
removes the first packet from C*.

Suppose first that b = s’.flag”. Then the effects of 7 imply that the receiver state in
s is identical to that in s’. Now, since u’ € g(s'), s'.flag" = u'.integer" mod2; since
b = imod2, this case must have 7 # u'.integer™ + 1. Then the effects of # imply that
the receiver state in u is identical to that in u’. It is immediate that the first and
second conditions hold.

So now suppose that b # s’.flag’”. The invariant above for ABP — S implies that
either 1 = u'.integer” or ¢ = u'.integer” + 1. Since b = 1mod2 and (since u’ € g(s'))
s'.flagh = u'.integer" mod2, this case must have : = u'.integer” + 1. Then by the effect
of the action, u.integer”™ = u'.integer™ + 1 and s.flag” = 1 — s’.flag", preserving the
second condition. Also, buffer” is modified in both cases by adding the entry m at the
end; therefore, the first condition is preserved.

. ® = send_pkt™(b)

Similar to send_pkt' (m, b). |

. ® = recetve_pkt™(b)

Since 7 is enabled in &', b is the first element in C™ in s'. Since v’ € g(s'), ¢ is the first
element in C™ in v/, for some integer ¢ with b = imod2. Let & = receive_pkt™(i); then
7 is enabled in u’. Let u be the unique state such that («/,%,u) is a step of ABP — S.
We must show that u € g(s). '

It is easy to see that the third condition is preserved, since each of m and 7 simply
removes the first message from C™.

Suppose first that b # s’.flag’. Then the effects of 7 imply that the transmitter state
in s is identical to that in s’. Now, since u' € g(s'), s'.flag" = u'.integer*mod2; since
b = imod2, this case must have ¢ # u’.integer’. Then the effects of # imply that the
transmitter state in u is identical to that in u’. It is immediate that the first and second
conditions hold for this situation.

So now suppose that b = s’.flag’. The invariant above for ABP — S implies that
either 1 = u'.integer' — 1 or i = u'.integer’. Since b = imod2 and (since u’ € g(s'))
s’ .flag’ = u'.integer*'mod?2, this case must have i = u’.integer’. Then the effect of the
action implies that u.integer® = u'.integert 4+ 1 and s.flag' = 1 — s'.flag’, preserving the

1]

Possibilities Mapping 35

second condition. Also, buffer! is modified in the same way in both cases, so the first
condition is preserved.

Remarks

Consider the structure of the possibilities mapping g of this example. In going from ABP~—S
to ABP, integer tags are condensed to their low-order bits. The multiple values of the map-
ping g essentially “replace” this information. In this example, the correspondence between
ABP and ABP — S can be described in terms of a mapping in the opposite direction - a
(single-valued) projection from the state of ABP — § to that of ABP that removes informa-
tion. Then ¢ maps a state s of ABP to the set of states of ABP — S whose projections are
equal to s. While this formulation suffices to describe many interesting examples, it does
not always work. (Consider garbage collection examples.) » ‘

Here we were able to exhibit a possibilities mapping and prove it correct. The practical
problem this method generates is that, if we make a mistake in the definition of f and
discover this mistake while working on a particular step of the proof, we then need to fix {
and might have to consider re-checking all cases that we previously checked on the wrong
version. Machine assistance can be useful here.

4.1.2 Liveness of ABP

Techniques for showing liveness are more ad hoc. Here is a sketch of one proof that works
for showing that the fair behaviors of ABP all satisfy the main correctness condition: that
the subsequence of messages received is identical to the subsequence of messages sent.

We want to show that each fair behavior of ABP satisfies that: # messages sent = #
messages received

It suffices for this to show that every fairbeh of ABP is also a fairbeh of MQ (since
they all satisfy the condition).

First, we can get a (single-valued) possibilities mapping h from ABP directly to MQ;
this is constructed in much the same way as f above, only the test that determines whether
the concatenation occurs is based on whether or not the flag' and flag” values are equal. (It
they are equal, the first element of buffer’ is removed before concatenation with buffer™.)

It is sufficient to show the following. For any fair execution « of ABP, the “image”, o, of
this execution under is a fair execution of M Q. (This image involves mapping each state to
its image under A, and removing occurrences of actions of ABP that are not actions of M. Q.)
Saying that o' is a fair execution of MQ implies that any sent message must eventually be
received.

Suppose for the purpose of contradiction that this is not the case, so ' is not fair.
This means that, in o, there is a receive_msg action enabled from some point 7 on, but no

t

36 | Lecture 4: September 20

receive_msg occurs after that point. Now, whenever a receive_msg action is enabled in M@,
it means that mqueue is nonempty. By the operation of M@, this means that a particular
message m appears first on mqueue in the state at point ¢ of ', and that it persists forever
afterwards in ¢’

Now consider a. By the definition of mapping h, from point ¢ onward in « it must be
that the concatenation of buffer’ and buffer” (with the first element of buffer’ removed if
the two flags are equal) is a queue that has m in the first position. More specifically, in each
state after point ¢, one of the following holds.

1. buffer” is nonempty,
2. buffer” is empty, flag' # flag” and m is first on buffert, or
3. buffer” is empty, flag' = flag” and m is second on buffer’.

First we claim that no state in this interval has condition 1 true. For if it did, then
this condition must continue to hold forever thereafter until and unless a receive_msg event
occurs; this means that a receive.msg event is enabled in all states from that point on.
But then the fairness definition implies that a receive.msg must eventually occur. This is a
contradiction. So condition 1 can never hold.

Next we claim that no state in this interval can have condition 2 true° For if it did, it must
continue to hold until and unless a recewe_pkt"(*, flag*) event occurs. (It is impossible to
have a receive_pkt™ event falsify this condition, because a version of Lemma 1.1 in Section 1
of Handout 7, stated for ABP rather than ABP—S, implies that, when this condition is true,
all tags in C™* must be unequal to flag’ and so will not be accepted by the transmitter. The in-
variant could be carried over to ABP using the mapping g above.) If a receive_pkt' (*, flag")
event occurs, then buffer” becomes nonempty, which means that condition 1 holds. Since
we have already proved 1 can’t hold, this means that no receive_pkt! (*, flag') event can
occur. But note that send_pkt"(m, flag') continues to occur infinitely often, by the fairness
definition (since it remains enabled). This means that infinitely many receive_pkt’” events
must occur, by the channel liveness assumption. Eventually, the finitely many packets in C*
with tag different from flag’ will have been received, and so there must eventually be some
with tag equal to flag® received. This is a contradiction. The conclusion is that condition 2.
can never hold.

So it must be that condition 3 holds everywhere after point ;. This means that no event
of the form receive_pkt™ (%, flag') can ever occur in that interval (since that would make
condition 2 hold). But infinitely many send_pkt™(flag’) events occur in this interval, by
fairness. By the channel liveness assumption, an event of the form receive.pkt™(x, flag')
must eventually occur, a contradiction.

Note that this proof could be done more “formally”, using, e.g., temporal logic. But
arguments in English can also be done rigorously.

]

Mutual Exclusion Using Shared Memory : 37

Unfortunately, there are no nice systematic methods to apply. Some examples of methods
in the literature are given below:

e Variant Functions. They are not used in Handout 7. Many papers use it in the
literature. The idea of this method is the following:

We construct a function states(A) EA E, where E is a well founded set (by this we
mean that E has an order <, for which there is no infinite strictly decreasing chain).
The function f is assumed to be such that if (s, ,s') is a step of A then f(s') < f(s).
We assume also that f is strictly decreasing in the following sense: in any state, some
class is guaranteed to (strictly) decrease the value of f when it next executes. Call E
the subset of E consisting of all the minimal elements of E. We assume that for any
execution e ending with the state ', if f(s') € E' then ¢’ is an execution verifying our
liveness condition.

In this method, the function f measures in some sense "how far an execution is from
the liveness goal”.

e Temporal Logic. It uses special symbols for “something eventually happens”: ox.
e Unity language. It has a set of proof rules for the concept “leads-to”.

None of these methods have proven general enough for all interesting cases.
Of course, we can always argue directly as we did with ABP about the execution sequence
- and show that every fair behavior has the liveness property.

4.2 Mutual Exclusion Using Shared Memory

4.2.1 Introduction

- The problem of Mutual Exclusion is the problem of the allocation of an indivisible resource
among any subset of n processes py,...,p,. Mutual exclusion Algorithms are distributed
Algorithms solving this problem in such a way that each process pi holds a copy C; of the
same code C. The code C is partitioned into four sections: the remainder region (R), the
trying region (T), the critical region (C), or the ezit region (E). We say that process ¢ is,
at some point, in region R,T,C or E if the line of its code C it is currently executing is in
R,T,C or E. Theses four regions are defined by the following facts. A process not engaged
in the competition for the resource is in R. When a process is trying to gain control of the
resource, it is in T. When it holds the resource, it is in C. Eventually, when it is done with
the resource, it goes to E where it typically reinitializes some variables, and then goes back
to R. The cycle of regions that a process visits is shown in Figure 4.3. We will consider here
only algorithms in which communication among processes is done through shared variables.

L

38 ’ Lecture 4: September 20

~R Q C E

Figure 4.3: The cycle of regions of a single process.

Within this setting mutual exclusion algorithms are characterized by the two following
properties: '

1. Safety property: A state in which two processes are in region C is not reachable.

2. Liveness property: As long as “‘operation continues normally”, “normal pfogress”
should be made. ‘

“Normal operation” means that any process in regions T or E is provided with a step by
the scheduler and that furthermore, a process in region C is eventually asked to leave (to.
region E) by the user. “Normal progress” means that if some process is not in region R, then
some process will eventually change regions. (Note that normal progress does not prohibit
lockout—if p; enters T, and the rest of the processes are in R, p; does not necessarily ever
have to go into C. Process p, could start cycling through the regions and satisfy normal
progress.) _

A process p; can be modeled as a state machine that communicates with the outside
world via incoming messages try; and exit;, and outgoing messages crit; and rem;. One can
think of the outside world as an environment of n users (usery, ..., user,). When a user;
wants control of the resource, he sends try; to p;. This forces p; to start the trying code.
When p; has control of the resource (i.e., is in region C), it sends crit; to user;. When user;
is done with the resource, it sends exit; to p;. This forces p; to start the exit code. When p;
has returned to region R, it sends rem; to user;. Figure 4.4 illustrates this series of actions.

Note that part of the normal operation requirement is the responsibility of the user rather
than the process. The requirement that a process in C eventually leaves means that user;
must send exit; sometime after receiving crit;. Assuming that for all ¢, user; only sends try;

L]

Mutual Exclusion Using Shared Memory 39

Figure 4.4: Input/Output Actions in between p; and user;

and exit; when it should, the algorithm must preserve the cyclic behavior of try;, crit;, exit;,
rem;, ...and must guarantee mutual exclusion.
Each process also has actions involving single shared variables. These are shown as

squares in Figure 4.5. .

Figure 4.5: pi reads v and stores the value in its local variable

The two basic actions involving process p; and a shared variable z are:
1. read z and store its value in a local variable of p;

2. write a local variable of p; to z

Modeling via I/O automaton

We will consider the algorithm as being modeled as one big I/O automaton as illustrated in
Figure 4.6.

The state of the I/0 holds the states of all the individual processes, along with the values
held by the shared variables. The state of each individual process p; consists of the values
of all the process’ local variables along with the value held by its program counter.

The initial state of the I/O automaton contains the initial values for all the local variables,
and for the shared variables. The program counters are all at the beginning (the initial region
of all processes is R).

The actions are T, C, E, R, access to variables, and local computations. The action Try;
and Exit; are the inputs actions of the I/O automaton.

The partitions. The actions of each p; are in one class.

The steps follow the code in a natural way. The code doesn’t explicitly mention Try, Crit,
Exit, or Rem actions; these are implicit. When a Try occurs, the program counter moves to
the beginning of the trying region code. The process is then enabled to perform steps and
progresses through the trying region code in the usual way. When it is done with the Trying

H

40 Lecture 4: September 20

environment / processes variables \

f v =

ry; .
crit; . D
et |
. Trem; . .

L e—

/

Figure 4.6: A global view of the mutual exclusion problem.

protocol, a Crit action occurs, thereby setting the program counter after the Try code. No
actions-are then enabled until an input action occurs Exit. We reason analogously for E and
R. Recall also that by definition fair behaviors, processes keep taking steps as long as they
are enabled.

The liveness properties of this problem can be reexpressed as: If the environment even-
tually does an exit; action when p; is in C, then progress must always eventually occur.
(Assume that processors continue to take steps in T and E if they are “enabled”).

We could model this code by an I/0 automaton in another way: each process and each
shared variable could be a separate I/O automaton, interacting via composition. This adds .
more complexity though, since the shared variable I/O automaton’s have separate actions
for invocation and response.

M

6.852 Distributed Algorithms Fall Semester, 1990 l

Lecture 5: September 25 |
Lecturer: Nancy Lynch Scribe: Mary Ellen Zurko,Ken DeCanio®

5.1 Dijkstra’s algorithm

In 1965, the first mutual exclusion algorithm was developed by Edsgar W. Dijkstra. It is
presented in Figure 5.1 as the code to be run on each process. The language used in the
description of this code is different from the precondition-effect language used in previous
lectures, but the translation can easily be made.

Region T runs from the label L till the comment “*critical section*”. The algorithm"
uses two variables Controlfi] and k. Control[i] is written by p; and read by all, and % is
both written and read by all. The processes are assumed to be asynchronous, so that we
need to define what are the atomic action. For this algorithm, atomic actions are reads from
and writes to the shared variables. These are read-write registers. The code is rewritten in
Figure 5.2 so as to put in clear evidence the atomic actions: these are enclosed in pointy
brackets. (We review this code in detail in in the sequel. The sets S; will be defined before
Theorem 5.4.) Note that the read of control[k] does not take two atomic actions because k -
was just read in the line above, and so a local copy of £ can be used.

An operational proof

One can show that Dijkstra’s algorithm works by direct reasoning about its behavior—an
operational proof. As mentioned above, many distributed algorithms are too complicated
for this approach to be practical, and in those cases an invariant assertional proof is the
desired approach. To reason about the algorithm, there must be a concept of indivisibility
of actions. Above, the basic atomic actions were defined to be reads and writes from and
to the shared variables. This will serve as the concept of indivisibility—actions involving
shared variables are indivisible, and local computation does not enter into the timing analysis
(i.e., local computation happens instantaneously). Note that the algorithm does not clearly

specify what is indivisible. Careful reasoning about such algorithms requires removal of these
ambiguities. .

Theorem 5.1 Dijkstra’s algorithm preserves the cyclicity Try, Crit, Exit, Rem of the actions
of user;.

3Based on lecture notes from 1988 scribed by Sharon Pearl

41

i

42 ' | Lecture 5: September 25

Shared variables:

e control: an array indexed by [1..n] of integers from {0,1,2}, initially all 0, where
controllt] is written by p; and read by all

e k : integer from {1,...,n}, initially arbitrary, where k is written and read by all

Code for p;

Begin 1st stage, trying to obtain k.

L: control[i] — 1

while k£ # i do o
if controllk] = 0 then k — ¢
end if

end while

Begin 2nd stage, checking that no other processor has reached this stage.

control[i] «— 2 ' v
forj € {1,...,:—1,i4+1,...,n} do **Note: order of checks unimportant**
if control[j] = 2 then goto L
end if

end for
Critical region

control[i] — 0

Remainder region

Figure 5.1: Dijkstra’s mutual exclusion algorithm.

L

Dijkstra’s algorithm _ 43

Shared variables:
e control : an array indexed by [1..n] of integers from {0,1,2}, initially all 0, where
controlli] is written by p; and read by all

e k : integer from {1,...,n}, initially arbitrary, where k is written and read by all

Code for p;

Begin 1st stage, trying to obtain k.
L: S; 0
{control[i] « 1)
while (k # i) do
if (controllk] = 0) then (k « z)
end if
end while -

**Begin 2nd stage, checking that no other processor has reached this stage.™*

(controllt] « 2)

“for j e {l,...,s—1,i+1,...,n} do **Note: order of checks unimportant**
if (control[j] = 2) then goto L
end if
Si— Su{s}
end for

Critical region

S,' —0)
(control[i] « 0)

Remainder region

Figure 5.2: Dijkstra’s algorithm showing atomic actions and S;.

ul

44 Lecture 5: September 25

normal execution no progress
no process
T —————— T changes regions
start at least one
process not in R
Figure 5.2: No progress.
Proof: Clear. [

Theorem 5.2 Dijkstra’s algorithm satisfies mutual exclusion.

Proof: By contradiction. Assume p; and p; were both simultaneously in region C, where
1 < i < j < n. Then, controlli] and control[j] were both set to 2 some time before their
respective processes entered C. Assume that control[i] was set to 2 first. ‘Then, control[s]
remained 2 until p; left C, which must have occurred after p; entered C. So, after p; set
control[j] to 2, but before p; entered C, controllz] was always 2. Therefore, p; must have
seen control[i] = 2 and so could not have entered C. »

Theorem 5.3 Dijkstra’s algorithm satisfies progress.

Proof: Again, by contradiction. There is some execution that reaches a point such that not
all processes are in R, and after which no process ever changes region (see Figure 5.3). Note
that all processes in T or E continue taking steps. In this state, if one of the processes is
in C, then it is guaranteed to reach E, since we assume the environment must send it an
exit message. If any of the processes are in E, then after one step they will be in R. Thus,
all of the processes are in region T or R, only the processes in region T take steps, no new
processes enter T, and all of the processes in T continue to take steps forever.

All contenders (processes in T) keep their control > 1 during this execution. If k£ changes
during the execution, it is changed to a contender’s index. If the value of k starts as a
non-contender, then p;, when it eventually checked, would find that k # ¢ and control[k] =0
and thus set k to i. There must exist an ¢ such that this will happen, because all contenders

L]

Dijkstra’s algorithm 45

are either in the while loop or in the second stage, destined to fail and return to the while
loop. Once £ is set to a contender’s index, control{k] > 1. Then, any future reads of k and
control[k] will yield control[k] > 1, and k will not be changed. So, eventually, k stabilizes to
a final (contender’s) index. ‘

Once k stabilizes to a contender’s index, that contender has little to stand in its way.
The while loop is completed und control[k] is set to 2. The only way that p could fail to
reach C immediately is if control[i] = 2, for some 7 # k. However, all processes other than
pr whose control is 2 eventually return to L, because the assumption is that no processes
enter C. Then, they are stuck in stage 1 (because k is not equal to their process id), and can
cause pi no further obstacles. So, eventually p; enters C.

This sounds somewhat informal. An argument about finite execution sequences can be
made rigorous, but you must be quite careful when arguing temporal concepts like “before”,
“until”, etc. Such proofs are error-prone because they are quite complex.]

An assertional proof

In general, the assertional technique is more popular than the operational technique of
proving distributed algorithms. The idea of an assertional proof is to state invariants of
the algorithm and then prove by induction that they hold for every reachable state of the
system. This usually involves a case analysis of state transitions, but it is often the case -
that many possible transitions can be easily eliminated (e.g., if they don’t affect a variable
~in question).

To prove mutual exclusion of Dijkstra’s algorithm, we must show that

=3 | (6 #3)A(piin C)A(p; in C)]

This alone is not strong enough to prove by induction, however. We must add conditions
true of all reachable states. These are the invariants or invariant assertions. Let S; be
a local variable of p;. S;is a set that contains the indices of all of the processes that p;
encounters in the for-loop whose control variable is not 2. Initially S; =@ for all 1 < i < n.
When p; finds control[j] # 2 (in an iteration of the for-loop), then S; «— S; U {j}. When
Si={1,...,n} — {¢}, the control moves to after the for-loop. When control[i] is set to 0 or.
1, S; «+ 0. Figure 5.2 shows where these settings of S; would appear in the code for p;.

Let each process have another local variable, a program counter, which keeps track of
where in the code that process is. Define the following sets of processes:

e at-for: processes whose program counter is in the for-loop
o before-C: processes whose program counter is right after the for-loop

e in-C: processes whose program counter is in region C

Ll

46 Lecture 5: September 25

We need to prove that |in-C| < 1. However, the stronger statement |in-C|+ |before-C| < 1
is sufficient. The following two claims imply that statement:

L -3y | G£)AGEeS)AGES)
2. p; € before-CUin-C = S; = {1,...,n} — {i}

Before we can prove anything, we must restate the correctness condition more precisely.
. . o e . 3 s ”
The following theorem captures our intuitive notion of “guaranteeing mutual exclusion.

Theorem 5.4 Let s be any state reachable in an ezecution of Dijkstra’s mutual exclusion
algorithm. There are no two processes p; and p;, i # j, such that both p; and p; are in C
(the critical region) in state s.

We will prove this claim by proving an even stronger claim. Let in-C be the set of
processes that are in their critical sections, and let before-C be the set of processes that are
ready to enter their critical sections but have not yet done so (i.e., they are ready to issue
crit;). We will prove the following: -

Theorem 5.5 In any state reachable during an ezecution of Dijkstra’s algorithm |in-C|+
|before-C| < 1. 3 : : :

It should be obvious that Thecrem 5.4 is a corollary of Theorem 5.5. In order to prove
Theorem 5.5 we will need a small set of lemmas and definitions.
First a small lemma.

Lemma 5.6 If S; # @ then controlli] = 2.

Proof: From the definition of S; and the code for the algorithm. =
Now, the main lemma that we will use to prove Theorem 5.5 says, in effect, that two
processes in stage 2 cannot both miss each other’s stage 2 control signals.

Lemma 5.7 Ap;,p;[i #jand i€ S; and j € Si].

Proof: (sketch) By induction on the length of executions. The basis case is easy since, in
an execution of length 0, all sets S are empty. Now consider the case where j gets added to
S; (convince yourself that this is actually the only case of interest). This must occur when @
is in its for loop in stage 2. If j gets added to S; then it must be the case that control[j] # 2
because otherwise, 7 would exit the loop. By the contrapositive of Lemma 5.6 then, S; = @,
and so ¢ & S;.]

The second lemma that we will use to prove Theorem 5.5 implies that when a process is
ready to enter its critical region, none of the other processes had its control signal set to 2
when it was last observed by the process.

]

Improved Mutué] Exclusion Algorithms 47

Lemma 5.8 p; € (before-C U in-C) = S; = {1,...,n} — {¢}.-

Proof: By induction on the length of the execution. In the basis case, all processes are in
region R, so the claim holds trivially. For the induction hypothesis, assume the claim holds
in any reachable state and consider the next step. The steps of interest are those where
pi exits the loop normally (i.e., doesn’t goto L) or enters C. Clearly, if p; exits the loop
normally, S; contains all indices except ¢, since this is the termination condition for the loop
(when rewritten explicitly in terms of the S sets). Upon entry to the critical region, S; does
not change. Thus the claim holds in the induction step.]

We can now prove Theorem 5.5 by contradiction:

Proof: Assume that in some state reachable in an execution |in-C| + |before-C| > 1.
Then there exist two processes, p; and p;, i # j, such that p; € (before-C U in-C) and
p; € (before-C U in-C). By Lemma 5.8, S; = {1,...,n} — {¢} and S; = {1,...,n} = {j}.
But by Lemma 5.7, either : € S; or j & S;. This is a contradiction. Thus our assumption
must be false and the Theorem must be true. =

See Goldman-Lynch for a detailed proof.

This concludes our examination of Dijkstra’s algorithm.

5.2 Improved Mutual Exclusion Algorithms

While Dijkstra’s algorithm guarantees mutual exclusion and progress, it has a number of
undesirable properties as well. For one, it does not guarantee fairness; it is possible that
one process will continuously gain access to its critical region while other processes trying to
gain access are prevented from doing so. Second, it uses a multi-reader/multi-writer variable
(k) which may be difficult or expensive to implement in certain kinds of systems. Finally, it
is not resilient to failures of processes. A number algorithms that improve upon Dijkstra’s
have been designed.

Before we look at improvements to Dijkstra’s algorithm, we should first consider what
it means for an algorithm to guarantee fairness. Depending upon the context in which the

algorithm is used, different notions of fairness may be desirable. Three ideas that have been
used are:

1. eventuality: an algorithm is fair if eventually all processes trying to enter their critical
regions may do so.

2. time bound: an algorithm is fair if within some bounded amount of time, any process
trying to enter its critical region may do so. (This presupposes some measure of time
in the system.)

il

48 ' Lecture 5: September 25

3. number of turns waited: an algorithm is fair if for every process p;, no process pj,

i # j, bypasses p; (goes critical) more than some particular number of times once Pi
has entered its trying region.

We will see that different impossibility and complexity results arise depending upon which
definition of fairness we use.

In the remainder of this lecture we will look at additional mutual exclusion algorithms
that improve upon Dijkstra’s algorithm in different ways, and one impossibility result about
mutual exclusion. ' '

5.2.1 Eisenberg-McGuire Mutual Exclusion Algorithm

The Eisenberg-McGuire Mutual Exclusion Algorithm (see Figure 5.4) guarantees fairness

by bounding the number of times that one process can bypass another. It has shared variables
named controlli] and k, like Dijkstra’s algorithm, but uses k somewhat differently. The
general idea is that each process, upon leaving C, selects as its successor the next contending
process that it discovers by testing the control variables in sequence, storing the successor’s
index in k. A process in T checks that it is the first known contender starting from k. A
process in T' also does a last check for k and defers if necessary before entering C. (It is not
obvious why this check is needed.) .
. The proof. that the Eisenberg-McGuire algorithm guarantees mutual exclusion is much
like that for Dijkstra’s algorithm. The proof of progress goes roughly as follows. Assume
that progress is not guaranteed. Then after some point in an execution, only processes in T'
take steps, and no region changes occur. Thus no process can reach the assignment k « 1,
or else it would enter C. Since this is the only statement that modifies k, k does not change.
- Consider the first contender in the cyclic order k,k +1,... »n,1,...,k — 1. We claim that
this process meets no resistance: it passes through stage 1 any time it tries, and the other
processes in stage 2 eventually drop out as in Dijkstra’s algorithm. Thus the first contender
will eventually enter C. _

To see that the algorithm guarantees fairness, consider any fixed pi that enters T. From
the time p; enters T until p; enters C, there is always some process with its control variable
set to 1. So each time another process leaves C, it changes k to the next known contender
in the cyclic order. That contender must be the next to go; the final test ensures that every
other process would defer. So eventually, k is set to ¢ and 4 goes critical.

5.2.2 Burns’ Mutual Exclusion Algorithm

Both of the algorithms we have studied so far use a multi-writer variable (k) along with
a collection of single-writer variables (control). Because it might be difficult and inefficient
to implement (build) multi-writer shared-variables in certain systems (in particular, in dis-
tributed systems), algorithms that use only single-writer variables are worth investigating.

L

Improved Mutual Exclusion Algorithms ' 49

Shared variables:
e control : an array indexed by [1..n] of integers from {0,1,2}, initially all 0, where
control[i] is written by p; and read by all

e k : integer from {1,...,n}, initially arbitrary, where k is written and read by all

Code for p;
Begin 1st stage, testing if self is first contender after k.

L: controlli] — 1

for j=k,k+1,...,n,1,...,k—1do
if j = ¢ then exit
end if .
if controlj] > 1 then goto L
end if

end for

Begin 2nd stage, identical to Dijkstra’s algorithm.
controllt] « 2
forje{1,...,i—1,9+1,...,n} do
if control[j] = 2 then goto L

end if
end for

Begin 3rd stage, making final check.

if controllk] > 1 and k # ¢ then goto L
end if

k1
Critical region

Gelect as successor the next contending process.

forj=k+1,...,n,1,...,k—1do
if control[j] # 0 then '
ke—j
exit
end if
end for
controllt] « 0

Remainder region

Figure 5.4: Eisenberg-McGuire Mutual Exclusion Algorithm

i

50 Lecture 5: September 25

Shared variables:

e control : an array indexed by [1..n] of integers from {0,1}, initially all 0, where
controllt] is written by p; and read by all

Code for p;

L: controllt] « 0
forje {1,...,i—1} do
~ if control[j] = 1 then goto L
end if
end for
controlli] « 1
forje{l,...,:—1} do
' if control[j] = 1 then goto L
end if ‘
end for
M:
forje{i+1,...,n} do
~if control[j] = 1 then goto M
end if
end for

**Critical region™*

controlft] « 0

Remainder region

Figure 5.5: Burns’ Mutual Exclusion Algorithm

W

Improved Mutual Exclusion Algerithms 51

The next algorithm, developed by Jim Burns, appears in Figure 5.5. Burns’ algorithm does
not guarantee fairness, but does eliminate the need for a multi-writer variable. Again, the
proof that Burns’ algorithm guarantees mutual exclusion is similar to the proof for Dijk-
stra’s algorithm, except that the control variable is set to 1 where in Dijkstra’s it is set to
2. The proof of progress can be argued by contradiction. Assume that all processes are in
either their remainder or trying regions and that they continue taking steps. Partition the
processes into those that reach label M and those that do not (call the first set P and the
second set). Eventually in an execution, we will reach the point where all processes that
will ever be in P are in it already. Then we claim that there is at least one process in P
(the one among the contenders with the lowest index). Furthermore, we claim that among
all the processes in P, the one with the largest index will reach the critical region. (Look at
the code and try to convince yourself of this.)

Burns-Lynch Impossibility Result

Burns’ algorithm uses no multi-writer variables, but does use n shared (multi-reader) vari-
ables to guarantee mutual exclusion and progress for n processes. One might reasonably
wonder whether an algorithm that uses fewer than n shared variables could do the same.
Certainly, an algorithm with fewer than n single-writer variables would not work, since every
. process must be able to write something. But what about general read-write systems where -
every variable can be read or written by any process? The first of a number of impossibility
-results that we will see in these lectures (this one due to Jim Burns and Nancy Lynch)
answers this question negatively.

Theorem 5.9 If a system S solves mutual exclusion with progress for n processes using
read-write shared variables, then S has at least n shared variables.

The proof of this theorem is complex and we will return to it in a later lecture. The
basic idea is to assume that there is an algorithm and construct an incorrect execution,
just working from the problem statement (i.e., all we know is that the algorithm guarantees
mutual exclusion and progress). A write can be obliterated by being overwritten before
being read by any other process. In order to go from R to C, a process p must write to
some variable that is not covered (about to be written) by another process. This is because
if it didn’t, the rest of the system couldn’t distinguish the configuration with p in C from
another similar configuration with p in R. But the system must act quite differently in these
two situations: if p is in R, then eventually it must let another process enter C' (to ensure
progress). However, allowing another process to enter C would yield incorrect behavior from
the configuration where p isin C. The proof constructs an involved collection of hypothetical
related executions, such that the requirement that processes must write some variable not
covered by any other processes actually implies that there must be n separate variables.

A few important points to take away from the brief discussion of this result are:

52

i

Lecture 5: September 25

" e Impossibility results in this field arise from the limitations of local knowledge in a

distributed system. Every process’ actions depend only upon what it sees in its own
state and shared memory. Some restrictions (e.g., too few variables) might imply that
two executions look the same to some processes even though correctness conditions
require them to act quite differently in the two cases.

n process mutual exclusion with progress requires at least n shared variables (the
statement of the result).

Formal models are extremely important in proofs of impossibility results. Both the
algorithm and the correctness conditions must be precisely stated in order to have
any hope of proving that something is impossible. (For example, if we allow atomic
update, the argument used by Burns and Lynch in their proof does not go through.)
Some important aspects of the model are the specification of “normal operation”, the
definition of actions along with the specifications of the components that control them.

6.852 Distributed Algorithms Fall Semester, 1990
Lecture 6: September 27

Lecturer: Nancy A. Lynch Scribe: Andrew Chou?

In this lecture, we will look at two new algorithms: Lamport’s Mutual Exclusion algo-
rithm and the Peterson-Fisher algorithm. Previously, we have covered:

¢ Dijkstra’s algorithm - Mutual exclusion and progress (multi-writer variables).

¢ Eisenburg-McGuire algorithm - Mutual exclusion, progress, and no lockout (multi-
writer variables).

¢ Burn’s algorithm - Mutual exclusion, progress, single-writer variables, but with lockout.

Both new algorithms are single-writer, no lockout algorithms. Lamport’s algorithm uses
unbounded variables, while the Peterson-Fischer algorithm uses binary valued variables.

6.1 Lamport’s “Bakery” Mutual Exclusion Algorithm

Lamport’s “Bakery” algorithm (see Figure 6.1) for mutual exclusion has several attractive
properties in addition to satisfying mutual exclusion with progress:

® The shared variables are single-writer—only one process may write to a variable. The
variables are, however, unbounded—their values may grow arbitrarily large.

® It does not require atomic variables, but only safe registers. (We will define these
registers in the next section.)

o It satisfies fairness: the first part of the trying region, the “doorway”, is wait-free, and
the second part, the “bakery”, insures FIFO priority.

e It achieves a degree of failure resiliency.

“Based on lecture notes from 1988 scribed by Steven Ponzio

33

54 : ' Lecture 6: September 27

Shared variables:

® choosing : an array indexed by [1..n] of integers from {0,1}, initially all 0, where
choosing[i] is written by p; and read by all

e number: an array indexed by {1..n] of integers from {0,1,. .. }, initially all 0, where
number(i] is written by p; and read by all

Code for p;

** beginning of doorway **

L1: choosing[t] « 1
number(t] « 1 + maz(number{l],. .., number(n])
choosing[i] — 0

** end of doorway **

** beginning of bakery**

for j € {1,...,n} do
L2:
if choosing[j] = 1 then goto L2;
end if
L3: :
if number(j] # 0 and (number{j], j) < (number|i],7) then goto L3
end if
end for

Critical region

** end of bakery **

number{i] « 0

Remainder region

Figure 6.1: Lamport’s “Bakery” Mutual Exclusion Algorithm

L

Lamport’s “Bakery” Mutual Exclusion Algorithm ' 35

6.1.1 Atomic and Safe Registers
I/O Automaton Modeling of a Register

The entity controlling the access to a variable is modeled as an 1/0 automaton R. Denote
n as the number of processes. Each process trying to access the variable produces an input
action to R. To each read input action corresponds a subsequent output action read ~value,
and to each write input action corresponds a subsequent output action write — ack. Each
input action happens at some time ¢,.,. The corresponding output action happens at some
time o0k (fack > treq). An atomic (resp. safe) variable is a variable whose sequence of times
tack, treq Verify specific properties that we make precise in the sequel. Since many processes
may be trying to access the variable at the same time, the interval between treq and tqcr may
overlap for different processes. (Accesses by the same process are assumed to occur serially.)

Atomic Variables

We begin with an informal description. A variable is atomic if for all reads (or writes), the
responses are “consistent” with responses that would be given if each access time could be
“shrunk” down to a single point in time, t,.. (treq < tace < tack), such that the entire access
could be thought of as happening at #,... (see Figure 6.2.)

For any execution £ (resp. behavior a) and for any j = 1...n, call II;(€) (resp. II;(a))
the execution (resp. behavior) obtained by considering only actions involving the jth process.
Hence an action of £ is kept in II;(€) only if it is an internal action of J, or if is an input
action to j or an output action from j. For any admissible execution & of R, let treq 1, treg2,
... denote times at which input actions happen. Let tack,1, tack,2, ... denote the times at
which corresponding output actions happen. (By convention, i ~— lreq,i 15 increasing. But,
i > tocx,i need not be.) Denote o the behavior of £. The variable R is atomic if, for all
admissible executions £ of R, there exists an admissible execution &’ (we let o/ denote the
behavior of £), such that for all i, there exists a time t,.; € [treqi» tack,i] verifying the two
following properties:

’ !

1. ¢ = Yyeri = taccis (the times t’ refer to the execution &,

req,:
2. forallj=1,...,n:II;(c) = H{a).

Condition (1) expresses that the “interval executions are shrunk to points”. Condition (2)
expresses that the two executions £ and £’ are “consistent”. '

Safe Registers

It is possible to define a weaker kind of register called the safe register. It is weaker then
the atomic register in the sense that any atomic register is a safe register. Assuming that

H

56 Lecture 6: September 27

- '—"‘trcq

L4 tacc

— +——1%qck

Figure 6.2: Atomic variables: Each bracket represents a read or write cycle, with the vertical
dimension representing time. Variables are atomic if there exists some set of times ¢,.. such
that for each cycle’s 4., the entire cycle could be conceptually “shrunk” to that point in
time without changing the values of any responses. '

writes occur sequentially, the variables must satisfy only one condition: a read that doesn’t
overlap any writes receives the value of the last write preceding it. A read that overlaps a
_write may receive any value within the range of that variable. Lamport’s Bakery algorithm
only requires safe registers. -

6.1.2 Overview of Lamport’s Algorithm

Lamport’s algorithm guarantees fairness by using a partially FIFO trying region. The trying
region 7 is broken up into two sub-regions: 7; and ;. 7; , the “doorway”, consists of the
beginning of setting choosing to 1 to the end of setting choosing to 0. In the doorway,
a process chooses a value number which is the greater than the highest number already
chosen by processes executing the algorithm. While it does this, it sets choosing(i] to 1 to
let other processes know that it is currently choosing a value. It is possible for two processes
to enter and leave “the doorway,” concurrently. These processes will, thus, have the same
number. We then break the tie by comparing process indices (The tie-breaking decision is
arbitrary). 7; is the for loop: a process checks to see if its number is the lowest, waiting
for any processes that are choosing. The “bakery” consists of 7; together with the critical
region C. The algorithm resembles the operation of a bakery: customers enter the doorway,
choose a number, exit the doorway, and wait in the store. ,

Passage through the doorway is guaranteed in a fixed number of steps. There is no loop
in 7;; a process must only compute the maximum of all other processes number variables.
(Of course, a slow process may be passed in the doorway by a faster process.) This behavior
makes the doorway wait-free.

Ll

Lamport’s “Bakery” Mutual Exclusion Algorithm 57

Once a process p; has entered 7y, it is gua.ranteed to advance to C (critical region) ahead
of any other process that later enters 7: since p; has already chosen number[i], a process
that enters 7 later must choose a number that is greater. :

6.1.3 Properties

The arguments presented here are a little trickier, because of safe registers. Instead of atomic
events for accessing registers, we must consider pairs of atomic events for the beginning and
ending of each access. This makes assertional proofs difficult, due to the large number of
states. Therefore, we will give operational proofs.

Claim 6.1 If p; is in C and p; is in the bakery, ¢ # j, then (numberli],i) < (number[j], ;)
(where the pairs are ordered lezicographically).

Proof: In loop L2, p; reads choosing[j] = 0. Thus, either p; is not in the 7; or p; is just
“setting choosing[j] (either 0 — 1 or 1 « 0).

Case 1. p; reads choosing[j] either totally before p;’s enters 7y or while p; is enterlng
T; (i.e., setting choosing[j] « 1).

In thlS case, p; chooses number[:] before p; starts maz, and thus number[i] < number(j].

Case 2. p; reads choosing|j| totally after p; exits 7; or while p; is exiting 7; (i.e., setting
choosing[j] < 0).

In this case, p; reads the correct value of number[j] in L3. Since p; is able to exit 73, we
must have (number(i],7) < (number[j], 7).

n

Corollary 6.2 The bakery algorithm satisfies mutual exclusion.
Proof: By contradiction: if two processes p; and p; are both in C, then by Claim 6.1,
we have (number(i],?) < (number[j],j) and (number[i],i) > (number(j], j) simultaneously,
which is impossible. . - n

Claim 6.3 Progress is satisfied.

Proof: All processes in 7; enter eventually 7;. In 73, the process with the lowest pair
(number(i],) may proceed unhindered. m

Claim 6.4 Lockout is not possible.
Proof: Once a process p; enters the 73, it has priority over all the processes p; that are not

in 7, at its time of entry. Only those processes that were in 72 before p; can go to C before
p;. As progress is satisfied, it will also eventually enter into C. n

il

58 | Lecture 6: September 27

Lamport’s algorithm can also handle limited failures. Specifically, failures (not in the
critical region) that put the process in the remainder region with initialized parameters are
allowed. These types of failures do not affect mutual exclusion or fairness. However, if a
failed process is allowed to restart, progress is no longer guaranteed. Consider the following
situation: p; enters the trying region and reaches L2. p, enters the trying region, and
choosing[2] « 1. At this point, the scheduler allows p; to act. choosing[2] = 1, so p;
loops at L2. p, now fails (choosing[2] « 0), restarts, and enters the trying region again
(choosing[2] « 1). Once again, p; is allowed to act and loops at L2. p; fails, restarts, and
enters 7. This procedure can repeat itself, infinitely often, and progress will be halted. If
processes are allowed to fail only once, progress is still guaranteed.

Theorem 6.5 During a normal execution in which failures (no restarts, not in the critical
region, and reinitialized variables) are allowed, if there is some process not in remainder
region that never fails, then some process eventually reaches the critical or remainder region
via e non-failing transition.

Proof: Restrict attention to that part of the execution where all processes that are going
to fail have already failed. Now the algorithm continues as before, with fewer processes. A
failed process cannot cause a non-failed process to get stuck in L2 since a failed process must -
eventually have choosing set back to 0. Likewise, it must have number set back to 0 and
thus no non-failed process can get stuck in L3. L

A major deficiency in the Bakery algorithm is the need for unbounded varlables If a
process is always in the trying region (i.e. processes cycle through the critical region and
back into the trying region, before the trying region has completely emptied), its number
will grow arbitrarily big. In addition, the use of safe registers will allow reads of number to .
be any possible integer, which can cause assignments of large numbers.

6.2 Peterson-Fischer algorithm

The code for this algorithm is located in Figure 6.3 and Figure 6.5. This algorithm keeps
the features of fair progress, mutual exclusion, and single-writer variables that Lamport’s
algorithm had, but it uses only binary-valued shared variables (as opposed to unbounded
variables) and has better failure resiliency (it allows failures to restart). Failed processes
simply return to the remainder region with reset initial variables. The fairness condition
is, thus, if some process, p, is outside R and doesn’t fail, then eventually p makes a region
change. A drawback of this algorithm is that it does require atomic registers with indivisible
and non-overlapping read and write operations.

The basic idea of this algorithm is that processes are assigned to leaves of a complete
binary tree. The processes then compete at each level to advance up the tree. Once a process

il

Peterson-Fischer algorithm | -39

Shared variables:

¢ ¢: an array indexed by {0,1} of values from {nil, T=1,F=0}, initially all nil, where
g[i] is written by p; and read by all

Notation: opp(i) = -¢ **the opponent of 7**

Code for p;
qli] — if glopp(i)] = nil then T else i @ ¢[opp(i)]
qli] « if glopp(4)] = nil then g[i] else i@q[opp(ij]
wait until glopp(i)] = nil or (i ® (q[opp(i)] # q[i]))

“**Critical region**
qt] & nil

Remainder region

Figure 6.3: Peterson-Fisher’s 2-process mutual exclusion algorithm

il

60 ' | Lecture 6: September 27

reaches the root, it enters the critical region and is removed from the competition. We begin
by first describing the competition between two nodes as they try to climb the tree.

6.2.1 The 2-Process algorithm

The algorithm works fairly simply—only po and p; compete. Upon entering 7 and checking
to see if the other process is also in 7 or C, po sets q[0] « ¢[1] which satisfies p;’s wait
condition. p; sets g[l] « —g[0] which satisfies po’s wait condition. The two conditions
obviously cannot be satisfied simultaneously. The wait condition for either process is satisfied
if the other process is in R (g[opp(?)] = nil).

To see why we need two tests of whether the opponent is in 7 or C, consider the following
scenario using only one test: ‘

steps of po steps of p;.
time reads q[1] = nil
! reads ¢[0] = nil -
sets ¢[0] = T
reads ¢[1] = nil
enters C
sets q[1] =T

reads ¢[0] = T
sees 1. @ (T # T) is satisfied
enters C

With the second test, it is impossible for any processes ¢ to enter the wait loop without
having recognized that the other process is also in C or in 7 after the first line of its code
(i.e. that g(opp(i)) # nil). At this point, it is the condition : & (¢[opp(z)] # ¢[¢]) that might
allow 7 to enter C and not the condition g[opp(z)] = nil. Hence, based on the fact that either

g(1) = ¢(0) or not, only one process can take possession of the critical region and mutual
exclusion is verified.

Consider for instance how the preceding scenario is modified with the second test:

]

Peterson-Fischer algorithm , 61

steps of po steps of p
time reads g[1] = nul
! reads ¢[0] = nzl
sets ¢[0] =T

reads g[1] = nil
reads g[1] = nil

enters C
sets q[1] =T
reads ¢[0] =T
sets g[1} =F

reads ¢{1] =F
sees 1 @ (T # F) is not satisfied
does not enter C

The 2-process algorithm satisfies fairness according to the following no-lockout condition:
Theorem 6.6 If some process p is outside R and doesn’t fail, then p eventually enters C.

Proof: When p; enters the wait loop, if glopp(?)] = nil, then p; may enter C.
If glopp(t)] # nil then either

qlopp(?)] = qlé] or qlopp(?)] # qli]

and the wait condition is satisfied for either p; or opp(p;). If the wait condition is satisfied for
opp(pi), then opp(p,) will advance to C and eventually leave C. Once opp(p;) has entered C, it
can only cause p;’s wait condition to become true: upon leaving C, it will set glopp(p;)] + nil,
and if it reenters 7, it will see that p; is waiting and defer to it. [}

6.2.2 The n-Process algorithm

‘We now generalize the algorithm to n-processes. The processes compose a tree as shown in
Figure 6.4. At each level, the 2-process algorithm is run and the winner advances to the
next level until finally the winner of the top level is allowed to enter C.

As a process advances up the playoff tree, it plays the role of po if it comes up the left
branch and p; if it comes up the right branch. Thus, the possible roles of a process are
known ahead of time, given by the function bit(z, &) (see Figure 6.5).

Also predetermined is the set of potential opponents for a process ¢ at a given level k,
denoted by opponents(i, k) - the set of processes arising from the “brother subtree”: the
subtree which has the same parent as the node (7,k). Finally, each process has an pair
(level, flag) associated with it, where level is the level of the tree at which the process is

competing (0 meaning that a process is not in 7'), and flag taking on the function of ¢[¢] in
the 2-process algorithm.

il

62 Lecture 6: September 27

level 3

(winner enters C)

level 2
level 1

level 0

(inactive) M P2 P P4 Ps Pe p7

Figure 6.4: The playoff tree for the Peterson-Fischer n-process algorithm on 8 processes.

When a process p; is ready to compete at level k, it uses the subroutine OPP(i, k) to
find its opponent. OPP(i, k) searches through the opponents(z, k) until it finds one then at
a level at least as high as k. If the process p has no such opponent or has one whose level
is k and whom it beats, it advances to the next round. Otherwise, the if-condition is not
satisfied or its opponent has already advanced above that level. The process then waits for
its if-condition to become true. '

Mutual exclusion

Theorem 6.7 The n-process algorithm satisfies mutual exclusion.

Proof: The main idea is that no two processes can be past a common opponent at the
same time—no two processes can have a common “ancestor” which they both have passed.

By contradiction: assume an execution in which both p; and p; are in C at once. Then
they both must have passed a common ancestor. Let k be the lowest level at which two
processes pass a common ancestor. Call these processes p, and p,. Assume without loss of
generality that p, had its wait condition satisfied first. At that time, p, either saw p, below
level k or saw p, at level k and beat it. Eventually thereafter, p, reaches level k and discovers
pr as its opponent. Now, as long as p, continues to identify p, as its opponent and p, remains
at a higher level or in C, p, must wait. Thus, then the only way p, can advance past k is
to identify another opponent p;. But this means that both p- and p; advanced to level &,
implying that k was not the first level at which two processes have a common ancestor: Pr
and p; came up the same branch to get to level k, and thus must have already have passed
a common ancestor at level £ — 1. This contradicts the choice of k as the lowest such level.
Thus, there can be no level £ and mutual exclusion is satisfied.]

L

Peterson-Fischer algorithm 63

Progress and no lockout

Assume a normal execution in which some process remains in 7 forever. Let P be the set of
processes that get stuck in 7. Each process in P eventually reaches some final level at which
it gets stuck; let p; be stuck at the highest such level. Then p; waits for a process p; which
is either higher than p; or at the same level with conditions favorable to p;. In the first case,
p; is not one of the stuck processes since p; is the highest stuck process and p; is higher. In
the second case, p; can advance and again is not one of the stuck processes. In either case,
p; eventually enters C and subsequently R. No further opponents can bypass p; at level &
(as for the 2-process algorithm) and p; will advance. This contradicts the assumption that
p; 1s stuck; thus, no process can be locked out.

However, it is possible for a slow process to get passed an arbitrary number of times
before making progress. Consider a process p; at level k¥ < logn. Suppose the wait condition
for p; is satisfied, but p; is slow to advance. Another process p; from the “other half” of the
tree may reach the top level before p;, and seeing no opponent, enter C. If p; is fast enough,
it could reenter the protocol and again advance to the top level before p;. It is possible for
this to happen an arbitrary number of times.

Failure resiliency

The Peterson-Fischer algorithm allows for the same type of failures as in the Bakery algorithm
(i.e. Failures occur outside the critical region, the process goes back to R, and its registers
are reset). However, unlike the Bakery algorithm, process restarts are allowed. Once a
process fails, its opponent condition to advance is satisfied. A restarted process can not
change this condition. ‘ .

The next lecture will give time bounds for the Peterson-Fisher algorithm.

64 Lecture 6: September 27

Shared variables:

e ¢: an array indexed by {0,1,...,n} of pairs (level,flag), where level is an integer.
and flag takes on values in {T,F}. Initially, ¢[¢:] = (0,F) for all i. Variable ¢[¢] is
written by p; and read by all.

Notation:

o The function bit(i, k) tells what role p; plays in level k£ competition; roles obtain-
able from binary representation. That is, bit(z, k) = bit number (logn — k + 1)
of the binary representation of z.

o Let opponents(z, k) denote all potential opponents for p; at level k.

Subroutine OPP(i,k): (Purpose: to search for oppbnent.)

for j € opponents(i, k) do

opp « q[J]

if level(opp)> k then return(opp)
return(0,F) E

Code for Pi

for k=1,...,logn do
opp— OPP(i, k) |
qli] « if level(opp) = k then (k,bit(i, k) @ flag(opp)) else (k,T)
opp— OPP(i, k)
q[i] « if level(opp) = k then (k,bit(i, k) @ flag(opp)) else q[¢]
L: opp— OPP(1, k) »
if (level(opp) = k and (bit(s, k) @ (flag(opp) = flag(q[i])))) or level(opp) > k then
goto L :
**Critical region™*

qls] — (0,F)

Remainder region

Figure 6.5: Peterson’s n-process mutual exclusion algorithm.

il

6.852 Distributed Algorithms Fall Semester, 1990 i

Lecture 7: October 2 |
Lecturer: Nancy Lynch Scribe: Rainer Gawlick’

7.1 Peterson-Fischer n-Process Algorithm (Cont.)

In the previous lecture we introduced the Peterson-Fischer tournament algorithm as a gen-
eralization of the Peterson-Fischer 2-process algorithm, and proved that it satisfied mutual
exclusion. We will now prove that the Peterson-Fischer tournament algorithm satisfies some
other desired properties, namely: progress and no lockout. We will then analyze its com-
plexity.

7.1.1 Progress and no lockout

Assume a normal execution in which some process remains in 7 forever. Let P be the set
of processes that get stuck in 7. Each process in P eventually reaches some final level at
which it gets stuck; let p; be stuck at the highest such level. Then p; waits for a process p;
which is either higher than p; or at the same level with conditions favorable to p;. In the
first case, p; is not one of the stuck processes since p; is the highest stuck process and p; is
higher, In the second case, p; can advance and again is not one of the stuck processes. In
either case, p; eventually enters C and subsequently R. No further opponents can bypass p;
at level k (same as for the 2-process algorithm) and p; will advance. This contradicts the
assumption that p; is stuck; thus, no process can be locked out.

However, it is possible for a slow process to get passed an arbitrary number of times
before making progress. Consider a process p; at level k < logn. Suppose the wait condition
for p; is satisfied, but p; is slow to advance. Another process p; from the “other half” of the
tree may reach the top level before p;, and seeing no opponent, enter C. If p; is fast enough,
it could reenter the protocol and again advance to the top level before p;. It is possible for
this to happen an arbitrary number of times.

7.1.2 Complexity Analysis

We now turn to another important aspect that we have so far overlooked in our discussion
of mutual exclusion algorithms, namely complezity analysis.

SBased on lecture notes from 1988 scribed by Azer Bestavros

65

i

66 ' | Lecture 7: October 2

7.1.3 Space Analysis

Here we are interested in the number of shared variables and the size of these variables.
For n processes, Peterson-Fischer’s tournament algorithm uses n variables. Each of these
variables might assume one out of 2logn values®. Thus O(nlogn) values are needed.

7.1.4 Time Analysis

For asynchronous algorithms, it is not obvious how time complexity should be measured.
For instance, we can’t just count the number of steps as with Turing Machines because of
the uncertainty associated with “busy-waiting” steps. Also, it is very restrictive to assume
that each step takes a fixed amount of time since this would result in limiting the possi-
ble interleavings and thus would result in time measures that work only for some possible
executions. '

A better approach would be to assume upper bounds on the time required for each step
and use these to infer upper bounds on higher level events. For instance we might assume
that all steps take time in the interval [0,a] for some constant a, and then infer an upper
bound on the time a process has to wait in the trying region in order to enter the critical
region”.

‘o For the Tournament algorithm, let a be the upper bound on the step time. We also
" need an upper bound on the time inside the critical region®. Let b be that bound.

e Let T(k) be the maximum time it takes a process® to enter C after winning at level
k , where 1 < k < logn. Solving for T'(0) gives the required upper bound since that
represents the time from when a process enters 7 to when it enters C. Moreover,
T(logn) < a, since only one step is needed to enter C after winning at the top level.
Now, in order to find T'(0), we have to find a recurrence relation for T'(k) in terms of

T(k +1).

e Suppose that p; has just won at level k, and advances to level k£ + 1. Now, p; has to
call the OPP subroutine. The maximum time it takes to complete the OPP(i,k + 1)
call is O(a2*) since for a tree of depth k + 1, p; has to check 2* leaves. Thereafter, p;
has to perform some assignments'® before it reaches the wait loop, for which two cases
can be singled out:

6That is an O(loglog(n)) bits is required per variable.

7The constant a can be different for different processes — this would complicate the analysis.

80therwise, a process could stay in the critical region for any amount of time and block other processes,
which would prevent deriving any upper bounds.

9We assume the process won’t fail.

10This requires some maximum constant time that we ignore.

L]

Peterson-Fischer n-Process Algorithm (Cont.) - 67

1. P; finds the if condition to be true the first time it tests it. Hence, p; immediately
wins at level k + 1 thus we have:

T(k) = 02"+ T(k+1)

2. P; finds the if condition to be false the first time it tests it. This means that there
is a competitor (say p;) at a level > k+ 1. P; will have to wait for at most O(2*),

since by that time p; must have reached its wait loop. Now, either p; or p; shounld
win over the other one.

2.1. If p; is the winner, it need not wait so we get
T(k) = 02"+ T(k+1)

2.2. If p; is the winner, then it needs a time O(2F) + T'(k + 1) to get to C, and
a maximum of b to get out of C. Thereafter, nothing can be blocking p; at
level k + 1. Thus: _ '

T(k)=02*)+2T(k+1)+b
: = O(2F) + 2T (k + 1),

since the constant b is absorbed in the O(2F) term.

e Taking the worst case, we end up with the following recurrence:

T(k) < O(2%) + 2T(k + 1) + b, where
‘ T(logn)<a

o Let us solve the above recurrence. Recall that a is the maximum step time. This
constant is absorbed in the OJ(2*) term in the preceding discussion.

T(0) a2’ 4+ 27(1)
a(2° + 2%) + 2°T(2)

a(2®° +22 + 24 + 2°T(3)

IA IN A

IA A

a(2° + 22 + ... 220een=1) 4 0logn (1oan)
O(n?) + O(n) = O(n?).

I

Hence we get the bound T'(0) < O(n?) on the time from when a process enters 7 to
when it enters C.

il

68 Lecture 7: October 2

7.2 Mutual Exclusion Requires n read/write Variables

The following impossibility result, due to Burns and Lynch, provides a lower bound on the
space complexity of the mutual exclusion problem in the atomic register multi-read/write
model. Specifically, Burns and Lynch show that any mutual exclusion algorithm in this
model must use at least n shared variables:

Theorem 7.1 (Burns, Lynch) Any deadlock-free mutual ezclusion algorithm (i.e., an al-
gorithm that makes progress) requires n variables in the read/write atomic register model.

It is unclear where to begin proving such a theorem, since it must hold for all algorithms
solving mutual exclusion. The intuition, difficult to make rigorous, is that if a system
uses fewer than n shared variables, processes will not be able to record and send enough
information to coordinate access to the critical resource.

Let us first consider the case were the variab!:s are single writer variables. The result is
then obvious because every process needs to be able to write something in order to convey
information to other processes.

But how can we proceed with general read write systems where each Varlable could be
written and read by any process?

The basic idea for the multi read/write case is to assume that there is an algorithm that
‘uses fewer than n shared variables and construct an incorrect execution, just working from
the problem statement (i.e., all we know is that the algorithm guarantees mutual exclusion
and progress). A write can be obliterated by being overwritten before being read by any other
process. In order to go from R to C, a process p must write to some variable that is not
covered (about to be written) by another process. This is because if it didn’t, the rest of the -
system couldn’t distinguish the configuration with p in C from another similar configuration
with p in R. But the system must act quite differently in these two situations: if p is in R,
then eventually it must let another process enter C' (to ensure progress). However, allowing
another process to enter C' would yield incorrect behavior from the configuration where p is in
C. The proof constructs an involved collection of hypothetical related executions, such that
the requirement that processes must write some variable not covered by any other processes
actually implies that there must be n separate variables.

We begin with a few definitions and assumptions to make the notion of “communicating
information” more explicit.

Without loss of generality we assume that all processes are deterministic i.e.: there is
only one locally controlled action enabled at each state, and only one possible next state for
a given state and action.

If we have a state ¢ and a sequence of process indexes h, called a schedule, there exists
a unique state ¢’ which results from running one step for a process whenever that process’
index occurs in the schedule.

L]

Mutual Exclusion Requires n read/write Variables 69

We define ¢’ = result(q, h).

Definition Suppose process p performs a write to a variable v. The write is obliterated if
another process overwrites v before v is read. ‘

An obliterated write communicates no information to the other processes in a particular
thread of execution. To make the thread of execution more explicit, we make a further
definition:

Definition Let ¢ be a state and h be a schedule. Process p; is hidden from g by h if the
original state is ¢ and if & can be written as h = h;h, such that pi is in region R after A,
and every write by p; is obliterated during h,.

If some processes are hidden in a certain schedule, other processes cannot be affected by
the values of the obliterated- writes. The following lemma makes this fact formal:

Lemma 7.2 Let h be a finite schedule, and let P be a set of processes. For some state 90,

let ¢ = result(qo, k) such that each p; € P is hidden from qo by h. Then there is some state
q' reachable from qo such that

o the values of the shared variables and the states of all processes not in P are the same
in ¢’ as in q, and

o ifp; € P, then p; isin R in¢'.

Proof: Starting in state go, run schedule A, omitting the steps of each pi € P after it reaches
its remainder region for the last time in k. (We know each eventually reaches R, since all
processes in P are hidden.) We know that all writes by p; € P are obliterated, either directly
by some process p; € P or by some other process p; € P whose writes are also either directly -
or indirectly obliterated by some process(es) not in P. Therefore, in the resulting state, the
values of the shared variables will be the same as in ¢, and the states of the processes not in
P will be the same as in q. See Figure 7.1 for a diagram. : n

During a computation, some variables may be obliterated in the next step.

Definition A variable v is covered by p; in state ¢ if p;’s next step is to write »v. That is,
pi is ready to write v from state q.

Suppose a process writes a covered variable before it enters the critical region; this write
could have disastrous consequences, since the the write could be immediately obliterated
and, due to the loss of the “message”, another process might be able to get to the critical
region. The following lemma shows that, indeed, a process must write a non-covered variable
before going to the critical region:

Lemma 7.3 Let S be a system with more than 2 processes which solves deadlock-free mutual
exclusion. Let h be a finite schedule, go a state, and ¢ = result(go,)

il

70 Lecture 7: October 2

90 o h g—all p; € P are hidden

¢—all p; € P arein R

Figure 7.1: Hidden processes do not affect other processes. Here, if p; € P are hidden during
h, then ¢ and ¢’ agree in all respects except for the local state of the processes in P.

Suppose p; is hidden in the computation from qo by h. If p; goes to its critical region
on its own (by schedule 1,1,...) from state q, then in the computation from q, p; must write
some non-covered variable (i.e., not covered by any other process in state q).

Proof: By contradiction. Suppose p; gets to the critical region on its own from ¢ without
writing a non-covered variable; let this schedule be h’. Construct a new schedule A" = hh'h;,

h R = (i,...,1) hq
do g—p; hidden p; critical q

where hy lets every other process take one step. Note that h, obhterates all writes by p;, so
p; is hidden in the computation from g¢o by h”.

Now we use Lemma 7.2: There is some ¢” reachable from go which agrees with ¢’ in the -
states of all other processes and all shared variables, but has p; is in R. Since the system is
deadlock-free, some process p; can go to its critical region from ¢” via some schedule s not
involving p;. But s applied to ¢’ also lets p; go to C, since from p;’s point of view, the state
is the same. Thus, we can get processes p; and p; in C simultaneously, a violation of mutual
exclusion.]

I

6.852 Distributed Algorithms "~ Fall Semester, 1990

Lecture 8: October 4 |
Lecturer: Nancy A. Lynch Scribe: Philippe Park!

8.1 Burns-Lynch’s read/write Lower Bound (Cont.)

Lecture 7 covered most of the initial lemmas needed to prove that n variables are needed
to provide mutual with progress exclusion for n processes in the read/write atomic register
model.

The basic strategy of the proof is to show that a process p in the remainder region must
write to some variable which is not covered before going into the critical region. If it did not
write such a variable, then we could construct an execution where it would not communicate
to the other processes that it was entering into the critical region; expressed in another way,
the rest of the system could not distinguish a configuration with p in R from one with p in
C. A fortiori, the same result would occur if the variable were obliterated before p entered
C. The terms hidden, covered, and obliterated were defined in the last lecture to make the
notion of “communicating information” more explicit.

In this lecture, we will finish the proof. The goal will be to show that if processes must
write some variable not covered by any other process to satisfy mutual exclusmn, then there
must be n separate variables covered by n processes.

We begin by introducing a new term, nullified, which is defined below We combme the
definitions of covered and hidden. We call a variable nullified by a process if the process
does not “communicate” with the other processes and covers the variable in its last step.
Formally,

Definition Let go be a state, h a finite history, and ¢ = result(go, k). A variable v is
nullified by process p; in the execution from g¢o by A if

1. p; covers v in state ¢; and

2. p; is hidden in the execution from ¢o by A.

Now we can show that, in any algorithm solving mutual exclusion, there is a finite history
yielding n distinct nullified variables. The Burns-Lynch theorem of a lower bound on the
number of shared variables will then follow immediately.

'1Based on lecture notes from 1988 scribed by Jon Riecke

71

il

72 ' | Lecture 8: October 4

Lemma 8.1 Let S be a system with more than 2 processes solving mutual exclusion with
progress. Let qo be any reachable configuration in which all processes are in R. Then for
every k, 1 < k < n, there is a finite history h using only processes p1,...,px, such that k
distinct variables are nullified by p,,...,pr in the execution from qo by h.

Proof: Proceed by induction on k. In the base case, k¥ = 1. Since S verifies progress, running
p1 alone means that p; eventually reaches C; call this finite history h’. By the covered-
variable-lemma, p; must write some non-covered variable during this execution. Stop &' just
before p; writes some variable v (covered or non-covered) and call this finite history k. In
this finite history from ¢q, p; is hidden (since no variables are written) and p; covers v in
q1 = result(qo, h). Thus, one variable is nullified in the execution from go by A.

In the induction case, assume the lemma holds for £ — 1. Then there is a finite history
ho using only py,...,pi—1 such that k — 1 distinct variables are nullified by pi,...,pr-1. Let
W1 be the set of these variables, and ¢; = result(qo, ko).

Repeating the induction, we can construct the sequence shown below, where for each #;,
there is at least one step of py,...,pi_1, and for each ¢, the k — 1 variables in W; are nullified

by p1, ..., pr-1 from giy by hio1.

he Wik W Wi hi Win
90 ' 5l 9z K Qi+y

Here is how we make the induction step work. Assume that ¢;—; is given. Assume an
execution h;_; beginning with indices 1,2,3,...,k — 1, and then let p,,..., pi_1 take steps
until they reach the remainder region. This is possible due to the progress condition. Then
use the inductive hypothesis again to run py, ..., px—1 alone until they nullify a set of distinct
variables , W;, in the execution from gq;_; by h;_;. We can argue that this is reasonable
by using an intermediate step in the following way: in the state ¢/_,, all of the processes
Pi,...,Pe—1 are in the remainder region and are hidden from ¢;_,. This implies that they
are also hidden from ¢;_;. ,

Somehow, p; must get involved in this execution so that it nullifies a distinct variable. We
will do this by contradiction. Let us start by constructing some “side branches”. (See
Figure 8.1) The side branches are finite histories s; which proceed from state ¢; and involve
only px. By the hidden-lemma, there is some state ¢’ reachable from ¢;_; such that

® py,...,pr-1 are all in R, and
o the values of all shared variables, and the state of pi, are the same in ¢’ as in g¢;.

In other words ¢’ “looks like” ¢; from the perspective of px. From ¢/, p, must be able to
reach C on its own, since the algorithm verifies progress and all processes are in R. Thus,

L]

Burns-Lynch’s read/write Lower Bound (Cont.) : 73

hioy h;
gi—1 qi gi+1
v s

D COVErs w;

Figure 8.1: The construction of side branches. Note that s; only involves process p.

pr can also reach C on its own from ¢;, since ¢; “looks like” ¢’. Call such a finite history s;.
Note that p; is trivially hidden from ¢;_; by k;_,, since we do not let it take a step during
hi-1. By the covered-variable-lemma, p; must write some variable v during the execution
from ¢; via s, where v is not covered by any process in py,...,pk-1. Thus, v € W;. Let s;
be the shortest prefix of s} where p; covers some variable w; & W;.

We’re almost done, since after running s; each of py, ..., px covers a distinct variable. We
still must show that p; is hidden. We use a combinatorial trick. Choose two different indices
¢ and j with w; = w;; we know that these indices exist by a pigeonhole argument, since we
can construct a very long chain (length > k) of the ¢,’s (see Figure 8.2).

Create a finite history %, such that

h = ho SR h,‘_ls,‘hg [P hj_.l.

9o @ Gia 6\ %iv1 | g b
’ Wi w; = w;

Figure 8.2: The construction of the finite history h. Process px covers w; = w; in the two
side branches depicted.

Note that p; could only write to the variables in W; during s;. Thus, p;y becomes hidden
during h;, since all variables in W; are covered, and p; stays hidden from A; on, since it does
not take any steps. Now w; ¢ W;, since w; = w; € Wj. Since py,...,pr—1 nullify £ — 1
distinct variables in W; during k-1, and since px nullifies w; € W;, the k processes nullify &
different variables. =

M

74 : Lecture 8: October 4

Figure 8.3: Shared Memory as one Big I/O Automaton

8.2 Test-and-Set Algorithms

We have concluded our discussion of read/wriie shared memory algorithms, and now we
move to another shared memory model called test-and-set. This is a more powerful model
where read-modify-write operations are all done atomically. This model assumes a broad
range of computation which is much more extensive than the single word comparison (i.e.
the “test”) which is normally available in today’s computers. Since this model would need
'some low-level arbitration for a real hardware implementation, providing mutual exclusion
for structures beyond simple shared memory cells might be difficult.

Now, if we consider mutual exclusion assuming the test-and-set pfimitive., we note that a
small change in the model makes a drastic difference in the kinds of impossibility results one
can get. It would seem that mutual exclusion would be trivial to show; that intuitively fair-
exclusive access to shared memory implies fair exclusive access to the critical region. But it
turns out that this assumption does not make things trivial as for instance our next lower
bounds result will demonstrate. :

Let’s begin with a brief description of our indivisible test-and-set model for accessing
shared memory. Assume that all shared memory collapses into a single shared variable.
Although this would be very difficult to model with today’s hardware, it simplifies the
mode] and makes it very powerful.

In the automaton described by figure 8.3 indivisible process steps involve arbitrary
changes to the state of p;, and the shared variable, based on their prior states. This whole
system can be modeled as one big I/O automaton as in the Burns-Lynch model with one
process per class.

In order to see how this model is different from the read and write model, consider figure
8.4.

The wait operator shown in 8.4 is a “busy” wait, continuing to check the variable v;
while the condition is true, the process executing this code doesn’t do anything. However,

L]

Test-and-Set Algorithms 75

Shared variable v: a single shared variable taking on values from {0, 1}, initially 0.

Code for p;:
waitfor v =0
vel .
Critical region
v+ 0

Remainder region

Figure 8.4: A trivial test-and-set algorithm for achieving mutual exclusion

in describing this operation, one has to be careful about the indivisibility of actions. The
variable v is repeatedly tested for value of zero. During the actual “test” operation, no other
access by other processes is permitted. After each iteration where the condition is found to
be false, the variable is released. As soon as the condition is found to be true (i.e. v=0),
then without releasing variable v, v is set to 1, and the variable is again released after the -
“set” operation.

To be explicit, we introduce the special purpose constructs lock and unlock into the
language to mark the beginning and end of the exclusive access to the shared variables.
Moreover, we redefine the waitfor C construct as follows:

while =C do unlock ; lock

The test of the while loop is done on the locked variable. Figure 8.5 shows the same algorithm
given above, now rewritten using these new constructs. Note that a process always enters
the trying region with the variable locked.

It is important to note that locks can only be placed around statements in the trymng
or exit regions, not the critical or remainder regions, since these are the program sections
where the transitions in and out of critical sections occur. In the critical section, locking a
shared variable would be forbid in an unnecessary way the other processes to take steps; in
the remainder region, a resource would be tied up when it was not being used.

Notice how a small change in the underlying model makes a drastic changes in the

i

76 _ Lecture 8: October 4

Shared variable v: a single shared variable taking on values from {0, 1}, initially 0.

Code for p;:

waitfor v =0
ve1

unlock

**Critical region*
lock

v+« 0

unlock
Remainder region

lock

*

Figure 8.5: A trivial test-and-set algorithm (rewritten)

results. For instance, using the R/W model, at least n variables were needed, whereas the
above algorithm uses only 1 variable and only 2 values.

8.2.1 Burns-Lynch’s test-and-set Lower Bound (Cont.)

In the simple algorithm given above, lockout is possible. However, we can get fairness back
by forcing FIFO behavior. This can be done by replacing the variable v with a queue. Now,
at the beginning of T, a process adds itself to the queue (atomically), and waits for its turn
to enter C. On the other hand, when leaving C, a process removes itself from the queue,
thus enabling the next process to enter C. The algorithm is simple and fast, but space-
consuming. It uses up to n shared variables, each having up to n values. Thus O(n") values
are needed. For another way to see this bound, say that a queue can have n! values. But
Stirling’s formula expresses that for any ¢, (n — €)® < n! < n™. then

One way of reducing the space requirement in the above solution is to have each process
grab a ticket as it enters T' and then waits for its turn to enter C. This solution requires a
shared variable with two values:

L]

Test-and-Set Algorithms 7

1. next_ticket, the next ticket to be issued
2. permitted_ticket, the ticket permitted to enter C

At the beginning of T, a process will have to read the shared variable to get and increment the
next_ticket field. Again, this read-compute-write is assumed to be done atomically. When,
a process gets out of C, it will have to increment the permitted_ticket field of the shared
variable. All executions are done modulo n, thus each of the two fields can assume n different
values making the space requirement O(n?). The following theorem states that n is, as a
matter of fact, a lower bound on the number of values needed to achieve mutual-exclusion,
progress, and bounded waiting'?.

Theorem 8.2 Let P be a protocol involving at least n processes, n > 1, and ¢ be any
configuration. Assume P satisfies mutual ezclusion, progress, and bounded waiting. Then,
the shared variable of P takes on at least n values.

Proof:
e Let V(q) be the values of the shared variable in state gq.

o We say that q looks like ¢’ to a process p; if:

1. V(q) = V(q'), and
2. The state of p; is the same in ¢ and ¢'.

e For a finite history k, we define result(q, k) to be the conﬁguration- that results from
applying the finite history h starting from configuration gq.

o Let ezit(q) be a finite history that would result in having all processes in R, where only
the processes not in R in configuration ¢ are allowed to appear in the finite history.
Note that by the normal operation assumption and the fact that S guarantees progress,
this finite history is always possible.

e We define enter(q, 1) to be the finite history that contains steps taken only by process
p;, starting from a configuration ¢ in which all processes are in R. Thus, p; will
eventually end up in C.

e Let go = result(q,ezxit(q)). In go all processes are in R.

o Let q; = result(qo, enter(qo,1)). In ¢, process p; is in C, whereas all other processes
are still in R.

12116 claims about how many times a process in T will be bypassed.

78 | Lecture 8: October 4

e Now, let each process pj, 2 < j < n, enter T in turn. This can be done by the following
sequence of configurations: ¢; = result(g;j-1,7), where 2 < j < n.

e We claim that V(g;) # V(g;), for 0 < i < j < n. We prove this claim by contradiction
as follows: '

— Assume that for some ¢ and j, where 0 < 7 < j < n, we have Vig) = V(g). It
follows that ¢; looks like ¢; to processes py,ps,. .., p;.

— Starting from g¢;, there exists a finite history & that yields a normal execution and
which involves only p1, ps, ..., p; and results in some process entering C infinitely
many times.

— The same finite history & when run from ¢; will make p;, p,, ..., p; run exactly the
same as before while p;;1, pit2,.. ., pn will always remain in 7. Note that, starting
from g;, this is not a normal execution, since p;11, piy2,. . ., pn are not taking steps
in h - otherwise they should eventually enter C. However, by running a sufficiently
long, but finite prefix of h from g;, it will be always possible to violate the bounded
waiting assumption of S which contradicts the basic assumption that S achieves
bounded waiting. '

e Hence V(¢;) # V(g;), for 0 < i < j < n. Thus, we need at least n values for the shared
~ variables used in S. : :

8.2.2 An uppér bound about test-and-set Algorithms

In the last section, we determined a lower bound of # on the number of values the shared
test-and-set variable had to take for any algorithm satisfying mutual exclusion and bounded
waiting. Could this lower bound be raised to Q(n?) ? Another result of Burns-Fischer-
Jackson-Lynch-Peterson shows that this is not the case: they construct an algorithm that
achives mutual exclusion and does not require this many test-and-set variables. This algo-
rithm is not of much interest per se because it is not very practical. The main interest is in
showing a counterexample to an impossibility conjecture. On the other hand this algorithm
uses only one shared variable that stores only n + 6 different values. This result, along with
the lower bound of n proven in the previous section shows that this algorithm is quite close to
optimal in terms of storage requirements among the algorithms using test and set variables.
The basic idea is illustrated in Figure 8.6.

Processes entering region T go into a “Buffer”, where they lose their relative arrival
order. They accumulate here until the “Main” section becomes empty, whereupon they all
proceed to Main at once. Here, they proceed into the critical region one at a time, in an
ordered fashion. Any process will be bypassed at most once by any other process, so that

Test-and-Set Algorithms ' ' 79

Enter one at a time

Buffer

Move all at once

Main

Enter one at a time

C

Figure 8.6: A conceptual view of the Burns, et al. algorithm for mutual exclusion.

this algorithm meets the bounded waiting condition. Mutual exclusion is ensured by the
fact that a BYE message is in the shared variable only if the critical region is free, that an
ELECT message is sent only when a BYE message has been detected, and that at most one
process at a time has access to the shared variable due to the test and set feature.

Some communication mechanism telling processes when to change regions is needed. to
make this work. ‘ _

One solution is to use the abstraction of a supervisor process. We can think of this process
as being around at all times. If Main is empty it then moves all of the processes from Buffer
to Main. Then it dispatches the processes in Main to the critical region, one at a time.

Actually, the notion of the “Buffer” and “Main” sections are only analogies. In reality,
the supervisor will not maintain a list of processes in each section, but counters buff and
main of how many processes are in each section. The processes themselves will know, by
their program counters, into which sections they fall.

Now let’s take a look at the strategy in more detail.

First, let the shared variable have two fields. One field has for range of values 0,...,n
and represents the count of the number of processes that have entered the trying region.
The other field holds one of the messages ENTER, ELECT, BYE and ACK. This implies
~an upper bound of ¢ n (¢ = 4) on the number of values taken by the shared variable.

The algorithm proceeds as follows. When a process enters 7', it increments the first field
count of the variable to inform the supervisor that a new process has entered 7', then waits
in Buffer. When the supervisor gains control of the shared variable, it can see how many
processes have entered T, since the last check. The supervisor then adds this count to its
local variable buff, and resets count in v to be 0. If Main is empty, the supervisor moves all
of the processes from Buffer to Main; if there are processes in Main, it moves each process in

L

80 ' Lecture 8: October 4

snter i lect
lect
£ X
anter ack ack bye acx

Figure 8.7: An example of a thread of messages

turn into the critical region and waits until that process announces that it has left the critical
region. All these communications are done by “sending messages” via the shared variable.
The supervisor may send the messages ENTER and ELECT to the processes: ENTER tells
a process to move from the “buffer” to the “main” sections, and ELECT tells a process to
proceed from the “main” section to its critical region. Any process waiting for a specific
message from the supervisor may pick it up as soon as it sees it in the shared variable.
The processes themiselves send ACK messages acknowledging the receipt of the ENTER and
ELECT messages, and BYE messages when they leave their critical regions.

The messages are appearing sequentially in the second field of the shared variable: each
ENTER or ELECT is followed by a corresponding ACK, and there is always a BYE in
between two ELECT. See figure 8.7 for an example of such a thread of messages.

Actually, the algorithm is optimized in order to reduce the size of the value set of the
shared variable from ¢.n to ¢ + n and get the result we promised earlier. ¢ is the number
of special messages. In the final version of the algorithm c will be 6. In this first optimized

~version the variable v has only one field and is used to communicate the thread of special
messages (at most ¢ different values) or the number of processes newly arrived in T' (at most -
n different values). We implement this in the following way. If a process p; needs to update
a count whereas the variable v contains a special message ENTER, ELECT, ACK or BYE,
p; will “steal” the message, “breaking” for a while the thread, write a 1 to v, and wait for v
to be reset to 0. Each process p; will maintain a variable in which it will keep a local copy of
any message that it steals from the shared variable. (We can check that any process cannot
have stolen two messages at a given point of the execution without having already returned

- the latter one.) Then, if p; ever reads v and sees a 0, it can return the stolen message to
v so that the thread of messages can resume. To see that p; must indeed see a 0 in v in a
bounded amount of time, note that at the time p; steals the message, the supervisor can be
doing one of three things:

1. Moving processes from the “Buffer” to the “Main” sections;
2. Moving a process from the “Main” section to the critical region; or
3. Waiting for a process to finish with the critical region.

If the supervisor is moving processes from the “Buffer” to the “Main” sections, the system
will eventually quiesce (i.e.,, no messages will be sent) when all processes but one have been
moved into the “Main” section. Then v will stay 0 until p; reads it; p; can then return the

Ll

Test-and-Set Algorithms 81

stolen message to v. A similar quiescent state will occur in the other two cases. Figure 8.8
gives code for this simplified description of the algorithm.

The algorithm requires yet one more refinement to distribute equally the role of “super-
visor” among all processors and get a truly distributed algorithm. The idea is 2 common
one in the distributed algorithms literature: distribute the job of “supervisor” among the
processes. In this algorithm, a process becomes the supervisor when it is next to enter the
critical region. Hence in the exit protocol, the current supervisor (call it supervisor 1) passes
the job of “supervisor” on to another process (call it supervisor 2) and sends it all the neces-
sary state information. This state information must be passed through the shared variable
as well. The message COUNT is used by supervisor 1 to let know supervisor 2 of the number
of other processes that are queueing in Main. There is one special case to consider if no one
is around the king (i.e., buff = main= v = 0) when time has come for him to retire from
the Critical Section. No prince can then be selected and v is set to FREE. The complete
algorithm is given in Figures 8.9 and 8.10.

8.2.3 Another Lower Bound about test-and-set Algorithms

Lower Bounds for No Lockoutlower bounds The proof that test-and-set mutual exclusion
requires n values relied upon bounded waiting; in the no-lockout case, we might need far
- fewer than n values. Another impossibility result shows that any algorithm still needs O(n)
values, although the actual number is roughly 2. There is a somewhat technical restriction in
this theorem that does not quite cover all no-lockout test-and-set algorithms: the algorithms
considered forbid processes entering in the Trying region to remember anything from prior
executions. (There is an (/) lower bound in general, a result due to Burns, Fischer,
Jackson, Lynch, and Peterson.) -

An algorithm using 2 + ¢ values can also be found for this case, using much the same
idea as in the Burns, et al. algorithm. A supervisor puts processes to sleep when there are
more than % waiting, and wakes them up when the supervisor goes to the critical region.

l

82 - Lecture 8: October 4

Values for shared var}iable v: ENTER, ELECT, ACK, BYE
Notation: Let A denote the set {0,1,...}.

Process Protocol: With local variable m

ifveNthenve—v+1
else [m « v; v « 1; waitfor v = 0; v « m;]

waitfor v = ENTER; v « ACK; ** Buffer **
waitfor v = ELECT; v «— ACK; ** Main **
unlock;

** Critical Section **

waitfor v = 0; v — BYE;

** Remainder Region **
~ Supervisor Protocol: With local variables main, buff

L: if main = 0 then ** Move processes from buffer to main: **
while buff + v > 0 do

buff —buff +v — 1; v «— ENTER; main «—main + 1;
while v # ACK do ’

if v € M then

buff —buff +v; v « 0;

unlock; lock;

v« 0;

** Move processes, one at a time, to critical region: **
b b

while main > 0 do
main —main —1; v «— ELECT;
while v # ACK do
if v € A then
buff «buff +v; v « 0;
unlock; lock;
while v # BYE do
if v € N then [buff —buff +v; v « 0;]
unlock; lock;
goto L;

Figure 8.8: The Burns et al. test-and-set mutual exclusion algorithm in simplified form.

[]

Test-and-Set Algorithms

Values for shared variable v: FREE, ENTER, ELECT, ACK, COUNT, BYE
Local variables: m, main, buff

Trying protocol:
if v = FREE then v « 0
else ,
ifve Nthen v —v+1
else [m « v; v « 1; waitfor v = 0; v « m; m « 0;]

waitfor v = ENTER; v « ACK; ** Buffer **
waitfor v = ELECT; v «— ACK; ** Main **
while v # BYE do ** Receive Counts **

if v € M then [buff —buff +v; v « 0;)
if v = COUNT then [main «main +1; v « ACK;]
unlock; lock;
v 0
unlock;

** Critical Section **

lock;

Figure 8.9: Burns, et al. Mutual Exclusion Algorithm, trying protocol.

83

u

84 ' Lecture 8: October 4

Exit Protocol:

if main = buff = v = 0 then v — FREE
else
if main = 0 then ** Move processes from buffer to main:
while buff + v > 0 do
buff «—buff +v — 1; v «— ENTER; main «—main + 1;
while v # ACK do
if v € A then
buff —buff +v; v « 0;
unlock; lock;
v 0

%%

** Elect new supervisor: **

buff —buff +v; v «— ELECT; main «main —1;
while v # ACK do
if v € A then
buff «buff +v; v « 0;
unlock; lock;

** Send counts: **

while main > 0 do
v «— COUNT; main «main —1; waitfor v = ACK;
v «—buff; :
waitfor v = 0; v «— BYE;
unlock; ‘

** Remainder region **
lock;
Figure 8.10: Burns, et al. Mutual Exclusion Algorithm, exit protocol

6.852 Distributed Algorithms Fall Semester, 1990
Lecture 9: October 12

Lecturer: Isaac Saias Scribe: Roberto Segala'®

Until this point in the course, all of the algorithms we have studied have been determin-
istic algorithms, algorithms in which the current local state of a processor (possibly together
with the shared memory) uniquely determines the next action the process will perforrn and
hence uniquely determines the processor’s next state. This lecture introduces a new class
of algorithms called randomized algorithms, in which the current local state of a processor
determines only a set of possible next states, and in which a process chooses its next state
by selecting one of these possible next states at random according to some probability dis-
tribution. Most frequently a processor’s current state determines a set of only two possible
next states and the process chooses its next state by flipping a fair coin, choosing one state
if the outcome of the coin toss is heads and choosing the other if the outcome is tails. This
simple but surprisingly powerful idea of allowing processes to flip coins during computation
was first introduced to distributed computing by Michael Rabin. In this lecture, we study
his randomized algorithm for mutual exclusion [Rabin82].

Many things have happened since the lecture has been given. In his original proof Rabin
had neither provided a formal statement of the correctness statement nor a proof for it. In
this course we actually attempted to fill in the gaps and provide a mathematically complete
analysis of the algorithm. By the time of the lecture we had already discovered a problem
with the strong correctness version proposed by Rabin. (His statement corresponds to our
Theorem of page 95 where c/n is replaced with ¢/m.) Since then we discovered another
problem which invalidates the weaker result ¢/n that we give. (We have been able to prove
‘that the adversary is actually so strong that it can lockout up to a linear fraction of the
number of the processes with a probability exponentially close to one.) The problem involved
is of a very subtle nature and is due in essence to the fact that the probability measure
involved in the no-lockout statement is partially controlled by the adversary.

We present nevertheless the notes of the class as it was taught: the techniques involved
are still very useful and by the time this was written even Rabin was unaware of the problem!

A complete and (correct) analysis is presented in the MIT Technical Report:
MIT/LCS/TM-462.

13Based on lecture notes from 1988 scribed by Mark Tuttle

85

L

86 Lecture 9: October 12

9.1 Randomized Algorithms

Whenever we prove a lower bound for a problem in this class, we do so by first assuming the
existence of a solution consuming less of a resource than is demanded by the lower bound, and
then constructing a strange execution of this algorithm that violates one of the problem’s
correctness conditions; for example, we might construct an execution in which a process
takes its steps only when certain shared variables are set to certain unlucky values that keep
the process from making any progress during the execution. The construction of such an
execution is facilitated by the fact that a processor’s next state is completely determined
by its local state and the shared memory: we show that, starting from a given global state,
it is possible to schedule process steps in such a way that the system must return to this
global state, resulting in an undesirable infinite looping behavior. Sometimes, however, this
cycle can be broken if we allow processes to flip coins as part of their computation. This is
one powerful feature of randomized algorithms. Furthermore, it is natural to believe that
these strange executions constructed during lower bound proofs are extremely unlikely to
occur in practice, and on many occasions we are willing to accept an algorithm that makes
mistakes as long as it behaves correctly “most of the time.” A second powerful feature of
randomized algorithms is that by allowing processes to flip coins during computation we are
able to impose a natural probability distribution on the set of executions of the algorithm
and make formally precise this idea that the algorithm behaves correctly “most of the time.”
There are, for example, randomized algorithms for mutual exclusion that on rare occasions
violate the no lockout condition, but for which we can prove that “with probability 1, any
process in its trying region will eventually enter its critical region.” :

Making probabilistic statements about randomized algorithms, however, is often very
difficult. This difficulty has two aspects: the first difficulty is the definition of the probability-
space underlying the statement, and the second difficulty is the formulation of the statement
itself.

Probabilistic statements like “the probability that a toss of a fair coin results in heads
is %” only make sense in the context of a probability space. A probability space consists
of a sample space and a probability measure assigning probabilities to various subsets of
the space. For example, in the preceding statement, the sample space might be the set
{H T} consisting of the two outcomes of the coin toss, and the probability measure might
assign probability 1 to each event {H} and {T} that the outcome of the toss is heads or
tails, respectively. Smce the probability space underlying a probabilistic statement is usually
clear from context, we are often quite sloppy about defining the probability space. When
making probabilistic statements about randomized algorithms, however, subtle changes in
the probability space can often lead to important differences in the meaning of the statement,
so it is important to define the probability spaces carefully.

Let us consider the definition of a probability space acceptable for use when making
probabilistic statements about a randomized algorithm. Suppose we take as the sample space

!

Randomized Algorithms 87

the set of all possible executions of the algorithm, and let us consider the problem of defining
an appropriate probability measure on this set of executions. Given a particular execution,
how do we determine its probability of occurring? Notice that this execution is uniquely
determined by two things: the schedule of process steps occurring during the execution, and
the sequence of coins flipped by the processes during the execution. Notice also that if we
assign to every execution a probability of occurring, then conditional probability induces a
natural probability distribution on the set of possible schedules and on the set of possible
coin flip sequences.

While it is natural to assign a probability to a sequence of coin flips (“the probability
of two heads in a row is }”), is it natural to assign a probability to a schedule of process
steps? We often think of the choice of the next process to take its step as a nondeterministic
choice, but it might initially seem natural to assume that all schedules are equally likely.
Unfortunately this may result in a statement that is too weak to be of any general interest:
since an operating system may use a particular scheduling algorithm that may guarantee
that certain schedules will never occur, a result describing the behavior of the algorithm
when all schedules are equally likely will give us no information about the behavmr of the
algorithm running under such an operating system. :

To avoid the problem of assigning probabilities to schedules, we often assume that the
schedule is under the control of an adversary that determines the order in which processes
take steps. In general, we let the adversary control those factors (such as the processes’ initial
input) that can influence an execution but to which we do not want to assign -a probability
distribution. The execution of the protocol is an interaction (a game) between the processes
and the adversary. We will see below why this is a solution to our problem.

Notice that this solution has its own headaches, since now we must formally define what
an adversary is. What information is the adversary allowed to use when it chooses the next -
process to take its step: can it use both a processor’s local state and the shared memory,
can it use only the shared rnemory, can it use the sequence of coins processes have flipped so
far, can it use only the “success” or “failure” of a processor’s last attempt to make progress
(e.g., whether or not it entered the critical region), etc.? When is the adversary allowed
to choose the next process to take its step: can it make the choice interactively during the
execution, or must it choose the entire schedule at the beginning of the execution before
any process has taken its first step (the first is clearly a more powerful form of adversary -
than the second)? Can the adversary be viewed as a deterministic algorithm, a probabilistic
algorithm, a nondeterministic algorithm, etc.? All of these question must be answered.

Let us suppose we have answered these questions, and let us see why the definition of
an adversary is useful. Notice that if the adversary is a deterministic algorithm, then an
execution of a protocol P under the control of an adversary A is determined uniquely by the
sequence of coins flipped during the execution, and we know how to assign probabilities to
sequences of coin flips. Thus, having defined an adversary, instead of making statements like

“condition C holds with probability 1” (where, as noted above, the underlying probability

Hl

88 Lecture 9: October 12

distribution on executions must implicitly impose a probability distribution on the set of
possible adversaries), we make statements like “for every adversary A, condition C holds
with probability 1.” What is the probability distribution underlying such a statement?
Notice that if we define for every adversary A a sample space consisting of all executions of
protocol P under the control of adversary A, then every execution in the space is uniquely
determined by the coin flip sequence appearing in the execution. It is very natural to define
a probability measure on this space that assigns to every set of executions the probability of
the coin flip sequences that appear in the executions in this set of executions. Denoting the
resulting probability space by P(A), the statement “for every adversary A, condition C holds
with probability 1” means that “for every adversary A, condition C holds with probability 1
in P(A).”

In addition to the definition of the underlying probability space, we also mentioned that
a second difficulty with making probabilistic statements about randomized algorithms is
in the formulation of the statement itself. This is usually due to the ambiguity of the
English language. For example, the statements “with probability p, if condition C; holds
then condition C; holds” and “if condition C; holds, then with probability 1 condition Cs
holds” could be interpreted as having very different meanings. Recall that the implication
“X D Y” means “either =X holds or Y holds.” The first condition, therefore, could be
true even though C; is always false simply because —~C} holds with overwhelming probability
(e.g., with probability at least p). The second condition seems to be say that for a fraction p
of the times C; holds, C; holds as well (i.e., it could be interpreted as a statement about
conditional probability). Finally one point of confusion for those unfamiliar with probability
is that “with probability 1” does not necessarily mean “with certainty.” Consider the game
in which a player tosses a fair coin repeatedly and wins as soon as one of the tosses results
in heads. Notice that the player wins in every play of the game except on that rare occasion
when the player tosses nothing but tails forever. This happens, of course, with probability 0.
The player therefore wins the game with probability 1 even though there is one rare instance
in which the player loses. '

9.2 Rabin’s Mutual Exclusion Algorithm

Having come to terms with some of the subtleties of randomized algorithms, let us take a look
at Michael Rabin’s randomized algorithm for mutual exclusion [Rabin82]. This algorithm
solves a probabilistic version of the no-lockout mutual exclusion problem using a test-and-
set primitive on a shared variable with (logn) values. Recall that [BurnsJLFP82] proves
a lower bound of f)(n) on the number of values the shared variable must assume to solve
the same problem deterministically. Rabin’s algorithm is an example of how randomized
algorithms are sometimes provably better than deterministic algorithms. Rabin’s algorithm
is also an example of how randomized algorithms are often simpler to state than deterministic

L

Rabin’s Mutual Exclusion Algorithm 89

algorithms for the same problem, although their analysis can be much more difficult.

The basic idea of Rabin’s algorithm is that each round of competition for entry to the
critical region consists of a lottery in which each process draws a number at random, and
the process drawing the largest number is allowed to entry the critical region. The a]gorlthm
uses a test-and-set primitive on a shared variable V = (S, B, R) with three fields:

1. § € {0,1} is used as a semaphore to ensure mutual exclusion as in simple mutual
exclusion algorithms where a process enters the critical region only when the semaphore
is set to 0, sets the semaphore to 1 when entering the critical region, and resets the
semaphore to 0 when leaving;

2. B € {0,...,b} is used to post the largest number drawn by a process in the current
lottery for entrance to the critical region; and

3. Re€{0,...,r} is used to post a round number for the current round of competltxon
for entry to the critical region.

To establish the (logn) bound on the number of values assumed by V, Rabin takes b to be
[logn] + 5 and r to be a small constant such as 99.

The algorithm itself appears in Figure 9.1. To enter the critical region, process p; chooses
a lottery number b; from {1,2,...,b} at random according to the probability dlstnbutlon

. ()’7 if1<3<b-1
Pr[B: =] ={ (Gt ifj =0

Equivalently, p; chooses B; by repeatedly flipping a fair coin, counting the number of times
the coin is flipped until it comes up heads, and settmg B; to the number of the flip that came
up heads. Since, B; must assume values in {1,..., b}, p; sets B; to b if the coin does not come
up heads within K flips (that is, if the coin comes up tails K flips in a row). Having chosen
its lottery number B;, p; updates the maximum lottery number chosen by a process during
the current round, a value posted in B, by setting B to the maximum of B; and B. The
process then determines whether it has won the lottery: if the mutual exclusion semaphore
S is set to 0 and p;’s lottery number B; is the maximum lottery number B chosen during the
current round, p; sets the semaphore S to 1 and enters the critical region. For the sake of
other processes competing for the chance to be the next to enter the critical region, p; resets
the maximum lottery number B to 0 before entering. Upon leaving the critical region, p;
resets the mutual exclusion semaphore S to 0 to allow other processes to enter. This is the
essence of the algorithm. Since, however, p; should play the lottery at most once per round,

a round number for each round of competition is posted in R to help processes distinguish
between rounds. The round number for any given round is chosen a random from {0,...,7}
by the winner of the previous round as it enters the critical region . Process p; records the

14Note that we have modified the code in a minor way to make the analysis uniform: in our version of the
algorithm the round number is initialized to random.

t}

90 ’ | Lecture 9: October 12

Shared variable: V = (S, B, R), where _

S € {0,1}, initially 0 ** semaphore **
B € {0,1,...,[logn] + 5}, initially 0 ** posted number **
R €{0,1,...,99}, initially random ** round number **

Local variables: Vi,

B; is the chosen number of p;, initially 0
R; is the round number of lottery in which p; is currently participating, initially 1

Code for p;:

while V # (0,B;,R;)) do ** if not winner at same time C is available **
if (V.R # R;) or (V.B < B;) then = ** not yet participated in lottery **
B; — random .
V.B + maz(V.B, B;)
"R, <« V.R
unlock; lock;
V « (1,0, random)
unlock;

** Critical Region **

lock;

V.S 0
R, — 1 -
B,'<—0

unlock;

** Remainder Region **

1ock;

Figure 9.1: Rabin’s randomized mutual exclusion algorithm.

1

Rabin’s Mutual Exclusion Algorithm _ 91

current round number R in r; when it chooses B;. Suppose p; has chosen a ticket during
the current round (that is, p; chooses B; after the last process to enter the critical region
has done so). Then since B and R are reset only when a process enters the critical region,
we must have (i) B; < B, since p; sets B to the maximum of B; and B when it chooses B;,
and (ii) r; = R, since p; sets r; to the value of R when it chooses B;. Since p; should play
the lottery at most once per round, p; checks that at least one of these conditions is false
before choosing a new lottery number. To increase its confidence that it has actually won
the current lottery (and not a past lottery) when it enters the critical region, p; checks that
R = r; before entering the critical region.

Note that a process i might enter the Trying region with its round number R; being equal
to V.R, and with its lottery number B; being equal to V.B at its time of entry in T. In some
sense, the new comer ¢ then “steals” the success from a previous competitor waiting to be
called again by the scheduler.

So far we have described a solution to a problem we have not defined. It is easy to see
that Rabin’s algorithm satisfies mutual exclusion since we are using a semaphore to guard
access to the critical region, and that Rabin’s algorithm guarantees progress since some
process wins every round and is able to proceed to the critical region. Neither of these
statements is a probabilistic statement. The algorithm also satisfies a probabilistic version
of no lockout saying roughly that if a process in its trying region participates in round k,
then with probability at least ¢/n it will enter its critical region in round & (here c is some
constant). o :

Before making this statement precise, however, we must define the adversary (in a way
that depends only on our model of computation, and not on Rabin’s particular mutual exclu-
sion algorithm). In our case, the adversary will be required to choose the next process allowed
to take a step as a deterministic function of the sequence of past processes’ steps and region
changes. A run is a finite or infinite sequence of the form ¢;(old;, new,),i3(old;, news,),...
‘where ¢; denotes an index of a process p;; and (old;, new;) denotes a couple of regions (e.g.
(Try;, Try;) or (Try;, Crit;)). Such a run is said to be the run of an execution if ¢; denotes
the process p;; that takes the jth step in the execution and (old;, new;) denotes the region
change old; — new; process p;; undergoes during this step in the execution. The run of a
finite prefix of an execution is defined analogously. If a run r is the run of an execution e or
if r is the run of a finite prefix of e, then we say that e is compatible with r. Notice that there
may be many executions compatible with a given run. An adversary is a mapping A from
the set of finite runs to the set {1,...,n} determining what process is to take its next step
as a function of the current prefix of the current run. A run i;(old;, new,), i;(oldz, new,), ...
is said to be compatible with an adversary A if Afi;(old,new,),...,7;(old;, new;)] = i;4; for
every j. An adversary A is said to be normal if for every infinite run compatible with A and
every processor p; the following condition holds: if the last occurrence of j appears in the

92 Lecture 9;: October 12

run as i, then new; = Remainder (that is, if p; takes only a finite number of steps, then its
last step leaves it in the remainder region).

As previously mentioned, the probabilistic version of the no lockout condition satisfied
by Rabin’s algorithm essentially says that if process p; participates in round k, then p; enters
the critical region in round k with probability at least ¢/n. This makes some sense since each
process playing the lottery is equally likely to win, and hence each process playing the lottery
should have roughly 1/n probability of winning and entering the critical region. To make
this statement precise, we must provide a definition of participation and of a round. Again,
these definitions must depend only on the model of computation, and not on Rabin’s mutual
exclusion algorithm. We define a round of an execution to be a sequence of processor steps
from the time one process enters its critical region until the time the next process enters its
critical region; formally, a round of an execution is a maximal execution fragment for the
given execution containing one transition Try — Critical at the end of the execution fragment
and containing no other transition Try — Critical. We say that a process p; participates in
a round if a transition Try — Critical or Remai; der — Try or Try — Try by p; appears in
that round. We say that a process p; participates in a round if a transition Try — Critical
or Remainder — Try or Try — Try by p; appears in that round.

The statement of the no lockout condition is as follows:

Theorem 9.1 Let k > 1. For every normal adversary A and every (k — 1)-round run «
.compatible with A, the probability that p; enters the critical region in round k, given that p;
participates in round k of an erecution compatible with «, is at least c/n for some constant
c.

For simplicity, from now on we will refer to process p; as 1.

Let us reiterate the meaning of this statement. Choose a normal adversary A, and.
consider the probability space of all runs of Rabin’s algorithm with the adversary A. Let
Wi(k) be the set of executions in which processor : enters the critical region in round k,
and let B(a,1,k) be the set of all executions compatible with run « in which ¢ partici-
pates in round k. For every k, every (k — 1)-round run o compatible with A, and every ¢z,
Pr[Wi(k) | B(a,i, k)| = c/n.

Fix b = [logn]+5. Let A be anormal adversary, (p(k))%2; an infinite sequence of numbers
in {0,...,99} and let (Bi(k))2,, ¢ = 1,...,n be n infinite sequences of numbers in {1, ...,}.
Then we define Ezeca(p, B1,. .-, 0x) to be the execution of the algorithm with adversary A,
in which the successive choices of round numbers are drawn from p and the successive choices
of the B;’s are drawn from B;. More specifically, the inspection of the algorithm shows that
each processor ¢ participating in a round k draws a new lottery number at most once during
that round. If it does, we can think of it using B;(k) for that purpose. In the same way, the
algorithm uses p(k) as the round number for round k; for k = 1 this number is chosen in the
initialization, while for k¥ > 2 it is chosen at the very end of round (k — 1) by the processor
that wins round k£ — 1.

k|

Rabin’s Mutual Exclusion Algorithm 93

For any given execution w we will consider various quantities defined in terms of the
values of the local and shared variables of the algorithm. Let X be such a variable. We will
denote by X(k,w) the value in variable X just prior to the last step (Try — Critical) of
round k of execution w. When no confusion is likely, we will omit the parameter w, writing,
for example, R(k) in place of R(k,w). Special cases of X that we will use are R, R;, B and
B;, where the subscript ¢ ranges over 1,...,n.

Let’s reiterate the meanings of all these variables.

e R(k) is the round number used during round k.
e Ri(k) is the round number process ¢ ends up with at the end of round %.

& Bj(k) represents the lottery number process ends up with at the end of round k; it is
conceivable that process ¢ does not set B;(k) to 8;(k) (so that B;(k) = Bi(k—1)), even
if it participates in round k. This explains why we have chosen a different notation
Bi(k) to deal with the actual lottery numbers.

e B(k) represents the lottery value of the process that ends up winning round k. Recall
that this winning process might not be the one that last updated B by doing V.B «
maz(V.B, B;).

The convention of denoting X (k) the value of variable X by the end of round & can be
extended to variables that are not defined only in terms of the value of the local program
variables at this time. For instance N (k) will represent the number of processes participating
in round k. Note that this quantity is not completely in the control of the scheduler if this
scheduler give steps to processors not already in the trying region while the semaphore V.5 -
is equal to 0. For instance the scheduler cannot ensure with certainty that more then 2
processes enter in the Trying region at this point: the first process doing so could go right
through into the critical region! ‘ '

Let’s introduce and define also some events that will appear in the course of the analysis.

e For each 7 and k we can define New;(k) = {p; chooses a new value during round k}

o For each k define Allnew(k) = {All the processes j participating in round & chose a
“new” value Bj(k) during round k}. Allnew(k) is the event where all participating
processes j verify that (V.R # R;(k — 1)) or (V.B < B;(k — 1)) at their first step
within round %.

o Define also U(k) (U stands for Uniquemax) to be the event: {The number of j’s
participating in round k such that B;(k) = B(k) is one}. U(k) is the event where at
most one process ends up with the highest lottery value in round k.

Hl

94 ‘ Lecture 9: October 12

Call iy(k,w) = 4,i2(k,w),...,eN(kw)(k,w) the indices of the processors participating in
round k of execution w. Then the preceding events are related by

N(k)
Allnew(k) =) New;, (k)
=1

Let us now turn to the probabilistic aspect of the model, introduce the random inputs of
the algorithm and discuss the probability induced on the space Ezeca(p, fi,.-..,0Bn)

The sequence p is obtained as a sequence of iid (independent identically distributed) uni-
form random variables, the sequences (;(k))3, are constructed as sequences of iid truncated
exponential random variables:

Prlp(k)=1] = & 0<1<99,
L if1<i<b
Prlpik) =1] = {?1 it1=b,

For any given adversary, the product measures controlling p and the 5;’s then endow the
set of executions with a probability measure. The quantities N(k), R(k), B(k), Ri(k)... can
then be viewed as random variables, and the events U(k), Allnew(k), New;(k), previously
defined can be viewed as random events.

The R(k),k =1... are iid, since each R(k) is chosen to equal p(k) and the p(k)’s are iid.
.. The random vanables B;(k) do not have the same distribution as the B,(k) In partlcular
the B;(k)’s are not iid whereas the S3;(k) are. -

Note that the variables (B;(k))s* and (R;(k))$ for arbitrary i and j’s are not mdependent

The analysis of the algorithm will also make use of the iid random variables p, i = 1 n,
taking value in the set of integers and whose distribution is given by

me:Q:%z:Lz“

The variables G8/(k) can be realized as the number of consecutive (fair) coin flips that
one has to wait for in order to get a head. The random variables 3; have the same law as

Min(B,b) = B/ A b.

Even though the underlying probability space we begin working on is the space of execu-
tions, we will be able by successive conditionings to reduce the analysis to the independent
quantities §;, 8! and p.

il

Rabin’s Mutual Exclusion Algorithm 95
Let’s restate Rabin’s theorem in terms of our notations.

Theorem There exists a universal (i.e. independent of k and n) constant ¢ such that for
every normal adversary A, every (k—1)-round run o compatible with A, and every ¢ and m,

Pr[Wi(k) | B(er, pi, k)] = ¢/n.

‘Note that the previous theorem provides a lower bound of c¢/n instead of the stronger
one ¢/m claimed by Rabin.

Proof:

In the rest of this writeup k,7,m and a will be fixed quantities and the probability
space that we will consider will be the space of executions Ezecs under the probability

Pr[| B(a,pi, k).
In round k, the winning process chooses a new lottery value or keeps an old one (this

is a tautology!). By restricting our observation to the event New;(k) that we previously
introduced we can write

Pr[Wi(k) | B(aypis k)] 2 Pr[Wilk), New.(k) | B(a, pi, k)]
= Pr[New;(k) | B(a,p:, k)]
Pr[Wi(k) | New;(k) B(a,p;, k)]

From the code we have that a process 3 participating in round k chooses a new value if
R(k) # Ri(k —1) or V.B < B;(k —1). We consider here V.B at the point of the execution
within round k at which p; makes its first test on the locked shared variable V. (Note that
the set of processes participating in round k is exactly the set of processes that go at least

once through the while loop of their code during round k. Recall also that V.B grows within

round & from the value 0 it takes at the beginning of the round to the value B (k) it assumes
at the end.) These considerations allow us to write

Pr[New;(k) | B(a, pi, k)| =
Pr[R(k) # Ri(k — 1)U B(t) < Bi(k — 1) | B(a, ps, k)]
> Pr[R(k) # Ri(k — 1) | B(a, pi k)] = .99,
where the last equality is formally established in the following claim

Claim 9.2

L

96 ' Lecture 9: October 12

Pr[R(k) # Ri(k —1) | B(a,pi, k)] = .99.
Proof:

Pr[R(k) # Ri(k—1) | B(a,pi, k)|
= S Pr[R(k) # Ri(k—1) | Ri(k = 1) =7r|
Pr[Ri(k —1) = r | B(a,pi, k)]
= 993 Pr[Ri(k —1) =r | B(a,pi, k)| = .99,

where the first equality comes from the fact that the random variable R(k) is independent
of all the past i.e. of the p(t) and B;(t);t=1,...,k—1,7=1,...,n and hence independent
of B(a,pi, k); the second equality comes from the fact that the law of R(k) is uniform..
’ |
Thus,

Pr[Wi(k) | B(a,pi, k)] > .99 Pr[Wi(k) | New(k), B(a, pi, k)|.
The following result is established in the Appendix. "
.Ciaim 9.3
Vi=1,...,n Vi=1,...,b

[Pr[B;(k) 2 11 Blo i)] < Peg; > 1]

[Pr[Bj(k) > [| ~New;(k), B(a, pi, k)] < Pr[8; > z]]
Lemma 9.4

Pr[Wi(k) | New;(k), B(c, pi, k)] 2 Pr [Wg(k)IAllnew(k), B(c, pi, k)]

Proof:

Among the m processes that participate in round k, some will have chosen a new lottery
number and the others (which have necessarily last played and lost in a round with the same
round number R), will have kept their old lottery value. Since these processes have lost
previous rounds, intuitively their numbers must tend to be rather small. That is,

Pr[B;(k) > 1| =Newi(k), Ba, pi, k)] < Pr[B;(k) 2 1

L]

Rabin’s Mutual Exclusion Algorithm _ 97

or equivalently, as we saw in the previous claim,
Pr([B;(k) > 1| B, pi, k)] < Pr[8; > 1.

Hence these processes constitute less of a challenge for i. conditioning on Allnew(k)
ensures that all the other m — 1 processes participating to round k constitute a “real”
challenge to 7 by choosing a new lottery number and not keeping an old lottery number. m

This lemma allows us to write

Pr [W;(k) | New;(k), B(a, pi, k)] Pr|W;(k)| Allnew(k), B(a, pi, k)|

Pr\Wi(k),U(k) | Allnew(k), B{a, pi, k)
= Pr|\Wi(k) | U(k), Allnew(k), B(a, pi, k)
Pr[U(k) | Allnew(k), B(a, pi, k)],

where the last equality comes from conditioning on the event U(k).

The successive conditionings we did so far in the proof now allow us to tackle the prob-
ability of the event Wi(k). The main point is that we reduced by conditioning the analysis
within the event U(k). The use of this fact is made precise in the coming proof. On the other
hand, the event Allnew(k) has actually been introduced only for the sake of convenience in

the computations: handling the independent variables §;(k) is easier then the handling of
the B;(k).

Lemma 9.5

Pr[Wi(k) | U(k), Allnew(k), B(a, pi, k)| > 1/n.

Proof:

In U(k), the event W;(k) is the same as the event { B;(k) is (the unique) maximum among
all the values B;(k) drawn by the participants of round k}. One crucial consequence of this
- fact is that in U(k), the event W;(k) depends only of the values of the local variables B;(k);
J = 1,...,n. Recall that Allnew(k) represent the set of executions where in round k all
the values of the local variables B; and R; of the participating processes are erased and
replaced with new independent values drawn from the sequences $3; and p;. On the other

hand B(a,pi, k) is a set of executions described in terms of conditions involving only the
values of the local variables up to round k — 1. These facts imply that

Pr(Wi(k) | U(k), Allnew(k), B(a, pi, k)| =
Pr[W;(k) | U(k), Allnew(k), ¢ participates in round k].

Now, the chances for process ¢ to win in round k are minimal when the number of partici-
pating processes (the opponents of ¢) is maximal i.e. equal to n. This is expressed by

il

98 Lecture 9: October 12
Pr[Wi(k) | U(k), Allnew(k) | > Pr[Wi(k) | U(k), Allnew(k), M (k) = n).

But in U(k) N Allnew(k) N {M(k) = n} the sequence (By(k),..., Bn(k)) is uniformly dis-
tributed; as a consequence the variable is maximum among all the variables B;(k);j =
1,...,n with probability 1/n. ' »
We are now left with the task of finding a lower bound for Pr [U(k) | Allnew(k), B(«, p;, k)] .
But,
Pr[U(k) | Allnew(k), B(a, pi k)| =1- Pr[ﬂU(k)|A11new(‘k),'B(a,p,-,k)],

and

-~ Pr[-U(k) | Allnew(k), B(a, pi, k)] =
Pr[-U(k), B(k) = b| Allnew(k), B(a, pi, k), M(k) = m]| +
Pr[-~U(k), B(k) < b| Allnew(k), B(a, pi, k), M(k) = m).

We will estimate these two terms with the help of the two following lemmas.
Lemma 9.6

Pr[-U(k), B(k) = b| Allnew(k), B(a, pi, k)] < 1/16

Proof: We will actually establish the following fact

Pr[-U(k), B(k) = b | Allnew(k), Bla, pis k), M(k) = m] < 1/16.

The result stated in the lemma will then follow by integration on m.

Let 73 = 17,12. m the processes having participated in the round. Note that these
indices are random varlables except i; = i that is fixed by the conditioning on B(e, p;, k).
Then

Pr[B(k) = b,~U (k)| Allnew(k), B(a, pi, k), M(k) = m|
< Pr[B(k) = b|Allnew(k), B(a, pi, k), M(k) = m]
= Pr[UL.{B;, = b}|Allnew(k), B(a, pi, k), M(k) = m].
But, on {1,. — 1}, the law of (B;,(k));=1,...m conditioned on Allnew(k), is the law

of (3;(k))j=1,..m or of (Bi(k))j=1,..m- (Recall that a priori the B;(k) are not independent
whereas the B;(k) are independent identically distributed varlables } This leads to:

L]

Rabin’s Mutual Exclusion Algorithm 99

Pr [Q{B;,-(k)ﬂ}[Aunew(k),B(a,pg,k),M(k)=m} = PeUm Bk =8)]
= 1P| Bk < B)]
= 1-TIPe[B(k) < Y

J=1

<i-(-d)sd
= 16n) — 16"
The third equality comes from the independence of the variables j;, the fourth from the
fact that they have the same law; the last inequality is obtained substituting 1 for n since

the function z — 1 — (1 — ;=) is monotonically decreasing on [1,00[. This last bound “is
universal” in n whereas the approximation lim ¢(z) used by Rabin is valid only for big n’s.

L
' We now turn to the other term necessary for the evaluation of

Pr[~U(k) | Allnew(k), B(e, pi, k).]
Lemma 9.7
Pr[B(k) < b,~U(k) | Allnew(k), B(a, p;,k)] <1/3.
Proof: As in the previous lemma, we will actually establish the slightly stronger result

Pr [B(k) < b,~U(k) | Allnew(k), B(a, pi, k), M(k) = m] <1/3.

Pr[B(k) < b,~U(k)|Allnew(k), B(a, pg,k)] - Pr[The highest value of B, ...,B;, is

attained by at least two values and this value is less then b | Allnew(k), B(«, p;, k)]

As before, calling 7; = ¢,13,...,%,, the random indices of the processes participating in
round k, we can use the fact that the conditional law of the B;,(k),j = 1,...,m (conditioned
on the event Allnew(k)) is the law of 8],..., 8] , and rewrite the preceding into:

Pr[Max{g;,..., B! } is attained by at least two values and this value is less then b].
This last expression is upper-bounded by

Hl

100 Lecture 9: October 12

Pr[Max{8,,...,B. } is attained by at least two values]

The nice thing about this last expression is that the implicit cut-off value of b in the range
of the variables B; and ; does not exist anymore with the 3;. Hence this expression is a
function of m only (not of b) that we will denote T'(m).

To compute T'(j), we look at the flipping coin process realizing each 8;. We will think of
this process as a game built of a succession of “elementary flips” in the following way. If we
start the game with m players we let a player participate in the next flip iff it has not yet

- obtained a 0. The game ends when there is only one player left or there are no players. In
the first case there is only one winner (i.e., only one maximum value among the variables Bi)
while in the second case there is more then one maximum value since more than one player
has participated in the last play.

Based on this game, T(j) is the probability that there is more than one winner, condi-
tioned on the fact that j players are left playing the next flips. From the argument above it
is clear that T(0) = 1 and T(1) = 0. : _

The value of T(j) can be computed by conditioning on the number ¢ of people drawing 0
in the next play (so that j — i are left still waiting for a zero). The probability that 1 players

among j draw 0 during a flip is Jz 277, hence T'(j) can be expressed as follows:

i .))
TG) =3 (J) 29T (j -).
=0
~ We prove now by induction that T'(j) < 1/3 for j > 2. We first find T(2) = 1/3 by
simply solving the related equation for j = 2. -
Working by induction, assume now proven that Vi < j T(¢) < 1/3. Observe that for

Jj=2 ,
i Iy =1t
TRANE

Then,
rG) -2 =273 (1) 769,

and,

N Z A j
ro@-n = (1)rG-+e+ (52)T0+70

~—” N

-,

T(j_1)+...+(j£1)T(1)+(j£1)%+(§)-:1;

[

Rabin’s Mutual Exclusion Algorithm 101

<32(1)
- 3{:1 '

29 1

3

The first inequality comes from the remark above, the second from the induction hypoth-
esis and the fact that T(1) = 0; the last equality comes from the development of (1 + 1),
This establishes that T'(j) < 1/3 and finishes the induction. n

Combining all the previous results, we can now finish the proof of our main theorem.

Pr[Wik)] > :%9-Pr[U(k)munew(k),B(a,p,-,k)]
%9 (1 = Pr[~U(k)| Allnew(k), B(a, p:, k)]
99 1 1 .59

__(—_——— e =)~ —2

n 16 3 n

>

|
We finish by noting that it is possible to extend Rabin’s result and prove the following:

Corollary 9.8 For every normal adversary A, the probability that a trying processori enters
the critical region within (the first) £ rounds in which it participates is at least 1 — (1—=c/n)t.

Proof: 1t is not hard to use Theorem 9.1 to prove that the probability i fails to enter the

critical region in the any round in which it participates is at most 1 — ¢/n. Proceeding by
induction on £, it is not hard to use this fact to prove that the probability ¢ fails to enter
the critical region within (the first) ¢ rounds in which it participates is at most (1 —¢/n)t
Consequently, the probability of success is at least 1 — (1 —¢/n). ' 0=

As 1~ (1 —¢/n)’ tends to 1 as £ tends to infinity, we have the following:

Theorem 9.9 Rabin’s algorithm satisfies the following correctness conditions:
1. mutual ezclusion: at most one process is in the critical region at any time.

2. no deadlock: if at some point some process is in the trying region, then some process
eventually enters the critical region.

3. no lockout: for every normal adversary A, with probability 1, if at the end of round k
process i is in the trying region, then in some later round process i enters the critical
region.

102 Lecture 9: October 12

9.3 Appendix

The following claim was made at the beginning of the proof of theorem 2. The essence of it
is simply that the law of B;(k) conditioned on Allnew(k) is the same as the law of §;(k).
Claim 9.3Vj=1,...,n Vi=1,...,b

[Pr[B,-(k) > 1| B(a,pi, k)] < Pr[g; > z]]

[Pr[Bj(k) > 1| ~New,(k), B(a, pi, k), M(k) = m] < Pr[§; > z]]

Proof: On {1,...,b}, the law of B;(k) conditioned on New;(k), is the law of 8;(k) which
is independent of B(«,p;, k). Hence Pr {Bj(k) > 1| New;(k), B(a, p;, k)] = Pr[ﬂj(k) > l].
This implies that

Pr[Bj(k) 2 | Blaypisk)] = Pr[By(k) 2 1| ~New,(k), B(c,pi, k)] Pr[-~New;(k) | B(a,pi, k)]
+ Pr[Bj(k) > I | New;(k), B(a, pi, k)| Pr|[New;(k) | B(a,pi, k)]
= Pr[B;(k) > I|-New;(k), B(a, pi, k)] Pr[-~New;(k) | B(a,pi, k)]
+ Pr[By(k) 2 1] Pr[New;(k) | B(eypi, k).
Using this along with the equality |
Pr[8;(k) 2 1] = Pr[B;(k) 2 1] (Pr[~New;(k) | Ba,pi, k)] + Pr[New;(k) | B(a, pi, b))
we get the following equivalences

Pr[Bj(k) 2 1| Blepi, ¥)] < Pr[8 2 1] =

Pr|B;(k) > 1| =New;(k), B, pi, k)| Pr[~New;(k) | B(c,p:, k)|
= <
Pr[B;(k) 2 1] Pr[~New;(k) | B(c, p:, k)|
= Pr[B;(k) > l|-New;(k), B(a, pi, k)] < Pr[B;(k) =]

il |

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 10: October 18
Lecturer: Nancy Lynch Scribe: Anna Charny'®

10.1 General Resource Allocation Problem

In the previous lectures we considered the mutual exclusion problem, i.e. at most one process
was allowed to be in the critical region at one time. In other words this problem can be
said to model access to one critical resource. This problem can be generalized by allowing at
most k processes to be in the critical region together, or in other words by modeling access -
to k critical resources.

This leads to two possible ways of describing the problem: exclusion problem and resource
allocation problem.

10.1.1 Problem Description

1. Ezclusion problem: The problem is presented as a set of “bad sets™ of processes. By a
“bad set” we mean a set of processes which are not allowed to enter the critical region
simultaneously. The set of all “bad sets” is called an ezclusion set. Obviously, if a

particular “bad set”of processes belongs to the exclusion set, then any superset of this

“bad set”, obtained by adding any number of other processes to it, will still be a “bad
set” and will belong to the exclusion set. In general, any set of collections of processes
closed under containment defines some exclusion problem.

E:cample 1: Mutual exclusion can be defined as
={cC{pi,..spn}:lc|2 2}

E‘zample 2: The k-exclusion problem (number of processes in the critical section at
any time < k) can be defined as

E={cC{p1,...,pn}:lc|> k+1}
Ezample 3: For n =4, let
€= {{Phpz} {Pl,Ps} {Pz’P‘t} {Pa,P4}}

Here p; doesn’t exclude p4, and p; doesn’t exclude p;. Consequently (p;,ps) or (p2,p3)
can share use of the critical resource.

The set ¢ can be any arbitrary set of subsets of py,..., p,.

15Based on lecture notes from 1988 scribed by Atul Shrivastava

103

il

104 Lecture 10: October 18

2. Multiple Resource problem: The problem is presented as a boolean formula (for each
process p;) describing the combination of the resources needed by p; to enter the critical
region.

Ezample 4: Consider a resource allocation problem with 4 processes and 4 resources.

)41 : R1 N R2
P2 - R1 n R3
P3s RQ N R4
ps - R3 N R4

Here py needs R, and R, to enter the critical region, etc.

Note: A resource problem can be converted into an exclusion problem. The exclusion
set contains those subset of processes whose resource allocation formulae cannot be satisfied
simultaneously. Thus, the exclusion set for the resource allocation problem in the preceding
example is

5 = {{p17p2}a {plapfi}v {p2ap4}7 {p37'p4}}

The remainder (R), trying (T), critical (C) or ezit (E) regions are used as before to
describe the state of each process. The process behavior in each of these states 1s similar to
that described for the mutual exclusion problem.

Progress Condition

For mutual exclusion algorithms, there is a strong notion for the progress of the system.
Although it is hard to state an interesting general condition for system progress, the mutual
exclusion idea can be used to get some idea for system progress condition. Progréss for the
resource allocation problem can be described as a requirement where some process continues
'to make region progress, given the same notion of normal operation as for mutual exclusion.

Fairness Condition .

The no lockout (or starvation) idea can be used to define fairness for the resource allocation
problem:.

10.2 Dining Philosophers Problem

The Dining Philosophers problem is a special case of exclusion problem, and is generally
presented as a resource allocation problem.

b}

Dining Philosophers Problem 105

®
® 5

Figure 10.1: Dining Philosophers problem (n = 5)

10.2.1 Problem Description

There are n philosophers seated around a table. Each philosopher, is either thinking (R},
hungry (T'), eating (C) or just finished eating (E). In order to eat, each philosopher-needs
two forks; n forks are placed on the table such that there is one fork on the left and one to
the right of each philosopher. Each philosopher can pick up forks located immediately to his
left or right only when the neighbor, with whom the fork is shared does not have the fork.

We denote each philosopher by p; and the forks to the left of each p; by F; and to the
right of p; by Fi_;. Thus, p; needs F;NF;_; (po needs F,, N Fy) to eat (C). After eating, each
p; puts down both forks (E) and resumes thinking (R). Figure 10.1 describes the seating
arrangement for n = 5 philosophers.

The exclusion set for n dining philosophers is

£= {{pi,pH-l})i € {0,... ;n}}

Various algorithms are known that solve the Dining Philosophers problem. The first
solution, presented by Dijkstra (1971) uses operating system concepts such as semaphores.
Chang presented the first distributed solution to the problem. Burns’ algorithm gave bet-
ter time bounds for the Dining Philosopher’s problem. Lynch (1981) presented a general
solution to the static resource allocation problem. A randomized algorithm to solve the
Dining Philosophers problem was proposed by Rabin and Lehmann (1981). All of the above

]

106 Lecture 10: October 18

algorithms use shared memory variables. Chandy and Mlsra proposed a solution using the
message passing model. ,

10.2.2 Shared Memory concepts

Each process p; uses a shared memory test and set operation to change shared variables.
Each shared variable is used as a binary semaphore. Thus two operations can be performed
on any shared variable s. These operations can be written as

P(s) : waitfor s =1; s — 0
V(s) : waitfor s =0; s 1

Although each operation locks the variable before performing the indivisible conditional
test and set, the variable is unlocked immediately, irrespective of the test condition being
found to be true or false. These concepts came out of operating systems where the scheduler
avoids busy-waiting by checking if a particular condition on the shared variable is satisfied
before giving a turn to a particular process. If this condition is not satisfied, the process is
put to sleep and is added to some queue (a set of some kind). When the value of the shared
variable changes, the scheduler checks the queue for the processes whose conditions are now
satisfied, and then wakes those processes.

10.3 A simple approach that deadlocks

The algorithm that we analyze here is presented in Figure 10.2.

The algorithm is conceptually simple, each process grabs the left fork ﬁrst and then picks
up the right fork. After getting both forks, it goes to C. When a process leaves C, it puts
down both forks before entering R.

10.3.1 Properties of the algorithm

We check the mutual exclusion and deadlock freedom properties for the above algorithm.

Mutual Exclusion

To go to C, a process p; has to pick up both its left and right forks. The two P-operations
guarantee that the values of FORK;_; and FORK; are both 0 when p; goes to C. Thus
when p;_; (pi1) tries to grab FORK;_; (FORK;), it will be blocked when it executes the

second (first) P-operation in its code. Thus mutual exclusion is preserved.

ki |

A simple approach that deadlocks 107

Shared variables:

Vi, FORK(7) € {0,1}, written by and read by several processes, initially 1

Code for p;:

lock;
P(FORK;_;)
unlock;lock;
P(FORK;)
unlock;

** Critical Region **

lockj
V(FORK;_;)
V(FORK;)

unlock;

** Remainder Region **

lock;

Figure 10.2: A simple solution

]

108 Lecture 10: October 18

Deadlock Possible

This algorithm however does not guarantee deadlock freedom. Consider the sequence of
events starting with each process in R. Now, each process wakes up and grabs its left fork
at the same time. At this point each process tries to get its right fork but since all forks are
already picked up, all processes starve forever and the system cannot make any progress (i.e.
no process can change regions).

10.4 Dijkstra’s Solution

The shared variables used in the solution are not associated with forks. Binary semaphore
mutez is shared by all process and is initially 1; control is a multi-reader multi-writer array,
where Vi, control(:) initially 0 and is read and written by p;_1, pi and piy1; sem is an array
of binary semaphores, initialized to 0.

0 =p€ER (thinking)
control(i) ={ 1 = p; € T but unable - C (hungry)
2 = p; allowed = Cor p; € C (eating)

mutez is used so that a group of operations can be done indivisibly. sem(z) =1 tells p;
that it can — C. 4 '

If any p; (with control(i) = 1), finds that control(i — 1) # 2 N control(i + 1) # 2
(indivisibly), then p; — C and p; sets control(i) « 2. The procedure TEST(:) checks for
this condition. : B

To incorporate indivisibility during executing TEST(:), the call to procedure is always
‘preceded by a P(mutez) operation, which when “successfully” completed guarantees that
no other process can interfere while p; is in TEST(:). A V(mutez) operation after TEST(7)
later allows other processes to access the shared variables.

In the code for p; presented in Figure 10.3, there are no lock and unlock statements
guarding modifications to the shared variables. But the use of shared variable mutez in the
code guarantees the following:

1. No process can access a shared variable while p; is executing TEST(7).

9. No process can access control(i), whenever p; is modifying control(z).

10.4.1 Properties of the algorithm

Mutual Exclusion

To — C, p; has control(i) = 2. This condition is only true when control(i — 1) # 20N
control(i + 1) # 2. Since Vi, testing and setting neighbors’ control(:) « 2 is performed
indivisibly, mutual exclusion is preserved.

Dijkstra’s Solution 109

Progress

To prove progress we assume an infinite deadlocking execution in which some processes are
in T' or E, but no region change occurs.

The only impediments to the progress of any process are the P and V operations. Hence,
it is enough to show that all processes cannot get stuck at a P- or V-operation forever. We
establish this proof in two parts. First, we show that processes can’t get stuck during a
V-operation, and then show similar property for the P-operation. Note that P and V are
parity operations on mutez. :
Claim: No process can get stuck during a V-operation.

1. A V(mutez) can only be executed by one process, namely the one (say p;) that has most
recently successfully completed P(mutez). Thus p; will successfully execute V{(mutez),
since no other process could have changed the value of mutex to 1.

2. V(sem()) is executed in TEST(7), only if control(i) = 1, when tested. To prove a
process can’t get stuck at V(sem(i)), it is sufficient to show that control(i) = 1 =
sem(i) = 0: A process p; sets control(i) «— 1, when it enters T'. Note that sem(?) is
initially 0, and V(sem(7)) is the only operation that changes sem(z) « 1. Whenever
V(sem(2)) is executed in TEST(z), control(i) « 2 just before it. Furthermore, sem(:)
is reset to 0 before p; — C, and sem(:) remains unchanged until after p; — T, once
again.

Claim: No process can get stuck during a P-operation.

1. If all processes get stuck at P(mutez), parity access on mutex => mutex = 1. Thus,
one of the processes will successfully complete P(mutez) operation.

2. Claim: If p; get stuck at P(sem(i)) = control(i) = 1.

If control(z) = 2, it must have happened that control(i) « 2 and V(sem(7)) were
executed successfully and indivisibly, setting sem(:) = 1. Thus, there is no way that
sem(t) can be reset to 0 and hence P(sem(?)) is successfully completed. P(sem(z))
is successfully executed when control(:) = 2. So, p; can only be stuck at P(sem(7)),
when control(i) = 1. '

Claim: If p; is at P(sem(i)) with control(i) = 1, then

CUE
Either p;_1(pi4+1) is in{ or
T with its control = 2

Proof: When p; — T, control(i) = 1. The only way p; could be stuck at P(sem(z)) is for
TEST(z) to have failed. Otherwise, V(sem(z)) would have been executed. Therefore,

il

110 Lecture 10: October 18

Shared variables:

mutez is a binary semaphore, initially 1
Vi, control(i) € {0,1,2}, written by and read by several processes,initially 0
Vi, sem(¢) is a binary semaphore, initially 0

Procedure TEST(i):

if control(i — 1) # 2 and control(i + 1) # 2 and control(i) = 1 then
control(z) « 2
V(sem(i))

Code for p;:

P(mutez)
control(i) — 1
TEST(z)
V(mutez)
P(sem(z))

** Critical Region **

P(mutex)

control(i) « 0

TEST(: — 1)

TEST(: +1)

V(mutez) .

** Remainder Region **

Figure 10.3: Dijkstra’s Dining Philosophers Algorithm

il

Dijkstra’s Solution 111

= (control(i — 1) = 2V control(i + 1) = 2)

If the neighbor with control = 2 is still in the system, then the result holds. Otherwise,
when it left the system (in E), it executed TEST(z). If this TEST(7) failed, the other

neighbor must have control = 2 at that time. This argument can be continued ad infinitum.
=

Fairness

The algorithm allows individual process to get locked out. Consider a situation when p;
gets stuck at P(sem(?)) (with control(:) = 1). This can happen if either control(s — 1) or
control(i + 1) = 2. Thus p;—; (or pi41) can — C. When p;—; (or pi41) leaves C, it executes
TEST(z), which fails if control(: — 1) (or control(i + 1)) = 2. If this continues ad infinitum

i.e. pi—1 and p;4; time their entries such that TEST(z) always fails, p; will starve forever.
- Therefore, the solution is not fair.

Ul

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 11: October 18
Lecturer: Nancy A. Lynch Scribe: Boaz Patt

We continue studying the problem of resource allocation, focusing on the Dining Philoso-
phers. There are several issues by which we evaluate a solution to the Dining Philosophers
problem:

e Distributed solutions are considered “better” than centralized solutions (Dijkstra’s
algorithm is centralized: the algorithm uses a global mutual exclusion variable accessed
by all processes).

e Using read/write variables is tonsidered better than using test-and-set variables, but
one can implement test-and-set variables with read/write variables.

e We would like to ensure that there is no lociout, i.e., every philosopher who wishes to
eat is guaranteed to eventually eat, or even better:

¢ We would like to bound the time that may take for a philosopher from the point he
gets hungry until he eats.

11.1 Symmetric algorithms: an impossibility result

An interesting class of algorithms is the class of symmetric algorithms. An algorithm is said
to be symmetric if all processes execute the same code (processes have no identifiers, and
may refer only to “the process on the left”, or “fork on the right”, etc.). As for Dining
Philosophers, we have the following theorem. ’

Theorem 11.1 There is no symmetric deterministic solution to the Dining Philosophers
problem.

Proof: Let A be a symmetric algorithm for n processes. Refer to figure 11.1. Let process
po take its first step. If it accesses the variable on its right (Fp), let the next step be taken
by p1, and then py,...,pn-1; if it accesses the variable on its left, let pp—1,Pn-2,-..,p1 take
the next steps. Since all p; act according to the same deterministic code, and since all the
variables they can access have the same values, by the end of these n steps all the processes
are in the same internal state. We may proceed in this fashion by induction, maintaining
the invariant that by the end of every such “round” of n steps, all processes are in the same
state, and all shared variables have the same value. But this fact, when coupled with the
progress property, violates the exclusion property: if any process is in the Critical Region

112

i

Left-Right Algorithm (Burns) 113

Figure 11.1: Dining Philosophers

by the end of a round, then all processes are in the Critical Region by the end of this round.
Hence a symmetric deterministic algorithm must violate either the exclusion or the progress
property. . =

The proof indicates a fundamental problem in computing on a ring network: we need
to “break” the symmetry among the processes. The two ways for doing so are either using
the unique identifier we assume each process to have (which really means that we assign
different codes for different processes), or employing non-deterministic algorithms (that is,
using randomness). We’ll see examples for both approaches.

11.2 Left-Right Algorithm (Burns)

The following algorithm is due to Burns (but is almost a part of the distributed computation
folklore). It ensures exclusion, progress, and it prevents lockout — with worst case time
bound of a constant independent of n.

This latter property is of special importance. Analyzing the possible executions of any
algorithm solving Dining Philosophers, we find that there may be a state in which pi, is
waiting for a resource (fork) currently held by p;,, while p;, in turn waits for a resource Di, 1s
currently holding, and so on. We call such a sequence of processes p;, — DPi = Piy = -+ a
waiting chain. Since the processes in a waiting chain enter the Critical Region sequentially,
when we want to minimize the bound on the time for a process to be in the Trying Region,
we should strive to bound the maximal length of such waiting chain.

In the LR algorithm (fig. 11.2), we assume that the processes are numbered in successive
order; we further assume that we have test-and-set shared variables with a FIFO access
queue. For simplicity, we assume here that the number of processes is even. There are two
programs: one for the processes with odd numbers, and one for those with even numbers,

i

114 Lecture 11: October 18

Program for process 2u:

wait for F2i—1

wait for Fy;

** (Critical Section

release Fp;—, and Fy; in any order
** Remainder Region

Program for process 2z + 1:

wait for F2¢+1

wait for Fy;

** Critical Section

release Fy; and Fy;4y in any order
** Remainder Region

Figure 11.2: The Left-Right algorithm

The basic strategy is very simple: odd-numbered processes seek their left fork first, and
even-numbered processes seek their right fork first. The forks are implemented as a binary
flag that indicates the status of the fork (occupied/free), and a queue to keep track of the
FIFO order of requests (which may arrive from only 2 processes).

11.2.1 Properties

Exclusion is immediate from the code and the fact that the variables are test-and-set vari-
ables. We will show that there is no lockout by proving an explicit time bound on the time
for a process to reach the Critical Region. S

The key idea in the algorithm above is that a fork between two processes is, for both
processes, either the first or the second one they wish to get. This implies that the maximal
length of a waiting chain is bounded by 2, and gives the following nice upper bound.

Theorem 11.2 Suppose that any step time is bounded by s, and that the time spent in the
Critical Region by any process is bounded by c. Then the time any process spends in the
Trying Region (until it gets to the Critical Region) is no more than 3c + 15s.

" Proof: Denote

T = worst-case time from entering the Trying Region until entering the Critical Region,

S = worst-case time frem having one fork until entering the Critical Region.

We bound T by case analysis. Consider a process p; entering the Trying Region. Its first step
is trying to get the first fork. If it succeeds (after time s), then after no more than additional

m

Generalizing LR — Lynch’s method - 115

S time p; enters the Critical Region. Otherwise, its neighbor has the fork, and as mentioned
above, it must be its first fork, too. Hence the time until the neighbor releases this fork is
bounded by s + S+ ¢+ 2s = 3s + ¢+ S (getting the fork, reaching Critical Region, Critical
Region, releasing two forks). It follows that in this case, p; enters the Critical Region after
at most s + (3s + ¢+ S)+ s+ S =55 4 ¢+ 25 time. We conclude that

T<max{s+S, 5s+c+25} =5s+c+2S (11.1)

Let us now bound S. Suppose a process is requesting the second fork. The time for the case
where it gets the fork immediately is bounded by s. Otherwise, its neighbor has the fork,
and it is the neighbor’s second fork. Hence, the time until the second fork is released in this
case is bounded by s + ¢ + 2s, and the time until the process enters the Critical Region is
bounded by 5s + ¢ (adding s for the request and s for getting the fork). We conclude that -

S < max{s, 5s+c}=5s+¢c (11.2)

Combining (11.1, 11.2) yields
: T <158+ 3¢

Remark. The independence of n is a good property for a distributed algorithm — it may
be thought of as network transparency. But note that the RL algorithm relies heavily on
the static knowledge of the parity of the identifiers of the processes. This assumption might
not be reasonable in a truly distributed networks. ‘

11.3 Generalizing LR — Lynch’s method

An obvious question is how to generalize the idea of minimal-length waiting chains to a
general resource-allocation problem. Lynch’s method solves the exclusion problems that can
be expressed by conjunctions. Denote the set of resources by R = {r1,-..srm}. We assume
that every process p; requires A;¢ 1; Ti,» where I; is a subset of R (this means that there are
no alternatives: a process must get a certain fixed subset of the resources). '

We associate with every resource 4, a queue g, in which the processes are waiting for the
_resource, and a binary flag s; indicating whether ry is in use. We say that p; waits for p;
if p; has some resource ry, and p; is in r’s queue. The basic strategy will be hierarchical
resource allocation. In this strategy, the resources are totally ordered, and the processes seek
the resources they need in an increasing order. It is easy to see that this strategy ensures
progress, as well as no lockout: the first process on the final queue is never blocked, and no
process ever relinquish. The problem now is how to define a total ordering that minimizes
the length of the potential waiting-chains.

]

116 " Lecture 11: October 18

Fy

Figure 11.3: 6 dining philosophers and their corresponding resource graph

11.3.1 Constructing a “good” total ordering
1. Construct the resource allocation graph G = (V, E), where

V = {ro,...,Ta-1} (the set of resources)

E = {(ri,r;): thereis a process needing r; and r;}

9. Color the nodes of the graph — that is, assign each r € V a color ¢(v) in a way such
that if r; and r; are adjacent, then c(r;) # c(r;). We would like to minimize the number
of colors needed. Obtaining the minimal number is NP-hard, but a “low” number of
colors will do. -

3. Order the colors totally-in an arbitrary way. This induces a partial order on the
resources (r; < rj if ¢(r;) < ¢(r;)).

4. Complete the partial order to a total order (by topological sorting).

Example. Consider once again the Dining Philosophers. The colored resource allocation
graph is shown in figure 11.3. Note that the solution reduces to the Left-Right algorithm.

The above strategy bounds the maximal length of a waiting chain by the number of
distinct colors (in the Dining Philosophers, this reduces to the LR algorithm, where the
number of colors is 2). This follows from the fact that if a process p is waiting for a resource
held by another process p, then p’ may be waiting only for a resource of a “higher” color.

i

Generalizing LR — Lynch’s method 117

11.3.2 Time analysis

Lynch’s resource allocation strategy gives a time bound that is not directly dependent on the
total number of processes and resources, but rather on a “local” parameters, as the following
theorem states. This constitute an improvement on the naive solution where the resources
are totally ordered arbitrarily: although this approach ensures progress, it may result in
waiting time linear in the number of processes.

Theorem 11.3 Let

s be an upper bound on a step time,

c be an upper bound on the Critical Region time,

k be the number of colors, and

m be the mazimal number of users for a single resource. '
Then the worst case time for a user to get into the Critical Region is ((m")c+ (kmk)s).

Note that the bound is not proportional to the k£ (length of a longest waiting chain), but
it is actually exponential in k. This bound can be approached by complex interleavings (as
suggested by the proof below).

Proof: The general outline is as follows. Define T;; to be the worst case time from when
a process reaches position j from the front of the queue for resource i, until it reaches the
Critical Region. Let 0 < ¢ < k—1, and 0 < j < m — 1, where position 0 is interpreted as
actually having the resource. We wish to bound T < Tp,-1. This can be done by setting
up equations as we did for the LR algorithm. '
The base case is.when a process is not Waltmg for any other resource:

Tic10=0

Otherwise, either the process waits for the process ahead to get the resource and to give it
up:
T;<Tijaa+c+ks+Tip

or, the process gets a resource and wait the next resource it needs:
Tio<s+Tip1m- -

Clearly, the worst case is when all m processes need all k resources. The time for a process
to reach the Critical Region is bound by Tp,,-1. Now, for all0 <i < k —1

Tim-1 < m(c+ks)+mTip
Tip < s+Ti,m—1

il

118 Lecture 11: October 18

and Ti_10 = s. Assuming s < m(c+ ks) and that m > 1, we obtain

Tom-1 < (c+ks)d m'

< mk(c+ ks).

11.3.3 Open questions

The following question remains open. Can a solution of this kind be given for some more
general resource allocation problerh, where the generalization is either

1. Allowing arbitrary static constraints (i.e., disjuncvtions in the problem formulation), or

2. Allowing the environment to be dynamic, i.e. when the processes and resource requests
may change during the execution.

Some of these questioned are melt with in later lectures: see the “Drinking Philosophers”.

11.4 Rabin-Lehmann Algorithm

The Rabin-Lehmann algorithm we consider next is a randomized algorithm that ensures
exclusion and progress (there exists a modification of it — that will not be given — which
ensures no lockout). All processes are identical — the symmetry breaking is achieved by
randomization.

The notion of adversary considered here is different from the one considered for Rabin’s
mutual exclusion (ME) algorithm. The ME adversary depended on the history of region
changes, and did not have access to the states of processes. This time, the adversary has
more power: he knows the complete past erecution, including states and past random draws.
The indivisible actions are individual fork accesses. In the following discussion, we denote

L, ifs=R
opp(s) = R, ifs=1L.

An informal description of the procedure is “choose randomly a side in each iteration. Wait
for the fork in the chosen side, and after getting it, just check once for the second. If
succeeded, proceed to the Crltxcal Region. Otherwise, put fork down and try again with new
random choice.”

Hl

Rabin-Lehmann Algorithm 119

Code for process t:

do forever
s « random /* choose R or L with equal probability */
wait until s is free
pick up s
if opp(s) is free then
pick up opp(s); goto L
else put s down

L:

** Critical Region
put down both forks
** Remainder Region

Figure 11.4: The Rabin-Lehmann algorithm

11.4.1 Correctness

Exclusion is immediate from the indivisibility of the individual fork accesses. As for progress,
we formalize the notion of an adversary.

An adversary A is a function mapping finite executions to the set of processes, determin-
mg the next process to take step. The adversary is fair if only fair executions are generated.
More precisely, denote by ezec(A, D) the unique execution generated by adversary A and a -
sequence of random draws D. A is fair if ezec(A, D) is fair for all D. By the assumption -
that R and L are drawn with probability 1/2, there is a probability associated with each
(set of) sequence of draws. Thus, given an adversary A, we have a probability distribution
on the set of executions generated by 4. Having this, denote by Z the set of fair executions
with no progress, i.e., the set of executions in which there is some prefix a such that after o

there is someone in the Trying Region and no change of region occurs. Our goal is to show
that Prob [Z] = 0. We proceed as follows.

Remark 11.4 In any ezecution in Z, there are infinitely many fork pickups.

Proof: Assume not. Then after the last fork pickup, all processes that are stuck in the Trying
Region must eventually put their forks down, and then nothing can stop additional pickups.
n

Remark 11.5 If p chooses infinitely often, then p chooses R infinitely often and L infinitely
often with probability 1. Formally, denote by C, the event that p chooses infinitely often, by

L, (R;) the event that p chooses L (respectively, R) infinitely often. Then Prob[L,|C,] =
Prob [R,|C,] =1

il

120 : Lecture 11: QOctober 18

Figure 11.5:

Proof: Let S = 34, 82, ... denote the infinite sequence of choices made by process p. It suffices
to prove that Prob [[{z : s; = L} | < k] = 0 for all k. We compute this probability as follows.

Prob[[{i:s; =L} | <k] = Jim Prob[[{i:s; =L, i <n}| < k]

k n
— Im Y ()2‘“
n—oo m=0 m ‘
lim nk2—"
n—oo
lim 2—-n+klogn

n—od :

= 0.

IA

Lemma 11.6 Let p and q be neighbors. If p picks up fork infinitely often anqu does nét,
then p eats infinitely often with probability 1. Formally, denote by P, the event that p picks up
fork infinitely often, and by E, the event that p eats infinitely often. Then Prob [E,|P,] = 1.

Proof: Without loss of generality, assume p is left of ¢ (figure 11.5). If p picks up infinitely
often, then it chooses infinitely often, and hence, by remark 11.5, it chooses L infinitely often
with probability 1. This implies that p eventually succeeds getting F; each time, or else it
would get stuck, contradicting the assumption of infinite pickups. Having Fj, p looks for its
right fork, namely F3, which by the assumption, starting from some point in the execution,
is never taken by ¢. Thus p, from some point of the execution and on, always succeeds in
getting F5, and eats infinitely often. n

Lemma 11.7 If an execution makes no progress, then with probability I every process picks
up a fork infinite number of times. Alternatively: Prob [/\p P,,|Z] = 1.

Proof: By remark 11.4, there are infinitely many fork pickups. Assume that some process
q does not pick up a fork infinitely often. Then by lemma 11.6, its neighbors eat infinitely
often, contradicting the assumption that the execution does not progress. =

Rabin-Lehmann Algorithm ' 121

(@) m | |
c m m
q P q
(b) . m - . "
m c c m c
p q V4 q p

Figure 11.6: Possibilities after a good execution

Now call a finite execution good ezecution with respect to processes p and g, if p’s last
random choice was L and ¢’s last random choice was R (see figure 11.5). The reason of
calling such executions good is shown in the following lemma.

Lemma 11.8 Let o be a good execution. If every process picks up infinitely often after a,
then either p or q eats after at most two additional random draws (of p and q) with probability
at least 1/2.

Proof: Assume, without loss of generality, that ¢ made his last random choice after p’s last
random choice. Denote by m,, and m, the points in the execution in which p and ¢ examine
their second fork (F;), respectively. Denote the point of the execution in which ¢ makes his
choice ¢,. Consider the execution at ¢,. There are the following alternatives.

(a) If m, has not occurred (figure 11.6 a), then whichever examines F2 first (after ¢,) eats

(in the execution depicted in figure 11.6 a, p eats).

(b) If m, has already occurred (figure 11.6 b), then either p succeeded getting its second
fork (and then we are done), or else p will choose again. With probability 1/2 p chooses
L again. At this point (¢, in figure 11.6 b) either ¢ had already examined F, (and we
are done), or else whichever examines F; first eats (as in case (a)).

Remark 11.9 If p and q are neighbors that choose infinitely often, then infinitely many of
the prefizes of the ezecution are good.

~ Proof: Similar to proof of Remark 11.4. =
We may now conclude with the following theorem.

Theorem 11.10 Prob [Z] =

Proof: Suppose by the way of contradiction that Prob [Z] > 0. Then we may condition proba-
bilities on Z. Let p and ¢ be neighbors as in figure 11.5. By Lemma 11.7, Prob [P, A P|Z] =1,
and hence, by Lemma 11.8, Prob [Progress|Z] = 1, a contradiction. "

il

6.852 Distributed Algorithms Fall Semester, 1990
Lecture 12: October 30

Lecturer: Isaac Saias Scribe: Marc LeBlanc'®

The first section of this course was devoted to shared-memory algorithms. In this lecture
we will discuss network algorithms, designed for groups of processes that communicate
via messages (as opposed to communicating via shared variables). This model is referred to
in the bibliography as the message-passing model of communication.

Our discussion of network algorithms will focus on several representative problerns leader
election algorithms, finding a minimum spanning tree, and taking global snapshots in a
distributed system.

A loose classification of network algorithms separates them into two categories: static
and dynamic. Static algorithms assume that inputs to the network are fixed. In other
words, there are some number of processes arranged in a network communicating over edges
(messa.ge buffers), and there are inputs set for each process at the beginning of the execution
(no new inputs will come into the network during the course of the solution to the problem).
The network produces some output to report the solution to the problem. In dynamic
algorithms, by contrast, we assume that each process can communicate with some underlying

- process that is performing some algorithm; and the network’s purpose is to carry out some

job “servicing” the original algorithm — detecting termination, for example.

12.1 Leader Election Algdrithms

Our first topic in network algorithms will involve the (static) problem of electing a leader
~ among a set of processes. This is a problem that one might want to solve in any kind of
distributed network, but the algorithms that we will explore will stipulate that the processes
are distributed in a ring. We also assume that each process begins the algorithm with a
unique identifier ;from some tetally ordered set, and that they can communicate with their
neighbors in the ring via messages.

A typical example of how a leader-election problem might appear in a real-world setting
is in a token ring. A situation might arise in which a token is lost, and has to be regenerated
somewhere in the network — but we also want to ensure that only one token is regenerated.
There are other situations, involving arbitrary network configurations, in which we might
want to select some distinguished node in a network; a good example is in spanning tree
algorithms, where we might want to designate a “root” process from which we can originate
the tree.

16Based on lecture notes from 1988 scribed by Mike Einsenberg and Magda Nour

122

Leader Election Algorithms 123

For the leader-election problem in a ring, there are a number of varying assumptions that
one can make in designing a workable algorithm:

¢ The number n of processes might be known to each process at the outset of the problem
— that is, the number n could be built into each process’s local algorithm. Conversely,
we might assume that the number of processes in the ring is not known to any processor;
the idea here is that the same algorithm should work when the processes are placed in
a ring of any size.

e The processes in the algorithm might be capable of bidirectional or only unidirectional
(i.e., clockwise or counterclockwise) communication.

o Asynchronous or synchronous processes. (Virtually all the algorithms that we have
looked at up until now have assumed asynchronous processes.)

o The identifiers for the processes could be chosen from a bounded set, or instead from
(e.g.) the reals or integers.

e The algorithm could be designed to select as leader the process with some particﬁlar
identifier value (such as the maximum identifier), or it could use some other criterion
for selection.

Most of the work in this area has concerned itself with minimizing the number of messages
sent in the ring. It is worth pointing out that if the bandwidth in the network is very high,
there might be other, more important measures for an algorithm: for instance, total running:
time.) v

Note also that the problem of selecting an arbitrary leader among a ring of processes is
closely related to the problem of selecting a maximum. Clearly, if a group of processes in a
ring can select the one with the maximal identifier, they can designate that process as the
leader. Going in the other direction, if a group of processes can select a leader according
to some arbitrary criterion, that leader process can send a special “maximum-determining”
message around the ring, and thus find the maximum at the cost of n extra messages (beyond
those needed to determine the leader).

12.1.1 Le Lann-Chang-Roberts Leader Election Algorithm

The first leader election algorithm that we will discuss is one that we saw toward the end of
Lecture 6, due to Le Lann and to Chang and Roberts. In a nutshell, the idea is that each
process will send an identifier around the ring. When a node (process) receives an incoming
identifier, it compares that identifier to its own; if the incoming identifier is greater than
its own, it keeps passing the identifier; but if the incoming identifier is less than its own, it
discards the incoming identifier (and does not permit it to continue passing around the ring).

A

124 Lecture 12: October 30

Figure 12.1: The worst case identifier ordering for the Le Lann-Chang-Roberts algorithm.

A process declares itself the leader when it receives an identifier equal to its own, since this
indicates that the identifier has been passed through by every other node in the ring.

Classifying this algorithm according to the dimensions listed above, we see that the Le
Lann-Chang-Roberts algorithm:

o Assumes that n, the number of nodes in the ring, is unknown.
o Involves only unidirectional mess#ge passing.
¢ Works asynchronously.

.o Uses an unbounded identifier set (e.g., integers).

o Elects the node with the maximal identifier as the leader.

Message-Complexity and Time Analysis for Le Lann-Chang-Roberts’ Algorithm

In the worst case, the Le Lann-Chang-Roberts algorithm requires O(n?) messages to be sent.
To see this, suppose that the messages are to be sent clockwise; then the worst-case initial
arrangement of identifiers would be that shown in Figure 12.1. In this case, each identifier :
is passed approximately ¢ times, so the total number of messages is

n
> i =0(n?)
i=1
In the best case scenario, the process identifiers are arranged in the opposite order, as in
Figure 12.2. In this case, one particular identifier, n, will get all the way around the ring,
while every other identifier is blocked by its immediate neighbor. Thus, the total number of
messages in this case is only O(n).

m

Leader Election Algorithms 125

Figure 12.2: The best case identifier ordering for the Le Lann-Chang-Roberts algorithm.

The running time for both algorithms, assuming that messages are delivered in parallel
around the ring, is O(n). This is just the time taken for the winning identifier to go all the
way around the ring.

Since it’s pretty clear that there is a wide gap between the best and worst case scenarios
for this algorithm (in terms of the number of messages sent), we might be interested in finding
the average number of messages sent. The notion of “average performance” here is different
than the concept we employed in analyzing Rabin’s randomized algorithms; in that case, we
analyzed the performance of an algorithm over all possible ezecutions. Now, however, we are
interested in averaging the performance of the Le Lann-Chang-Roberts algorithm over all -
possible inputs — a weaker notion, since instead of an adversary choosing inputs we assume
that the inputs are coming in from some random distribution. : |

To analyze the average performance of the Le Lann-Chang-Roberts algorithm, let’s begin
by assuming (without loss of generality) that the identifiers are chosen from the set 1,2,...n.

We further assume that the identifiers are ordered randomly around the ring. The expected
total number of messages is just: :

3 EG)

where E(1) is the expected distance (in links) that identifier ¢ travels before encountering a
process whose id-number is greater than i. Clearly, E(n) = n, since identifier n will always
go all the way around the ring. E(n — 1) can be found by noting that identifier n — 1 will
go around the ring until it encounters process n. The expected distance (in links) between
process n — 1 and process n is n/2, so E(n — 1) = n/2.

Continuing, E(n — 2) can be found by noting that identifier n — 2 will travel around
the ring until it meets the earlier of process n — 1 and process n. Intuitively, we'd expect
the average distance to the first of these processes to be about n/3, and indeed an exact

Ul

126 ' _ Lecture 12: October 30

calculation shows that E(n —2) = n/3. In general, our intuition suggests that

n .
E(l)= ——
Before going on, we can sketch the exact derivation of this expression for E(z). Let j
denote n — i+ 1, so that the jth largest id-number is i. Now the problem can be phrased as
follows: we have patterns consisting of “dashes” and “X’s”, where dashes denote nodes with
an identifier less than 7, and X’s denote nodes with an identifier greater than :. We wish to
distribute j — 1 X’s in patterns consisting of a total of n —1 X’s and dashes, and to find the
expected position of the first X. A sample pattern, for n = 10 and ¢ = 8, is shown below:
- - - x - - - x -
The total number of patterns containing 7 — 1 X’s is

n—1
j-=1
We wish, therefore, to sum up the total number of messages sent to reach the first X
in all patterns, and divide by the total number of patterns to get the average number of

messages sent over all patterns. _
Now, all patterns cause one message to be sent, so we have

n—1
J—1
messages contributed by all patterns (that is, there are this many “first messages” sent').

The number of patterns that cause a second message to be sent will be just ‘the number of
patterns beginning with a dash; so the number of second messages is

n—2

(o)
Similarly, the number of patterns beginning with two dashes will each contribute a “third
message” to the total; there are thus

n—3

(o)

third messages. In general, then, we find that the total number of message for all patterns

(g:;)+(jif)+-"(§ii)=(?)

]

Leader Election Algorithms : 127

Thus the average number of messages for a given choice of 7 is, as predicted by intuition:
G)
n—1

(=)

Therefore the expected total of all messages is the sum of the harmonic series:

n
J

n n
+..

ntyty

+...%=n(1+1/2+...1/n)=O(nlogn)

12.1.2 Hirshberg-Sinclair’s Leader Election Algorithm

Having looked at the Le Lann-Chang-Roberts algorithm, a natural question to ask is whether
we can do better than O(n?) as our worst-case message complexity. Is it possible to get a
worst-case performance of O(nlog n) messages sent? The first algorithm to show that it was
indeed possible (albeit at a sacrifice in terms of running time) was constructed by Hirshberg
and Sinclair. '

The Hirshberg-Sinclair algorithm can be classified according to the list of leader-election
properties that we enumerated before:

¢ Assumes that n, the number of nodes in the ring, is‘unk'nown.
o Involves bidirectional messagé passing.

e Works asynchronously.

e Uses an unbounded identifier set.

e Elects the node with the maximal identifier as the leader.

The only difference between the Le Lann-Chang-Roberts and Hirshberg-Sinclair algo-
rithms in this classification is that the latter assumes that we have bidirectional message
passing. :

Roughly, the idea of the Hirshberg-Sinclair algorithm is that every process, instead of -
sending messages all the way around the ring as in the Le Lann-Chang-Roberts algorithm,
will send messages that “turn around” and come back to the originating process. Each
-process sends out messages (in both directions) that go successively larger distances before
returning; in particular, a process first sends messages out for a distance of 1 in both direc-
tions; then 2; then 4; and so on, each time doubling the distance of the previous message.
This idea is suggested by the sketch in Figure 12.3.

When a message is sent out by a process p, some other process in that message’s path
may discover that p can’t win because its own id-number is greater than that of p. In this
case, rather than pass along the original message, it sends back a message to p effectively

il

128 . Lecture 12: October 30

1¢ . © J1

2 . ©)2

4C . ' o 4

Figure 12.3: Successive message-sends in the Hirshberg-Sinclair algorithm

telling p to stop initiating messages. Similarly. a process ¢ that sees a message with an
id-number bigger than its own can deduce that it cannot win, and therefore need not initiate
any new messages. Finally, if a process receives its own message (before that message has
“turned around”), this means that it is the winner.

It should be clear that this algorithm works, in that it elects as leader only the process
with the highest id-number.

Message and Time Analysis for the Hirshberg-Sinclair Algorithm

A process will initiate a message along a path of length 2¢ only if it has not been defeated
by another process within distance 2(i-1) ip either direction along the ring. This means that
within any group of 261 4+ 1 consecutive processes along the ring, only one will go on to
initiate messages along paths of length 2. Thus, at most

n
[5=57]

in total will initiate messages along paths of length 2°.
The total number of messages sent out is then bounded by

n n

4((1*n)+(2*[§])+(4*[51)4...(2"*[ﬁﬁ]n...)

The leading term of 4 in this expression is derived from the fact that each round of
message-sending for a given process occurs in both directions — clockwise and counterclock-
wise — and that each outgoing message must turn around and return. (Thus, for example,
in the first round of messages, each process sends out two messages — one in each direction
— a distance of one each; and then each outgoing message returns a distance of one, for
a net total of four messages sent.) Each term in the large parenthesized expression is the

m

Peterson’s Leader Election Algorithm 129

number of messages sent out around the ring at a given pass (counting only messages sent
in one direction, and along the outgoing path). Thus, the first term, (1 * n), indicates that
all n processes send out messages for an outgoing distance of 1.

Each term in the large parenthesized expression is less than or equal to 2n, and there are
at most 1 + [logn] terms in the expression, so the total number of messages is O(nlogn),
with a constant factor of approximately 8.

The time complexity for this algorithm is just O(n), as can be seen by considering the
time taken for the eventual winner. The winning process will send out messages that take
time 2, 4, 8, and so forth to go out and return; and it will finish after sending out the
[log n]th message. If n is an exact power of 2, then the time taken by the winning process
is approximately 3n, and if not the time taken is at most 4n.

12.2 Peterson’s Leader Election Algorithm

Hirshberg and Sinclair, in their original paper, conjectured that in order to get O(nlogn)
worst case performance, a leader election algorithm would have to allow bidirectional message
passing. Peterson, however, constructed an algorithm disproving this conjecture. Employing
our usual classification scheme, the Peterson algorithm may be summarized as follows:

o Assumes that n, the number of nodes in the ring, is unknown. -

Involves unidirectional message passing.

-0 Works asynchronously.

Uses an unbounded identifier set.

e Elects any node as leader.

The only difference in this classification scheme between the Le Lann-Chang-Roberts and
Peterson algorithms is that the latter may elect as leader any particular node (rather than
the one with the maximal id-number, as in the Le Lann-Chang-Roberts algorithm). The
Peterson algorithm not only has O(nlog n) worst case performance, but in fact the constant
term is low; it is easy to show an upper bound of 2nlogn, and Peterson used a trickier,
optimized construction to get a worst case performance of 1.44nlogn. (The constant has
been brought even further down by other researchers.)

In Peterson’s algorithm, processes are designated as being either in an active state or
relay state; all processes are initially active. We can consider the active processes as the
ones “doing the real work” of the algorithm, or as the processes still participating in the
leader-election process. Relay processes, in contrast, just pass messages along.

il

130 ” Lecture 12: October 30

neighbor

next-to-last neighbor this process

Figure 12.4: A “good” configuration for a_Péterson—algorithm process.

The Peterson algorithm is divided into (asynchronously determined) phases. In each
phase, the number of active processes will be divided at least in half, so there will be at most
~ log n phases. :

In the first phase of the algorithm, each process sends its id-number two steps clockwise.
Thus, everyone can compare its own id-number to that of its two counterclockwise neighbors.
When it receives the id-numbers of its two counterclockwise neighbors, each process checks
to see whether it is in a configuration such that the immediate counterclockwise neighbor has
the highest id-number of the three, as depicted in Figure 12.4. A process in this configuration
will remain “active,” adopting as a “temporary id-number” the id-number of its immediate
counterclockwise neighbor. If not in this configuration, a process becomes a “relay” for the
remainder of the execution. The job of a “relay” is to forward messages to active processes.

Subsequent phases proceed in much the same way: among active processors, only those
whose immediate (active) counterclockwise neighbor has the highest (temporary) id-number
of the three will remain active for the next phase. A process that remains active after a given
phase will adopt a new temporary id-number for the subsequent phase; this new id-number
will be that of its immediate active counterclockwise neighbor from the just-completed phase.

It is clear that in any given phase, there will be at least one process that finds itself
in a configuration allowing it to remain active (unless only one process participates in the
phase, in which case the lone remaining process is declared the winner). Moreover, at most
half the previously active processes can survive a given phase (since for every process that
remains active, there is an immediate counterclockwise active neighbor that must go into its
relay state). Thus, as stated above, the number of active processes is at least halved in each
phase, until only one active process remains.

A (somewhat abstract) summary of the Peterson algorithm’s code is shown below:

Peterson’s Leader Election Algorithm 131

Active:
temp-id « initial value;
do forever
[send(temp-id);
~ receive(nezt-temp-id);
if nezt-temp-id = temp-id then announce “leader”;
send(nezxt-temp-id);
receive(nezt-nezt-temp-id);
if nert-temp-id > max(temp-id, nezt-nezt-temp-id)
then temp-id «— nezt-temp-id
else goto relay]

~Relay:
do forever
[receive(temp-id); send(temp-id)]

Message and Time Analysis of Peterson’s Algorithm

The total number of phases in Peterson’s algorithm is at most llogn], and during each
phase each process in the ring sends and receives exactly two messages (this applies to both
active and relay processes). Thus, there are at most 2n |log n| messages sent in the entire
algorithm; note that this is a much better constant factor than in the Hirshberg-Sinclair -
algorithm. _ N

As for time performance, one might first estimate that the algorithm should take O(nlog n)
time, since there are logn phases, and each phase could involve a chain of message deliveries
(passing through relays) of net length O(n). As it turns out, however, the algorithm only
requires O(n) time. ‘

To do the time analysis of Peterson’s algorithm, we begin by assuming an upper bound
of 1 on message transmission time; and we assume that internal-processing time is negligible
compared to message-transmission time. Now, our plan is to trace backwards the longest
sequential chain of message-sends that had to be sent in order to produce a winning process.

Let us denote the eventual winner by P0. In the final phase of the algorithm, P0 had to
hear from two active counterclockwise neighbors, P1 and P2. In the worst case, the chain
of messages sent is actually n in length, and P2 = PO, as depicted in Figure 12.5.

Now, consider the previous phase. We wish to continue pursuing the chain backward
from P2 (which is the same node as PQ). The key point to recall, though, is that in going
from a phase to the previous phase, it must be the case that between any two active processes
in the later phase, there is at least one (and possibly two) active processes in the previous
phase. Thus, the chain of messages pursued backward from P2 in the next-to-last phase can

.

132 Lecture 12: October 30

PO = P2

Figure 12.5: The last phase of the Peterson algorithm. P0 is the winner.

P1="P4 P5

Figure 12.6: The next-to-last phase of the Peterson algorithm.

at worst only extend as far as P1, as depicted in Figure 12.6. Note also that an additional
active process must have existed counterclockwise to P1.

At the phase preceding the next-to-last phase, there again must have been active processes
between P4 and P5, and between P5 and P2, as shown if Figure 12.7.

12.2.1 An Impossibility Result, and a Lower Bound Result

Having considered some .algorithms to solve the leader election problem, we now turn to
impossibility and lower bound results for this problem. A well-known result due to Angluin
is that it is impossible to elect a leader in a ring in which the processes have no identifiers.
The problem is the same one that we encountered earlier in discussing the dining philosophers
problem — namely, that in the absence of identifiers it is impossible to break the inherent
symmetry of the original ring. This result remains true regardless of whether we assume

]

Peterson’s Leader Election Algorithm 133

P2
P @P5

Figure 12.7: The next preceding phase of the Peterson algorithm.

that the processes know the value of n, or can send bidirectional messages, or operate
synchronously, or can conceivably elect any process as leader.

An interesting lower bound result was developed by Burns. In this case, we consider the
leader election problem with the following properties:

¢ Assumes that n, the number of nodes in the ring, is unknown.
¢ Involves bidirectional messagé passing. |

e Works asynchronously.

o Uses an unbounded identifier set.

e Elects any node as leader.
Burns proved the following:

Theorem 12.1 A leader election algorithm with the properties listed -above must have a

worst case performance (in messages sent) of (1/4)nlog n, where n is the number of processes:
in the ring.

We assume that n is a power of 2. We will model each process as an I/O automaton, and
stipulate that each automaton is distinguishable (in essence, that each process has a unique
id-number). The automaton can be represented as in Figure 12.8. Each process has two
output messages, send-right and send-left, and two input messages, receive-right and
receive-left.

Our job will ultimately be to see how a collection of automata of this type behave when
connected up into a ring; but in the course of this exploration we would also like to see how

Ll

134 Lecture 12: October 30

receive-left send-right
N

(

send-left receive-right

Figure 12.8: A process participating in a leader election‘algorithm.

mgm@mu@m@me

Figure 12.9: A line of leader-electing automata.

]

Peterson’s Leader Election Algorithm 135

the automata behave when arranged not in a ring, but simply in a straight line, as in Figure
12.9. Formally, we can say that a line is a linear composition of distinct automata, chosen
from the universal set of automata.

We can imagine that the executions of such a line of automata can be examined “
isolation,” where the two terminal automata receive no input messages; in this case the hne
simply operates on its own. Alternatively, we might choose to examine the executions of the
line when certain input messages are provided to the two terminal automata.

As an added bit of notation, we will say that two lines of automata are compatible when
they contain no common automaton between them. We will also define a join operation
on two compatible lines which simply concatenates the lines; this operation identifies the
rightmost receive-right message of the first line with the leftmost send-left message of
the second, and the leftmost receive-left message of the second line with the rightmost
 send-right message of the first. Finally, the ring operation on a single line identifies the
rightmost send-right and leftmost receive-left messages of the line, and the rightmost
receive-right and leftmost send-left messages. The ring and join operations are depicted
graphically in Figure 12.10.

We proceed with a proof that inlogn messages are required to elect a leader in a bidi-
rectional asynchronous ring, where n is unknown to the processes and process identifiers are
unbounded. Recall from Lecture 14, the definitions of a line, a ring, and the join operation.
If S is a system (line or ring), and a is an execution of S, then we define:

MSGS(S) = sup, MSGS(S,a). _ |
Here we consider the number of messages sent during execution. (For lines, we only:
consider executions in which no messages come in from the ends.)

A configuration q of S consists of the local states and the messages in all buffers.

A configuration g of a ring is quiescent if no execution from ¢ sends any new messages.

A configuration ¢ of a line is quiescent if no execution ;from ¢, in which no messages
arrive on outside incoming links, sends any new messages.

Executions from a quiescent configuration can deliver messages already in buffers in S,
but generate no new messages. If S is a line, no new messages come in from outside.

Lemma 12.2 For every : > 0, there is an infinite set of disjoint lines, L;, such that for all
Le L;,|L| =2 and MSGS(L) > 1+ 2logn (where n = 2°).

Proof: By induction on :
Basis: For ¢ = 0, we need an infinite set of different processes such that each can send
at least 1 message without first receiving one. Suppose, for contradiction, that there are 2

il

136 . Lecture 12: October 30

() () ()

Qing ri@

Figure 12.10: Join and ring operations.

eader | a
()

; ©

Figure 12.11: Basis for proof of Lemma 15.1

m

Peterson’s Leader Election Algorithm 137

Know about Join

Figure 12.12: Join(L,M)

processes, p and ¢, such that neither can send a message without first receiving one. Consider
rings Ry, Ry, and R3 as shown in Figure 12.11.

In all three rings, no messages are ever sent, so each process proceeds independently.
Since R; solves election, p must elect itself, and similarly for R, and q. Then R; elects two
leaders, a contradiction. So, at most one process won’t send a message before receiving one.

If there is an infinite number of processes, removing one leaves an infinite set of processes
that will send a message without first receiving one. Let Lo be this set, which proves the
basis.

Tnductive step: Assume true for : — 1. Let n = 2. Let L, M, N be any 3 lines from
Li_1. Consider all possible comnbinations of two: LM, LN, ML, NL, MN, and NM. Since

infinitely many sets of 3 can be chosen from £;_;, the following claim implies the lemma. =
Claim 12.3 At least one of the 6 lines can be made to send at least 1 + 2 logn messages.

Proof: Assume false. By the inductive hypothesis, there exists a finite execution az, of L
for which MSGS(L, 1) >'1 + 2log %, and in which no messages arrive from the ends.

We can assume without loss of generality that the final configuration of oy is quiescent,
since otherwise o, can extend to generate more messages, until 1 + 2logn messages is
exceeded. We can assume the same condition for aps and ax by similar reasoning. Now
consider any two of the lines, say L and M. Consider join(L,M). Consider an execution that
~ starts by running a7 on L and ap on M, but delays messages over the boundary.

This gives > 2(1 4 % log) messages. Now deliver the delayed messages. The entire line
must quiesce without sending § more messages, otherwise the total will be > 2(1+% log 2)+%
= 2+ % logn and the claim is satisfied. This means that at most % processes in join{L,M}
“know about” the join, and these are contiguous and cross the boundary as shown in Figure .
12.12. These processes extend at most halfway into either segment. Let us call this execution
apm. Similarly for apy, etc.

In ring R; of Figure L15:f3, consider an execution in which ar, ap, and an occur first,
quiescing pieces. Then quiesce around boundaries as in arar, arn, and apng. Since the
processes that know about each join extend at most half way into either segment, these
messages will be non-interfering. Similarly for R,.

il

138

M
qu/ I~
(B
\

Figure 12.13: Join(L,M N) Case 1
N

X
\

R2 /

L ' M

Figure 12.14: Join(L,N,M)

Lecture 12: October 30

, Each of Ry and R; elects a leader, say p; and p;. We can assume without loss of generality
that p; is between the midpoint of L and the midpoint of M as in Figure 12.13. We cons1der
cases based on the position of p; in R; (Figure 12.14) to find a contradiction.

o Case 1: p; is between the midpoint of L and the midpoint of N as in Figure 12.15

Quiesce as before-run segments and quiesce around boundary.

No leader is elected in Rs, a ring containing MN. If one is, say ps, then first suppose
it is in lower half as in Figure 12.16. Then it also occurs in R, and gets elected there
too as in Figure 12.17. There are two leaders in this case which is a contradiction. If
it is in the upper half of R3, then we arrive at a similar contradiction in R;.

e Case 2: p, is between the midpoint of L and the midpoint of M. We arrive at a similar

contradiction based on Rs, again.

e Case 3: p, is between the midpoint of M and the midpoint of N. We arrive at a similar
contradiction based on R4, a ring containing LN as in Figure 12.18.

il

Peterson’s Leader Election Algorithm

N

- /I\\\\
P2 //“ A
R,

Figure 12.15: Join(L,N,M)

o

Figure 12.16: Join(M,N): Leader elected in the lower half

Figure 12.17: Join(L,N,M)

139

dl

140 Lecture 12: October 30

- Figure 12.18: Join(L,N): Leader elected in the lower half

The reason this suffices is as follows: Let n be a power of 2. Pick a line L of length n
with MSGS(L) > 14 § log n, and paste it into a circle. Let the processes in L behave exactly
as they would if they were not connected, in the execution that sends the large number
of messages. Delay all messages across the pasted boundary until all the large number of
messages have been sent. Note that his uses asynchrony heavily.

L

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 13: October 25
Lecturer: Nancy Lynch ’ Scribe: S.J. Lee'

13.1 Concurrent Read/Write Registers

We now discuss the construction of registers which allow concurrent readers and writers.
All the registers are modeled as I/O automata as in F igure 13.1. The index ¢ on the read

4ackz~,x | e return,-,x,v

Write; zy ————s f— read; ,
X

Figure 13.1: Concurrent Read/Write Register X

and write operations corresponds to a process calling the register. That is, for each process
¢ that can read the register X, X has a read;, operation (similarly for write operations).
Therefore, from the point of view of the register, each index can be regarded as just naming
an input line. We assume that operations on each line are invoked sequentially, i.e., no
new operations are invoked on a line until all previous operations invoked on that line have
returned. But otherwise, operations can overlap.

13.1.1 Register Types

Only single writer registers are considered in the following discussion. Because of this re-
striction, writes never overlap one another. Overlapping reads are assumed not to affect one
another, so we only need to consider the case of a read operation overlapping one or more
write operations. There are three different possibilities in this case. The weakest possibility

17Based on the complete lecture notes from 1988 scribed by Sanjay Ghemawat

141

L

142 Lecture 13: October 25

is a safe register in which a read that is overlapping a write can return an arbitrary value.
The strongest possibility, an atomic register, was defined in Lecture 3. The other possibility,
a regular register falls somewhere in between safe and atomic registers. A read operation
on a regular register returns the correct value if it does not overlap any write operations.
However, if a read overlaps one or more writes, it has to return the value of the register either
before or after any of the writes it overlaps. For example, consider the two read operations in

Wo
Wi. —
W,

R, R,
Ws

Wy —

Figure 13.2: Read Overlapping Writes

Figure 13.2. The set of feasible writes for Ry is {Wo, Wy, Wy, Ws, Wy} because it is allowed to
return a value written by any of these write operations. Similarly, the set of feasible writes
for Ry is {W;, W2, W3}. The reader should note that there need not be any relation between
the value returned by Ry and the value returned by R;. It 'should also be noted that only
atomic registers can have multiple writers.

13.2 Implementation Relationships for Registers

In the following discussion (adapted from [Lamport86]), binary valued registers are dis-
tinguished from multiple valued (k-ary) registers and single reader registers from n-reader
registers. We consider the twelve different kinds of registers this classification gives rise to,
and see which register types can be used to implement other types. In the following dia-
grams, an arrow from register type A to register type B signifies that B can be implemented
using A. The implementation relationships in Figure 13.3 should be obvious.

-

Register Constructions 143

Safe Regular Atomic
n-reader n-reader n-reader
k-ary k-ary k-ary

n-reader l-reader n-reader

binary \ /6 k-ary binary ll\ \ } l-reader n-reader 7 \ 1-reader

k-ary binary | k-ary

®
1-reader 1-reader 1-reader
binary binary binary

Figure 13.3: Obvious implementation relationships between register types. An arrow from
type A to type B means that B can be implemented using A

13.3° Register C__ohstructions

Lamport presents five constructions to show other implementation relationships. All of
these constructions have a similar flavor. For example, consider Figure 13.4. Two 1-reader
registers are being used to implement a 2-reader register. The 1-reader registers are called
the physical registers, and the 2-reader register is called the logical register. In all of the
following constructions, a logical register is constructed from one or more physical registers.
Each input line to the logical register is connected to a process. These processes in turn are
connected to one or more of the physical registers using internal lines. Exactly one process is
connected to any internal line of a physical register. This guarantees that operations on each
internal line are invoked sequentially. Processes connected to external write lines are called
write processes, and processes connected to external read lines are called read processes.
Note that nothing prevents a read process from being connected to an internal write line of
a physical register. Given this background, the construction process can be stated in the
following manner — if the physical registers satisfy their specification and operations from
outside are invoked sequentially on each line, then the composed system’s fair behaviors all
satisfy the specification for the logical register.

In the following constructions, actions on external lines are always specified in upper-
case, whereas actions on internal lines are specified in lower-case. For example, ert(write)
and ert(read) denote external operations whereas int(write) and int(read) denote internal
operations.

th

144 Lecture 13: October 25

W / v

\
:*ﬁ@
.i_:%r{
ﬁ_:%

N _/

Figure 13.4: Example: Implementing a 2-reader register with two 1-reader registers

13.3.1 N-Reader Registers from 1-Reader Registers

The following construction implements an n-reader safe register from n 1-reader safe registers,
and an n-reader regular register from n 1-reader regular registers. The write process is
connected to-the write lines of all n internal registers as in Figure 13.5. Read process ¢ is
connected to the read line of the ith physical register.

Code for ezt(write)(v)

For all 7 in {1,...,n}, send int(write)(v) to z;. Wait for int(acks) from all z; and then send
ext(ack). The int(writes) can be done either concurrently, or in any order.

"~ Code for ezt(read);

Send int(read) to z;. Wait for int(return)(v) and then send ezt (return)(v).

Claim 13.1 If z4,...,z, are safe registers, then so is the logical register.

Proof: Within each ezt(write), for any particular z;, exactly one int(write) is performed on
that register. Therefore, since ert(write) operations occur sequentially, int(write) operations
for a particular z; are also sequential. In addition, int(read) operations for a particular z; are
also sequential. Therefore, each physical register has the required sequentiality of accesses.

Register Constructions 145

N6)

Ry

5
s
|

O}

¢
-

N
g

Ry

® ¢
o

/

Figure 13.5: N-Reader Registers from n 1-Reader Registers

If a ezt(read), say by RP;, does not overlap any ezt(write), then its contained int(read)
does not overlap any int(write) to z;. Therefore, safety of z; assures that the int(read)
operation gets the value written by the last completed int(write) to z;. This is the same
value as written by the last completed ert(write), and since RP; returns this value, this
ext(read) returns the value of the last completed ezt(write). ‘ : n

Claim 18.2 If zy,...,z, are regular registers, then so is the logical register.

Proof: We can reuse the preceding proof to get the required sequentiality of accesses to
each physical register, and to prove that any ext(read) which does not overlap a ext(write)
returns the correct value. Therefore, we only need to show that if a ezt(read) R overlaps some
ezt(write) operations, then it returns the value written by a feasible ext(write). Since the
int(read) r for R falls somewhere inside the duration of R, the set of feasible int(writes) for r
corresponds to a subset of the feasible ezt(writes) for R. Therefore, regularity of the physical
‘register z; implies that R gets one of the values written by the set of feasible ext (writes). =

Claim 13.3 This construction does not make the logical register atomic even if the z; are
atomic.

With this construction, Figure 13.3 reduces to Figure 13.6.

L

146 ’ Lecture 13: October 25

Safe Regular Atomic
k-ary " k-ary n-reader
k-ary
L v
-~
n-reader 1-reader
binary k-ary
\]
® [] []
binary ' binary 1-reader
binary

Figure 13.6: Collapsed Implemenﬁation Relationships

13.3.2 Wait-Free Registers

The previous construction guarantees that all logical operations terminate in a bounded
number of steps of the given process, regardless of what the other processes do. This is
a general property we would like for all such constructions. Wait-freeness can either be
formulated in terms of a bounded number of the process’s own steps for operations, or in
terms of a time bound on operations, given that the physical registers have a very fast
response, and that the process’s step time is bounded. This property is important, because
registers obeying it allow non-delayed access to shared memory.

It would be useful to give a more careful definition of wait-freeness.

13.3.3 K-ary Safe Registers from Binary Safe Registers

If k = |2'], then we can implement a k-ary safe register using ! binary safe registers. We do
this by storing the ith bit of the value in binary register z;. The logical register will allow
the same number of readers as the physical registers do (see Figure 13.7).

Code for ezt(write)(v)

For ¢ in {1,...,1} (any ordering), write bit 7 of the value to register z;.

Code for ezt(read);

For ¢ in {1,...,1} (any ordering), read bit 7 of value v from register z;. ext(return)(v).

L]

Register Constructions 147

Ry

Ra

/

Figure 13.7: K-ary Safe Registers from Binary Safe Registers

Note that unlike the first construction, this construction works only for safe registers, i.e., a
k-ary regular register cannot be constructed from a binary regular register using this method.
With this construction, Figure 13.6 reduces to Figure 13.8. .

13.3.4 Binary Regular Register from Binary Safe Register

A binary regular register can easily be implemented using just one binary safe register (see
Figure 13.9). The basic idea is that the write process WP, locally keeps track of the contents
of register z (this is easy because WP is the only writer of z). W P does a low-level int (write)
only when it gets a ezt(write) which would actually change the value of the register. If the
ext(write) is just rewriting the old value, then W P finishes the operation right away without
touching z. Therefore, all low level int(writes) toggle the value of the register. Now consider
the case when a ezt(read) is overlapped by a ezt(write). If the corresponding int(write) is
not performed (i.e., value is unchanged), then register z will just return the old value, and
this ezi(read) will be correct. If the corresponding int(write) is performed, £ may return
either 0 or 1. However, both 0 and 1 are in the feasible value set of this ext(read) because
the overlapping ezt(write) is toggling the value of the register. Therefore, the ezt (read) will
be correct. Figure 13.8 now reduces to Figure 13.10.

L}

148 Lecture 13: October 25

Safe ‘Regular Atomic
k-ary n-reader
k-ary
[] ®
n-reader 1-reader
binary / k-ary
I 4
[] - []
binary 1-reader
: binary

Figure 13.8: Collapsed Implementation Relationships

Figure 13.9: Binary Regular Register from Binary Safe Register

Register Constructions 149

Regular Atomic
k-ary n-reader
k-ary
’
n~reader 1-reader
binary k-ary
Y
[2 ®
binary and 1-reader
all safe binary

Figure 13.10: Collapsed Implementation Relationships

13.3.5 K-ary Regular Register from Binary Regular Register

We can implement a k-ary regular register using k binary regular registers as in Figure 13.11.
If the initial value of the register is vo, initially Ty, is 1 and other physical registers are all 0.

Code for ezt(write)(v)
int
(write) 1 to z,. Then, in order, int(write) 0 to z,_q,..., zo.

Code for ezt(read)
int ‘
(read) xo,zy,..., 741 in order until some z, = 1 is found. ext(return)(v).

RP; is guaranteed to find a non-zero z, because whenever a physical register is zeroed out,
there is already a 1 written in a higher index register.

Claim 13.4 If a ezt (read) R sees a 1 in z,, then v must have been written by a ext (write) .
which is feasible for R.

Proof: Suppose not. Then R sees z, = 1, and neither an overlapping or immediately
preceding ezt(write) wrote v to the logical register. Then v was written either sometime in
the past, or v = vp (initial value). For the moment, ignore the initial value case. Since v
is written by W, (which is not a feasible write for R), there must be a W, completely after

th

150 : Lecture 13: October 25

Ry

R,

= /

Figure 13.11: K-ary Regular Registers from Binary Regular Registers

W, which completely precedes R (otherwise W, would be a feasible ezt(write) for R). This
W, must write something < v because if it wrote a value > v, it would set z, = 0 before R
could see z, = 1, and if it wrote a value = v, it would reset z, = 1, but then R would not
get the result of Wy, but of Wa. So, let v’ be the biggest value (must be < v) such that a
int(write)(1) to z, completely follows W; and completely precedes the int(read) of =, in R.
Since R reads the registers in order zo,..., k-1, and it returns value v > v/, R must have
seen z,, = 0. But, v’ was set to 1 sometime before int(read) of z,s in R. Therefore, there
exists some int(write)(0) to z,, which follows the int(write)(1) to z, and either precedes
or overlaps the int(read) of v’ in R. But this can only happen if there is an intervening
- int(write)(1) to some z,» such that v" > v'. This is a contradiction to the definition of v’
being the biggest such value. Note the int(write)(1) to z,» completely precedes the int(read)
of z,» in R because the int(write)(0) to z, either precedes or overlaps the int(read) of z.
in R, and v" > v'. .

Note: The case when v is the initial value can be treated similarly. =

The implementation relationships now collapse as shown in Figure 13.12.

]

Register Constructions

n-reader
k-ary atomic
n-reader 1-reader
binary atomic \ / k-ary atomic
1-reader

binary atomic
L
regular

and safe

Figure 13.12: Collapsed Implementation Relationships

151

o

6.852 Distributed Algorithms Fall Semester, 1990
Lecture 14: October 30

Lecturer: Nancy Lynch Scribe: Shen-Wei Huang'®

14.1 Register Constructions: the End of the I-writer
case | |

The last time we had reduced the relationship diagram to Figure 14.1. Recall that we are
dealing here with 1-writer registers. The case of mult] writers will be treated in the next

section.

n-reader
k-ary atomic

n-reader 1-reader

binary atomic \ / k-ary atomic
1-reader
- binary atomic

regular
and safe

Figure 14.1: Gollapéed Implementation Relationships

14.1.1 1-Reader K-ary Atomic Register from Regular Register

It is possible to construct a 1-writer, 1-reader k-ary atomic register from two 1-reader regular
registers as in Figure 14.2. Regular register z stores tuples of form (old, new, num, color)
where old,new € V, num € {1,2, 3} and color € {red,blue}. Register y stores colors from

{red, blue}.

18Based on the complete lecture notes from 1988 scribed by Christopher Colby

152

]

Register Constructions: the End of the 1-writer case 133

Figure 14.2: 1-Reader Atomic Register from Regular Registers

Code for ezt(write)(v)

Remember value of z locally as z.new.

newcolor « —(int(read) y)

oldvalue «— z.new

for i = 1,2,3 do int(write) (oldvalue, v,z,newcolor) to z.

Code for ezt(read)

Remember last two reads in z’ and z".
A z” — x/
' « int(read) z
int(write) z.color to y.
case
num = 3:
new-returned « true
ext(return) z’.new
z’.num < 3 and z'.num > (z”.num — 1) and new-returned and z'.color = 2”.color:
ezt(return) z’.new
else:
new-returned « false
ezt(return) z’.0ld
end case

Read [Lamport86] for the correctness proof. The implementation relations now collapse as
in Figure 14.3. This concludes Lamport’s construction. At this point we still have a gap
in between n-reader, 1-writer atomic registers and 1-reader, 1-writer atomic registers. ft

tf

154 Lecture 14: October 30

n-reader
k-ary atomic
p

n-reader
binary atomic

Y

® regular and safe
1-reader atomic

Figure 14.3: Collapsed Implementation Relationships

was closed in a couple of other papers: [BurnsP87], [NewmanW87,] and [SinghAG87]. But
these algorithms are very complicated and time-consuming, and need more work to become
practical algorithms.

14.2 Multi-writer Register

The implementation of n-writer registers with 1-writer registers has been tackled in many
different papers. [Bloom87] treated the case of 2-writer registers, [VitanyiA86] and [Peterson-
Burns-Schaffe] were buggy. We will discuss here Bloom’s 2-writer algorithm, the unbounded
‘case of Vintanyi-Awerburch’s algorithm, Herlihy-Loui-Abu-Amara’s impossibility result for
constructing atomic test-and-set registers from atomic read-writer registers and Attiya’s
atomic snapshots of shared memory. |

But first, let us give a remark about how atomic registers relate to our I/O model. There
are two basic models of I/O that we will refer to as A and B. A is the model where we have
an I/O automaton for each process and each variable. B is the model where the modeling
of the whole system is done through a single big automaton. A expresses that the object
responds to all accesses as if they happened at some particular time in the interval; B
expresses that they happened truly indivisible. We would like to say that A ”simulates” B
in the sense that all the fair behaviors of A are also fair behaviors of B (considering only the
external interface). But this statement needs to be proven carefully. The idea is to take a fair
execution of A and to interchange the events so that each invoke-respond pair on physical
registers occurs consecutively, then to replace the pair by a single step in system B. To do
this interchange, we needs to know that consecutive steps do not affect each other, so that
they can happen in either order. In order to do this, the following restrictions are required
on A. These conditions have been worked out carefully in Ken Goldman’s PhD thesis:

1. The system’s interface with the outside world consists of pairs of invocation and re-
y

]

Bloom’s 2-writer Construction 155

Figure 14.4: Architecture of Bloom’s 2-writer atomic register construction. Lines between
processes and registers denote access channels. Read access channels are shown as single
lines and write access channels as double lines. ' ‘

sponse,
2. The user invocations are sequential on each line,
* 3. The processes take steps accessing shared objects sequentially,

4. The processes only have locally controlled steps enabled in between their invocations .
and responses.

In this setting, Ken’s results say that, if the processes only take one step at a time and
cannot take steps except during the protocol, then, without loss of generality, we can think
that the physical accesses are indivisible. '

14.3 Bloom’s 2-writer Construction

Bloom [Bloom87} developed a method for constructing a 2-writer n-reader atomic register
from two 1-writer n + 1-reader atomic registers. The algorithm is simple but does not
apparently generalize.

The construction of the 2-writer atomic register is shown in Figure 14.4.

It consists of two atomic 1-writer n + 1-reader registers (zo and z;), n read processes
(RP;... RP,), and two write processes (WPo and WP;). Each atomic register z; holds a
pair (value,tag), where value is the value of the logical register and tag is either 0 or 1.
Initially, zo and z; hold (Vinit, 0), where v;,;; is the initial value of the logical register. When
a writer writes, it tries to make sum of tags mod 2 as its own index.When a reader reads, it

L

156 ' Lecture 14: October 30

Algorithm BL using binary tags
Shared variables: zg, z,
Zo is initially (vim.,0)

3 is initially (v, 0) ‘
where v, is the initial value of the logical register

Algorithm for WP;: Algorithm for RP;:
(writing a value v) read (vo, o) from z,
read (vy,t;) from z,
read (v/,t') from z—; ret®h
te (@t read (vg,t;) from z,
return v,

write (v,%) to z;
Algorithm BLS using integer tags
Shared variables: zg,z, '

T is initially (v, 1)
zy is initially (v, 0)
where v,,;, is the initial value of the logical register

Algorithm for WP;: Algorithm for RP;:
(writing a value v) read (vp, ug) from z,
' read (vy,u;) from x;
if IUQ - U]I =1
then r « 7 such
that u; = max(uo, u;)
else r « arbitrary
. read (vg,uz) from z,
return v,

read (v',u’) from z-;
v (v +1)
write (v, u) to z;

Figure 14.5: Code of Bloom’s 2-writer Construction

n

Bloom’s 2-writer Construction _ 157

reads both registers and decide to choose one based on whether the sum of tags mod 2 is 1
or 0, it rereads the one it chose and return its value. The code appears in Figure 14.5.

14.3.1 Correctness

Bloom’s paper has a very detailed and low-level proof. It starts with any well-formed fair
behavior of this system, and shows that it is possible to insert dummy “perform” actions so
that shrinking the invocations and responses to these perform actions gives a correct serial
behavior for the R-W object. Unfortunately there is not much insight in this proof so that
we will instead sketch another one that works at a higher level.

We will work implementing the possibilities-mapping idea. Like for ABP, we will give a
version of the algorithm that uses a sequence of integer numbers instead of a sequence of
bits. But here the reduction will not only be through the lower bits but through the second
lowest-order bits.
reduction strategy: writer WPq sets the second lowest-order bits of the tags to the same
value whereas WP, sets them to different values. For instance, assume that each of the two
writers repeatedly sets its tag value to be the other one’s + 1. Figure 14.6 illustrates this
situation.

x 001 011 101.

NN

X 000 010 100

Figure 14.6: W, and W, increase their tag values

We see that Wy acts as if trying to set equal the second order bits, whereas W, tries to
set them different.

Lemma 14.1 There is a possibilities mapping from Bloom bit algorithm to Bloom’s integer
sequence algorithm. '

Proof: (Sketch) The idea of the proof is to show that any step in BL can be emulated by
a corresponding step in BLS.

When a writer sets its tag different from the other in BL, this can be emulated in BLS
by setting its associated integer value to the other’s plus one as indicated in the example of
Figure 14.6.

When a reader sees o and t, it decides to read some t,. We show that the same register
is allowed in BLS:

L

158 Lecture 14: October 30

1. If the corresponding integer tag uo is one more than the corresponding u; then their
second lower-order bits are equal. In this case, ¢y is equal to t;, BL decides to read
from xo and BLS also reads from zg.

2. If the corresponding integer tag uo is one less than corresponding u; then their second
lower-order bits are different; t, is different from ;. Then both BL and BLS read from
ZTy.

3. For the remaining cases, BL reads some particular register; but in this case BLS allows
to read either.

-

Hence we just have now to prove correctness for BLS. For this, it is useful to develop a

sufficient condition for correctness involving partial orders. It will also be used to show the
correctness of Vitanyi-Awerbuch’s algorithm in the next lecture.

Definition regular sequence of a logical register

A sequence 3 of external actions of a logical register is regular if

e For each line, calls and responses alternate, starting with call,
o Each call has a c‘orresponding later response.

Lemma 14.2 (Ordering Lemma) Suppose a regular sequence 3 has a partial ordering <
of all operations (paired invocations and responses) satisfying: '

1. If end; precedes begin;, then it cannot be the case that operation; < operation;.

2. < orders all WRITE operations with respect to each other and orders all READ oper-
ations with respect to the WRITE operations.

3. The value returned by each READ operation is the value written by the last WRITE
operation that is ordered before it in <. (Or the initial value, if no WRITE ever occurs
before it.)

Then f is a correct atomic register behavior.

Proof: We must show that we can augment 8 by adding in dummy actions *; between
begin; and end;, and that each READ; gets the value written by the WRITE; such that x;
must closely precedes *; (or the initial value if there is no preceding WRITE). The rule will
be the following: we insert the * for event i (denoted by *;) immediately after the latest
among {begin; , all begin; such that operation; < operation;}. This will be specific enough
so that we know that a * can be placed within a given space; if more than one * has to be
placed within that space, we order them so that they are consistent with the partial ordering
<.) |

L]

Bloom’s 2-writer Construction 159

Claim 14.3 Each *; is between begin; and end;.

Proof: 1t is clearly after begin; by the construction; and if it were to come after end;,
then it must be the case that end; precedes begin;, where operation; < operation;.- However,
this contradicts the first condition on the partial order; so we conclude that #; is correctly
between begin; and end;. |

Claim 14.4 The precede-order on * symbols is consistent with the < order on operations:
if operation; < operation;, then x; precedes ;.

Proof: Let operation; < operation;, then *; occurs after the last of begin; and all begin,
where operation; < operation;, and *; occurs after last of begin; and all begin, where
operation; < operation;. Thus, *; occurs after *; by definition. ']

Claim 14.5 Each READ operation must get the value of the last WRITE operation whose

* immediately precedes that of the given READ (or the initial value if there is no preceding
WRITE)

Proof: To prove this, we note that by the third property of the < ordering, each READ
gets the value of the last WRITE ordered before it by <. By the second property, we know
that < orders all READ:s relative to all WRITESs, and all WRITEs relative to each other.
Since the precedes order is consistent with the < order, a READ must get the value of the
last preceding WRITE. ‘ : : []

Now, if we can show that the operations in the algorithm can be ordered in such a way
that the conditions of our lemma are satisfied, we will prove that the algorithm correctly
implements atomic register behavior. This will be the topic of our next lecture.

6.852 Distributed Algorithms - Fall Semester, 1990

Lecture 15: November 1
Lecturer: Nancy Lynch Scribe: S.J.Lee

15.1 Bloom’s 2-Writer.Construction - Continued

We now continue the discussion of Bloom’s 2-writer algorithm using integer tags. To establish
its correctness, it suffices to define a partial ordering on the operations and show that it has
the properties described in the Ordering Lemma of Lecture 14. We will order the WRITE
actions by their sequence number (if two get the same sequence number, they are by the
same writer, so that we order them in the order that they occur). We will order each READ
right after the WRITE whose value it gets and order the consecutive READs in the order
which is consistent with the begin-end pair.

The integer tag algorithm clearly satisfies the properties 2 and 3 of the Ordering Lemma.
It remains to show that it satisfies property 1 i.e., that this order is consistent with the
begin-end order. We work by contradiction and assume that End; precedes Begin; whereas
the operations are ordered in opposite order: Operation; < Operation;. There are four cases
based on the nature of the operations ¢ and j.

1. Suppose WRITE; < WRITE,.

» seqno(i) = seqno(j). The same process originates the two operations and must
order them consistently with begin-end order. But this is a contradiction with
our hypothesis, so that we must be in the following case:

e seqno(i) > seqno(j). If the WRITEs were done by different writers, WRITE;
would see seqno(i) or greater, and would choose a sequence number greater than
seqno(i), and this is a contradiction.

If they are done by the same writer, then WRITE; had to observe at least seqno(i)

- 1inj’s register, so WRITE; would also (observe seqno(i) - 1) and so would choose
at least seqno(i), a contradiction.

2. Suppose READ; < WRITE;. This says that READ; gets its value from some WRITE;
ordered before WRITE

o seqno(k) = seqno(i). This is impossible: WRITE; precedes WRITE;, and READ;
cannot get seqno(k) because it is overwritten before READ; begins. Hence we
must consider the following case:

160

Vitanyi-Awerbuch’s n-writer Construction 161

o seqno(k) < seqno(i). The value obtained by READ; must come from the other
writer (because if it was the same writer, it would be overwritten). The only
value that could be around at end; is the value of WRITE; — 1, say u; - 1. But if
READ; sees u; — 1 (which it must do), it sees it the first time it reads the register.
If it saw also u; on first read, it would choose the other register. Hence it must
see u; + 2 or greater. But then rereading the u; — 1 register would give a later
sequence number (at least u; + 1).

3. Suppose WRITE; < READ; Our hypothesis means that READ; sees either WRITE;
or some other WRITE ordered after it. But it can’t see WRITE; since it hasn’t
happened yet. Similarly, later WRITEs with the same sequence number occur after
WRITE; and READ; can’t see them. Therefore READ; must see some WRITE; with
seqno(k) > seqno(j). If WRITE; were done by the same writer as WRITE;,, it begins
after WRITE; and READ; could not see it, so it must be by the other writer. If
WRITE; actual contained write step occurs after begin;, then READ; can’t see it, so
that this actual write step must occur before begin;. But then WRITE; would see it
(or would see a larger one) and would choose a larger sequence number: contradiction.

4. READ; < READ; Our hypothesis means that READ; gets the result of a WRITE;
that precedes the WRITE; that READ; sees (in sequence-number order). They cannot
have the same sequence number, because the value would be overwritten before begin;.
Therefore the sequence numbers must be different. Let u; denote the value in WRITE;.

As in case (2), the only value possibly around at end; is u; — 1. We conclude as in case
(2) that READ; couldn’t read u; - 1.

15.2 Vitanyi-Awerbuch’s n-writer Construction

Vitanyi-Awerbuch [Vitanyi] developed a construction of a k-ary n-writer n-reader register
from k-ary, 1-writer 1-reader registers, but the 1-writer registers must be unbounded in size.
Figure 15.2 describes the construction and the algorithms of the read and write processes.
This algorithm uses a 2n x 2n matrix of registers that we can think laid out as in Figure 15.1.

The use of lexicographic order was already used in Lamport’s algorithm. The second
field of the tag is used as a tie-breaker.

Claim 15.1 The Vitanyi-Awerbuch algorithm has an ordering among READ and WRITE
operations that satisfies the conditions of the ordering Lemma.

Proof: To prove our claim, we want to look back at the algorithm and order all significant
operations in the way indicated by the Ordering Lemma: that is, we want to order all
WRITEs with respect to each other, and all READs with respect to all WRITEs. The

Ll

162 Lecture 15: November 1

N -

WP| reads | .
Lo
N+t

RP reads

L2n
g 2... et Q‘

WPI writes RP' writes

~ Figure 15.1: Matrix layout of variables in Vityani-Awerbuch’s n-writer construction

Notation: There are n writers, WPy, ..., WP,. There are n readers, RFy,..., RP,.

Shared variables: There are 4n? 1-writer/1-reader atomic variables, z11,..., %252, WE;
reads ;1,...,%i2, and writes z14,...,%an;. RP; reads Tiyn1,...,Titn2n and writes
T1itns-- s Tanitn- The value that each of these holds is a tuple (value, tag), where tag
is a tuple (version, j), where version € {0,...}, initially 0, and j € {1,...,n}. The
tags are ordered lexicographically. '

Algbrithm for WP; to write the value new: Read Tiy,--.Tign in any order. Deter-
mine the greatest tag (¢,7). Write (new, (t +1,7)) into Z14,...,%2n; in any order.

Algorithm for RP;: Read iyn1, . ,Titn2n in any order. Determine the (v, (t,7)) with
the greatest tag. Write (v, (£,7)) into Z1,i4n, ..., T2ni4n in any order. =

Figure 15.2: The Vitanyi-Awerbuch n-writer register construction.

method of ordering that seems intuitively plausible (and that does in fact work) is to order
WRITE operations according to their associated tags, since there is a total order of WRITE
operations based on tags. As for a READ operation, we can order it after the WRITE
operation whose tag value that READ operation read. If there are several READs that get
the same tag value, we don’t really care, since we don’t have to order READs relative to
each other — only with respect to the WRITEs.

This ordering certainly satisfies the second condition of the lemma. As for the first
condition, we want to show that if end; precedes begin;, then we can’t have operation;
< operation;. If operation; and operation; are both READs or both WRITEs, then the
proof of this condition follows from the fact that the tag value at any given position in

Herlihy Impossibility Result 163

the table of variables can never decrease; if one WRITE finishes before another begins, the
second WRITE must increase the tag value in its column beyond the tag value of the first
WRITE, and will thus be ordered by < after the earlier complete Increase the tag value in
its column beyond the tag value of the first WRITE, and will thus be ordered by < after the
earlier complete WRITE. (Similar observations apply to two consecutive complete READ
operations, or a WRITE operation followed by a READ.) The only remaining case that we
have to worry about is when operation; is a READ operation and operation; is a WRITE;
but in this case, the tag associated with the WRITE will be bigger than that associated
with the previously completed READ, so again we must have operation; < operation;. This
completes the proof of the first condition.

Finally, to prove that the third condition is met, we need to show that the value returned
by a READ is the value written by the last preceding WRITE operation in the < ordering (or
initial, if there are no preceding WRITEs). This follows immediately from our construction
of the < ordering: we placed each READ operation in this ordering precisely so that it would
go after the WRITE operation whose corresponding value it read.

|

An interesting question is then to see how we could use the Ordering Lemma in the proof

of some other more complicated multiwriter algorithms.

15.3 Herlihy Impossibility Result

Now that we have seen a variety of constructions that allow us to implement one type of
register in terms of some other type, we might ask whether it is possible to find a wait-
free implementation of higher-level register objects (such as atomic test-and-set registers)
using atomic registers. Herlihy, Loui, and Abu-Amara showed — surprisingly — that it is
in fact impossible to do this. The essence of the proof is as follows: consider a distributed
consensus problem in which a Group of processors start with different “votes” and have to
reach agreement with a final vote. This problem has a known solution using atomic test-and-
set registers; moreover, it can be solved in a way that is resilient to any number of stopping
processes. (That is, no matter how many processes fail, the processes that continue operating
will successfully reach a consensus.) We will show in Section 15.3.2 that this problem cannot
_be solved using any combination of atomic read-write registers. But if we could construct
test-and-set registers out of atomic registers, then we could solve the consensus problem using
read-write registers in such a way that the failure resiliency of the solution corresponds to
the wait-free property of our construction. We thus obtain the following theorem:

Theorem 15.2 It is impossible to construct atomic test-and-set registers from atomic read-
write registers.

o

164 Lecture 15: November 1

15.3.1 The Asynchronous Consensus Problem

Note that up to this point in the class, the consensus problems we have considered have all
presumed some level of synchronization between the processes. We now consider the more
general problem of consensus in a completely asynchronous distributed system. No assump-
tions are made about the relative speeds of the processes or about the length of any delays
in message delivery. In particular, we assume that it is not possible to distinguish between a
process that has halted and one that is merely running very slowly (or is experiencing a very
long delay in receiving a message). It is assumed that all processes execute in a deterministic
fashion—randomized solutions will be examined in a future lecture. Also we restrict failures
to be simply stopping faults (so that Byzantine types of failures are disallowed) and assume
a completely reliable message passing system.

We define formally the consensus problem as follows:

Assume that every process starts with an initial value from {0,1}. A process decides on
a value in {0,1} by entering an appropriate decision state. A process fails. by halting (i.e.
not taking any more steps). The requirements for a solution are as follows:

1. Agreement: No two non-faulty processes may decide on different values.

2. Validity: If all non-faulty processes have the same initial value, then no other value
may be decided upon by a non-faulty process.

3. Termination: All non-faulty processes must eventually decide. .

Definition A configuration consists of the set of all process states together with the state
of the message system. '

During the execution of a given consensus protocol the system proceeds through a se-
_ quence of configurations, and at some point it is determined what the decision value of the
processes will be. Obviously this must occur by the point where the first process decides, but
it may well be that the choice is determined at some earlier point. The following definition
clarifies this idea. .

Definition A configuration C is bivalent if there exist configurations C; and C2, both
reachable from C, such that in C; some process decides on the value 0 and in C, some
process decides on the value 1. A configuration is univalent if there is only one reachable
decision value. A univalent configuration is said to be 0-valent if the reachable decision value
is 0 and I-valent if it is 1.

Note that it is not clear at this point that bivalent configurations must exist. In the
absence of failures it is easy to see how one could construct a consensus protocol which
has a predetermined decision value for each possible set of initial values (e.g., majority).
Lemma 15.3 shows that the possibility of a fault precludes such a consensus protocol.

il

Herlihy Impossibility Result 165

15.3.2 Proof of Theorem 15.2

We begin by noticing that it is possible to solve asynchronous consensus using atomic test-
and-set registers. Given an atomic test-and-set register with an initial value of nil we can
simply have the process that first accesses the register set the register to its initial value and
- then decide on that value. All other processes will then see that the register has a value

other than nil, and decide on that value. Clearly this protocol guarantees agreement and
validity, and any process that does not halt will immediately reach a decision, so termination
is also satisfied.

Note that this protocol is fully resilient to stop-faults. The failure of any number of
processes does not affect the ability of a non-faulty process to access the register.

So, we can solve the asynchronous consensus problem using atomic test-and-set registers.
It follows that if the wait-free construction of atomic test-and-set registers from atomic
read-write registers is possible, then asynchronous consensus can be solved using atomic
read-write registers. Note that the wait-free property of the construction is a key point—if
the construction were not wait-free our consensus protocol that used test-and-set registers
would not be resilient to halting, since a situation could arise where the register was waiting
on a halted process.

We will now show that it is not possible to design a fully resilient consensus protocol using
atomic read-write registers. The impossibility of constructing an atomic test-and-set register
from atomic read-write registers will then follow immediately from the above argument.

Lemma 15.3 Every protocol that solves consensus in the presence of (at most) one stopping
fault has a bivalent initial configuration.

Proof: Suppose not. Then every initial configuration is univalent. Note that the initial
configuration of the system consists simply of the vector of the processes’ initial values and
an empty multiset of messages. Therefore, each vector in {0,1}" (where n is the number
of processes) corresponds to a univalent initial configuration which has some fixed decision
value. By the definition of the consensus problem, the vector of all 0’s must correspond to a
0-valent configuration, while the vector of all 1’s must correspond to a 1-valent configuration.

Now consider the sequence of vectors: 000...0, 000...01, 000...011, ..., 00111...1,
0111...1, 111...1. There must be two adjacent vectors in this sequence (differing in only
one element) such that the first corresponds to a 0-valent configuration Co, and the second
to a l-valent configuration C;. Let p be the process whose initial value differs in the two
vectors. _

Consider a 1-fair execution with schedule 8 in which p takes no locally-controlled steps,
leading from configuration C, to a configuration where some process g chooses 0 as its
decision value. If we now apply 8 to C;, the determinism of the processes requires that ¢
must again choose 0 as the decision value, since the difference in p’s state is not visible to

n

166 Lecture 15: November 1

them and C is identical to Cy in all other respects. But this contradicts the fact that C; is
1-valent. |

Lemma 15.4 Given a fully resilient consensus protocol there exists a reachable bivalent
configuration C from which every step leads to a univalent configuration. C is called a
deciding configuration.

Proof: Suppose that no deciding configuration exists. A fully resilient consensus protocol
clearly must tolerate the failure of a single process. Therefore Lemma 15.3 tells us that there
must exist a bivalent initial configuration for the consensus protocol.

 Since there is no deciding configuration, from every bivalent configuration we can take

some step and get to a new bivalent configuration. By applying this process repeatedly
starting at a bivalent initial configuration, we can continue to pass through bivalent config-
urations indefinitely. It does not matter that the resulting schedule is not necessarily fair,
since the consensus protocol is fully resilient.

Therefore in the absence of a deciding configuration we can construct an execution which
never leads to a univalent configuration, and this violates the termination condition of the
consensus problem. ' ']

Now suppose that we have a fully resilient consensus protocol based on atomic read-write
registers and consider a deciding configuration C. C is bivalent, so there must be a 0-valent
configuration Cy and a 1-valent configuration C; which are reachable in one step. Let mo be
the step leading to Co and let m; be the step leading to Cy. (See Flgure 15.3.) Let 7o and
7 be steps of p and ¢, respectively.

To T

Co Cl

Figure 15.3: Deciding Configuration

Suppose 7o is a read action for process p. Then consider running ¢ by itself from Co,
starting with 7;. Since Co and C are identical except in the local variables of p, it must

Herlihy Impossibility Result 167

be the case that 7, is enabled at Cy, and, moreover, that ¢ eventually decides 1. But this
contradicts the fact that C, is 0-valent.

Therefore 7o is not a read action, and similarly, neither is 7;. So they must both be write
actions. If o and 7, write to different registers, then clearly we can apply them in either
order and reach the same configuration, but this is a contradiction since Cy is 0-valent and
C} is 1-valent.

So o and 7; must both write to the same register. Consider running g by itself from Cg,
starting with ;. Since Cy and C are identical in the local variables of ¢, it must be the case
that 7, is enabled at Cy. And since 7; overwrites the register written by p in step 7y, g sees
the same state that it would if run from C. Therefore, ¢ eventually decides 1, contradicting
the fact that Cy is 0-valent.

We have thus exhausted all possibilities for 7o and 7, and must now conclude that a fully
resilient consensus protocol is not possible using atomic read-write registers.

]

i

6.852 Distributed Algorithms , Fall Semester, 1990

Lecture 16: November 6
Lecturer: Nancy Lynch | Scribe: Suwei Wu

16.1 Atomic Snapshots

In this lecture, we will cover one last register result formulated by Afek, Attiya, et al involving
wait-free algorithms. The algorithms are generally complex and, therefore, we will begin with
some useful building blocks such as atomic snapshot objects. An atomic snapshot object is
~ an entire memory divided into n words. It has n update; and n scan; lines. Update;(v) writes
v into word; while scan; returns the vector of the latest values for each i. As usual , the
atomic version of this object has the same responses as if shrunk to a point in the interval.
Hence an atomic snapshot provides the “vision” of the whole memory at a given point,

Update i
n lines ;

————————

—————————

Scanl-

n lines !

Figure 16.1: Atomic Snapshot Object

To implement a wait-free version of these objects, we use l-writer, n-reader registers.
These registers can be bounded or unbounded in size. ‘

- 16.1.1 Unbounded Single-Writer Algorithm

The algorithm for unbounded registers is simple and is based on two observations.

Observation 16.1 Suppose every update leaves a unique mark in its register. If 2 reads of
all registers return identical values, where one read starts after the other completes, then the
values returned constitute an atomic snapshot.

The algorithm could have updates that just write v and the local sequence number to
the register while the scanner keeps reading till it sees 2 identical vectors. However, this is

168

Atomic Snapshots 169

not completely correct since the algorithm may never terminate. The solution in this case
is discussed in the next observation.

Observation 16.2 If a scan sees an updater change its value 3 times, then that updater
ezecutes a complete update operation within the interval of the scan.

The illustration of the observation is shown in F igure 16.1.1 and an implementation of
the algorithm follows.

— @ 1st value
ﬂ_‘
Scan 2nd value
°
o .
3rd value

Figure 16.2: Observation 2 Illustration

Unbounded Single-Writer Algorithm
each update; keeps a register with a

e value
¢ sequence number

® view (a vector of values)

Scan;

e read all registers until we see 2 equal vectors or until one updater’s component changes
3 times

¢ in the first case, return the repeated vector of values

o

170 Lecture 16: November 6

e in the second case, return the view component associated with the 3rd version of the
changed updater’s register

Update;
e do a scan as above - “embedded scan procedure”

e write the returned value, sequence number, and view of the scan

Proof: Assume the underlying reads and writes are done indivisibly. Then construct
explicit points in the operations interval at which the read or write can said to have occurred.

Update We must serialize updates at a point where the write actually occurs. Thus, consider
the sequence of writes that occurs in an execution a. After any prefix, there is a unique
vector obtained by looking at the actual values in all the registers. These vectors, known
as the “acceptable vectors”, will be the only ones obtained by scans. In each scan, we need
to pick a point in its interval to serialize it at. That point must be chosen so the vector
returned by the scan is exactly the acceptable vector that exist after the sequence of writes
thatl precede that point have been executed.
We must pick points for all the scans, real and embedded.

e First, consider scans, real and embedded that terminate with successful double collects.
Pick any point between the end of its first collect and the beginning of its second. Then
the vector returned is exactly the acceptable vector of register values at this point
because there is no change in the designated interval. '

e Second, consider scans, real or embedded that terminate with the default borrowed
view. Consider these in the order of the completion of the scans. For each, note that
the view it borrows is the result of another scan that is totally included within the
given scan. So it has already gotten its point assigned. Choose the same point for
these scans. The point is in the bigger scan interval since it is in the smaller.

By induction on the number of completions, we can show the value returned by each of

these scans is exactly the acceptable vector at that point.
=

Time Complexity What is the time complexity of scan and update? Let us assume an
upper bound of 1 on each of the procedure steps. In the no-failure case, the time complexity
for each procedure is O(n?) because of the cost of each real and embedded scan. The scans
might need to perform O(n) collects as many as 2n times to get 3 changes from a register.

Atomic Snapshots 171

16.1.2 Bounded Single-Writer Algorithm

For this implementation, instead of keeping sequence numbers for update;, keep n pairs of
handshake bits for communication between update; and scan, for all 7. :

update i

embedded
scan scan

update

scani

Figure 16.3: Bounded Register Implementation

The purpose of the sequence numbers was so that scanners could tell when update;

has produced a new value. However, now the handshake bits will explicitly be used to
communicate this.

The handshake bits are used as in the Peterson Fisher Q-process mutual exclusion algoo
rithm. Update; sets the bits to be not equal while scan; sets the bits to be equal.
Specifically, for each (update;, scan;),

® p;; in reg; is set to the negation of the value seen in g:,; when update; occurs
® ¢;; in reg; is set during scan; to values read ifrom p; ;

Also, update; has an additional toggle bit, toggle;, that it flips during each write. This is
to take care of a special case - to ensure that each write changes the register value. The
complete algorithm can be found in page 10 of Handout 30.

Bounded Single-Writer Algorithm

Update;

o first reads all the handshake bits

L}

172 Lecture 16: November 6

e then scans

e then writes negated handshake bits and negated toggle bit

Secan;
for each tie scan; tries to do a double collect,

e first it reads all the handshake bits and sets its own bits equal

e then it tries to perform the double collect where the tie is determined by the handshake
bits, the toggle, and whether the handshake bit for p; ; is still equal to ¢ ;

e otherwise, same as before

°

Proof: How do we prove this. The behavior of the algorithm does not seem close enough
to use the mapping idea. However, we can try to mimic the previous proof on unbounded
registers.

Again, assign points by the same rules as before — we need to know that (1) if a scan
returns by the default case, then it returns a view resulting from another scan contained
~ entirely within the first scan. Otherwise, (2) if the scan returns by successful double collect,
the the vector returned is indeed the acceptable vector everywhere between the two collects.

The first condition is similar to before. After three scans with different views, we can
choose the view that occurs after the first write and before the second write. The second
condition, requires some original thought and is argued on page 11 of Handout 30. We must
show that if a scan does successful double collects, then no write occurs between the end of
the first and the beginning of the second — so the bits are sufficient to indicate changes.

We begin by contradiction. Suppose two reads by scan; of r; produce values of p;; that
are equal to ¢; ;'s most recent values and toggle bit. Assume a write by ¢ occurs in between
the 2 reads. Consider the last such write; — it must write the same handshake and toggle
bit read by scan;. Since during an update, update; assigns to p;,; the negation of the value
read in ¢; ;, then the read must have preceded scan;’s most recent write of ¢; ;. So we must
have this sequence

read;(g;; = —b) update; reads handshake bit
writej(gji = b) scan; writes handshake bit
read;(p;; = b,toggle; = t) first scan; collect
write;(p;; = b,toggle; = t) update; write
read;(p;; = b,toggle; =t) second scan; collect
The read; and write; are part of the same update; operation so then the 2 reads by

scanj return values written by the 2 successive update; writes. The toggle bits, though, are
identical — contradiction.

L]

Gallager-Humblet-Spira Minimum-Weight Spanning Tree Algorithm 173

=
Atomic snapshots will be the last algorithm covered in the area of shared memory. The

next topic is message passing which will begin with a cute, well-known, though not very
practical algorithm.

16.2 Gallager-Humblet-Spira Minimum-Weight Span-
ning Tree Algorithm

In this lecture, we will examine a distributed algorithm, due to Gallager, Humblet, and
Spira [GallagerHS83], for computing the minimum-weight spanning tree (MST) of a graph.
The statement of the problem is as follows: let G be an undirected graph with weighted
edges in which each vertex is associated with its own processor, and processors are able to
communicate with each other via edges. We wish to have the processors (vertices) cooperate
to construct a minimum-weight spanning tree for the graph G. That is, we want to construct
a subtree covering the vertices in G whose total edge weight is not greater than any other
spanning tree for G. , '

We will assume processes have unique identifiers, and that each edge of the graph is
associated with a unique weight known to the vertices on each side of that edge. (The
assumption of unique weights on edges is not a strong one given that processors have unique
identifiers; for if edges had ‘non-distinct weights, we could derive “virtual weights” for all
edges by appending the identifier numbers of the end points onto the edge weights, thereby
breaking ties between the original weights.) We will also assume that a process does not -
‘know the overall topology of the graph—only the weights of its incident edges—and that
it can learn non-local information only by sending messages to other processes over those
edges. The output of the algorithm will be a “marked” set of tree edges; every process will
mark those edges adjacent to it that are in the final MST. ‘

There is one significant piece of input to this algorithm: namely, that one node will
be “awakened” from the outside to begin computing the spanning tree. Nodes do not,
therefore, begin computing at the same time—in fact, we assume that the processes work
asynchronously. A process can be awakened either by the “outside world” (asking that
the process begin the spanning tree computation), or by another, already-awakened process
during the course of the algorithm.

There has been a fair amount of work on this problem. The Gallager-Humblet-Spira
algorithm focuses on keeping the number of messages sent as small as possible. They achieve
a bound of O((n log n) +) messages, where n is the number of vertices (processes) and e the
number of edges. Intuitively, this is the minimum bound possible: the e term comes from the
fact that we have to send a message over each edge in the graph by way of examining that
edge, and the nlogn term comes from the lower bound on the number of messages for leader
election that we saw in the Burns theorem proved in Lecture 15. The problem of finding an

A

1714 . Lecture 16: November 6

MST reduces obviously to that of finding a spanning tree. If we can find a MST in a graph,
then we can easily carry out a fan-in procedure to elect a leader. Roughly, the idea here
is to have messages sent in “convergecast” fashion inward from the leaves of the tree until
they meet at some node which then designated as the root /leader, and which broadcasts its
identity back outward along the tree.

The motivation for this problem comes mainly from the area of communications—the
weights of edges might be regarded as “message-sending costs” over the links between pro-
cessors. In this case, if we want to broadcast a message to every processor, we would use the
MST to get the message to every processor in the graph at minimum cost.

The Gallager-Humblet-Spira algorithm is not only interesting, but extremely clever: as
presented in their paper, it is about two pages of tight, modular code, and there is a good
reason for just about every line in the algorithm. In fact, only one or two tiny optimizations
have been advanced over the original algorithm. The algorithm has been proven correct
via some rather difficult formal proofs (see [WelchLL88]); and it has been referenced and
elaborated upon quite often in subsequent research.

Connections between the MST Problem and Other Problems

As we just discussed rather informally, the MST problem has strong connections to two other
problems: that of finding any spanning tree at all for a graph, and that of electing a leader
in a graph. : : '

In a graph, if that graph happens to be a tree, then breaking the symmetry caused by
~ cycles is the hardest task of a general leader election algorithm. '

If you have a spanning tree, it is pretty easy to find a leader; this proceeds via “fan in”
of messages from the leaves of the tree until the incoming messages converge on a root node,
which can then be designated as the leader. Conversely, if you have a leader, it is easy to
find an arbitrary spanning tree: the leader broadcasts messages along each of its neighboring
edges, and nodes designate as their parent in the tree that node from which they first receive
an incoming message (after which the nodes then broadcast their own messages along their
remaining neighboring edges). _

A minimum spanning tree is of course a spanning tree; but the converse problem is
harder, since an arbitrary spanning tree is not always minimal. How, then, could one find a
minimal spanning tree given that one has an arbitrary spanning tree (or a leader)?

One idea would be to have every node send information regarding its surrounding edges
to the leader, which then computes the MST centrally and distributes the information back
to every other node in thé graph. This strategy may seem efficient in terms of the number of
messages sent, but realistically it requires a great deal of local computation (on the part of
the root node), and the size of the messages sent back from the root node will also be large.
To summarize all these problem relations, we can draw the following diagram:

MST «— ST «— leader.

Datalink Protocol Impossibility Result 227

In this theorem we implicitly consider channels that are not reliable and not FIFO. To
prove it we assume there is such a protocol and look for a contradiction.

Assume we could produce a multiset T of packets, a finite execution a, and a k-extension
af} such that:

¢ every packet in T is in transit from the ¢ to r after the execution a (i.e.,T" is a multiset
of “old” packets).

e the multiset of packets received in 3 is a submultiset of T'.

This last condition actually means that, for each rec-pkt™(p) action happening in 3, a
send-pkt™(p) had happened during o that had not been matched during a by a corresponding
rec-pkt™(p) action.

We could then derive a contradiction as wanted: Consider an alternative execution that
begins similarly with a, but that does not have then any send-msg action occurring. All the
packets in T cause the receiver to behave as in the k-extension af and hence to generate an
incorrect rec-msg action. :

In other words, the receiver is confused by the presence of old packets in the channel,
which were left in transit in the channel in o and are equivalent to those sent in 3. At the
end of the alternative execution, a message has been received without its being sent, and the
algorithm fails.

In order to manufacture this situation, one further definition is necessary.

Definition 20.2.2 TfT, if

o T C T’ (This inclusion is among multisets of packets.)

o 1 packet p s.t. mult(p,T) < mult(p, T') < k) (mult(p, T') denotes the multiplicity of p
within the multiset T').

Lemma 20.3 If a is valid, and T is a multiset of packets in transit after a has taken place,
then either

1. 3 k-extension aff such that the multiset of packets received by A™ in (3 is a submultiset
of T, or

2. 3 a valid execution o = af such that

2.1. all packets received in 3 are sent in 3,

2.2. and 3 a new multiset T' of packets in transit after o such that Tle .

Ll

176 ’ Lecture 16: November 6

collection; and we find the edge of lowest cost with exactly one endpoint in this tree. We'll
call this the minimum-weight outgoing edge (MWOE) for this tree. The claim that we have
just proved is that there is a spanning tree for G that includes all the edges in the original
forest, and that also includes the newly-found edge, and that is no larger in cost than any
other spanning tree including all the edges in the forest.

This principle forms the basis for well-known sequential MST algorithms. The Prim-
Dijkstra algorithm, for instance, starts with one node and successively adds the smallest-
weight outgoing edge from the (partially-finished) tree until a complete spanning tree has
been obtained. The Kruskal algorithm, by contrast, starts with all nodes as fragments, and
successively extends the fragment with the least-weight outgoing edge, thereby combining
fragments until there is only one large fragment (the final tree). More generally we could
use the following basic strategy: start with all nodes as fragments and successively extend
an arbitrary fragment with its MWOE, combining fragments where possible. This requires
distinct weights since otherwise the procedure could create a cycle. _

Earlier, we noted that in our version of the problem we will assume that all edge weights
in our starting graph are actually distinct. The main property insured by the uniqueness of
the edge weights is that every fragment has a unique MWOE. In this case, we have a second
property that we can use to simplify our problem.

Property 16.4 If all edges of a connected graph have distinct weights, then the MST is
unique. ‘

Proof: The proof of this property is actually similar to the one above. Suppose there
are two trees, T and T", with identical (minimal) weights, and let e be the minimum weight
edge found in only one of the two trees. Say (without loss of generality) e € T. Then
e UT' contains a cycle, and at least one other edge in that cycle, €, is not in T Since
the edge weights are all distinct, and since € is in one tree but not in the other, we must
. have weight(e’) > weight(e) (by our choice of €). But this implies that 7" U {e} — {¢'} s a
spanning tree with a smaller weight than 7", which is a contradiction. =

Assumptions about the Gallager-Humblet-Spira Algorithm

As noted immediately above, one assumption that we will make for the Gallager-Humblet-
Spira MST algorithm is that edge weights are distinct. This property represents a major
advantage for parallel MST algorithms: at successive phases, each of a collection of fragments
may independently (and simultaneously) choose their own MWOE, combining with other
fragments where possible. If the edge weights were not distinct, the fragments couldn’t
carry out this choice independently, since it would be possible for them to form a cycle
unwittingly (as depicted in Figure 16.2.1).

Besides the use of distinct edge weights, there are some other assumptions used in the
Gallager-Humblet-Spira algorithm:

Gallager-Humblet-Spira Minimum-Weight Spanning Tree Algorithm 177

Figure 16.5: An unintended cycle is formed due to edges with equal weights.

¢ All nodes operate asynchronously.

® Messages are guaranteed to be delivered eventually, but there is no time bound on
delivery.

o Messages are delivered along any particular channel in FIFO fashion (i.e., they are
delivered in the order in which they are sent).

® Nodes in the graph receive “wakeup” signals to begin processing; thus, all nodes do
not (in general) begin the MST algorithm simultaneously. (This makes the algorithm
a little more complicated.)

Basic Ideas of the Gallager-Humblet-Spira Algorithm

The central idea of the Gallager-Humblet-Spira algorithm is that nodes form themselves
into collections—fragments—of increasing size. (Initially, all nodes are considered to be in
singleton fragments.) Each fragment is itself connected by edges that form a MST for the
nodes in the fragment. Within any fragment, nodes cooperate in a distributed algorithm to
find the MWOE for the entire fragment (that is, the minimum weight edge that leads to a
node outside the fragment). The strategy for accomplishing this involves broadcasting over
the edges of the fragment, asking each node separately for its own MWOE leading outside
the fragment. Once all these edges have been found, the minimal edge among them will be
selected as an edge to include in the (eventual) MST.

Once a MWOE for a fragment is found, a message may be sent out over that edge to
the fragment on the other side. The two fragments may then combine into a new, larger
fragment. The new fragment then finds its own MWOE, and the entire process is repeated
until all the nodes in the graph have combined themselves into one giant fragment (whose
edges are the MST).

This is not the whole story, of course; there are still some problems to overcome. F irst,
how does a node know which of its edges lead outside its current fragment? A node in

4

178 ' Lecture 16: November 6

Figure 16.6: How does a node know whether an edge leads outside the fragment?

fragment F can communicate over an outgoing edge, but the node at the other end needs
some way of telling whether it too is in F. (See Figure 16.6.) We will therefore need some
way of naming fragments so that two nodes can determine whether they are in the same
fragment. But the issue is still more complicated: it may be, for example, that the other
node (at the end of the apparently outgoing edge) is in F but hasn’t learned this fact yet
because of communications delays. Thus, some sort of overall synchronization process is
needed—some sort of two-phase strategy that ensures that nodes won’t search for outgoing
edges until all nodes in the fragment have been informed of their current fragment.

Another problem is that the number of messages sent by such an algorithm could be
large. The number of messages sent by a fragment to find its MWOE will be proportional to
the number of nodes in the fragment. Under certain circumstances, one might imagine the
algorithm proceeding by having one large fragment that picks up a single node at a time,
each time requiring Q(f) messages, where f is the number of nodes in the fragment. (See
Figure 16.7.) In such a situation, the algorithm would require Q(n?) messages to be sent
overall.

-0 >9 >@

Figure 16.7: How do we avoid a big fragment growing by one node at a time?
This second problem should suggest a “balanced-tree algorithm” solution: that is, the

difficulty derives from the merging of data structures that are very unequal in size. The
strategy that we will use, therefore, is to merge fragments of roughly equal size. Intuitively,

T . i

Gallager-Humblet-Spira Minimum- Weight Spanning Tree Algorithm 179

if we can keep merging fragments at nearly equal size, we can keep the number of total
messages to O(nlogn).

The trick we will use to keep the fragments at similar sizes is to associate level numbers
with each fragment. We will say that if level(F) = [for a given fragment F, then the number
of nodes in F' is greater than or equal to 2'. Initially, all fragments are just singleton nodes at
level 0. When two fragments at level / are merged together, you get a new fragment at level
[+ 1. (This preserves the condition that we specified for level numbers: if two fragments of
size at least 2' are merged, you get a new fragment of size at least 2+1.)

a

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 17: November 8 |
Lecturer: Nancy Lynch ' Scribe: Philippe Park'®

17.1 Gallager-Humblet-Spira Minimum-Weight 'Sp'an-
ning Tree Algorithm, cont.

In this lecture, we will continue the discussion of a distributed algorithm, due to Gal-
lager, Humblet, and Spira [GallagerHS83], for computing the minimum-weight spanning
tree (MST) of a graph. In Lecture 16, we introduced the concept of a minimum-weight out-
going edge (MWOE). It was shown that for any spanning forest in a graph (a collection of
disjoint trees that include every vertex in the graph), that the minimum spanning tree must
include the minimum-weight outgoing edge (MWOE). This principle forms the basis for well-
known sequential minimum spanning tree (MST) algorithms. The Prim-Dijkstra algorithm,
for instance, starts with one node and successively adds the smallest-weight outgoing edge
from the (partially-finished) tree until a complete spanning tree has been obtained.. The
Kruskal algorithm, by contrast, starts with all nodes as fragments, and successively extends
the fragment with the least-weight outgoing edge, thereby combining fragments until there
_is only one large fragment (the final tree). The Gallager-Humblet-Spira algorithm is also
based on the concept of nodes that combine themselves into fragments of increasing size.

17.1.1 A High-Level Description of the Algorithm, cont.

One assumption that we will make for the Gallager-Humblet-Spira MST algorithm is that
edge weights are distinct. This property represents a major advantage for parallel MST
algorithms: at successive phases, each of a collection of fragments may independently (and
simultaneously) choose their own MWOE, combining with other fragments where possible.
However, this requirement is not very strong, since the algorithm could use processor IDs to
break the symmetry, as we have seen in other algorithms in this course.

Recall that in lecture 16, we found that in order to reduce the message complexity from
O(n?) to O(nlog n), that it was necessary to implement a “balanced-tree algorithm” solution.
Otherwise, the algorithm” could proceed by having one large segment that picks up one node
at a time. (See figure 17.1). This was achieved by associating level numbers with each
fragment to keep fragments from being very unequal in size. We say that if level(F') = { for
a given fragment F', then the number of nodes in F is greater than or equal to 2!,

19Based on lecture notes from 1988 scribed by Mike Einsenberg

180

Gallager-Humblet-Spira Minimum-Weight Spanning Tree Algorithm, cont. 181

Q‘H._*.

Figure 17.1: How do we avoid a big fragment growing by one node at a time?

These level numbers, as it turns out, will not only be useful in keeping things balanced,
but they will also provide some identifier-like information helping to tell nodes whether they
are in the same fragment. :

Let’s look at how fragments are combined together. There are two ways of combining
fragments:

1. Merging. This is the “standard” way of combining. In this case we have two fragments
F and F’, and they find that they share the same minimum-weight outgoing edge:

level(F) = level(F') =1
MWOE(F) = MWOE(F')
Then it is okay to combine the two fragments into a new fragment at a level of / + 1.

2. Absorbing. There is another case to consider. It might be that some nodes are forming
into huge fragments via merging, but isolated nodes (or small fragments) are lagging
behind at a low level. In this case, the small fragments may be absorbed into the larger
ones without determining the MWOE of the large fragment.

The rule for absorbing is that if you have two fragments F and F”, with level(F) <
level(F'), and the MWOE of F leads to F’, then you can absorb F into F” by combining
them along the MWOE of F. The larger fragment formed is still at the level of F.
In a sense, we don’t want to think of this as a “new” fragment, but rather just an
augmented version of F”,

These two combining strategies are illustrated (in a rough way) by Figure 17.2. It is
worth underlining the fact that just because level(F) < level(F’), we do not know that
fragment F is smaller than F”; in fact, it could be larger. (Thus, the depiction of F as a
“small” fragment in Figure 17.2 is meant only to suggest the typical case.)

182 Lecture 17: Novem-ber 8

®-

Figure 17.2: Two fragments combine by merging; a fragment absorbs itself into another

If a fragment finds that its MWOE leads to a fragment at a smaller level than itself, it
simply holds up and takes no action; thus, the only way in which fragments combine is via
merging (in which two fragments of equal level combine) and absorbing (in which a “small”
fragment adds itself onto a “large” one).

Level numbers thus serve, as mentioned above, as identifying information for fragments.
For fragments of level 1 or greater, however, the specific fragment identifier is the core edge of
the fragment. The core edge is just the edge along which the merge operation resulting in the -
current fragment level took place. (Since level numbers for fragments are only incremented
by merge operations, we know that any fragment of level 1 or greater must have had its
level number specified by some previous merge along an edge; this is the core edge of the
" fragment.) The core edge also serves as the site where the processing for the fragment
originates and where information ;from the nodes of the fragment is collected.

It is interesting to note that fragments in the graph could each be modeled as one big
giant I/0 automaton, with the messages emanating from the core . The messages between
fragments would be the external actions of these automata. We have observed in earlier
lectures that I/O automata should always be input-enabled. In this particular algorithm,
that means that if a fragment is “edge-enabled”, that the I/O automaton should be written
so that the processor connected to this edge gets a fair turn.

To summarize the way in which core edges are identified for fragments:

o For a merge operation, core is the common MWOE of the two combining fragments.

e For an absorb operation, core is the core edge of the fragment with the larger level
number.

il

Gallager-Humblet-Spira Minimum- Weight Spanning Tree Algorithm, cont. 183

Figure 17.3: A collection of fragments and their minimum-weight outgoing edges.

- Note that identifying a fragment by its core edge depends on the assumption that all
edges have a unique identifier. If we continue to work with the assumption that the edges
have a unique weight, then the weight could be the identifier.

We now want to show that this strategy, of having fragments merge together and absorb
themselves into larger fragments, will in fact suffice to combine all fragments into a MST for
the entire graph.

Claim 17.1 If we start from an initial situation in which each fragment consists of a single
node, and we apply any possible sequence of merge and absorb steps, then there is always
some applicable step to take until the result is a single fragment containing all the nodes.

Proof: We want to show that no matter what configuration we arrive at in the course of
the algorithm, there is always some merge or absorb step that can be taken.

One way to see that this is true is to look at all the current fragments at some stage
in the running algorithm. Each of these fragments will identify its MWOE leading to some
other fragment. If we view the fragments as vertices in a “fragment-graph,” and draw the
MWOE for each fragment, we get a directed graph with an equal number of vertices and
edges. (See Figure 17.3) By the pigeonhole principle, such a directed graph must have a cycle:
and because the edges have distinct weights, only cycles of size 2 (i.e., cycles involving two
fragments) may exist. Such a 2-cycle represents two fragments that share a single MWOE.

Now, it must be the case that two fragments in any 2-cycle can be combined. If the
two fragments in the cycle have the same level number, a merge operation can take place;
otherwise, the fragment with the smaller level number can absorb itself into the fragment
with the larger one.]

Let’s return to the question of how the MWOE is found for a given fragment. The basic
strategy is this: each node in the fragment is going to find its own MWOE leading outside

a

184 . Lecture 17: November 8

/q
p

Figure 17.4: Node p wants to know if ¢ is in the same fragment.

the fragment; then we will collect the information from each node at a selected processor,
and take the minimum of all the edges suggested by the individual nodes.

This sounds straightforward, but it reopens the question of how a node knows that a
given edge is outgoing—that is, that the node at the other end of the edge lies outside the
current fragment. Suppose we have a node p that “looks across” an edge e to a node g at
the other end. (See Figure 17.4.) How can p know if ¢ is in a different fragment or not?

A fragment name (or identifier) may be thought of as a pair (core, level). If ¢’s fragment
name is the same as p’s, then p certainly knows that ¢ is in the same fragment as itself.
However, if ¢’s fragment name is different from that of p, then it is still possible that ¢ and
p are indeed in the same fragment, but that ¢ has not yet been informed of that fact. That
is to say, ¢’s information regarding its own current fragment may be out of date.

However, there is an important fact to note: if ¢’s fragment name has a core unequal to
that of p, and it has a level value at least as high as p, then g can’t be in the fragment that
p is in currently, and never will be. This is so because, in the course of the algorithm, a
node will only be in one fragment at any particular level. Thus, we have a general rule that
g can use in telling p whether both are in the same fragment: if the value of (core, level) for
¢ is the same as that of p then they are in the same fragment, and if the value for core is
different for g and the value of level is at least as large as that of p then they are in different
fragments.

The upshot of this is that MW OE(p) can be determined only if level(q) > level(p). If ¢
has a lower level than p, it simply delays answering p until its own level is at least as great
as p’s.

However, notice that we may have to reconsider the progress argument, since this extra
precondition may cause progress to be blocked. But note, that we only need consider the
set of fragments at the lowest level, since these always succeed in MWOE(p) calculations.
If any of these fragments points to a higher level fragment, then it will become absorbed.

Gallager-Humblet-Spira Minimum-Weight Spanning Tree Algorithm, cont. 185

o

Figure 17.5: Fragment F absorbs itself into F’ while F’ is still searching for its own MWOQE.

Otherwise, loops are formed and the calculations proceed as we have seen in earlier examples.

The fact that ¢ may delay answering p means that we have to reconsider our earlier
argument that the algorithm must make progress until a MST is found. Since a fragment
can be delayed in finding its MWOE (since some individual nodes within the fragment are
being delayed), we might ask whether it is possible for the algorithm to reach a state in
which a merge or absorb operation is not possible. To see that this is not the case, though,
we can use essentially the same argument as before, but this time we need only consider
those MWOE'’s found by fragments with the lowest level in the graph (call this level LO}. If -

a fragment at level LO finds a MWOE to a higher-level fragment, then an absorb operation
is possible; and if all of the fragments at the level LO have a MWOE to some other fragment
at level LO, then again we must have a 2-cycle between two fragments at level LO, and a

merge operation is possible. So again, we conclude that the algorithm must make progress
until the complete MST is found.

Getting back to the algorithm itself, each fragment F will find its overall MWOE by
taking a minimum of the MWOE for each node in the fragment. This will be done by a
“broadcast-convergecast” algorithm starting from the core, emanating outward, and then
collecting all information back at the core.

This leads to yet another question: what happens if a “small” fragment F gets absorbed

into a larger one F”’ while F is still in the course of looking for its own MWOE? (See Figure
17.5.) ‘

There are two cases to consider (consult Figure 17.5 for the labeling of nodes). Suppose
first that MWOE(q), the minimum edge leading outside the fragment F* , has not yet been
determined. In this case, we must search for a MWOE for the fragment F’ in F as well.
Since ¢ doesn’t yet know which is its own local MWOE, there is still a possibility that e is
g’s MWOE, and thus the MWOE for the entire fragment F' might emanate from one of the
newly-incorporated nodes in F.

i

186 » Lecture 17: November 8

.On the other hand, suppose MWOE(q) has already been found at the time that F
absorbs itself into F’. In that event, the MWOE for ¢ cannot possibly be e, since the only
way that the MWOE for ¢ could even be known is for that edge to lead to a fragment with
a level at least as great as F’; and we know that the level of F' is smaller than that of F ‘.
Moreover, the fact that the MWOE for ¢ is not e implies that the MWOE for the entire
fragment F’ cannot possibly be in F. This is true because e is the MWOE for fragment
F, and thus there can be no edges leading out of F' with a smaller cost than the already-
discovered MWOE for node ¢. Thus, we conclude that if MWOE(q) is already known at the
time the absorb operation takes place, then fragment F' needn’t look for its overall MWOE
among the newly-absorbed nodes. This is fortunate, since if F’ did in fact have to look
for its MWOE among the new nodes, it could easily be too late: by the time the absorb
operation takes place, ¢ might have already reported its own MWOE, and fragment F’" might
already be deciding on an overall MWOE without knowing about the newly-absorbed nodes.
However, since F’ does not in fact have to worry about these new nodes in this case, the
algorithm continues to work correctly.

A Summary of the Code in the Gallager-Humblet-Spira Algorithm

We have seen the major intuitive ideas of the Gallager-Humblet-Spira algorithm, and the
presentation above should be sufficient to guide the reader through the code presented in
their original paper. ‘ : '

Although the actual code in the paper is dense and complicated, the possibility of an
- understandable high-level description turns out to be fairly typical for communications al-
gorithms. In fact, the high-level description that we have seen can serve as a basis for a
correctness proof for the algorithm. One approach would be to use an I/O automaton for
each fragment as discussed earlier and use possibilities mapping proof techniques. (Attempt-
ing a correctness proof based directly on the low-level code itself would be a good deal more
difficult.)

The following message types are employed in the actual code:

o INITIATE messages are broadcast outward on the edges of a fragment to tell nodes to
start finding their MWOE.

¢ REPORT messages are the messages that send the MWOE information back in (these
represent the convergecast response to the INITIATE broadcast messages).

o TEST messages are sent out by nodes when they search for their own MWOE.

e ACCEPT and REJECT messages are sent in response to TEST messages from nodes;
they inform the testing node whether the responding node is in a different fragment
(ACCEPT) or is in the same fragment (REJECT).

Gallager-Humblet-Spira Minimum-Weight Spanning Tree Algorithm, cont. 187

¢ CHANGE-ROOT is a message sent toward a fragment’s MWOE once that edge is
found. The purpose of this message is to change the root of the (merging or currently-
being-absorbed) fragment to the appropriate new root.

¢ CONNECT messages are sent across an edge when a fragment combines with another.
In the case of a merge operation, CONNECT messages are sent both ways along the
edge between the merging fragments; in the case of an absorb operation, a CONNECT
message is sent by the “smaller” fragment along its MWOE toward the “larger” frag-
ment.

In a bit more detail, INITIATE messages emanate outward from the designated “core
edge” to all the nodes of the fragment; these INITIATE messages not only signal the nodes
to look for their own MWOE (if that edge has not yet been found), but they also carry-
information about the fragment identity (the core edge and level number of the fragment).
As for the TEST-ACCEPT-REJECT protocol: there’s a little bookkeeping that nodes have
to do. Every node, in order to avoid sending out redundant messages testing and retesting
edges, keeps a list of its incident edges in the order of weights. The nodes classify these
incident edges in one of three categories:

® Branch edges are those edges designated as part of the Building spanning tree.

¢ Basic edges are those edges that the node doesn’t know anything about yet — they
may yet end up in the spanning tree. (Initially, of course, all the node’s edges are
classified as basic.) ‘

® Rejected edges are edges that cannot be in the spanning tree (i.e., they lead to another
node within the same fragment).

A fragment node searching for its MWOE need only send messages along basic edges.
The node tries each basic edge in order, lowest weight to highest. The protocol that the
node follows is to send a TEST message with the fragment level-number and core-edge
(represented by the unique weight of the core edge). The recipient of the TEST message-
then checks if its own identity is the same as the TESTer; if so, it sends back a REJECT
message. If the recipient’s identity (core edge) is different and its level is greater than or
.equal to that of the TESTer, it sends back an ACCEPT message. Finally, if the recipient
has a different identity from the TESTer but has a lower level number, it delays responding
until such time as it can send back a definite REJECT or ACCEPT.

So each node finds the MWOE if it exists. All of this information is sent back to the

nodes incident on the core edge via REPORT messages, who determine the MWOE for the
 entire fragment. A CHANGEROOT message is then sent back towards the MWOE, and the
endpoint node sends a CONNECT message out over the MWOE.

€

188 Lecture 17: November 8

When two CONNECT messages cross, this is the signal that a merge operation is taking
place. In this event, a new INITIATE broadcast emanates from the new core edge and the
newly-formed fragment begins once more to look for its overall MWOE. If an absorbing .
CONNECT occurs, from a lower-level to a higher-level fragment, then the node in the high-
level fragment knows whether it has found its own MWOE and thus whether to send back
an INITIATE message to be broadcast in the lower-level fragment.

Message Complexity of the Gallager-Humblet-Spira Algorithm

In order to analyze the message complexity of the Gallager-Humblet-Spira algorithm, we
have to apportion the messages into two different sets, resulting separately (as we will see)
in the O(nlogn) term and the O(e) term.

The O(e) term arises from the fact that each edge in the graph must be tested at least
once: in particular, we know that TEST messages and associated REJECT messages can
occur at most once for each edge. Thus we get an O(e) term resulting from the 2 messages
(the TEST-REJECT pair) over each edge. (It is important to recall in this regard that once
a REJECT message has been sent over an edge, that edge will never be tested again.)

All other messages sent in the course of the algorithm—the TEST-ACCEPT pairs that go
with the acceptances of edges, the INITIATE-REPORT broadcast-convergecast messages,
and the CHANGEROOT-CONNECT messages that occur when fragments combine—can
be considered as part of the overall process of finding the MWOE for a given fragment. In
performing this task for a fragment, there will be at most one of these messages associated
with each node (each node receives at most one INITIATE and one ACCEPT; each sends
at most one successful TEST, one REPORT, and one of either CHANGEROOT or CON-
NECT). Thus, the number of messages sent within a fragment in finding the MWOE is o(f)
where f is the number of nodes in the fragment.

The total number of messages sent in the MWOE-finding process, therefore, is

Z number of nodes in F

all fragments F

which is

> ‘ number of nodes in F)

all level numbers L(all fragments F of level L
Now, the total number of nodes in the inner sum at each level is at most n, since each
node appears in at most one fragment at a given level-number L. And since the biggest
possible value of L is log n, the sum above is bounded by:

logn

> n=0(nlogn)

1

L]

Mutual Exclusion in Distributed Networks 189

Thus, the overall message complexity of the algorithm is O(e + (nlogn)).

Proving Correctness for the Gallager-Humblet-Spira Algorithm

A good deal of interesting work remains to be done in the field of proving correctness for
communications algorithms like the Gallager-Humblet-Spira algorithm. The level of com-
plexity of this code seems to preclude invariant assertion proofs, at least at the detailed level
of which messages are sent, local variables. Most of the discussion has been at the higher
level of graphs, fragments, levels MWOE'’s, etc. So, we should organize a proof which takes
advantage of this high-level structure.

One promising approach is to apply invariant-assertion and other techniques to prove
correctness for a high-level description of the algorithm and then prove independently that
the code in fact correctly simulates the high-level description. (See [WelchLL88].)

A proof can be formalized by implementing the high-level algorithm within an I/O au-
tomaton (in which the state consists of fragments, and actions include merge and absorb
operations); implementing the low-level code in another I/O automaton; and then showing
that there is a possibilities mapping between the two automata.

There are still a number of open issues in this area. For example, there is no known
upper bound for the time complexity of this algorithm.

17.2 Mutual Exclusion in Distributed Netwo_rks |

In the previous lectures we used shared memory as a communication model for processes.
Now lets consider a different architecture — a network, and let processes communicate by
message-passing.

When a process P; does send(m,j), it sends a message m to process P;. The network
guarantees that the message will eventua,lly arrive at P;. A process can also do broadcast(m)
meaning: “do send(m,j) to all j”

Now consider the resource allocatlon problem in the distributed networking environment.
We can use the same external interface as in the shared memory model (descrlbed in more
detail later) of “try”, “enter critical region”, “exit”, and “enter remainder region” actions,
but now, we use message-passing instead of shared variables to communicate. Since resource
allocation requires mutual exclusion, we have the same requirements as in the shared-memory
model.

A straightforward solution for implementing mutual exclusion is to simulate single-writer
shared variables by making them internal to processes. A process can write to its internal
variable, and others can read it by sending messages. This solution may require a large
number of messages and not be very efficient. Many messages may be used to read a
variable, returning the same value, until it is changed. Another idea is to send messages

L

190 Lecture 17: November 8

send(m, j) ‘ rec(m) !

NETWORK

Figure 17.6: Distributed Network: processes communicating by message-passing.

only when values change. A process that received no message can assume that the variable’s
value has not changed. This idea can lead to some specially tailored solutions.

In the distributed networking environment, the requlrement that processes are only al-
lowed to take steps in the trying and exit regions, but not in the critical and remainder re-
gions, is usually dropped for efficiency and resilience considerations. (In the shared-memory
‘model, dropping this requirement would simplify the process considerably by using one pro-
cess as arbiter, but this would also introduce a single point of failure.) '

17.2.1 Modehng

In Figure 17.7, we model a node as two I/O Automata. The buffer (network) is also described
as an [/O Automaton.

The conditions for normal operation, in well-formed fair behaviors are:

¢ The user; IOA must guarantee that any crit; action is eventually followed by an ez:t;
action. (That is, every user entering the critical region eventually exits it.)

e The BUFFER IOA must guarantee that any send(m,j) action is eventually followed
by a rec(m) action. (That is, every message sent is eventually delivered.)

e The P; IOA continues to take steps (by fairness definition of IOA). In this model it is
allowed to take steps in all regions, including the Critical and the Remainder regions.

Mutual Exclusion in Distributed Networks 191

sendll Irecl

BUFFER

Figure 17.7: Distributed network modeled as I/O Automata.

17.2.2 Le Lann 1977

Le Lann proposed a simple solution: the processes are to be arranged in a logical ring
P> P — ... 5 P, - P . A token that represents the resource is passed around the
ring in order. When a process P; receives a token, it checks for an outstanding request for
the resource from user;. If there is no such request, the token is passed to the next process
in the ring. If there is an outstanding request, the resource is granted and the token is held
until the resource is returned and then passed to the next process.

Code for P;:

local variables: token € {none, available,in use, used}
region € {R,T,C, E}

initial state: token = available at Py, none elsewhere.
region = R

try; no preconditions.

o effect: region «— T

crit; precond: region =T , token = avail

effect: region «— C , token «— in_use
exit; no preconditions.

effect: region — E

192 Lecture 17: November 8

rem; precond: region = E
effect: region — R, token «— used

receive(t) no preconditions.
effect: token «— avatlable

send(t,i+1) precond: token = used V (token = available A region # T)
effect: token «— none :

Properties:

e Mutual Ezclusion: exists in normal operation because there is only one token, and only
its holder can have the resource.

e Progress: exists in normal operation because the prvocess who holds the token is either:

— in C: then eventually will go to E.
— in T': then can go to C.
— or in E or R: then has to pass the token to the next process.

o Fairness: exists in normal operation because a process with a request has to wait for
less than n others.

o Resiliency: (discussed in the Le Lann paper)

— Process failure: When a process fails, it must be detected and agreed upon by
some distributed protocol. The ring then has to be reconfigured to bypass the
failed process.

— Loss of token: When a token loss is detected (e.g. by timeout), a new one can be
- generated by using leader-election protocols.

o Performance:

— Number of messages: In the worst case (“light load”), n messages are sent between
try; and crit;. Under “heavy load”, however, only a constant number of messages
per request is expected.

— Time: Assume worst-case bounds: ¢ = time spent in C, d = message delay, s =
process steps. The worst-case timeis =~ (c+d+ O(s))-n . This time bound
is bad because it has a d-n term, regardless of the load, and d may be big.
However, analogous simulations in the shared-memory model seem much worse.

Mutual Exclusion in Distributed Networks 193

17.2.3 Lamport 1978

This paper: “Time, Clocks and the Ordering of Events in a Distributed System”, is a famous
one and worth reading. The problem of ordering events in a system can be viewed as that
of implementing a distributed queue. The solution proposed in this paper is based on the
concepts of timestamps and replicated database management techniques. It introduces the
idea of logical time (ltime): every event that occurs in a distributed system (e.g. send, receive,
local steps) is assigned a distinct logical time that is an element of some total ordering. One
way partially ordered local times at different sites can yield total ordering is by appending
the site’s ID as the low-order bits to the local time, thus breaking ties. Logical time behaves
like real time in the following sense:

1. The order of events at each process is consistent with the order of occurrence. (Ensured
by keeping a local clock at each site and incrementing it between any two successive
local events.)

2. For any message, its send event is ordered before its receive event. (Ensured by
attaching a timestamp ts, equal to the logical time of send, to each message. If for
the clock C, at the recéiVing site: C, < ts, then increment C, to be > ts before
assigning a logical time to receive.) It is also important that each event in the system
be uniquely identified, even as applied to unrelated events. One trick might be to
append the site ID numbers in the low-order bits in order to break “ties’. .

3. Any event has only finite number of predecessors. (Ensured by incrementing the local
clock by some minimum value.)

We assume that the network delivers messages be- S

a
diagram of Figure 17.8, message a is sent before \bs BN
message b, and must be received before message b.
Another assumption is that every message sent is
eventually received. Both assumptions can be en- \i
sured by some network protocol that uses acknowl- Y !

edgments and puts sequence numbers on messages. sender’s receiver’s
_ local time local time

Figure 17.8: Space-Time diagram.

tween any pair of nodes in the same ltime order ’\/
as they were sent. For example, in the space-time

Being able to totally order the events can be very useful in implementing a distributed
system. We shall use this method in the following algorithm to solve the mutual exclusion
problem. In this algorithm, every process P; maintains a local variable region as before, and
for each other process P; a local queue queue(j). There are three types of messages:

a

194 ‘ Lecture 17: November 8

e try-msg(i): broadcasted by P; to announce that it is trying.
e ezit-msg(i): broadcasted by P; to announce that it is exiting.
o ack(i): sent by P; to P;, acknowledging the receipt of a try-msg(j) message.

We plan to achieve mutual exclusion by servicing requests in the ltime order of the
broadcast event of their try-msg. The queues at each process behave like replicas of a global
centralized queue that determines the service order. So while this algorithm appears to be
centralized in nature, it is implemented in a distributed manner, and gains the associated
benefits. All we need now is rules for P, telling when to send crit; and rem; messages to
user;.)

Rules for P,

e P, — R :once an ezxit; occurs.
e P, — (C:region =T and the folloWing conditions hold:

1. Mutual exclusion is preserved.

2. There is no other request pending with an earlier ltime.
F; can ensure that the above conditions are met by checking for each j # i:

1. Any try-msg in queue(j) with ltime < l[time(current try-m.ég(z’)) has also a sub-
sequent erit-msg.

2. queue(j) contains some message (possibly ack) with ltime > ltime(current try-
msg(i)). |

Properties

e Mutual Exclusion: The correctness proof is by contradiction. Assume that two pro-
cesses, F; and P;, are in € at the same time, and (without loss of generality) that
ltime(P;’s request) < ltime(P;’s request). P; had to check its queue(z) in order to enter
C. The second test and our assumption on messages order preservation imply that P,
had to see P.’s try-msg, but by the first test it had also to see an exit-msg from P;, so
P; must have already left C.

e No lockout: This property results from servicing requests in lime order. Since each
(request) event has finite number of predecessors, all requests will eventually get ser-
viced.

e Complexity:

Mutual Exclusion in Distributed Networks 195

— Number of messages: every request involves with sending try-msg,ack and ezit-
msg messages between some process and all the others, thus 3(n — 1) messages
are sent per request.

— Time: for a single request in the system, with no others around, the time is
2d 4+ O(s) , where d is the communication delay and s is local processing. We
assume that the broadcast is done as one atomic step; if n—1 messages are treated
separately, the processing costs are linear in n, but these costs are still presumed
to be small compared to the communication delay d.

Recall that for the time complexity analysis, Lelann has the dn term.

17.2.4 Ricart & Agrawala 1981

This algorithm uses only 2(n — 1) messages per request. It improves Lamport s algorithm
(section 17.2.3) by acknowledging requests in a careful manner that eliminates the need for
erit-msg messages. This algorithm uses two types of messages only: try-msg and OK. Process
P; sends try-msg(i) as in Lamport’s algomthm and can go critical after OK messages have
been received from all the others.

Rule for sending an OK message
In response to a try-msg, a process:
o replies with an OK if it is not critical or trying.

o if critical: defers the reply until it exits, and then sends immediately all the deferred

OKs.

e if trying: compares the ltime of its request to the one of the incoming try-msg. If bigger
then send OK, else defer (i.e. allow requests with lower ltime only to proceed).

Properties

¢ Mutual Exclusion:

196

y

figure 17.9: both processes in C.

OK

OK

y

a

Lecture 17: November 8

Using contradiction to prove correctness, assume
both processes, P; and P;, are in C' and (with-'
out loss of generality) that ltime(P;’s request) <
ltime(P; ’s request). As seen in figure 17.9, Pj’s try
message has to arrive at P; after P’s try, or else
our assumption on their ltime order would not have

‘been correct. At the time P; receives P;’s try, it is

either trying or critical. In both cases, P;’s rules
say it has to defer the OK message, thus P; could
not be in C.

e Progress: Using contradiction again, assume some execution that reached a point after
which no progress is achieved. That is, at that point all the processes are either in R
or T, none in C, no process changes regions any more and no message is in transit.

Among all the processes in T after that point, assume that P; has the request message
with the lowest ltime. P; is blocked forever because some other process P; has not
 returned an OK message to it. P; could only have deferred the OK because it was:

— in C: because P; eventually left C, it had to send the deferred OK.

— in T: P; deferred the OK because the Itime of its request was smaller than P;’s.

Since P;’s request has the smallest ltime in T’ now, P; must have completed, thus
after exiting C it had to send the deferred OK.

17.2.5 Carvalho & Roucairol 1983

This algorithm improves on the previous one (Section 17.2.4) by giving a different interpre-
tation to the OK message. When some process P; sends an OK to some other process F;,
not only does it approve P;’s current request, but it also gives P; F;’s permission to reenter

C again and again until

P; sends an OK to P, in response to a try-msg from FP;.

This algorithm performs well under light load. When a single process is requesting again
and again, with no other process interested, it can go critical with no message sent! Under
heavy load, however, it behaves similarly to Ricart and Agrawala’s algorithm.

I

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 18: November 13
Lecturer: Nancy A. Lynch Scribe: K. Chiang®

18.1 Resource Allocation in Networks

'We keep the message-passing model of Figure 18.1 which we already employed for mutual
exclusion.

Figure 18.1; Messages exchanged

We will discuss quickly Lynch’s solution to the Dining Philosophers Problem and then
ent Chandy-Misra’s solution. This problem corresponds to the static case where the
Tesource needed by each process are defined once and for all. The algorithm guarantees
mutual erclusion, progress and no-lockout. We will then present Chandy-Misra’s solution
for the Drinking Philosophers Problem, which corresponds to the dynamic case in which a
process may request a different set of resources every time it enters its trying region.

We will make two restrictions:

1. Any pair of processes shares at most one resource. (This restriction is easy to remove.)

2. Each resource shared by at most two processes. (It would take some work to remove
this restriction. One would need to modify the algorithm.)

2Based on lecture notes from 1988 scribed by Rike Stille

197

a

198 Lecture 18: November 13

18.2 Lynch’s Approach

Hierarchical resource allocation may be used to solve the static problem, if arbiter processes
are associated with each resource. These processes play similar roles as a centralized arbiter
in mutual exclusion. User processes that wish to use a resource must communicate with the
relevant arbiters in the appropriate order before securing the desired resource. They wait in
queues when the resources are not immediately available.

The time complexity of the algorithm depends then only on such “local” factors as the
chromatic number of the graph, the number of users per resource, and the message delay to
the required arbiter processes.

18.3 Chandy-Misra dining philosophers

This algorithm guarantees exclusion, progress, and no lockout, as does the previous approach
mentioned above. However, the time performance may be significantly worse. Recall that
each process has a fized set of resource requirements.

Description of the algorithm

The resources are referred to as forks, and the processes as philosophers. Each fork can be
either clean or dirty. Dirty forks have been used, and must be cleaned before being used
_again. Cleaning only occurs when another phllosopher requests the fork and the recxplent of
the request satlsﬁes that request by sending it to the requester. ‘

While in R
All forks held are dirty.

Satisfy all requests received (i.e., clean and send forks requested).

Whilein T

© Forks received since entering T are clean, all others are dirty.
Request every fork needed and that you do not have (including any previously released) If
a request arrives, satisfy it if it is for a dirty fork. Otherwise, defer the request. When all
forks needed are held, make all forks dirty and proceed to C

While in C
All forks needed are held and are all dirty.

Defer all requests received.

Chandy-Misra dining philosophers 199

While in E

All forks held are dirty.

Satisfy all deferred requests and all requests that arrive while in E. Proceed to R when all
requests have been satisfied.

18.3.1 Correctness

Proving correctness depends on preserving a nice invariant property of a certain dynamically
changing digraph (directed graph) H. If G is the graph with

¢ processes at the nodes, and

e edges between processes that share a resource (forks associated with edges),

then we get H by directing each edge of G as follows. Direct edge (p,q) exactly if the fork
associated with the edge is :

1. at p and dirty, or
2. in transit from p to g, or
3. at ¢ and clean.

The notation (p,q) means that g has priority over p for the resource.

Mutual Exclusion

The invariant to preserve is that H is acyclic. So we start with an initial condition that
satisfies this, i.e., breaks the symmetry of the system. We argue as follow that the algorithm
preserves acyclicity: ‘

The only change occurs when a process dirties a clean fork, i.e., when it eats. In this.
case it must have all forks and dirties them all at once. So all edges incident on that process
get directed away from it. Therefore it cannot belong to a cycle.

Progress

Definition The height of a process p in an acyclic graph H is the maximum length of the
directed path in H leading away from p.

Claim 18.1 The Chandy-Misra dining philosophers algorithm guarantees no lockout.

200 Lecture 18: November 13

Proof: We will show inductively on k that in any H for a reachable configuration, any
process in T in that configuration and with height k eventually proceeds C'.

Height k = 0.
Then all edges are incoming, so eventually p will get all (clean) forks and proceed to C'.

Inductive step, height =k, forpin T

For all incoming edges, p will eventually get clean forks (and will keep them until it proceeds
to C. For each outgoing edge (p, g), it must be that g is of height < k — 1. For each such
edge, the associated fork must be in one of the following categories, by definition:

(a) Fork is at p and dirty.
(b) Fork is in transit from p to q.
(c) Fork is at ¢ and is clean.

For case (a), if the fork does not leave before p proceeds to C, then p cannot be blocked
by this fork. If the fork does leave, then we are in case (b) or case (c).

For cases (b) and (c), ¢ is in T at some time before p proceeds to C. But in this case
g has height < k — 1 and eventually proceeds to C by inductive hypothesis. Eventually, ¢
proceeds to E, which causes the edge to get redirected toward p. Then p eventually gets the
fork and keeps it. =

Notice that worst case execution time of this algorithm is potentially very bad, as the
waiting chain, the height ¥ mentioned in the above proof, can potentially span the entire
network.

18.4 Chandy-Misra drinking philosophers

This is an extension by Chandy and Misra of the dining philosophers problem to a more
dynamic problem in which processes do not necessarily require their entire possible set of
‘resources each time, but rather some arbitrary subset.

The first idea for solving such a problem might be to modify the previous solution very
slightly - where each process just requests and ‘waits for those resources it wants, but the
following example shows that this does not work.

18.4.1 Example

Suppose we have five philosophers in a ring, each with two forks (one on each side) as possible
resources. Begin with an acyclic H as shown in Figure 18.2, where a dirty fork is located at
the tail of each arrow.

Chandy-Misra drinking philosophers 201

P4 Y251

D3 D2
Figure 18.2: Acyclic graph H. All forks are dirty.

First, all philosophers enter wanting only their right forks. They all can get them: surely
those with in-edges get them; but also p,, since p; has its fork dirty and p; does not want it.
So they all can use their right forks at once, dirtying them in the process. But this dirtiness
orients the edges to the right, creating a cycle!

Thus the invariant breaks down and the next time they all might come in wanting both
forks, creating the possibility of deadlock.

18.4.2 Lynch version of Chandy-Misra solution

The Chandy-Misra solution can be expressed in a cleanly separated way, though this is not
how they present it. We will use their dining philosophers algorithm as a subroutine to
insure that every reachable state of the system preserves the acyclicity of the graph for this
subroutine (though not for the main algorithm). The architecture of our proposed solution
is shown in Figure 18.3.

The dining philosophers algorithm executes using its own messages, as usual. In addition,
there are new messages for requesting and granting the actual required resources. We want
to keep the resources manipulated by the two different algorithms conceptually separate,
so imagine duplicates of the ones needed by the dining algorithm. Call these bottles to
distinguish them from the forks.

18.4.3 Drinking Philosophers Algorithm
While in R o

e Satisfy all bottle requests.

¢ If the subroutine is in C, send it into E.

202 ” Lecture 18: November 13

(USER)

T| C| Fl R
e

bottle requests DRINKING bottle requests
PHILOSOPHERS
bottles ALGORITHM bottles
T| C| E| R
/
fork requests DINING fork requests
PHILOSOPHERS
forks ALGORITHM forks

-

Figure 18.3: Proposed architecture for Lynch version of Chandy-Misra drinking philosophers
algorithm.

While in T
¢ Send requests for all bottles you need and do not have.

e If the subroutine is in (or reaches) R, send it into T'. (This helps to give priority for
bottles when the subroutine is in C.)

¢ If you have a request, defer it if you need the bottle and the subroutine is in C.
Otherwise, satisfy it.

o Enter C when you have all of the bottles that you need.

While in C

o Satisfy all requests for bottles you do not need and defer requests for those you are
using.

o If the subroutine is in C, send it into E.

Chandy-Misra drinking philosophers 203

While in E
¢ Satisfy all deferred requests (and any new requests).
e If subroutine is in C, send it into E.

e Proceed to R.

18.4.4 Correctness
Mutual exclusion

Follows from the fact that shared bottles are held by at most one process at a time, and that
no required bottles are given up while in C.

Fairness

We will show that every thirsty philosopher drinks eventually.
Lemma 18.2 If p; is in T and its subroutine is in C, then eventually p; reaches C.

Proof: The subroutine stays in C until p; advances. The subroutines of p;’s neighbors are
not in C, (by the mutual exclusion property of the dining philosophers algorithm), so they
will eventually grant the bottle requests. So eventually p; gets all of its required bottles and
proceeds to C.]

Lemma 18.3 If p;’s subroutine is in C, eventually this subroutine will proceed to E.

Proof: If p; isin C, E, or R, then p; will send the subroutine to E explicitly. If p; is in T
and its subroutine is in C, then eventually p; proceeds to C by Lemma 18.2. It then sends
the subroutine to E.]

This lemma means that the well-formedness assumptions made about the users of the din-
ing philosophers algorithm are satisfied. This, in turn, implies that the dining philosophers
subsystem gives the required liveness (no deadlock, no lockout) properties.

Theorem 18.4 Every thirsty philosopher drinks eventually.

Proof: If p; is in T and its subroutine in E, then its subroutine eventually proceeds
to R by the guarantee of no lockout on dining philosopher requests. If p; is in T and its
subroutine in R, then it sends its subroutine to T'. If p; is in T and its subroutine in T', then
its subroutine eventually proceeds to C by the guarantee of no lockout on dining philosopher
requests. Then, by Lemma 18.2, p; reaches C. ‘ |

il

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 19: November 15
Lecturer: Nancy Lynch Scribe: Jory Tsai?!

19.1 Consensus in Asynchronous Systems

The setting of this section is similar to the one of Lecture 15 where we showed that atomic
read-write registers could not implement atomic test-and-set registers. We consider the
general consensus problem in a completely asynchronous distributed system where processes
communicate by message passing. No assumption is made about the relative speeds of the
processes or about the length of any delays in message delivery. But, we assumed that the
messages are eventually delivered by the message system. In future lectures, we will discuss
algorithms dealing with the fault tolerant message system. We also assume that it is not
possible to distinguish between a process that has halted and one that is merely running
very slowly (or is experiencing a very long delay in receiving a message). We begin assuming
that all processes execute in a deterministic fashion—randomized solutions will be discussed
in Section 19.2.

In this lecture we will show the surprising result that consensus is not possible in this
setting. Even if we restrict failures simply to stopping faults (i.e. Byzantine types of
failures are disallowed) and assume a completely reliable message passing system, the
possibility of the failure of a single process precludes any solution to the consensus problem.

19.1.1 The Consensus Problem

We restrict the consensus to be binary problem, {0,1}, which is enough for us to prove the
impossibility results. Assume that every process starts with an initial value from {0,1}. A
process decides on a value in {0, 1} by entering an appropriate decision state. A process fails
by halting (i.e. not taking any more steps). The requirements for a solution are as follows:

1. Agreement: No two non-faulty processes may decide on different values.

2. Validity: : If all non-faulty processes have the same initial value, then no other value
may be decided upon by a non-faulty process.

3. Termination: All non-faulty processes must eventually decide.

21Based on lecture notes from 1988 scribed by Andrew Sutherland

204

Consensus in Asynchronous Systems 205

19.1.2 Modeling the System

We will use I/O automata to model the asynchronous system, as shown in Figure 19.1. (This
presentation is somewhat simpler than the presentation in the original paper [FischerLP85].)
Each process p;, 1 < ¢ < n, is modeled as an I/O automaton with the following restrictions
for simplicity:

o All state transitions are deterministic. That is, for any state s of p; and action 7 there
is at most one transition (s, =, s’).

e For each initial value (in {0,1}), p; has a unique start state.

¢ There is exactly one equivalence class in p;’s partition.??

Init Decision

Cen ()
l bcast Rec

Message System

Figure 19.1: I/O Automata Model of the System

The message system is modeled by a particular I/O automaton as follows. The state of
the message system is a multiset of (m, 1) pairs, where m is a message from some universal set
of messages and 1 < ¢ < n. Each input action to the message system is of the form bcast;(m)
(an output of p;) and results in the insertion of the n pairs (m, j), for all 1 < j < n, into the
multiset. Each output action of the message system is of the form receive;(m) (an input to
pi), is enabled whenever (m, 1) is an element of the multiset, and results in the deletion of
that pair from the multiset. Each receive,(m) action is in its own class of the partition. In

221f an algorithm makes use of countably many equivalence classes, then it may be simulated with a single
class by dovetailing.

il

206 Lecture 19: November 15

this way, a fair execution of the message system must have every message sent eventually
being delivered.

Note that there are no internal actions of the message system. Thus, every step of the
message system involves exactly one process p;. Furthermore, the structure of the system
ensures that any step is a step of only one process since all interactions between processes
must occur via the message system.

Definition A I-fair ezecution is an execution in which the message system and all but
possibly one process continue to take locally controlled steps. (This corresponds to the
possible stop-fault of a single process.)

Definition A 0-resilient consensus protocol (0-RCP) is a protocol that solves the consensus
problem in the absence of faults—it must Osolve consensus for all fair executions. Similarly,
a I-resilient consensus protocol (1-RCP) is a protocol that solves the consensus problem in
the presence of at most one stop-fault—it must solve consensus for all 1-fair executions. Note
that a 1-RCP is necessarily also a 0-RCP.

19.1.3 Impossibility Result

Our goal is to show that a 1-RCP does not exist. We will begin by proving a key fact about
the commutativity of certain schedules.
The following definition and lemma were already seen in Lecture 15.

Definition A finite execution a is bivalent if there exist extended configurations oo and
a4, both are reachable from «, such that in ap some process decides on the value 0 and in
@, some process decides on the value 1. A finite execution is univalent if there is only one
reachable decision value. A univalent finite execution is said to be 0-valent if the reachable
decision value is 0 and I-valent if it is 1.

Lemma 19.1 Every 1-RCP has a bivalent initial prefiz.

We now present the main lemma, which claims that in the transition from a bivalent con-
figuration to a univalent configuration there is always a single process which is responsible for
the decision, and whose possible failure would prevent the whole system from reaching a uni-
valent configuration. In the proof of this lemma we use some of the ideas in [Bridgeland W87]
to give a slightly cleaner argument than is given in [FischerLP85].

Lemma 19.2 Let A be any 0-RCP with a bivalent initial prefic. Then, A has a finite
execution a and process p;, such that:

1. « is bivalent

Consensus in Asynchronous Systems 207

2. There ezists a O-valent extend finite erecution ap of a, where the suffiz has steps
tnvolving p; only.

3. There erists a 1-valent extend finite erecution oy of o, where the suffiz has steps
involving p; only.

The process p; is called a decider (See Figure 19.2).

p, only

Figure 19.2: A decider

Proof: Suppose not. We start from a bivalent initial prefix o, and will construct a fair
execution in which successive prefixes are all bivalent. This will violate the termination
requirement for the consensus problem.

Consider a schedule consisting of a sequence of finite rounds, each round being organized
in a round-robin fashion: in each round each process receives one step, and between two
such process steps the oldest message pending (if any) is delivered. For convenience we will
let turns denote process steps and message delivery steps. Delivering the oldest message
ensures that every message that is sent is eventually received, so that the execution is fair to
the classes of the message system. Letting each process take another locally controlled step
within a finite number of steps ensures that the execution is fair to the processes.

So it suffices to do a case analysis over the two different possible turns ¢ (taking local
steps or message delivery) and prove that we can extend the current execution with ¢ so as
to keep the execution bivalent.

Consider the case of a message delivery.

Consider the tree of all possible finite extensions of « in which m delivered just at the
end. (See Figure 19.3.)

If any of these "leaves” is bivalent, we are done with this stage. So we consider the case
where they are all univalent. Then we claim that there exists at least one 0-valent and at
least one 1-valent among them: by symmetry it suffices to prove this fact for 0-valent. As

il

208 Lecture 19: November 15

(m,py) (m,py

Figure 19.3: The tree of the extensions of a that deliver m at the end

a is bivalent there is an extension ¢q leading to a 0-decision. If (m, p;) appears in the suffix
of this extension then the state must be univalent right after this (m,p;): by assumption it
cannot be bivalent, and the extension ay is 0-valent. If (m, p;) does not appear in the suffix
of this extension then, by definition, m is still to be delivered, so that (m, p;) is still enabled
at the end of o and hence can be appended to ap. But o is by assumption 0-valent. Hence
the execution is of course still 0-valent after the addition of (m, p;).

But as all the (m, p;) leaves are univalent and as there exist a 0-valent and a 1-valent
among the leaves of the tree, then somewhere in the tree there is an adjacent® pair of leaves
such that one is a O-valent (ap) and the other is a 1-valent (a;): see Figure 19.4 (a). (Recall
that a node cannot have two edges labeled (m,p;) departing from it: at a given point of
the execution there is a unique oldest pending message. If it is not delivered during the
current turn, a local process step is performed instead (corresponding to the edge “one-
step” of Figure 19.4 (a)). But then for the next turn the same message (m, p;) is still to be
delivered.)

Call j the process taking the turn corresponding to the “one-step” of Figure 19.4 (a). If
i # j we can permute the actions “one-step” and (m, p;) as indicated in Figure 19.4 (b): we
get the same system configuration at the end. But one execution suffix is 0-valent and the
_ other is 1-valent: contradiction!

On the other hand, if j = i then p; is a decider, and this contradicts our assumption that
no decider exists.

23We say that two leaves are adjacent if their parents are connected by an edge in the tree.

Consensus in Asynchronous Systems 209

one-step one-step

(m,pp " (m,py)

o.u-nung'“' o
(1]
c

(a) (b)

Figure 19.4: Two adjacent leaves (m, p;) with different valence

Therefore the leaves of the tree cannot all be univalent and we are able to construct an
allowable schedule which leads to a bivalent configuration. Applying this inductively, we can
obtain an execution which never terminates, violating the termination requirement of the
consensus problem.]

We are now ready to prove the impossibility result.

Theorem 19.3 A 1-RCP does not ezist.

Proof:

Assume there exists a 1-RCP. Then by Lemma 19.1 it has a bivalent initial configuration.
By Lemma 19.2 there must be an execution & at which point there is a decider p; (cf.
Figure 19.2.) Now consider an extension a; of , 1-fair, in which p; takes no further locally
controlled steps. By the 1-RCP property some process p; eventually decides; without loss
of generality we can assume that it decides on the value 1. Remove from the suffix all steps
involving delivery of messages to p;, and get another suffix a}. As these steps do not affect
the other processes these ones must still decide 1.(See Figure 19.5.)

But consider running o) after ao instead of after a (See Figure 19.6). Then, since no
step of p; is involved in o}, they still decide 1, which is a contradiction to the 0-valence of
Qg.

210 Lecture 19: November 15

Figure 19.5: o} appended after a

o

Py

P| -free

Figure 19.6: The final contradiction: a 0-valent execution ag with an extension deciding 1

19.2 Randomized Consensus Algorithm

In this section, we present Ben-Or’s algorithm. We present in Section 19.2.1 the synchronous
version of the algorithm. The asynchronous version is then presented in Section 19.2.3. The
basic idea of introducing randomization to achieve consensus in fewer rounds[Ben-Or83].
Although the first algorithm presented below has exponential expected time, refinements to
~ the algorithm achieve good time performance.

Randomized Consensus Algorithm 211
Process p’s code: (same for all processes)

repeat forever

Round 1: 1) broadcast first(z)
2-1) if > (n — f) messages. received. with value v
2-2) thenz « v
2-3) elsez « nil

Round 2: 3-1) broadcast second(z)
3-2) if > (2f + 1) msgs. recd. with value v
3-3) then (DECIDE v; z « v)
3-4) else if > (f +1) msgs. recd. with value v
3-5) thenz « v
3-6) else z — random

endrepeat

Figure 19.7: Ben-Or’s Randomized Consensus Algorithm

19.2.1 Ben-Or’s Randomized Algorithm

The code is shown in Figurel9.7. Each processor starts out with an input bit (z), and
agreement, validity and termination conditions are as before. We let random denote a coin
toss producing 0 or 1 with with equal probability.

We say that the executions are divided into phases. A phase consists of two rounds of
the synchronous execution described in Figure 19.7. If n > 3f + 1, then Ben-Or’s algorithm
satisfies the validity and agreement conditions. In addition it also has a high probability of
termination. The algorithm is similar to the Turpin-Coan multivalued consensus protocol.

We now establish the proof of correctness of the algorithm. This proof is inspired from
a similar proof in [FeMi90].

For any non-faulty process i let tally; ,(v) denote the number of messages with value v
received by ¢ in round 2 of phase r.

Claim 19.4 For all non-faulty processes i and 3, for all pair of different messages v and w,
for all phase r, if tally; y(v) > f+1 then tally.; ,(w) < f.

Note that ¢ and j are possibly equal. _

Proof:Since tally; .y (v) > f+1, at least one non-faulty player g must have broadcasted v
in round 2 (line 3-1). Thus at least n — f players sent v to g in round 1. Letting w (w < t)
of these players be faulty, at least n — f — w non-faulty processes send v to g in round 1.
Therefore at most (n — f) — (n — f — w) = w < f non-faulty processes can send any value
other then v in round 1. In particular at most f non-faulty processes and hence 2f overall

L

212 ‘ Lecture 19: November 15

sent w to j in round 1. Since 2f < n — f, no non-faulty process broadcasts w in round 2.
Hence tally; (w) < f as we needed to show.]

Agreement

If any nonfaulty process decides v in phase r of an execution, Claim 19.4 shows in particular
that no one else can decide differently at phase r. Furthermore all other non-faulty processes
must receive at least (2f +1) — f = f + 1 messages v in round 2 and hence chose this value
for the next phase of the algorithm.

Validity

Suppose all nonfaulty processes start with the same input bit b. In Round 1 of the first
phase, all non-faulty processes broadcast b and receive at least n — f messages with value
b. Then, in Round 2 of the first phase, they will all broadcast b again and receive at least
n — f messages with that value. Therefore, all non-faulty processes will decide b (in Round
2 of the first phase). This satisfies the validity requirement.

Termination

The two previous properties jointly show that if a process i decides v during phase r then
all other processes will have decided the same value by phase r + 1. Consider then the case
where no process ¢ decides during round r. By Claim 19.4, for all processes i receiving more
then f messages with some value v; (during round 2 of phase r), this value v; is actually
independent of i: v; = v. Then with probability > 1/2" all other processes will adopt the
~ same value in line 3-6, ensuring the completion of the algorithm in phase r + 1. Thus, the
expected number of phases is at most A

19.2.2 Improving Expected Time

Rabin suggested that if processes coordinated their coin tosses, with probability % all pro-
cesses will agree on a forced value [Rabin83]. Thus, the expected time is reduced to a constant
number of rounds if a global coin tossing mechanism is used. Although it is not clear how
this global coin tossing is realized, cryptographic ideas were suggested (e.g., Shamir’s secret
sharing protocol). Bracha, using Ben-Or’s idea, improved the expected number of rounds
to O(log n) assuming private channels for interprocess communication [Bracha87]. Feldman
and Micali [Feldman88] realized the global coin tossing idea without using cryptography for
a verifiable secret sharing protocol. Their algorithm assumes interprocess communication
through private channels. That is, a Byzantine process can be seen as an adversary whose
behavior is a function of the history of messages arriving on its own channels. Chor and Coan

Randomized Consensus Algorithm 213

[ChorC87] realized an O(
assumptions.

Thus expected time can be improved using probabilistic algorithms, but the absolute
minimum time is still unknown.

lo:n) bound on expected number of rounds with no cryptographic

19.2.3 Randomized Consensus in Asynchronous Networks

Fischer, Lynch and Paterson show that consensus is impossible in asynchronous environment
using deterministic ideas even in presence of stopping faults [FisherLP85]. However, the
problem can be solved in asynchronous environment using randomization, with probability 1
of eventually terminating. In fact, it can even tolerate strong type of byzantine fault, where
processes can send any messages they like at any time.

The algorithm, shown in Figure 19.8, is also based on [Ben-Or83]. The algorithm assumes
verifiable (but not necessarily secret) message channels. Although the algorithm needs addi-
tional processes (n > 7f +1), this number is reduced to 3f +1 in [Bracha87], which also uses
cryptographic techniques to reduce the expected time from exponential to O(log n) rounds.
The algorithm works in ‘phases’, where each phase has two rounds. Each process sends
messages of the form s(r,v), where r is the phase number, s is the round number within the
phase and v is the ‘value’ of the message.

The correctness arguments are similar to those for Ben-Or’s synchronous algorithm, but
the proofs are slightly more complicated in order to deal with asynchrony of phases.

Agreement

Here we show that the nonfaulty processes cannot disagree. Consider the case where p;
decides v at phase r. This can happen only if p gets > (n — 2f) occurrences of v, which by
counting arguments guarantees that other nonfaulty processes get > (n — 4f) occurrences
of v, hence they cannot decide on a different value at this phase. The reason is the faulty
processes could lie and could leave out up to f nonfaulty processes allowed by p;. Moreover,
agreement will hold for the next phase if v is chosen at the end of the current phase by all
other nonfaulty processes. This also shows that all nonfaulty processes terminate if any one
does. We can argue that the probability of someone eventually terminates is 1.

Validity

If all start with same value, say 0, all nonfaulty processes decide in first phase on 0.

Termination

The agreement condition shows that if any process decides on v during a phase of the
algorithm, termination will occur if all nonfaulty processes choose v at the end of the phase

214

il

Lecture 19: November 15

Process p’s code, for each phase r do:

Initially each process’ initial value = z

repeat forever
Round 1:

Round 2:

endrepeat

broadcast first(r,z)

wait for (n — f) msgs. with value first(r,*)
if > (n — 2f) msgs. received with value v
thenz « v

else z « nil

broadcast second(r, z)
wait for (n — f) msgs. with value second(r, %)
Let v = value occurring most often, with m = # of occurrences
if m > (n — 2f)
then (DECIDE v; ¢ « v)
else if m > (n —4f)
thenz « v
else z — random

Figure 19.8: Randomized Consensus Algorithm for Asynchronous Network

L]

Dynamic Network Algorithms: Distributed Snapshots ' 215

r. This implies that these processes will eventually choose v at the next phase. This event
will occur with probability at least -, which value is very small. Thus, the algorithm must
guarantee that no nonfaulty process tosses a coin before this forcible value is determined, to
prevent the adversary from using the coin toss results to determine the forcible value.

Consider the first nonfaulty p; process reaches phase r of the algorithm, at the point where
it receives at (n — f) messages of type first(r,*) messages. Let v denotes the majority value
in the set of messages received (if a tie break, value will be arbitrary). We then make the
following claims.

Claim 19.5 At phase r, any second(r,*) messages sent by a nonfaulty process must have
value v.

Proof: If some other value w was in second(r,w) by nonfaulty process p;, then p; sees
> (n—2f) messages with value w in round 1. Then, by counting arguments, at least (n —4f)
messages with value w appear in the set of (n — f) messages above. Sincen > 7f + 1, it is
clear that (n — 4f) is still a majority of nonfaulty processes and thus w = v. n

Claim 19.6 At phase r, the only value that can be forced upon anyone nonfaulty as its
choice is v.

Proof: To force a nonfaulty process to choose w, the process must receive at least (n —4f)
second(r, w) messages. At least one of these processes is nonfaulty, so the value suggested is
v. Consequently, the only forcible value is determined before any nonfaulty process tosses a
coin.]

Hence, with probability > Zl,,, all processes tossing coins will choose v, and will then
decide v at the next phase.

Cryptographic assumptions can be used to cut down the number of rounds and improve
the results. (See [FeMi90].)

19.3 Dynamic Network Algorithms: Distributed Snap-
shots

So far we’ve been talking about static network algorithms. Now we’re going to look at
algorithms with a more dynamic nature in that they are designed to interact with some other,
ongoing distributed algorithm. The first algorithm we will consider is one for computing
distributed snapshots, due to Chandy and Lamport. The idea is that we want to determine
a “consistent global state” for a distributed system running some distributed algorithm.
Our model for the system of interest is a set of processes communicating via messages
over FIFO channels; we could think of these as I/0 automata with SEND and RECEIVE

actions.

il

216 ‘ Lecture 19: November 15

An important question, of course, is defining just what we mean by a “consistent global
state”—in particular, what is a “global state,” and what do we mean by “consistency”? We
think of a global state as a state for all nodes and all channels in the system—i.e., the values
of variables in the nodes of the system, and the particular messages being sent along the
channels of the system.

The notion of consistency is a bit subtler; to define this term, we have to go back to
Lamport’s earlier notion of logical time, (Itime). Recall that a logical time ordering for
events in a system is a total ordering for the events with the following properties:

e Events at any particular node are ordered in order of occurrence at that node.

e SEND actions for a particular message are ordered before RECEIVE actions for that
message.

e Only finitely many events can occur before any particular event.

This definition implies that the same execution can have many possible logical time orderings
assigned to it.

Each consistent state is going to arise from a particular logical time assignment at a
particular time ¢. That is, we look at some execution; we find some way of assigning a logical
time to all the events; and then we pick a particular time ¢, and freeze what’s happening in
the system at that logical time. Note that this may not correspond to any real time—it may
not correspond to the actual order in which the events occurred—but there is some way that
you could have assigned the times to the events in the execution that satisfies the logical
time properties. The information that you get for a consistent state at some time, then, is
the information for a logical time assignment at that particular time. There is a well-formed
notion of what’s happened.

In the snapshot, we need to include exactly the information about:

o states of nodes after the local events up through time ¢;

e states of channels, which includes those messages have been sent but not received
before time t.

One way to think of the snapshot notion is to imagine a picture of the execution drawn
as a set of timelines, one for each process (see Figure 19.9). The events that happen at each
process are consistent with those in the given asynchronous execution. We can now imagine
that the timelines are stretched and shrunk in various places individually so that logical
time ¢ corresponds to a horizontal line: all events after time ¢ appear below the line, and all
events before time ¢ are above the line. Again, even though the events may not really have
occurred in the order depicted, as far as each node is concerned the diagram is consistent
with the events seen at that node.

Dynamic Network Algorithms: Distributed Snapshots 217

. \ timet
3

pl p2 p3
Figure 19.9: An execution represented by individual process timelines.

We want more than just a consistent global state: after all, the initial state of the system
fits this definition. What we want is, loosely, a recent consistent global state—a state that
conveys information about the system at some recent time. For instance, we might like the
result of our snapshot algorithm to reflect all the events that occurred in real time before
the algorithm began running.

Now, why would we want to get a global snapshot of a system? There are two most
common types of applications:

¢ Maintaining Database: We might like to get a consistent state of a distributed
database. For example, a bank audit over multiple branches of a bank.

e Stable Property Detection: The aim is here to detect some properties that persist.
The two most common applications are:

1. Deadlock detection: The problem is here to find out if every node is blocked,
waiting for a result from some other node in order to proceed.

2. Termination Detection: The problem is here to detect the termination of some
distributed algorithm. The snapshot might show, for instance, that each node
is in an idle state and no messages are in transit, in which case we know that
the algorithm has terminated. Trying to determine this by querying the nodes
individually is problematic: a node might tell us that it is currently idle, but it
might receive an incoming message as soon as we have moved on to query another
node.

19.3.1 Architecture of Global Snapshots

We describe here briefly the architecture we have in mind to establish snapshots and we
present some problems that are associated with it. Algm,,...,Algm, correspond to the

218 Lecture 19: November 15

basic underlying algorithms. Each p; is to snapshot the state of Algm; and the state of all
the links incoming to ¢. A problem is that p; has no way to actually snapshot the state
of Algm,. (Action-based communication does not allow a composed process to see internal
information as the state.) We need some way to modify this architecture in order to allow
closer integration between p; and Algm;.

Coe ()
Send| {Rec Send Rec

Message System

Figure 19.10: Architecture for Snapshot Interface

A first idea is then to assume that Algm; has a special snap input action (and a corre-
sponding response output) that tells the process to return its state at the time of the snap
input action. (A model technicality is that it returns the value at some point later. We
won’t deal here with this problem.)

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 20: November 20
Lecturer: Nancy A. Lynch Scribe: K. Chiang

20.1 Chandry-Lamport Global Snapshots

A global snapshot is a picture of the state of every node, as well as the state of the channels
which connect those nodes, the state of a channel being defined as the sequence of messages
which have been sent out on it, but have yet to be delivered.

This algorithm guarantees that any global snapshot taken is comsistent and recent; in
other words, it accurately reflects the state of the system at some previous “recent” point in
time.

To use this algorithm, the architecture presented at the end of previous class is assumed.
Each node has two parts, Algmy, a high level process that performs the desired computation
at that node, and an underlying process p;, which determines when to pass messages on,
what new messages need to be sent, and when a snapshot should be taken.

20.1.1 The One Dollar Bank

Consider a bank with two branches p; and p; and total assets of a single dollar. We will let
C denote the channel from p; to p; and D the channel from p; to p;. Suppose an audit of the
bank is desired. Querying the nodes and channels at random will not work as desired, since
their states could change between queries, adversely affecting the states of other components.

Channel C

Channei D

Figure 20.1: Two processes in communication

For instance, consider an execution where the p; has the dollar initially. It then sends the
dollar to p;, which receives it at a later time. Even this simple execution may be recorded

219

220 Lecture 20: November 20

incorrectly. If the state of p; is recorded prior to p;’s sending of the dollar, and then the
states of C, p;, and D are recorded, the dollar could appear in both p; and C.

To circumvent the problem of duplication or loss of messages in a channel C' connecting
processes p; and p;, we introduce markers that delimit precisely the train of messages flowing
in C between the time p; and p; do a snap. This leads to the following algorithm:

20.1.2 Algorithm

Assuming a channel C connects process p; to another process p;:

Rule 1: After p; snaps its own state and before it sends any other message along C, it
sends a special marker, denoted by the symbol #, on C.

Rule 2: Upon p;’s receipt of a marker,

o if p; has already recorded its state, it records the state of C' as the sequence of messages
received along C after p; took its own snapshot and before p; received the marker.

o if p; has not recorded its state, it does so now and records the empty sequence as the
state of C.

Note that this algorithm can start asynchronously in one or more places. A process
" initiates the snapshot by recording its own state and propagating markers outward. Two or
more processes that initiate the snapshot simultaneously will not conflict in the sense that
the snapshot produced will belong to the set of valid snapshots. (We will the notion of valid
precise in Theorem 20.1.)

The algorithm terminates when a marker has been received along all channels so that the
states of all processes and of all channels have been snapped. This must happen sooner or
later if the network is strongly connected so that the algorithm indeed terminates. (Recall
that we are dealing with completely reliable channels.)

In the context of our architecture, the underlying processes may be expressed as I/O
automata, using queues to keep track of incoming and outgoing messages and markers. A
snap action can be performed by a process at any point before any receive-marker action is
performed: this involves snapping the state and placing a marker at the end of all outgoing
queues. At this point the process must start remembering (i.e.,placing in incoming queue)
all incoming messages in all incoming queues. This snap action does not need being done
instantaneously: it can allow processing of old things in the incoming queues. This must
be finished though prior to a receive-marker action. If the queues are not finished being
processed by the time such an action happens, then the snap is actually triggered by the
reception of the marker and the state of the incoming channels is empty.

Call s, the initial state of the execution. We will let 74(so) the state reached from so by
execution a.

This algorithm produces good snapshots in the following sense:

il

Chandry-Lamport Global Snapshots 221

Theorem 20.1 Let a = ajaq,a3 be the actual ezecution of the algorithm, where oy and az
ezactly precede the start and follow the end of the snapshot algorithm. Let s, = Tay (S0) and
82 = Ta,(81) the states reached after a; and oy respectively. Then there is an ezecution
o = ooy such that s; = Toy(81) and such that the snapped state s* is reached from s,
and such that s; is reached from it. Furthermore of is a permutation of ay corresponding to
a time reordering of unrelated actions.”

Proof:(Sketch) An action e in a is called a pre-recording event iff € is an action taken by a
process p and p records its state after e in . Similarly an action e in « is called a post-
recording event iff e is an action taken by a process p and p records its state before e in . An
action is always pre or post recording. The key remark is that if a post-recording action e;_;
happens before a pre-recording action e; then the two actions can be permuted and still lead
to a valid execution: these two actions have to happen on different processes pi-1 and p; and
no message can be exchanged from p;_; to p; between these two actions. (If such a message
was exchanged, p; would receive a marker and e; could not be a pre-recording event!) By
induction all actions can then be reordered so that all pre-recording events happen before
any post-recording event. The state s* of the theorem is then the global state after all
pre-recording events. |

The preceding proof is based on the fact that, in the global system, an action e; can be
delayed past some other action e; without modifying the local views of the execution held
by each single process, as long as the process taking action e; is not informed of e; having
happened. Let p; and p; denote processes taking these two actions. In more formal terms
the preceding means that there is no chain of messages originated from pi after the point at
which e; is performed and arriving at p; before e; is performed.

In terms of Lamport’s partial ordering, the events at two different nodes can be reordered
with respect to each other, preserving the partial orders within the nodes themselves. For
instance the actual execution could be the one of Figure 20.2 whereas from the point of view
of the snapshot it is as if the execution of Figure 20.3 had happened.

20.1.3 The wa Dollar Bank

To see this algorithm in action, consider the same two branch bank given above. This time,
however, there are two dollars in the bank. Initially, each branch has exactly one dollar (See
Figure 20.5). Each process can send as many dollars as it has.

We will illustrate the execution with diagrams. The first one, Figure 20.4 is an example
explaining the symbols used. '

Consider the following execution of the algorithm:

L. p; records its state as having a dollar, sends a marker onto C, and then sends its dollar
onto C (See Figure 20.6).

222 Lecture 20: November 20

send

recsive

Figure 20.2: Some execution ...

/ oond
This corresponds to

send the snapshot.
receive
Figure 20.3: ... and another one corresponding to the snapshot.

2. p; sends its dollar and p; receives it (See Figure 20.7).

3. p; receives the marker on C, so it records its state and that of channel C as empty
(See Figure 20.8).

4. p; sends a marker onto D (See Figure 20.9).

5. p; receives the marker on D and records the state of D as having a dollar in it (See
Figure 20.10).

Note that the state recorded by the snapshot has one of the dollars in p; and the other in
the channel D from p; to p;. This state did not occur in the actual sequence. Nevertheless
it is reachable from the initial state (we can reach it by having p; send a dollar on D), and
from it the final state is reachable (by having p; send its dollar on C and the dollar in D
being delivered).

This is the reachability property expressed by theorem 20.1.

Chandry-Lamport Global Snapshots 223

Tha recorded stele is:
L A marqur io In ransit

Charrial D: undefined os far The reserded sinie e:

»
i
Ne dollar in shennel C

Figure 20.4: Explanation of the notations used

10 o}

Figure 20.5: Initial Configuration

20.1.4 Stable Property Detection

A property is considered stable if, once it is true in a given state, it remains true for all states
reachable from that given state. Thus, if a property P holds at some point of an execution,
it continues to remain true until the end of this execution. Equivalently, if P is not true at
a point in a sequence, then it was never true at any previous point in that same sequence.

The algorithm can be used to detect termination. If there is no external input, a system
is quiescent if no actions are enabled and no messages are in transit. This is a stable prop-
erty and can be determined by some central process examining a global snapshot, although
convergecast along a spanning tree could be used instead in order to optimize the communi-
cation involved in the snapshot: instead of actually sending the whole state to one process,
everyone can just check locally and fan in a bit saying that the state has been recorded in
the subtree.

§

224 Lecture 20: November 20

$
(1,72

Figure 20.6: p; sends a Marker and its Dollar

$

(1-?) 0

Figure 20.7: p; sends a Dollar, p; receives it

The algorithm can also be used for deadlock detection in a distributed graph. Deadlock
is characterized by the fact that all processes are waiting for other processes to do something.
Deadlock amounts to a waiting cycle. Hence deadlock detection can be achieved by taking a
snapshot, sending all the information to some process and then doing an ordinary centralized
cycle detection algorithm.

20.2 Datalink Protocol Impossibility Result

In the beginning of this course we studied the alternating bit protocol, designed to deliver
messages reliably from a transmitter to a receiver in the order they were sent. We recall the
set-up in Figure 20.11. The channels C*" and C™ connecting the transmitter and the receiver
cannot duplicate messages but can can lose them. However, if infinitely many messages are
sent, infinitely many messages are required to be delivered (This is a liveness condition). In
addition, the channels are FIFO.

The user actions are send-msg(m) and rec-msg(m) for m € M. The other actions involve
sending and receiving of packets and are internal actions of the datalink protocol.

If the restriction on FIFO channels is removed, the alternating bit protocol with sequence

Datalink Protocol Impossibility Result 225

D Ok
(1,7

Figure 20.8: p; receives the Marker

$

(0,0)
(1,1) ° °

Figure 20.9: p; sends a Marker

numbers still holds. However, the bit-only version of the protocol fails, since if more than
two messages are sent, messages cannot be distinguished.

The bit-only version is one instance of a bounded header protocol. In general, such a
protocol has messages of the form (m, k), where m € M and k € H. The message alphabet
|M] is finite and the header alphabet |H| is also finite.

The failure of the single-bit protocol suggests that no protocol with bounded size headers
will function correctly, as recent work [FeLyMa90] by Fekete, Lynch, and Mansour shows.

In order to prove this impossibility result, a technical restriction on the number of packets
used to send any message m is required. '

A finite execution is valid if the number of send-msg actions is equal to the number
of rec-msg actions. (This means that the datalink protocol succeeded in sending all the
messages m provided by the user i.e.,all the messages m for which an action send-msg(m)
occurred.)

the following definition expresses that in order to thus successfully deliver any message
the datalink protocol only needs to send a bounded number of packets over the channels.

Definition 20.2.1 (k-boundedness) If ¢ is a valid execution, an extension af is a k-
extension if:

226 Lecture 20: November 20

(0,0
(i ()

Figure 20.10: p; receives the Marker

send-msg

Figure 20.11: The ABP set-up

1. In B, the user actions are exactly the two actions send-msg(m) and rec-msg(m) for some
given message m. (This means that exactly one message has been sent successfully by
the protocol.)

2. All packets received in 3 are sent in 3 (i.e.,no old packets are received).
3. The number of rec-pki‘” actions in f3 is less than or equal to k.

A protocol is k-bounded if there is a k-extension of a for every message m and every valid
execution a. :

Remark: Part 2 of the previous definition does not mean that all packets received in 3
are “physically” sent in 8. What it means is that, for all p € P, if a rec-pkt”" (p) action occurs
in B then some corresponding send-pkt'" (p) action must have happened also in 8. (The same
condition holds with rec-pkt*(p) and send-pkt™(p) actions.)

20.2.1 Impossibility Result
Theorem 20.2 There is no k-bounded datalink protocol.

L

Datalink Protocol Impossibility Result 227

In this theorem we implicitly consider channels that are not reliable and not FIFO. To
prove it we assume there is such a protocol and look for a contradiction.

Assume we could produce a multiset T of packets, a finite execution a, and a k-extension
af} such that:

¢ every packet in T is in transit from the ¢ to r after the execution a (i.e.,T" is a multiset
of “old” packets).

e the multiset of packets received in 3 is a submultiset of T'.

This last condition actually means that, for each rec-pkt™(p) action happening in 3, a
send-pkt™(p) had happened during o that had not been matched during a by a corresponding
rec-pkt™(p) action.

We could then derive a contradiction as wanted: Consider an alternative execution that
begins similarly with a, but that does not have then any send-msg action occurring. All the
packets in T cause the receiver to behave as in the k-extension af and hence to generate an
incorrect rec-msg action. :

In other words, the receiver is confused by the presence of old packets in the channel,
which were left in transit in the channel in o and are equivalent to those sent in 3. At the
end of the alternative execution, a message has been received without its being sent, and the
algorithm fails.

In order to manufacture this situation, one further definition is necessary.

Definition 20.2.2 TfT, if

o T C T’ (This inclusion is among multisets of packets.)

o 1 packet p s.t. mult(p,T) < mult(p, T') < k) (mult(p, T') denotes the multiplicity of p
within the multiset T').

Lemma 20.3 If a is valid, and T is a multiset of packets in transit after a has taken place,
then either

1. 3 k-extension aff such that the multiset of packets received by A™ in (3 is a submultiset
of T, or

2. 3 a valid execution o = af such that

2.1. all packets received in 3 are sent in 3,

2.2. and 3 a new multiset T' of packets in transit after o such that Tle .

228 Lecture 20: November 20

Assume that this lemma is true. We then show that there is some valid e, and a
multiset T, of messages in transit after ac such that case (a) holds. As we already argued,
the existence of such a. and T leads to the desired contradiction.

For this we define two sequences o; and T; with ap = a and Tp = T'. If condition a) does
not hold for @ and T (i.e.,for i = 0) we are in the situation of case (b). We then set o; = o
and Ty = T'. Generally, assuming that case (a) does not hold for ; and T}, we are then
in case (b) and derive a valid extension a4 of a; and a multiset T;4; of packets in transit
after a;y1 (T; < T;4+1). But, by definition of the < relation, the sequence To<Ti<. .. <T§E .
can only have at most k|P| terms. Its last term is the T, we are looking after. (|P| is the
number of different possible packets, which is finite as we assumed that the packet alphabet
and the size of the headers are bounded.)

Proof: (of Lemma 20.3) :

Pick any m, and get a k-extension af3 for m, by the k boundedness condition. If the
multiset of packets received by A, is included in T we are in case (a). Otherwise there is
some packet p for which the multiplicity of rec-pkt(p) actions in 3 is bigger then mult(p, T).
We then set 7' = T U {p}. On the other hand, as the extension is k-bounded, the number
of of these rec-pkt(p) is at most k so that mult(p,T') < k.

We now want to get a valid extension o of a leaving the messages from T” in transit.

~ We know that there is a send-pkt(p) action in 3 (since all packets received in B were sent
in B). Consider then a prefix ay of af ending with this send-pkt(P). (See Figure 20.12.)

Se“T(P) "9"1(9)
| o | y B |
! l

| o L Y
I] |

Figure 20.12: An extension of a with a send — pkt(p) action

After avy all messages from 7" are still in transit. We want to extend ay into a valid
extension without delivering any packet from 7". To get validity we need to deliver m which
is the only non delivered message without delivering a message from T'. We can achieve this
because of the property of fair executions: there is a fair execution that does not deliver T"
- that eventually delivers m. [|

If the restriction on the number of packets needed to deliver a message is removed, it
becomes possible to deliver messages reliably. The transmitter simply sends many copies of
the packet, with the total number of packets sent increasing each time.

Datalink Protocol Impossibility Result 229

However, this greatly increases the time complexity of the algorithm.

@

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 21: November 29
Lecturer: Nancy A. Lynch Seribe: Andrew Chou

21.1 Synchronous Algorithms

In this lecture, we will start studying synchronous algorithms. Synchronous algorithms are
timing dependent: processes are assumed to take steps concurrently or in a round-robin
fashion and communicate through message passing. The execution can be broken into a
series of rounds, where in each round:

1. All processes send messages to all other processes. (Default messages can be sent if no
message is required.)

2. All processes receive messages from all other processes.
3. Each process does internal computations and state changes.

I/0O automata no longer form accurate models of synchronous systems unless we restrict
the order of external steps in I/O automata, or we view the entire system as one large 1/0
automata with the round system imposed.

We will consider the two following problems:

1. Leader election,
2. Distributed consensus.

In this lecture, we will look at the distributed consensus problem.

21.2 Distributed consensus

We will begin by showing some impossibility results.

21.2.1 Gray’s Two Generals Problem

The first problem we will look at is Gray’s two generals problem. Two generals are planning
an attack against a common objective from different sides. In order for the attack to be
successful, both generals must attack simultaneously. If a general attacks alone, his army
will be destroyed. Messages are sent via messengers, who may be killed en route.

230

i

Distributed consensus 231

Consider the following model: Let p; and p, be two processors that must agree on single
bit. Processes cannot fail, but an unlimited number of messages can be lost. Consensus
must be reached in a fixed number of rounds, r. (see Figure 21.1.) '

R B

Figure 21.1: Pattern of message exchanges between p; and p,

We want the following two conditions to hold:

Agreement: Both decide on the same value.

Validity: If both start with 0, then they both decide 0. If both start with 1 and all messages
are delivered, then they both decide 1.

Claim 21.1 No synchronous algorithm can solve Gray’s two generals problem.

Proof: The proof is by contradiction, using techniques similar to other impossibility
proofs. Let a; be an execution where both p; and p; start at 1, and all messages are
delivered. Without loss of generality, we can assume that the r rounds are completed, and
consequently that 2r messages are sent: even if agreement is reached before, we can always
pad the communication with extra messages. By validity, both processes must decided 1.
Let a; be the same as o, except that the last message from p; to p; was not delivered. a;
and o looks the same to py, so p; decides 1. By agreement, p, must also decide 1. Now, let
a3 be a; with the last message from p; to p; removed. Using, the same argument as above,
we see that p; and p, still decide 1. Now continue to remove messages, so that if n is even,
ay, is the same as a,-; with the last message from p; to p; removed, and if n is odd o, is
the same as ay,_; with the last message from p, to p; removed. For each ¢, both processes
still decide 1.

We eventually arrive at the execution, azq4+1. Here, both processes start at 1, no messages
are delivered, and both decide 1. Now, let p; start at 0. To p,, this looks the same as if
p1 started at 1. So, p; will decide 1. By agreement, p; decides 1. But, as no messages are
delivered, p; cannot distinguish the situation with the situation where both p; and p, start
at 0. In this case, they both decide 0, by the validity condition. We get a contradiction. =

232 Lecture 21: November 29

21.2.2 Byzantine Agreement

Throughout this section, we will let n be the number of processes, f an upper bound on the
number of faulty processes, and r the number of rounds in the algorithm that we consider.
In the Byzantine agreement problem that we now consider, the messages are passed in a
reliable way, but the processes can be faulty: the adversary is stronger than in the General’s
problem.
We consider the following situation:

o All processes are connected.
e Messages are reliably delivered in each round.
e All processes start with initial values.

o Consensus among non-faulty processes must be reached by the end of the rth round,
and the two following properties are satisfied:

Agreement All non-faulty processes decide the same value.

Validity If all non-faulty processes start with the same value v, they must decide v
by the end of the protocol.

With no faulty processes, this problem is trivial. However, we want to be able to tolerate
Byzantine faults. A faulty process is allowed to send any messages (including different
messages to different processes). With an unbounded number of faults, it is impossible to
say anything. Intuitively, there should be an upper bound (in terms of n) on the size of f
for which Byzantine agreement is achievable.

We begin by giving a heuristic showing that, for n = 3, the potential presence of a single
faulty process precludes achievability of Byzantine agreement. (i.e. for n = 3 and f =1,
Byzantine agreement is not achievable.) Consider the case of three processes: A, B, and C.
Because of the 1-resilience of the system, if B and C hold an initial value 0 and are honest,
they will decide 0 whatever A sends them: they can, by default, consider that A is faulty.

In the same way if two (honest) processes hold 1 as their initial value, they must decide
1 at the end of the protocol. Consider now the situation where A and B are honest and
hold initial values 1 and 0 (respectively). Assume that C is faulty and behaves to A exactly
as if it were holding 1 and behaves to B exactly as if it was holding 0. At this point, A
will of course detect that B or C is faulty, but will by unable to conclude. (Recall that by
assumption, at most one process is faulty.) But this means that A cannot decide: in effect,
it can decide 1 only if concludes that B is faulty, and it can decide 0 only if it concludes that
C is faulty.

This result will be established more formally in the next lecture.

Distributed consensus 233

Level 1

Level 2

123 ... 12n

Level f+1

Figure 21.2: Tree representing the paths of messages between processes

21.2.3 Algorithm for Byzantine Agreement

We now present the algorithm [LaPeSh80] by Lamport, Pease, and Shortak (in short LPS’s
algorithm) for Byzantine agreement. It satisfies the following correctness statement:

Theorem 21.2 Ifn > 3f+1 LPS’s algorithm solves Byzantine agreement in f + 1 rounds.

To describe and analyze the algorithm, we first construct the tree of Figure 21.2.

It has a f + 2 levels of (the root is at level 0). A node at level &, ¥ = 1,2,3,... f +1,
is labeled 23¢923...%, so that its father is labeled i;25%5.. .2k, its grandfather is labeled
212213 ... %k2, and so on.

We will extend our notation to i = root, which corresponds to ¥ = 0. Any node
1...1¢ at level k (k= 0,1,2,..., f) has degree n — k. Its children are labeled #;;...%xj for
j € {1,2,3,...,n} - {il,ig,i3,...,ik}.

We are now ready to begin describing the algorithm. This algorithm works forn > 3f —1
and requires r = f + 1 rounds. The protocol consists of two phases: a down-phase and an
up-phase. We begin describing the down-phase.

The down-phase is divided into r rounds.

¢ In the first round, each process i sends to all processes j (including itself) the value b
that it holds along with its name: V processes ¢ and j, ¢ sends to j the message (b;;(2)).

e In the subsequent rounds & (k = 2,...,r), each process ¢ relays to all processes j all
the “well-formed” messages it has received in round & — 1. Before doing so, it affixes

234 Lecture 21: November 29

its id to the second field of the message. Hence, this second field holds the path ¢; ...
that the path the message went through up to round k.

- By “well-formed” we mean two things:

e In round k process i relays only messages that are of the form (5; (¢;...9x-1)), where b
is a value and 7;...7;-1 is a sequence of distinct process id’s.

e Process i relays only messages that it has never seen: formally 7 relays only messages
such that 7 # 43,1 # 12,...,¢ # tg_1.

The preceding can be encoded as: In round k: V process :, ¥ message m received by ¢
in round k-1,

if m is of the form (b; (41 ...4x-1)) With i # 4y,.. ., 44y,
then Vj such that j # ¢,...,%x-1,1; process ¢ transmits (b; (¢y . . . tk-1,7)) to j.
else: do nothing.

The tree constructed in Figure 21.2 is exactly the tree of the paths of the messages
sent during the protocol. For instance, a path ijk says that k transmitted (to you) what j
transmitted (to k), which is what 7 transmitted (to j). The “transmitted” in the previous
sentence includes the possibility of a faulty message if the process transmitting it is itself
faulty. v '

For each message m, the protocol ensures that its second field contains the path p it used
so far: m = (b;p). In the following, for any path p = (¢1,...,%;) we let |p| denote the length
k of p. We also say that p ends in ;.

Note that each path of length (at most) f + 1 is represented exactly once in the tree.
Now we can think that each process 7 is provided with its own copy of the tree. For a path p
of the tree, we define value,(p) to be the value that i receives along the path p. This means
that in round k, i receives all the messages (value;(p); p), where |p| = k and p is well formed.
(Note that we do not preclude the fact that value;(p) could be empty: this could happen if
the path p was containing a faulty process halting its transmission.) Hence, even though two
processes ¢ and j hold identical copies of the tree, for any path p, value;(p) and value;(p)
need not be equal. Nevertheless, the following obvious fact holds:

Lemma 21.8 If i, j, and k are all non-faulty, then value;(p) = value;(p) for every path
ending with k.

Proof: k is a honest guy and sends the same thing to everyone!]

We now describe the up-phase. In the up-phase, no communication takes place among
different processes; instead, each (non-faulty) process performs local computations based on
its tree and the value it obtained along all its paths. Even though there is no communication,

Distributed consensus 235

we will still describe for convenience the up-phase in rounds. The aim of the up-phase is to
compute inductively (in a backwards way) newvalue;(p). For all paths p, the decision value
of ¢ will be newvalue;(root).

Every value;(p) missing from the down-phase (due to faulty processes) is set to any
arbitrary value.

e Base Case: Vp such that |p| = f + 1, newvalue;(p) = valuei(p)

¢ Inductive step: For k = 2,...f + 1. Assume round k¥ — 1 is over. V path p such that
Ip| = f + 2 — &, compute:

newvalue;(p) := majority value of {newvalueip.7); (p.j) is a child of p in the tree}

If no majority exists, newvalue;(p) is set by default to 0.
¢ Decision: ¢ decides newvalue,(root).

We now establish the correctness of this protocol. Validity is easy to prove: Suppose
that all processes start with the same value v. Then, all non-faulty processes send v at
the first step, so that value;(j) = v. Then, newvalue,(j) = v. So, by majority rule,
newvalue;(root) = v. We now turn to the proof of agreement.

Lemma 21.4 Suppose that p = (j1,...,Js+2-k) i3 a path ending with the label jriz-1 of @
non-faulty process. Then there is a value v such that value,(p) = newvalue;(p) = v for all
non-faulty process 1.

Proof: We apply backwards induction on the length |p| of the path p.

Base case, k = 1: p is a leaf of the tree (i.e. |p| = f + 1). Since js4; is non-faulty, it
sends in the last round of the down-phase the same value value;(p) to all process :. Hence,
in round 1 of the up-phase, any non-faulty process 7 uses this value (by Lemma 21.3) to set
newvalue;(p).

Induction step, for k = 2,..., f + 1: Assume round & — 1 is over. Consider a path p
such that |p| = f + 2 — k and p ends with the label of a non-faulty process jsio_x. Since
js+2-k is non-faulty in round f + 3 — k of the down-phase, it sent the same value value(p)
to all process i. Let v denote this common value: v ¥ value;(p).

As a consequence, all the non-faulty processes, [, sent the same value;(pl) = v to all
processes 1. As noted previously, at label f +2 — k the tree has degree n — (f + 2 — k). (This
degree represents the number of processes that process jsi2—x communicates with in round
f + 3 — k of the down-phase.) But,

n—(f+2—-k)=n+k-2—-f
>n— ffork>2, :
> 2f+1sincen > 3f + 1 by assumption.

L

236 Lecture 21: November 29

Hence, a majority of these processes ! are non-faulty. By induction hypothesis, we then
have that for all non-faulty process i, newvalue;(pl) = value;(pl) = v. Thus,

newvalue;(p) & majority value of {newvalue;(pl) | pl is a child of p in the tree}
=v
def

= value;(p).

Definition A node, p, is common if all non-faulty processes have the same newvalue(p)
value.

Definition A frontier of a tree is a set of nodes containing at least one node on every path
in the tree.

Definition A common frontier is a frontier consisting of common nodes.

Lemma 21.5 The tree contains a common frontier.

Proof: Consider the f+ 1 non-root nodes on any path. We can write them 2y, 2122, #2273,
<. t182. .. 1541 Where ¢; # i; for ¢ # j. One of these f + 1 i; is not faulty. Call it ¢;,. Then
node %372 ...1;, is common. =

Lemma 21.6 Let p be a path (with our conventions a path corresponds to a node). If there
is a common frontier in the subtree rooted at p, then p is common.

Proof: Apply reverse induction again.

Base case: p is a leaf - trivial.

Inductive step: Assume this property shown for the nodes p of length |p| = k£ + 1 and
consider a node p of length p = k. By hypothesis, p has a common frontier that we denote F.
Consider any child pl of p. If the frontier F goes through pl, then, of course, pl is common.
Otherwise, F induces a frontier on the tree rooted at pl. Then, by the induction hypothesis,
we deduce that pl is common. Thus, all children of pl of p are common. |

Corollary 21.5 and 21.6 immediately imply that:

- Corollary 21.7 Root is common.

This finishes the proof that the algorithm satisfies agreement.

Distributed consensus 237

21.2.4 Non-Byzantine failures

A much simpler tree-based algorithm exists for n > f + 1 with stopping faults. (We allow a
process to stop in the middle of its broadcast within a round.) It is based on the consideration
of the same tree and on the sending of the same messages value;(p) as in the previous
algorithm. Let V; = {v|v = value;(p) for some p}. The difference with the previous algorithm
is that the result is determined to be any standard member of that set (e.g., the smallest
number).

Claim 21.8 Agreement holds, that is V; = V; for all non-faulty i,j.

Proof: Suppose v € V; so that v = value,(p) for some p. If |p| < f, then |pi] < f+ 1, and
value;(pt) = v (i.e., i relays the value v). If |p| = f+1, then there is some non-faulty process
on p so that p = qlr, where ¢,r are paths and [is a non-faulty process. Then, value;(ql) = v.
|

Validity holds, since if all processes started at v, this is the only value that gets anywhere.

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 22: December 4
Lecturer: Nancy A. Lynch Scribe: Robert Blumofe®*

22.1 Lower Bounds for Agreement

A process with Byzantine faults is like a worst-case adversary. We have seen that agreement,
even in the case of Byzantine faults, can be solved by a deterministic algorithm. The algo-
rithm we saw used n > 3f + 1 processes and f + 1 synchronous rounds of communication
where f is the maximum number of faults. Later we will see if this problem can be solved
with fewer than f 41 rounds of communication. But first we ask, can we solve this problem
with fewer than 3f + 1 processes?

22.1.1 Number of Processes for Byzantine Agreement

No. Although randomized algorithms can be used to solve Byzantine agreement with high
probability, no deterministic algorithm can solve Byzantine agreement when more than a
third of the processes are faulty. To show this, we first need to prove that three processes

cannot tolerate one fault, as suggested in the example of last lecture. A formal proof of this
is given in [PeaseSL80]; this proof follows that in [FischerLM86].

Lemma 22.1 Three processes cannot solve Byzantine agreement in the presence of one fault.

Proof: Working by contradiction we assume they can, using a protocol P. Then there
exist three processes, A, B, and C which, when arranged in a system and given arbitrary
inputs will satisfy the Byzantine agreement conditions even if one process malfunctions.

We could take two copies of each process, and arrange them into a 6-process system S
as shown in Figure 22.1.

When configured in this way, the system appears to every process as if it is configured in
the original three-process system. We then define a protocol Ps on S: Ps is characterized
by the fact that each process is running P as if the universe consisted only on itself and its
two neighbors. We will show that Ps exhibits a contradictory behavior.

Consider the processes A-B-C-A’. The two different processes A and A’ could send
different messages to B and C. To B and C, it appears as if they are running in a three
process system A-B-C, in which A is faulty. This is an allowable behavior for Byzantine

24Based on lecture notes from 1988 scribed by Jeff Fried, Jeff Palmucci, and George Varghese.

238

Lower Bounds for Agreement 239

A
A c
- 0 1
-~
~
B 0 1 B
B c
A
- 0 1
~ '
- c A
B (o

Figure 22.1: Impossibility result for Byzantine agreement on three processes with one fault.

Agreement on three processes, so B and C must eventually agree on 0 in the three-process
system. Since the six-process system S appears identical to B and C, they will eventually
agree on 0 in S as well.

Next consider the processes C-A’-B’-C’. By similar reasoning, A’ and B’ will eventually
agree on 1 in S.

Finally consider the processes B-C-A’-B’. To C and A’, it appears as if they are in a
three-process system with B faulty. By our initial hypothesis, C and A’ must eventually
agree (although there is no requirement on which value they agree upon). However this is
impossible since we just saw that C must decide 0 and A’ must decide 1. Thus there is a
contradiction, and there can be no solution to the Byzantine agreement problem for three
processes when one is faulty. [

We can now use this result to show that Byzantine agreement requires n > 3f +1
processes to tolerate f Byzantine faults [LamportPS82]. We will do this by showing how an
n < 3f process solution which can tolerate f Byzantine failures can be used to construct a 3
process solution which can tolerate a single Byzantine failure; this of course contradicts the

above lemma.

Theorem 22.2 There is no solution to the Byzantine agreement problem on n processes in
the presence of f Byzantine failures, when'l < n < 3f.

Proof: Assume there is a solution for Byzantine agreement with 3 <n < 3f. (For n = 2,
there can be no agreement since each process has no defense against the possibility that the
other could be lying.)

240 Lecture 22: December 4

Construct a three-process system with each new process simulating approximately one-
third of the original processes. This can be done by partitioning the original processes into
three subsets, P;, P, and P, each of size s, where 1 < s < f. Let the three new processes
be p1, p2, and p3, and let each p; simulate the original processes in P;. Each process p;
keeps track of the states of all the original processes in P;, assigns its own initial value to
every member of P;, and simulates the steps of all the processes in P; as well as the messages
between the processes in P;. Messages from processes in P; to processes in another subset are
sent from p; to the process simulating that subset. When a simulated process in P; decides
on a value v then p; can decide on the value v.

To see that this is a correct 3-process solution we reason as follows. Only one of p;, p,,
ps is allowed to be faulty, and each simulates between 1 and f original processes, so the
simulation contains no more than f simulated faults. The n-process simulated solution then
guarantees that the simulated processes satisfy agreement, validity, and termination. Any
process p; which is non-faulty simulates only non-faulty processes. Hence if a process in F;
decides on a value v, all other process in P; must decide v, so that p; can safely use v as its
decision. Thus the validity, agreement, and termination of the n-process simulation carries
over to the 3-process system. This is a contradiction.]

22.1.2 Byzantine Agréement in General Graphs

We have shown that Byzantine agreement can be solved with n processes and f faults,
where n > 3f + 1. In proving this result, we assumed that any process could send a message
directly to any other process. We now consider the problem of Byzantine agreement in
general communication graphs [Dolev82].

Consider a communication graph, G, where the nodes represent processes and an edge
exists between two processes if they can communicate. It is easy to see that if GG is a tree, we
cannot accomplish Byzantine agreement with even one faulty process. Any faulty process
that is not a leaf would essentially cut off one section of G from another. The non-faulty
processors in different components would not be able to reliably communicate, much less
reach agreement. Similarly, if removing f nodes can disconnect the graph, it should also be
impossible to reach agreement with f faulty processes. '

Definition The connectivity of a graph G, conn(G), is the minimum number of nodes whose
removal results in a disconnected graph. We say that a single node graph has a connectivity
of 1. Furthermore, we say a graph G is k-connected if conn(G) > k.

Figure 22.2 shows a graph with a connectivity of two. If B and D are removed, then we
are left with two disconnected pieces, A and C.

Our proof for the lower bound on connectivity for Byzantine agreement uses methods
similar to those used in our upper bound proof for the number of faulty processes. Recall
the technique of joining up arbitrary processes to appropriately-named neighbors, such that

Lower Bounds for Agreement 241

C

Figure 22.2: A graph G with conn(G) = 2.

the resulting configuration must do something. Also, recall the following two axioms.

e Locality Axiom: A process’s actions depend only on messages from its input channels
and its initial value.

o Fault Axiom: A faulty process is allowed to exhibit any combination of behaviors
on its outgoing channels, provided that the behavior of each channel can arise in some
system in which the process is acting correctly.

The locality axiom basically states that communication only takes place over the edges
of the graph, and thus it is only these inputs and a process’s initial value that can affect
its behavior. The fault axiom expresses a masquerading capability of failed processes. We
cannot determine if a particular edge leads to a correct process, or to a faulty process
simulating the behavior of a correct process over the edge. The fault axiom gives faulty
processes the ability to simulate the behaviors of different correct processes over different
edges.

With these basic concepts, we can now prove a lower bound on connectivity for solving
Byzantine agreement.

Theorem 22.3 It is possible to solve Byzantine agreement on a graph, G, with n nodes and
f faults if and only if

1.n23f+1, and
2. conn(G) > 2f + 1.

Proof: We already know that n > 3f + 1 processes are required for a fully connected
graph. It is easy to see that this situation will not improve for an arbitrary communication
graph.

We start by showing that Byzantine agreement is possible if conn(G) > 2f + 1. (The if
direction.) Menger’s Theorem states that a graph is k-connected if and only if every pair

il

242 Lecture 22: December 4

of points is joined by at least k node-disjoint points. Since we are assuming G is 2f + 1-
connected, there are at least 2f + 1 node disjoint paths between any two nodes. We can
simulate a direct connection between these nodes by sending the value along each of the
2f +1 paths. Since only f processes are faulty, we are guaranteed that the value received in
the majority of these messages is correct. Therefore, simulation of a fully connected graph
can be accomplished. We saw in Lecture 21 an algorithm of Lamport, Pease and Shortak
that solves byzantine agreement in this situation.

We now prove the only if direction of the connectivity argument. The argument that
Byzantine agreement is not possible if conn(G) < 2f is a bit more intricate. We will first
take f = 1, for simplicity.

Assume there exists a graph, G, with conn(G) < 2 which can solve Byzantine agreement
with one fault. Two points in G can disconnect the graph. The graph in Figure 22.2 can
be generalized to any graph with a connectivity of 2 by replacing A and C with arbitrary
graphs. To keep our argument simple, however, we will consider A and C to be single nodes.
We can construct a graph C by “rewiring” two copies of graph G, as shown in Figure 22.3.
Each process in C behaves as if it was the same-named process in Figure 22.2 with the input
denoted by the subscript.

Ap g— Dy ¢+ Ci
Bo Bl
Co - T * 4,

Figure 22.3: Graph C, made by “rewiring” two copies of G.

Consider the behavior of the processes outlined in Figure 22.4, and the corresponding
behavior in 22.5, where F is a faulty process. By the fault-axiom, the outlined processes
cannot tell the difference between Figure 22.4 and Figure 22.5. Therefore, by the validity
property, these processes must all decide 0.

Now consider Figure 22.6 and the corresponding 4-nodes situation of Figure 22.7. By the
same argument, all the outlined processes are required to decide 1.

il

Lower Bounds for Agreement 243

r
] Aoy ; 2 e C1
; :
i I
; :
1]
1]
:]
]]
: !
| !
E Co® : Dy © 4
Lccee == t

Figure 22.4: A set of processes in C.

Figure 22.5: A configuration (with F faulty) that the outlined processes cannot distinguish
from Figure 22.4.

i

244 ' Lecture 22: December 4

By

Co® Ds

Figure 22.6: A set of processes in C.

I A
'B, F
: Cn

Figure 22.7: A configuration (with F' faulty) that the outlined processes cannot distinguish
from Figure 22.6.

Lower Bounds for Agreement 245

Finally, consider Figure 22.8, which is corresponding 4-nodes situation of Figure 22.9.
Since only F is faulty, the agreement condition requires that the outlined processes decide
on the same value.

Ao & Dl . J C]

B,

=
S

i Co
Figure 22.9: The non-faulty processes must agree, giving us a contradiction.

However, we have already shown that process A; must decide 1 and process Cy must
decide 0. Thus, we have reached a contradiction. It follows that we cannot solve Byzantine
agreement for conn(G) < 2 and f = 1.

To generalize the result to f > 1, we use the same diagrams, with B and D replaced by
graphs of at most f nodes each and A and C by arbitrary graphs. Again, removing B and

D disconnects A and C. The edges of Figure 22.2 now represent all possible edges between
A,B,C,and D. |

il

246 | Lecture 22: December 4

22.1.3 Weak Byzantine Agreement

Lamport considered weakening the requirements for Byzantine agreement (still considering
Byzantine faults) by changing the validity requirement.

e Validity: If all processes start with value v and no faults occur, then v is the only
allowable decision value.

Previously we required that even if there were faults, if all processes started with v then all
non-faulty processes must decide v. Now they are only required to decide v in the case of no
failures. This weakened restriction corresponds to the requirements of the database commit
problem since we only require commitment in the case of no faults.

Lamport tried to get better algorithms for weak Byzantine agreement than for Byzantine
agreement but failed. Instead he got the impossibility result:

Theorem 22.4 n > 3f + 1 processes and conn(G) > 2f + 1 are needed even for weak
Byzantine agreement.

We will just show that three processes cannot solve weak Byzantine agreement with one
fault; the test of the proof follows as before.

Suppose there exists three processes A, B, and C which can solve weak Byzantine agree-
ment with one fault. Let Go be the execution where all three processes start with zero, no
failures occur, and therefore all three processes decide zero. Let G;, 1 < 3, be the same
execution except that j of the three processes start with a one. Let k be strictly larger than
the number of rounds in executions Go,...,Gs.

We now create a new system S with at least 4k nodes by pasting enough copies of the
sequence A-B-C into a ring. Let half the ring start with value zero and the the other half
start with one. Now consider the resulting execution. By arguing as we did before, any two
consecutive processes must agree; therefore, all processes in S must agree. Assume (without
loss of generality) that they choose one. Each process will reach this decision in fewer than
k rounds. But there is some process in the middle of the half of S which started with zeros
and is more than k steps away from any processes which started with one. This processes
will behave exactly as it did in Go and therefore must decide zero. This is a contradiction.

22.1.4 Number of Rounds with Stopping Faults

' We now turn to the question, can Byzantine agreement be solved in fewer than f + 1 rounds.
‘Once again the answer is no. As if that’s not bad enough, we will see that at least f 41
rounds are required even to simply tolerate f stopping faults. This is true regardless of how
big n is (though we will assume n > f +2).

Lower Bounds for Agreement 247

The Model

Each non-faulty process is modeled by a deterministic automaton that has:

o A Message Generation Function to decide what messages to send to other processes
based on its state. '

o A State Transition Function that determines a new state based on previous state and
incoming messages.

Faulty processes do not follow these functions and can exhibit arbitrary behaviour.

The execution is synchronized. On each round each process sends messages to all other
processes. Each process then computes its new state based on all received messages before
the next round starts.

Each process starts with an initial value. Eventually a process may write “decide V” in
its state, but for simplicity, we assume a process continues executing forever even after it
decides.

Define an ezecution as an infinite sequence of tuples: the :th tuplein the sequence contains
all the process states at time ¢ and all the messages sent in the :th round.

Define a communication pattern of an execution as some representation of which processes
send to which other processes in each round. A communication pattern does not tell us the
actual information sent but only “who sent to whom” in a round. A communication pattern
can be depicted graphically as shown in Figure 22.10.

In the figure, p; does not send to p; in round 2. Thus p; must have stopped and will send
nothing further in round 3 and future rounds. Essentially a communication pattern depicts
how processes fail in a run.

Given the initial state tuple and the communication pattern, we can determine an exe-
cution uniquely from the (deterministic) process state transition functions.

Define a run as an initial state tuple plus the communication pattern. Let p be a run,
and denote by exec(p) the execution generated by run p.

A process is faulty in a run or an execution exactly if it stops sending somewhere in the
communication pattern. There are never more than f faulty processes in a run.

The Case of One Failure

We will now show that two rounds are required to handle a single stopping fault.

We do this by contradiction, so assume a 1-round algorithm exists. We will construct a
chain of executions such that the first execution must lead to a 0 decision, the last execution
- must lead to a 1 decision, and for any two consecutive executions in the chain there will
be some non-faulty process to which both executions look the same. This of course is an
impossible situation since if two executions look the same to a non-faulty process, that
process must make the same decision in both executions, and therefore by the agreement

248 Lecture 22: December 4

Figure 22.10: Example of a communication pattern.

property both executions must have the same decision value. Thus every execution in the
chain must have the same decision value which is impossible since the first execution must
decide 0 and the last must decide 1.

We start the chain with the execution determined from all zeros as input and the complete
communication pattern as in Figure 22.11. This execution must decide 0.

Starting from this execution, form the next execution by letting process p; fail at the
beginning and miss sending a message to itself. These first two executions look the same to
all other processes, and at least one of them must be non-faulty (n > f + 2).

Form the next execution by removing the message from p; to p;. These two executions
look the same to all processes except p; and p;, and again at least one of these n —2 processes
must be non-faulty. Next we remove the message from p; to p3, and these two look the same
to all processes except p; and p;. We continue in this manner removing one message at
a time so for every consecutive pair of executions, they look the same to some non-faulty
process.

Once we have removed all the messages from p;, we form the next execution by changing
p1’s input value from 0 to 1. Of course these two executions will look the same to every
process except p, since p; sends no messages. Now we can add the messages back in one
by one, and again for every consecutive pair of executions, they will look the same to some
non-faulty process.

We can repeat this construction for p;: removing p,’s messages one-by-one, changing p;’s
input value from 0 to 1, and then adding p;’s messages back in. Repeating this construction

i)

Lower Bounds for Agreement 249

Figure 22.11: A run which must decide zero.

for ps,...,pn we end the chain with the same execution we started with except with all ones
as input. This execution must decide 1. Thus we have produced a chain as claimed, and
this is a contradiction.

The Case of Two Failures

We will now show that two rounds are not sufficient to handle two stopping failures. This is
done by forming a chain as we did for the case of one fault and one round. We start with the
execution determined by all zeros as input and the complete communication pattern; this
execution must decide 0.

To form the chain we want to work toward killing p, at the beginning. When we were
only dealing with one round we could kill messages from 1 one-by-one. Now, if we delete a
first-round message from p; to g in one step of the chain, then it is no longer the case that
the two executions must look the same to some non-faulty process. This is because in the
second round g could inform all other processes as to whether or not it received a message
from p; in the first round, so that at the end of the second round the two executions can
differ for all non-faulty processes.

We solve this problem by using several steps to delete the first-round message from p; to
¢, and by letting ¢ be faulty too (we are allowed two faults). We start with an execution in
which p; sends to ¢ in the first round and ¢ sends to every process in the second round. Now
we let ¢ be faulty and remove second-round messages from ¢ until we have an execution in
which p; sends to ¢ in the first round and ¢ sends no messages in the second round. Next
we can remove the first-round message from p, to ¢, and clearly these two executions will
only look different to p; and g. Now we replace second-round messages from ¢ one-by-one
until we have an execution in which p, does not send to q in the first round and ¢ sends to
all in the second round. This achieves our goal of removing a first-round message from p,

€

250 ‘ Lecture 22: December 4

while still maintaining that for every consecutive pair of executions, they look the same to
some non-faulty process.

Now we can remove first-round messages from p; one-by-one until py sends no messages,
change p;’s input from 0 to 1, and replace p;’s messages one-by-one. Repeating this for
P2,. . .,Pn as before gives the desired chain.

The General Case

We now consider the general case so we can have up to f faulty processes in a run. Assume
f > 1 and suppose we have an f round protocol.

If p and p' are runs with p non-faulty in both then we write p & p’ to mean that exec(p)
and exec(p’) look the same to p through time f (same state sequence and same messages
received). We write p ~ p' if there exists a process p which is non-faulty in both p and p’
such that p & p'. We write p = p' for the transitive closure of the ~ relation.

Every run p has a decision value denoted by dec(p). If p ~ p' then dec(p) = dec(p’) since
p and p’ look the same to some non-faulty process. Thus if p = p' then dec(p) = dec(p’).

Now let F, be the set of failures in run p, and consider the following lemma.

Lemma 22.5 Let p and p' be runs. Let p be a process. Let k be such that 0 < k < f—1.
If|F,UFy| < k+1 and p and p' only differ in p’s failure behavior after time k then p = p'.

Proof: We prove this lemma by reverse induction on k as k goes from f —1 to 0.

As the basis we have k = f — 1. In this case p and p’ agree up to round f —1so consider
round f. If p and p’ don’t differ at all then we’re done, so suppose p is faulty in at least one
of p or p’ and the total number of other processes that fail in either p or p' is no more than
f — 1. Consider two processes, ¢ and r, which are non-faulty in both p and p'. (They exist
since n > f +2.) Let p; be the same as p except that p sends to ¢ in round f of p; exactly
if it does in p'. As an example see Figure 22.12. We have p X pyand py 2 p' sop=p.

We now turn to the inductive step. We want to show that the lemma is true for k
satisfying 0 < k < f — 1 assuming it is true for k+ 1. Executions p and p’ agree up to round
k. If they also agree up to round k + 1 then we can apply the inductive hypothesis and we
are done, so assume process p fails in round & + 1, and assume (without loss of generality)
that p fails in p.

Let p;, for 1 < i < n, be the same as p except that p sends to p1,...,p; at round k+1
of p; exactly if it does in p’. Each p; has no more than k + 1 failures (since p has no more
than k + 1 failures). We claim that p;y = pifor1 <2< n (defining po = p), and we now
proceed to verify this claim.

Executions p;_; and p; differ at most in what p sends to p; at round k + 1. Let p} be the
same as p;_; except that p; sends no messages after round k + 1 in pf. Similarly let pf be
the same as p; except that p; sends no messages after round k + 1 in pY. This situation is

Lower Bounds for Agreement 251

p P p P p p
r r r
q q q
s s s
p [p

Figure 22.12: Example of construction used to prove base case of Lemma 22.5.

illustrated in Figure 22.13. By the inductive hypothesis we have p;_; = p! and p; = p. Also
p: ~ p! since both look the same to any non-faulty process (other than p;). Thus p;; = p;
as claimed.

pi Di p; pi

/

pi-1 } A pi

Figure 22.13: Example of construction used to prove inductive step of Lemma 22.5.

We now have p = py = p,. Also, p, is the same as p’ up through round & + 1 so we can
apply the inductive hypothesis to get p, = p’. Thus we have p = p’ as needed. n

To get our result we want to consider the case £k = 0 in Lemma 22.5. This says that if
runs p and p’ have only one failure between them and differ only in the failure behavior of
that one process then p = p’. We use this as follows.

Let po and pj be two runs both starting will all zeros as input; in pp no process fails,
and in pg process p; fails at the beginning and sends no messages. There is only one failure

252 Lecture 22: December 4

between them and they only differ in p,’s failure behavior, so by the lemma, py = pj.

Now let pg be the same as pj except p; has a 1 as input instead of 0. Since p; sends no
messages in pj this change cannot be seen by any process except p, so pj ~ pj. Now let p;
have the same input as pjj except there are no failures in p;. Again the lemma says pfj = p;.
Therefore pp = p;.

We continue this letting p; be the execution with no failures and input defined by having
the first i processes get 1 as input and the others getting 0. We have p;.; = p;, s0 pg = pn,
and therefore dec(po) = dec(p,). But this is a contradiction since po has all zeros as input
with no failures and hence must decide 0 whereas p, has all ones as input with no failures
and hence must decide 1.

Thus we have the following theorem.

Theorem 22.6 Any agreement protocol requires f + 1 rounds to handle f stopping failures.

il

6.852 Distributed Algorithms Fall Semester, 1990

Lecture 23: December 11
Lecturer: Nancy A. Lynch Scribe: Mary Ellen Zurko®

23.1 Multivalued vs. Binary Byzantine Agreement

One way to agree on a single bit value from a set of values V is to treat this value as a bit
string, and use a bit Byzantine Agreement algorithm Ay to agree on the value bit by bit.
But this is a very slow process.

23.1.1 Turpin & Coan’s Algorithm

In their algorithm, Turpin & Coan use the fact that, in the problem of distributed byzantine
agreement on a value v drawn from a large value set V, an economy in communication can
be achieved by breaking the algorithm into two steps:

1. Solve BA on bits only,
2. Use the result as a subroutine to reach agreement on a value in V.

This breakdown indicates that the problem of getting a consensus is the most important
part of the algorithm.

The algorithm, is similar to Ben-Or’s algorithm: it just uses some few extra rounds to
take into account the fact that the value to agree upon is not simply a bit. We assume that
n 2 3f + 1.(As usual n is the number of processes, and f is the number of faulty ones.).
Every process has an initial value z.

Note that the default value might not be in the original value set.

23.1.2 Correctness
Termination

Termination in f + 3 rounds is obvious: the 2 rounds of the beginning of the previous
algorithm and at most f + 1 rounds for the bit subroutine.

25Based on lecture notes from 1988 scribed by George Verghese

253

Hl

254 Lecture 23: December 11

Round 1:
Broadcast (z)
if, in set of messages received, there are > n — f for some v
then z « v
else z — nil
Round 2:
Broadcast (z)
Let v = value with most occurrences among those received in Round 2
(break ties arbitrarily)
Define m = number of occurrences of v
then z « v
fm>n—f
then vote — 1
else vote — 0

Call the BA bit-subroutine with vote
If result = 1, choose z (result saved after round 2)
If result = 0, choose some predetermined default

Figure 23.1: Turpin and Coan’s Algorithm

Validity

If all processes start with a value w, then all nonfaulty processes get > n — f w’s in round
2, and they vote 1. The validity for the BA subroutine says they must agree on 1, and all
nonfaulty processes will chose w.

A technicality: faulty processes could begin the BA with 0’s, but it’s just as if they started
with 1’s and lied about their initial value, so the nonfaulty processes are still required to
decide 1.

Agreement

If the BA subroutine returns 0, agreement is clear (the default value is chosen).
In the case where the subroutine decides 1, we must argue that then every nonfaulty
process chose the same z after the invocation of the bit protocol.

Lemma 23.1 There is at most one value, x, that is ever sent in round 2 messages by
nonfaulty processes.

Time Dependent Algorithms 255

Proof:Let x be a value that is broadcasted in round 2 by some process p. This process
must have received at least n — f messages v in round 1, so that al other non faulty processes
must have received n — 2f messages v and can have received only 2f messages w for any
other w. But 2f < n — f so that a non faulty process will not broadcast v in round 2. =

If all processes agree on 1 via the subroutine, at least one nonfaulty process had to start
with 1 as its input to the BA subroutine, by the validity of the subroutine. In fact, by
a similar argument as the one of Lemma 23.1, some nonfaulty process must have started
with 1. This process got > n — f round 2 messages with value v (the v whose existence is
ascertained in Lemma 23.1) so that all other processes received at least > n — 2 f v messages
in round 2. Since all the nonfaulty processes could only broadcast this value v in round 2,
(by Lemma 23.1), all other value w received can only have been sent by some of the f faulty
processes. But, as f < n — 2f, this value w occur less often then v so that v is the value
chosen at the end of the protocol by all nonfaulty processes.

Thus, agreement is established.

23.2 Time Dependent Algorithms

In reality, most algorithms are neither synchronous nor completely asynchronous, but some-
where in between. There is some information about the relative speeds of components, but
not absolute synchrony.

Time-Dependent Algorithms arise:

o In real-time process control, “real” safety properties are important. They assume
some information about the speeds of real-world and computer components, in order
to guarantee some real-world safety properties, and some time bound properties. Here
“safety” can be a pun - it can be a property like a train and a car don’t coexist in
an intersection. Examples of contexts include nuclear reactor control, and factory or
airplane control.

¢ Many communication protocols use time information in various ways.

— Timeouts are used to detect failure (by receiving regular “I'm alive” messages).
Timeouts can also be used to detect something has happened; e.g. consider
datalink problem with non-FIFO channels but an assumption that no message
sits in the channel longer than real time d.

— Suppose processes have local clocks that tell when time d has elapsed. They can
use this fact and know when old messages have been purged from the channel so
that they do not interfere any longer with the system. This type of consideration
makes for is easy to design algorithms.

al

256 Lecture 23: December 11

— Time-slicing access to channels can be achieved.

— Two participants may use their knowledge of time to synchronize communication.

By analogy with asynchronous and synchronous distributed computing problems, we
would like to understand the capabilities of timing-based systems. What problems can they
solve? How do required costs (especially time) compare to synchronous and asynchronous
" systems? Preliminary results have been achieved in resource allocation, synchronization, and
consensus problems. Proof techniques and model ideas have been generated, but more are
needed, as not all carry over from [a]synchronous problems. There is also related prior work
on clock synchronization in timing-based systems. There is much more work open here; it
is an interesting and important new research area.

The problems we’ll discuss are variants on problems we have already studied in the
asynchronous case. The difference is now we will have timing assumptions.

23.2.1 I/O Automaton as a Model

I/0 automata are asynchronous. They allow arbitrary interleaving of actions. They have no
timing assumptions. We used some time assumptions previously to do performance analysis
on some algorithms, by imposing upper bounds of time for certain kinds of events (e.g. local
step time, message delivery time, critical section time). This did not restrict the possible set
of executions, nor were these assumptions used to prove correctness. More precisely, imposing
only upper bounds on time for various events does not restrict the set of executions (e.g. the
interleavings) that arise. It only affects the times that can be assigned to the various events.

This means that any problem (defined by a set of external action sequences) that can be
solved by an I/O automaton system with added upper bounds is also solved by the same
I/O automaton system without upper bounds. There is no new power here.

We need lower bounds to add power to our model.

23.2.2 Fitting Bounds into I/O automata Model

A Timed Automaton is a new model used by Merritt, Modeegno, and Tuttle, in a slightly
more general way than we will use it here. They augment the I/O Automaton by adding
upper and lower bounds to each class of locally controlled actions. This is natural, since we
can use each class to model a separate system task.

Each IOA has a bound map which assigns an upper and lower bound to each class, where
0 < B(C) < by(C) < o0; by # 00, and by # 0. The bounds are real numbers. An upper
bound of co means that an event need not occur, even when it is enabled; there is no need
for fairness: an event occurs by some particular time. Successive actions in each class occur
separated by time interval [b;, b,].

Time Dependent Algorithms 257

MMT look at open intervals. They can model IOA eventual fairness. We will only look
at closed intervals, for simplicity. We will abandon eventual fairness in favor of time upper
bounds.

A technicality is that we can’t really guarantee the designated times between occurrences
of C actions - what if no C action is enabled? We will adopt the model where the time counter
of a class is reset to 0 at the moment where the class is enabled. Disabling an event stops
the counting. External clocking could be imposed instead. But the model obtained in this
way is less general, and can be emulated with this model using dummy events.

Timed Sequences have the form sq, (71,%1), 81, (72,t2),.... They can be finite or infinite
sequences (one ends in a state if it is finite). to = 0. Times are by convention non-decreasing:
to <t <... Several events can happen at the same real time.

Zeno sequences are not allowed. A Zeno sequence is an infinite sequence that gets closer
and closer to a particular time, but never reaches it. Any execution associated to such a
sequence of time is not fair: it does not allow time to pass. By convention, among all infinite
sequences, we only allow the ones for which times are unbounded.

A timed ezecution of A with boundmap b is represented by (A,3). Such an execution
follows the steps of A correctly. That is, if we remove the time components of such an
execution, we get an ordinary execution of A. The following are satisfied for each C and each
¢ by a timed execution:

1. Upper Bound: Suppose b,(C) < oo. If 3; 3 enabled(A, C) (a state in which an action
in C is enabled), and either:

o i =0 (the execution just started)

e 7; 3 C (the immediately previous action was from C)
¢ 3,1 O disabled(A,C) (C was just enabled)

(these are the “first start counting bounds”)
then, 35 > ¢, with ¢; < t; + b,(C) s.t. either 7; 3 C or s; 3 disabled(A, C).
2. Lower Bound: If 3; 2 enabled(A, C), and either:
e:=0
e m>C
® si_1 3 disabled(A,C)
then, Aj > i, with t; <t;+ b(C) and ;3 C.

This model is not the final answer. A lot of current research is involved in finding the
right semantic models.

258 Lecture 23: December 11

23.2.3 Timed schedules and timed behaviors

The Timed Execution definition above has safety properties (the lower and upper bounds),
and a liveness property (the upper bound). The safety property of the upper bound assures
that an execution can’t get to a particular time without an action being taken. The lower
bound ensures that an event can’t occur before the lower bound time has been reached.

Sometimes, we are only interested in safety. For such cases we can use a Timed Semi-
Ezecution. It is a finite timed sequence, with the conditions as above, except that condition
1. is weakened to say that, with the same premises, the possibility of an early stop of the
execution is allowed: an action of class C or a disabling must occur within time b,(C) unless
the execution ends prematurely:

tend S i+ bu(C)'

Some basic facts about semi-executions can be easily established:

e A finite timed semi-execution is a timed execution iff every locally controlled enabled
action in the last state has b,(C) = oo.

e The limit of successive timed semi-executions is a timed execution if the time goes to
infinity.

For example, a model of gate in a circuit may be expressed as follows. The function
of a gate can be modeled by enabling its output when both of the gate inputs arrive. In
Automaton A, input; and input; are either L (undefined) or v (a value from the value set).
input,(v) is an input event. output(v) is enabled if inputs are non-null. Its value is a function
of the inputs. The automaton has a single class, and a bound map associated with it.

The Composition of Timed Automata produces a new automaton which is the same as
the composition of the automata, and a new bound map, which is a combination of the
bound maps for all classes. A timed behavior of a composition is a composition of the timed
behaviors. This compositionality is defined as the set of sequences of timed external actions
that projects to give timed behaviors of the components.

A timed automaton solves a problem when its set of timed behaviors (external actions
and their associated times) is a subset of the timed behaviors of the specifications. But we
will not allow the timed automaton to be trivial: the empty set, which is trivially a subset
of all behaviors will not be, by definition, a legal solution to the specifications.

Also, infinite compositions of timed automata are not allowed: they contradict the rule
against Zeno sequences.

6.852 Distributed Algorithms Handout 8 September 13, 1990

Homework Assignment Handout 8
No late homeworks accepted. Solutions Due: September 20

Please write up all solutions clearly, concisely, and legibly.

1. Simple I/O automata:

(a) Define an 1/O automaton representing a reliable message channel that accepts and
delivers messages from the union of two alphabets, M; and M;. The message channel
is supposed to preserve the order of messages from the same alphabet. Also, if a
message from alphabet M, is sent prior to another message from alphabet M;, the
corresponding deliveries must occur in the same order. However, if a message from
M, is sent after a message from M,, then the deliveries are permitted to occur in the
opposite order.

Specify explicitly what the action signature, states, start states, steps and partition
classes are.

(b) For your automaton, give an example of each of the following: a fair execution, a
fair schedule, a fair behavior, an execution that is not fair, and a behavior that is not
fair.

2. Consider the leader election algorithm in Section 4 of the CWI paper (handout 4).
Prove the safety property that at most one “leader” event occurs. Hint: Formulate
carefully an invariant similar to the one suggested after the code in Section 4, page
240. Prove the invariant by induction, and then show that the invariant implies the
required condition.

3. Let C be the reordering channel defined in Section 4 of the CWI paper, page 239, and
let A be a similar channel that delivers messages in FIFO order. (a) Give a formal
definition of an I/O automaton for A. (b) Define a possibilities mapping from A to
C, and show that it is actually a possibilities mapping. (The mapping should be
single-valued, i.e., an abstraction mapping.)

4. Prove the following theorem:

Let A and B be automata with the same external action signature. If there is a
possibilities mapping from A to B, then behs(A) C behs(B).

259

L

6.852 Distributed Algorithms Handout 14 September 20, 1990
Homework Assignment Handout 14

No late homeworks accepted. Solutions Due: September 27

Please write up all solutions clearly, concisely, and legibly.

1. Do problem 4 from last week’s assignment, which was postponed because we didn’t
get to the relevant material in class. That is, prove the following theorem.

Suppose that A and B are automata with the same external action signature. If there
is a possibilities mapping from A to B, then behs(A) C behs(B).

2. Show that lockout is possible in Dijkstra’s algorithm. That is, describe a fair execution
of the algorithm that fails to grant the resource to a requesting user, (even though users
always return granted resources).

3. Fill in more details for the assertional proof (outlined in class) of mutual exclusion for
Dijkstra’s algorithm.

260

6.852 Distributed Algorithms

No late homeworks accepted.

Handout 14

September 20, 1990

Homework Assignment Handout 14

Solutions Due: September 27

Please write up all solutions clearly, concisely, and legibly.

1. Does Burns’ mutual exclusion algorithm work if the shared registers are all safe regis-

ters? Why or why not?

2. Explain why both of the first two assignment statements are necessary in the Peterson-
Fischer 2-process mutual exclusion algorithm.

3. (Open, which means we haven’t got a complete answer to this one.) For Burns’ algo-
rithm, prove an upper bound (as small as you can) on the time from when any process
enters the trying region until the next time some process (not necessarily the same
process) enters the critical region. Also give a lower bound (as large as you can) for
this same time, by describing a particular execution in which this time is large. Try to

get the bounds as close as possible.

4. Prove an upper bound on the time required for a particular process to reach its critical
region, from the time when it enters the trying region, in the Lamport bakery algorithm.
(Assume for simplicity that the shared registers are atomic rather than just safe.)

261

al

6.852 Distributed Algorithms Handout 23 October 11, 1990

Homework Assignment Handout 23
No late homeworks accepted. Solutions Due: October 18

Please write up all solutions clearly, concisely, and legibly.

1. Give a direct proof of a special case of the Burns-Lynch impossibility result, saying that
two processes cannot achieve mutual exclusion with progress using a single read-write
shared variable. Your proof should use the same basic ideas as in the n-process result,
but the restriction to n = 2 should allow the proof to be simplified.

2. Design a test-and-set algorithm to solve a strong version of the 2-exclusion problem
described in Programming Assignment 2. In the version we have in mind, the processes
should be enabled to enter the critical region in FIFO order, based on their initial
requests. However, unlike in the mutual exclusion problem, there should normally be
two processes either in or enabled to enter their critical regions. (Note: this problem
should be easier than the one in the programming assignment, because it allows use of
powerful test-and-set shared memory.)

Try to minimize the size of the shared variable. (Keeping a complete queue in the
shared memory would work, but the variable would be quite large.) Write your algo-
rithm using lock-unlock notation, to make the indivisible steps explicit.

3. Consider Rabin’s randomized algorithm once again.

3.1. State and prove a result of the form “with probability f(r), a trying process
succeeds within r rounds in which it participates”.

3.2. Give a similar result of the form “with probability f(¢), a trying process succeeds
within time t. (You can base this on the probability of succeeding in a round,
together with an upper bound on the time required for a round.)

262

6.852 Distributed Algorithms Handout 25 October 18, 1990

Homework Assignment Handout 25
No late homeworks accepted. Solutions Due: October 25

Please write up all solutions clearly, CONCISELY, and legibly.

1. Show how to produce a resource problem (in the form of a monotone Boolean for-
mula, as described in class) that is equivalent to (that is, specifies the same exclusion
relationships as) any given exclusion problem.

2. For Dijkstra’s Dining Philosophers algorithm, describe a fair execution that locks out
a particular process.

3. Give a generalized version of the Burns left-right alternating Dining Philosophers so-
lution that works for an odd number of philosophers. For your algorithm, prove an
upper bound independent of n for the maximum time a philosopher must wait to eat
after becoming hungry.

4. Show that there exists an adversary for the Rabin-Lehmann randomized Dining Philoso-
phers algorithm for which the probability of locking out a particular process is nonzero.

263

€

6.852 Distributed Algorithms Handout 31 November 1, 1990

No late homeworks accepted. Solutions Due: November 8

Homework Assignment Handout 31

Please write up all solutions clearly, CONCISELY, and legibly.

1.

Consider Lamport’s Construction 4, the one that shows how to implement k-ary regular
registers using binary regular registers.

Show that even if registers are atomic, the resulting k-ary register is not atomic.
(Leader election)

2.1. Give the best upper bound you can on the time complexity for Peterson’s ring
leader election algorithm.

' 9.9 Write a bidirectional version of Peterson’s leader election algorithm. What are

the message and time complexities of your algorithm?

. In Bloom’s 2-writer algorithm, indicate why the third read within the READ protocol

is necessary; i.e., what goes wrong if the READ just returns the value already read (in
the first or second read) from the appropriate register?

Reconsider Burns’ lower bound for the number of messages required for electing a
leader in an asynchronous ring whose size is a power of 2. What is the best lower
bound you can obtain, using the same ideas, for ring sizes that are not powers of 27

Do a careful sketch of a possibilities mapping from Bloom’s Boolean-tag 2-writer algo-
rithm to the integer-tag version given in class.

264

6.852 Distributed Algorithms

No late homeworks accepted.

Handout 36

November 8, 1990

Homework Assignment Handout 36

Solutions Due: November 15

Please write up all solutions clearly, CONCISELY, and legibly.

1. Consider the Loui, Abu-Amara impossibility result for wait-free consensus in a read-

write shared memory model. Show that this impossibility result still holds in the case
where the algorithm is required to tolerate only a single process failure (rather than
the arbitrary number of failures required for wait-free algorithms). (If you get stuck,
you may find it useful to look at some of the relevant research papers.)

. Design a new distributed Minimum Spanning Tree algorithm. (You may describe it in
words instead of code, if you like.) This new algorithm should be a lot simpler than
the Gallager et al algorithm. It should solve the same problem, however, and with
time complexity that is approximately as good (that is, O(nlogn)). However, it need
not be so highly optimized for the number of messages. (Hint: Your algorithm could
again be based on combining fragments, where each fragment has an associated level
number. Again, each individual node can start as a single-node fragment of level 0.
This time, fragments of level | can only combine to give fragments of level { + 1. Nodes
can be synchronized to operate in “phases” corresponding to fragment levels.)

. For Lamport’s distributed mutual exclusion algorithm, try to improve on the amount
of local storage used, over the version of the algorithm presented in class. That is, try
to condense the information that is retained, while allowing each node to exhibit the
same behavior as before.

. Consider a “banking system” in which each node of a network keeps a number indicat-
ing an amount of money. Messages travel between nodes at arbitrary times, containing
money that is being “transferred” from one node to another. Design a distributed algo-
rithm that allows each node to decide on its own balance, in such a way that the total
of all the balances is the correct amount of money in the system. Give a convincing
argument that your algorithm works. (The algorithm is not allowed to halt or delay
transfers.)

265

il

6.852 Distributed Algorithms Handout 38 November 15, 1990

Homework Assignment Handout 38

No late homeworks accepted. Solutions Due: November 27

Please write up all solutions clearly, CONCISELY, and legibly.

1. Write the Chandy-Misra dining philosophers algorithm and the Chandy-Misra drinking
philosophers algorithm as I/O automata (Using precondition-effect notation).

2. Try to design a drinking philosophers algorithm with good time complexity. State your
time bound claims carefully. Can you get the time complexity to depend on the actual
requests rather then the potential requests? (Note: We haven’t worked this one out.)

3. We have seen in class that distributed consensus is impossible in the presence of stop-
ping failures, for deterministic asynchronous algorithms. However, an approximate
version of the consensus problem is solvable in such a setting.

In the approximate problem we have in mind, each node receives an init;(v) input for
some real number v, and is supposed to eventually perform a dec;(w) output, for a real
number w. There are two requirements:

3.1. agreement: all decisions are within some predetermined € of each other,

3.2. validity: all decisions are in the range of the inputs.

Design an algorithm for this approximate agreement problem. It should tolerate a

predetermined number f of faults. In order to do this, you will need to assume that
the total number of processes is sufficiently large compared to f. (How large?)

You may allow messages to contain real numbers.

266

L]

6.852 Distributed Algorithms Handout 43 November 29, 1990
Homework Assignment Handout 43

No late homeworks accepted. Solutions Due: December 6

Please write up all solutions clearly, CONCISELY, and legibly.

1. Design variants of BenOr’s randomized consensus protocol that work for the following
two cases. In each case, try to design the algorithm to use fewer than the 7t+1
processes used in the asynchronous, Byzantine case. (a) Asynchronous system with
stopping faults rather than Byzantine faults. (b) Synchronous system with Byzantine
faults.

2. Give a detailed description (i.e., as I/O automata) of the “filter” processes that imple-
ment the Chandy-Lamport global snapshot algorithm.

3. Handouts 40 and 41 contain a description and proof of a data link protocol that guar-
antees reliable message delivery using bit headers and non-FIFO channels. Describe
an execution a = v and a function f with the following properties:

3.1. B includes exactly one send-msg event and exactly one (corresponding) rcv-msg
event, and also contains exactly ! lost packets from the transmitter to the receiver,
and exactly [lost packets from the receiver to the transmitter, for a given constant

L
3.2. The number of packets used to deliver the k** message in « is at most f(k).
3.3. f is as small as you can obtain.
4. Design a variant of the protocol presented in class for agreement in the presence of
stopping faults in synchronous systems; your variant should use only a polynomial

number of messages in the worst case rather than the exponential number used by the
algorithm described in class.

5. (Optional) Discuss the usefulness of Lamport’s state machine approach for the dis-
tributed solution of any of the problems considered in this course.

267

L

6.852 Distributed Algorithms Handout 45 December 7, 1990

Homework Assignment Handout 45

No late homeworks accepted. Solutions Due: December 13

THIS IS THE LAST HOMEWORK ASSIGNMENT!
Please write up all solutions clearly, CONCISELY, and legibly.

1. Reconsider the proof that Byzantine agreement cannot be reached in the graph:

c D

in the presence of one fault. ~@

| Why doesn’t the proof extend, to the graph:

A

<

2. Design a randomized asynchronous agreement algorithm for agreement on an arbitrary
value set V rather than just {0,1}. Hint: Combine the ideas of Turpin and Coan with
those of BenOr. How many processes are required?

3. The proof given in class of the lower bound of f + 1 on the number of synchronous
rounds required for consensus is based on the construction of a chain of executions,
starting from one in which the decision must be 0 and ending with one in which the
decision must be 1. How long is the chain (in terms of n and f)?

4. Prove that for any undirected graph, there exists a spanning forest with trees of loga-
rithmic size, such that the number of neighboring tree pairs (i.e. there exists an edge
with endpoints belonging to those trees) is linear in the number of nodes.

268

BIBLIOGRAPHY

(1] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilistic solitude
detection i: Ring size known approximately. Technical Report 87-8, University of
British Columbia, Vancouver, B.C., Canada, March 1987.

[2] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilistic solitude
- detection ii: Ring size known exactly. Technical Report 87-11, University of British
Columbia, Vancouver, B.C., Canada, April 1987.

[3] Karl Abrahamson. On achieving consensus using a shared memory. In Proceedings
of the T Annual ACM Symposium on Principles of Distributed Computing, pages
291-302, Toronto, Canada, August 1988.

[4] A. Afek, B. Awerbuch, and E. Gafni. Applying static network protocols to dynamic
networks. In Proceedings of 28th IEEE Symposium on Foundations of Computer
Science, pages 358-370, October 1987.

[5] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snap-
shots of shared memory. In Proceedings of the 9% Annual ACM Symposium on Prin-
ciples of Distributed Computing, Quebec, Canada, August 1990. Also, Technical
Memo MIT/LCS/TM-429, Laboratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, May 1990. Submitted to Journal of the ACM.

[6] Y. Afek and E. Gafni. Time and message bounds for election in synchronous and
asynchronous complete networks. In Proceedings of {th ACM Symposium on Principles
of Distributed Computing, pages 186-195, Minaki, Ontario, August 1985.

[7] Yehuda Afek, Hagit Attiya, Alan Fekete, Nancy Lynch, Yishay Mansour, Da-Wei

Wang, and Lenore Zuck. Reliable communication over unreliable channels. Manuscript.

[8] Yehuda Afek and Eli Gafni. Bootstrap network resynchronization: An effecient tech-
 nique for end-to end communication, 1990.

[9] Yehuda Afek, Eli Gafni, and Adi Rosen. Slide - a technique for communication in
unreliable networks (extended abstract), 1990.

(10] A. Aho, J. Ullman, A. Wyner, and M. Yannakakis. Bounds on the size and transmission
rate of communication protocols. Computers and Mathematics with A pplications,
8(3):205-214, 1982.

[11] D. Angluin. Local and global properties in networks of processors. In Proceedings of
12th ACM Symposium on Theory of Computing, pages 82-93, 1980.

269

o

[12] E. Arjomandi, M. Fischer, and N. Lynch. A difference in efficiency between syn-
chronous and asynchronous systems. Technical Report GIT-ICS-81/07, Georgia Insti-
tute of Technology, June 1981.

[13] E. Arjomandi, M. Fischer, and N. Lynch. Efficiency of synchronous versus asyn-
chronous distributed systems. Journal of the ACM, 30(3):449-456, July 1983.

[14] J. Aspnes, A. Fekete, N. Lynch, M. Merritt, and W. Weihl. A theory of timestamp-
based concurrency control for nested transactions. In Proceedings of the 1{th Interna-
tional Conference on Very Large Data Bases, pages 431-444, August 1988.

[15] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischu. Renaming in an asyn-
chronous environment. J. ACM, 37(3), July 1990.

[16] H. Attiya, C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Bounds on the time to reach
agreement in the presence of timing uncertainty.

[17] H. Attiya and N. Lynch. Time bounds for real-time process control in the presence of
timing uncertainty. In Proceedings of the 10* IEEE Real-Time Systems Symposium,
Santa-Monica, December 1989. Expanded version: Technical Memo MIT/LCS/TM-
403,- Laboratory for Computer Science, Massachusetts Institute of Technology, July
1989. Submitted for publication.

[18] H. Attiya, N. Lynch, and N. Shavit. Are wait-free algorithms fast?

[19] H. Attiya, M. Snir, and M. Warmuth. Computing in an anonymous ring. Journal of
the ACM, 35(4):845-876, October 1988.

[20] Hagit Attiya and Marios Mavronicolas. Efficiency of asynchronous vs. semi-synchronous
networks. Submitted to the 28th annual Allerton Conference on Communication, Con-
trol and Computing, 1990.

[21] B. Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804-823,
October 1985. Also, Technical Memo MIT/LCS/TM-268, Laboratory for Computer
Science, Massachusetts Institute Technology, Cambridge, MA, January 1985.

[22] B. Awerbuch. Reducing complexities of distributed maximum flow and breadth-first
search algorithms by means of network synchronization. Networks, 15:425-437, 1985.

[23] B. Awerbuch, O. Goldreich, D. Peleg, and R. Vainish. A tradeoff between information
and communication in broadcast protocols. In Proceedings of the Aegean Workshop
on Computing, 1988.

270

[24] B. Awerbuch and M. Sipser. Dynamic networks are as fast as static networks. In
Proceedings of the 29th IEEE Symposium on Foundations of Computer Science. IEEE,
October 1988.

[25] Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM,
32(4):804-823, October 1985.

[26] Baruch Awerbuch, Oded Goldreich, David Peleg, and Ronen Vainish. A tradeoff
between information and communication in broadcast protocols, 1990. To appear in

JACM.

[27] A. Bar-Noy, D. Dolev, C. Dwork, and H. Strong. Shifting gears: changing algorithms
on the fly to expedite Byzantine agreement. In Proceedings of the 6th ACM Symposium
on Principles of Distributed Computing, pages 42-51, August 1987.

(28] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and Raymond Strong. Shifting gears:
Changing algorithms on the fly to expedite Byzantine agreement, June 27 1990.

[29] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols. In Proceedings of 2nd ACM Symposium on Principles of Distributed Com-
puting, pages 27-30, August 1983.

[30] Piotr Berman and Juan Garay. Cloture voting: n/4-resilient distributed consensus in
t+1 rounds, 1990.

[31] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1986.

[32] O. Biran, S. Moran, and S. Zaks. A combinatorial characterization of the distributed
tasks which are solvable in the presence of one faulty processor. In Proceedings of
7th ACM Symposium on Principles of Distributed Computing, pages 263-275, August
1988.

[33] B. Bloom. Constructing two-writer atomic registers. In Proceedings of 6th ACM
Symposium on Principles of Distributed Computing, pages 249-259, Vancouver, British
Columbia, Canada, August 1987. Also, to appear in special issue IEEE Transactions
On Computers.

[34] G. Bracha. An o(logn) expected rounds randomized byzantine generals algorithm. In
Proceedings of 17th Symposium on Theory of Computing, pages 316-326, May 1985.
Journal of ACM, 34(4):910-920,1987.

[35] G. Bracha and S. Toueg. A distributed algorithm for generalized deadlock detection.
Distributed Computing, 2:127-138, 1987.

271

#@l

[36] M. Bridgeland and R. Watro. Fault tolerant decision making in totally asynchronous
distributed systems. In Proceedings of 6th ACM Symposium on Principles of Dis-
tributed Computing, pages 52-63, August 1987.

[37] J. Burns. A formal model for messa.gevpéssing systems. Technical Report TR-91,
Computer Science Dept., Indiana University, May 1980.

(38] J. Burns, M. Fischer, P. Jackson, N. Lynch, and G. Peterson. Data requirements for

implementation of n-process mutual exclusion using a single shared variable. Journal
of the ACM, 29(1):183-205, 1982.

[39] J. Burns and N. Lynch. Mutual exclusion using indivisible reads and writes. In
- Proceedings of 18th Annual Allerton Conference on Communications, Control, and
Computing, pages 833-842, 1980.

[40] J. Burns and N. Lynch. The byzantine firing squad problem. Technical Memo
MIT/LCS/TM-275, Laboratory for Computer Science,Massachusetts Institute Tech-
nology, April 1985.

[41] James Burns, Mohamed Gouda, and Raymond Miller. Stabilization and pseudo-
stabilization. Technical report TR-90-13, University of Texas at Austin, May 1990.

[42] James Burns and Jan Pachl. Uniform self-stabilizing rings. Journal of the ACM,
11(2):330-344, April 1989.

[43] James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual exclusion,
1990.

[44] O. Carvalho and G. Roucairol. Assertion, decomposition and partial correctness of
distributed control algorithms. Distributed Computing Systems, pages 67-93, 1983.

[45] O. Carvalho and G. Roucairol. On mutual exclusion in computer networks. Commu-

nications of the ACM, 26(2):146-148, 1983.

[46] K. Chandy and L. Lamport. Distributed snapshots: determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1):63-75, February
1985.

[47] K. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions on
Programming Languages and Systems, 6(4):632-646, October 1984.

[48] K. Chandy and J. Misra. How processes learn. Distributed Computing, 1(1):40-52,
1986.

272

[49] K. Chandy, J. Misra, and L. Haas. Distributed deadlock detection. ACM Transactions
on Programming Languages and Systems, 1(2):144-156, May 1983.

[50] K. M. Chandy and J. Misra. On proofs of distributed algorithms, with application to
the problem of termination detection. Manuscript.

[51] K. M. Chandy and J. Misra. Parallel program design: a foundation. Addison-Wesley,
1988.

(52] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding
in circular configurations of processes. Communications of the ACM, 22:281-283, May
1979.

[53] Soma Chaudhuri and Jennifer Welch. Bounds on the costs of register implementations.
Technical Report TR90-025, University of North Carolina at Chapel Hill, June 1990.

[54] B. Chor and B. Coan. A simple and efficient randomized Byzantine agreement algo-
rithm. In IEEF Transactions on Software Engineering, volume SE-11, pages 531-539,
1985. Also, revised in B. Coan ,Achieving consensus in fault-tolerant distributed com-
puting systems, Ph.D. thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 1987.

[55] Benny Chor and Cynthia Dwork. Randomization in Byzantine agreement. Advances
in Computing Research, 5:443-497, 1989.

[56] B. Coan, D. Dolev, C. Dwork, and L. Stockmeyer. The distributed firing squad
problem. In Proceedings of the 17th ACM Symposium on Theory of Computing, pages
335-345, May 1985.

[57] B. Coan and J. Lundelius. Transaction commit in a realistic fault model. In Proceed-
ings of 5th Annual ACM Symposium on Principles of Distributed Computing, pages
40-51, Calgary, Alberta, Canada, August 1986.

(58] B.A. Coan. A communication-efficient canonical from for fault-tolerant distributed
protocols. In Proceedings of the 5th ACM Symposium on Principles of Distributed
Computing, pages 63-72, August 1986. Also, revised in B. Coan, Achieving consensus
in fault-tolerant distributed computing systems, Ph.D. thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 1987.

[59] J.G. DeBruijn. Additional commentson a problem in concurrent programming control.
Communications of the ACM, 10(3):137-138, 1967.

[60] E. Dijkstra and C. Scholten. Termination detection for diffusing computations. In-
formation Processing Letters, 11(1), August 1980.

273

[61] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commu-
nication of the ACM, 17(11):643-644, November 1974.

[62] E.W. Dijkstra. Solution of a problem in concurrent programming control. Communi-
cations Of The ACM, 8(9):569, September 1965.

[63] E.W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica, pages
115-138, 1971.

[64] D. Dolev. The Byzantine generals strike again. Journal of Algorithms, 3:14-30, 1982.

[65] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for
distributed consensus. Journal of the ACM, 34(1):77-97, 1987.

[66] D. Dolev, E. Gafni, and N. Shavit. Toward a non-atomic era: lFexclusion as a test
case. In Proceedings of 20th ACM Symposium on Theory of Computing, pages 78-92,
May 1988.

[67] D. Dolev, J. Halpern, and R. Strong. On the possiblity and impossibility of achieving
clock synchronization. In Proceedings of 16th Symposium on Theory of Computing,
pages 504-510, May 1984. Journal of Computer and System Sciences, 32:230-250,
1986.

[68] D. Dolev, M. Klawe, and M. Rodeh. An o(nlogn) unidirectional distributed algo-
rithm for extrema finding in a circle. Research Report RJ3185, IBM, July 1981. J.
Algorithms, 3:245-260, 1982.

[69] D. Dolev, N. Lynch, S. Pinter, E. Stark, and W. Weihl. Reaching approximate agree-
ment in the presence of faults. Journal of the ACM, 33(3):449-516, 1986.

[70] D. Dolev and H. Strong. Authenticated algorithms for Byzantine agreement. SIAM
J. Computing, 12(4):656-666, November 1983.

[71] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial syn-
chrony. Journal of the ACM, 35(2):288-323, 1988.

[72] C. Dwork and Y. Moses. Knowledge and common knowledge in a byzantine envi-
ronment & Crash failures. In Proceedings of Conference on Theoretical Aspects of
Reasoning about Knowledge, 1986. Also, to appear in Information and Computation.

[73] C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine environ-
ment: Crash failures. Information and Computation, 1988. To appear.

274

[74] C. Dwork and D. Skeen. The inherent cost of nonblocking commitment. In Proceedings
of the 2nd Annual ACM Symposium on Principles of Distributed Computing, pages 1-
11, August 1983. ‘

[75] M. Eisenberg and M. McGuire. Further comments on Dijkstra’s concurrent program-
ming control. Communications of the ACM, 15(11):999, 1972.

[76] A.ElAbbadiand S. Toueg. Maintaining availability in partitioned replicated databases.
In Proceedings of 5th ACM Symposium on Principles of Database Systems, pages 240-
251, 1986.

[77] A. Fekete and N. Lynch. The need for headers: an impossibility result for communica-
tion over unreliable channels. Also, Technical Memo MIT/LCS/TM-428, Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, MA, May,
1990. Submitted for publication. To appear in CONCUR. 1990.

[78] A. Fekete, N. Lynch, Y. Mansour, and J Spinelli. The data link layer: The impos-
sibility of implementation in face of crashes. Technical Memo MIT/LCS/TM-355.b,
Massachusetts Institute of Technology, Laboratory for Computer Science, August 1989.
Submitted for publication.

[79] A. Fekete, N. Lynch, M. Merritt, and W. Weihl. Commutativity-based locking for
nested transactions. Technical Memo, MIT/LCS/TM-370, Massachusetts Institute
Technology, Laboratory for Computer Science, August 1988.

[80] P. Feldman. Optimal Byzantine agreement. Ph.D. thesis, Department of Mathematics,
Massachusetts Institute of Technology, 1988.

[81] M. Fischer, N. Griffeth, and N. Lynch. Global states of a distributed system. IEEE
Transactions on Software Engineering, SE-8(3):198-202, May 1982. Also, in Proceed-
ings of IEEE Symposium on Reliability in Distributed Software and Database Systems,
Pittsburgh, PA, July 1981, 33-38.

[82] M. Fischer and N. Lynch. A lower bound for the time to assure interactive consistency.
Information Processing Letters, 14(4):183-186, June 1982.

[83] M. Fischer, N. Lynch, J. Burns, and A. Borodin. Resource allocation with immunity
to limited process failure. In Proceedings of 20th IEEE Symosium on Foundations of
Computer Science, pages 234-254, October 1985.

[84] M. Fischer, N. Lynch, J. Burns, and A. Borodin. Distributed FIFO allocation of iden-
tical resources using small shared space. Tech Memo MIT/LCS/TM-290, Laboratory
for Computer Science, Massachusetts Institute Technology, Cambridge, MA 02139,

275

a

October, 1985. Also, ACM Transactions on Programming Languages and Systems,
Vol 11, No. 1, January 1989, pages 90-114.

[85] M. Fischer, N. Lynch, and M. Merritt. Easy impossibility proofs for distributed
consensus problems. Distributed Computing, 1:26-39, 1986.

[86] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one family faulty process. Journal of the ACM, 32(2):374-382, April 1985.

[87) M. Fischer and A. Michael. Sacrificing serializability to attain high availability of data
in an unreliable network. Research Report 221, Yale University, February 1982.

[88] G. Frederickson and N. Lynch. Electing a leader in a synchronous ring. Journal of
the ACM, 34(1):98-115, January 1987. Also, MIT/LCS/TM-277, July 1985.

[89] R. Gallager, P. Humblet, and P. Spira. A distributed algorithm for minimum-weight
spanning trees. ACM Transactions on Programming Languages and Systems, 5(1):66—
77, January 1983.

[90] V. Gligor and S. Shattuck. On deadlock detection in distributed systems. IEEE
Transactions on Software Engineering, SE-6(5):435-439, September 1980.

[91] K. Goldman and N. Lynch. Quorum consensus in nested transaction systems. In
Proceedings of 6th ACM Symposium on Principles of Distributed Computing, pages
27-41, August 1987. Also, MIT/LCS/TR-390, MIT Laboratory for Computer Science,
Cambridge, MA, May 1987.

[92] Kenneth Goldman and Nancy Lynch. Modelling shared state in a shared action
model. In Proceedings 5th Annual IEEE Symposium on Logic in Computer Science,
pages 450-463, Philadephia, PA., June 1990. :

[93] Mohamed Gouda and Nicholas Multari. Stabilizing communication protocols. Tech-
nical report TR-90-20, University of Texas at Austin, June 1990.

[94] J. Gray. Notes on data base operating systems. Technical Report IBM Report
RJ2183(30001), IBM, February 1978. (Also in Operating Systems: An Advanced
Course, Springer-Verlag Lecture Notes in Computer Science #60.).

[95] J. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-tolerant clock synchronization.

In Proceedings of the 3rd ACM Symposium on Principles of Distributed Computing,
pages 89-102, August 1984.

276

[96] Joseph Y. Halpern and Lenore D. Zuck. A little knowledge goes a long way: Simple
knowledge-based derivations and correctness proofs for a family of protocols. In Pro-
ceedings of the 6'* Annual ACM Symposium on Principles of Distributed Computing,
pages 269-280, August 1987.

[97] J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. In Proceedings of 9rd ACM Symposium on Principles of Distributed
Computing, pages 50-61, 1984. Revised as IBM Research Report, IBM-RJ-4421.

[98] M. Herlihy, N. Lynch, M. Merritt, and W. Weihl. On the correctness of orphan elimina-
tion algorithms. In 17th IEEE Symposium on Fault-Tolerant Computing, pages 8-13,
1987. Also, MIT/LCS/TM-329, MIT Laboratory for Computer Science, Cambridge,
MA, May 1987. Revised version to appear in Journal of the ACM.

[99] M. P. Herlihy. Impossibility and universality results for wait-free synchronization. In
Proceedings of the 7th ACM Symposium on Principles of Distributed Computing, pages
276-290, August 1988.

(100] Amir Herzberg and Shay Kutten. Fast isolation of arbitrary forwarding-faults, 1989.

[101] D. Hirschberg and J. Sinclair. Decentralized extrema-finding in circular configuarations
of processes. Communications of the ACM, 23:627-628, November 1980.

[102] G. Ho and C. Ramamoorthy. Protocols for deadlock detection in distributed database
systems. [EEE Transactions on Software Engineering, SE-8(6):554-557, November
1982.

(103] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1984.

[104] P. Humblet. A distributed algorithm for minimum weight directed spanning trees.
IEEE Transactions on Computers, COM-31(6):756-762, 1983. MIT-LIDS-P-1149.

[105] Shmuel Katz and Kenneth J. Perry. Self-stabilizing extensions for message-passing sys-
tems. In Proceedings of the 9% Annual ACM Symposium on Principles of Distributed
Computing, pages 91-101, Quebec, Canada, August 1990.

[106] D.E. Knuth. Additional comments on a problem in concurrent programming control.
Communications of the ACM, 9(5):321-322, 1966.

[107] E. Korach, S. Moran, and S. Zaks. Tight lower and upper bounds for some distributed

algorithms for a complete network of processors. In In Proceedings of 3rd ACM
Symposium on Principles of Distributed Computing, pages 199-207, 1984.

277

an

[108] L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Commu-
nications of the ACM, 17(8):453-455, 1974.

[109] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 27(7):558-565, 1978.

[110] L. Lamport. Specifying concurrent program modules. ACM Transactions on Pro-
gramming Languages and Systems, 5(2):190-222, April 1983.

[111] L. Lamport. The weak Byzantine generals problem. Journal of the ACM, 30(3):669-
676, 1983.

[112] L. Lamport. The mutual exclusion problem. Journal of the ACM, 33(2):313-326,
327-348, 1986.

[113] L. Lamport. On interprocess communication. Distributed Computing, 1(1):77-85,
86-101, 1986. Digital Systems Research TM-8.

[114] L.Lamport and N. Lynch. Chapter on distributed computing. Handbook of Theoretical
Computer Science.

[115] L. Lamport and N. Lynch. Distributed computing. Chapter of Handbook on The-
oretical Computer Science. Also, appeared as Technical Memo MIT/LCS/TM-384,

Laboratoryfor Computer Science, Massachusetts Institute of Technology, Cambridge,
MA, February 1989.

[116] L. Lamport and P. Melliar-Smith. Byzantine clock synchronization. In Proceedings
of 8rd ACM Symposium on Principles of Distributed Computing, pages 68-74, August
1984.

[117] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382-401, July 1982.

[118] Leslie Lamport. The part-time parliament. Technical Memo 49, Digital Systems
Research Center, September 1 1989.

[119] G. LeLann. Distributed systems, towards a formal approach. In IFIP Congress, pages
155-160, Toronto, 1977.

[120] M. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research, 4:163-183, 1987.

[121] J. Lundelius and N. Lynch. An upper and lower bound for clock synchronization.
Information and Control, 62(2-3):190-204, August/September 1984.

278

il

(122] J. Lundelius and N. Lynch. A new fault-tolerant algorithm for clock synchronization.

[123]

[124]

[125]

[126]

[127]

[128]
[129]

[130]

[131]

Information and Computation, 77:1-36, 1988.

N. Lynch. Upper bounds for static resource allocation in a distributed system. Journal
Of Computer And Systems Sciences, 23(2):254-278, October 1981.

N. Lynch. I/O Automata: A model for discrete event systems. Technical Memo
MIT/LCS/TM-351, Massachusetts Institute Technology, Laboratory for Computer
Science, March 1988. Also, in 22nd Annual Conference on Information Science and
Systems, Princeton University, Princeton, N.J., March 1988.

N. Lynch, B. Blaustein, and M. Siegel. Correctness conditions for highly available
replicated databases. In Proceedings of 5th ACM Symposium on Principles of Dis-
tributed Computing, pages 11-28, Calgary, Alberta, Canada, August 1986.

N. Lynch and M. Fischer. On describing the behavior and implementation of dis-
tributed systems. Theoretical Computer Science, 13:17-43, 1981.

N. Lynch, Y. Mansour, and A. Fekete. The data link layer: Two impossibility results.
In Proceedings of 7th ACM Symposium on Principles of Distributed Computation, pages
149-170, Toronto, Canada, August 1988. Also, Technical Memo MIT/LCS/TM-355,
May 1988.

N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic transactions. Book in
progress.

N. Lynch and E. Stark. A proof of the Kahn principle for input/output automata.
Technical Memo MIT/LCS/TM-349, Massachusetts Institute Technology, January 1988.

N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. In
Proceedings of 6th ACM Symposium on Principles of Distributed Computation, pages
137-151, August 1987. Expanded version available as Technical Report MIT/LCS/TR-
387, Laboratory for Computer Science, Massachusetts Institute Technology, Cam-
bridge, MA., April 1987.

Nancy Lynch and Hagit Attiya. Using mappings to prove timing properties. In Pro-
ceedings of the 9** Annual ACM Symposium on Principles of Distributed Computing,
Quebec, Canada, August 1990. Expanded version: Technical Memo MIT/LCS/TM-
412.b, Laboratory for Computer Science, Massachusetts Institute of Technology, De-
cember 1989. Submitted for publication.

279

[132] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the 6t* Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 137-151, August 1987. A full version is available as MIT
Technical Report MIT/LCS/TR-387.

[133] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
CWI-Quarterly, 2(3), 1989.

[134] S. Mahaney and F. Schneider. Inexact agreement: accuracy, precision, and graceful
degradation. In Proceedings of 4th ACM Symposium on Principles of Distributed
Computing, pages 237-249, August 1985.

[135] D. Menasce and R. Muntz. Locking and deadlock detection in distributed databases.
IEEE Transactions on Software Engineering, SE-5(3):195-202, May 1979.

[136] Michael Merritt, Francesmary Modugno, and Mark Tuttle. Time constrained au-
tomata, July 23 1990.

[137] D. Mitchell and M. Merritt. A distributed algorithm for deadlock detection and resolu-
tion. In Proceedings of 3rd ACM Symposium on Principles of Distributed Computing,
pages 282-284, Vancouver, B.C., Canada, August 1984. :

[138] S. Moran and Y Wolfstahl. Extended impossibility results for asynchronous complete
networks. Information Processing Letters, 26:145-151, 1987.

[139] Y. Moses and M. Tuttle. Programming simultaneous actions using common knowledge.
Algorithmica, 3:249-259, 1988.

[140] Y. Moses and O. Waarts. Coordinated traversal: (¢ + 1)-round Byzantine agreement
in polynomial time. In Proceedings of 29th Symposium on Foundations of Computer
Science, pages 246-255, October 1988.

[141] Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance for distributed
algorithms. Technical Report TR90-1081, Cornell University, January 1990.

[142] R. Obermarck. Distributed deadlock detection algorithm. ACM Transactions on
Database Systems, 7(2):187-208, June 1982.

[143] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
' Informatica, 6(4):319-340, 1976.

[144] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228-234, April 1980.

280

[145] G. Peterson and M. Fischer. Economical solutions for the critical section problem in a
distributed system. In Proceedings of 9th ACM Symposium on Theory of Computing,
pages 91-97, May 1977.

[146] G.L. Peterson. An o(nlogn) unidirectional distributed algorithm for the circular

extrema problem. ACM Transactions on Programming Languages and Systems, 4:758-
762, October 1982.

[147) G.L. Peterson. Concurrent reading while writing. ACM Transactions on Programming
Languages and Systems, 5(1):46-55, 1983.

(148] M. Rabin and D. Lehmann. On the advantages of free choice: a symmetric and fully
distributed solution to the dining philosophers problem. In Proceedings of 8th ACM
Symposium on Principles of Programming Languages, pages 133-138, 1981.

[149] M.O. Rabin. N-process mutual exclusion with bounded waiting by 4 log N- shared
variable. Journal of Computation and Systems Sciences, 25:66-75, 1982.

[150] M.O. Rabin. Randomized byzantine generals. In Proceedings of 24th Symposium on
Foundations of Computer Science, pages 403409, November 1983.

[151] M. Raynal. Algorithms for Mutual Ezclusion. M.LT. Press, 1986.

[152] G. Ricart and A. Agrawala. An optimal algorithm for mutual exclusion in computer
networks. Communications of the ACM, 24(1):9-17, 1981. Corrigendum in Commu-
nications of the ACM, 24(9).

[153] 1. Saias and N. Lynch. An analysis of Rabin’s randomized mutual exclusion algorithm.
MIT/LCS/TM-462, December 1991.

[154] S. Sarin and N. Lynch. Discarding obsolete information in a replicated database
system. IEEE Transactions on Software Engineering SE, 13(1):39-47, January 1987.

[155] R. Schaffer. On the correctness of atomic multi-writer registers. Bachelor’s Thesis,
June 1988, Massachusetts Institute Technology. Also, Technical Memo MIT/LCS/TM-
364, Lab for Computer Science, MIT, June 1988 and Revised Technical Memo MIT/LCS/TM-
364, January 1989.

[156] Russel Schaffer and Bard Bloom. On the correctness of atomic multi-writer registers.
Technical Memo MIT/LCS/TM-364, MIT Laboratory for Computer Science, June
1988.

[157] A. Segall. Distributed network protocols. JEEE Transactions on Information Theory,
IT-29(1):23-35, 1983.

281

Al

[158] T. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distributed Computing, 2:80-94, 1987.

[159] M. Staskauskas. The formal specification and design of a distributed electronic funds-
transfer system. IEEE Transactions on Computers, 37(12):515-528, December 1988.

{160] Ray Strong, Danny Dolev, and Flaviu Cristian. New latency bounds for atomic
broadcast, April 1990.

[161] Ewan Tempero and Richard Ladner. Tight bounds for weakly bounded protocols. In
Proceedings of the 9" Annual ACM Symposium on Principles of Distributed Comput-
ing, pages 205212, Quebec, Canada, August 1990.

[162] R. Turpin and B. Coan. Extending binary Byzantine agreement to multivalued Byzan-
tine agreement. Information Processing Letters, 18(2):73-76, 1984. Also, Technical
Report MIT/LCS/TR-315, Laboratory for Computer Science, Massachusetts Insti-
tute Technology, Cambridge, MA, April 1984. Also, revised in B. Coan, Achieving
consensus in fault-tolerant distributed computing systems, Ph.D. thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technol-
ogy,1987.

[163] M. Tuttle. Knowlege and Distributed Computation. ~PhD thesis, MIT Electri-
cal Engineering and Computer Science, September 1989. Also, Technical Report
MIT/LCS/TR-477, Laboratory for Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, MA. 1990. Supervised by Nancy Lynch.

[164] P. Vitanyiand B. Awerbuch. Atomic shared register access by asynchronous hardware.
In Proceedings 27th Annual IEEE Symposium on Theory of Computing, pages 233-
243, Toronto, Ontario, Canada, May 1986. Also, MIT/LCS/TM-314, Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, MA., 1986.
Corrigenda in Proceedings of 28th Annual IEEE Symposium on Theory of Computing,
page 487, 1987.

{165] Da-Wei Wang and Lenore Zuck. Tight bounds for the sequence transmission prob-
lem. In Proceedings of the 8" Annual ACM Symposium on Principles of Distributed
Computing, pages 73-83, August 1989.

[166] J.L. Welch. Simulating synchronous processors. Information and Computation,
74(2):159-171, August 1987.

282

Index

O-resilient consensus protocol, 206
0-valent, 164, 206

1-RCP, 206

1-fair execution, 206

1-resilient consensus protocol, 206
1-valent, 164, 206

abstraction mapping, 28
example of ABP, 29
action, 15
action signature, 15
input action, 15
internal action, 15
local action, 15
output action, 15
adversary, 87
agreement, 164, 204
alternating bit protocol
ABP, 6
ABPS, 10
ABPS invariants, 26
abstraction mapping, 29
liveness, 35
possibilities mapping, 32
atomic action, 41
atomic registers, 141
multi-writer, 154
atomic variables, 55

before-C, 46
behavior, 16
bivalent, 164, 206
bound map, 256

byzantine agreement (synchronous), 232
lower bounds, 238
number of rounds), 246
on complete graphs (number of faulty
processes), 238
on general graphs (connectivity), 240
LPS’s algorithm, 233
multivalued case
Turpin-Coan’s algorithm, 253
weak byzantine agreement, 246

channels, 7
communication pattern, 247
complexity analysis, 65
message complexity, 124, 128, 131, 188
space complexity, 66
time complexity, 66, 117, 124, 128, 131
compositionality, 258
configuration, 164
connectivity, 240
consensus
asynchronous, 164, 204
definition, 204
impossibility result, 206
randomized, 213
synchronous
byzantine agreement, 232
two generals problem, 230
correctness proofs, 119, 155, 189, 199, 203,
253
assertional, 45
operational, 41
covered, 51, 68, 69

283

critical region, 37

datalink protocol impossibility result, 224
deadlock, 106
decider, 207
deciding configuration, 166
deterministic algorithms, 85
dining philosophers (message passing)
Chandry-Misra’s solution, 198
hierarchical resource allocation, 198
dining philosophers (shared memory), 104
Dijkstra’s algorithm, 108
Rabin-Lehmann randomized algorithm,
118
distributed algorithms, 1
drinking philosophers (message passing)
Chandy-Misra’s algorithm, 200
Lynch’s version of Chandy-Misra algo-
rithm, 201 :

event, 15
execution, 247
exit region, 37

failure resiliency, 53, 63
fairbehs, 21

fairness, 104, 203
feasible writes, 142

global coin tossing, 212

global snapshots (message passing), 215
Chandry-Lamport’s algorithm, 219

global snapshots (shared memory), 168

height, 199
hidden, 69

I/0 automata, 6, 13
composition, 16
fairness, 19
formal definition, 15
modelling of a message system, 205

284

i

modelling of registers, 53
mutual exclusion, 39
signature, 15
timed automata, 255
implements, 21
impossibility result, 163, 206, 224
in-C, 46
input-enabled, 16
invariant assertions, 45
invariants, 45

k-boundedness, 223
k-connected, 240

leader election, 122
Hirshberg-Sinclair’s algorithm, 127
Le Lann et al. algorithm, 123
lower bounds, 132
Peterson’s algorithm, 129

liveness, 26
example of ABP, 35

Liveness property, 38

liveness property, 21

locally-controlled actions, 15

lock, 75

logical time, 193, 215, 219

lower bound, 84

lower bounds, 51, 68, 112, 132, 238, 240,

246

Menger’s Theorem, 242
message passing, 122
minimum weight spanning tree algorithm
(Gallager-Humblet-Spira), 173, 180
multivalued mapping, 30
mutex, 108
mutual exclusion, 37
Burns et al. test-and-set lower bound
for no-lockout, 84
Burns et al. test-and-set algorithm, 78
Burns’ algorithm, 48

Ll

Burns-Lynch impossibility result, 51
Burns-Lynch read-write lower bound,
68, 71
Burns-Lynch test-and-set lower bound,
76
Dijkstra’s algorithm, 41
Eisenberg-McGuire algorithm, 48
in distributed networks, 189
Carvalho & Roucairol algorithm, 196
Lamport’s logical time algorithm, 193
Le Lann’s token passing algorithm,
191
Ricart & Agrawala algorithm, 195
Lamport’s bakery algorithm, 53
Peterson-Fischer 2-process algorithm,
58
Peterson-Fischer tournament algorithm,
61, 65
Rabin’s randomized algorithm, 88
" myword, 28 '

nolockout, 62, 65
nullified, 71

obliterated, 51, 68, 69
operational proof, 41
< 227

partition, 7

possibilities mapping, 31
example of ABP, 32

problem specification, 21

progress, 62, 65, 104

proof techniques, 24

randomized algorithms, 85, 118, 211
registers, 53, 141
implementation, 142, 151
lreader K-ary atomic from regular,
151
2-writer from 1-writer, 155, 160

285

K-ary regular from binary regular,
149
binary regular from binary safe, 147

impossibility of test-and-set from read/write.

163
multireader from 1-reader, 144
safe K-ary from safe 2-ary, 146
Vitanyi-Awerbuch’s n-writer construc-
tion, 161
logical registers, 143
physical registers, 143
types, 141
wait-free, 146
regular register, 142
regular sequence of a logical register, 158
remainder region, 37
resource allocation (message passing), 197

. resource allocation (shared memory), 103

dining philosophers, 104
- Left-Right Algorithm (Burns), 113
Lynch’s method, 115
problem description, 103
run, 247

safe registers, 53, 141.
Safety property, 37
safety property, 21
schedule, 16

shared memory, 37, 106

shared variables, 38
single-writer, 53

solves, 21, 258

spanning tree, 173

stable property detection, 223
supervisor, 79

symmetry, 112

synchronous algorithms, 230

termination, 164, 204
test-and-set, 73
total ordering, 116

trying region, 37

~ unbounded, 53, 168
univalent, 164, 206
unlock, 75

upper bound, 78

validity, 164, 204

waitfor, 75, 106

286

il

1

