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Preface

The MIT subject 6.852 Distributed Algorithms is a graduate level introduction to the
theory of distributed computing. Students taking the course are assumed to have a substan-
tial background in both mathematics and computer science. Course material is drawn from
many of the important research papers. An emphasis is placed on formal techniques for:
defining problems (correctness conditions), describing algorithms, and constructing correct-
ness proofs. Also, several important impossibility results are presented. As there is not time
in one semester to cover all the important papers in the area, the material varies from year
to year. »

Two sets of references are included: The course syllabus, which appears before Lecture 1,
is a list of papers organized by topic. An alphabetized bibliography follows Lecture 26. To
assist readers in finding a particular topic, we have provided an alphabetic index in addition
to the table of contents.

This set of notes was written by students attending the course in the Fall Semester of
1988. Although we have tried to check the notes carefully, there are likely to be errors and
omissions, particularly with regard to the references. Readers finding errors in the notes
are encouraged to notify us by electronic mail (bug-68520tds.lcs.mit.edu) so that later
versions may be corrected.
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6.852 Distributed Algorithms Fall Semester, 1988

Lecture 1: September 13
Lecturer: Nancy Lynch Scribe: Christopher Colby

1.1 Introduction

1.1.1 Characteristics of distributed algorithms

Distributed algorithms include a wide range of parallel algorithms; for example, shared-
memory algorithms, message-passing algorithms, synchronous algorithms, asynchronous al-

gorithms, dataflow algorithms, and database algotithms.
Not all parallel algorithms, however, are distributed algorithms. Some algorithms involve

tightly-coupled parallelism, where all of the components are cooperating to solve one problem.
In contrast, distributed algorithms are characterized by the independence of activities and
loosly-coupled parallelism:

e independent inputs with outputs a;t multiple locations

e several programs executing simultaneously under separate control
® processes starting at different times

e failures of processes

. processés running at different speeds

® uncertainty—each process is aware of only a part of the state of the system

1.1.2 The study of distributed aigorithms
Research in distributed algorithms consists of the following:
e the identification of the canonical problems that are tractable for research study
e precise statements of those problems
e precise and careful description of algorithms to solve those problems
e rigorous proofs that the algorithms solve the problems

¢ complexity analysis of the algorithms (time, space, message passing, etc.)

1
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e impossibility results

Whereas sequential algorithms are usually easy to reason about and prove, distributed
algorithms are often extremely complex. Although the actual code of the algorithm may be
very simple, it is the interleaving of many processes running the code simultaneously that
causes the complexity. Because the interleaving of the steps occurs in some unknown way,
it is difficult to understand everything about the possible executions.

To cope with this, one asserts certain properties of the execution of the algorithm and
then proves these properties in order to prove the algorithm correct.

‘The interleaving of the execution is not the only factor which makes distributed algo-
rithms more complicated than sequential algorithms. Some others are:

e inherent nondeterminism (i.e., with a given input, there are many ways a computation
can unfold, and, in contrast to automata theory, all must be correct.)

e actions at multiple sites (including input and output)

e order of events, rather than just what events occur, may be important (i.e., it is not
just a simple function being computed)

e failures
e timing
e continued operation

To handle these and other complications of distributed algorithms, one uses a formal
mathematical model of a distributed system. Formal models help mostly in the formulation :
of precise problem statements. They are also useful in the precise description of algorithms, -
and are needed for correctness proofs and impossibility proofs. Unfortunately, there are
currently a great many different models in existence. Fortunately, there is some attempt .
at the unification of these models now, with state-machine models becoming more widely
accepted.

This course will cover a broad range of topics. Some of the earliest distributed algo-
rithms are shared-memory algorithms, and they include many of the basic ideas that will
recur elswhere in distributed algorithms. A major area of recent research is in consen-
sus algorithms—problems of reaching agreement among a number of distributed processes.
These algorithms become interesting when fault tolerance is considered. The formal study -
of knowledge is necessary in order to reason about what information each process has in a
distributed system. There are two types of algorithms that deal with computing in a network
(other than consensus). Static network algorithms deal with networks with fixed inputs that
compute some result. Dynamic network algorithms have continuous inputs—for example,
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Figure 1.1: The cycle of regions of a single process.

from another algorithm. There is much current work in concurrency control algorithms.
They implement distributed databases in such a way as to achieve a serial appearance.

It is hoped that by becoming familiar with many of the important distributed algorithms
and learning the relevant proof techniques, one will gain an appreciation of the difficulty in
designing and proving such algorithms.

1.2 Mutual Exclusion Using Shared Memory

1.2.1 Introduction

Mutual exclusion algorithms are used where n processes (p1,...,p,) are contending for a
single resource. Each process can be in either the remainder region (R), the trying region
(T), the critical region (C), or the ezit region (E). Normally, a process is in R. When a
process is trying to gain control of the resource, it is in T. When it has the resource, it is in
C. Eventually, when it is done with the resource, it goes to E and then back to R. The cycle

of regions that a process visits is shown in Figure 1.1.
There are two required conditions on mutual exclusion algorithms:

1. mutual ezclusion—A state in which two Processes are in region C is not reachable.

2. progress—As long as “operation continues normally”, “normal progress” should be
made. :

“Normal operation” means that a process continues to take steps while in regions T or E
and does not take steps while in regions C or R. Furthermore, a process in region C eventually
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environment ( processes variables \
., S B -
Crit; D

Figure 1.2: A view of the mutual exclusion problem.

leaves (to region E). “Normal progress” means that if some process is not in region R, then
some process will eventually change regions. (Note that normal progress does not prohibit
lockout—if p, enters T, and the rest of the processes are in R, p; does not necessarily ever
have to go into C. Process p2 could start cycling through the regions and satisfy normal
progress. )

A process p; can be modelled as a state machine that communicates with the outside
world via incoming messages try; and exit;, and outgoing messages crit; and rem;. One can
think of the outside world as an environment of n users (userq, ..., user,). When a user;
wants control of the resource, he sends try; to p;. This forces pi to start the trying code.
When p; has control of the resource (i.e., is in region C), it sends crit; to user;. When user;
is done with the resource, it sends exit; to p;. This forces pi to start the exit code. When Pi
has returned to region R, it sends rem; to user;.

Note that part of the normal operation requirement is the responsibility of the user rather
than the process. The requirement that a process in C eventually leaves means that user;
must send exit; sometime after receiving crit;. Assuming that for all t, user; only sends try;
and exit; when it should, the algorithm must preserve the cyclic behavior of try;, crit;, exit,,
rem;, ...and must guarantee mutual exclusion.

Each process also has actions involving single shared variables. These are shown as
squares in Figure 1.2. The two basic actions involving process p: and a shared variable
are:
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1. read z and store its value in a local variable of p;

2. write a local variable of p; to z

1.2.2 Dijkstra’s algoritm

In 1965, the first mutual exclusion algorithm was developed by Dijkstra. It is presented in -
Figure 1.3 as code to be run on each process. Label L starts region T. Then, there is a
comment where region C would go. The code for region E follows, and finally, a comment
. where region R would go. There are shared variables: control[l...n], which can take on
values from {0, 1,2}, and k, which can take on values from {1,...,n}. Controlfi] is written
by p; and read by all, and k is both written and read by all. The processes are assumed
to be asynchronous, and so an atomic action must be defined. For this algorithm, atomic
actions are reads from and writes to the shared variables. Each atomic action in the code
of Figure 1.4 is enclosed in pointy brackets. Note that the read of control[k] does not take
two atomic actions because k& was just read in the line above, and so a local copy of k can
be used. The initial state of the algorithm is where all processes are in region R.

An operational proof

One can show that Dijkstra’s algorithm works by direct reasoning about its behavior—an
operational proof. As mentioned above, many distributed algorithms are too complicated
for this approach to be practical, and in those cases an invariant assertional proof is the
desired approach. To reason about the algorithm, there must be a concept of indivisibility
of actions. Above, the basic atomic actions were defined to be reads and writes from and
to the shared variables. This will serve as the concept of indivisibility—actions involving
shared variables are indivisible, and local computation does not enter into the timing analysis
(i.e., local computation happens instantaneously). Note that the algorithm does not clearly
specify what is indivisible. Careful reasoning about such algorithms requires removal of these
ambiguities.

Theorem 1.1 Dijkstra’s algorithm satisfies mutual ezclusion.

Proof: By contradiction. Assume p; and p; were both simultaneously in region C, where
1 <2 <7 < n. Then, controlli] and control[j] were both set to 2 some time before their
respective processes entered C. Assume that controli] was set to 2 first. Then, control 2]
remained 2 until p; left C, which must have occured after p; entered C. So, after p; set
control[j] to 2, but before p; entered C, control[i] was always 2. Therefore, p; must have
seen control[i] = 2 and so could not have entered C. o n

Theorem 1.2 Dijkstra’s algorithm satisfies progress.
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Shared variables:

e control: an array indexed by [1..n] of integers from {0,1,2}, initially all 0, where
controlfz] is written by p; and read by all

e k : integer from {1,...,n}, initially arbitrary, where £ is written and read by all

Code for p;

**Begin 1st stage, trying to obtain k.** .

L: control[t] «— 1

while & # ¢ do
if controllk] = 0 then & « ¢
end if

end while

**Begin 2nd stage, checking that no other processor has reached this stage.**

controlli] « 2 _

forje{l,...,i—1,i4+1,... ,n} do **Note order of checks unimportant**
if control[j] = 2 then goto L
end if

end for
**Critical region**

controlfi] « 0

**Remainder region**

Figure 1.3: Dijkstra’s mutual exclusion algorithm.
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Shared variables:

¢ control: an array indexed by [1..n] of integers from {0,1,2}, initially all 0, where
controlli] is written by p; and read by all

e k: integer from {1,...,n}, initially arbitrary, where k is written and read by all

Code for p;

**Begin 1st stage, trying to obtain k.**

L: S; — 0

(controll] « 1)

while (k # i) do
if (controllk] = 0) then (k « i)
end if

end while

**Begin 2nd stage, checking that no other processor has reached this stage.**

(controlli] — 2)

forj e {l,...,:~1,i+1,...,n} do **Note order of checks unimportant**
if (control[j] = 2) then goto L
end if
S; — SU{j}

end for

**Critical region**

Si—0
(controlli] « 0)

**Remainder region**

Figure 1.4: Dijkstra’s algorithm showing atomic actions and S;.
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Figure 1.5: No progress.

Proof: Again, by contradiction. There is some execution that reaches a point such that not
all processes are in R, and after which no process ever changes region (see Figure 1.5). Note
that all processes in T or E continue taking steps. In this state, if one of the processes is
in C, then it is guaranteed to reach E, since we assume the environment must send it an
exit message. If any of the processes are in E, then after one step they will be in R. Thus,
all of the processes are in region T or R, only the processes in region T take steps, no new
processes enter T, and all of the processes in T continue to take steps forever.

All contenders (processes in T) keep their control > 1 during this execution. If k£ changes
during the execution, it is changed to a contender’s index. If the value of k starts as a
non-contender, then p;, when it eventually checked, would find that & 5 i and control[k] = 0
and thus set k£ to . There must exist an 7 such that this will happen, because all contenders
are either in the while loop or in the second stage, destined to fail and return to the while
loop. Once k is set to a contenter’s index, control[k] > 1. Then, any future reads of k£ and
controllk] will yield control[k] > 1, and k will not be changed. So, eventually, k stabilizes to
a final (contender’s) index.

Once k stabilizes to a contender’s index, that contender has little to stand in its way.
The while loop is completed and controijk] is set to 2. The only way that p; could fail to
reach C immediately is if control[i] = 2, for some ¢ # k. However, all processes other than
px whose control is 2 eventually return to L, because the assumption is that no processes
enter C. Then, they are stuck in stage 1 (because k is not equal to their process id), and can
cause py no further obstacles. So, eventually p; enters C. |
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An assertional proof

system. This usually involves a case analysis of state transitions, but it is often the case
that many possible transitions can be easily eliminated (e.g., if they don’t affect a variable

in question).
To prove mutual exclusion of Dijkstra’s algorithm, we must show that

“Bi | G #5)Apiin C) A (p; in C)]

This alone is not strong enough to prove by induction, however. We must add conditions
true of all reachable states. These are the invariants. Let S; be a local variable of p;. S;is a
set that contains the indices of all of the processes that p; encounters in the for-loop whose
control variable is not 2. Initially S; = @ for all 1 < i < n. When pi finds controllj] # 2 (in
an iteration of the for-loop), then Si « S;U {j}. When S, = {1,...,n} — {4}, the control
- moves to after the for-loop. When control [¢] is set to 0 or 1, S; < 0. Figure 1.4 shows where

these settings of S; would appear in the code for p;.
Let each process have another local variable, a program counter, which keeps track of

where in the code that process is. Define the following sets of processes:
¢ at-for: processes whose program counter is in the for-loop
® before-C: processes whose program counter is right after the for-loop

¢ in-C: processes whose program counter is in region C

We need to prove that [in-C| < 1. However, the stronger statement [in-C|+ |before-C [<1
is sufficient. The following two claims imply that statement:

L =By | G#)AGes)aGes))
2. pi € before-CUin-C = S, = {L,...,n} = {i}

More details of this proof are discussed in Lecture 2.
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Lecture 2: September 15
Lecturer: Nancy Lynch Scribe: Sharon Perl

2.1 Dijkstra’s Mutual Exclusion Algorithm (Cont.)

In Lecture 1 we presented Dijkstra’s mutual exclusion algorithm and argued informally that
it has the desired safety and liveness properties: it guarantees mutual exclusion and progress.
We will begin this lecture by formulating an assertional proof that the algorithm guarantees

mutual exclusion.
Before we can prove anything, we must restate the correctness condition more precisely.

The following theorem captures our intuitive notion of “guaranteeing mutual exclusion.”

Theorem 2.1 Let s be any state reachable in an ezecution of Dijkstra’s mutual exclusion
algorithm. There are no two processes p; and p;, © # j, such that both p; and p; are in C
(the critical region) in state s.

We will prove this claim by proving an even stronger claim. Let in-C be the set of
processes that are in their critical sections, and let before-C be the set of processes that are
ready to enter their critical sections but have not yet done so (i.e., they are ready to issue
crit;). We will prove the following:

Theorem 2.2 In any state reachable during an erecution of Dijkstra’s algorithm |in-C| +
|before-C| < 1.

It should be obvious that Theorem 2.1 is a corollary of Theorem 2.2. In order to prove
Theorem 2.2 we will need a small set of lemmas and definitions.

Let S; be a local variable of process 7 that records the processes already seen to have
their control variable set to 2 in stage 2 of the algorithm. S; will be set to the empty set
whenever controlfi] is set # 2. Furthermore, whenever conirol[j] is examined by p; in the
for loop and found to be unequal to 2, then j is added to S; (see Figure 1.4). §; is implicit
in the state of a process; making it explicit helps us to carry out the proof.

First a small lemma.

Lemma 2.3 IfS; # 0 then control[i] = 2.

Proof: From the definition of S; and the code for the algorithm. ]
Now, the main lemma that we will use to prove Theorem 2.2 says, in effect, that two
processes in stage 2 cannot both miss each other’s stage 2 control signals.

11
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Lemma 2.4 Api,p; i # jand i € S; and j € S)].

Proof: (sketch) By induction on the length of executions. The basis case is easy since, in
an execution of length 0, all sets S are empty. Now consider the case where j gets added to
S; (convince yourself that this is actually the only case of interest). This must occur when :
is in its for loop in stage 2. If j gets added to S; then it must be the case that control[j] # 2
because otherwise, ¢ would exit the loop. By the contrapositive of Lemma 2.3 then, S =0,
and so 7 Ql Sj. |

The second lemma that we will use to prove Theorem 2.2 implies that when a process is
ready to enter its critical region, none of the other processes had its control signal set to 2
when it was last observed by the process.

Lemma 2.5 p; € (before-C U in-C) = S; ={1,...,n} — {i}.

Proof: By induction on the length of the execution. In the basis case, all processes are in
region R, so the claim holds trivially. For the induction hypothesis, assume the claim holds
in any reachable state and consider the next step. The steps of interest are those where
p; exits the loop normally (i.e., doesn’t goto L) or enters C. Clearly, if p; exits the loop
normally, S; contains all indices except i, since this is the termination condition for the loop
(when rewritten explicitly in terms of the S sets). Upon entry to the critical region, S; does
not change. Thus the claim holds in the induction step. ]

We can now prove Theorem 2.2 by contradiction:

Proof: Assume that in some state reachable in an execution |in-C| + |before-C| > 1.
Then there exist two processes, p; and p;, ¢ # j, such that p; € (before-C' U in-C') and
p; € (before-C' U in-C). By Lemma 2.5, S; = {1,...,n} — {i} and S; = {1,...,n} — {7}-
But by Lemma 2.4, either 1 € S; or j € S;. This is a contradiction. Thus our assumption
must be false and the Theorem must be true. =

This concludes our examination of Dijkstra’s algorithm.

2.2 Comments on Proof Techniques

The term invariant, as we will use it in these lectures, is defined to be a predicate true in
all reachable states of a program. We use invariants in assertional proofs to prove safety
properties of programs.

The proof in the previous section illustrates one form of assertional proof. In it we were
able to formulate a series of lemmas asserting invariants about the program and prove each
individually, often by induction. This style of proof is nice because each lemma is easy
to understand by itself, and the proof of correctness is easy to understand in terms of the
lemmas. Sometimes, however, it is necessary to collect the invariants into one large lemma,
(or theorem) and prove all of them at once. (You might need to do this, for example, if the
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truth of invariant 3 for step £ is used to prove invariant 5 for step &k + 1.) In such a proof
you would first show that all the invariants are true in an empty execution (usually trivial).
Then you hypothesize that all invariants are true for executions shorter than some particular
length and show that none of the invariants are violated in the next step of the execution.

It is also worth saying a few words about formal techniques for pProving progress proper-
ties, although we will not carry out the proof for Dijkstra’s algorithm (but, see Exercise 5).
One common technique involves the use of variant functions. A variant function f assigns
a measure of progress to each state of the system. The domain of f is the set of states and
the range is a well-founded set (a set with no infinite decreasing chain). To prove that an
algorithm guarantees progress, we must show two things. First, from each reachable state
g, the variant function must never increase until some progress is made. Second, in every
normal execution from every reachable state ¢, some step must eventually occur to decrease
the value of the variant function, or else progress must occur. Thus, if no progress occurs the
variant function decreases, but it cannot decrease indefinitely because its value belongs to
a well-founded set. When the variant function finally increases, we are guaranteed to make
progress.

A typical example of a well-founded set used to define a variant function is a set of
tuples of cardinal numbers, where successive components measure different milestones in

~ the computation (the first component measures the most significant milestone and the last

measures the least significant one). Consider a collection of processes that each execute
two 5-step tasks. An appropriate value for a variant function might be a two-tuple where
the first component counts the number of processes still doing the first task and the second
component is the sum of the number of steps remaining for each process in its current task.

2.3 Improved Mutual Exclusion Algorithms

While Dijkstra’s algorithm guarantees mutual exclusion and progress, it has a number of
undesirable properties as well. For one, it does not guarantee fairness; it is possible that
one process will continuously gain access to its critical region while other processes trying to
gain access are prevented from doing so. Second, it uses a multi-reader /multi-writer variable
(k) which may be difficult or expensive to implement in certain kinds of systems. Finally, it
is not resilient to failures of processes. A number algorithms that improve upon Dijkstra’s
have been designed.

Before we look at improvements to Dijkstra’s algorithm, we should first consider what
it means for an algorithm to guarantee fairness. Depending upon the context in which the
algorithm is used, different notions of fairness may be desirable. Three ideas that have been
used are:

1. eventuality: an algorithm is fair if eventually all processes trying to enter their critical
regions may do so.
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2. time bound: an algorithm is fair if within some bounded amount of time, any process
trying to enter its critical region may do so. (This presupposes some measure of time

in the system.)

3. number of turns wajted: an algorithm is fair if for every process p;, no process p;,
¢ # j, bypasses p; (goes critical) more than some particular number of times once p;

has entered its trying region.

We will see that different impossibility and complexity results arise depending upon which
definition of fairness we use.

. In the remainder of this lecture we will look at three additional mutual exclusion algo-
rithms that improve upon Dijkstra’s algorithm in different ways, and one impossibility result
about mutual exclusion. We will only start to discuss the third algorithm (Lamport’s) here,
finishing it in the next lecture.

2.3.1 Eisenberg-McGuire Mutual Exclusion Algorithm

The Eisenberg-McGuire Mutual Exclusion Algorithm (see Figure 2.1) guarantees fairness
by bounding the number of times that one process can bypass another. It has shared variables
named controlli] and k, like Dijkstra’s algorithm, but uses k¥ somewhat differently. The
general idea is that each process, upon leaving C, selects as its successor the next contending
process that it discovers by testing the control variables in sequence, storing the successor’s
index in k. A process in T checks that it is the first known contender starting from k. A
process in T' also does a last check for k and defers if necessary before entering C. (It is not
obvious why this check is needed. See Exercise 2 below.)

The proof that the Eisenberg-McGuire algorithm guarantees mutual exclusion is much
like that for Dijkstra’s algorithm. The proof of progress goes roughly as follows. Assume
that progress is not guaranteed. Then after some point in an execution, only processes in T’
take steps, and no region changes occur. Thus no process can reach the assignment k « ¢,
or else it would enter C. Since this is the only statement that modifies k, k does not change.
Consider the first contender in the cyclic order k,k +1,...,n,1,... ,k —1. We claim that
this process meets no resistance: it passes through stage 1 any time it tries, and the other
processes in stage 2 eventually drop out as in Dijkstra’s algorithm. Thus the first contender
will eventually enter C.

To see that the algorithm guarantees fairness, consider any fixed p; that enters T'. From
the time p; enters T' until p; enters C, there is always some process with its control variable
set-to 1. So each time another process leaves C, it changes & to the next known contender
in the cyclic order. That contender must be the next to go; the final test ensures that every
other process would defer. So eventually, & is set to i and s goes critical.
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Shared variables:
® control : an array indexed by [1..n] of integers from {0,1,2}, initially all 0, where

control[i] is written by p; and read by all

® k : integer from {1,...,n}, initially arbitrary, where k is written and read by all

Code for p;

**Begin 1st stage, testing if self is first contender after &.**

L: controlfi] « 1
forj=kk+1,...,n,1,....k-1do
if j = 7 then exit
end if
if control[j] > 1 then goto L
end if
end for

**Begin 2nd stage, identical to Dijkstra’s algorithm.**

controlfi] « 2
forje{l,...,i~1,i+1,...,n} do
if control[j] = 2 then goto L

end if
end for

**Begin 3rd stage, making final check.**

if controllk] > 1 and & # i then goto L
end if

k1
**Critical region**

**Select as successor the next contending process.**

forj=k+1,...,n,1,....,k—1do
if control[j] # 0 then
ke—j
exit
end if
end for
controlfi] « 0

**Remainder region**

Figure 2.1: Eisenberg-McGuire Mutual Exclusion Algorithm
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2.3.2 Burns’ Mutual Exclusion Algorithm

Both of the algorithms we have studied so far use a multi-writer variable (k) along with
a collection of single-writer variables (control). Because it might be difficult and inefficient
to implement (build) multi-writer shared-variables in certain systems (in particular, in dis-
tribued systems), algorithms that use only single-writer variables are worth investigating.
The next algorithm, developed by Jim Burns, appears in Figure 2.2. Burns’ algorithm does
not guarantee fairness, but does eliminate the need for a multi-writer variable. Again, the
proof that Burns’ algorithm guarantees mutual exclusion is similar to the proof for Dijk-
stra’s algorithm, except that the control variable is set to 1 where in Dijkstra’s it is set to
2. The proof of progress can be argued by contradiction. Assume that all processes are in
either their remainder or trying regions and that they continue taking steps. Partition the
processes into those that reach label M and those that do not (call the first set P and the
second set Q). Eventually in an execution, we will reach the point where all processes that
will ever be in P are in it already. Then we claim that there is at least one process in P
(the one among the contenders with the lowest index). Furthermore, we claim that among
all the processes in P, the one with the largest index will reach the critical region. (Look at

the code and try to convince yourself of this.)

Burns-Lynch Impossibility Result

Burns’ algorithm uses no multi-writer variables, but does use n shared (multi-reader) vari-
ables to guarantee mutual exclusion and progress for n processes. One might reasonably
wonder whether an algorithm that uses fewer than n shared variables could do the same.
Certainly, an algorithm with fewer than n single-writer variables would not work, since every
process must be able to write something. But what about general read-write systems where
every variable can be read or written by any process? The first of a number of impossibility
results that we will see in these lectures (this one due to Jim Burns and Nancy Lynch)
answers this question negatively.

Theorem 2.6 If a system S solves mutual exclusion with progress for n processes using
read-write shared variables, then S has at least n shared variables.

The proof of this theorem is complex and we will return to it in a later lecture. The
basic idea is to assume that there is an algorithm and construct an incorrect execution,
just working from the problem statement (i.e., all we know is that the algorithm guarantees
mutual exclusion and progress). A write can be obliterated by being overwritten before
being read by any other process. In order to go from R to C, a process p must write to
some variable that is not covered (about to be written) by another process. This is because
if it didn’t, the rest of the system couldn’t distinguish the configuration with p in C from
another similar configuration with p in R. But the system must act quite differently in these
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Shared variables:

e control : an array indexed by [1..n] of integers from {0,1}, initially all 0, where
controli] is written by p; and read by all -

Code for p;

L: controlfz] — 0

for j € {1,...,1—1} do
if control[j] = 1 then goto L
end if

end for

controlfi] «— 1

forje {1,...,i—1} do
if control[j] = 1 then goto L
end if

end for

M:

forje{i+1,...,n} do
if control[j] = 1 then goto M

- end if
end for-

**Critical region**

controlfi] « 0

**Remainder region**

Figure 2.2: Burns’ Mutual Exclusion Algorithm
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two situations: if p is in R, then eventually it must let another process enter C' (to ensure
progress). However, allowing another process to enter C would yield incorrect behavior from
the configuration where p is in C'. The proof constructs an involved ccllection of hypothetical
related executions, such that the requirement that processes must write some variable not
covered by any other processes actually implies that there must be n separate variables.

A few important points to take away from the brief discussion of this result are:

e Impossibility results in this field arise from the limitations of local knowledge in a
distributed system. Every process’ actions depend only upon what it sees in its own

~ state and shared memory. Some restrictions (e.g., too few variables) might imply that
two executions look the same to some processes even though correctness conditions
require them to act quite differently in the two cases.

e n process mutual exclusion with progress requires at least n shared variables (the
statement of the result).

e Formal models are extremely important in proofs of impossibility results. Both the
algorithm and the correctness conditions must be precisely stated if we're going to have
any hope of proving that something is impossible. (For example, if we allow atomic up-
date, the argument used by Burns and Lynch in their proof does not go through.) Some
aspects of the model that are important are the specification of “normal operation,”
and the definition of actions and which components control them.

2.4 Lamport’s “Bakery” Mutual Exclusion Algorithm

The last algorithm we will begin to look at in this lecture is Lamport’s “Bakery” Mu-
tual Exclusion Algorithm (shown in figure 2.3). This algorithm has a number of desirable
properties, in addition to guarantees of mutual exclusion and progress: ;

1. It guarantees fairness;
2. It uses only single-writer variables;

3. Assuming that failures are detectable, it provides some failure resiliency (failed pro-
- cesses go to their remainder regions and, eventually, their variables get set to 0);

4. It does not require atomic variables.

The primary deficiency of the algorithm is that it requires variables that are unbounded in
size (at least theoretically—perhaps in practice bounded size variables would suffice).

An atomic register serializes reads and writes in an order consistent with begins and
ends of read and write operations. It is very much like the atomic variables that all of the
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Shared variables:

® choosing : an array indexed by [1..n] of integers from {0,1}, initially all 0, where
choosing[i] is written by p; and read by all

» number: an array indexed by [1..n] of integers from {0,1,. .. }, initially all 0, where
number|t] is written by p; and read by all

Code for p;

L1: choosing[i] — 1
number(i] «— 1 + maz(number{l],. .., number{n])
choosing[i] — 0
for j € {1,...,n} do
L2:
if choosing[j] = 1 then goto L2;
end if
L3:
if number{j] # 0 and (number{j], ;) < (number{i},i) then goto L3
end if
end for

**Critical region**

numberfi] — 0

**Remainder region**

Figure 2.3: Lamport’s “Bakery” Mutual Exclusion Algorithm
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previous algorithms used. Lamport, in his algorithm, uses a register that is weaker than an
atomic register. The safe register that he uses is has the property that a read that doesn’t
overlap with any write produces the correct value, while a read that overlaps with a write

can produce an arbitrary value.
Lecture 3 discusses the details of Lamport’s algorithm.

2.5 Exercises

1. Fill in the details for the assertional proof (outlined in class) of mutual exclusion for
Dijkstra’s algorithm.

2. What properties are preserved in the Eisenberg-McGuire algorithm if the final check
(ie., the last if-then statement in the trying region) is deleted?

3. Show that lockout is pessible in Burns’ algorithm.

4. Describe an execution of Lamport’s bakery algorithm in which variable values are
unbounded.

*5. Give a variant function proof for progress in Dijkstra’s algorithm.

*6. Give an assertional proof of mutual exclusion for Lamport’s bakery algorithm.
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3.1 Lamport’s “Bakery” algorithm

The code for this algorithm appears in the notes for Lecture 2.
Lamport’s “Bakery” algorithm for mutual exclusion has several attractive properties in ad-
dition to satisfying mutual exclusion with progress:

o The shared variables are single-writer—only one process may write to a variable. The
variables are, however, unbounded—their values may grow arbitrarily large.

e It does not require atomic variables, but only safe registers.

e It satisfies fairness: the first part of the trying region, the “doorway”, is wait-free, and
‘the second part, the “bakery”, insures FIFO prioritization.

e It achieves a degree of failure resiliency.

3.1.1 Safe Registers

The algorithm does not require atomic variables. The access of an atomic variable is modeled
in terms of the time when a process requests to read (or write) the variable, t,.,, and the time
when it receives the value of the variable (or an acknowledgement that the value has been
written), ¢,c¢. Since many processes may be trying to access the variable at the same time,
the interval between lreq and t4c may overlap for different processes. (Accesses by the same
process are assumed to occur serially.) The variables are atomic if for all reads (or writes),
the responses are consistent with responses that would be given if each access time could be
“shrunk” down to a single point in time, tace, such that for each access, treg < tace < toek and
the entire access could be thought of as happening at ¢,... The responses of atomic variables
are only required to be consistent with one possible sequence of such “shrunk” points (see
Figure 3.1).

The Bakery algorithm requires only safe registers. Assuming that writes occur sequen-
tially, the variables must satisfy only one condition: a read that doesn’t overlap any writes
receives the value of the last write preceding it. A read that overlaps a write may receive any
value within the range of that variable. With safe registers, however, it can be very difficult
to give assertional proofs because there are many more possible states of the system.

21
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o
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Figure 3.1: Atomic variables: Each bracket represents a read or write cycle, with the vertical
dimension representing time. Variables are atomic if there exists some set of times t,., such
that for each cycle’s ¢,.., the entire cycle could be conceptually “shrunk” to that point in
time without changing the values of any responses.

3.1.2 Fairness

The trying region 7 is broken up into two subregions: 7; and 7;. 7; , the “doorway”, consists
of the beginning of setting choosing to 1 to the end of setting choosing to 0. In the doorway,
a process chooses a value number which is the greater than the highest number already
chosen by processes executing the algorithm. While it does this, it sets choosing|i] to 1 to
let other processes know that it is currently choosing a value. 7; is the for loop: a process
checks to see if its number is the lowest, waiting for any processes that are choosing. The
“bakery” consists of 7; together with the critical region C. The algorithm resembles the
operation of a bakery: customers enter the doorway, choose a number, exit the doorway, and
wait in the store.

Passage through the doorway is guaranteed in a fixed number of steps. There is no loop
in 7;; a process must only compute the maximum of all other processes number variables.
(Of course, a slow process may be passed in the doorway by a faster process.)

Once a process p; has entered 7y, it is guaranteed to advance to C (critical region) ahead
of any other process that later enters 7. Since p; has already chosen number(t], a process
that enters 7 later must choose a number that is greater.

Claim 8.1 If p; 4s in C and p; is in the bakery, i # j, then (number(:],7) < (number(s], ;)
(where the pairs are ordered lezicographically).

Proo.f: In loop L2, p; reads choosing[s] = 0. Thus, either p; is not in the 75 or p; is just
setting choosing[j] (either 0 « 1 or 1 « 0).
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Case 1. p; reads choosinglj] either totally before p;’s enters 7; or while p; is entering
7, (i.e., setting choosing[;] « 1).

In this case, p; chooses number[i] before p; starts maz, and thus number[i] < number(j].

Case 2. p; reads choosing(j] totally after p; exits 7, or while p; is exiting 7; (i.e., setting
choosing[j] < 0).

In this case, p; reads the correct value of number[j] in L3. Since p; is able to exit T, we

must have (number(i], ) < (number(s], 7).
]

Corollary 3.2 The bakery algorithm satisfies mutual exclusion.

Proof: By contradiction: if two processes p; and p; are both in C, then by Claim 3.1,
we have (number[i], 1) < (number(j],5) and (numberfi], ) > (number(s], ) simultaneously.
which is impossible. =

3.1.3 Progress

Progress under normal conditions is fairly easy to verify: without waiting, all processes
may enter 7;, at which point the process with the lowest pair (number[i],7) may proceed
unhindered.

The Bakery algorithm also guarantees progress in the presence of certain types of failures.
Allowable failures are those in which a process goes back to R (remainder region) and
eventually has all of its registers set back to 0. A process is only allowed to fail once; it may
not be restarted.

Theorem 3.3 During a normal ezecution in which failures of the specified kind are allowed,
if there is some process not in R that never fails, then some process eventually reaches C or
R via a non-failing transition.

Proof: Restrict attention to that part of the execution where all processes that are going
to fail have already failed. Now the algorithm continues as before, with fewer processes. A
failed process cannot cause a non-failed process to get stuck in L2 since a failed process must
eventually have choosing set back to 0. Likewise, it must have number set back to 0 and
thus no non-failed process can get stuck in L3. |

Note that if a failed process were allowed to restart, it would be possible for it to lock
out another process by continually setting choosing to 1 before the non-failed process could
exit L2.
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Shared variables:

e g: an array indexed by {0,1} of values from {nil,T=1,F=0}, initially all nil, where
q[¢] is written by p; and read by all

Notation: opp(i) = -z  **the opponent of :**

Code for p;
qlt] « if g[opp(i)] = nil then T -else i ® glopp(7))
q[é] « if glopp(i)] = nil then g[1] else i & qlopp(i)]
wait until glopp(i)] = nil -or (z @ (glopp(?)] # ¢[7]))

**Critical region**

glé] + nil

**Remainder region**

Figure 3.2: Peterson’s 2-process mutual exclusion algorithm
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3.2 Peterson-Fischer 2-Process algorithm

In addition to satisfying mutual exclusion with progress, this 2-process algorithm also uses
single-writer variables of bounded size. The algorithm (shown in Figure 3.2) also satisfies
the same failure-tolerance conditions as the Bakery algorithm even when failed processes are
allowed to restart after they have entered R and had their variables reset.

3.2.1 Operation

The algorithm works fairly simply—only po and p; compete. Upon entering 7 and checking
to see if the other process is also in 7 or C, po sets ¢[0] « q[1] which satisfies p;’s wait
condition. p; sets g¢[l1] « -q[0] which satisfies Po’s wait condition. The two conditions
obviously cannot be satisfied simultaneously. The wait condition for either process is satisfied
if the other process is in R (qlopp(3)] = nil).

To see why we need two tests of whether the opponent is in 7 or C, consider the following
scenario using only one test: ~

steps of p, steps of p,
time reads g[l] = nil

reads ¢[0] = nil
sets ¢[0] = T
reads ¢[1] = nil
enters C
sets g[1] =T
reads ¢[0] = T
sees 1 @ (T # T) is satisfied
enters C

With the second test, it is impossible for both processes to enter the wait loop without
recognizing that the other process is also in T or C.

3.2.2 Fairness
The algorithm satisfies fairness according to the following no-lockout condition:

Theorem 3.4 During normal ezecution in which failures of the specified kind are allowed, if -
some process p is outside R and doesn’t fail, then p eventually makes a non-failing transition

toC or R.

Proof: When p; enters the wait loop, if glopp(i)] = nil then p; may enter C.
If glopp(z)] # nil then either




26 Lecture 3: September 20

level 3-
(winner enters C)

level 2

level 1

level 0 ¢
(inactive) Po

P1 P2 P3 ‘D4 ‘Ps Pe D7

Figure 3.3: The playoff tree for the Peterson-Fischer n-process algorithm on 8 processes.

qlopp(3)] = qli] or glopp(i)] # qli]

and the wait condition is satisfied for either p; or opp(p;). If the wait condition is satisfied for
o'pj;(p,-), then opp(p;) will advance toC -and eventually leave C. Once opp(p;) has entered C, it
can only cause p;’s wait condition to become true: upon leaving C, it will set glopp(p:)] « nil,
and if it reenters T, it will see that p; is waiting and defer to it.! ' [

3.3 Peterson-Fischer n-Process algorithm

The Peterson-Fischer 2-Process algorithm is generalizable to n processes by considering
competition for C as competition in a ‘tournament (see Figure 3.3). At each level, the 2-
process algorithm is run and the winner advances to ‘the next level until finally the winner
of the top level is allowed to enter-C.

As p; advances up the playoff tree, it plays the role of pg if it comes up the left branch
and p, if it comes up the right branch. Thus, the possible roles of a process are known ahead
of time, given by the function bit(i,%) (see Figure 3.4). ‘

Also predetermined is the set of potential opponents for a process at a given level, denoted
by opponents(i, k) (see Figure 3.4). Finally, each process has an pair (level, flag) associated
with it, where level is the level of the tree at which the process is competing (0 meaning that
a process is not in T), and flag taking on the function of g[¢] in the 2-process algorithm.

When a process p; is ready to compete at level k, it uses the subroutine OPP(z, k) to
find its opponent, if any are ready to compete at level £ or above. If the process p has no

1Some of these proof sketches are rather informal and are not a substitute for careful formal proofs.
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opponent or it beats its opponent, it advances to the next round. Otherwise, if its wait
condition is not satisfied or its opponent has already advanced above that level, the process
- waits for its wait condition to become true.

3.3.1 Mutual exclusion

‘Theorem 3.5 The n-process algorithm satisfies mutual ezclusion.

Proof: The main idea is that no two processes can be past a common opponent at the
same time—no two processes can have a common “ancestor” which they both have passed.
- By contradiction: assume an execution in which both p; and p; are in C at once. Then
they both must have passed a common ancestor. Let k be the lowest level at which two
processes pass a common ancestor. Call these processes p, and p,. Assume without loss of
generality that p, had its wait condition satisfied first. At that time, p, either saw p, below
level k or saw p, at level £ and beat it. Eventually thereafter, p, reaches level £ and discovers
pr as its opponent. Now, as long as p, continues to identify p, as its opponent and p, remains
at a higher level or in C, p, must wait. Thus, then the only way p, can advance past % is
to identify another opponent p;. But this means that both p. and p; advanced to level &,
implying that k was not the first level at which two processes have a common ancestor: p,
and p, came up the same branch to get to level k, and thus must have already have passed
~ a common ancestor at level £ — 1. This contradicts the choice of k as the lowest such level.
. Thus, there can be no level k£ and mutual exclusion is satisfied. [

3.3.2 Progress and no lockout

Assume a normal execution in which some process remains in 7 forever. Let P be the set of
processes that get stuck in 7. Each process in P eventually reaches some final level at which
it gets stuck; let p; be stuck at the highest such level. Then p; waits for a process p; which
is either higher than p; or at the same level with conditions favorable to p;. In the first case,
p; is not one of the stuck processes since p; is the highest stuck process and p; is higher. In
the second case, p; can advance and again is not one of the stuck processes. In either case,
p; eventually enters C and subsequently R. No further opponents can bypass p; at level &
(as for the 2-process algorithm) and p; will advance. This contradicts the assumption that
pi 1s stuck; thus, no process can be locked out. ,
- However, it is possible for a slow process to get passed an arbitrary number of times

before making progress. Consider a process p; at level £ < logn. Suppose the wait condition
for p; is satisfied, but p; is slow to advance. Another process p; from the “other half” of the

- . tree may reach the top level before p;, and seeing no opponent, enter C. If p; is fast enough,

it could reenter the protocol and again advance to the top level before p;. It is possible for
this to happen an aribtrary number of times.
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Shared variables:

e ¢ : an array indexed by {0,1,...,n} of pairs (level,flag), where level is an integer
and flag takes on values in {T,F}. Initially, ¢[¢] = (0,F) for all 7. Variable ¢[] is
written by p; and read by all.

Notation:

e The function bit(z, k) tells what role p; plays in level k£ competition; roles obtain-
able from binary representation. That is, bit(¢, k) = bit number (logn — k + 1)
of the binary representation of :.

o Let opponents(i, k) denote all potential opponents for p; at level k.

‘Subroutine OPP(i, k): (Purpose: to search for opponent.)

for j € opponents(z, k) do

opp — q[j]

if level(opp)> & then return(opp)
return(0,F)

Code for p;

for k=1,...,logn do
opp— OPP(i, k)
qli] « if level(opp) = k then (k,bit(:, k) & flag(opp)) else (k,T)
opp— OPP(i, k)
q[¢] « if level(opp) = k then (k,bit(:, k) @ flag(opp)) else g[i]
L: opp— OPP(i, k)
if (level(opp) = k and (bit(¢, k) @ (flag(opp) = flag(q[:])))) or level(opp) > k then
goto L : ‘
**Critical region**

- q[f] « (O,F)

**Remainder region**

Figure 3.4: Peterson’s n-process mutual exclusion algorithm.
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4.1 Peterson-Fischer n-Process Algorithm (Coht.)

In Lecture 3 we presented Peterson-Fischer’s tournament algorithm and argued that it sat-
isfies some desired properties, namely: mutual exclusion, progress and no lockout. We now
turn to another important aspect that we overlooked in our previous discussion of mutual

exclusion algorithms, namely complezity analysis.

4.1.1 Space Analysis

Here we are interested in the number of variables and the size of these variables. For n
processes, Peterson-Fischer’s tournament algorithm uses n variables. Each of these variables
might assume one out of 2log n values’. Thus O(nlogn) values are needed.

4.1.2 Time Analysis

For asynchronous algorithms, it is not obvious how time complexity should be measured.
For instance, we can’t just count the number of steps as with Turing Machines because of
the uncertainty associated with “busy-waiting” steps. Also, it is very restrictive to assume
that each step takes a fixed amount of time since this would result in limiting the possi-
ble interleavings and thus would result in time measures that work only for some possible
executions. :

A better approach would be to assume upper bounds on the time required for each step
and use these to infer upper bounds on higher-level events. For instance we might assume
that all steps take time in the interval (0, a] for some constant a, and then infer an upper

bound on the time a process has to wait in the trying region in order to enter the critical

region®.

o For the Tournament algorithm, let @ be the upper bound on the step time. We also -
need an upper bound on the time inside the critical region®. Let b be that bound. -

1That is an O(loglog(n)) bits is required per variable.
2The constant a can be different for different processes — this would complicate the analysis.
3Otherwise, a process could stay in the critical region for any amount of time and block other processes,

which would prevent deriving any upper bounds.

29
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¢ Let T'(k) be the maximum time it takes a process* to enter C after winning at level
k , where 1 < k < logn. Solving for T(0) gives the required upper bound since that
represents the time from when a process enters 7 to when it enters C. Moreover,
T(logn) < a, since only one step is needed to enter C after winning at the top level.
Now, in order to find T'(0), we have to find a recurrence relation for T'(k) in terms of

T(k+1).
e Suppose that p; has just won at level k¥ and advances to level £ + 1. Now, p; has to
call the O PP subroutine. The maximum time it takes to complete the OPP(i,k + 1)

call is O(a2¥) since for a tree of depth k + 1, pi has to check 2F leaves. Thereafter, Pi
has to perform some assignments® before it reaches the wait loop, for which two cases

can be singled out: |
1. P finds the condition to be true the first time it tests it. Hence, p; immediately
wins at level k + 1 thus we have:

T(k) = O2F) + T(k + 1)

2. P finds the condition to be false the first time it tests it. This means that there
is a competitor (say p;) at a level > k+1. P; will have to wait for at most O(28),
since by that time p; must have reached its wait loop. Now, either p; or p; should

be a winner. :

(a) If p; is the winner, it need not wait so we get
T(k) = O(2*) + T(k +1)

'(b) If p; is the winner, then it needs a time O(2¥) + T(k +’1) to get to C, and a
maximum of b to get out of C. Thereafter, nothing can be blocking p;. Thus,

T(k) = O(2*) + 2T (k + 1)

e Taking the worst case, we end up with the following recurrence:

T(k) < O(2%) + 2T (k + 1), where
T(logn) <a

* Solving the above recurrence, we get a solution for T'(0) which is the required bound
on the time from when a process enters 7 to when it enters C.

T(0) < O(n?)

*We assume the process won't fail.
5This requires some maximum constant time that we ignore.
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Shared variable v: a single shared variable taking on values from {0, 1}, initially 0.

Code for p;:

waitfor v =0

vel

**Critical region**
ve0

**Remainder region**

Figure 4.1: A trivial test-and-set algorithm for achieving mutual exclusion

4.2 Test-and-Set Algorithms

We have concluded our discussion of read/write shared memory algorithms, and now we

move to another shared memory model called test-and-set. It is interesting to note how a

. small change in the model makes a drastic difference in the kinds of impossibility results

- one can get. Test-and-set algorithms assume the existence of a strong primitive that enables

an atomic read-compute-write access to shared variables. This assumes that some low-level

arbitration mechanism manages such requests. Paradoxically, assuming the availability of a

mechanism that guarantees fair exclusive use of shared memory does not directly guarantee .
fair exclusive use of the critical region.

4.2.1 A simple Test-and-set Algorithm for mutual-exclusion

The test-and-set algorithm shown in Figure 4.1 guarantees mutual-exclusion and progress.
In this algorithm, the variable v is used like a semaphore. It is assumed that the variable is
tested continuously until a 0 is found, then without releasing the variable (atomically), it is
set to 1, then released. The algorithm is unfair since lockout is possible. ,
In describing test-and-set algorithms, one has to be careful about the indivisibility of
actions. To be explicit, we introduce the special purpose constructs lock and uniock into
the language to mark the beginning and end of the exclusive access to the shared variables.
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Shared variable v: a single shared variable taking on values from {0, 1}, initially 0.

Code for p;:

waitfor v =0

v 1

unlock v
**Critical region**
lock

ve0

unlock

**Remainder region**
lock

Figure 4.2: A trivial test-and-set algorithm (rewritten)

Moreover, we redefine the waitfor C construct as follows:
while =C do unlock ; lock

Figure 4.2 shows the same algorithm given above, now rewritten using these new con-
structs. Note that a process always enters the trying region with the variable locked.

Notice how a small change in the underlying model makes a drastic changes in the
results. For instance, using the R/W model, at least n variables were needed, whereas the

above algorithm uses only 1 variable and only 2 values.

4.2.2 Fair mutual-exclusion using test-and-set algorithms

In the simple algorithm given above, lockout is possible. However, we can get fairness back
by forcing a FIFO behavior. This can be done by substituting the variable v with a queue.
Now, at the beginning of 7, a process adds itself to the queue (atomically), and waits for
its turn to enter C. On the other hand, when leaving C, a process removes itself from the
queue, thus enabling the next process to enter C. The algorithm is simple and fast, but
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space-consuming. It uses up to n shared variables, each having up to n values. Thus O(n")

values are needed.
One way of reducing the space requirement in the above solution is to have each process

grab a ticket as it enters 7 and then waits for its turn to enter C. This solution requires
the use a shared variable where the next ticket to be issued, next_ticket, and the ticket
permitted to enter C, permitted_ticket, are stored. At the beginning of 7, a process will
have to read the shared variable to get and increment the nert_ticket field. Again, ‘this
read-compute-write is assumed to be done atomically. When, a process gets out of C, it will
have to increment the permitted_ticket field of the shared variable. All computations are
done in mod(n), thus each of the two fields can assume n different values making the space
requirement O(n?). The following theorem states that n is, as a matter of fact. a lower
bound on the number of values needed to achive mutual-exclusion, progress, and bounded

waiting®.
Theorem 4.1 Let S be a system of n processes, n > 1, and q be any configuration. Assume
S satisfies mutual ezclusion, progress, and bounded waiting. Then, the shared variables of S
can take on at least n values. :
Proof:
¢ Let V(g) be the value of the shared variables in ¢.
o We say that ¢ looks like ¢’ to a process p; if:
L. V(q) = V(¢), and
2. The state of p; is the same in q and ¢'.

e For a schedule A, we define result(q,k) to be the éonﬁguration that results from ap-
plying the schedule % starting from configuration 4.

o Let exit(g) be a schedule that would result in having all processes in R, where only
the processes not in R in ¢ are allowed to appear in the schedule. Note that by the
normal operation assumption and the fact that S guarantees progress this schedule is
always possible.

o We define enter(q,:) to be the schedule that contains steps taken only by process p;,
starting from a configuration ¢ in which all processes are in R. Thus, p; will eventually
end up in C.

¢ Let go = result(q, exit(q)). In g all processes are in R.

Sno claims about how many times a process in 7 will be bypassed.
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o Let g = result(qo,enter(go,1)). In q1, process p; is in C, whereas all other processes
are still in R.

o Now, let each process p;, 2 < j < n, enter 7 in turn. This can be done by the following
sequence of configurations: ¢; = result(g;j-1,7), where 2 < j < n.

o We claim that V{¢;) # Vi{(g;), for 0 < ¢ < j < n. We prove this claim by contradiction
as follows: :

— Assume that for some ¢ and j, where 0 < i < 7 < n, we have V(¢;) = V(g;). It
follows that ¢; looks like-¢; to processes pi,pa, ..., pi-

— Starting from ¢;, there exists a schedule h that yields a normal execution and
which involves only p1, ps, ..., p; and results in some process to enter C infinitely
many times.

— The same schedule h when run from ¢; will make py, ps,...,p; run exactly the
same as before while p; 1, Piy2, .. ., Pn Will always remain in 7. Note that, starting
from g;, this is not a normal execution, since piy1, Pit2, - . , Pn are not taking steps
in h — otherwise they should eventually enter C. However, by running a sufficiently
long, but finite prefix of k from g;, it will be always possible to violate the bounded
waiting assumption of S which contradicts the basic assumption that & achieves
bounded waiting.

. Hence V(¢;) # V(g;), for 0 < i < j < n. Thus, we need at Jeast n values for the shared
variables used in S.
u

In Lecture 5 we will present a deterministic algorithm that cuts down the\number of
values to O(n).
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4.3 Exercises

1. Does Burns’ mutual exclusion algorithm work if the shared registers are all safe regis-
ters? Why or why not?

2. Explain why both of the first two assignment statements are necessary in the Peterson-
Fischer 2-process mutual exclusion algorithm.

3. Prove an upper bound on the time required for a particular process to reach its critical
region, from the time when it enters its trying region, in the Lamport bakery algorithm.
(Assume for simplicity that the shared registers are atomic rather than just safe.)

4. Write the code for a simplified version of the Burns, Fischer, et al bounded-waiting
test-and-set mutual exclusion algorithm that allows a permanent “supervisor” process.

*5. (Open) Give an (elegant) assertional proof for the Peteson-Fischer 2-process algorithm.
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5.1 More on the Test-and-Set Model

5.1.1 Burns, et al. Mutual Exclusion Algorithm

Lecture 4 introduced the test-and-set model. In this model, a process may obtain exclusive
access to a shared variable through the use of lock and unlock actions. A fair algorithm has
been designed for this model with the additional property of bounded waiting, the Burns-
Fischer-Jackson-Lynch-Peterson algorithm. In this algorithm, a single variable is shared and
only stores n + ¢ different values. Since any test-and-set, bounded-waiting algorithm requires
at least n values (proven in Lecture 4), this algorithm’s storage requirements are quite close
to optimal. '

The best way to think of the algorithm is to imagine a special “supervisor” process who
coordinates the other processes. It is up to the supervisor to guarantee that no two processes
enter the critical region at the same time, and that no process waits an unbounded or infinite
time to get to the critical region.

The algorithm works in three phases. Processes that enter the trying region accumulate
in a “buffer,” where their relative order is lost. When the supervisor gains control of the
shared variable, the supervisor moves all buffered processes into a “main” section, and finally
dispatches them, one at a time, to their critical regions (see Figure 5.1). Once entering
“main,” a process is assured of reaching its critical region ahead of any process who later
enters the buffer. Thus, process are bypassed at most once, and so the algorithm meets the
condition of bounded-waiting. ' -

The notion of the “buffer” and “main” sections are only analogies. In reality, the super-
visor will not maintain a list of processes in each section, but counters buffand main of how
many processes are in each section. The processes themselves will know, by their program
counters, into which sections they fall.

The supervisor communicates with the processes via a shared variable v. The supervisor
may send the messages ENTER and ELECT to the processes: ELECT tells a process to
move from the “buffer” to the “main” sections, and ENTER tells a process to proceed from
the “main” section to its critical region. Of course, any process waiting for a message from
the supervisor may get the message the supervisor sends. The processes themselves send
ACK messages acknowledging the receipt of the ENTER and ELECT messages, and BYE
messages when they leave their critical regions.

37
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Enter one at a time

Buffer

Move all at once

Main

Enter one at a time

C

Figure 5.1: A conceptual view of the Burns, et al. algorithm for mutual exclusion.

Processes also need to tell the supervisor when they move into their trying regions. A
single message will not work here; there is no way to guarantee that the supervisor will
be the next process to lock v. So instead of using a single message, v will store a count
also. When the supervisor gains control of the variable, v will tell how many processes have
entered their trying regions since the last check. The supervisor then adds the count to its -
local variable buff, resets the count in v to be 0, and continues. ‘

How many values can v store? It must store at most one message and a counter; if there
are ¢ messages (here, ¢ = 4), v could take on c- n different values. The solution is still a bit
far from the n + ¢ values promised.

We need a trick. Suppose v may store a count or a message; then v will have n + ¢
possible values. To make the algorithm work, if a process p; needs to update a count and
the variable v contains a message, p; will “steal” the message, write a 1 to v, and wait for v
to be reset to 0. If p; ever reads v and sees a 0, it can return the stolen message to v. To
see that p; must see a 0 in v in a bounded amount of time, note that at the time p; steals
the message, the supervisor can be doing one of three things:

1. Moving processes from the “buffer” to the “main” sections;
2. Moving a process from the “main” éection to the critical region; or
3. Waiting for a process to finish with the critical region.
If the supervisor is moving processes from the “buffer” to the “main” sections, the system

will eventually quiesce (i.e., no messages will be sent) when all processes but one have been
moved into the “main” section. Then v will stay 0 until p; reads it; p; can then return the
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Values for shared variable v: ENTER, ELECT, ACK, BYE

Notation: Let A denote the set {0,1,...}.

Process Protocol: With local variable m

ifveNthenve—v+1
else [m «— v; v « 1; waitfor v = 0; v « m;]

~ waitfor v = ENTER; v « ACK; ** Buffer **
waitfor v = ELECT; v «— ACK; ** Main **
ve0 :
unlock;

** Critical Section **

waitfor v = 0; v — BYE;

** Remainder Region **
Supervisor Protocol: With local variables main, buff

L: if main = 0 then ** Move processes from buffer to main **
while buff + v > 0 do
buff —buff +v — 1; v «— ENTER; main «—main + 1;
while v # ACK do
if v € A then
buff —buff +v; v « 0;
unlock; iock; .
v« 0;

** Move processes, one at a time, to critical region **

while main > 0 do
main «main —1; v — ELECT;
while v # ACK do
if v € M then
buff —buff +v; v — 0;
unlock; lock;
while v # BYE do
if v € N then [buff «buff +v; v « 0j]
unlock; lock;
goto L;

Figure 5.2: The Burns et al. test-and-set mutual exclusion algorithm in simplified form.
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Values for shared \}ariable v: FREE, ENTER, ELECT, ACK, COUNT, BYE

Local variables: m, main, buff

Trying protocol:
if v = FREE then v — 0
else
ifveNthenv —v+1
else [m « v; v « 1; waitfor v = 0; v «— m; m « 0;]

waitfor v = ENTER; v « ACK; ** Buffer **
waitfor v = ELECT; v «— ACK; ** Main **
while v # BYE do ** Receive Counts **

if v € M then [buff —buff +v;v « 0;] -
if v = COUNT then [main «—main +1; v + ACK;]
unlock; lock; :
v 20
unlock;

** Critical Section **

lock;
Figure 5.3: Burns, et al. Mutual Exclusion Algorithm, trying protocol.

stolen message to v. A similar quiescent state will occur in the other two cases. Figure 5.2
gives code for this simplified description of the algorithm.

The algorithm requires yet more refinement, since one process is designated as a super-
visor and cannot do anything else. The idea is a common one in the distributed algorithms
literature: distribute the job of “supervisor” among the processes. In this algorithm, a pro-
cess becomes the supervisor when it is next to enter the critical region. In the exit protocol,
the process then passes the job of “supervisor” on to another process and sends it all the nec-
essary state information. The algorithm requires a two more messages, FREE and COUNT.
The complete algorithm is given in Figures 5.3 and 5.4.

5.1.2 Lower Bounds for No Lockout

The proof that test-and-set mutual exclusion requires n values relied upon bounded waiting;
in the no-lockout case, we might need far fewer than n values. Another impossibility result
shows that any algorithm still needs O(n) values, although the actual number is roughly
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Exit Protocol:

if main = buff = v = 0 then v — FREE
 else '
if main = 0 then ** Move processes from buffer to main **
while buff + v > 0 do
buff —buff +v — 1; v « ENTER; main «main + 1;
while v # ACK do A
if v e N then
buff —buff +v; v — 0;
unlock; lock;
v« 0

_ ** Elect new supervisor **

buff —buff +v; v — ELECT; main «—main —1;
while v # ACK do
if v € N then
buff —buff +v; v « 0;
unlock; lock;

** Send counts **

while main > 0 do
v « COUNT; main «main —1; waitfor v = ACK;
v —buff:
waitfor v = 0; v «— BYE;
unlock;

** Remainder region **
lock;

Figure 5.4: Burns, et al. Mutual Exclusion Algorithm, exit protocol
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%. There is a somewhat technical restriction in this theorem that does not quite cover all
no-lockout test-and-set algorithms; the algorithms not considered, though, are few. (There

is an Q(/z) lower bound in general, a result due to Burns, Fischer, Jackson, Lynch, and

Peterson.) |
An algorithm using % + c values can also be found for this case, using much the same

idea as in the Burns, et al. algorithm. A supervisor puts processes to sleep when there are
more than % waiting, and wakes them up when the supervisor goes to the critical region.

5.2 k-Exclusion

A slightly different problem, k-exclusion, may also be posed in the distributed setting. A
protocol solves the k-exclusion problem if no more than k processes can be in their critical
regions simultaneously. The progress condition must be modified slightly: if at most k& — 1
processes stop in the critical region, then progress should still be made.

Of course, any mutual exclusion algorithm solves the k-exclusion problem, albeit ineffi-
ciently using the shared resource. A number of algorithms have appeared in the literature to
solve the problem more efficiently. For example, one algorithm uses a colored ticket scheme,
using only O(n?) values (the constant depending on k.) See the bibliography for papers
containing these algorithms [FischerLBB85a,FischerLBB85b,Dolev(GS88].

5.3 Atomic Mutual Exclusion Requires n-Variables

We have seen that in the test-and-set model, any bounded-waiting algorithm requires n
values. For the atomic register case, the situation is quite different. A rcmarkable theorem
due to Burns and Lynch shows that any mutual exclusion algorithm in this model must use
at least n shared variables:

Theorem 5.1 (Burns, Lynch) Any deadlock-free mutual ezclusion algorithm (i.e., an al-
gorithm that makes progress) requires n variables in the read/write atomic register model.

The theorem becomes even more striking when compared with the impossibility result for
the test-and-set model, as it gives a lower bound on the number of variables, not values. No
restrictions apply to the algorithms, so the theorem applies to unfair or fair algorithms.

It is unclear where to begin proving such a theorem, since it must hold for all algorithms
solving mutual exclusion. The intuition, difficult to make rigorous, is that if a system
uses fewer than n shared variables, processes will not be able to record and send enough
information to coordinate access to the critical resource.
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We begin with a few definitions to make the notion of “communicating information”
more explicit.

Definition Suppose process p performs a write to a variable v. The write is obliterated if
another process overwrites v before v is read.

An obliterated write communicates no information to the other processes in a particular
thread of execution. To make the thread of execution more explicit, we make a further

definition:
Definition Let ¢ be a state and h be a schedule (i.e., a list of the order in which processes
take steps.) Process p; is hidden from q by & if & = hih; and p; is in region R after Ay, and
every write by p; is obliterate_@ during h,.

If some processes are hidden in a certain schedule, other processes cannot be affected by
the values of the obliterated writes. The following lemma formalizes this fact:

Lemma 5.2 Let h be a finite schedule, and let P be a set of processes. For some state go,
let ¢ = result(qgo, k) such that each p; € P is hidden from qo by h. Then there is some state
¢’ reachable from gy such that

o the values of the shared variables and the states of all processes not in P are the same
in ¢’ as in q, and

o ifp, € P, thenp; isin Ringq.

Proof: Starting in state go, run schedule k, omitting the steps of each p; € P after it reaches
its remainder region for the last time in k. (We know each eventually reaches R, since all
processes in P are hidden.) We know that all writes by p; € P are obliterated, either directly
by some process p; € P or by some other process p; € P whose writes are also either directly
or indirectly obliterated by some process(es) not in P. Therefore, in the resulting state, the
values of the shared variables will be the same as in ¢, and the states of the processes not in
P will be the same as in ¢g. See Figure 5.5 for a diagram. =

During a computation, some variables may be obliterated in the next step.’

Definition A variable v is covered by p; in state ¢ if p;’s next step is to write v. That i is,
pi is ready to write v from state q.

Suppose a process writes a covered variable before it enters the critical region; this write
could have disastrous consequences, since the the write could be immediately obliterated
and, due to the loss of the “message”, another process might be able to get to the critical
region. The following lemma shows that, indeed, a process must write a non-covered variable
before going to the critical region:
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o b g—all p; € P are hidden

g—all p; € P arein R

Figure 5.5: Hidden processes do not affect other processes. Here, if p; € P are hidden during
h, then ¢ and ¢’ agree in all respects except for the local state of the processes in P.

Lemma 5.3 Let S be a system with more than 2 processes which solves deadlock-free mutual
exclusion. Let h be a finite schedule, qo a state, and q = result(qgo, h).

Suppose p; is hidden in the computation from gy by h. If p; goes to its critical region
on its own (by schedule i,1,...) from state q, then in the computation from q, p; must write
some non-covered variable (i.e., not covered by any other process in state q.)

Proof: By contradiction. Suppose p; gets to the critical region on its own from g without
writing a non-covered variable; let this schedule be A’. Construct a new schedule A" = ki’ hi,

h R =(i,...,1) hy
qo g—p; hidden p; critical q

where h; lets each other process take one step. Note that A, obliterates all writes by p;, so

p; is hidden in the computation from ¢y by A”.
Now we use Lemma 5.2: There is some ¢” reachable from go which agrees with ¢’ in the

states of all other processes and all shared variables, but has p; is in R. Since the system 1is
deadlock-free, some process p; can go to its critical region from ¢” via some schedule s not
involving p;. But s applied to ¢’ also lets p; go to C, since from p;’s point of view, the state
is the same. Thus, we can get processes p; and p; in C simultaneously, a violation of mutual
exclusion. ]

Combining the definitions of “covered” and “hidden” will give us our goal. We call a
variable nullified by a process if the process does not “communicate” with the other processes
and covers the variable in its last step. Formally,

Definition Let g, be a state, & a schedule, and ¢ = result(qo, h). A variable v is nullified
by process p; in the computation from go by A if
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1. p; covers v in state ¢; and

2. p; is hidden in the computation from ¢¢ by A.

Now we can show that, in any algorithm solving mutual exclusion, there is a finite
schedule yielding n distinct nullified variables. Theorem 5.1 will then follow immediately.

Lemma 5.4 Let S be a system with more than 2 processes solving deadlock-free mutual
ezxclusion. Let qo be any state in which all processes are in R.

Then for every k, 1 < k < n, there is a finite schedule h using only processes p, ..., p,
such that k distinct variables are nullified by p,,...,pr in the computation from gy by h.

Proof: Proceed by induction on k. In the base case, k¥ = 1. Since S is deadlock-free, running
p1 alone means that p; eventually reaches C; call this schedule 2’. By Lemma 5.3, p; must
write some non-covered variable during this computation. Stop A’ just before p; writes some
variable v (covered or non-covered) and call this schedule k. In this schedule from ¢q, p;
is hidden (since no variables are written) and p; covers v in ¢; = result(qgo, k). Thus, one
variable is nullified in the computation from ¢o by A.

In the induction case, assume the lemma holds for £ — 1. Then there is a finite schedule
ko using only py, ..., pr—1 such that k£ — 1 distinct variables are nullified by py,...,pr_1. Let
W, be the set of these variables, and ¢; = result(qo, ko).

From this state ¢;, one can create another schedule k] (using only processes p;,...,pr_1)
that first lets each of these processes write their covered variables, and then puts all of these
processes into R (this is possible by the deadlock-free condition.) Applying the induction
hypothesis again, we can get another A{ such that & — 1 distinct variables are nullified by
D1+, Pk—1. Let Wy be this set of variables, and A, = AjAY.

ho Wi o W, o Wi hi Wip
9o 1 92 q; qit1

One can repeat this construction ad infinitum, as depicted above. Note that by the way we
constructed h;, each py,..., pr—1 is hidden from ¢; by A;.

Somehow, p; must get involved in this computation so that it nullifies a distinct variable.
To this end, we construct “side branches,” schedules s; which proceed from state ¢; and
involve only p;. By Lemma 5.2, there is some state ¢’ reachable from ¢;_; such that

¢ py,...,pr-y are all in R, and

e the values of all shared variables, and the state of p;, is the same in ¢’ as in ¢;.
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qi-1 qi gi+1

Dk COvers w;

Figure 5.6: The construction of side branches. Note that s; only involves process px.

ho hioy Wi bk hii W;

' Wy W; = w;

Figure 5.7: The construction of the schedule k. Process p; covers w; = wj; in the two side
branches depicted.

In other words, ¢’ “looks like” ¢; from the perspective of p;. From ¢’, p; must be able to reach
C on its own, since the algorithm is deadlock-free and all processes are in R. Thus, p; can
also reach C on its own from ¢;, since ¢; “looks like” ¢’. Call such a schedule s!. Note that
Pk is trivially hidden from ¢;_; by A;_;, since we do not let it take a step. By Lemma 5.3,
px must write some variable v during the computation from ¢; via s, where v is not covered
by any process in py,...,pe—1. Thus, v € W;. Let s; be the shortest schedule from ¢; where
pr covers some variable w; € W; (see Figure 5.6.)

We’re almost done, since after running s; each of p, ..., px covers a distinct variable. We
still must show that p; is hidden. We use a combinatorial trick. Choose two different states
¢; and g; with w; = w;; we know that these states exist by a pigeonhole argument, since we
can construct a very long chain (length > k) of the ¢;’s (see Figure 5.7). Create a schedule

h = ho . . h;_IS;h; e hj_]_.

Note that py could only write to the variables in W; during s;. Thus, pr becomes hidden
during h;, since all variables in W, are covered, and p; stays hidden from #; on, since it does
not take any steps. Now w; &€ Wj, since w; = w; ¢ W;. Since py,...,pr_; nullify & — 1
distinct variables in W; during A;_;, and since py nullifies w; € W;, the k processes nullify &
different variables. =
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Input action

Output action

Figure 5.8: An I/O Automaton.

5.4 Introduction to I/O Automata

In the discussion of mutual exclusion, we have seen many different models, each with its
own advantages and disadvantages. A single model of distributed computation, one that
could capture the aspects of these models, would certainly make things less complicated:
descriptions of algorithms would become uniform, and proofs of correctness would be easier
to certify.

One such model is the I/O automaton, a model designed for asynchronous distributed
settings. Informally, I/O automata are a special form of automata (not necessarily finite
state) with three kinds of actions: input, output, and internal (see Figure 5.8). Problems in
this model are phrased as sets of sequences of ezternal actions, input or output actions. An
automaton solves a problem if the automaton’s set of sequences, or behaviors, are a subset
of the problem’s.

Somewhat more formally, let S be a set of actions; an action signature is a triple
(in(S), out(S), int(S)) with in(S), out(S), and int(S) disjoint sets drawn from S. These
three sets represent the input, output, and internal actions respectively. FEzternal actions
are input or output actions, or in other words, ezt(§) = in(S) U out(S).

Definition An I/O automaton A is a quintuple composed of

¢ sig(A), an action signature;

states(A), a set of states;
e start(A), a set of distinguished start states;

steps(A) = {(s',7,s) | &', s € states(A), 7 is an action }; and

part(A), an equivalence relation on local(S)= int(S) U out(S).
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The I/O Automaton model is discussed in detail in Lecture 6. Automata may be nonde-
terministic, and are always input-enabled, i.e., they must be able to accept any input at any
time. This is different from other models, such as CSP, that allow inputs to be blocked by
a component. Another important definition is that of an ezecution, an alternating sequence
states and actions such that each state-action-state triple is a step of the automaton.
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6.1 I/O Automata

This lecture is based on ‘I/O Automata: A Model for Discrete Event Systems’ by N. Lynch,
MIT/LCS/TM-351. The paper appears here in edited form.

The input /output automaton model has recently been defined, in [LynchT87], as a tool for
modelling concurrent and distributed discrete event systems of the sorts arising in computer
science. Since its introduction, the model has been used for describing and reasoning about
several different types of systems, including network resource allocation algorithms, com-
munication algorithms, concurrent database systems, shared atomic objects, and dataflow
architectures. The simplicity and generality of the model and its similarities with other new
models ([RamadgeW85], [ChandyM88]). suggest that it will prove useful in other a,pphcatlon
areas, such as control theory and manufacturing.

6.1.1 Overview of the Modél

I/O automata provide an appropriate model for discrete event systems consisting of concurrently-

operating components. The components, as well as the entire system, may be ‘reactive’ in
the sense that they interact with their environments in an ongoing manner (rather than,
say, simply accepting an input, computing a function of that input and halting). Although
I/O automata can be used to model synchronous systems, they are best suited for modelling
systems in which the components operate asynchronously.

Each system component is modelled as an ‘I/O automaton’, which is a mathematical
object somewhat like a traditional automaton. However, an 1/O automaton need not be
finite-state, but can have an infinite state set. The actions of an I/O automaton are classified
as either ‘input’, ‘output’, or ‘internal’. The automaton generates output and internal actions
autonomously, and transmits output actions instantaneously to its environment. In contrast,
the automaton’s input is generated by the environment and transmitted instantaneously to.
the automaton. Our distinction between input and other actions is fundamental, based on
who determines when the action is performed: an automaton can establish restrictions on
when it will perform an output or internal action, but it is unable to block the performance
of an input action.

The fact that our automata are unable to block inputs distinguishes our model from
Hoare’s CSP (Communicating Sequential Processes) [Hoare84]. There, input blocking is used
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for two purposes: as a way of eliminating undesirable inputs, and as a way of blocking the
activity of the environment. Our model does not have any way of blocking the environment,
but does have other ways of coping with bad inputs. For example, suppose that we wish
to constrain the behavior of an automaton only in case the environment observes certain
restrictions on the production of inputs. Instead of requiring the automaton to block the
bad inputs, we permit these inputs to occur; however, we may permit the automaton to
exhibit arbitrary behavior in case they do. Alternatively, we may require the automaton to
detect bad inputs and respond to them with error messages. Thus, we have simple ways of
describing input restrictions, without including input-blocking in the model.

I/'O automata may be nondeterministic, and indeed the nondeterminism is an important
part of the model’s descriptive power. Describing algorithms as nondeterministically as
possible tends to make results about the algorithms quite general, since many results about
nondeterministic algorithms apply a fortiori to all algorithms obtained by restricting the
nondeterministic choices. Moreover, the use of nondeterminism helps to avoid cluttering
algorithm descriptions and proofs with inessential details.

I/0 automata can be composed to yield other I/O automata. Our composition operator
connects each output action of one automaton with input actions of any number (usually one)
of other automata. In the resulting system, an output action is thus generated autonomously
by one component and instantaneously transmitted to all the other components having the
same action as an input. All such components are passive recipients of the input, and take
steps simultaneously with the output step. As in CSP, we use simultaneous performance of
actions to synchronize components, but we permit only one component to determine when
the action occurs.

Since I /O automata are intended to model complex systems with any number of primitive
components, each automaton comes equipped with an abstract notion of ‘component’; for-
mally, these components are described by an equivalence relation on the automaton’s output
and internal actions, where all the actions in one equivalence class are to be thought of as
under the control of the same primitive system component.

When 1/0 automata are run, they generate ‘executions’ (alternating sequences of states
and actions). Among all the executions of an automaton, we are primarily interested in the
‘fair’ executions - those that permit each of the automaton’s primitive components to have
infinitely many chances to perform output or internal actions. The fair executions of an
- automaton give rise to the ‘fair behaviors’ of the automaton - the subsequences of the fair
executions that consist of external (i.e., input and output) actions. It is this set of sequences
that we believe embodies the interesting behavior of an I/O automaton; thus, our semantics
is a ‘trace’ semantics. The set of fair behaviors of an I/O automaton can consist of both
finite and infinite sequences of actions, and is not necessarily closed under the operation of
taking prefixes.

A ‘problem’ to be solved by an I/O automaton is formalized essentially as an arbitrary
set of (finite and infinite) sequences of external actions. Our notion of what it means for an
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automaton to ‘solve’ a problem is ps :ularly simple: essentially, an automaton is said to
‘solve’ a problem P provided that its -»t of fair behaviors is a subset of P. It might not be
obvious to the reader that this definition is nontrivial; for example, if an automaton had no
fair behaviors, then our definition would say that it is a solution to every problem. However,
this anomaly does not arise, since our automaton definitions imply that every automaton
has a nonempty set of fair behaviors (note that even a trivial automaton having no actions
at all has one fair behavior - the empty sequence of actions). The fact that inputs are always
allowed gives another reason why our definition of solving a problem is nontrivial: for every
possible pattern of inputs that might arrive from the environment, the automaton is required
to provide some response such that the resulting sequence of actions is in the problem set P,
That is, the automaton is required to respond appropriately to every possible input pattern.

The model permits description of algorithms and systems at different levels of abstraction.
Abstraction mappings are defined, mapping automata that include implementation detail to
more abstract automata that suppress some of the detail. Such mappings can be used as aids
In correctness proofs for algorithms: if automaton A is an image of B under an appropriate
abstraction mapping and A solves problem P, then B also solves P.

The model allows very careful and readable descriptions of particular concurrent algo-
rithms. We have developed a simple language for describing automata, based on ‘Precon-
dition’ and ‘Effect’ specifications for actions. This notation, similar to Dijkstra’s ‘guarded
commands’ has proved sufficient for describing all algorithms we have attempted so far.
However, the model does not constrain the user to describe all automata in this manner;
for example, the model is general enough to serve also as a formal basis for languages that
include more elaborate constructs for sequential flow of control.

Our model also allows precise statement of the problems that are to be solved by modules
in concurrent systems. As described above, such problems are formulated as sets of finite and
infinite sequences of external actions. We have not so far developed -y particular language
or notation for describing such sets, but have used a variety of notar 1s (e.g. temporal logic
or generating automata) as they have seemed convenient. Qur mo .-l is general enough to
serveas a semantic model for many different languages for describing sets of action sequences.

The model can be used as a formal basis for algorithm correctness proofs - proofs that
particular algorithms solve particular problems in the sense described above. In fact, a
current major thrust of our research involves producing correctness proofs for substantial-
sized and complex concurrent algorithms. We use a variety of techniques for such proofs,
primarily based on notions of composition and abstraction. In every case, we try to utilize
the modularity that is suggested by informal descriptions of the algorithm in our formal
correctness proofs. So far, our proofs have been done by hand, but it appears that machine-
checking of some of our proofs might be possible using current automatic proof technology.

The model can also be used for carrying out complexity analysis, proving upper and lower
bounds on the complexity of solving particular problems, and proving impossibility results.
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6.1.2 Definitions and Basic Results

This section contains some of the basic definitions and results about the model. This material
is adapted from [LynchT87].

Actions and Action Signatures

We assume a universal set of actions. Sequences of actions are used in this work, for describ-
ing the behavior of modules in concurrent systems. Since the same action may occur several
times in a sequence, it is convenient to distinguish the different occurrences. Thus, we refer
to a particular occurrence of an action in a sequence as an event.

The actions of each automaton are classified as either ‘input’, ‘output’, or ‘internal’. The
distinctions are that input actions are not under the automaton’s control, output actions are
under the automaton’s control and externally observable, and internal actions are under the
automaton’s control but not externally observable. In order to describe this classification,
each automaton comes equipped with an ‘action signature’.

An action signature S is an ordered triple consisting of three pairwise-disjoint sets of
actions. We write in(S), out(S) and int(S) for the three components of S, and refer to
the actions in the three sets as the input actions, output actions and internal actions of S,
respectively. We let ext(S) = in(S) U out(S) and refer to the actions in ext(S) as the ezternal
actions of S. Also, we let local(S) = out(S) U int(S), and refer to the actions in local(S)
as the locally-controlled actions of S. Finally, we let acts(S) = in(S) U out(S) U int(S), and
refer to the actions in acts(S) as the actions of S. An external action signature is an action
signature consisting entirely of external actions, that is, having no internal actions. If S is an
action signature, then the ezternal action signature of S is the action signature extsig(S) =
(in(S),out(S),#), i.e., the action signature that is obtained from S by removing the internal

actions.

Input/Output Automata

Now we are ready to define the basic component of our model. An input/output automaton
A (also called an I/O automaton or simply an automaton) consists of five components:

¢ an action signature sig(A4),
e a set states(A) of states,
e a nonempty set start(A) C states(A) of start states,

* atransition relation steps(A) C states(A) x acts(sig(A)) x states(A), with the property
that for every state s’ and input action 7 there is a transition (s’,m,s) in steps(A), and



I/O Automata 53

* an equivalence relation part(A4) on local(sig(A)), having at most countably many equiv-
alence classes.

We refer to an element (s’,7,3) of steps(A) as a step of A. The step (s’,7,s) is called
an tnput step of A if x is an input action. Output steps, internal steps, external steps and
locally-controlled steps are defined analogously. If (s’,w,s) is a step of A, then 7 is said to
be enabled in s’. Since every input action is enabled in every state, automata are said to
be input-enabled. The input-enabling property means that the automaton is not able to
block input actions. The partition part(A) is what was described in the introduction as an
abstract description of the ‘components’ of the automaton. It is used to define fairness.

An ezecution fragment of A is a finite sequence $0,71,51,M2,---,Tp,5y, OF an infinite sequence
80,71351,72,--+sFn,8n,... Of alternating states and actions of A such that (8iymi41,5i41) is a step
of A for every i. An execution fragment beginning with a start state is called an ezecution.
We denote the <et of executions of A by ezecs(4), and the set of finite executions of A by
finezecs(A). A -rate is said to be reachable in A if it is the final state of a finite execution of
A.

A fair execution of an automaton A is defined to be an execution « of A such that the
following conditions hold for each class C of part(A).

1. If  is finite, then no action of C is enabled in the final state of a.

2. If a is infinite, then either « contains infinitely many events from C, or else o contains
infinitely many occurrences of states in which no action of C is enabled.

Thus, a fair execution gives “fair turns’ to each class of part(A). We denote the set of fair
executions of A by fairezecs(A).

The schedule of an execution fragment « of A is the subsequence of a consisting of
actions, and is denoted by sched(a). We say that 8 is a schedule of A if B is the schedule
of an execution of A. We denote the set of schedules of A by scheds(A) and the set of finite
schedules of A by finscheds(A). We say that 8 is a fair schedule of A if B is the schedule
of a fair execution of A and we denote the set of fair schedules of A by fairscheds(A). The
behavior of an execution or schedule o of A is the subsequence of « consisting of external
actions, and is denoted by beh(a). We say that 3 is a behavior of A if B is the behavior
of an execution of A. We denote the set of behaviors of A by behs(A) and the set of finite
behaviors of A by finbehs(A). We say that 3 is a fair behavior of A if B is the behavior of a
fair execution of A and we denote the set of fair behaviors of A by fairbehs(A).

Schedule Modules

In order to describe problems to be solved by automata, we need to describe sets of sequences.
More precisely, a problem will be specified by » »air consisting of an action signature and
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a set of sequences over the actions in that signature. (In most interesting cases, the action
signature will be an external action signature.) The mathematical object used to describe a
problem is called a ‘schedule module’.

A schedule module H consists of two components:

e an action signature sig(H), and

e a set scheds(H) of schedules.

Each schedule in scheds(H) is a finite or infinite sequence of actions of H. Let finscheds(H)
denote the set of finite members of scheds(H).

The behavior of a schedule # of H is the subsequence of 3 consisting of external actions,
and is denoted by beh(B). We say that. § is a behavior of H if § is the behavior of a schedule
of H. We denote the set of behaviors of H by beas(H) and the set of finite behaviors of H by
finbehs(H). We extend the definitions of fair schedules and fair behaviors to schedule modules
in a trivial way, letting fairscheds(H) = scheds(H) and fairbehs(H) = behs(H).

We use the term module to designate either an automaton or schedule module. If M is a
module, we sometimes write acts(M) as shorthand for acts(sig{M)), and likewise for in(M),
out(M}, etc. If 8 is any sequence of actions and M is a module, we write 1M for Blacts(M}.

There are several natural schedule modules that we often wish to associate with an
automaton. They correspond to the automaton’s schedules, finite schedules, fair sched-
ules, behaviors, finite behaviors and fair behaviors. For each automaton A, let Scheds(4),
Finscheds(A)) and Fairscheds(A) be the schedule modules having action signature sig(A)
and having schedules scheds(A), finscheds(A) and fairscheds(A), respectively. Also, for each
module M, let Behs(M), Finbehs(M) and Fairbehs(M) be the schedule modules having action
signature extsig(M) and having schedules behs(M), finbehs(M) and fairbehs(M), respectively.
(Here and elsewhere, we follow the convention of denoting sets of schedules with lower case
names and corresponding schedule modules with corresponding upper case names.)

Solving Problems

Now we are ready to define our notion of ‘solving’. This notion is intended for describing
the way in which particular automata solve particular problems (formalized as schedule
modules). However, it is convenient to state the definition more generally. Let M and M’ be
modules (i.e., either automata or schedule modules) with the same external action signature.
Then M’ is said to solve M if fairbehs(M’) C fairbehs(M). Note that M does not need to
exhibit all of the behaviours in fairbehs(M); merely a subset is sufficient. You may think of
M as defining a set of constraints, which the behaviour of M’ must obey.

In the most interesting case, M’ is an automaton and M is a schedule module. However,
the more general formulation allows us to carry out proofs in several stages: in order to
show that an automaton solves a problem, we can show that the automaton ‘solves’ another
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automaton, which in turn solves another automaton, and so on, until some final automaton
solves the problem. A variety of techniques can be used to show that an automaton M’
solves a schedule module M; we will mention some of these below.

Implémentation

One way of showing that one module solves another is to use an intermediate result about
inclusion for the sets of finite behaviors. Thus, we define an analog of the ‘solving’ definition
for finite behaviors only. Let M and M’ be modules with the same external action signature.
Then M’ is said to implement M if finbehs(M’) C finbehs(M).

It is often possible to show that one automaton implements another using a mapping -
between automaton states. Suppose A and B are automata with the same external action
signature, and suppose f is 2 mapping from states(A) to the power set of states(B). The
mapping f is said to be a possibilities mapping from A to B if the following conditions hold:

1. For every start state s of A, there is a start state t of B such that t € f(s).

2. For every reachable state s’ of A, every step (s’,7,5) of A, and every reachable state
t' € f(s') of B:

(a) If 7 € acts(B), then there is a step (t’,7,t) of B such that t € f(s).
(b) If = & acts(B), then t’ € {(s).

Lemma 6.1 Suppose that A and B are automata with the same external action signature
and there is a possibilities mapping from A to B. Then A implements B.

Figure 6.1 illustrates the idea of one I/0 automaton mapping to another one. It shows
the two cases: m €acts(B) and « €acts(B).

It is possible to show that one module M’ solves another module M using this lemma
together with additional results showing correspondences between fairness properties of M
and M’. Some such additional results are given in [LynchT87] and [WelchLL88].

Composition

The most useful way of combining I/O automata is by means of a composition operator, as
‘defined in this subsection. The intuition behind the composition of several I/O automata
is as follows. We do not allow a particular action to be an output of more than one I0A,
and we do not allow an internal action of any IOA to be an input, output or internal action
of any other IOA (ie: internal actions must be unique). Several [OA’s may have a common
input action, but for any particular action, the number of IOA’s having it as an input must
be finite. If an output action is an input to one or more other I0A’s, we conceptually “hook
up” the output to these other inputs.
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B (t'~ a ¢ B
A ? T °s A g’ . us s
7 Eacts(B) 7 ¢acts(B)

Figure 6.1: Mapping of I/O Automaton A to IOA B. Circles indicate equivalence classes of
states of B.

Composition of Action Signatures
Let I be an index set that is at most countable. A collection {S;}ier of action signatures

is said to be strongly compatible if for all i, j € 1,1 ¢ I, we have
1. out(S;) N out(S;) = ¢,
2. int(S;) N acts(S;) = ¢, and
3. no action is in acts(.S;) for infinitely many i.

Thus, no action is an output of more than one signature in the collection, and internal actions

of any signature do not appear in any other signature in the collection.
A collection of action signatures is said to be compatible if it satisfies the first two of the

three listed properties. Some of the results below follow simply from compatibility, while
others require strong compatibility. Here, we simplify matters by considering the stronger
definition only. The consequences of the two definitions are described more carefully in
[LynchT87].

The composition S = [];c; Si of a collection of strongly compatible action signatures
{S;}ier is defined to be the action signature with

. in(S) = U;elin(Sg) - U,'Gjout(S,'),
¢ out(S) = U;erout(S;), and
° int(S) = U;EIint(S,').

Thus, output actions are those that are outputs of any of the component signatures, and
similarly for internal actions. Input actions are any actions that are inputs to any of the
component signatures, but outputs of no component signature.
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Composition of Automata

A collection {M;}icr of modules is said to be strongly compatible if their action signatures
are strongly compatible. The composition A = [];.; A; of a strongly compatible collection
~of automata {A;};cs has the following components:

o sig(A) = [Tier stg(4i),
e states(A) = [Tier states(A;),
o start(A) = [T;er start(A;),

o steps(A) is the set of triples (1,7, s})ﬁch that for all i€l, if # € acts(A;) then

(51[2), =, 52[5]) € steps(A:), and if = & acts(A.} then §[i] = §[¢],
e part(A) = U;er part(4:).

"The second and third components listed are just ordinary Cartesian products, while the
first component uses a previous definition. ;

Note that we use the notation 5¢] to denote the ¢** component of the state vector 3.

Since the automata A; are input-enabled, so is their composition, and hence their compo-
sition is an automaton. Each step of the composition automaton consists of all the automata
that have a particular action in their signatures performing that action concurrently, while
the automata that do not have that action in their signatures do nothing. In composing
automata, one would like to still be fair to the separate loci of control, therefore the parti-
tion for the composition is formed by taking the union of the partitions for the components.
Thus, a fair execution of the composition gives fair turns to all of the classes within all of the
component automata. In other words, all component automata in a composition continue to
act autonomously If a = $gm$; ... is an execution of A, let a|A; be the sequence ob: nined
by deleting 7;$; when 7; is not an action of A;, and replacing the remaining §; by s;{:.

The following basic results relate executions, schedules and behaviors of a composition
to those of the automata being composed. The first result says that the projections of
executions of a composition onto the components are executions of the components, and
similarly for schedules, etc. The parts of this result dealing with fairness depend on the fact
that at most one component automaton can impose preconditions on each action. '

Lemma 6.2 Let {A;}ie; be a strongly compatible collection of automata, and let A = [Tics As-
Ifa € execs(A) then a|A; € ezecs(A;) for all i€l. Moveover, the same result holds for finez-
ecs, fairezecs, scheds, finscheds, fairscheds, behs, finbehs and fairbehs in place of ezecs.

Certain converses of the preceding lemma are also true. The following lemma says that
executions of component automata can be patched together to form an execution of the

composition.
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Lemma 6.3 Let {Ai}icr be a strongly compatible collection of automata, and let A = [Tier As.
For all i€, let oy be an execution of A;. Suppose B is a sequence of actions in ext(A) such
that B|A; = beh(ay) for everyi. Then there is an ezecution o of A such that B = beh(a) and
a; = alA; for all i. Moreover, if o; is a fair ezecution of A; for all i, then o may be taken

to be a fair ezecution of A.

Similarly, schedules or behaviors of component automata can be patched together to form
schedules or behaviors of the composition.

Lemma 6.4 Let {A;}ics be a strongly compatile collection of automata, and let A =T];c; A;.
Let B be a sequence of actions in acts(A). If B|A; € scheds(A;) for all i € I, then B €
scheds(A). Moreover, the same result holds for fairscheds, behs and fairbehs in place of

scheds.

The previous lemmas are often useful in proving that certain automata solve certain prob-
lems. In particular, sometimes correctness conditions are formulated to say that every be-
havior of an automaton is also a behavior of a given composition A. One way of showing
that a given sequence of actions is a behavior of A is by first showing that its projections
are behaviors of the components of A and then appealing to the preceding lemmas. ‘

Composition of Schedule Modules

Corresponding to our composition operator for automata, we also define a composition
operator for schedule modules. The composition H = [licr H; of strongly compatible schedule
modules {H;};cs is defined to be the schedule module with

e sig(H) = [Tier sig(H;),

¢ scheds(H) is the set of sequences 8 of actions of H such that Bl H; is a schedule of H;
for every i € I

The following lemma shows how composition of schedule modules corresponds to com-
position of automata.

Lemma 6.5 Let {A;};cs be a strongly compatible collection of automata and let A = [];c; A;.
Then Scheds(A) = [1;c;Scheds(A;), Fairscheds(A) = [1;erFairscheds(A;), Behs(A) = IT;c;Behs(A;)
and Fairbehs(A) = [1;e;Fairbehs(4;).
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Preserving Properties

Although automata in our model are unable to block input actions, it is often convenient
to restrict attention to behaviors in which the environment obeys certain ‘well-formedness’
restrictions. A useful way of discussing such restrictions is in terms of the notion that a
module ‘preserves’ a property of behaviors: as long as the environment does not violate the
property, neither does the module. Such a notion is primarily interesting for properties that
are ‘prefix-closed’.

A set of sequences P is prefiz-closed provided that whenever @ € P and 8 is a prefix
of @, it is also the case that # € P. A module M is said to be prefiz-closed provided that
behs(M) is prefix-closed. Let M be any prefix-closed module and let P be a prefix-closed
set of sequences of actions in ext(M). We say that M preserves P if 8 = #'r € finbehs(M),
7 € out(M) and 4’ € P together imply that 3 € P. Thus, if a module preserves a property
P, the module is not the first to violate P: as long as the envircnment only provides inputs
such that the cumulative behavior satisfies P, the module will only perform outputs such
that the cumulative behavior satisfies P.

Hiding Actions

Here we define an operator that ‘hides’ some of the output actions of a module by converting
them to internal actions. We begin with a hiding operator on action signatures: if S is an
action signature and ¥ is a subset of out(S), define hides(S) = S, where in(S’) = in(S),
out(S’) = out(S) - ¥ and int(S’) = int(S)UX. Now we use the hiding operator on signatures
to define a hiding operator for automata and schedule modules: if M is a module with
signature S, and ¥ C out(S), then let Aides(M) be the module M’ that coincides with M

except that sig(M’) = hideg (sig(M)).

6.1.3 Candy Machines

In this section, we illustrate many of the preceding definitions using examples of simple
candy machines. (This class of examples is popular in the CSP literature, so this choice
should facilitate comparison of the models.) These examples show how our model is used to
define simple nondeterministic processes. They also show how problems can be stated, and
how it can be proved that certain automata solve certain problems. Finally, they show how
processes can interact in the model, although the style of interaction is very simple (normally
a strict alternation of button pushes and candy dispensations).

Candy Machines

In this subsection, we describe three specific candy machines < I/O automata. Candy
machine model CM-1 has the follo~ g action signature.
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Input actions: PUSH]1, PUSH2
QOutput actions: SKYBAR, HEATHBAR, ALMONDJOY
Internal actions: none

We will sometimes abbreviate the two push actions as 1 and 2, respectively, and the
three dispensation actions as S, H and A. The state of CM-1 consists of one variable ‘but-
ton_pushed’, which takes on values 0, 1 and 2, initially 0. Next we describe the transition
relation of CM-1. It should not be hard for the reader to translate the given description into
a transition relation: (s’,7,s) is a step of the automaton exactly if the precondition of 7 (if
any) is satisfied in s’ and s is a possible result of running the code in #’s ‘Effect’ starting

from s’.

PUSHI1
Effect: button_pushed :=1

PUSH2
Effect: button_pushed := 2

SKYBAR

Precondition: button_pushed =1
Effect: button_pushed := 0

HEATHBAR
Precondition: button_pushed = 2
Effect: button_pushed := 0

ALMONDJOY

Precondition: button_pushed = 2
Effect: button_pushed := 0

Thus, when the customer pushes button 1, CM-1 can dispense a SKYBAR. When the
customer pushes button 2, CM-1 can dispense either a HEATHBAR or an ALMONDJOY,
but not both. The partition for this automaton, part(CM-1), is defined to group together
ALMONDJOY and HEATHBAR and to keep SKYBAR in a singleton set.

Candy machine model CM-2 is identical to CM-1 except that its HEATHBAR action
has Precondition ‘false’. This candy machine never dispenses HEATHBARS, but is able to
dispense SKYBARs and ALMONDJOYs. Model CM-3 is identical to CM-1 except that all
three candy dispensation actions have Precondition ‘false’. That is, it never dispenses candy.
As one might expect, it is not a very useful candy machine from the point of view of the

customer.
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Specifications for Candy Machine Behavior

Now we describe some interesting notions of correct candy machine behavior.

Safe Candy Machine Behavior

Some basic requirements for a candy machine can be described by the schedule module
SAFE-CM. SAFE-CM has the same action signature as CM-1, and has as its set of schedules
the set of sequences over the symbols 1,2,5,H,A satisfying the following condition: every S
is immediately preceded by a 1, and every A or H is immediately preceded by a 2.

In order to show that CM-1 is a safe candy machine, i.e., that it solves the problem
described by SAFE-CM, we must show that all fair behaviors of CM-1 satisfy the given
requirement. Note that this requirement, (as usual for < ‘ety requirements) holds for an
infinite sequence if and only if it holds for all finite prefixes ¢: the infinite sequence. Therefore,
it suffices to show that all finite behaviors of CM-1 satisfy the given requirement.

We proceed by induction on the length of a behavior, using an inductive hypothesis that
characterizes the state of CM-1 in terms of the preceding events, i.e., button_pushed = 1 if
the last event in the sequence is PUSHI, 2 if the last event in the sequence is PUSH2, and
0 otherwise (i.e., if the sequence is empty, or if the last event is a dispensation event). The
inductive step considers cases based on the five possible events. For instance, if SKYBAR
ooccurs, its Precondition implies that button_pushed = 1 just prior to the dispensation; thus,
the immediately preceding symbol in the sequence is 1, as needed. The other cases are
similar. It follows that CM-1 is a safe candy machine.

It is also easy to see that CM-2 is a safe candy machine. However, saying that CM-1 and
CM-2 are safe candy machines is not really saying enough, since the same is also true for
CM-3. CM-3’s fair behaviors are just the finite and infinite sequences of 1’s and 2’s, which
trivially satisfy the required condition. Although CM-3 is a safe candy machine, it is not a
very interesting one. Therefore, we will give a stronger specification below.

Well-Formedness

In discussing correct candy machine behavior, it is helpful to consider certain ‘well-
formedness’ conditions on the interaction between the machine and its environment. For
example, we may want to restrict attention to interactions in which push and dispensation
events alternate strictly. Define a sequence of candy machine actions to be well-formed if
1t consists of alternating input and output (push and dispensation) actions, starting with
an input action. Notice that CM-1 has behaviors, in fact fair behaviors, that are not well-
formed, e.g. 11S11S... is a non-well-formed fair behavior of CM-1. This is not surprising,
since CM-1 does not (in our model) have the power to insure that its environment preserves
well-formedness. However, it is easy to see that any safe candy machine, including CM-1,
preserves well-formedness, according to the definition of ‘preserves’ given in Section 6.3.
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Live Candy Machine Behavior

A stronger set of requirements than SAFE-CM can be described by the schedule module
LIVE-CM. LIVE-CM has the same action signature as CM-1. Its set of sequences are those
that are safe candy machine sequences and that in addition satisfy the following condition:
‘If the sequence is well-formed, then every push event has a later dispensation event.’

CM-3 is not a live candy machine, because it has fair behaviors, such as the sequence
with the single element 1, that do not satisfy this condition. (This sequence satisfies the
well-formedness hypothesis, but does not satisfy the liveness conclusion.) On the other hand,
CM-1 is a live candy machine, which we can prove as follows. Suppose not; then there is
a fair behavior of CM-1 that is well-formed and that contains a push event that is not
followed by any later dispensation event. By well-formedness, the only possibility is that
the seqxience is finite and ends with the given push event. Say, for example, that the push
event is PUSH1. Then by the state characterization given above, the state after the given
schedule has button_pushed = 1. Then the SKYBAR dispensation action is enabled in this
state. But the definition of a fair execution implies that no action of CM-1 can be enabled
in the final state, which yields a contradiction.

CM-2 is also a live candy machine, even though it has less nondeterminism than CM-1.
The proof is similar to that for CM-1.

For the reasons discussed in Section 6.2, LIVE-CM does not admit trivial solutions.
Anything that satisfies the specification must be able to respond to any pattern of pushes
(since it is an I/O automaton, with the input-enabling condition). Moreover, responses have
to be safe, and if the pushes arrive in a well-formed way, responses must in fact be made.

One might ask the technical question whether it might be reasonable to eliminate the
well-formedness hypothesis in the live candy machine behavior specification. If we did this,
then we might arrive at a stronger specification for a live candy machine, one that requires
that the machine must always issue candy sometime after each push, regardless of whether
the pushes happen in a well-formed manner. While this might be a reasonable requirement
for a candy machine, CM-1 does not satisfy it. For consider the (non-well-formed) behavior
121212... of CM-1. This contains push events that are not followed by dispensation events.
However, we claim it is a fair behavior of CM-1, since each class in the partition part(CM-1),
{S} and {A,H}, has infinitely many points in the sequence at which no action in that class is
enabled. (It might be helpful for the reader to imagine that there are two ‘processes’ inside
the candy machine, where process 1 is in charge of dispensing SKYBARS and process 2 is
in charge of dispensing ALMONDJOYS and HEATHBARS. Every time process 1 tries to
perform its task, it happens that the value of button_pushed is 2, so it cannot do anything.
Similarly, every time process 2 tries to perform its task, the value of button_pushed is 1. So
neither process can cause any output to occur.) Since we have exhibited a fair behavior of
CM-1 that contains a push but no later dispensation, CM-1 does not satisfy the proposed

stronger specification.
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Customers

We now describe particular customers that might interact with a candy machine. It is con-
venient also to describe such customers as I/O automata also. Customer CUST-1 continues
to request candy bars ad infinitum, nondeterministically choosing which button to push.
CUST-1’s action signature is the ‘complement’ of that of the candy machines’:

Input actions: SKYBAR, HEATHBAR, ALMONDJOY
Output actions: PUSHI1, PUSH2 -
Internal actions: none

, + .
The state of CUST-1 consists of one variable ‘waiting’, which takes on values ‘yes’ and

‘no’, initially ‘no’. CT'ST-1’s actions are as follows.

SKYBAR
Effect: waiting := no

HEATHBAR
Effect: waiting := no

ALMONDJOY
Effect: waiting := no

PUSH1
Precondition: waiting = no
Effect: waiting := yes

PUSH2
Precondition: waiting = no
Effect: waiting := yes

The partition part(CUST-1) puts PUSH1 and PUSH2 together in one equivalence class.
It is easy to see that CUST-1 preserves well-formedness; in fact, it never pushes unless all
previous pushes have been followed by dispensations. Also, in any well-formed fair behamor,
after any dispensation event, CUST-1 eventually pushes a button once again.

Customer CUST-2 is somewhat more selective than CUST-1. It pushes button 2 re-
peatedly just until the machine dispenses a HEATHBAR. Then it pushes button 1 forever.
Formally, CUST-2 has another variable ‘heathbar_received’ in its state in addition to ‘wait-
ing’. This variable takes on values ‘yes’ and ‘no’, initially ‘no’. The actions of CUST-2 that
differ from those of CUST-1 are as follows.
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HEATHBAR

Effect: waiting := no; heathbar_received := yes

PUSH1

Precondition: waiting = no; heathbar_received = yes
Effect: waiting := yes

PUSH2
Precondition: waiting = no; heathbar_received = no

Effect: waiting := yes

It is easy to show that CUST-2 implements CUST-1, using a possibilities mapping f that
maps each state s of CUST-2 to the singleton set containing the state of CUST-1 that only
contains the ‘waiting’ variable of s. In fact, it can be shown that CUST-2 solves CUST-1,
according to our formal definition of ‘solves’. A straightforward proof can be based directly
on the definition of fair execution and the fact that for every state s of CUST-2, some output
action is enabled in s for CUST-2 exactly if some output action is enabled irn {(s) for CUST-1.

Customer CUST-3 is similar to CUST-1 except that it is required eventually to take a
transition to a ‘satiated’ state from which it no longer requests any candy bars. Formally,
CUST-3’s state has an additional ‘satiated’ variable besides the ‘waiting’ variable of CUST-
1; it takes on values ‘yes’ or ‘no’, initially ‘no’. CUST-3 has an additional internal action

BECOME_SATIATED, defined as follows.

BECOME_SATIATED
Precondition: satiated = no
Effect: satiated := yes

Also, each of PUSH1 and PUSH2 has the additional Precondition ‘satiated = no’. The
BECOME_SATIATED action is in a class by itself in part(CUST-3).

Note that CUST-3 implements CUST-1, but does not solve CUST-1; there are fair be-
haviors of CUST-3, such as the empty sequence, that are not fair behaviors of CUST-1.

Candy Machines and Customers

Now we consider the composition of candy machines and customers. First consider the
composition of CM-1 and CUST-1. Since each component preserves well-formedness, the
composition has only well-formed behaviors. We claim that all fair behaviors of the compo-
sition are infinite. Suppose not: then consider any finite fair execution. By well-formedness
and a simple assertion characterizing the states after finite executions, the state of the com-
position after the execution either has waiting = ‘no’ and button_pushed = 0, or has waiting
= ‘yes’ and button_pushed = 1 or 2. In the former case, PUSH1 is enabled, while in the




I/0 Automata , 65

latter case, either SKYBAR or HEATHBAR is enabled. But the definition of a fair execution
implies that no action of the composition can be enabled in the final state.

In fact, it is not hard to see that the fair behaviors of the composition of CM-1 and
CUST-1 are exactly the infinite well-formed sequences in which each dispensation action
dispenses an appropriate candy (according to the most recent push).

The composition of CM-1 and CUST-2 yields exactly the sequences of the form
2,A2A,.. 2, A2A.., or 2,A2,A,.,2,A2H]1S,1S,.. as its fair behaviors. The composi-
tion of CM-1 and CUST-3 produces exactly the even-length finite well-formed sequences in
which each dispensation action dispenses an appropriate candy. Also, the composition of
CM-2 and CUST-2 yields the single sequence 2,A,2,A,... 2,A,2,A.... as its only fair behavior.
All of these, and similar characterizations for the behavior of the other compositions, can be
proved by straightforward methods similar to those used above.

The previous arguments about the behavior of compositions of automata are based di-
rectly on the internal structure of the component automata. Sometimes it is possible to
break up such a proof, using properties of the behavior of the component automata to prove
a property of the composition. Formally, in order to prove that the composition of the
automata {A;}ics solves a problem, one might prove that each component automaton A;
solves a schedule module H;, and then prove that the composition of the {H;}:e1 solves the
problem.

For example, we reconsider proving that every fair behavior of the composition of CM-1
and CUST-1 is an infinite well-formed sequence of actions in which each dispensation action
dispenses an appropriate candy. Let LIVE-CUST be the schedule module whose signature
is the same as CUST-1’s, and whose schedules are exactly those in which 1. the customer
is not the first to violate well-formedness, and 2. if the sequence is well-formed, then it is
either infinite or else finite and ending with a push event. Then it is easy to see that CUST-1
solves LIVE-CUST. We have already argued that CM-1 solves the schedule module LIVE-CM
described earlier. So it suffices to prove that every behavior of the composition of LIVE-
CUST and LIVE-CM is an infinite well-formed sequence of actions in which each dispensation
action dispenses an appropriate candy. This is not difficult to show: well-formedness holds
because neither component is the first to violate it, appropriate responses follow from the
specification of LIVE-CM, and the sequence is infinite because neither component stops at
its own turn.

6.1.4 Choosing a Ring Leader

Now we give a brief sketch of another example, the election of a leader in a ring of processors.
This example exhibits much more interesting concurrent activity than the candy machine
example. It shows how one can use the model to reason about interesting concurrent algo-
rithms, and suggests how the model can be used to carry out complexity analysis and prove
lower bound and impossibility results.
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We assume a ring of n processors, each starting with a unique identifier chosen from a
universal totally ordered identifier set I. Each processor can communicate with each of its
neighbors in the ring, using a pair of one-way channels. The processors do not know the size
of the ring, nor the specific subset of I that is actually being used as identifiers. The object
is for a unique processor to perform a ‘leader’ output action. This problem has been widely
studied in the distributed algorithms research area. :

Each processor and each communication channel is modelled as an I/0O automaton. Each
channel automaton has input actions of the form SEND(M) and output actions of the form
RECEIVE(M) (note that since the model uses a global naming scheme, the actual action
names would have to be subscripted with information identifying the particular channel). A
channel’s state is a multiset, consisting of those messages that have been sent but not yet
received; initially, the multiset is empty. The transition relation is as follows:

SEND(M)

Effect: messages := messages U {M}

RECEIVE(M)
Precondition: M € messages
Effect: messages := messages - {M}

The partition puts each different RECEIVE action in a separate equivalence class: this
has the effect of hypothesizing that every message that is sent eventually gets received.

Each processor is also modelled as an I/O automaton, having SEND output actions and
RECEIVE input actions. In addition, it has a LEADER output action by which it can
announce that it has been chosen as the leader processor. It may also have internal actions.

A collection of channel and processor automata is composed into a single system automa-
ton, and then the hiding operator is used to produce a new system automaton in which the
only external actions are LEADER actions. The problem to be solved by the system can be
described by the schedule module whose external action signature has no input actions and
only LEADER output actions, and whose set of schedules consists of the set of sequences of
length exactly 1. That is, in a correct behavior, exactly one LEADER event occurs.

We now describe a particular algorithm for solving this problem, based on that of LeLann
[LeLann77]. Each processor sends its identifier clockwise around the ring. When a processor
receives an identifier, if the identifier is less than its own, the processor discards the received
identifier. If it is greater than its own, the processor passes the received identifier clockwise.
If it is equal to its own, the processor performs a LEADER output action.

In more detail, the state of a processor with identifier i has a variable ‘pending’ which
holds a subset of I, initially {i}. It also has a variable ‘leader-status’, which takes on values
from {‘unknown’, ‘elected’; ‘announced’} and has initial value ‘unknown’. The steps are as

follows.
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Figure 6.2: Impossible Situation if i<j

RECEIVE(j),j €1
Effect: if j > i then pending := pending U {j}
if j = 1 then leader-status := ‘elected’

SEND(j), j € 1
Precondition: j € pending
Effect: pending := pending - {j}

LEADER
Precondition: leader-status = ‘elected’
Effect: leader-status := ‘announced’

Each action is in a separate class of the partition. It is not hard to carry out a correctness
proof of this algorithm using the model. The safety proof (i.e., that no more than one
LEADER event ever occurs) involves proving an invariant assertion relating the identifiers
that appear in different places in the ring, both as processor id’s and in messages. More
specifically, it must be shown that if i < j, then a processor with identifier i, a processor
with identifier j, and a message containing identifier i cannot appear in that order, reading
clockwise around the ring (see figure 6.2 below for illustration).

In order to prove liveness (i.e., that some LEADER event eventually occurs), another
invariant is used, expressing conservation of the message corresponding to the maximum
identifier. Then a ‘variant function’ is defined, describing the progress that has been made
toward election of a leader: for each state, the variant function yields the remaining distance
the maximum identifier needs to travel before reaching its originating processor. The value
of this function is shown never to increase during execution, and at any point where it is
nonzero, the fairness properties of I/O automata imply that some event will eventually occur
to decrease the value. Thus, eventually, the function value reaches zero, which implies that
a LEADER event occurs.

The model can be used to carry out complexitv analysis. For any execution of the
algorithm, the number of SEND or RECEIVE everis can be used as a measure of the
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amount of communication; it is not hard to see that n? is a worst-case upper bound on this
number, where n is the number of processors in the ring. Also, for any execution, time can
be measured as follows. Assign a ‘real time’ to each event, as large as possible, subject to
the requirement that for each class of the partition, the time between successive ‘turns’ for
that class is at most 1. Then the real time assigned to the LEADER event can be taken as
a time measure for the entire execution. It is not hard to see that 2n 4+ 1 is a worst-case
upper bound for the time measure.

The given algorithm is not optimal in its communication requirements; for example,
[Peterson82] contains an algorithm with an O(n log n) upper bound. The algorithm in
[Peterson82] can also be formalized and analyzed using our model. Also, [Burns80] proves
an (n log n) lower bound on the worst-case amount of communication; this result also is

describable in our model.

6.1.5 Other Applications

The model has been used to describe and reason about many different kinds of algorithms,
both in systems applications and in the algorithms research literature. In this section, we

describe some of these uses.

Network Resource Allocation

Our first use of the model was for describing network resource allocation algorithms. [LynchT87]
presents a network arbiter design and proves its correctness, using I/O automata. The algo-
rithm is based on a resource performing a treewalk of a spanning tree of the network graph.
The conditions proved include safety properties (mutual exclusion) and liveness properties
(no lockout).

The correctness proof is done in three levels of abstraction. The problem definition is
presented as a high-level schedule module, in which inputs are requests and returns, and
outputs are grants, all for a particular resource. The intermediate level is a description of
the algorithm in terms of graph theory, formalized as an automaton together with a restricted
set of executions. Finally, the complete distributed algorithm is described as a composition
of automata at the lowest level. It is shown that each level solves the level above it, and
thus that the distributed algorithm solves the arbiter problem.

Most of the interesting reasoning about the algorithm is done at the intermediate level,
in terms of graphs. This reasoning is close to the intuitive reasoning one would normally
use to understand and explain the algorithm. The interesting work involves showing that
the intermediate level solves the high-level problem statement. In contrast, showing that the
lowest level solves the intermediate level is a long but straightforward case analysis.

[LynchT87] also contains an analysis of the time complexity of the algorithm, demon-
strating an O(n) worst-case upper bound, where n is the rumber of nodes in the network,




I/O Automzia 69

and an O(d) worst-case upper bound when a request does not overlap with any others, where
d is the diameter of the network. The time analysis proof follows the proof of ‘no lockout’
very closely, suggesting that there may be a general correspondence between liveness proofs
and proofs of upper bounds on time.

We have also used the model to study other network resource allocation algorithms.
For example, we can give an algorithm for the ‘Drinking Philosophers’ problem: in this
problem, users request sets of resources by name, with the same user possibly requesting
different sets of resources each time he makes a request. [ChandyM84] contains an algorithm
for this problem, constructed by modifying a particular Dining Philosophers algorithm. Our
algorithm, based on the one in [ChandyM84], is described as a composition of automata that
solve the Dining Philosophers problem and automata that carry out additional bookkeeping.
Our use of composition allows us to use any Dining Philosphers algorithm as a ‘subroutine’;
some choices can be shown to yield better time performance for the resulting Drinking
Philosophers algorithm than is yielded by the algorithm of [ChandyM84].

Synchronizers

In [Awerbuch85], Awerbuch describes a synchronizer algorithm - a distributed algorithm
designed to convert programs written for synchronous networks into versions that can be
used in asynchronous networks. In this algorithm, the network nodes are partitioned into
clusters, and different strategies are used to synchronize within clusters and among clusters.
The algorithm is clever, but fairly complex, and is presented without formal proof. In [Feke-
teLS87], we provide a new presentation and a proof for Awerbuch’s algorithm. The algorithm
is decomposed into separate automata for intercluster and intracluster synchronization. The
intercluster synchronizer is further decomposed into a piece executing at each node. In fact.
Awerbuch’s actual program for each node is described as the composition of two automat:
one participating in intercluster and one in intra. uster synchronization.

Communication

We have recently presented a correctness proof for the intricate distributed minimum span-
ning tree algorithm of [GallagerHS83]. The techniques used are based on the hierarchical
structure used in [LynchT87]. However, instead of a linear hierarchy of algorithms, we use
a lattice of algorithms. The complete algorithm has several different projections onto higher
level ‘subalgorithms’, where each subalgorithm represents one task performed by the main
algorithm. The proof involves showing that the subalgorithms all solve the minimum span-
ning tree problem and that the full algorithm ‘solves’ all of the subalgorithms. In showing
the latter, we make use of many properties of the separate subalgorithms. We develop the
basic theory needed for lattice-structured proofs.

More recently, we have been using I/O automata to characterize correct behavior : r



70 | Lecture 6: September 29

physical channels and data links. We are attempting to prove that certain types of data
link behavior can be implemented in terms of certain types of physical channels, while other
types cannot. Preliminary results show that interesting data link behavior seems to require
at least some stable storage (whereas previous work shows that a single stable bit at each
end suffices). Also, it appears that the data link protocol must use unbounded size headers
to achieve reasonable behavior, in case the underlying physical channels are not FIFO.

Concurrency Control

We have been using the model as the formal foundation for a new theory of atomic trans-
actions. Transactions arose originally in database systems, but are now used as a basic
construct for general data-oriented distributed programming. Use of transactions in general-
purpose languages has required their extension to allow nesting; nested transactions permit
more concurrency than single-level transactions, and permit localized handling of failures.

We can also use I/O automata to model nested transactions, state the correctness condi-
tions that they must satisty, describe an exclusive locking algorithm for nested transactions,
and carry out a correctness proof. In later papers, we extend this treatment to more general
locking algorithms and timestamp-based algorithms. We also prove correctness of algorithms
for management of ‘orphan’ transactions - transactions that continue to execute even though
some ancestor in the transaction nesting structure has been aborted. ‘We are able to use
I/O automata to decompose the orphan algorithms so that concurrency control and recovery
are handled by one module, and orphan management is handled by another. Correctness
properties for the two kinds of modules are proved separately, and then combined to yield
correctness properties for the complete algorithm.

We have had similar success in describing correctness of algorithms for replicated data
management. We are able to decompose certain replicated data algorithms into modules
that handle concurrency control and recovery at the level of individual data replicas and
modules that implement the data replication algorithm.

Although the model has proved to be a very usable tool for describing these results, its
full power has not yet been used in this work. In particular, only finite executions have so
far been considered, and only safety properties have been proved.

Shared Atomic Objects

A topic of recent research interest has been the study of wait-free implementability of
concurrently-accessible atomic objects in terms of other atomic objects. An object is said
to be atomic, roughly speaking, if it responds to concurrent invocations of operations as if
the operations were executed indivisibly at some time between the invocation and response
times. So far, most of the work has focussed on read-write registers for use by various
numbers of readers and writers. Many of the algorithms are very complex and difficult to
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understand precisely.

The paper [LamportSG], which initiated this research area, contains an interesting formal
model based on partial orderings of operations. However, most of the subsequent papers
do not use Lamport’s model, but instead include their own models and definitions. The
multiplicity of models has contributed to making the papers very difficult to read.

In [Bloom87], Bloom uses the I/O automaton model as the basis for stating correctness
conditions for atomic read-write registers, for describing a new algorithm (which implements
2-writer n-reader registers from 1-writer n+1-reader registers) and for proving the algorithm
correct. He describes the solution as a composition of automata for each of the reader and
writer protocols and automata for the 1-writer registers used in the implementation. The
combination is shown to implement the desired 2-writer register. The work is rigorous and
clear; we hope that a similar presentation will help -arify some of the other algorithms.

New work by Herlihy on impossibility results for  ~mic object implementations also uses
the I/O automaton model [Herlihy88].

Dataflow

We can formulate the semantics of dataflow networks in terms of I/O automata. We define
the notion of ‘determinacy’ (i.e., that the sequence of output actions is uniquely defined by
the sequence of input actions), a notion that is considered important in dataflow compu-
tation. We state a theorem that expresses Kahn’s main result about dataflow networks -
that the semantics of networks of determinate components can be uniquely defined using the
least fixed point operator applied to certain equations involving behavior of the individual
components. We then prove a theorem showing the equivalence of our operational semantics
and Kahn’s fixed-point semantics.

6.2 Exercises

1. Give a direct proof of a special case of the Burns-Lynch impossibility result, saying
that 2 processes cannot achieve mutual exclusion with progress using a single read-
write shared variable. Your proof should use the same basic ideas as in the n-process
result, but the restriction to n = 2 should allow the proof to be simplified.

2. Let A denote the natural numbers. Consider the following two I/O automata:

— Automaton A:
in(A) = 0, out(A) = {“go”}, int(A) = 0
states(A) = {s,t}
start(A) = {s}
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steps(A) = {(s,“go”,t)}
part(A) = {{“go"}}
— Automaton B: :

in(B) = {“go”}, out(B) = {“ack”}, int(B) = {“increment”}

states(B) = {(“on”,3), i € N} U {(“off”2), 1 € N}

start(B) = {(“on”,0)}

steps(B) = {((“on”1),“increment” (“on”,i + 1)),7 € N} U
{((“on”7),“go”,(“oft” 7)), € N} U
{((“off” 2),“go”,(“off,0)), i € N} U
{((“off”,3),“ack” ,(“off” i — 1)), 1 € N}

part(B) = {{“increment” },{“ack” }}.

For each of the three automata A, B and the composition A x B, describe the sets of
behaviors and fair behaviors.

3. Recall the definition of a read-write atomic register given in class. (Basically, all values

returned are consistent with an execution in which each read and write is shrunk to
an instant in the interval between the request and the acknowledgement.)

a. Give an I/O automaton that is a read-write atomic register for 2 readers and 2
writers.

b. Argue (briefly) that the automaton you define solves the atomic register problem
in the sense that all its fair behaviors should satisfy the conditions given in class.
You may first want to describe the set of allowable behaviors.

. An I/0 automaton A is deterministic if (a) for each state s and action =, there is at

most one state s’ such that (s,7,s’) € steps(A), and (b) for each state s, there is at
most one locally controlled action 7 for which A has a step of the form (s, 7, s’ ).
Show that for each I/O automaton A, there exists a deterministic I/O automaton B
with the same external signature as A, and such that fairbehs(B) C fairbehs(A). (It
follows that B solves any problem that A does.)
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This lecture is devoted to giving examples of how to apply I/O Automata to some of the
problems discussed in previous lectures.

7.1 Modeling Shared-Memory Mutual Exclusion Al-
gorithms with I/O Automata

The I/O Automata Model was not originally designed to model shared memory algorithms.
However, it is possible to do so. The following is an example of how one might model mutual

exclusion algorithms based on shared registers.

Process & Shared Variable Action Signatures. Process : has actions to communicate
with the outside world: ¢ry; (input), critical; (output), exit; (input), and remainder;
(output). A process ¢ and a shared variable j have actions to communicate between
each other; from the point of view of the shared variable, ;7 has corresponding pairs of
invocation and response actions read; ; (input) and return,;, (output) and write; ;,
(input) & ack;; (output).! The variables and processes may also have an arbitrary
collection of internal actions.

Process Automata Semantics. Process p; is any arbitrary IOA satisfying the following
conditions, where we assume that all states of p; are partitioned into four classes: T,

C, E, and R.

We define ezternally well-formed sequences of external actions of p; to be those se-
quences (3 such that g restricted to outside world operations is a prefix of the infinite
sequence try;, critical;, remainder;, try;,.. .

1. Process p; preserves external well-formedness.

2. In any execution of p;, whose behavior is externally well-formed, all states up to
the try; are R states, states between try; and critical; are T states, states between
critical; and exit; are C states, and those between exit; and remainder; are E
states.

1These are simple shared variables with just read and write operations. However, the data types could
be more complicated, e.g., a shared queue with insert and remove operations, etc. But no matter how
complicated, they will still require an appropriate form of invocation and response actions.
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A

try;

critigal;

exit;

remdinder;

r 3

PROCESSES VARIABLES

Figure 7.1: An I/O Automaton Model of a Shared-Variable Mutual Exclusion Algorithm
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3. pi’s locally controlled steps are only enabled in T and E states, never in C or R.

Shared Variable Automaton Semantics For illustration, we define an atomic register.
A read-write atomic register z with initial value vy is an IOA that solves a particular

schedule module M, ,,.

* We define variable well-formed for z and i to mean that the calls and responses involving
z and ¢ are alternating call, response, call,...starting with call, where each response
corresponds to the preceding call.

Then schedule § € scheds(M,,,,) provided that following conditions are satisfied:

1. For all 2, 3 restricted to the actions of 7 is variable well-formed for = and ¢, or else
the first violation of this property is an “incorrect call”.

2. If B is variable well-formed for z and ¢, then each request has a corresper g later
response (a liveness assumption). Moreover, it is possible to insert a y-: form; ,
action between each “request;,” and “respond;,” action, in such a way that: if
B is reordered with the request and respond put just before and after the perform
(“shrinking the interval”) and then the internal actions thrown away, the resulting
new sequence 7 is a correct behavior for a serial read-write object (each read gets
the value of the preceding write, if any, or v if none). It is “as if” each operation
occurred at some time during the given intervai.

By imposing these restrictions, we can model an atomic object with non-atomic opera-
tions. Of course, we can also generalize this definition to more general data types, including
general test & set.

7.2 Modeling Safe Registers with I/O Automata

For the special case of a read-write variables with 1 writer, we can define a weaker kind of
register called a “safe” register. For a safe register, recall that reads not overlapping any
writes get the last preceding write value, while reads overlapping writes get arbitrary values.

The definition uses the first condition of M, ,, for well-formedness, but now Condition 2
is modified. The definition is as follows.

Sequence 3 € scheds(M,,,,) provided that following conditions are satisfied:

1. For all 7, B restricted to the actions of ¢ is variable well-formed for z and i, or else
the first violation of this property is an “incorrect call”.

2. If B is variable well-formed for z and i, then each request has a corresponding
later response (a liveness assumption). If a read request overlaps a write request,
an arbitrary value is returned.
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7.3 Mutual Exclusion Correctness Conditions usmg
I/0O Automata

Formally, the mutual exclusion problem can be expressed in terms of solving a schedule
module M wita.

Signature For each process ¢, acts(M) contains:

INPUTS: try,, exit;, and
OUTPUTS: critical;, remainder;.

Schedules A sequence B of actions of M is in scheds(M) iff the following conditions hold:

1. For all ¢, B preserves external well-formedness for 3.

2. (Mutual Exclusion) If § is externally well-formed for all 7, then there is no point
in B in which two processes are in the critical region, where being in the critical
region means that critical; was the most recent action of 2.

3. (Progress) If B is externally well-formed for all 7, and each critical; has a later
exit;, then for every point in § at which someone is not in the remainder region,
there exists a later critical; or remainder; action.?

It is instructive to reformulate our earlier notions of “normal cperation” and “normal
progress” using this model:

Normal Operation is captured by

o The fairness definition for the process I/O Automata,

e The schedule module definitions for the shared variables that say each request
gets a later response, and :

e The hypothesis in the conditional problem specification saying that each critical;
is eventually followed by ezit;.

Normal Progress is given in the definition of M.

20r, you could say the sequence cannot be finite and end with anything other than all processes in the
remainder region. These statements are equivalent in the sense that a solution to one is a solution to the

other (Exercise: Prove this).
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A difference between this model and the original informal model is that this one has
atomic registers with separate actions, while the other had requests and responses as one
atomic action. The difference is significant if we want to carry out formal correctness proofs,
because the extra actions add to the number of interleavings we need to consider, and
therefore add to the complexity of the proofs. For example, an invariant assertional proof
would have more values of the program counter. Luckily, there is a theorem that will allow
us to consider only executions in which requests and responses are atomic:

Theorem 7.1 Let S be a system of processes and shared atomic variables. Suppose (tech-
nical assumption) in all ezecutions of each p; whose behaviors are externally well-formed, if
pi invokes an operation on a variable, then no locally controlled action of p; occurs until a
corresponding response happens. Let o be a fair ezecution of S whose behavior is externally
well-formed for each i. Then there exists a fair execution o of S such that:

1. In o, the only occurrence of request an: -esponse actions occur as pairs of correspond-
ing actions.

2. beh(a) = beh(a’).

Proof: Start with a and do some reordering to get o’. First get “perform” actions inserted
(by definition of atomic objects). Then move the request and response actions to bracket the
performs. We can do this without moving any actions of a process p; past any other action
of p;®>. Now we remove the performs and adjust the states accordingly to reflect the moved
actions. The result, o, is also a fair execution of S whose behavior is externally well-formed
for each ¢. That the two required properties hold for a' is obvious. n

This theorem can be used to simplify correctness proofs. Consider the mutual exclusion
correctness conditions given earlier. To apply this theorem we still need to show Condition
1 directly (that o preserves external well-formedness). But the other two conditions, mutual
exclusion and progress, are conditions on the external behavior of fair executions with ex-
ternally well-formed behaviors. By this theorem, if something is true for all fair executions
in the given restricted form, it’s true for all fair executions. So it sufﬁces to cons1der falr
executions in the restricted form only.

This theorem can be used to carry out invariant assertional proofs. For example, one
can carry out an assertional proof of mutual exclusion. Using the theorem, consider the
fair executions of S that have corresponding requests and responses consecutive. We can
consider the system states before and after such pairs in stating the invariant, but i ignoring
the intermediate states. The system states are similar to those we informally described

earlier:

3This is because of the technical assumption in the theorem that says p; doesn’t do anything (locally
controued) from the time when it requests an operation and until the time when it gets a response. Also,
since p; invoked an operation, it must be in the trying or critical regxom by basic process assumption. Then
since p; is externally well-formed, no input actions come into p; irom t. outside.
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System State = protess states + varlable states (states of IOA’s).

Process States are the IOA state, summarizing the program counter, local variables,
region designation, etc., all included in one state.

Variable States are a bit of a problem. Registers are defined to be arbitrary IOA’s
subject to certain correctness conditions. So we don’t really know what the states

are!

But there aren’t a lot of choices: the behaviors of an atomic register that arise from fair
executions with the pairing property just look like request,response, request, response, .. .,
where (by thevshrinking property), these must give responses as in a serial object. So we
might as well assume we have a serial object — after each pair, the state is updated as in
usual sequential programming languages. For example, for a read-write variable,

e the state starts at an initial state,
e after a read, the state is unchanged, and
e after a write, the new state is the value written.

So we can regard the state as just the data value. This leads to proofs like the ones we
did earlier.

7.4 Time Bounds

How do we do time analysis like the Peterson tournament analysis, using IOA’s? The I/0
Automaton model per se does not provide any direct support for such analysis; there’s no
notion of time defined formally. Further research on using I/O Automata models for time
analysis is needed. As a possible direction, suppose we add time information to executions in
order to analyze them. We define a timed execution to be an execution in which each event
has an associated non-negative number such that the sequence of those numbers, ordered
according to the position of the events in the execution, is monotone non-decreasing. The
numbers indicate the time at which the corresponding events occur.

We need some assumptions to give upper bounds on the difference between times for
certain events. For example, we might like to bound the time between critical; and ezit; to
a constant b, or to bound by a constant the time from any point in an execution until the
next time when either a locally controlled action of p; occurs or none is enabled.

This latter condition seems like it would fit nicely into the definition of an IOA. We could
define an augmented IOA called a timed I/O Automaton whose executions are defined to be
timed executions. Instead of fairness, where each class in the partition gets a turn infinitely
often, we use a notion of “time-bounded fairness”: we associate a ¢, to each class C and
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say each class gets a turn within time ¢,. (Formally, ¢. is the upper-bound on the difference
between the times when C takes steps or has no action enabled.)

By specifying the time bounds on the externally controlled events (in the case of the
shared registers, the time to go from the critical region to the exit region), then we can
derive the time bounds on the remaining events, such as an upper bound on the time in the

trying region.

7.5 Deterministic verses Non-Deterministic Algorithms

Recall that in the impossibility proofs, we assumed a deterministic algorithm. When p; took
a locally controlled step, which action it took and which state resulted was determined. And
when an input action occurred for p;, the next state was determined.

Question: Why does proving impossibility for determined algorithms to solve a problem
imply impossibility for arbitrary algorithms to do so?

The answer is part of a general result that says:

Theorem 7.2 For an I/O Automaton A, there exists a deterministic I/O Automata A’ with
fairbehs(A') C fairbehs(A).

This theorem says if A solves a problem, then there is a deterministic I/O Automata
which also solves the problem. So conversely, impossibility for deterministic automata implies
- impossibility for all automata. The proof of the theorem is left as an exercise.
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Until this point in the course, all of the algorithms we have studied have been determin-
istic algorithms, algorithms in which the current local state of a processor (possibly together
with the shared memory) uniquely determines the next action the processor will perform,
and hence uniquely determines the processor’s next state. This lecture introduces a new class
of algorithms called randomized algorithms, in which the current local state of a processor
determines only a set of possible next states, and in which a processor chooses its next state
by selecting one of these possible next states at random according to some proba! ity dis-
tribution. Most frequently a processor’s current state determines a set of only twc >ossible
next states and the processor chooses its next state by flipping a fair coin, choosing one state
if the outcome of the coin toss is heads and choosing the other if the outcome is tails. This
simple but surprisingly powerful idea of allowing processors to flip coins during computation
was first introduced to distributed computing by Michael Rabin. In this lecture, we study
his randomized algorithm for mutual exclusion [Rabin82].

8.1 Randomizad Algorithms

Whenever we prove a lower bound for a problem in this class, we do so by first assuming the
existence of a solution consuming less of a resource than is demanded by the lower bound,
and then constructing a strange execution of this algorithm that violates one of the problem’s
correctness conditions; for example, we might construct an execut: in which a processor
takes its steps only when certain shared variables are set to certain - cky values that keep
the processor from making any progress during the execution. The «..:struction of such an
execution is facilitated by the fact that a processor’s next state is completely determined by
its local state and the shared memory: we show that, starting from a given global state, it is
possible to schedule processor steps in such a way that the system must return to this global
state, resulting in an undesirable infinite looping behavior. Sometimes, however, this cycle
can be broken if we allow processors to flip coins as part of their computation. This is one
powerful feature of randomized algorithms. Furthermore, it is natural to believe that these
strange executions constructed during lower bound proofs are extremely unlikely to occur in
practice, and on many occasions we are willing to accept an algorithm that makes mistakes
as long as it behaves correctly “most of the time.” A second powerful feature of randomized
algorithrus is that by allowing processors to flip coins during computation we are able to
impose a natural probability distribution on the set of executions of the algorithm and make
formally precise this idea that the algorithm behaves correctly “most of the time.” There
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are, for example, randomized algorithms for mutual exclusion that on rare occasions violate
the no lockout condition, but for which we can prove that “with probability 1, any processor
in its trving region will eventually enter its critical region.”

Making probabilistic statements about randomized algorithms, however, is often very
difficult. This difficulty has two aspects: the first difficulty is the definition of the probability
space underlying the statement, and the second difficulty is the formulation of the statement
itself. _

Probabilistic statements like “the probability that a toss of a fair coin results in heads
is %” only make sense in the context of a probability space. A probability space consists
of a sample space and a probability measure assigning probabilities to various subsets of
the space. For example, in the preceding statement, the sample space might be the set
{H,T} consisting of the two outcomes of the coin toss, and the probability measure might
assign probability 2 to each event {H} and {T'} that the outcome of the toss is heads or
tails, respectively. Since the probability space underlying a probabilistic statement is usually
clear from context, we are often quite sloppy about defining the probability space. When
making probabilistic statements about randomized algorithms, however, subtle changes in
the probability space can often lead to important differences in the meaning of the statement,
so it is important to define the probability spaces carefully.

Let us consider the definition of a probability space acceptable for use when making
probabilistic statements about a randomized algorithm. Suppose we take as the sample space
* the set of all possible executions of the algorithm, and let us consider the problem of defining
an appropriate probability measure on this set of executions. Given a particular execution,
how do we determine its probability of occurring? Notice that this execution is uniquely
determined by two things: the schedule of processor steps occurring during the execution,
and the sequence of coins flipped by the processors during the execution. Notice also that if
we assign to every execution a probability of occurring, then conditional probability induces
a natural probability distribution on the set of possible schedules and on the set of possible
coin flip sequences.

‘While it is natural to assign a probability to a sequence of coin flips (“the probability
of two heads in a row is 173, is it natural to assign a probability to a schedule of processor
steps? We often think of the choice of the next processor to take its step as a nondeterministic
choice, but it might initially seem natural to assume that all schedules are equally likely.
Unfortunately this may result in a statement that is too weak to be of any general interest:
since an operating system may use a particular scheduling algorithm that may guarantee
that certain schedules will never occur, a result describing the behavior of the algorithm
when all schedules are equally likely will give us no information about the behavior of the
algorithm running under such an operating system.

To avoid the problem of assigning probabilities to schedules, we often assume that the
schedule is under the control of an adversary that determines the order in which processors
take steps. In general, we let the adversary control those factors (such as the processors’
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initial input) that can influence an execution but to which we do not want to assign a
probability distribution. The execution of the protocol is an interaction (a game) between
the processors and the adversary. We will see below why this is a solution to our problem.
Notice that this solution has its own headaches, since now we must formally define what
an adversary is. What information is the adversary allowed to use when it chooses the next
processor to take its step: can it use both a processor’s local state and the shared memory,
- can it use only the shared memory, can it use the sequence of coins processors have flipped so
far, can it use only the “success” or “failure” of a processor’s last attempt to make progress
(e.g., whether or not it entered the critical region), etc.? When is the adversary allowed to
choose the next processor to take its step: can it make the choice interactively during the
execution, or must it choose the entire schedule at the beginning of the execution before
any processor has taken its first step (the first is clearly a more powerful form of adversary
than the second)? Can the adversary be viewed as a deterministic algorithm, a probabilistic
algorithm, a nondeterministic algorithm, etc.? All of these question must be answered. ,
Let us suppose we have answered these questions, and let us see why the definition of
an adversary is useful. Notice that if the adversary is a deterministic algorithm, then an
execution of a protocol P under the control of an adversary A is determined uniquely by the
sequence of coins flipped during the execution, and we know how to assign probabilities to
sequences of coin flips. Thus, having defined an adversary, instead of making statements like
“condition C holds with probability 17 (where, as noted above, the underlying probability
distribution on executiors must implicitly impose a probability distribution on the set of
possible adversaries), we make statements like “for every adversary A, condition C' holds
with probability 1.” What is the probability distribution underlying such a statement?
Notice that if we define for every adversary A a sample space consisting of all executions of
protocol P under the control of adversary A, then every execution in the space is uniquely
determined by the coin flip sequence appearing in the execution. It is very natural to define
a probability measure on this space that assigns to every set of executions the probability of
the coin flip sequences that appear in the executions in this set of executions. Denoting the
resulting probability space by P(A), the statement “for every adversary A, condition C holds
with probability 1” means that “for every adversary A, condition C holds with probability 1
in P(A).”
In addition to the definition of the underlying probability space, we also mentioned that
a second difficulty with making probabilistic statements about randomized algorithms is
in the formulation of the statement itself. This is usually due to the ambiguity of the
English language. For example, the statements “with probability p, if condition C; holds
then condition C, holds” and “if condition C} holds, then with probability 1 condition C,
holds” could be interpreted as having very different meanings. Recall that the implication
“X D Y” means “either =X holds or Y holds.” The first condition, therefore, could be
true even though C; is always false stmply because —( holds with overwhelming probability
(e.g., with probability at least p). The second condition seems to be say that for a fraction p
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of the times C; holds, C; holds as well (i.e., it could be interpreted as a statement about
conditional probability). Finally one point of confusion for those unfamiliar with probability
is that “with probability 17 does not necessarily mean “with certainty.” Comnsider the game
in which a player tosses a fair coin repeatedly and wins as soon as one of the tosses results
in heads. Notice that the player wins in every play of the game except on that rare occasion
when the player tosses nothing but tails forever. This happens, of course, with probability 0.
The player therefore wins the game with probability 1 even though there is one rare instance

in which the player loses.

8.2 Rabin’s Mutual Exclusion Algorithm

Having come to terms with some of the subtleties of randomized algorithms, let us take a look
at Michael Rabin’s randomized algorithm for mutual exclusion [Rabin82]. This algorithm
solves a probabilistic version of the no-lockout mutual exclusion problem using a test-and-
set primitive on a shared variable with O(log n) values. Recall that [BurnsJLFP82] proves
a lower bound of £(n) on the number of values the shared variable must assume to solve
the same problem deterministically. Rabin’s algorithm is an example of how randomized
algorithms are sometimes provably better than deterministic algorithms. Rabin’s algorithm
is also an example of how randomized algorithms are often simpler to state than deterministic
algorithms for the same problem, although their analysis can be much more difficult.

The basic idea of Rabin’s algorithm is that each round of competition for entry to the
critical region consists of a lottery in which each processor draws a number at random,
and the processor drawing the largest number 1s allowed to entry the critical region. The
algorithm uses a test-and-set primitive on a shared variable V = (5, B, R) with three fields:

1. S € {0,1} is used as a semaphore to ensure mutual exclusion as in simple mutual exclu-
sion algorithms where a processor enters the critical region only when the semaphore
is set to 0, sets the semaphore to 1 when entering the critical region, and resets the

semaphore to 0 when leaving;

2. B€{0,...,b} is used to post the largest number drawn by a processor in the current
lottery for entrance to the critical region; and '

3. R€ {0,...,r} is used to post a round number for the current round of competition
for entry to the critical region.

To establish the O(logn) bound on the number of values assumed by V, Rabin takes b to
be [logn] +4 and r to be a small constant such as 99.

The algorithm itself appears in Figure 8.1. To enter the critical region, processor p;
chooses a lottery number b; from {1,2,...,b} at random according to the probability distri-
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Rabin’s Miiual Exclusion Algorithm

Shared variable: V = (S, B, R), where

S € {0,1}, initially 0 ** semaphore **
B e {0,1,...,[logn] + 4}, initially 0 ** posted number **
R e {0,1,...,99}, initially 0 ** round number **

Local variables: Vi,

B; is the chosen number of p;, initially 0
R; is the round number of lottery in which p; is currently participating, initially L

Code for p;:

while V # (0, B;, R;) do ** if not winner at same time C is available **
if (V.R # R;) or (V.B < B;) then  ** not yet participated in lottery **
B; « random .
V.B «— maz(V.B, B;)
R, — VR
unlock; lock;
V « (1,0, random)
unlock;

** Critical Region **

lock;
V.S«20
R,‘ — L
B,’ «—0

unlock;

** Remainder Region **

lock;

Figure 8.1: Rabin’s randomized mutual exclusion algorithm.
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bution . .
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Equivalently, p; chooses b; by repeatedly flipping a fair coin, counting the number of times
the coin is flipped until it comes up heads, and setting b; to the number of the flip that came
up heads. Since, b; must assume valuesin {1,...,b}, p; sets b; to b if the coin does not come
up heads within b flips (that is, if the coin comes up tails b flips in a row). Having chosen
its lottery number b;, p; updates the maximum lottery number chosen by a processor during
the current round, a value posted in B, by setting B to the maximum of b; and B. The
processor then determines whether it has won the lottery: if the mutual exclusion semaphore
S is set to 0 and p;’s lottery number &; is the maximum lottery number B chosen during the
current round, p; sets the semaphore S to 1 and enters the critical region. For the sake of
other processors competing for the chance be the next to enter the critical region, p; resets
the maximum lottery number B to 0 before entering. Upon leaving the critical region, p;
resets the mutual exclusion semaphore S to 0 to allow other processors to enter. This is the
essence of the algorithm. Since, however, p; should play the lottery at most once per round,
a rounid number for each round of competition is posted in R to help processors distinguish
between rounds. The round number for any given round is chosen a random from {0,...,r}
by the winner of the previous round as it enters the critical region. Processor p; records the
current round number R in r; when it chooses b;. Suppose p; has chosen a ticket during the
current round (that is, p; chooses b; after the last processor to enter the critical region has
done so). Then since B and R are reset only when a processor enters the critical region,
we must have (i) b; < B, since p; sets B to the maximum of b; and B when it chooses b;,
and (ii) r; = R, since p; sets r; to the value of R when it chooses b;. Since p; should play
the lottery at most once per round, p; checks that at least one of these conditions is false
before choosing a new lottery number. To increase its confidence that it has actually won
the current lottery (and not a past lottery) when it enters the critical region, p; checks that
R = r; before entering the critical region.

So far we have described a solution to a problem we have not defined. It is easy to see
that Rabin’s algorithm satisfies mutual exclusion since we are using a semaphore to guard
actess to the critical region, and that Rabin’s algorithm satisfies no deadlock since some
processor wins every round and is able to proceed to the critical region. Neither of these
statements are probabilistic statements. The algorithm also satisfies a probabilistic version
of no lockout saying roughly that if a processor in its trying region participates in round %,
then with probability at least ¢/n it will enter its critical region in round % (here c is some
constant).

Before making this statement precise, however, we must define the adversary (in a way
that depends only on our model of computation, and not on Rabin’s particular mutual exclu-
sion algorithm). In our case, the adversary will be required to choose the next processor al-
lowed to take a step as a deterministic function of the sequence of past processors steps and re-




Rabin’s Mutaal Exclusion Algorithm : 89

gion changes. A runis a finite or infinite sequence of the form ¢, (0ld,, new), tz(old,, new,), . ..
where i; denotes an index of a processor p; ; and (oldj,new;) denotes a region change
old; — new;. Such a run is said to be the run of an execution if ¢; denotes the processor pi
taking the jth step in the execution and (0ld;, new;) denotes the region change old; — new;
processor p;; underwent during this step in the execution. The run of a finite prefix of an
execution is defined analogously. If a run r is the run of an execution e or if r is the run of
a finite prefix of e, then we say that e is compatible with r. Notice that there may be many
executions compatible with a given run. An edversaryis a mapping A from the set of finite
runs to the set {1,...,n} determining what processor is to take its next step as a function
of the current prefix of the current run. A run i1({oldy, new,), iy(oldy, news,), ... is said to
be compatible with an adversary A if Afiy(oldy, new,),...,i;(old;, new;)] = i;4, for every 7
An adversary A is said to be normal if for every ' :finite run compatible with A and every
processor p; the following condition holds: if the i.st occurrence of j appears in the run as
i, then newy = R (that is, if p; takes only a finite number of steps, t! 'n its last step leaves
it in the remainuer region).

As previously mentioned, the probabilistic version of the no lockout condition satisfied by
Rabin’s algorithm essentially says that if processor p; participates in round k, then p; enters
‘the critical region in round & with probability at least ¢/n. This makes some sense since each

_processor playing the lottery is equally likely to win, and hence each processor playing the
lottery should have roughly 1/n probability of winning and entering the critical region. To
make this statement precise, we must provide a definition of participation and of a round.
Again, these definitions must depend only on the model of computation, and not on Rabin’s
mutual exclusion algorithm. We define a round of an execution to be a sequence of processor
steps from the time one processor enters its critical region until the time the next processor
enters its critical region; formally, a round cf an execution is a maximal subsequence of the
execution containing one transition T — C at the end of the subsequence and containing no
other transition T — C. We say that a processor p; participates in a round if a transition
I' - Cor R—TorT — T by p; appears in that round. The precise statement of the no
lockout condition is as follows:

Theorem 8.1 For every normal adversary A and every k-round run a compatible with A,
- the probability that p; enters the critical region in round k + 1, given that p; participates in
round k + 1 of an erecution compatible with «, is at least c/n for some constant c.

Let us reiterate the meaning of this statement: Choose a normal adversary A, and
consider the probability space P(A) of all runs of Rabin’s algorithm with the adversary A.
Let E(p;, k + 1) be the set of executions in which processor p; enters the critical region in
round k+1, and let P, p;, k+ 1) be the set of all executions compatible with « in which p;
participates in round & + 1. For every k, every k-round run o compatible with 4, and every
Pi, PI'[E(p,’, k+ 1) l P(Q,p;, k+ 1)} 2 C/n'

Proof: The proof of Theorem 8.1 follows from three lemmas.
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Lemma 8.2 Let each of n players independently flip fair coins, let k; be the first of player
i’s flips coming up heads, and let k = max{k; : 1 = 1,...,n}. The probability that k < b =
[logn] + 4 is at least (%)'1‘13 ~ .94.

Proof: This follows by a simple probability argument; see [Rabin82] for details. |

Lemma 8.3 Let each of n players independently flip fair coins, and let k; be the first of
player i’s flips coming up heads, and let k = max{k; :: =1,...,n}. The probability that two
of the k; are equal to k is at most 3.

Proof: This follows by a longer, but standard, argument; see [Rabin82] for details. u

Lemma 8.4 Assume that each of m < n processors p; choose lottery numbers b; as required
by the algorithm. The probability that two processors p; and py choose numbers b; and by
equal to max{b; : i = 1,...,m} is at most 3 + .06.

Proof: The probability that two processors choose the maximum lottery number is equal to

the sum of

1. the probability that two processors choose the maximum number and in the process
flipped no more than b — 1 tails, and

2. the probability that two processors choose the maximum number and in the process
flipped b tails.

The probability 1 is bounded above by the probability two players draw the maximum in
the infinite game described in Lemma 8.3, which is at most %. The probability 2 is bounded
above by the probability that the maximum in the infinite game described in Lemma 8.2 is
greater than b, which is at most 1 — .94 = .06. u

We now finish the proof of Theorem 8.1. Consider the processor p; that we assume partic-
ipates in the k£ + 1st round. (For notational convenience, let us assume that all probabilistic
statements in the remainder of this proof are implicitly conditioned on the event that p; par-
ticipates in the k + 1st round of an execution compatible with «.) We have previously argued
(informally) that a processor plays the lottery at most once in any round, but notice that it
is possible for p; to participate the k + 1st round and yet not play the lottery: it is possible
that when p; last played the lottery the round number was ¢, and that the last processor
to enter the critical region drew ¢ when it drew the round number for the k¥ + 1st round,
in which case p; may be fooled into not playing the lottery during the k + st round since
R = r;. Since, however, the round number was chosen at random from the set {0,...,99}
(recall that r = 99), p; is fooled with probability at most .01. Thus with probability at least
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.99 processor p; sees R # r; and plays the lottery during the k + 1st round. It follows that
(conditioning on whether p; plays the lottery)

Pr[p; enters C during round k+1] > Pr[p; enters C | p; plays|Pr[p; plays]
= .99Pr[p; enters C | p; plays].

We must compute Pr{p; enters C | p; plays].

Consider the set S of processors that, at the end of the k¥ + 1st round, have recorded
the current round number R as the round number. These are the only processors that can
possibly enter the critical region at the end of the k + 1st round. Notice that if p; is the only
one of these processors to draw the winning number (the maximum drawn by processors
playing the lottery during this round) then p; will enter the critical region at the end of the
round. Thus, Pr[p; enters C | p; plays] > Pr[p; alone draws max | p; plays]. :

The computation of Pr{p; alone draws max | p; plays] follows from Lemma 8.4, modulo
one technical point. Some of the processors in S actually play the lottery during the & + 1st
round, and some of the processors have played and lost the lottery during previous rounds
{rounds in which the round number was also R). Since these processors have lost previous
rounds, intuitively their numbers must tend to be rather small. That is, the probability
distribution for their choice of numbers should be skewed to smaller numbers than the
probability distribution for the choice of processors who actually play in the k + 1st round.
This should, intuitively, increase the probability that p; (who actually plays in this round)
is the processor choosing the mazimum number. Since all we want to do is prove a lower
bound on the probability p; chooses the maximum uniquely, it is acceptable to assume in
our analysis that all processors in S actually play the lottery during the k + 1st round; the
result will be slightly lower than p;’s actually chance of choosing the maximum. We are
handwaving here, but to the best of our knowledge, no one has produced a more rigorous
analysis; and coming up with a better analysis is an interesting problem to work on. Making
this assumption, Lemma 8.4 tells us that the probability the maximum is chosen uniquely is
2/3, and since all processors in S are equally likely to choose the maximum, the probability
pi is the one that chooses this maximura is 1/|S| > 1/n. Thus,

Pr[p; alone draws max | p; plays] > —3%
It follows that Pr[p; enters C during round & + 1] > 992 = ¢/n for some ¢ ~ 2/3. on

‘We note that it is possible to extend Rabin’s result and prove the following:

Corollary 8.5 Let A be a normal adversary, and let o be a k-round run compatible with A
at the end of which processor p; is in the trying region. The probability p; enters the critical
region within the first £ rounds in which it participates following the kth round, given an
ezecution compatible with a, is at least 1 — (1 — c/n)°.
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Proof: It is not hard to use Theorem 8.1 to prove that the probability p; fails to enter
the critical region in the first round in which it participates after the kth round, given an
execution compatible with a, is at most 1 —¢/n. Proceeding by induction on ¢, it is not hard
to use this fact to prove that the probability p; fails to enter the critical region within the first
¢ rounds in which it participates after the kth round, given an execution compatible with «,
is at most (1 — ¢/n). Consequently, the probability of successis at least 1 — (1 —c/n)t. m

As1 — (1 —c/n) tends to 1 as £ tends to infinity, we have the following:

Theorem 8.6 Rabin’s algorithm satisfies the following correctness conditions:

1. mutual exclusion: at most one processor is in the critical region at any time.

2. no deadlock: if at some point some processor is in the trying region, then some processor

eventually enters the critical region.

3. no lockout: for every normal adversary A, with probability 1, if at the end of round k
processor p; is in the trying region, then in some later round processor p; enters the

critical region.

8.3 Ben-Or’s Mutual Exclusion Algorithm

While randomized mutual exclusion using a test-and-set primitive on a shared variable with
O(log n) values is an improvement over deterministic mutual exclusion using §}(n) values.
Ben-Or has actually come up with a mutual exclusion algorithm satisfying the conditions
listed in Theorem 8.6 using only a constant number of values. Like Rabin’s algorithm, Ben-
Or’s algorithm uses a shared variable V = (S, B, R) where S, B, and R are all 0/1 variables.
The difference between Rabin’s and Ben-Or’s algorithm is that the lottery number &; is
chosen to be 0 with probability 1 — 1/n and 1 with probability 1/n.
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Lecture 9: October 13
Lecturer: Nancy Lynch Scribe: Boaz Ben-Zvi

9.1 Mutual Exclusion in Distributed Networks

In the previous lectures we used shared memory as a communication model for processes.
Now lets consider a different architecture — a network, and let processes communicate by

message-passing.

send(m, j) rec(m)

NETWORK

Figure 9.1: Distributed Network: processes communicating by message-passing.

When a process P; does send(m,j), it sends a message m to process P;. The network
guarantees that the message will eventually arrive at P;. A process can also do broadcast(m)
meaning: “do send(m,j) to all ;7.

We would like to implement mutual exclusion in this model. A straightforward solution
is to simulate single-writer shared variables by making them internal to processes. A process
can write to its internal variable, and others can read it by sending messages. This solution
may require a large number of messages and not be very efficient. Many messages may be
used to read a variable, returning the same value, until it is changed. Another idea is to send
messages only when values change. A process that received no message can assume that the
variable’s value has not changed. This idea can lead to some specially tailored solutions.

93
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9.1.1 Modeling
In Figure 9.2, we model a node as two I/O Automata. The buffer (network) is also described

as an I/O Automaton.

Figure 9.2: Distributed network modeled as I/O Automata.

The conditions for normal operation, in well-formed fair behaviors are:

o The user; IOA must guarantee that any crit; action is eventually followed by an ezit;
action. (That is, every user entering the critical region eventually exits it.)

e The BUFFER IOA must guarantee that any send(m,j) action is eventually followed
by a rec(m) action. (That is, every message sent is eventually delivered.)

e The P; I0A continues to take steps (by fairness definition of IOA). In this model it is
allowed to take steps in all regions, including the Critical and the Remainder regions.

9.1.2 Le Lé.nn 1977

Le Lann proposed a simple solution: the processes are to be arranged in a logical ring
P — Py — ... — P, — P, . A token that represents the resource is passed around the
ring in order. When a process P; receives a token, it checks for an outstanding request for
the resource from user;. If there is no such request, the token is passed to the next process
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in the ring. If there is an outstanding request, the resource is granted and the token is held
until the resource is returned and then passed to the next process.

Code for P;:
local variables: token € {none, available,in_use, used}
region € {R,T,C, E}
initial state: token = available at P;, none elsewhere.
region = R
try; no preconditions.
T effect:  region — T
crit; precond: region =T , token = avail
effect:  region «— C , token « in_use
exit; no preconditions.
, effect:  region — E
rem; precond: region = E
- effect: region «— R, token «— used
receive(t) no preconditions.
effect:  token — available
send(t,i+1) precond: token = used V (token = available A region # T)
effect:  token < none
Properties:

e Mutual Exclusion: exists in normal operation because there is only one token, and only
its holder can have the resource.

o Progress: exists in normal operation because the process who holds the token is either:

— in C: then eventually will go to E.
— in T then can go to C.
— orin E or R: then has to pass the token to the next process.

o Fairness: exists in normal operation hecause a process with a request has to wait for
less than n others.

¢ Resiliency: (discussed in the Le Lann paper)

— Process failure: When a process fails, it must be detected and agreed upon by
some distributed protocol. The ring then has to be reconfigured to bypass the
failed process.
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— Loss of token: When a token loss is detected (e.g. by timeout), a new one can
be generated by using leader-election protocols. (This will be studied later in the

course. )

e Performance:

— Number of messages: In the worst case (“light load”), n messages are-sent between
try; and crit;. Under “heavy load”, however, only a constant number of messages

per request is expected.

— Time: Assume worst-case bounds: ¢ = time spent in C, d = message delay, p =
process steps. The worst-case time is = (¢+d+ O(p))-n . This time bound is
bad because it has a d-n term, regardless of the load, and d may be big.

9.1.3 Lamport 1978

This paper: “Time, Clocks and the Ordering of Events in a Distributed System”, is a famous
one and worth reading. It introduces the idea of logical time (ltime): every event that occurs
in a distributed system (e.g. send, receive, local steps) is assigned a distinct logical time that
is an element of some total ordering. One way partially ordered local times at different sites
can yield total ordering is by appending the site’s ID as the low-order bits to the local time,
thus breaking ties. Logical time behaves like real time in the following sense:

1. The order of events at each process is consistent with the order of occurrence. (Ensured
by keeping a local clock at each site and incrementing it between any two successive

local events.)

For any message, its send event is ordered before its receive event. (Ensured by
attaching a timestamp ts, equal to the logical time of send, to each message. If for
the clock C, at the receiving site: C, < ts , then increment C, to be > ts before

assigning a logical time to receive.)

o

3. Any event has only finite number of predecessors. (Ensured by incrementing the local
clock by some minimum value.)
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We assume that the network deliveres messages be- ~

tween any pair of nodes in the same ltime order as ’\/
they were sent. For example, in the space-time dia-

gram of Figure 9.3, message a is sent before message \fl

b, and must be received before message b. Another

assumption is that every message sent is eventu- ’\,

ally received. Both assumptions can be ensured by \IL

some network protocol that uses acknowledgments Y '

and puts sequence numbers on messages. sender’s Teceiver's
local time local time

Figure 9.3: Space-Time diagram.

Being able to totally order the events can be very useful in implementing a distributed
system. We shall use this method in the following algorithm to solve the mutual exclusion
problem. In this algorithm, every process P; maintains a local variable region as before, and
for each other process P; a local queue queue(j). There are three types of messages:

e iry-msg(i): broadcasted by P; to announce that it is trying.
e czit-msg(i): broadcasted by P; to announce that it is exiting.

® ack(i): sent by P; to P;, acknowledging the receipt of 2 try-msg(j) message.

We plan to achieve mutual exclusion by servicing requests in the ltime order of the
broadcast event of their ¢ry-msg. The queues at each process behave like replicas of a global
centralized queue that determines the service order. All we need now is rules for P; telling
when to send crit; and rem; messages to user;.

Rules for P,
e P, — R: once an erit; occurs.
¢ P — C :region = T and the following conditions hold:

1. Mutual exclusion is preserved.

2. There is no other request pending with an earlier ltime.
FP; can ensure that the above conditions are met by checking for each j # i:

1. Ary try-msg in queue(j) with ltime < Itime(current try-msg(i)) has also a sub-
sequent ezit-msg.
2. queue(j) contains some message (possibly ack) with Itime > ltime(current try-

msg(i)).
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Properties

e Mutual Fxclusion: The correctness proof is by contradiction. Assume that two pro-
cesses, F; and P;, are in C at the same time, and (without loss of generality) that
ltime(P;’s request) < ltime(P;’s request). P; had to check its queue(:) in order to enter
C. The second test and our assumption on messages order preservation imply that P;
had to see P;’s try-msg, but by the first test it had also to see an ezit-msg from P, so

P; must have already left C.

e No lockout: This property results from servicing requests in ltime order. Since each
(request) event has finite number of predecessors, all requests will eventually get ser-

viced.
¢ Complexity:
— Number of messages: every request involves with sending try-msg,ack and ezit-
msg messages between some process and all the others, thus 3(n — 1) messages

are sent per request.

— Time: for a single request in the system, with no others around, the time is
2d + O(p) , where d is the communication delay and p is local processing. We
assume that the broadcast is done as one atomic step, else, if n — 1 messages are
treated separately, the processing costs would have been linear in n.

9.1.4 Ricart & Agrawala 1981

This algorithm uses only 2(n — 1) messages per request. It improves Lamport’s algorithm
(section 9.1.3) by acknowledging requests in a careful manner that eliminates the need for
ezit-msg messages. This algorithm uses two types of messages only: try-msgand OK. Process
F; sends try-msg(i) as in Lamport’s algorithm, and can go critical after OK messages have
been received from all the others.

Rule for sending an OK message
In response to a try-msg, a process:
o replies with an OK if it is not critical or trying.

o if critical: defers the reply until it exits, and then sends immediately all the deferred
OKs.

o if trying: compares the /time of its request to the one of the incoming try-msg. If bigger
then send OK, else defer (i.e. allow requests with lower itime only to proceed).
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Properties

o Mutual Exclusion:

P By

Using contradiction to prove correctness, assume
both processes, P; and P;, are in C and (with-
out loss of generality) that ltime(P;’s request) <
ltime(P;’s request). As seen in figure 9.4, P;’s try
message has to arrive at P, after P,’s try, or else
OK OK our assumption on their l{ime order would not have
been correct. At the time P; receives P;’s try, it is
either trying or critical. In both cases, P.’s rules
say it has to defer the OK message, thus P; could
Y Y not be in C.

try try

figure 9.4: both processes in C.

e Progress: Using contradiction again, assume some execution that reached a point after
which no progress is achieved. That is, at that point all the processes are either in R
or T, none in C, no process changes regions any more and no message is in transit.

Among all the processes in T after that point, assume that P; has the request message
with the lowest ltime. P; is blocked forever because some other process P; has not
returned an OK message to it. P; could only have deferred the OK because it was:

— in C: because P; eventually left C, it had to send the deferred OK.

— in T: P; deferred the OK because the ltime of its request was smaller than P.’s.
Since P;’s request has the smallest ltime in T now, P; must have completed, thus
after exiting C it had to send the deferred OK.

9.1.5 Carvalho & Roucairol 1983

This algorithm improves on the previous one (Section 9.1.4) by giving a different interpre-

tation to the OK message. When some process P; sends an OK to some other process P;,

not only does it approve P;’s current request, but it also gives P; P;’s permission to reenter

C again and again until P; sends an OK to P; in response to a try-msg from P;.

‘ This algorithm performs well under light load. When a single process is requesting again
and again, with no other process interested, it can go critical with no message sent! Under

~ heavy load, however, it behaves similarly to Ricart and Agrawala’s algorithm.
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9.2 Exercises

1. Give careful definitions (I/O automaton schedule modules) for the following concepts,
defined informally in class:

a. A one-writer, multireader safe register with value set V, initialized at vq.

b. A multiwriter, multireader atomic register with value set V, initialized at v,.

2. Prove the following facts, used in the fairness proof for Rabin’s randomized mutual
exclusion algorithm. Let each of n players independently draw a sequence of indepen-
dent bits, with equal probability that each bit is 0 or 1, until some bit (bit k) is 0. Let
maz(k) denote the maximum value of & among the n players. Let b = [log n] + 4.

a. Prob(maz(k) < b) ~ %315
b. The probability that more than one player will draw a sequence of length maz(k)

is less than -;;

3. Consider Rabin’s randomized algorithm once again.
g g

a. State and prove a result of the form “with probability f(r), a trying process
succeeds within r rounds in which it participates”. :

b. Give a similar result of the form “with probability f(¢), a trying process succeeds
within time ¢”. (You might base this on the probability of succeeding in a round,
together with an upper bound on the time required for a round.)

4. For Lamport’s distributed mutual exclusion algorithm, try to improve on the amount
of local storage used, over the version of the algorithm presented in class. That is, try
to condense the information that is retained, while allowing each node to exhibit the

same behavior as before.

*5. Give a careful proof of the theorem stated in class, saying that arbitrary executions
of shared memory systems are reducible to executions in which ob ject invocations and
responses occur consecutively.

*6. Work out a careful, complete analysis of Rabin’s algorithm, using conditional proba-
bilities.
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Scribe: Atul Shrivastava

10.1 General Resource Allocation Problem

In previous lectures, the focus was on mutual exclusion problem. Mutual exclusion (which
allows at most one process to use the critical section at any time) is a special case of the
Resource Allocation problem. The general resource allocation problem involves n processes

P1,- .., pn contending for a set of resources Ry, ..., Rm.

10.1.1 Problem Description

There are two ways of describing the Resource allocation problem.

1. Ezclusion problem: This is presented as a set of collection of processes which are not
allowed to use one critical resource simultaneously. The set can be any collection of
processes and should be closed under containment. We call this set the ezclusion set. -

E'a:afnple 1: Mutual exclusion can be defined as
= {C - {pl""apn} :l ¢ IZ 2}

Ezample 2: The k-exclusion problem (number of processes in the critical section at
any time < k) can be defined as

E={cC{p,-..,p}:c|>k+1}
Erample 3: For n = 4, let

&= {{p1, 2}, {P1, p3}, {P2+ Ps}, {P3, P4 }}

Here p; doesn’t exclude py, and p, doesn’t exclude ps. Consequently (py, ps) or (p2,ps)
can share use of the critical resource. :

The set ¢ can be any arbitrary set of subsets of Ply---sPn-

. Multiple Resource problem: This is presented as a boolean formula (for each process p;)
describing the combination of the resources needed by p: to enter the critical region.

Ezample {: Consider a resource allocation problem with 4 processes and 4 resources.

101
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Y25 R1 n R2
P2 Rl N R3
D3 . R2 N R4
Ps R3 N R4

Here p; needs R; and R, to enter the critical region, etc.

Note: A resource problem can be converted into a exclusion problem. The exclusion
set contains those subset of processes whose resource allocation formulae cannot be satisfied
simultaneously. Thus, the exclusion set for the resource allocation problem in the preceding

example is
€ = {{p1, P2}, {P1, 3}, {P2, Ps}, {P3, Ps}}

The remainder (R), trying (T), critical (C) or ezit (E) regions are used as before to
describe the state of each process. The process behavior in each of these states is similar to
that described for the mutual exclusion problem.

Progress Condition

For mutual exclusion algorithms, there is a strong notion for the progress of the system.
Although its hard to state an interesting general condition for system progress, the mutual
exclusion idea can be used to get some idea for system progress condition. Progress for the
resource allocation problem can be described as a requirement where some process continues
to make region progress, given the same notion of normal operation as for mutual exclusion.

Fairness Condition

The no lockout (or starvation) idea can be used to define fairness for the resource allocation

problem.

10.2 Dining Philosophers Problem

The Dining Philosophers problem is a special type of exclusion problem, and is generally
presented as a resource allocation problem.

10.2.1 Problem Description

There are n philosophers seated around a table. Each philosopher, is either thinking (R),
hungry (T'), eating (C) or just finished eating (£). In order to eat, each philosopher needs
two forks; n forks are placed on the table such that there is one fork on the left and one to
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F, F

F

F3

®

£

Figure 10.1: Dining Philosophers problem (n = 5)

the right of each philosopher. Each philosopher can pick up forks located immediately to his
left or right only when the neighbor, with whom the fork is shared does not have the fork.

We denote each philosopher by p; and the forks to the left of each p; by Fi_; and to the
right of p; by F;. Thus, p; needs F;_; N F; (po needs F,, N Fy) to eat (C). After eating, each
p: puts down the both the forks (E) and resumes thinking (R). Figure 10.1 describes the
seating arrangement for n = 5 processes.

The exclusion set for n dining philosophers is

f: {{pivpi+1}7ie {Oa'7n}} v

Various algorithms are known that solve the Dining Philosophers problem. The first
solution, presented by Dijkstra (1971) uses operating system concepts such as semaphores.
Chang presented the first distributed solution to the problem. Burns’ algorithm gave bet-
ter time bounds for the Dining Philosopher’s problem. Lynch (1981) presented a general
solution to the static resource allocation problem. A randomized algorithm to solve the
Dining Philosophers problem was proposed by Rabin and Lehmann (1981). All of the above
algorithms use shared memory variables. Chandy and Misra proposed a solution using the
message passing model. In this lecture, the first four solutions will be discussed. The other
solutions will be taken up in Lecture 11.
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10.2.2 Shared Memory concepts

Each process p; uses a shared memory test and set operation to change shared variables.
Each shared variable is used as a binary semaphore. Thus two operations can be performed

on any shared variable s. These operations can be written as

P(s) : waitfors =1; s « 0
V(s) : waitfor s =0; s « 1

Although each operation locks the variable before performing the indivisible conditional
test and set, the variable is unlocked immediately, irrespective of the test condition being
found to be true or false. These concepts came out of operating systems where the scheduler
checks for the condition and if not found to be true, puts the process in a sleep state in
some queue. When the value of the shared variable changes, the scheduler checks to see the
processes whose conditions are now satisfied, and then wakes those processes.

10.3 A simple approach that deadlocks

The algorithm is conceptually simple, each process grabs the left fork first and then picks
up the right fork. After getting both the forks, it — C. When a process leaves C, it puts
down both forks before entering R.

10.3.1 Properties of the algorithm

We check the mutual exclusion and deadlock freedom properties for the above algorithm.

Mutual Exclusion

To — C, a process p; has to pick up both its left and right forks. The two P-operations
guarantee that the values of FORK;_, and FORK; are both 0 when p; — C. Thus when
Pi1 (Pi1) tries to grab FORK;_; (FORK,), it will be blocked when it executes the second
(first) P-operation in its code. Thus mutual exclusion is preserved.

Deadlock Possible

This algorithm however does not guarantee deadlock freedom. Consider the sequence of
events starting with each process in R. Now, each process wakes up and grabs its left fork
at the same time. At this point each process tries to get its right fork but since all forks are
already picked up, all process starve forever and the system cannot make any progress (i.e.
no process can change regions).



A simple approach that deadlocks

Shared variables:

Vi, FORK (i) € {0,1}, written by and read by several processes, initially 1

Code for p;:

P(FORK;_,)
~ P(FORK,)
unlock;
** Critical Region **

lock;
V(FORK;_,)
V(FORK;)
unlock;

** Remainder Region **

lock;

Figure 10.2: A simple solution
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10.4 Dijkstra’s Solution

The shared variables used in the solution are not associated with forks. Binary semaphore
mutez is shared by all process and is initially 1; control is a multi-reader multi-writer array,
where Vi, control(z) initially 0 and is read and written read by p;_,, p; and p;yy; sem is an
array of binary semaphores, initialized to 0.

0 =p €ER
control(z) = ¢ 1 = p; € T but unable — C
2 = p; allowed — Cor p; € C.

mutez is used so that a group of operations can be done indivisibly. sem(z) = 1 tells p;
that it can — C. '

If any p; (with control(i) = 1), finds that control(i — 1) # 2N control(i + 1) # 2
(indivisibly), then p; — C and p;setscontrol(i) + 2. The procedure TEST(Z) checks for
this condition. Its description is included in Figure 10.3.

- To incorporate indivisibility during executing TEST(z), the call to procedure is always

preceded by a P(mutez) operation, which when “successfully” completed guarantees that
no other process can interfere while p; is in TEST(:). A V(mutex) operation after TEST(2)
later allows other processes to access the shared variables.

In the code for p; presented in Figure 10.3, there are no lock and unlock statements
guarding modifications to the shared variables. But the use of shared variable mutez in the
code guarantees the following:

1. No process can access a shared variable while p; is executing TEST(z).

2. No process can access control(i), whenever p; is modifying control(s).

10.4.1 Properties of the algorithm

Mutual Exclusion

To — C, pi has control(i) = 2. This condition is only true when control(i — 1) # 2 N
control(i + 1) # 2. Since V¢, testing and setting neighbors’ control(i) «— 2 is performed
indivisibly, mutual exclusion is preserved.

Progress

The only impediments to the progress of any process are the P and V operations. Hence,
it is enough to show that if all processes cannot get stuck at a P- or V-operation forever.
We establish this proof in two parts. First, we show that processes can’t get stuck during a
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Shared vavriables:

mutez is a binary semaphore, initially 1
Ve, control(i) € {0,1,2}, written by and read by several processes
Vi, sem (i) is a binary semaphore, initially 0

" Procedure TEST(:):

if control(i — 1) # 2 and control(i + 1) # 2 and control(i) = 1 then
control(z) « 2

V(sem(i))

Code for p;:

P(mutez)
control(z) « 1
TEST(z)
V(mutez)
P(sem(7))

** Critical Region **

P(mutez)
control(i) « 0
TEST(z — 1)
TEST(: + 1)
V(mutez)

** Remainder Region **

Figure 10.3: Dijkstra’s Dining Philosophers Algorithm
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V-operation, and then show similar property for the P-operation. Note that P and V are

parity operations on mutexz.
Claim: No process can get stuck during a V-operation.

1. A V(mutez) can only be executed by one process, namely the one (say pi) that has most
recently successfully completed P(mutex). Thus p; will successfully execute V(mutez),
since no other process could have changed the value of mutez to 1.

2. V(sem()) is executed in TEST(:), only if control(i) = 1, when tested. To prove a
process can’t get stuck at V(sem(z)), it is sufficient to show that control(i) = 1 =
sem(z) = 0: A process p; sets control(i) « 1, when it enters T. Note that sem(1) is
initially 0, and V(sem(?)) is the only operation that changes sem(i) « 1. 'Whenever
V(sem(7)) is-executed in TEST(z), control(i) « 2 just before it. Furthermore, sem(z)
is reset to 0 before p; — ¢ :d sem(i) remains unchanged until after p; — T, once

again.
CZaim: No process can get stuck during a P-operation.

1. If all processes get stuck at P(mutex), parity access on muter = mutezr = 1. Thus,
one of the process will successfully complete P(mutez) operation.

2. Claim: If p; get stuck at P(sem(:)) = control(i) = 1.

If control(i) = 2, it must have happened that control(i) «— 2 and V(sem(1)) were
executed successfully and indivisibly, setting sem(i) = 1. Thus, there is no way that
sem(z) can be reset to 0 and hence P(sem()) is successfully completed. P(sem(z))
is successfully executed when control(i) = 2. So, p; can only be stuck at P(sem(z)),
when control(z) = 1. '

Claim: If p; is at P(sem(i)) with control(i) = 1, then

CUE

Either p;_;(pi41) isin{ or
T with its control = 2

Proof: When p; — T, control(t) = 1. The only way p; could be stuck at P(sem(1)) is for
TEST(z) to have failed. Otherwise, V (sem()) would have been executed. Therefore,

= (control(i — 1) = 2V control(i + 1) = 2)

If the neighbor with control = 2 is still in the system, then the result holds. Otherwise,
when it left the system (in E), it executed TEST(i). If this TEST(7) failed, the other
neighbor rnust have control = 2 at that time. This argument can be continued ad infinitum.
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Fairness

Consider when p; gets stuck at P(sem(¢)) (with control(i) = 1). This can happen if either
control(i — 1) or control(i + 1) = 2. Thus p;_; (or piy1) can — C. When p;_; (or piq)
leaves C, it executes TEST(z), which fails if control(i — 1) (or control(i 4+ 1)) = 2. If this
continues ad infinitum i.e. p;_y and pi4, time their entries such that TEST(i) always fails,
p; will starve forever. Therefore, the solution is not fair.

Formulating a stronger correctness condition for a general resource allocation problem
is posed as an exercise at the end of Lecture 11. A stronger notion of ‘utilization’ for any
algorithm that solves the dining philosophers problem is needed to capture the concurrency
that is inherent in the problem. For example, if p; € T; and if (p;_; V piy1 € R); then p;
eventually — C, assuming normal operation of p;. (All other processes can stop anywhere
except in the indivisible section of their code i.e. after P(mutez) and before V (mutez)).

10.5 Chang’s Algorithm

Dijkstra’s solution although correct, is centralized and does not have the fairness property
desired. Thus, there is need to look at fair, totally distributed algorithms for the dining
philosophers problem and resource allocation algorithms in general.

The next two algorithms solve the dining philosophers problem only. These algorithms
will include fairness in addition to mutual exclusion and no deadlock. In these solutions, the
shared variables (FORK;) used by each process are associated with the resources (FORKS).

Each process picks up a fork in a non-deterministic fashion (essentially using the simple
algorithm presented in Figure 10.2, which may result in a deadlock. To break the deadlock,
some processes need to relinquish resources that they hold. But if symmetry is not broken,
then all processes may put down their forks at once, only to start all over again. So, this

~ solution still results in deadlock. Thus something additional is needed to detect deadlock

and break the symmetry, in order to achieve progress.

Idea: When deadlock is detected, use Use Le Lann’s token passing algorithm. The process
with the token releases all resources it holds. Progress is insured and no lockout is guaranteed.
Additional Overhead: Each shared variable has a queue which holds all processes requesting
the fork (for dining philosophers case maximum queue length < 2). Also, arbitrary message.
passing between neighbors needs to be allowed in order to first determine that deadlock has
occurred and later take actions to break the deadlock. Thus, each process has additional
code (actions for deadlock detection and continuation after a deadlock). Each process p;
on relinquishing its resource (while still in T'), puts itself on the back of the queue for the
resource it relinquished (p; will keep itself in the queue until it — C).

Ezample 5: Each process holds its left fork and waits for the right fork held by its neighbor
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P P4

Figure 10.4: Deadlock condition

on the right as shown in Figure 10.4. Now assume that p4 relinquishes FORK3 and ‘places
itself in the queue of processes waiting to use FORK3 and FORKj, as shown in Figure 10.5.
Since ps has all resources it needs, it can now — C, eat and eventually release its resources.
This results in a ‘wave’ of consumption that eventually allows each process, including py to

— C (eat).

10.5.1 Properties of Chang’s algorithm

The algorithm can be viewed as a composition that works in two phases. In the first phase,
all processes execute the code for the simple algorithm until the system deadlocks. On
deadlock detection, all processes execute the token passing code as per Le Lann’s algorithm.

Mutual Exclusion

Since mutual exclusion is preserved by Dijkstra’s algorithm, mutual exclusion is preserved
by Chang’s algorithm. This is because the only difference is that processes occasionally give
up their resources.

Progress

Progress in the original algorithm occurs is guaranteed until the deadlock occurs. On dead-
lock all processes revert to token passing in a unidirectional ring. The token passing algorithm
results in some process relinquishing all its forks. Thus, the waiting chain is broken and the
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Po

pl p4

P2 P3

Figure 10.5: Breaking the deadlock

process whose resource requirements are satisfied can — C. In fact a stronger condition of
bounded waiting times in T can be calculated. Thus progress for the composite algorithm
is guaranteed.

Lockout

In phase one, a process p; can be blocked on executing any of the two P-operations before
it proceeds to eat if one of its neighbor p;_; or p;.; € C. When the neighbor leaves C, p; is
woken up and p; completes the P-operation that caused it to be blocked. Thus if deadlock
condition doesn’t occur, no process can starve forever. The deadlock condition results in the
start of token passing. After token passing begins, the waiting time for each process before
it gets to — C (eat) is bounded by n*c+ token passing time. Thus the composite algorithm
is fair. '

Shortcomings

All processes are waiting in the deadlock condition. Token passing breaks the deadlock but
each process — C sequentially. Thus the concurrency inherent in the problem is not utilized.
This results in a worst-case waiting time of O(n).

10.6 Symmetry Impossibility Result
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Theorem 10.1 There exists no symmetric distributed solution to the Dining Philosophers
problem that guarantees the mutual ezclusion, progress and no lockout properties.

Proof: Assume there exists a symmetric, distributed algorithm with mutual exclusion,
progress and no lockout properties. Assume a schedule S in which the following is the order
of execution of processes (round robin scheduling). Assume all processes and shared variables

to be in the same state initially.
,2,...,n,1,2,...,n,..
N, o
1 round

A round then consists of n steps, the first step is taken by p;, the second by ps and
n-th and last step of the round taken by p,. In the first step p; accesses its left variable
and changes its value from v; to v,. Then, p,,... s Pn follow p; (since the algorithm step is

“symmetric). Therefore, after first round, for all 4, p;’s are in the same state and all shared
" variables have the same value.

Inductively, this happens for each round, since the algorithm is symmetric. Thus, if when
p1 — C, pa,...,p, follow and — C in the same round. This results in the mutual exclusion

property being violated, and a contradiction. .

10.7 Improving Time Bounds for Dinihg Philosophers

Chang’s solution is not optimal in terms of time taken (worst case) by a process when it — T°
(gets hungry) until it — C. As mentioned, the concurrency is lost as soon as processes start
the token passing phase after a deadlock. The next two algorithms take steps in improving

the time bounds.

10.8 Burns’ Approach

Although, there may be a large number of nodes (rn) and resources (r) in a system, each
process uses a small number of resources and each resource is used by a small number of
processes. Each process’ need for resource is also known a priori. Thus intuitively, the worst
case time bound for each process (waiting time for resources) should be independent of n.
Burns’ algorithm is a step in this direction. The solution is asymmetric in that processes
behave differently when taking steps (accessing a shared variable) in their code. The solution
for n being even is presented in Figure 10.6. For n odd, refer to Exercise 2 at the end of

Lecture 11.

Idea: Let even numbered processes pick their left forks first and odd numbered processes
pick their right forks first. Like Chang’s solution, shared variables correspond to resources
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(FORKS). Each FORK; has a flag variable indicating whether it is available for use. It
also has a queue to allow processes waiting for the resource to get in line.

10.8.1 Properties of Burns’ Algorithm

Mutual Exclusion

Each shared variable is a binary semaphore and the variable is incremented (decremented)
using V (P} operation indivisibly. Thus, p; needs FORK;_; = 0 and FORK;,; = 0to — C.
If pio1 (piz1) € C, then FORK,;_, (FORK,) = 0 so p; has to wait until p;_; (pi41) does
a V-operation on FORK;_, (FORK;) and wakes up p;. This can only happen when p;_;
(pi+1) leaves C. Thus, mutual exclusion is satisfied.

Fairness {which implies progress)

We will bound the time that a process may have to wait — C from the time it — 7.
Let T'(n) = Time taken by p; — C since it — T (worst-case)
S(n) = Time taken by p; — C, since p; first tries to procure its second fork (worst-case)
Assuming that single-step time < s; time in critical region < c.
Case 1: p, immediately gets its first fork (after one step) and then its time — C is just the
time taken to procure second fork. This gives us,

T(n) < s+ S(n)

Case 2:
T(n) < s neighbor gets the fork p; wants

(also neighbors first fork)
+S(n) neighbor getting his second fork

+c time taken for neighbor to eat
+2s time taken by neighbor to put forks down
+s time taken by p; to pick first fork

+S(n) p;’s time to get its second fork

T(n) < 4s+25(n) + ¢ | (10.)

To calculate S(n):
S(n) < ¢  neighbor beats you to the second fork

also neighbors second fork, by odd-even rule
+s time taken by p; to pick up fork

Substituting for S(n) in Equation 10.1, we get the worst-case waiting time that is inde-
pendent of n:
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Shared variables:

Vi, control(i) € {0,1,2}, written by and read by several processes
Vi, FORK; is a binary semaphore, initially 0. FORK; is written and read by p;_, and p;

Code for p,;:

P(FORKy;_1) (* wait for i~ft fork *)
P(FORK») (* wait for r sht fork *)

** Critical Region **

V(FORK,;_,) (* release forks *)
V(FORK,;) (* in any order *)

** Remainder Region **

Code for pjii;:

P(FORK ;) (* wait for right fork *)
P(FORK},) ’ (* wait for left fork *)

** Critical Region **

V(FORK3i41) (* release forks *)
V(FORK,;) (* in any order *) -

- ** Remainder Region **

- Figure 10.6: Burns’ Dining Philosophers Algorithm (n even)
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T(n) < 6s + 3c  (10.2)

10.9 Lynch’s Solution

Lynch presents a solution for all conjunctive resource allocation problems. The algorithm
thus does not solve k-exclusion where multiple alternatives are allowed. Each process’ needs
for resources are known a priori.

Each resource uses a flag variable, shared by all processes that use the resource. A FIFO
queue is also associated with each resource in which each process enters its request for the
resource in order. Each process can wait (queue up) for maximum of one resource at a time.

Definition Let p; be currently waiting for resource r that is currently used by pj- Then, p;
1s in watting chain .

Idea: The algorithm may be designed to allocated resources in a fashion such that length
of the longest waiting chain is small. This will result in smaller waiting times needed by a
process for each resource needed to — C, thus improving the bound on wajting times.

Basic Strategy: Using the “Hierarchical resource allocation” strategy, assign to the resources
in the system a global ordering. Each process p; seeks the resource with the highest ID in
the ordering, which it needs and and doesn’t already have (Note that this is a generalized
form of L-R strategy).

Theorem 10.2 Consider a system with totally ordered resources (ry,...,7m). Processes
(P1,...;Pn) seek a conjunctive set of resources to — C. Each resource has a queue in which
processes place their request (in order of their request times). When a resource becomes
available, the process at the head of the queue removes itself from the queue and assumes
control of the resource. Each process can seek only one resource at a time (until all it needs
are satisfied). Each process can queue up only for resources that it needs and doesn’t already
have. Also, the resource sought by a process at any time has the highest ID (from the resource
ordering). In such a system, assuming that processes release all resources when they depart
from C, the system can never deadlock. Moreover, each process will eventually get all the
resources it needs.

Proof: Assume such a deadlock occurs (no process can — C). Since each process can
appear in at most one resource queue, the process (say p;) at the head of the highest priority
queue (say r;) can never wait for any other resources. So, pi grabs r;. Then, all processes
behind p; “move up” in priority. Eventually p; leaves C' and a new highest priority process
can proceed. -
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FORKy — FORK, — FORK; — FORK; — FORK, — FORK;

———, . enreeseransasrenst e s

e e et e

Figure 10.7: Resource Allocation

Now consider five dining philosophers (DP(5)) with total ordering of resources. Let
FORK,, FORK,, FORK,, FORK; and FORK, be the ordering of the resources in de-

scending order.

Worst Case execution:
ps arrives and picks FORK3; and FORK,

ps arrives and picks FORK,, waits for FORK3
p2 arrives and picks FORK,, waits for FORK,
p1 arrives and picks FORK,, waits for FORK;
po arrives and waits for FORK,

Waiting Chain
Po—=pP1 — P2 —>P3 —* Py

This results in long waiting chains O(n) and consequently long delays. Consequently a
better strategy for resource allocation is needed.

10.9.1 Resource Allocation Strategy

Looking at the resource allocation problem for DP(6), results in the graph shown in Fig-
ure 10.7.

The vertices FORK; and FORK;, in the resource allocation graph are connected by
edge pi41, since process p;y; needs both FORK; and FORK;;, to — C.

Color the above graph such that no two adjacent vertices have the same color using
the minimum number of colors. In general, the minimization problem is NP-Complete
(but ‘small’ number of colors will do). Now, totally order the colors. The resources now
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Fo F Fy
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Figure 10.8: Resource Allocation for DP(6)

form a partial order where FORK; < FORK; if FORK; and FORK; are adjacent and
color(FORK;) < color(FORK;). Thus DP(6) results in a resource allocation graph, shown

in Figure 10.8.

Thus, FORKy, FORK,, FORK, have color 0, and FORK,, FORK3, FORK3 have color
1. This results in a partial order. For the dining philosophers problem, the two FORKS
needed by a process are colored differently and are therefore ordered. Each process now picks
up resources it needs in increasing order according to the partial ordering, i.e. increasing
order of colors (same as any total ordering).

For the dining philosophers problem, the partial ordering of resources results is identical
to the L-R alternate strategy (Burns’ algorithm). - hence this is a special case of the general

hierarchical resource allocation strategy.

Algorithm Properties

The partial ordering strategy for dining philosophers problem is deadlock free and is fair to
all processes, because its an instance of the Hierarchical Resource allocation strategy. This
result has already been shown for Burns’ algorithm.

Let ! denote the length of the biggest waiting chain. Let ¢ be the number of colors in a

resource allocation graph. Then, in the worst case,
l=n

Proof: Process p; is at the end of the waiting chain, waiting for resource with lowest color
number. This resource is held by process by p;. p; in turn could be waiting for resource with
the next higher color etc. This will continue till some process p, waiting for the resource
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with highest color number. There cannot be more processes waiting for ressurces in this

waiting chain. »

For dining philosophers problem (n even), [ = 2.

10.9.2 Bound on Waiting times

The worst-case waiting time for a colored graph, with

s = upper bound on step time

¢ = upper bound on time spent in its critical section
k = total number of colors

m = maximum number of users for a resource

can be bounded by
m*c + km*s
Proof: Let T; ; be the time taken by a process to — C from the time it begins to occupy

position 7, (0 £ j < m -~ 1) of a queue for color 7, (0 < i < k —1).
The equations for various T} ; can be written down as follows:

Tie10 = 0 process reaches the front of the highest color queue
Ti; = ¢ time for process in C to leave
+ks the process entering C' to pick its resources
+T; 51 time taken by process in front to reach C
+T;0 time taken by process to — C after
getting resource with colar 7
(7>0)
T:o = s process grabs resource 7

+Ti41,m-1 time taken to reach C starting from the
back of the queue for color 7 + 1

In the worst case all processes need k resources and all resources are used by m processes.
The total time taken by a process since it = 7' = To,m-1. Plugging in the equations in
the following sequence. ' :

TO,m—-l = (C + ks)m 4+ m TO,O
Too = s+Tma
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Teoim—1 = (c+ks)m+mTi_1p
Teero = 0

Assuming s << (¢ + ks)m (small step time), and (m >> 1), we get

k-1
Tom-1 < (c+ks) Z m?

a=0

< mFec+ km*s

: |

Again, the worst-case bound is independent of n. Notice that the bound is not tight
for the dining philosophers problem. However, for the general resource allocation problem,
exponential behavior for waiting times is possible. '
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6.852 Distributed Algorithms Fall Semester, 1988

| Lecture 11: October 20
Lecturer: Nancy A. Lynch

Scribe: Rick Stille

We continue our discussion of dining philosophers algorithms.

11.1 Rabin-Lehmann dining philosophers

The Rabin-Lehmann algorithm (Figure 11.1) is a randomized solution to the dining philoso-
phers problem which guarantees both mutual exclusion and progress. A modification of this
algorithm (not presented here) also guarantees no lockout. In this algorithm, all processes
are identical. Randomization is used to break the symmetry.

 Code for p; where opp (s) = {Rif s =L, L if s = R};
do forever
draw random s from {R,L} with equal probability;
wait for s to be free;
pick s up;
if opp(s) is free, then
pick s up;
exit;
else
put s down;
end if;
* * critical region (philosopher is eating) * *
put down both forks;
* * remainder region (philosopher is thinking) * *

Figure 11.1: Rabin-Lehmann algorithm

Individual fork accesses are indivisible. A process chooses randomly each time through
the loop, but only waits for the first fork, and checks only once for the second. Then, if
unsuccessful, it starts over with a new random choice.

11.1.1 Mutual Exclusion

Mutual exclusion is obvious. It is not a probabilistic statement.
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11.1.2 Progress (with Probability 1)

Let adversary A be a function mapping finite executions to process identification numbers;,
identifying the process which is to take the next step. Note that this adversary is more
powerful than those we have seen in previous lectures. For example, our earlier adversaries
were not allowed to see the results of previous random draws. We call A normal if it only
generates normal executions, i.e., executions which give fair turns to all processes. We will
only consider normal adversaries.

Definition Let exec(A,D) be the execution generated by adversary A and sequence D of
random draws. Qur assumption says that this execution is normal, for all D.

Probabilities /
Assume that each draw gives R or L with equal probabilities of 1/2. This gives a probability
distribution for all infinite draw sequences D. For each A, the distribution on the set of draw
sequences yields a corresponding probability distribution on the set of executions generated
by A (i.e., a D distribution yields an exec(A, D) distribution).

Our goal is to show that the probability of deadlock is zero. It suffices to show that for
any finite execution e, the probability that someone changes region after e (if anyone is not
in R just after e) is equal to one. This is a conditional probability with respect to prefix =-e.
We will prove this by the following series of lemmas.

Definition Let dead be the set of executions with prefix e in which no one proceeds to C,
but someone is in T.

We wish to show that Pr(dead) = 0.

Remark 11.1 In any ezecution in dead, there are infinitely many fork pickups.

Proof: Suppose not. Then consider what happens after the last fork pickup. All processes

are stuck in T, so all forks ever picked up eventually get put down. At this point there is

nothing to stop a process from picking up. n

Remark 11.2 If p chooses infinitely often, then with probability 1 it chooses L infintely
often and R infinitely often.

Proof: Suppose, without loss of generality, that p chooses L only finitely often in some
execution f. Then there must exist a finite prefix e of f after which p chooses only R and

does so infinitely often. But the probability that p will choose R in any draw is 1 /2 and

thus the probability that p will choose R n times consecutlvely is (1/2)"™. It follows that the
probability P of doing so an infinite number of times is lim,_,,(1/2)" = 0 so the probability

of choosing both R and L infinitely timesis 1 — P=1—0 = 1. .
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Lemma 11.3 Let p be ¢’s neighbor. If p picks up a fork infinitely often and q does not, then
with probability 1, p eats (goes to C) an infinite number of times.

- Proof: Assume q is p’s right neighbor, without loss of generality. If p picks up a fork
infinitely often, it chooses infinitely often. Then with probability 1, p chooses L infinitely
often. Each time p does this, it must succeed in getting the fork (or else it would be stuck).
Then it looks for its right fork. In each of these executions, ¢ eventually stops picking up
forks, so p will thereafter always succeed in getting the right fork and will eat. |

Lemma 11.4 In any ezecution in dead, every process picks up a fork an infinite number of
times with probability 1.

Proof: By Remark 1, there are infinitely many fork pickups. The only way that this can
fail is if there is a positive probability set of executions in dead in which some process p picks
up a fork infinitely often and neighbor ¢ picks up a fork only finitely often. But Lemma 11.4
implies that this is impossible (since p could eat and these executions are deadlocked). =

So with probability 1, deadlocking involves all processes continuing to pick up forks
infinitely often and making infinitely many random left choices and infinitely many random
right choices.

Definition We define a good configuration (a point in a particular execution) to be one in
which there are two processes p and g in T', where p is ¢’s left neighbor, p’s latest random
draw is L, and ¢’s latest random draw is R.

¢’s choice

p’s choice
Figure 11.2: A good configuration. Arrows indicate the latest random draw by a process.

Lemma 11.5 Starting from a good configuration, if every process picks up forks infinitely
often, then the probability that at least one of p or q eats no later than two random draws
later is greater than or equal to 1/2.
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Proof: We use a case analysis, based on whether each is before or after the point (call it
point m) of examining the second fork.

(a) Both are before m.
Then both wait and one is guaranteed success. Whichever gets the shared fork first succeeds.

Thus, in this case the probability of success is 1.

(b) Both are after m. .
If either has succeeded in getting the second fork, then we are done. If neither has succeeded,

then each of them must have been holding the shared fork sf when the other checked it.
We will show that this is impossible. Suppose, without loss of generality, that p examined
sf first, finding that ¢ had it. Then, while p stayed in T, ¢ went back and chose R again,
then examined L. But ¢ would have succeeded in picking up sf in this case, contradicting
our assumption that neither has succeeded.

(c) p is before m and q is after m.
If ¢ has succeeded, we are done. If not, ¢ chooses again and with a probability of 1/2 chooses
R again. At this point p and ¢ will both be before m and case (a) ensures success.

(d) q is before m and p is after m.
If p has succeeded, we are done. If not, p chooses again and with a probability of 1/2 chooses
L again At this point p and ¢ will both be before m and case (a) ensures success. ]

Definition Two prefixes e and f (where f is a finite extension of e) are dzsyoznt if all
processes draw in the sequence which, when appended to e, produces f.

Lemma 11.6 If every process picks up forks infinitely often, ther » probability 1, there
are infinitely many disjoint prefires of this ezecution, each of whici. - ults in a good config-
uration.

Proof: Suppose to the contrary that there are only finitely many disjoint prefixes. Then
there must exist some point in the execution after which there are no more extensions which
produce a disjoint prefix. But this implies that there is at least one process that does not
pick up any more forks after this point in the execution, contradicting our assumption that
every process picks up forks infinitely often. Thus there must exist infinitely many disjoint

prefixes.
Since, by Remark 11.1, each process chooses L infinitely often and R infinitely often, with
probability 1 infinitely many of these disjoint prefixes result in a good configuration. [

We now use the above lemmas to prove the following theorem.
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Theorem 11.7 Prob(dead) = 0.

Proof: Suppose to contrary that Prob(dead) > 0. Then Lemma 11.4 implies that, with
probability 1 , relative to dead, every process picks up a fork infinitely often. Lemma 11.6
then implies that with probability 1, there are infinitely many disjoint prefixes resulting in
good configurations. Lemma 11.5 then implies that, with probability 1, some process even-
tually proceeds to C. But Prob(someone eventually eats|dead) = 0 by definition. Therefore,

Prob(dead) = 0. , |

Fairness

This algorithm does not guarantee fairness but a later modification does.

11.2 Chandy—Misra dining philosophers

The Chandy-Misra algorithm is another solution to the general conjunctive resource allo-
cation problem. It guarantees mutual ezclusion, progress, and no lockout as in the Lynch
solution. The time performance can be worse in the worst case, but they have developed
a somewhat more dynamic version, called Drinking Philosophers (see Section 11.3 where

processes can require different resources each time they enter 7.
The present algorithm uses a message-passing model where each process has a fized set

of resource requirements.
We will make two restrictions:

1. Any pair of processes shares-at most one resource. (This restriction is easy to remove.)

2. Each resource shared by at most two processes. (It would take some work to remove
this restriction. One would need to modify the algorithm.)

Note the close similarity to the Ricart & Agrawala and Carvallho & Roucairol algorithms.

11.2.1 Description of the algorithm

A fork shared by two processes is always either clean or dirty, initially all are dirty. While
being used to eat, it is dirty and remains dirty until cleaned. A philosopher can clean a fork
only when mailing it and can only mail a clean fork.

While in R

All forks held are dirty.
Satisfy all requests received (i.e., clean and send forks requested).
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While in T

Forks received since entering T are clean, all others are dirty.
Request every fork needed and do not have (including any previously released). If a request
arrives, satisfy it if it is for a dirty fork. Otherwise, defer the request. When all forks needed

are held, make all forks dirty and proceed to C

While in C

All forks needed are held and are all dirty.
Defer all requests received. ’

While in F

All forks held are dirty.
Satisfy all deferred requests and all requests that arrive while in E. Proceed to R when all

requests have been satisfied.

11.2.2 Correctness
Proving correctness depends on preserving a nice invariant property of a certain dynamically
changing digraph (directed graph) H. If G is the graph with

e processes at the nodes, and

e edges between processes that share a resource (forks associated with edges),

then we get H by directing each edge of G as follows. Direct edge (p,q) exactly if the fork
associated with the edge is

1. at p and dirty, or
2. in transit from p to ¢, or

3. at ¢ and clean.
The notation (p,¢) means that ¢ has priority over p for the resource.

Mutual Exclusion

The invariant to preserve is that H is acyclic. So we start with an initial condition that
satisfies this, i.e., breaks the symmetry of the system. We argue as follow that the algorithm
preserves acyclicity:

The only change occurs when a process dirties a clean fork, i.e., when it eats. In this
case it must have all forks and dirties them all at once. So ! edges incident on that process
get directed away from it. Therefore it cannot belong to - * -cle.
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Progress

Definition The height of a process p in an acyclic graph H is the maximum length of the
directed path in H leading away from p.

Claim 11.8 The Chandy-Misra dining philosophers algorithm guarantees no lockout.

Proof: We will show inductively on k that in any H for a reachable configuration, any
process in T in that configuration and with height k eventually proceeds to C.

Height k = 0.
Then all edges are incoming, so eventually p will get all (clean) forks and proceed to C.

Inductive step, height =k, for p in T

For all incoming edges, p will eventually get clean forks (and will keep them until it proceeds
to C. For each outgoing edge (p, ¢), it must be that ¢ is of height < k¥ — 1. For each such
edge, the associated fork must be in one of the following catagories, by definition:

(a) Fork is at p and dirty.
(b) Fork is in transit from p to q.
(c) Fork is at ¢ and is clean.

For case (a), if the fork does not leave before p proceeds to C, then p cannot be blocked
by this fork. If the fork does leave, then we are in case (b) or case (c).

For cases (b) and (c), ¢ is in T at some time before p proceeds to C. But in this case
¢ has height < k£ — 1 and eventually proceeds to C by inductive hypothesis. Eventually, ¢
proceeds to E, which causes the edge to get redirected toward p. Then p eventually gets the
fork and keeps it. ‘ [

11.3 Chandy-Misra drinking philosophers

This is an extension by Chandy and Misra of the dining philosophers problem to a more
dynamic problem in which processes do not necessarily require their entire possible set of
resources each time, but rather some arbitrary subset.

The first idea for solving such a problem might be to modify the previous solution very
slightly - where each process just requests and waits for those resources it wants, but the
following example shows that this does not work.
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11.3.1 Example

Suppose we have five philosophers in a ring, each with two forks (one on each side) as possible
resources. Begin with an acyclic H as shown in Figure 11.3, where a dirty fork is located at

the tail of each arrow. ‘

Po

P4 J 4!

D3 D2

Figure 11.3: Acyclic graph H. All forks are dirty.

First, all philosophers enter wanting only their left forks. They all can get them: surely
those with in-edges get them; but also p,, since p; has its fork dirty and py does not want it.
So they all can use their left forks at once, dirtying them in the process. But this dirtiness
orients the edges to the left, creating a cycle!

Thus the invariant breaks down and the next time they all might come in wanting both
forks, creating the possibility of deadlock.

11.3.2 Lynch version of Chandy-Misra solution

The Chandy-Misra solution can be expressed in a cleanly separated way, though this is not
how they present it. We will use their dining philosophers algorithm as a subroutine to
insure that every reachable state of the system preserves the acyclicity of the graph for this
subroutine (though not for the main algorithm). The architecture of our proposed solution
1s shown in Figure 11.4.

The dining philosophers algorithm executes using its own messages, as usual. In addition,
there are new messages for requesting and granting the actual required resources. We want
to keep the resources manipulated by the two different algorithms conceptually separate,
so imagine duplicates of the ones needed by the dining algorithm. Call these bottles to
distinguish them from the forks.

11.3.3 Drinking Philosophers Algorithm



Chandy-Misra drinking philosophers

bottle requests

bottles

fork requests

forks

CUSER
TN C|FE

4

R

DRINKING
PHILOSOPHERS
ALGORITHM

b

TN Cl| E|R

DINING
PHILOSOPHERS
ALGORITHM

)

bottle requests

bottles

fork requests

forks

129

Figure 11.4: Proposed architecture for Lynch version of Chandy-Misra drinking philosophers

algorithm.
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While in R

o Satisfy all bottle requests.

o If the subroutine is in C, send it into E.
While in T

¢ Send requests for all bottles you need and do not have.

e If the subroutine is in (or reaches) R, send it into T". (This helps to give prlonty for
bottles when the subroutine is in C.)

e If you have a request, defer it if you need the bottle and the subroutine is in C.
Otherwise, satisfy it.

"o Enter C when you have all of the bottles that you need.

While in C

e Satisfy all requests for bottles you do not need and defer requests for those you are
using.

o If the subroutine is in C, send it into E.

While in E
e Satisfy all deferred requests (and any new requests).
.o If subroutine is in C, send it into E.

¢ Proceed to R.

11.3.4 Correctness

Mutual exclusion

Follows from the fact that shared bottles are held by at most one process at a time, and that
no required bottles are given up while in C.
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Fairness

We will show that every thirsty philosopher drinks eventually.
Lemma 11.9 Ifp; is in T and its subroutine is in C, then eventually p; reaches C.

Proof: The subroutine stays in C until p; advances. The subroutines of p;’s neighbors are
not in C, (by the mutual exclusion property of the dining philosophers algorithm), so they
will eventually grant the bottle requests. So eventually p; gets all of its required bottles and
proceeds to C. [ ]

Lemma 11.10 If p;’s subroutine is in C, eventually this subroutine will proceed to E.

Proof: If p; is in C, E, or R, then p; will send the subroutine to E explicitly. If p; is in T
and its subroutine is in C, then eventually p; proceeds to C' by Lemma 11.9. It then sends
the subroutine to F. _ (]

This lemma means that the well-formedness assumptions made about the users of the din-
ing philosophers algorithm are satisfied. This, in turn, implies that the dining philosophers
subsystem gives the required liveness (no deadlock, no lockout) properties.

Theorem 11.11 FEvery thirsty philosopher drinks eventually.

Proof: 1f p; is in T and its subroutine in E, then its subroutine eventually proceeds
to R by the guarantee of no lockout on dining philosopher requests. If p; is in T and its
subroutine in R, then it sends its subroutine to 7. If p; is in T and its subroutine in T, then
its subroutine eventually proceeds to C by the guarantee of no lockout on dmzng phzlosopher
requests. Then, by Lemma 11.9, p; reaches C. [

11.4 Exercises

1. Give a correct I/O automaton for the Ricart—Agrawala distributed mutual exclusion
strategy described informally in class. Your automaton definition should include the
following: signature, state variables (with types and initial states), preconditions and
effects for each locally controlled action, effects for each input action, and a partition
of the output actions.

(If you prefer, you can instead give an automaton for an improved version of the
algorithm that uses the strategy of Carvalho et al.)
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Give a generalized version of the Burns left-right alternating dining philosophers solu-
tion that works for an odd number of philosophers. Prove an upper bound independent
of n (for the maximum time a philosopher must wait to eat after becoming hungry)

for your algorithm.

Show that there exists an adversary for the Rabin-Lehmann randomized dining philoso-
phers algorithm such that the probability of locking out a particular process is nonzero.

Consider the Chandy-Misra drinking philosophers algorithm using the Lynch dining
philosophers subroutine. State and prove an upper bound on the time a philosopher

must wait to drink after becoming thirsty.

Recall that Lamport’s Bakery algorithm for mutual exclusion used unbounded single-
writer multi-reader safe registers. Suppose you were given the luxury of using un-
bounded single-writer multi-reader regular registers. Give a simplified (a few lines of
code) version of the algorithm. Show that your algorithm has the same mutual exclu-
sion, fairness, and failure resiliency’ properties as Lamport’s. This is another example
of how a simple change to the underlying model of computation can make a drastic
difference in the kinds of solutions obtainable.

Give an appropriate “progress” condition that is applicable to as general a class of
exclusion problems as possible. Verify that your condition is satisfied by Dijkstra’s
dining philosophers algorithm, Burns’ dining philosophers algorithm, and the Chandy-
Mistra drinking philosophers algorithm. Argue that your condition is strong enough;
for example, your condition should rule out any dining philosophers algorithm that
might not allow a philosopuer to eat even though its neighbors are neither hungry nor

eating.

!When a process fails, it goes to the remainder region and eventually all its shared variables-are reset to

2ero.
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12.1 Concurrent Read/Write Registers

We now discuss the construction of registers which allow concurrent readers and writers.
All the registers are modeled as I/O automata as in Figure 12.1. The index ¢ on the read

read; .

write; g, ——i

)
N

ack; ; +——— o TEtUTTY, 4,

Figure 12.1: Concurrent Read/Write Register X

and write operations corresponds to a process calling the register. That is, for each process
¢ that can read the register X, X has a read;, operation (similarly for write operations).
Therefore, from the point of view of the register, each index can be regarded as just naming
an input line. We assume that operations on each line are invoked sequentially, i.e., no
new operations are invoked on a line until all previous operations invoked on that line have
returned. But otherwise, operations can overlap.

12.1.1 Register Types

Only single writer registers are considered in the following discussion. Because of this re-
striction, writes never overlap one another. Overlapping reads are assumed not to affect one
another, so we only need to consider tke case of a read operation overlapping one or more
write operations. There are three different possibilities in this case. The weakest possibility
is a safe register in which a read that is overlapping a write can return an arbitrary value.
The strongest possibility, an atomic register, was defined in Lecture 3. The other possibility;,

133
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a regular register falls somewhere in between safe and atomic registers. A read operation
on a regular register returns the correct value if it does not overlap any write operations.
However, if a read overlaps one or more writes, it has to return the value of the register either
before or after any of the writes it overlaps. For example, consider the two read operations in

W

Rl R2

W,,[IJ

Figure 12.2: Read Overlapping Writes

Figure 12.2. The set of feasible writes for R; is {Wo, Wy, Wy, Wi, Wy} because it is allowed to
return a \.:lue written by any of these write operations. Similarly, the set of feasible writes
for R, is {IV}, W3, W3}. The reader should note that there need not be any relation between
the value returned by R; and the value returned by R,. It should also be noted that only

atomic registers can have multiple writers.

12.2 Implementation Relationships for Registers

In the following discussion (adapted from [Lamport86]), binary valued registers are dis-
tinguished from multiple valued (k-ary) registers and single reader registers from n-reader
registers. We consider the twelve different kinds of registers this classification gives rise to,
and see which register types can be used to implement other types. In the following dia-
grams, an arrow from register type A to register type B signifies that B can be implemented
using A. The implementation relationships in Figure 12.3 should be obvious.
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Safe Regular Atomic
n-reader n-reader n-reader
k-ary k-ary k-ary
n-rea;der l.reader - n-reader 4 \ ' l-reader n-reader ¥ 1-reader

binary \ / k-ary binary | \ / k-ary binary | 7 k-ary
/ 7

. .
l-reader l-reader v l-reader
binary binary binary

Figure 12.3: Obvious implementation relationships between register types. An arrow from
type A to type B means that B can be implemented using A

12.3 Register Constructions

Lamport presents five constructions to show other implementation relationships. All of
these constructions have a similar flavor. For example, consider Figure 12.4. Two 1-reader
registers are being used to implement a 2-reader register. The 1-reader registers are called
the physical registers, and the 2-reader register is called the logical register. In all of the
following constructions, a logical register is constructed from one or more physical registers.
Each input line to the logical register is connected to a process. These processes in turn are
connected to one or more of the physical registers using internal lines. Exactly one process is
connected to any internal line of a physical register. This guarantees that operations on each
internal line are invoked sequentially. Processes connected to external write lines are called
write processes, and processes connected to external read lines are called read processes.
Note that nothing prevents a read process from being connected to an internal write line of
~a physical register. Given this background, the construction process can be stated in the
following manner — if the physical registers satisfy their specification and operations from
outside are invoked sequentially on each line, then the composed system’s fair behaviors all
satisfy the specification for the logical register.

In the following constructions, actions on external lines are always specified in upper-
case, whereas actions on internal lines are specified in lower-case. For example, WRITE and
READ denote external operations whereas write and read denote internal operations.



L

136 Lecture 12: Octaober 25

w (.

. N
::wkr@
R,
2| ) S5
R_z_%r

/

o

Figure 12.4: Example: Implementing a 2-reader register with two 1-reader registers

12.3.1 N-Reader Registers from 1-Reader Registers

The following construction implements an n-reader safe register from n 1-reader safe registers,
and an n-reader regular register from n l-reader regular registers. The write process is
connected to the write lines of all n internal registers as in Figure 12.5. Read process i is

connected to the read line of the ith physical register.

Code for WRITE(v)

Forall iin {1,...,n}, send write(v) to z;. Wait for acks from all z; and then send ACK. The
writes can be done either concurrently, or in any order.

Code for READ;

Send read to z;. Wait for return(v) and then send RETURN(v).
Claim 12.1 If zy,...,z, are safe registers, then so is the logical register.

Proof: Within each WRITE, for any particular z;, exactly one write is performed on that reg-
ister. Therefore, since WRITE operations occur sequentially, write operations for a particular
z; are also sequential. In addition, read operations for a particular z; are also sequential.
Therefore, each physical register has the required sequentiality of accesses.
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Figure 12.5: N-Reader Registers from n 1-Reader Registers

If a READ, say by RP;, does not overlap any WRITE, then its contained read does not
overlap any write to z;. Therefore, safety of ; assures that the read operation gets the value
written by the last completed write to z;. This is the same value as written by the last
completed WRITE, and since RP; returns this value, this READ returns the value of the last
completed WRITE. ]

Claim 12.2 Ifz,,...,z, are regular registers, then so is the logical register.

Proof: We can reuse the preceding proof to get the required sequentiality of accesses to
each physical register, and to prove that any READ which does not overlap a WRITE returns
the correct value. Therefore, we only need to show that if a READ R overlaps some WRITE
operations, then it returns the value written by a feasible WRITE. Since the read r for R falls
somewhere inside the duration of R, the set of feasible writes for r corresponds to a subset
of the feasible WRITES for R. Therefore, regularity of the physical register z; implies that R
- gets one of the values written by the set of feasible WRITES. |

Claim 12.3 This constructzon does not make the logzcal register atomic even if the z; are
atomic.

With this construction, Figure 12.3 reduces to Figure 12.6.



Lecture 12: October 25

138
Safe ‘ Regular Atomic
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Figure 12.6: Collapsed Implementation Relationships

12.3.2 Wait-Free Registers

The previous construction guarantees that all logical operations terminate in a bounded
number of steps of the given process, regardless of what the other processes do. This is
a general property we would like for all such constructions. Wait-freeness can either be
formulated in terms of a bounded number of the process’s own steps for operations, or in
terms of a time bound on operations, given that the physical registers have a very fast
response, and that the process’s step time is bounded. This property is important, because
registers obeying it allow non-delayed access to shared memory.

It would be useful to give a more careful definition of wait-freeness.

12.3.3 K-ary Safe Registers from Binary Safe Registers

If k = |2'], then we can implement a k-ary safe register using ! binary safe registers. We do
this by storing the ith bit of the value in binary register z;. The logical register will allow
the same number of readers as the physical registers do (see Figure 12.7).

Code for WRITE(v)

For ¢'in {1,...,1} {any ordering), write bit ¢ of the value to register z;.

Code for READ;
For i in {1,...,1} (any ordering), read bit i of value v from register ;. RETURN(v).
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Figure 12.7: K-ary Safe Registers from Binary Safe Registers

Note that unlike the first construction, this construction works only for safe registers, i.e., a
k-ary regular register cannot be constructed from a binary regular register using this method.
With this construction, Figure 12.6 reduces to Figure 12.8.

12.3.4 Binary Regular Register from Binary Safe Register

A binary regular register can easily be implemented using just one binary safe register (see
Figure 12.9). The basic idea is that the write process W P, locally keeps track of the contents
of register x (this is easy because WP is the only writer of ). WP does a low-level write -
only when it gets a WRITE which would actually change the value of the register. If the
WRITE is just rewriting the old value, then WP finishes the operation right away without
touching z. Therefore, all low level writes toggle the value of the register. Now consider the
case when a READ is overlapped by a WRITE. If the corresponding write is not performed
(i.e., value is unchanged), then register z will just return the old value, and this READ will be
correct. If the corresponding write is performed, z may return either 0 or 1. However, both
0 and 1 are in the feasible value set of this READ because the overlapping WRITE is toggling
the value of the register. Therefore, the READ will be correct. Figure 12.8 now reduces to
Figure 12.10.
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Safe Regular Atomic
k-ary n-reader
k-ary

n-reader 1-reader
o \ / -
- [ 2

l-reader

binary

Figure 12.8: Collapsed Implementation Relationships

Figure 12.9: Binary Regular Register from Binary Safe Register
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Regular Atomic
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all safe binary

Figure 12.10: Collapsed Implementation Relationships

12.3.5 K-ary Regular Register from Binary Regular Register

We can implement a k-ary regular register using k binary regular registers as in Figure 12.11.
If the initial value of the register is vy, initially ., is 1 and other physical registers are all 0.

Code for WRITE(v)

write 1 to x,. Then, in order, write 0 to z,_1,..., 0.

Code for READ
read xg, Z1,...,Tk-1 in order until some z, = 1 is found. RETURN(v).

RP, is guaranteed to find a non-zero z, because whenever a physical register is zeroed out,
there is already a 1 written in a higher index register.

Claim 12.4 If a READ R sees a 1 in z,, then v must have been written by a WRITE which

is feasible for R.

Proof: Suppose not. Then R sees z, = 1, and neither an overlapping or immediately
preceding WRITE wrote v to the logical register. Then v was written either sometime in the
past, or v = v (initial value). For the moment, ignore the initial value case. Since v is
written by W; (which is not a feasible write for R), there must be a W, completely after.
W, which completely precedes R (otherwise Wi would be a feasible WRITE for R). This W,
must write something < v because if it wrote a value > v, it would set z, = 0 before R could
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R, —{RP)=EL__ T r

N )

Figure 12.11: K-ary Regular Registers from Binary Regular Registers

see T, = 1, and if it wrote a value = v, it would reset z, = 1, but then R would not get the
result of W, but of W;. So, let v" be the biggest value (must be < v) such that a write(1) to
z,» completely follows W; and completely precedes the read of z,, in R. Since R reads the
registers in order o, ..., Zf_1, and it returns value v > v', R must have seen z,» = 0. But,
v’ was set to 1 sometime before read of z,/ in R. Therefore, there exists some write(0) to
r, which follows the write(1) to z,» and either precedes or overlaps the read of v’ in R. But
this can only happen if there is an intervening write(1) to some z,» such that v” > /. This
is a contradiction to the definition of v" being the biggest such value. Note the write(1) to
z,» completely precedes the read of z,» in R because the write(0) to z,r either precedes or
overlaps the read of z,, in R, and v" > v'. v

Note: The case when v is the initial value can be treated similarly. K
The implementation replationships now collapse as shown in Figure 12.12.

12.3.6 1-Reader K-ary Atomic Register from Regular Register

It is possible to construct a 1-writer, 1:reader k-ary atomic register from two 1-reader regular
registers as in Figure 12.13. Regular register z stores tuples of form (old,new,num, color)
where old,new € V, num € {1,2,3} and color € {red,blue}. Register y stores colors from

{red, blue}.
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k-ary atomic
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1-reader
binary atomic

regular
and safe

Figure 12.12: Collapsed Implementation Relationships

Figure 12.13: 1-Reader Atomic Register from Regular Registers
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Code for WRITE(v)

Remember value of z locally as z.new.
newcolor «— —(ready)

oldvalue « z.new
for i = 1,2,3 do write (oldvalue, v, 1, newcolor) to z.

Code for READ

Remember last two reads in z’ and z”.
xll — :E,
z' — read x
write x.color to y.
case
num = 3:
new-returned « true
RETURN z’.new
#'.num < 3 and z’.num > (2".num — 1) and new-returned and z’.color = z"”.color:
RETURN z’.new
else:
new-returned « false
RETURN z’.0ld
end case

Read [Lamport86] for the correctness proof. The implementation relations now collapse
as in Figure 12.14. For other constructions (including multi-writer atomic registers), see

n-reader
k-ary atomic
p

n-reader
binary atomic

A 4

b regular and safe
1-reader atomic

Figure 12.14: Collapsed Implementation Relationships

[Bloom87], [BurnsP87], [NewmanW87,] [SinghAG87!. [VitanyiA86] and Lecture 13.
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Lecturer: Nancy A. Lynch Scribe: Christopher P. Colby

13.1 Multi-writer Registers

In this lecture we continue our discussion of register constructions. In particular, we will con-
sider constructions of multi-writer registers from single-writer registers. Bloom developed
a construction that yields 2-writer n-reader registers from 1-writer n + 1-reader registers.
Vitanyi-Awerbuch developed an n-writer n-reader construction from 1-writer 1-reader regis-
 ters, but the 1-writer registers must be of unbounded size. Peterson-Burns-Schaffer developed
a construction of an n-writer n-reader register from 1-writer 1-reader registers of unbounded

size.

13.2 Bloom’s 2-writer Construction

Bloom [Bloom87] developed a method for constructing a 2-writer n-reader atomic register
from two 1-writer n + l-reader atomic registers. As you will recall, atomic registers are
registers which act as if reads and writes do not overlap. Each read and write operation is
effectively shrunk to a point in the interval between the start and end of the operation. In
reasoning about Bloom’s construction, one can assume that the reads and writes of the two
1-writer atomic registers occur as single points in the execution. That very fact is itself an
. example of why atomic registers are often desirable. :
The construction of the 2-writer atomic register is shown in Figure 13.1. It consists
of two atomic 1-writer n + 1-reader registers (zo and z;), n read processes (RP; ... RP,),
and two write processes (WPo and WP;). Each atomic register z; holds a pair (value, tag),
where value is the value of the logical register and tag is either 0 or 1. Initially, zo and z;
hold (vipnit, 0), where vy, is the initial value of the logical register. The algorithms for the
read processes and the write processes are shown in Figure 13.2. They are modeled as I/0
Automata.

13.2.1 Correct behavior

A well-formed behavior of this system is one in which no invocation to WPy, WPy, or any
RP; occurs until the previous invocation to the same write or read process has terminated.

145



146 | Lecture 13: October 27

Figure 13.1: Architecture of Bloom’s 2-writer atomic register construction. Lines between
processes and registers denote access channels. Read access channels are shown as single
lines and write access channels as double lines.

Algorithm for WP; (writing a value v): Algorithm for RP;:

read (v',t') from z-; read (v, o) from zo
t— (it read (vq,t;) from z;
write (v,t) to z; re—toD i
read (v, ;) from z,
return v,

Figure 13.2: Algorithms for the read and write processes.

Ty, T5w Tor Tw Tow Time
0 1 1 1 0 tag bit of zg
W Wo WP,
W1 WPI
0 0 0 1 1 tag bit of z,;

Figure 13.3: The obliterator of an impotent WRITE is potent.
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The constructed 2-writer register is atomic. Thus, for any well-formed fair behavior « of
this system, the read and write operations on this logical register (henceforth called READs
and WRITEs) must be able to “shrink to a point”. This behavior « arises from some fair
schedule B of the system. Because the physical registers zg and z; are atomic, 3 can be
extended by inserting a star (x) for each read or write from or to those registers such that
the sequence of these *-actions for each physical register is a correct serial behavior for
read/write invocations of that register with the given initial value. Let v be this extended
sequence. We will augment v by adding *-actions for each READ or WRITE of the logical
register and then argue that the result is a correct logical register behavior. To say that
a WRITE or READ “occurs at time 7" means that its *-action occurs at time T in the
schedule.

For a given WRITE operation, we refer to the resulting low-level write to zg or z; as the
contained write. Likewise, any low-level read operation within a READ or WRITE is called
a contained read.

A WRITE is one of two types: potent or impotent.

Definition A WRITE W by WP; is potent iff the modulo 2 sum of the tag bits of zo and
z; immediately after the x-action of the contained write is 7. Otherwise, it is tmpotent.

Definition a WRITE W, is obliterated by WRITE W, if the contained write of W] occurs
between the contained read and write of Wy and if W is the last such WRITE.

Lemma 13.1 Every impotent WRITE is obliterated by precisely one WRITE.

Proof: By the definition of obliteration, there cannot be more than one obliterator of any
WRITE. Let W, be a WRITE by WP, which is not obliterated by any other WRITE. Then,
no writes to z; occur between the read of Wy and the write of W,. So, the tag bit of z,
immediately after the write of W is the same as it was during the read of W,. W, chooses
to write 7o with a tag bit equal to that bit of z,. So, since W, cannot write to register rg,
the tag bits are equal right after the write of W,. Thus, W, is potent. The same reasoning
follows for WRITEs by WP;. Therefore, any WRITE not obliterated by another WRITE is

potent. [ |
Lemma 13.2 The obliterator of an impotent WRITE is potent.

Proof: Assume the contrary. Let W, be the first impotent WRITE with an impotent
obliterator. Let W; be its obliterator. W is impotent, so according to Lemma 13.1 it must
have its own obliterator. Let W} be the obliterator of W;. Figure 13.3 shows the sequence of
internal reads and writes for W}, Wy, and W,. Those reads and writes are labelled with times
immediately after their *-actions. The *-actions of the internal reads occur at times T3, (not
shown because of irrelevance), T},, and Ty,. The *-actions of the internal writes occur at
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times T3, T1u, and To,. Obviously, Tg,, < Tor < Tow. By the definition of obliteration,
T, < T4 < Tiw and Ty, < T1y < To. This yields the complete ordering, shown in Figure
13.3, Ty, < Ty, < Tor < Thoy < Tou- :

Call z;’s tag bit ;. Assume, without loss of generality, that ¢y = 0 at Zg,. Since Wy is
impotent, t; = 1 at Ty,. Since Wy wrote #p to be 0, it must have read ¢; = 0 at time 7g,.
Since the only write to ¢; occurs at Tiy, t; = 0 at all times before Ty, and t; = 1 at Ti,,.
Since W; wrote t; to be 1, it must have read tq = 0 at time 73,.. Since W) is impotent, ¢y
must be 1 at T},,. Since the last write to to before Ty, occurs at T{,,, to = 1 at T3, and Ty,.

At time T}, to = 1 and t; = 0. Thus, W{ is impotent, and W, is an impotent write -
with an impotent obliterator. However, W, was stated to be the first impotent write with
an impotent obliterator. This contradiction establishes the proof. n

13.2.2 Insertion of x-actions

With Lemma 13.1 and 13.2, we can now proceed to insert the x-actions for the WRITEs
and READs into into any behavior. First, the x-actions for all WRITEs are inserted simul-
taneously. Then, the *-actions for all READs of potent WRITEs are inserted. Then, the
x-actions for all READs of impotent WRITEs are inserted. Finally, READs of the initial
value are handled. All *-actions must lie within the corresponding READ or WRITE.

First, insert the x-actions of the WRITEs. If the WRITE is potent, insert the * im-
mediately after the *-action of its contained write. If the WRITE is impotent, insert the
*» immediately before the *-action of the WRITE that obliterated it. It is clear that the
x-actions of potent WRITEs lie within the WRITE interval. By Lemma 13.2, obliterators of
impotent WRITEs are potent. Thus, the *-action of the obliterator of an impotent WRITE
lies within the interval for that impotent WRITE. Therefore, the *-action of the impotent
WRITE also lies within that interval.

Now, insert the *-actions for READs of potent WRITEs. Place the * immediately after
the later of the *-action of the WRITE being read and the first contained read of the READ.
It is obvious that the * falls within the READ interval.

Lemma 13.3 If R is a READ of a potent WRITE W, then the x-action of W is the last
x-action of any WRITE preceding the *-action of R.

Proof: Let T, be the time of the contained write of W. Let Ty, T3, and 7, be the times
of the contained reads of R. There are two cases depending on the ordering of T, and Tj.
The first case is that T, > Tp. In that case, the *-action of R occurs immediately after
the x-action of W, with only *-actions of other READs possibly intervening. The Lemma is
clearly true in this case.

The other case is that T, < Tp. Assume, without loss of generality, that WP, is the writer
of W. Since R reads W, WPy did not perform a real write between T, and T;. Therefore, no
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*-actions of potent WRITEs occurred in that interval. If a *-action of in impotent WRITE
- occurred in that interval, then so would the x-action of its (potent) obliterator. Thus, no

*-actions of WRITEs by WP occur between T, and T5.
Now consider the case where a *-action of a WRITE W, by WP, occurs between T, and

T;. If W) were impotent, then the *-action of W,;’s obliterator (a WRITE by WPs) would
also occur between T, and 7>. As shown in the previous paragraph. this is not possible.
Thus, W; must be potent. Assume, without loss of generality, that W set the tag of 9 to 0
at T,,. Since W is potent, the tag of z; = 0 at T,,, also. Therefore, W; must set the tag of 1,
to 1. Since W) is potent, this occurs before Tp. Thus, the tag of 2, = 0 and the tag of z, = 1
between the *-action of W) and T;. Therefore, R reads 0 and 1 at Ty and 73, respectively,
and reads from z; at 7,. However, this is a contradiction, since R reads from zo at 7. m

Now, insert the *-actions for READs of impotent WRITEs. Place the * immediately after
the *-action of the WRITE. A statement analogous to Lemma 13.3 clearly applies here, but
it is not as obvious that the inserted * lies within the interval of the READ.

Lemma 13.4 If R is a READ of an impotent WRITE W, then the *-action of W occurs
~within the interval of R.

Proof: Since R reads W, the contained write of W must precede the last (third) contained
read of R. Since *-actions of impotent WRITEs precede their contained write, the *-action
of W clearly cannot occur after the interval of R.

If the *-action of W occurs before the interval of R, then the *-action of its (potent)
obliterator occurs between it and the beginning of the interval of R. Assume. without loss
of generality, that WP performs W. Let W, be the obliterator of W. Since I¥ is potent.
the tag bits immediately after its *-action sum to 1. Since W is impotent, the sum of tag
bits immediately after its contained write is also 1. Since R reads W, WP, does not perform
any real writes between the x-action of W and the final contained read of R. Thus, the tag
bit of 2o remains unchanged in that interval. WP; may perform real writes, but all of them
will use the same tag bit for z;. Thus, the sum of the tag bits remains unchanged from the
*-action of W to the last contained read of R. As stated above, this sum is 1. But then R
would read the sum of the tag bits as 1 and thus read from z;. This is a contradiction. since

we assumed above that WP, performs W. [ ]

‘Finally, insert the *-actions for READs of the initial value, by placing them immediately »
after the second contained read. Let R be a READ of the initial value. Clearly, the *-action
of R is within the interval of R. It then suffices to show that no *-action of any WRITE
occurs before R’s second read. If R read from z; on its third contained read, then it must of
- read different tags during its first read (of z) and second read (of r;), and, since both tags
are initially 0, R must not have read the initial value. Thus, R read from zo on its third
contained read. So, there are no writes by WP, before R’s third read. If there is a write
by WP, before R’s second read, then R would have read different tags during its first and
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Notation: There are n writers. WPA,...,WWP,. There are n readers, RP,, ..., RP,.

Shared variables: There are 4n? 1-writer/1-reader atomic variables, T11,..., Zonon. WP,
reads zi1,...,%i2. and writes Ty;,...,Zon,:. RP reads Tiyn1,...,Titn 2, and writes
Z1iny - - s Tanitn- Lhe value that each of these holds is a tuple (value, tag), where tag
is a tuple (version, j), where version € {0, ...}, initially 0, and j € {1,...,n}.

Algorithm for W P; to write the value new: Read z;1,...,%;2, in any order. Deter-
mine the greatest tag (¢,7). Write (new, (¢t + 1,7)) into 1,,...,Z2n; in any order.

Algorithm for RP;: Read Zi4n1,...,Zitn2e in any order. Determine the (v, (f,7)) with
the greatest tag. Write (v, (¢,7)) into &1 i4n,-- ., T2ni+n in any order.

Figure 13.4: The Vitanyi-Awerbuch n-writer register construction.

second read and thus would have read from z; during its third read. This is a contradiction.
Therefore, no *-action of any WRITE occurs before the second contained read of any READ

of the initial value.

So, *-actions may be inserted for every READ and WRITE in any fair behavior of
the constructed 2-writer register such that each READ returns the value of the WRITE
with the last *-action of any WRITE preceding the READ’s *-action. It is thus a correct
implementation of an atomic register.

13.3 Vitanyi-Awerbuch’s n-writer Construction

Vitanyi-Awerbuch [VitanyiA86] developed a construction of an n-writer n-reader register
from 1-writer 1-reader registers, but the 1-writer registers must be unbounded in size. Figure
13.4 describes the construction and the algorithms of the read and write processes. In Lecture
14, we will discuss its correctness.

18.4 Exercises
1. Consider Lamport’s Construction 4, the one that shows how to implement k — ary
regular registers using binary regular registers.

Show that even if the binary registers are atomic, the resulting k — ary register is not
atomic.
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2. Define carefully what it means for one kind of register to be capable of implementing
another in a wait-free manner. Sketch why your notion is transitive.

3. In Bloom’s 2-writer algorithm, indicate why the third read within the READ protocol
is necessary; i.e., what goes wrong if the READ just returns the value already read (in
the first or second read) from the appropriate register?

4. Suppose that the Hirschberg-Sinclair leader election algorithm is modified so that suc-
- cessive powers of k are used for path lengths, k& > 2, instead of successive powers of 2.
Analyze the time and message complexity of the modified algorithm, similarly to the
way the original algorithm was analyzed in class. Compare the results to those for the
original algorithm.
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Lecture 14: November 1
Lecturer: Nancy A. Lynch Scribe: Mike Eisenberg

14.1 nWnR Register Construction (Cont.)

In Lecture 13, we presented the Vitanyi-Awerbuch n-writer, n-reader register construction.
The following lemma provides us with an opportunity to do “higher-order” reasoning about

the construction:

Definition A sequence 5 of external actions of a logical register is regular if each read
process and write process satisfies variable well-formedness and if every invocation has a

corresponding later response.
Lemma 14.1 Suppose a regular sequence B has a partial ordering < of all operations (paired
~invocations and responses) such that:

o If end; precedes begin;, then it cannot be the case that operation; < operation;.

o < orders all WRITE operations, and orders all READ operations with respect to all
WRITE operations.

o The value returned by each READ operation is the value written by the last WRITE
operation ordered before it in < (or the initial value, if no WRITES occur before the

READ according to <).

Then 8 is a correct atomic register behavior.

The first condition in the lemma requires a consistent ordering for non-overlapping in-
tervals — that is, if some operation ends before another begins, the ordering must place the
first operation before the second. The second and third conditions are used to show that
any total ordering of the operations consistent with < is a correct serial behavior of the

read-write register.
A consequence of this lemma is that we can show a register is atomic by showing that:

1. The register preserves well-formedness;
2. In a fair behavior, a return occurs for every invocation; and

3. A partial ordering like the one in the lemma exists for all fair behaviors of the register.
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We now prove the lemma.

Proof: We specify, for each READ and WRITE interval, a corresponding “star event”

(labelled *) somewhere within that interval such that every READ gets the value written by
the WRITE whose * immediately precedes the READ’s . The rule is simple: we insert the
« for event ¢ (denoted by ;) immediately after the latest among begin; and all begin; such
that operation; < operation;. This will be specific enough so that we know that a * can be
placed within a given space; if more than one * has to be placed within that space, we order
them so that they are consistent with the partial ordering <.
‘ Now, it must be the case that each *; is between begin; and end;. It is clearly after begin;
by the construction; and if it were to come after end;, then it must be the case that end;
precedes begin;, where operation; < operation;. However, this contradicts the first condition
on the partial order; so we conclude that *; is correctly between begin; and end;.

We next show that the precedes order on * symbols is consistent with the < order on oper-
ations: that is, if operation; < operation;, then *; precedes *;. Let operation; < operation;.
We know that:

1. *; occurs after the last of begin; and all begin, where operation; < operation;.

2. *; occurs after last of begin; and all begin; where operation; < operation;.

L.

This means that if operation; < operation;, then *; must occur after *;, since *; is placed
after the beginnings of all operations < operation; (this includes operation;); and this set
of operations will include the set that determines the placement of *; (which must therefore
come before ;). Thus the “precedes” order on * must be consistent with the < order on
operations. o

Finally, we claim that each READ operation must get the value of the last WRITE
operation whose * immediately precedes that of the given READ (or the initial value if
there is no preceding WRITE). To prove this, we note that by the third property of the
< ordering, each READ gets the value of the last WRITE ordered before it by <. By the
second property, we know that < orders all READs relative to all WRITEs, and all WRITEs
relative to each other. Since the precedes order is consistent with the < order, a READ must
get the value of the last preceding WRITE. o
~ Now that we have this lemma, it becomes a bit easier to think about the original Vitanyi-
Awerbuch algorithm. If we can show that the operations in the algorithm can be ordered in
such a way that the conditions of our lemma are satisfied, we have proved that the Vitanyi-
Awerbuch algorithm correctly implements atomic register behavior. This leads us to the
following claim:

Claim 14.2 The Vitanyi-Awerbuch algorithm has an ordering among READ and WRITE
operations that satisfies the conditions of Lemma 14.1.




nWnR Register Construction (Cont.) 155

Proof: To prove our claim, we want to look back at the algorithm and order all significant
operations in the way indicated by the lemma: that is, we want to order all WRITEs with
respect to each other, and all READs with respect to all WRITEs. The method of ordering
that seems intuitively plausible (and that does in fact work) is to order WRITE operations
according to their associated tags, since there is a total order of WRITE operations based
on tags. As for a READ operation, we can order it after the WRITE operation whose tag
value that READ operation read. If there are several READs that get the same tag value,
we don'’t really care, since we don’t have to order READs relative to each other — only with

respect to the WRITEs.

This ordering certainly satisfies the second condition of the lemma. As for the first
condition, we want to show that if end; precedes begin;, then we can’t have operation; <
operation;. If operation; and operation; are both READs or both WRITEs, then the proof
of this condition follows from the fact that the tag value at any given position in the table
of variables can never decrease; if one WRITE finishes before another begins, the second
WRITE must increase the tag value in its column beyond the tag value of the first WRITE,
and will thus be ordered by < after the earlier complete WRITE. (Similar observations
apply to two consecutive complete READ operations, or a WRITE operation followed by a
READ.) The only remaining case that we have to worry about is when operation; is a READ
operation and operation; is a WRITE; but in this case, the tag associated with the WRITE
will be bigger than that associated with the previously completed READ, so again we must
have operation; < operation;. This completes the proof of the first condition.

Finally, to prove that the third condition is met, we need to show that the value returned
by a READ is the value written by the last preceding WRITE operation in the < ordering (or
initial, if there are no preceding WRITEs). This follows immediately from our construction
of the < ordering: we placed each READ operation in this ordering precisely so that it would
go after the WRITE operation whose corresponding value it read.

Now we have an interesting question to ponder: can we use a lemma similar to this one
to provide a proof of Bloom’s algorithm? It certainly isn’t a straightforward task, since there
are no obvious analogues in Bloom’s algorithm to Vitanyi and Awerbuch’s tags.

We might also consider trying to rephrase Bloom’s algorithm in more abstract terms. In
other words, it may be possible to describe Bloom’s algorithm using higher-order concepts,
and to show that the version of Bloom’s algorithm that we used is merely an implementa-
tion of this more-abstractly-expressed version. The possibility of such a reworked version
of Bloom’s algorithm, or of other algorithms like the Singh-Anderson-Gouda construction
(shown in Figure 14.1), is an open question. :
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Notation: The writer is denoted by W. There are m readers, Ri,...,Rn_1. If 2 is a 1/1
‘atomic register, read(z) is a read operation that returns the value of z, and write(z, v)
is a write operation that assigns v to be the value of z. Let true = 1 and false = 0.

Shared variables: All of these are either 1-writer/1-reader atomic registers that take on
integer values, or banks (tuples) of such registers. Let z and y be arbitrary values.

WW is an integer written and read by W
Initially, WW =z

V0 < ¢ < m, WR; is a tuple (old,new,seq,. . . ,5¢¢n_1), written by W and read by R;
Initially, WR; = (y,z,0,..., true)

V0 < i< m, R;W is an integer written by R; and read by W
Initially, R;W = 0

V0 <i,7 <m, R;R; is a tuple (old,new,seq;, flag) written by R; andread by W
Initially, RiR; = (y,z,0, true)

Code for W to write the value new:

old —read( WW)

if old # new then

- for k=0,...,k—1do [seq «—read(RiW); seq «—(seqe + 1) mod 3]
for k=m —1,...,1 do write(W Ry,(old,new,seq,. . . ,5€¢,_1,false))
for k=1,...,m — 1 do write(W Ry,(old, new,seq,. . . ,5€gn_1,true))
write(WW new)

Code for R;:

(old,new,seqo,. . . ,5€gm-1,done) —read(WR;)
write( R; W ,seq;)

for k=0,...,i—1do (oldy,newy,seqy, flagr) —read(RxR;)
(old ,new seqp,. .. ,seq, _,,done') «read(W R;)

pi «—(old = old) A (new = new) A (Vj:0<j<m: seq = seq;)
for k=0,...,1 —1do p; « p; A flag; A (old = oldy) A (new = newy) A (seq, = seq?)
flag «=po V p1 V...V pi_1 V (pi A done A done’)

for k=:+1,...,m —1 do write(R;Ry,(old,new/ ,seqd;, flag))
if flag then return(new/) else return(old)

Figure 14.1: Singh-~Anderson-Gouda 1-writer/m-reader Atomic Register Construction
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14.2 Herlihy Impossibility Result

Now that we have seen a variety of constructions that allow us to implement one type of
register in terms of some other type, we might ask whether it is possible to find a wait-free
implementation of higher-level register objects (such as atomic test-and-set registers) using
atomic registers. Herlihy, Loui, and Abu-Amara showed — surprisingly — that it is in fact
impossible to do this.

We will postpone the proof of their result until a later lecture — but, briefly, the essence
of the proof is as follows: they consider a distributed consensus problem in which a group
of processors start with different “votes” and have to reach agreement with a final vote.
This problem has a known solution using atomic test-and-set registers; moreover, it can be
solved in a way that is resilient to any number of stopping processes. (That is, no matter
how many processes fail, the processes that continue operating will successfully reach a
consensus.) They then show that this problem cannot be solved using any combination of
atomic read-write registers. But if we could construct test-and-set registers out of atomic
registers, then we could solve the consensus problem using read-write registers in such a
way that the failure resiliency of the solution corresponds to the wait-free property of our
construction. Thus, there can be no wait-free implementation of test-and-set registers using

read-write registers.

14.3 Network Algorithms

The first section of this course was devoted to shared-memory algorithms. In this next few
lectures we will discuss network algorithms, designed for groups of processes that communi-
cate via messages.

Our discussion of network algorithms will focus on several representative problems: leader
election algorithms, finding a minimum spanning tree, and taking global snapshots in a
distributed system.

A loose classification of network algorithms separates them into two categories: static
and dynamic. Static algorithms assume that inputs to the network are fixed. In other
words, there are some number of processes arranged in a network communicating over edges
(message buffers), and there are inputs set for each process at the beginning of the execution
(no new inputs will come into the network during the course of the solution to the problem).
The network produces some output to report the solution to the problem. In dynamic
algorithms, by contrast, we assume that each process can communicate with some underlying
process that is performing some algorithm; and the network’s purpose is to carry out some
job “servicing” the origina} algorithm — detecting termination, for example.
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14.3.1 Leader Election Algorithms

Our first topic in network algorithms will involve the (static) problem of electing a leader
among a set of processes. This is a problem that one might want to solve in any kind of
distributed network, but the algorithms that we will explore will stipulate that the processes
are distributed in a ring. We also assume that each process begins the algorithm with a
unique identifier from some totally ordered set, and that they can communicate with their
neighbors in the ring via messages.

A typical example of how a leader-€lection problem might appear in a real-world setting
is in a token ring. A situation might arise in which a token is lost, and has to be regenerated
somewhere in the network — but we also want to ensure that only one token is regenerated.
There are other situations, involving arbitrary network configurations, in which we might
want to select some distinguished node in a network; a good example is in spanning tree
algorithms, where we might want to designate a “root” process from which we can originate
the tree.

For the leader-election problem in a ring, there are a number of varying assumptions that
one can make in designing a workable algorithm:

¢ The number n of processes might be known to each process at the outset of the problem
— that is, the number n could be built into each process’s local algorithm. Conversely,
we might assume that the number of processes in the ring is not known to any processor;
the idea here is that the same algorithm should work when the processes are placed in

a ring of any size.

¢ The processes in the algorithm might be capable of bidirectional or only unidirectional
(i.e., clockwise or counterclockwise) communication.

¢ Asynchronous or synchronous processes. (Virtually all the algorithms that we have
looked at up until now have assumed asynchronous processes. )

¢ The identifiers for the processes could be chosen from a bounded set, or instead from
(e.g.) the reals or integers.

¢ The algorithm could be designed to select as leader the process with some particular
identifier value (such as the maximum identifier), or it could use some other criterion

for selection.

Most of the work in this area has concerned itself with minimizing the number of messages
sent in the ring. It is worth pointing out that if the bandwidth in the network is very high,
there might be other, more important measures for an algorithm: for instance, total running

time.
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Note also that the problem of selecting an arbitrary leader among a ring of processes is
closely related to the problem of selecting a maximum. Clearly, if a group of processes in a
ring can select the one with the maximal identifier, they can designate that process as the
leader. Going in the other direction, if a group of processes can select a leader according
to some arbitrary criterion, that leader process can send a special “maximum-determining”
message around the ring, and thus find the maximum at the cost of n extra messages (beyond
those needed to determine the leader).

14.3.2 Le Lann-Chang-Roberts Leader Election Algorithm

The first leader election algorithm that we will discuss is one that we saw toward the end of
Lecture 6, due to Le Lann and to Chang and Roberts. In a nutshell, the idea is that each
process will send an identifier around the ring. When a node (process) receives an incoming
identifier, it compares that identifier to its own; if the incoming identifier is greater than
its own, it keeps passing the identifier; but if the incoming identifier is less than its own, it
discards the incoming identifier (and does not permit it to continue passing around the ring).
A process declares itself the leader when it receives an identifier equal to its own, since this
indicates that the identifier has been passed through by every other node in the ring.
Classifying this algorithm according to the dimensions listed above, we see that the Le

Lann-Chang-Roberts algorithm:

e Assumes that n, the number of nodes in the ring, is unknown.

Involves only unidirectional message passing.

Works asynchronously.

e Uses an unbounded identifier set (e.g., integers).

Elects the node with the maximal identifier as the leader.

Message-Complexity and Time Analysis for the Le Lann-Chang-Roberts Algo-
rithm

In the worst case, the Le Lann-Chang-Roberts algorithm requires O(n?) messages to be sent.
To see this, suppose that the messages are to be sent clockwise; then the worst-case initial
arrangement of identifiers would be that shown in Figure 14.2. In this case, each identifier ¢
is passed approximately ¢ times, so the total number of messages is

n

> i =0(n?)

=1
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Figure 14.3: The best case identifier ordering for the Le Lann-Chang-Roberts algorithm.

In the best case scenario, the process identifiers are arranged in the opposite order, as in
Figure 14.3. In this case, one particular identifier, n, will get all the way around the ring,
while every other identifier is blocked by its immediate neighbor. Thus, the tota] number of
messages in this case is only O(n).

The running time for both algorithms, assuming that messages are delivered in parallel
around the ring, is O(n). This is just the time taken for the winning identifier to go all the
way around the ring.

Since it’s pretty clear that there is a wide gap between the best and worst case scenarios
for this algorithm (in terms of the number of messages sent), we might be interested in finding
the average number of messages sent. The notion of “average performance” here is different
than the concept we employed in analyzing the Rabin randomizing algorithms; in that case,
we analyzed the performance of an algorithm over all possible erecutions. N ow, however, we
are interested in averaging the performance of the Le Lann-Chang-Roberts algorithm over all
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possible inputs — a weaker notion, since instead of an adversary choosing inputs we assume
that the inputs are coming in from some random distribution.

To analyze the average performance of the Le Lann-Chang-Roberts algorithm, let’s begin
by assuming (without loss of generality) that the identifiers are chosen from the set 1,2,...n.
We further assume that the identifiers are ordered randomly around the ring. The expected

total number of messages is just:
| > E(i)

where E(¢) is the expected distance (in links) that identifier ¢ travels before encountering a
process whose id-number is greater than i. Clearly, E(n) = n, since identifier » will always
go all the way around the ring. E(n — 1) can be found by noting that identifier n — 1 will
go around the ring until it encounters process n. The expected distance (in links) between
process n — 1 and process n is n/2, so E(n — 1) = n/2.

Continuing, E(n — 2) can be found by noting that identifier n — 2 will travel around
the ring until it meets the earlier of process n — 1 and process n. Intuitively, we’'d expect
the average distance to the first of these processes to be about n/3, and indeed an exact
calculation shows that E(n — 2) = n/3. In general, our intuition suggests that

n
E(Gl)= ———

@) (n—i+1)

- Before going on, we can sketch the exact derivation of this expression for E(7). Let j
denote n — ¢ + 1, so that the jth largest id-number is i. Now the problem can be phrased as
follows: we have patterns consisting of “dashes” and “X’s”, where dashes denote nodes with
an identifier less than 4, and X’s denote nodes with an identifier greater than i. We wish to
distribute j — 1 X’s in patterns consisting of a total of n — 1 X’s and dashes, and to find the
expected position of the first X. A sample pattern, for n = 10 and ¢ = 8, is shown below:

- = = { - - - X -
The total number of patterns containing j — 1 X’s is

n—1
j—1
We wish, therefore, to sum up the total number of messages sent to reach the first X
in all patterns, and divide by the total number of patterns to get the average number of

messages sent over all patterns.
Now, all patterns cause one message to be sent, so we have

G2))
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messages contributed by all patterns (that is, there are this many “first messages” sent).
The number of patterns that cause a second message to be sent will be just the number of
patterns beginning with a dash; so the number of second messages 1s

n—2
7j—1
Similarly, the number of patterns beginning with {wo dashes will each contribute a “third

message” to the total; there are thus
n—3
7—-1

third messages. In general, then, we find that the total number of message for all patterns

is:
Go1)+ G0 +-620)-0)
i-1) U= T T
Thus the average number of messages for a given choice of ¢ is, as predicted by intuition:
G)
n—-1
(=)

Therefore the expected total of all messages is the sum of the harmonic series:

n
J

n n
n+ s+

n ;
5 3-i-...;=n(1—i—1/2-{-...1/n)__O(nlogn)

14.3.3 Hirshberg-Sinclair Leader Election Algorithm

Having looked at the Le Lann-Chang-Roberts algorithm, a natural question to ask is whether
we can do better than O(n?) as our worst-case message complexity. Is it possible to get a
worst-case performance of O(nlogn) messages sent? The first algorithm to show that it was
indeed possible (albeit at a sacrifice in terms of running time) was constructed by Hirshberg

and Sinclair.
The Hirshberg-Sinclair algorithm can be classified according to the list of leader-election

properties that we enumerated before:
e Assumes that n, the number of nodes in the ring, is unknown.
e Involves bidirectional message passing.

¢ Works asynchronously.
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1C o )1

2 o 32

4 o J4

Figure 14.4: Successive message-sends in the Hirshberg-Sinclair algorithm

e Uses an unbounded identifier set.
o Elects the node with the maximal identifier as the leader.

The only difference between the Le Lann-Chang-Roberts and Hirshberg-Sinclair algo-
rithmos in this classification is that the latter assumes that we have bidirectional message
passing.

Roughly, the idea of the Hirshberg-Sinclair algorithm is that every process, instead of
sending messages all the way around the ring as in the Le Lann-Chang-Roberts algorithm,
will send messages that “turn around” and come back to the originating process. Each
process sends out messages (in both directions) that go successively larger distances before
returning; in particular, a process first sends messages out for a distance of 1 in both direc-
tions; then 2; then 4; and so on, each time doubling the distance of the previous message.
This idea is suggested by the sketch in F igure 14.4.

When a message is sent out by a process p, some other process in that message’s path
may discover that p can’t win because its own id-number is greater than that of p. In this
case, rather than pass along the original message, it sends back a message to p effectively
telling p to stop initiating messages. Similarly, a process ¢ that sees a message with an
id-number bigger than its own can deduce that it cannot win, and therefore need not initiate
any new messages. Finally, if a process receives its own message (before that message has
“turned around”), this means that it is the winner.

It should be clear that this algorithm works, in that it elects as leader only the process
with the highest id-number.

Message and Time Analysis for the Hirshberg-Sinclair Algorithm

A process will initiate a message along a path of length 2* only if it has not been defeated
by another process within distance 2(:-1) in either direction along the ring. This means that
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within any group of 20=1) 4 1 consecutive processes along the ring, only one will go on to
initiate messages along paths of length 2*. Thus, at most

=77l

in total will initiate messages along paths of length 2t
The total number of messages sent out is then bounded by

n n : n
s((1xm)+@x 5D+ x5+ @ [m]) +...)

The leading term of 4 in this expression is derived from the fact that each round of
message-sending for a given process occurs in both directions — clockwise and counterclock-
wise — and that each outgoing message must turn around and return. (Thus, for example,
in the first round of messages, each process sends out two messages — one in each direction
__ a distance of one each; and then each outgoing message returns a distance of one, for
a net total of four messages sent.) Each term in the large parenthesized expression is the
number of messages sent out around the ring at a given pass (counting only messages sent
in one direction, and along the outgoing path). Thus, the first term, (1 % n), indicates that
all n processes send out messages for an outgoing distance of 1.

Each term in the large parenthesized expression is less than or equal to 2n, and there are
at most 1 + [logn] terms in the expression, so the total number of messages is O(nlogn),
with a constant factor of approximately 8.

The time complexity for this algorithm is just O(n), as can be seen by considering the
time taken for the eventual winner. The winning process will send out messages that take
time 2, 4, 8, and so forth to go out and return; and it will finish after sending out the
[logn]th message. If n is an exact power of 2, then the time taken by the winning process
is approximately 3n, and if not the time taken is at most 4n.

14.3.4 Peterson Leader Election Algorithm

Hirshberg and Sinclair, in their original paper, conjectured that in order to get O(nlogn)
worst case performance, a leader election algorithm would have to allow bidirectional message
passing. Peterson, however, constructed an algorithm disproving this conjecture. Employing
our usual classification scheme, the Peterson algorithm may be summarized as follows:

e Assumes that n, the number of nodes in the ring, is unknown.
e Involves unidirectional message passing.

e Works asynchronously.

¢ Uses an unbounded identifier set.
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neighbor

next-to-last neighbor this process

Figure 14.5: A “good” configuration for a Peterson-algorithm process.

e Elects any node as leader.

The only difference in this classification scheme between the Le Lann-Chang-Roberts and
Peterson algorithms is that the latter may elect as leader any particular node (rather than
the one with the maximal id-number, as in the Le Lann-Chang-Roberts algorithm). The
Peterson algorithm not only has O(nlogn) worst case performance, but in fact the constant
term is low; it is easy to show an upper bound of 2nlogn, and Peterson used a trickier,
optimized construction to get a worst case performance of 1.44nlogn. (The constant has
been brought even further down by other researchers.)

In Peterson’s algorithm, processes are designated as being either in an active state or
relay state; all processes are initially active. We can consider the active processes as the
ones “doing the real work” of the algorithm, or as the processes still participating in the
leader-election process. Relay processes, in contrast, just pass messages along.

The Peterson algorithm is divided into (asynchronously determined) phases. In each
phase, the number of active processes will be divided at least in half, so there will be at most
logn phases.

In the first phase of the algorithm, each process sends its id-number two steps clockwise.
Thus, everyone can compare its own id-number to that of its two counterclockwise neighbors.
When it receives the id-numbers of its two counterclockwise neighbors, each process checks
to see whether it is in a configuration such that the immediate counterclockwise neighbor has
the highest id-number of the three, as depicted in Figure 14.5. A process in this configuration
will remain “active,” adopting as a “temporary id-number” the id-number of its immediate
counterclockwise neighbor. If not in this configuration, a process becomes a “relay” for the
remainder of the execution. The job of a “relay” is to forward messages to active processes.
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Subsequent phases proceed in. much the same way: among active processors, only those
whose immediate (active) counterclockwise neighbor has the highest (temporary) id-number
of the three will remain active for the next phase. A process that remains active after a given
phase will adopt a new temporary id-number for the subsequent phase; this new id-number
will be that of its immediate active counterclockwise neighbor from the just-completed phase.

It is clear that in any given phase, there will be at least one process that finds itself
in a configuration allowing it to remain active (unless only one process participates in the
phase, in which case the lone remaining process is declared the winner). Moreover, at most
half the previously active processes can survive a given phase (since for every process that

remains active, there is an immediate counterclockwise active neighbor that must go into its

relay state). Thus, as stated above, the number of active processes is at least halved in each
phase, until only one active process remains.
' A (somewhat abstract) summary of the Peterson algorithm’s code is shown below:

Active:
. temp-id « nitial value;
do forever
[send(temp-id);
receive(nezt-temp-id); _
if next-temp-id = temp-id then announce “leader”;
send(temp-id); ‘
receive(next-nezt-temp-id);
if nezt-temp-id > max(temp-id, next-nect-temp-id)
then temp-id « nezt-temp-id:
else goto relay|

Relay:
do forever ,
[receive(temp-id); send(temp-id)]

Message and Time Analysis of Peterson’s Algorithm

The total number of phases in Peterson’s algorithm is at most |logn|, and during each
phase each process in the ring sends and receives exactly two messages (this applies to both
active and relay processes). Thus, there are at most 2n|log n| messages sent in the entire
algorithm; note that this is a much better constant factor than in the Hirshberg-Sinclair
algorithm.

As for time performance, one might first estimate that the algorithm should take O(n log n)
time, since there are log n. phases, and each phase could involve a chain of message deliveries
(passing through relays) of net length O(n). As it turns out, however, the algorithm only
requires O(n) time.



Network Algorithms ; 167

PO = P2

P1{O)

Figure 14.6: The last phase of the Peterson algorithm. PO is the winner.

To do the time analysis of Peterson’s algorithm, we begin by assuming an upper bound
of 1 on message transmission time; and we assume that internal-processing time is negligible
compared to message-transmission time. Now, our plan is to trace backwards the longest
sequential chain of message-sends that had to be sent in order to produce a winning process.

Let us denote the eventual winner by PO0. In the final phase of the algorithm, P0 had to
hear from two active counterclockwise neighbors, P1 and P2. In the worst case, the chain
of messages sent is actually n in length, and P2 = P0, as depicted in Figure 14.6.

Now, consider the previous phase. We wish to continue pursuing the chain backward
from P2 (which is the same node as P0). The key point to recall, though, is that in going
from a phase to the previous phase, it must be the case that between any two active processes
in the later phase, there is at least one (and possibly two) active processes in the previous
phase. Thus, the chain of messages pursued backward from P2 in the next-to-last phase can
at worst only extend as far as P1, as depicted in Figure 14.7. Note also that an additional
active process must have existed counterclockwise to P1.

At the phase preceding the next-to-last phase, there again must have been active processes
between P4 and P35, and between P5 and P2, as shown if Figure 14.8.

Continuing the chain backwards, we see that each time we move “backward” one phase,
we have to insert an active process between every two active processes of the current phase.

- This means that the chain of messages that eventually terminates with P0 in Figure 14.6

can at worst only traverse the entire ring twice. Thus, the total time taken by the algorithm
is O(n), with a constant of 2.

14.3.5 An Impossibility Result, and a Lower Bound Result

Having considered some algorithms to solve the leader election problem, we mow turn to
impossibility and lower bound results for this problem. A well-known result due to Angluin
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Figure 14.7: The next-to-last phase of the Peterson algorithrm.

P

re {O)
4P6P5

Figure 14.8: The next preceding phase of the Peterson algorithm.




Network Algorithms 169

is that it is impossible to elect a leader in a ring in which the processes have no identifiers.
The problem is the same one that we encountered earlier in discussing the dining philosophers
~ problem — namely, that in the absence of identifiers it is impossible to break the inherent

symmetry of the original ring. This result remains true regardless of whether we assume
that the processes know the value of n, or can send bidirectional messages, Or operate

synchronously, or can conceivably elect any process as leader.
‘An interesting lower bound result was developed by Burns. In this case, we consider the

leader election problem with the following properties:

o Assumes that n, the number of nodes in the ring, is unknown.

Involves bidirectional message passing.

Works asynchronously.

Uses an unbounded identifier set.

o Elects any node as leader.
Burns proved the following:

Theorem 14.3 A leader election algorithm w.ih the properties listed above must have a
worst case performance (in messages sent) of (1/4)nlogn, where n is the number of processes
in the ring.

We assume that n is a power of 2. We will model each process as an I/O automaton, and
stipulate that each automaton is distinguishable (in essence, that each process has a unique
id-number). The automaton can be represented as in Figure 14.9. Each process has two
output messages, send-right and send-left, and two input messages, receive-right and
receive-left.

Our job will ultimately be to see how a collection of automata of this type behave when
connected up into a ring; but in the course of this exploration we would also like to see how
the automata behave when arranged not in a ring, but simply in a straight line, as in Figure
14.10. Formally, we can say that a line is a linear composition of distinct automata, chosen
from the universal set of automata.

We can imagine that the executions of such a line of automata can be examined “in
isolation,” where the two terminal automata receive no input messages; in this case the line
simply operates on its own. Alternatively, we might choose to examine the executions of the
line when certain input messages are provided to the two terminal automata.

As an added bit of notation, we will say that two lines of automata are compatible when
they contain no common automaton between them. We will also define a Jjoin operation
on two compatible lines which simply concatenates the lines; this operation identifies the
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receive-left send-right

“send-left  ~—Treceive-right

Figure 14.9: A process participating in a leader election algorithm.

Figure 14.10: A line of leader-electing automata.
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join

C T () C T 1)

Figure 14.11: Join and ring operations.

rightmost receive-right message of the first line with the leftmost send-left message of
the second, and the leftmost receive-left message of the second line with the rightmost
send-right message of the first. Finally, the ring operation on a single line identifies the
rightmost send-right and leftmost receive-left messages of the line, and the rightmost
receive-right and leftmost send-left messages. The ring and join operations are depicted
graphically in Figure 14.11.

The proof of the theorem is given in Lecture 15.
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Lecture 15: November 3
Lecturers: Nancy Lynch, Hagit Attiya Scribe: Magda Nour

15.1 Burns’ Leader Election Message L.ower Bound

We proceed with a proof that %nlogn messages are required to elect a leader in a bidirec-
tional asynchronous ring, where n is unknown to the processes and process identifiers are
unbounded. Recall from Lecture 14, the definitions of a line, a ring, and the join operation.
If S is a system (line or ring), and « is an execution of S, then we define:

e MSGS(S) = sup, MSGS(S,a). :
Here we consider the number of messages sent during execution. (For lines, we only
consider executions in which no messages come in from the ends.)

o A configuration q of S consists of the local states and the messages in all buffers.
¢ A configuration ¢ of a ring is quiescent if no execution from ¢ sends any new messages.

e A configuration g of a line is quiescent if no execution from ¢, in which no messages
arrive on outside incoming links, sends any-new messages.

Executions from a quiescent configuration can deliver messages already in buffers in .S,
but generate no new messages. If S is a line, no new messages come in from outside.

Lemma 15.1 For every: > 0, there is an infinite set of disjoint lines, L;, such that for all
Le L;, IL l =2 and MSGS(L) >1+ %logn (where n = 2:)

Proof: By induction on i:

Basis: For i = 0, we need an infinite set of different processes such that each can send
at least 1 message without first receiving one. Suppose, for contradiction, that there are 2
processes, p and g, such that neither can send a message without first receiving one. Consider
rings Ry, R;, and R3 as shown in Figure 15.1.

In all three rings, no messages are ever sent, so each process proceeds independently.
Since R; solves election, p must elect itself, and similarly for R, and ¢q. Then R, elects two
leaders, a contradiction. So, at most one process won’t send a message before receiving one.

If there is an infinite number of processes, removing one leaves an infinite set of processes
that will send a message without first receiving one. Let L, be this set, which proves the
basis.

173
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leader leader

o

R,

Know about Join
Figure 15.2: Join(L,M)

Inductive step: Assume true for : — 1. Let n = 2. Let L, M, N be any 3 lines from
L;_1. Consider all possible combinations of two: LM, LN, ML, NL, MN, and NM. Since
infinitely many sets of 3 can be chosen from £;_;, the following claim implies the lemma. m

Claim 15.2 At least one of the 6 lines can be made to send at least 1 + % logn messages.

Proof: Assume false. By the inductive hypothesis, there exists a finite execution oy, of L
for which MSGS(L, ar) > 1 4 £log %, and in which no messages arrive from the ends.

We can assume without loss of generality that the final configuration of oy, is quiescent,
since otherwise aj can extend to generate more messages, until 1 + 2 logn messages is
exceeded. We can assume the same condition for aps and ay by similar reasoning. Now
consider any two of the lines, say L and M. Consider join(L,M). Consider an execution that
starts by running oz on L and aar on M, but delays messages over the boundary.

This gives > 2(1 + £ log ’2‘) messages. Now deliver the delayed messages. The entire line
must quiesce without sendmg more messages, otherwise the total will be > 2(1+4 2 glog2)+2
= 2+ Zlogn and the claim is satisfied. This means that at most 2 % processes in ]OlIl(L M)
“know about” the join, and these are contiguous and cross the boundary as shown in Figure
15.2. These processes extend at most halfway into either segment. Let us call this execution
ara- Similarly for azy, ete.

In ring R, of Figure L15:f3, consider an execution in which ez, ayr. and ay occur first,
quiescing pieces. Then quiesce around boundaries as in appar, ery. :d anz. Since the
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L N
Figure 15.3: Join(L,M,N):Case 1

N

L M
Figure 15.4: Join(L,N,M)

processes that know about each join extend at most half way into either segment, these
messages will be noninterfering. Similarly for R,.

Each of R, and R; elects a leader, say p; and p2. We can assume without loss of generality
that p, is between the midpoint of L and the midpoint of M as in Figure 15.3. We consider
cases based on the position of p; in R, (Figure 15.4) to find a contradiction.

e Case 1: p, is between the midoint of L and the midpoint of N as in Figure 15.5
Quiesce as before-run segments and quiesce around boundary.

No leader is elected in Rs, a ring containing MN. If one is, say ps, then first suppose
1t is in lower half as in Figure 15.6. Then it also occurs in R; and gets elected there
too as in Figure 15.7. There are two leaders in this case which is a contradiction. If it
is in the upper half of R, then we arrive at a similar contradiction in R;.

e Case 2: p, is between the midpoint of L and the midpoint of M. We arrive at a similar
contradiction based on R3, again.

¢ Case 3: p; is between the midpoint of M and the midpoint of N. We arrive at a similar
contradiction based on Ry, a ring containing LN as in F igure 15.8.
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L M

Figure 15.5: Join(L,N,M)

Figure 15.6: Join(M,N): Leader elected in the lower half

Figure 15.7: Join(L,N,M)
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Figure‘ 15.8: Join(L,N): Leader elected in the lower half

n

The reason this suffices is as follows: Let n be a power of 2. Pick a line L of length n

with MSGS(L) > 14 % logn, and paste it into a circle. Let the processes in L behave exactly

as they would if they were not connected, in the execution that sends the large number

of messages. Delay all messages across the pasted boundary until all the large number of
messages have been sent. Note that his uses asynchrony heavily.

15.2 Synchronous Leader Election Algorithm

15.2.1 Frederickson-Lynch/Vitanyi Algorithm Description

Can Burns’ lower bound be applied to a synchronous model? Suppose we have lock-step
execution, where processors take steps in a round robin order. Messages are sent round
robin, then all processes receive messages round-robin, from the same direction (e.g. first

left then right for sending, similar for receiving).

We usually describe synchrony with a model that combines the actions at different lo-
cations into one big global action. In other words, at every step, all processes receive all
messages from the last step, from left and right, all change state, and all send messages. All
of these actions occur atomically. This model gives more power because we can use the fact
that a message has not arrived to convey some information.

- As a first attempt, we assume:
® n is known to all the processes,
e communication is unidirectional,
e process identifiers are integers, and

e all processes start the algorithm at the same time.
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The following algorithm can be used: In the first n time slots, only a message marked
with identification number 1 can travel. Every process will see a message marked with
identification number 1 if one is sent. In general, slots kn, (k+1)n are reserved for messages
with identifier k. The smallest identifier is distinguished and therefore the process with that

identifier can be elected. .
The number of messages is < n. Unfortunately the time is about nm, where m is the

smallest process identifier.
As a second attempt, Frederickson extended these ideas to the case where:

e n is not known,
e communication is unidirectional,

® processes can start algorithm at different times, and

e process identifications are integers.

The number of messages is at most O(n). The time is worse — O(n2™) where m is the
smallest process identification number. This algorithm is not practical, but rather serves to
demonstrate limitations on extending the lower bound proof to the synchronous case. We
cannot get an O(n logn) synchronous lower bound without some additional assumptions.

Bach process which decides to start participating in the elections spawns a message which
will move around the ring, carrying the identification number of the original process.

First idea: Identifiers that originate at different processes are transmitted at different
rates. This is implemented by having identifier  travel at the rate of 1 message transmission
every 2¢ clock pulses.

Any slower identifier that is overtaken by a faster identifier will be deleted (since it has
a larger identifier). Also identifier s ‘arriving at process j will be deleted if J <t and process
7 has also spawned a message process.

Suppose first that all messages are spawned on the same clock pulse. The above strategy
then guaranteees that the process with the smallest identifier would get all the way around
before the next smaller got half-way, etc, and therefore would use more messages than all
the others combined. Therefore total number of messages is < 2n. Time is < n2™, o

However, this scheme is not good enough to realize O(n) messages in the case that not
all processors spawn their message processes at the same time. If processors with smaller
identifiers wake up later than those with larger identifiers, they can still spawn messages
that chase and overtake the slower identifiers, but not before about n messages had been
expended by each of the participating (O(n)) identifiers.

Second idea: Have a preliminary phase before variable rate transmission begins. In the
first phase, all identifiers travel at the same rate. Whenever any process decides it wants to
participate in the election, it spawns its message and sends it off to its neighbor. The identifier
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travels around the ring, until it encounters the next process that had decided to participate.
At this point, the identifier continues into the second phase, moving at its variable rate. New
entrants after an identifier has already passed by will back off. In other words, a process will
not begin to participate after it has received a message from a participating process.

15.2.2 Analysis

Number of Messages

1. The total number of messages in the first phase is n (to close the ring).

2. After no more than n clock pulses from when the first message was spawned, the
eventual winner will have entered phase 2.

Proof: Let p be the first process to spawn and let g be the eventual winner. Since
g spawns, it must do so by d(p, ¢) pulses, where d(p, q) is the distance from p to q.
Then g enters the second phase by the time its identifier reaches p (or perhaps a closer
process), so there is a total of n messages. [

3. The total number of second-phase messages sent before the eventual winner enters the
second phase is < n.

Proof: All processes that are not eventual winners have identifiers > 1. In the n
possible clock pulses, identifier ¢ can only travel < 2 distance. So the total number of

messagesis < s+ +--Sn ]

4. The total number of second-phase messages after the eventual winner enters phase 2
is < 2n.

Proof: By relative traveling rates the eventual winner (the process with the smallest
identifier) gets all the way around the ring (this takes n messages), the next smaller
could send at most 2 messages in that time since its messages are traveling half as fast,
the third smaller could send at most £ messages, etc. The i* smallest processor can
send at most £ messages because of its message speed. This is a similar argument as
the one for the first algorithm. ]

Therefore, the total number of messages < 4n.

Time

If m is the identifier of the eventual winner, the algorithm could take O(n2™) time, which is
the same as the first case. Thus, we can achieve O(n) mesages in a synchronous algorithm
but with very costly time performance and the use of identifiers for counting.
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Figure 15.9: A k-neighborhood

15.3 Computing on an Anonymous Ring

Let us consider a slightly different model where processes have no identifiers, but each process
has an input v; € {0,1}. '

We know that we cannot elect a leader in such a ring but we still can compute functions
of the input bits such as OR, XOR, SUM, etc.

A k-neighborhood of a process in a ring R is the sequence of input bits of the process and
the 2k processes surrounding it. Figure 15.9 shows the k-neighborhood of p. In particular,
an 0-neighborhood of a process p; is v;. _

In the asynchronous model we can control the arrival times of messages. We look at a
particular scheduling of message delivery, called the synchronizing schedule. This schedule
delivers messages in rounds, i.e. all messages sent by the processes based on their initial
state are delivered simultaneously. This creates round 1. The messages that result from the
receipt of messages at the end of round ; are delivered in round i + 1, for s > 1.

Lemma 15.3 Ifp and g have the same k-neighborhood, then p and q are in the same state
after round k.

Theorem 15.4 There is no asynchronous algorithm that computes sum correctly on rings
of different sizes.

Proof: Assume there exists some asynchronous algorithm that adds correctly on ring size
n; and on ring size n,.

Consider the computation of the algorithm on two configurations of different sizes (n;
and ny), with all inputs 1 under the synchronous scheduler. For any k, all k-neighborhoods
are identical in both configurations. By the Lemma 15.3, all processes will halt in the same
state in both computations and will output the same answer. This is a contradiction.
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Let us define SYM(R,, k) to be the smallest number of occurances of any k-neighborhood
appearing in R;. ‘

Two input configurations R, and R, are a weak fooling pair for f (of size n with param-
eters a and b) if: :

L f(R) # f(Ry),

2. there exists p; in R; and P2 in R, with the same a-n-neighborhood,

3. for all £,0 < k < an, SYM(Ry, k) > bn. In other words, for all ¥,0 < k < an, any
k-neighborhood that appears in R, appears at least b-n times in R,. .

Theorem 15.5 If there ezists a fooling pair for f, then any asynchronous algorithm for
computing f sends at least (n?) messages in R, in the worst case.

Proof: Let A be an algorithm for computing f. Look at the computation of 4 on R, and
R, under the synchronous scheduler. Let T be the first “round” in which no message is sent
in R;. The computation has terminated because there 1s no message arrival at 7" hence no
state transition at round T + 1, and at any subsequent round. In particular, all processes in
Ry halt at round T.

If T < an, then since p1 and p, have the same a-n-neighborhood, p; and p, halt with
the same output in both computations. This yields a contradiction. Hence T > an.

Let g be the process that sends a message at round k of the computation on R;. For any
round k& < T, some procrss sends a message. Then any process with the same k-neighborhood
also sends the same message. By the third fooling pair requirement, there are at least bn
such processes. Hence at least 4-n messages are sent at round k, for 0 < k < a-n, and so:

T:ib-'n=IJ-TL’:IZ%1=[)~(L~'IZ2
=1

k=1

Ezample: The configurations R, = 1™ and Ry = 1710 are a fooling pair for OR (with

parameters b = 1,a = :}) From this example we get the following corollary:

Corolgary 15.6 For any n, any algorithm that computes OR on rings of size n sends at
least &= messages in the worst case.
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15.4 Exercises

1.

Write a bidirectional version of Peterson’s leader election algorithm. What are the
message and time complexities of your algorithm?

Reconsider Burns’ lower bound for the number of messages required for electing a
leader in an asynchronous ring whose size is a power of 2. What is the best lower
bound you can obtain, using the same ideas, for ring sizes that are not powers of two?

Assume that the inputs to processors in a synchronous ring are bits. Assume n, the
number of processors, is known.

a. Design and analyze an algorithm to cormpute the OR of all input bits.
Your algorithm should use O(n) time and messages.

b. Design and analyze an algorithm to compute the sum of all input bits; Your
algorithm should use O(n logn) messages.

Hint: Define “labels” to processors, modify the algorithm from question 1, and
use the algorithm of (a) to detect symmetric situations.

Consider a “banking system” in which each node of a network keeps a number indicat-
ing an amount of money. Messages travel between nodes at arbitrary times, containing
money which is being “transferred” from one node to another. Design a distributed
algorithm that allows each node to decide on its own balance, in such a way that the
total of all the balances is the correct amount of money in the system. Give a con-
vincing argument that your algorithm works. (The algorithm is not allowed to halt or
delay transfers.)

Use the Lemma presented in class to give a “higher-level” correctness proof for Bloom’s
two-writer register algorithm.
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Lecture 16: November 8
Lecturer: Hagit Attiya Scribe: Azer Bestavros

16.1 Computing in Synchronous Rings

In Lecture 15 we considered computation in asynchronous anonymous rings. We proved that
for some functions (e.g. SUM and XOR) there is no asynchronous algorithms that compute
correctly in rings of different sizes. Moreover, we established an Q(n?) lower bound on the
number of messages sent by an asynchronous algorithm computing a function f for which a
weak fooling pair exists, where n — the size of the ring — is known.

It is quite natural to ask whether in the case of synchronous rings there are algorithms
that somehow make use of the synchrony to limit the number of messages transmitted. In
this section we establish an Q(n log n) lower bound on the number of messages required to

compute in synchronous rings.

16.1.1 Active Cycles in Synchronous Algorithms

Let A be a synchronous algorithm that computes the value of the function f in any config-
uration. The algorithm A executes in cycles. In each cycle, the algorithm A4 might:

1. Receive messages from its left and/or right neighbors,
2. Perform some local computations based on the information received, and

3. Send messages to its left and/or right neighbors.

Consider the executions of A on two different configurations R; and R,. Now, assume
there is a cycle in the execution of 4 where messages are neither sent in R; nor in R,.
Obviously, such a cycle does not bring any information that helps A distinguish between R,
and R;.! On the other hand, if in a cycle of the computation, messages are sent in R; or in
Ry or in both, then such a cycle might carry new information to A concerning the particular
configuration in which it is executing. We define such cycles as active cycles.

Lemma 16.1 Let p and q be processors in Ry U Ry, that have the same i-neighborhood then
p and q are in the same state after the i* active cycle.

!Note that in some cases an algorithm A might still acquire information from the fact that no messages
are sent — however this information cannot help in differentiating between R; and R.

183
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Proof: The proof is by induction on the number of active cycles i.

e Basis:
If processors p and ¢ have the same 0-neighborhood then they have the same inputs

and thus their initial states are identical.

e Induction Step:
Assume the claim is correct for ¢ — 1. Thus processors p and ¢ are in the same state

after the k** active cycle, where k < (i — 1). Now consider the i** active cycle. We

have 2 cases:

1. Neither p nor q got any messages:
Obviously, both p and ¢ will remain in the same state or will make the same state

transition, since they got no additional information about their neighborhoods.

2. P or q got a message:

Without loss of generality assume that p got a message from its left (right) neigh-
bor p’. This message was sent at the end of the (¢ — 1)** cycle. Let ¢’ be the left
(right) neighbor of ¢. Since p and ¢ have the same i-neighborhood, it follows that
their neighbors p’ and q' have the same (¢ — 1)-neighborhood. Now, by the induc-
tion assumption, both p’ and ¢’ should have been in the same state in the (i—1)*
cycle and thus should have sent exactly the same messages to their neighbors p
and ¢. Thus, if one of p or ¢ receives a message then the other should also receive
the same message. Hence, they both get the same information and thus make the
same state transition and remain in the same state.

16.1.2 Strong Fooling Pair

Two input configurations Ry and R, are a strong fooling pair (of size n and with parameters
a and b) for a function f if the following conditions are satisfied:

1. f(R) # f(Ra).

2. There exists processors p; in R; and p, in R, such that p1 and p; have the same
an-neighborhood.

3. For all values of k, where k£ < an, any k-neighborhood that appears in Ry or in R,

n
2k+1

Note that this does not interfere with the fact that the i* cycle is active, since it might be the case that
some other processors (other that p and ¢) actually received messages.
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Lemma 16.2 Let A be a synchronous algorithm computing the function f for which a strong
Jooling pair (Ry, R;), with constants a and b, ezists. To compute f in a ring of size n, A
will have to execute for at least a - n active cycles.

Proof: The proof is by contradiction.
e Assume that 4 terminates after ¢ cycles, where t < an.

o Let p; and p; be two processors in B; and R, with the same t-neighborhood. The
existence of such processors is guaranteed by property (2) of a fooling pair.

e From Lemma 16.1, both p; and p, should end up in the same state after the #** active
cycle. Thus, they both halt in the same state and should have computed the same
value for f. This contradicts property (1) of the fooling pair.

=
Theorem 16.3 If A is a synchronous algorithm computing the function f for which a strong
fooling pair (R;, Ry) exists then A sends at least

an b.n
§2i+1 = Q(nlogn)

messages on either Ry or R;.

Proof: For any active cycle i, i < an, let p be a processor that sends a message in this cycle.
Such a processor should always exist since i is an active cycle. By property (3) of a fooling
pair, there are at least b- 3747 Other processors with the same i-neighborhood, and by Lemma
16.1 all of these processors will send a similar message. From Lemma 16.2, the number of
active cycles is at least a - n. Thus, the total number of messages S sent is at least:

an b.n bann
52,232”1 Zi;?

The above summation can be approximated by:

S > -bQE(ln an) > Q(nlogn)
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16.1.3 Lower bound for.computing the XOR function
We will show that the computation of the XOR function requires 2(nlog n) messages. The
idea is to build strong fooling pairs for the XOR function and use Theorem 16.3 to get the

Q)(nlogn) lower bound.
We generate the strong fooling pair using a string substitution homomorphism A which

is defined as follows:

R(0) — 011
k(1) — 100
. Thus,
R(0) = 011 R(1) = 100
RY0) = 011100100 R2(0) = 100011011
= 011100100100011011100011011 R3(0) = 100011011011100100011100100

k*(0)

Lefnma 16.4 For the string substitution homomorphism h:

Vr,&"(0) = (1)

Proof: The proof is by induction on r. =

Lemma 16.5 For the string substitution homomorphism A, any substring o, |o| = I, that
appears in either h*(0) or h¥(1) appears at least c - % in both of them.

Proof:

e First notice that applying the homomorphism 4 twice on any character (0 or 1) results
in a sequence where all strings of length .2 appear cyclically. Now, consider the 3
sequences shown in Figure 16.1, namely: S; = h*(z), S, = h*~18al(1), and S5 =
h*-1o831=2( 1) where z € 0, 1.

— Any string of 2 bits in S, contributes at least 2. 38! — 9. bits in S;. Thus the
substring o in S; results from some 2-bit string in S3. Let this string be 7.
— Any single bit (0 or 1) in S contributes at least one 7 in S,.
¢ From the above analysis (see Figure 16.1) it is obvious that every bit in S3 contributes

at least one ¢ in S;. Thus, the number of times o appears in S is at least equal to
the number of bits in S; which can be easily found to be:

3k—logs -2 _ < _ * L
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Figure 16.1: Fooling pairs using the string substitution homomorphism
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Lemma 16.6 Letn = 3k then (h*(0), h*(1)) is a strong fooling pair for the XOR function.

Proof: To prove that (R, R,) is a strong fooling pair for the XOR function, we need to
show that the three conditions in the definition of strong fooling pairs are satisfied. The
first condition, namely f(R1) # f(Rz) follows directly from the fact that [R*(0)] = [R*(1)| =

n = 3* is odd and from the fact that h¥(0) = R¥(1). The second and third conditions follow
directly from Lemma 16.5. ™
Theorem 16.7 Any synchronous algorithm that computes the XOR function on an anony-

mous ring of size n sends at least Q(n log n) messages in the worst case.

Proof: The proof follows directly from Lemma 16.6 and Theorem 16.3. ]

16.1.4 Strong Fooling Pair (revisited)

In our definition of a strong fooling pair, we have assumed that all the processors in the ring
are computing the same function f. This is not necessarily true since the algorithm used
by the different processors might be computing different values in order to solve a specific
problem. For instance, consider the problem of start synchronization where processors do
not start simultaneously and each has to compute an offset to its local clock so as to bring
all clocks to show the same time. Obviously, any algorithm used to solve this problem will
result in possibly different values computed by the processors.

The following is a generalized definition for a strong fooling pair that will enable us to
talk about solving problems rather than computing functions. Our previous -definition 1s
modified so as to make the value computed by the algorithm depend on both the processor
executing the algorithm and the configuration in which the algorithm is executed. Thus we
define f(p, R) to be the value computed by the algorithm when executed by a processor p
in a configuration R. ’

Definition Two input configurations R; and R, are a strong fooling pair (of size n and
with parameters a and b) for a function f if the following conditions are satisfied:

1. There exists processors p; in R and p; in R; such that:

(a) f(PlsRl) # f(ps, R2), and
(b) p; and p, have the same an-neighborhood.

2. For all values of k, where k < an, any k-neighborhood that appears in R; or in R,
appears b - 5% times in both R; and R,. ’
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16.2 Leader Election in Synchronous Rings-

In Lecture 15 we have presented an algorithm by Frederickson and Lynch for leader election
in a synchronous ring of size n that uses only O(n) messages.®> The algorithm uses the
processors’ identifiers in a non-standard manner and takes a very long time. In this section,
we show that these properties are in a sense necessary to achieve the O(n) bound on the
number of messages. We will show that if the time is to be bounded or the identifiers are
used in a “conservative” manner, then any algorithm for leader election in synchronous rings

requires at least 2(nlogn) messages in the worst case.

16.2.1 Comparison-Based Algorithms

We assume that every processor in the ring is identical to all the others, except for its own
unique identifier that is chosen from a totally ordered set L. In any round of the computation,
the state of a processor records any information known to the processor concerning the
identifiers of its neighborhood. Initially, the state of a processor consists of its own identifier.
All the processors begin executing the same algorithm at the same time.

In any round of the computation, each processor examines its state and might decide to
send messages to its neighbors. Moreover, based on its state and the messages it received
from its neighbors (if any), a processor might also change its state. Thus, a synchronous
algorithm can be fully described by:

1. A message sending function, and

2. A state transition function.

Definition A synchronous algorithm is called a comparison-based algorithm if its message
sending and its state transition functions are based solely on comparing the identifiers it has
received so far from processors in its neighborhood.

16.2.2 Order Equivalent Neighborhoods

Let X and Y be two neighborhoods of equal size over the totally ordered set L of identifiers.
Assume that identical relationships hold between the components of the two neighborhoods.
From the above definition, it is obvious that any processor p executing a comparison algo-
rithm, will behave exactly the same in either X or Y. We call such neighborhoods order

3As opposed to the Q(n log n) lower bound for asynchronous rings.



L

190 Lecture 16: November 8

equivalent.
Definition Two strings X =< z1,22,...,2, > and Y =< yy,¥2,...,¥y, > are order equiva-

lent if and only if:
Vi,j<r, z;i<z; < 3 <y;
i >T; < Yi>Y;

Lemma 16.8 Let p and ¢ be two different processors executing a comparison-based algorithm
A. If p and q have order equivalent k-neighborhoods then p and q have the same state

transitions® and message generating functions after the k** active cycle.

Proof: The proof is by induction on k and is very similar to the proof of Lemma 16.1. |

16.2.3 Order Fooling Configuration

Definition An input configuration R is an order fooling configuration (of size n with
param‘reter‘s a and b) if for any k, k£ < an, if a k-neighborhood appears in R then there are at
least b+ 5% order equivalent k- nelghborhoods that appear in R.

An Example: Consider rings of size n, where n = 2'. Let I be the configuration resulting
from assigning to each processor p; an integer identifier whose binary representation is the
reverse binary representation of ;. Figure 16.2 shows the identifier assignment for n = 8. It
is easy to show that I is an order fooling configuration,® where a = %, and b = %

Lemma 16.9 Any synchronous algorithm A that elects a leader in an order fooling config-
uration R have at least a - n active cycles.

Proof: The proof is by contradiction.

e Assume that when A executes on R, it terminates after ¢ cycles, where t < an.

o Let p be a processor that is elected as a leader. Since R is an order fooling configu-
ration, it follows that there exists at least another processor ¢ with order equivalent
t-neighborhood. The existence of such a processor is guaranteed by the properties of
order fooling configurations.

By the same state transitions we do not mean that they have exactly the same values for their local
variables etc. Rather we mean that they have equivalent knowledge about the function they are computing.
°Thls is left as an exercise (see problem 8.2).
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F igure 16.2: Constructing order fooling configuration using the identifier assignment I.
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¢ From Lemma 16.8, both p and ¢q should end up in the same state after the t** active
cycle. Thus, they are both elected as leaders — a contradiction.

Lemma 16.10 Any synchronous algorithm A that elects a leader in an order fooling con-
figuration R of size n sends at least (nlogn) messages.

Proof: For any active cycle ¢, ¢ < a-n, let p be a processor that sends a message in this cycle.
Such a processor should always exist since ¢ is an active cycle. By the properties of order
fooling configurations, at least b- 575 other processors have order equivalent neighborhoods,
and by Lemma 16.8 all of these processors will send a similar message. From Lemma 16.9,
the number of active cycles is at least a-n. Thus, the total number of messages S sent is at

least:

f:bn b&% n
t_02z—{—1 “2‘_11

The above summation can be approximated by:

S > %q(ln an) > (nlogn)

Theorem 16.11 A lower bound on the number of messages required by an algorithm A that
elect a leader in a synchronous ring of size n is Q(nlogn)

Proof: The proof follows directly from Lemma 16.10 if we can show the existence of an order
fooling configuration. For the case where n is power of 2, we have already shown how to
construct such a configuration — namely using the identifier assignment I. For a general n,
it can be shown that an order fooling configuration can be constructed.® ]

Refer to the paper by Frederickson an« Lynch for a construction.
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Lecturer: Nancy Lynch Scribe: Mike Fisenberg

17.1 Gallager-Humblet-Spira Minimum-Weight Span-
ning Tree Algorithm

In this lecture, we will examine a distributed algorithm, due to Gallager, Humblet, and
Spira [GallagerHS83], for computing the minimum-weight spanning tree (MST) of a graph.
The statement of the problem is as follows: let G be an undirected graph with weighted
edges in which each vertex is associated with its own processor, and processors are able to
communicate with each other via edges. We wish to have the processors (vertices) cooperate
to construct a minimum-weight spanning tree for the graph G. That is, we want to construct
a subtree covering the vertices in G whose total edge weight is not greater than any other
spanning tree for G.

- We will assume processes have unique identifiers, and that each edge of the graph is
associated with a unique weight known to the vertices on each side of that edge. (The
assumption of unique weights on edges is not a strong one given that processors have unique
identifiers; for if edges had non-distinct weights, we could derive “virtual weights” for all
edges by appending the identifier numbers of the end points onto the edge weights, thereby
breaking ties between the original weights.) We will also assume that a process does not
know the overall topology of the graph—only the weights of its incident edges—and that
it can learn non-local information only by sending messages to other processes over those
edges. The output of the algorithm will be a “marked” set of tree edges; every process will
mark those edges adjacent to it that are in the final MST.

There is one significant piece of input to this algorithm: namely, that one node will
be “awakened” from the outside to begin computing the spanning tree. Nodes do not,
therefore, begin computing at the same time—in fact, we assume that the processes work
asynchronously. A process can be awakened either by the “outside world” (asking that
the process begin the spanning tree computation), or by another, already-awakened process
during the course of the algorithm.

There has been a fair amount of work on this problem. The Gallager-Humblet-Spira
algorithm focuses on keeping the number of messages sent as small as possible. They achieve
a bound of O((nlogn) + ) messages, where n is the number of vertices (processes) and e the
number of edges. Intuitively, this is the minimum bound possible: the e term comes from
the fact that we have to send a message over each edge in the graph by way of examining
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that edge, and the nlogn terr omes from the lower bound on the number of messages for
leader election that we saw in the Burns theorem proved in Lecture 15. (If we can find a
MST in a graph, then we can easily carry out a fan-in procedure to elect a leader. Roughly,
the idea here is to have messages sent in “convergecast” fashion inward from the leaves of
the tree until they meet at some node which then designated as the root /leader, and which
broadcasts its identity back outward along the tree.)

The motivation for this problem comes mainly from the area of communications—the
weights of edges might be regarded as “message-sending costs” over the links between pro-
cessors. In this case, if we want to broadcast a message to every processor, we would use
the MST to get the message to every processor in the graph at minimum cost. Additionally,
a procedure to solve the MST problem is a useful subroutine for other algorithms—for in-
stance, as mentioned above, it is easy to elect a leader in a graph if :hat graph happens to
be a tree (breaking the symmetry caused by cycles is the hardest 1. . of a general leader-
election algorithm). Thus, a reasonable strategy for leader-electio: - an arbitrary graph
might be to first find a spanning tree for the graph, and then find & -ader by applying the
“convergecast” algorithm described above, sending messages only along the edges of the tree.

 The Gallager-Humblet-Spira algorithm is not only interesting, but extremely clever: as

presented in their paper, it is about two pages of tight, modular code, and there is a good
reason for just about every line in the algorithm. In fact, only one or two tiny optimizations
have been advanced over the original algorithm. The algorithm has been proven correct
via some rather difficult formal proofs (see [WelchLL88]); and it has been referenced and
elaborated upon quite often in subsequent research.

17.1.1 A High-Level Description of the Algorithm

We’ll begin by examining the Gallager-Humblet-Spira algorithm at a high level of description.
Afterward, we’ll take a closer look at the code itself.

Two Important Propertiés of Minimum-Weight Spanning Trees

There is a local property that constitutes the basis for all known (sequential and distributed)
minimum-weight spanning tree algorithms:

Property 17.1 Let G be an undirected graph with vertices V and weighted edges E. Let
(K,E;) 11 <1 < k be any spanning forest for G, with k > 1. Fizanyi, 1 <:<k. Lete be
an edge of lowest cost in E — U; E; such that exactly one endpoint of e is in V.

- Then there is a spanning tree for G that includes {e} U (U; E;) and this tree is of as low
a cost as any spanning tree for G that includes U; E;.

Proof: Suppose the <'+im were not true—i.e., that T is a spanning tree for G that includes
Uj £j, does not include  and is of lower cost than a: . other spanning tree including |J; E;.

i
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Figure 17.1: Adding edge e to the tree produces a cycle containing ¢

In this case we can add e to our tree T to get a cycle (see Figure 17.1). This cycle contains
another edge e’ # e that is outgoing from V..

By hypothesis, we know that weight(e’) > weight(e). Now, consider T” constructed by
deleting ¢’ and adding in e. This is a new spanning tree for the graph that has a weight
lower than that of 7. Thus, we have arrived at a contradiction: we have a spanning tree
including all the edges in the original forest, and that has a weight at least as low as the tree
T. n

To summarize the idea, we can take any spanning forest for the graph G (a collection
of disjoint trees that includes every vertex of G); we now choose one of the trees in this
collection; and we find the edge of lowest cost with exactly one endpoint in this tree. We'll
call this the minimum-weight outgoing edge (MWOE) for this tree. The claim that we have
just proved is that there is a spanning tree for G that includes all the edges in the original
forest, and that also includes the newly-found edge, and that is no larger in cost than any
other spanning tree including all the edges in the forest. :

This principle forms the basis for well-known sequential MST algorithms. The Prim-
Dijkstra algorithm, for instance, starts with one node and successively adds the smallest-
weight outgoing edge from the (partially-finished) tree until a complete spanning tree has
been obtained. The Kruskal algorithm, by contrast, starts with all nodes as fragments, and
successively extends the fragment with the least-weight outgoing edge, thereby combining
fragments until there is only one large fragment (the final tree).

Earlier, we noted that in our version of the problem we will assume that all edge weights
in our starting graph are distinct. In this case, we have a second property that we can use
to simplify our problem:

Property 17.2 If all edges of a connected graph have distinct weights, then the MST is
unique.
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Figure 17.2: An unintended cycle is formed due to edges with equal weights.

Proof: The proof of this property is actually similar to the one above. Suppose there
are two trees, T' and 7", with identical (minimal) weights, and let e be the minimum weight
edge found in only one of the two trees. Say (without loss of generality) e € T. Then
e U T’ contains a cycle, and at least one other edge in that cycle, ¢’, is not in 7. Since
the edge weights are all distinct, and since €' is in one tree but not in the other, we must
have weight(e’) > weight(e) (by our choice of €). But this implies that 7" U {e} — {e'}is a
spanning tree with a smaller weight than 7", which is a contradiction. } [

Assumptions about the Gallager-Humblet-Spira Algorithm

As noted immediately above, one assumption that we will make for the Gallager-Humblet-
Spira MST algorithm is that edge weights are distinct. This property represents a major
advantage for parallel MST algorithms: at successive phases, each of a collection of fragments
may independently (and simultaneously) choose their own MWOE, combining with other
fragments where possible. If the edge weights were not distinct, the fragments couldn’t
carry out this choice independently, since it would be possible for them to form a cycle
unwittingly (as depicted in Figure 17.2).

Besides the use of distinct edge weights, there are some other assumptions used in the
Gallager-Humblet-Spira algorithm:

¢ All nodes operate asynchronously.

® Messages are guaranteed to be delivered eventually, but there is no time bound on
delivery.

- ® Messages are delivered along ahy particular channel in FIFO fashion (i.e., they are
delivered in the order in which they are sent).
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® Nodes in the graph receive “wakeup” signals to begin processing; thus, all nodes do
not (in general) begin the MST algorithm simultaneously. (This makes the algorithm
a little more complicated.)

Connections between the MST Problem and Other Problems

One additional remark about the MST problem is that it has strong connections to two other
problems: that of finding any spanning tree at all for a graph, and that of electing a leader
n a graph.

If you have a spanning tree, it is pretty easy to find a leader; this proceeds via “fan in”
of messages from the leaves of the tree until the incoming messages converge on a root node,
which can then be designated as the leader. Conversely, if you have a leader, it is easy to
find an arbitrary spanning tree: the leader broadcasts messages along each of its neighboring
edges, and nodes designate as their parent in the tree that node from which they first receive
an incoming message (after which the nodes then broadcast their own messages along their
remaining neighboring edges).

A minimum spanning tree is of course a spanning tree; but the converse problem is
harder, since an arbitrary spanning tree is not always minimal. How, then, could one find a
minimal spanning tree given that one has an arbitrary spanning tree (or a leader)?

One idea would be to have every node send information regarding its surrounding edges
to the leader, which then computes the MST centrally and distributes the information back
to every other node in the graph. This strategy may seem efficient in terms of the number of
messages sent, but realistically it requires a great deal of local computation (on the part of
the root node), and the size of the messages sent back from the root node will also be large.

Basic Ideas of the Gallager-Humblet-Spira Algorithm

The central idea of the Gallager-Humblet-Spira algorithm is that nodes form themselves
into collections—fragments—of increasing size. (Initially, all nodes are considered to be in
singleton fragments.) Each fragment is itself connected by edges that form a MST for the
nodes in the fragment. Within any fragment, nodes cooperate in a distributed algorithm to
find the MWOE for the entire fragment (that is, the minimum weight edge that leads to a
node outside the fragment). The strategy for accomplishing this involves broadcasting over
the edges of the fragment, asking each node separately for its own MWOE leading outside
the fragment. Once all these edges have been found, the minimal edge among them will be
selected as an edge to include in the (eventual) MST.

Once a MWOE for a fragment is found, a message may be sent out over that edge to
the fragment on the other side. The two fragments may then combine into a new, larger
fragment. The new fragment then finds its own MWOE, and the entire process is repeated
until all the nodes in the graph have combined themselves into one giant fragment (whose
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Figure 17.3: How does a node know whether an edge leads outside the fragment?

edges are the MST).

~ This is not the whole story, of course; there are still some problems to overcome. First,
how does a node know which of its edges lead outside its current fragment? A node in
fragment F can communicate over an outgoing edge, but the node at the other end needs
some way of telling whether it too is in F. (See Figure 17.3.) We will therefore need some
way of naming fragments so that two nodes can determine whether they are in the same
fragment. But the issue is still more complicated: it may be, for example, that the other
node (at the end of the apparently outgoing edge) is in F but hasn’t learned this fact yet
because of communications delays. Thus, some sort of overall synchronization process is
needed—some sort of two-phase strategy that ensures that nodes won’t search for outgoing
edges until all nodes in the fragment have been informed of their current fragment.

Another problem is that the number of messages sent by such an algorithm could be
large. The number of messages sent by a fragment to find its MWOE will be proportional to
the number of nodes in the fragment. Under certain circumstances, one might imagine the
algorithm proceeding by having one large fragment that picks up a single node at a time,
each time requiring 2(f) messages, where f is the number of nodes in the fragment. (See
Figure 17.4.) In such a situation, the algorithm would require 2(n?) messages to be sent
overall.

This second problem should suggest a “balanced-tree algorithm” solution: that is, the
difficulty derives from the merging of data structures that are very unequal in size. The
strategy that we will use, therefore, is to merge fragments of roughly equal size. Intuitively,
if we can keep merging fragments at nearly equal size, we can keep the number of total
messages to O(nlogn). »

The trick we will use to keep the fragments at similar sizes is to associate level numbers
with each fragment. We will say that if level(F') = [ for a given fragment F, then the number
of nodes in F is greater than or equal to 2'. Initially, all fragments are just singleton nodes at
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Q.__._..

Figure 17.4: How do we avoid a big fragment growing by one node at a time?

level 0. When two fragments at level [ are merged together, you get a new fragment at level
[+ 1. (This preserves the condition that we specified for level numbers: if two fragments of
size at least 2! are merged, you get a new fragment of size at least 2+1 )

These level numbers, as it turns out, will not only be useful in keeping things balanced,
but they will also provide some identifier-like information helping to tell nodes whether they
are in the same fragment.

Before describing the specific messages used in the Gallager-Humblet-Spira algorithm,
we can take an overall look at how fragments are combined together. There are two ways of
combining fragments:

1. Merging. This is the “standard” way of combining. In this case we have two fragments
F and F'| and they find that they share the same minimum-weight outgoing edge:

level(F) = level(F') = |
MWOE(F) = MWOE(F')

Then it is okay to combine the two fragments into a new fragment at a level of + 1.

2. Absorbing. There is another case to consider. It might be that some nodes are forming
into huge fragments via merging, but isolated nodes (or small fragments) are lagging
behind at a low level. In this case, the small fragments may be absorbed into the larger
ones without determining the MWOE of the large fragment.

The rule for absorbing is that if you have two fragments F and F, with level(F) <
level(F’), and the MWOE of F leads to F’, then you can absorb F' into F by combining
them along the MWOE of F. The larger fragment formed is still at the level of F.
In a sense, we don’t want to think of this as a “new” fragment, but rather just an
augmented version of F”.
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Figure 17.5: Two fragments combine by merging; a fragment absorbs itself into another

These two combining strategies are illustrated (in a rough way) by Figure 17.5. It is
worth underlining the fact that just because level(F) < level(F"), we do not know that
fragment F' is smaller than F”; in fact, it could be larger. (Thus, the depiction of F as a
“small” fragment in Figure 17.5 is meant only to suggest the typical case.)

If a fragment finds that its MWOE leads to a fragment at a smaller level than itself, it
simply holds up and takes no action; thus, the only way in which fragments combine is via
merging (in which two fragments of equal level combine) and absorbing (in which a “small”
fragment adds itself onto a “large” one).

Level numbers thus serve, as mentioned above, as identifying information for fragments.
For fragments of level 1 or greater, however, the specific fragment identifier is the core edge of
the fragment. The core edge is just the edge along which the merge operation resulting in the
current fragment level took place. (Since level numbers for fragments are only incremented
by merge operations, we know that any fragment of level 1 or greater must have had its
level number specified by some previous merge along an edge; this is the core edge of the
fragment.) The core edge also serves as the site where the processing for the fragment
originates and where information from the nodes of the fragment is collected.

To summarize the way in which core edges are identified for fragments:

o For a merge operation, core is the common MWOE of the two combining fragments.

¢ For an absorb operation, core is the core edge of the fragment with the larger level

number.

We now want to show that this strategy, of having fragments merge together and absorb
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Figure 17.6: A collection of fragments and their minimum-weight outgoing edges.

themselves into larger fragments, will in fact suffice to combine all fragments into a MST for
the entire graph.

Claim 17.3 If we start from an initial situation in which each fragment consists of a single
node, and we apply any possible sequence of merge and absorb steps, then there is always
some applicable step to take until the result is a single fragment containing all the nodes.

Proof: We want to show that no matter what configuration we arrive at in the course of
the algorithm, there is always some merge or absorb step that can be taken.

One way to see that this is true is to look at all the current fragments at some stage
in the running algorithm. Each of these fragments will identify its MWOE leading to some
other fragment. If we view the fragments as vertices in a “fragment-graph,” and draw the
MWOE for each fragment, we get a directed graph with an equal number of vertices and
edges. (See Figure 17.6) By the pigeonhole principle, such a directed graph must have a cycle;
and because the edges have distinct weights, only cycles of size 2 (i.e., cycles involving two
fragments) may exist. Such a 2-cycle represents two fragments that share a single MWOE.

Now, it must be the case that two fragments in any 2-cycle can be combined. If the
two fragments in the cycle have the same level number, a merge operation can take place;
otherwise, the fragment with the smaller level number can absorb itself into the fragment
with the larger one. u

- Let’s return to the question of how the MWOE is found for a given fragment. The basic
strategy is this: each node in the fragment is going to find its own MWOE leading outside
the fragment; then we will collect the information from each node at a selected processor,
and take the minimum of all the edges suggested by the individual nodes.

This sounds straightforward, but it reopens the question of how a node knows that a
given edge is outgoing—that is, that the node at the other end of the edge lies outside the
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Figure 17.7: Node p wants to know if ¢ is in the same fragment.

current fragment. Suppose we have a node p that “looks across” an edge e to a node q at
the other end. (See Figure 17.7.) How can p know if ¢ is in a different fragment or not?

A fragment name (or identifier) may be thought of as a pair (core, level). If ¢’s fragment
name is the same as p’s, then p certainly knows that ¢ is in the same fragment as itself.
However, if ¢’s fragment name is different from that of p, then it is still possible that ¢ and
p are indeed in the same fragment, but that ¢ has not yet been informed of that fact. That
is to say, ¢’s information regarding its own current fragment may be out of date.

However, there is an important fact to note: if ¢’s fragment name has a core unequal to
that of p, and it has a level value at least as high as p, then ¢ can’t be in the fragment that
p is in currently, and never will be. This is so because, in the course of the algorithm, a
node will only be in one fragment at any particular level. Thus, we have a general rule that
¢ can use in telling p whether both are in the same fragment: if the value of (core,level) for
q is the same as that of p then they are in the same fragment, and if the value for core is
different for ¢ and the value of level is at least as large as that of p then they are in different
fragments. '

The upshot of this is that MWOE(p) can be determined only if level(q) > level(p). If ¢
has a lower level than p, it simply delays answering p until its own level is at least as great
as p’s.

The fact that ¢ may delay answering p means that we have to reconsider our earlier
argument that the algorithm must make progress until a MST is found. Since a fragment
can be delayed in finding its MWOE (since some individual nodes within the fragment are
being delayed), we might ask whether it is possible for the algorithm to reach a state in
which a merge or absorb operation is not possible. To see that this is not the case, though,
we can use essentlally the same argument as before, but this time we need only consider
those MWOE’s found by fragments with the lowest leve! in the graph (call this level LO). If
a fragment at level LO finds a MWOE to a higher-leve. 1gment, then an absorb operation



- Gallager-Humblet-Spira Minimum- Weight Spanning Tree Algorithm 203

o

Figure 17.8: Fragment F absorbs itself into F’ while F’ is still searching for its own MWOE.

is possible; and if all of the fragments at the level LO have a MWOE to some other fragment
at level LO, then again we must have a 2-cycle between two fragments at level LO, and a
merge operation is possible. So again, we conclude that the algorithm must make progress
until the complete MST is found.

Getting back to the algorithm itself, each fragment F will find its overall MWOE by
taking a2 minimum of the MWOE for each node in the fragment. This will be done by a
“broadcast-convergecast” algorithm starting from the core, emanating outward, and then
collecting all information back at the core.

This leads to yet another question: what happens if a “small” fragment F gets absorbed
into a larger one F’ while F is still in the course of looking for its own MWQE? (See Figure
17.8.)

There are two cases to consider (consult Figure 17.8 for the labelling of nodes). Suppose
first that MWOE(q), the minimum edge leading outside the fragment F”, has not yet been
determined. In this case, we must search for a MWOE for the fragment F” in F as well.
Since ¢ doesn’t yet know which is its own local MWOE, there is still a possibility that e is
¢’s MWOE, and thus the MWOE for the entire fragment F’ might emanate from one of the
newly-incorporated nodes in F.

On the other hand, suppose MWOE(q) has already been found at the time that F
absorbs itself into F”. In that event, the MWOE for ¢q cannot possibly be e, since the only
way that the MWOE for ¢ could even be known is for that edge to lead to a fragment with
a level at least as great as F”; and we know that the level of F' is smaller than that of F'.
Moreover, the fact that the MWOE for ¢ is not e implies that the MWOE for the entire
fragment F” cannot possibly be in F. This is true because e is the MWOE for fragment
F', and thus there can be no edges leading out of F with a smaller cost than the already-
discovered MWOE for node q. Thus, we conclude that if MWOE (g) is already known at the
time the absorb operation takes place, then fragment F” needn’t look for its overall MWOE
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among the newly-absorbed nodes. This is fortunate, since if F” did in fact have to look
for its MWOE among the new nodes, it could easily be too late: by the time the absorb
operation takes place, ¢ might have already reported its own MWOE, and fragment F’ might
already be deciding on an overall MWOE without knowing about the newly-absorbed nodes.
However, since F’ does not in fact have to worry about these new nodes in this case, the

algorithm continues to work correctly.

A Summary of the Code in the Gallager-Humblet-Spira Algorithm

We have seen the major intuitive ideas. of the Gallager-Humblet-Spira algorithm, and the
presentation above should be sufficient to guide the reader through the code presented in
their original paper. Although the actual code in the paper is dense and complicated,
the possibility of an understandable high-level description turns out to be fairly typical for
communications algorithms. In fact, the high-level descriptior. .at we have seen can serve
as a basis for a correctness proof for the algorithm. (Attempt:: . a correctness proof based
directly on the low-level code itself would be a good deal more difﬁcult.)
The following message types are employed in the actual code:

e INITIATE messages are broadcast outward on the edges of a fragment to tell nodes to
start finding their MWOE.

e REPORT message «re the messages that send the MWOE information back in (these
represent the convergecast response to the INITIATE broadcast messages).

o TEST messages are sent out by nodes when they search for their own MWOE.

e ACCEPT and REJECT messages are sent in response to TEST messages from nodes;
they inform the testing .ode whether the responding node is in a different fragment
(ACCEPT) or is in the ame fragment (REJECT).

o CHANGE-ROOT is a message sent toward a fragment’s MWOE once that edge is
found. The purpose of this message is to change the root of the (merging or currently-
being-absorbed) fragment to the appropriate new root.

¢ CONNECT messages are sent across an edge when a fragment combines with another.
In the case of a merge operation, CONNECT messages are sent both ways along the
edge between the merging fragments; in the case of an absorb operation, a CONNECT
message is sent by the “smaller” fragment along its MWOE toward the “larger” frag-

ment.

~In a bit more detail, INITIATE messages emanate outward from the designated “core
edge” to all the nodes of the fi:yment; these INITIATE messages not only signal the nodes
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to lcok for their own MWOE (if that edge has not yet been found), but they also carry
information about the fragment identity (the core edge and level number of the fragment).
As for the TEST-ACCEPT-REJECT protocol: there’s a little bookkeeping that nodes have
to do. Every node, in order to avoid sending out redundant messages testing and retesting
edges, keeps a list of its incident edges in the order of weights. The nodes classify these

incident edges in one of three categories:
o Branch edges are those edges designated as part of the building spanning tree.

® Basic edges are those edges that the node doesn’t know anything about yet — they
may yet end up in the spanning tree. (Initially, of course, all the node’s edges are

classified as basic.)

¢ Rejected edges are edges that cannot be in the spanning tree (i.e., they lead to another
node within the same fragment).

A fragment node searching for its MWOE need only send messages along basic edges.
The node tries each basic edge in order, lowest weight to highest. The protocol that the
node follows is to send a TEST message with the fragment level-number and core-edge
(represented by the unique weight of the core edge). The recipient of the TEST message
then checks if its own identity is the same as the TESTer; if so, it sends back a REJECT
message. If the recipient’s identity (core edge) is different and its level is greater than or
equal to that of the TESTer, it sends back an ACCEPT message. Finally, if the recipient
has a different identity from the TESTer but has a lower level number, it delays responding
until such time as it can send back a definite REJECT or ACCEPT. :

When two CONNECT messages cross, this is the signal that a merge operation is taking
place. In this event, a new INITIATE broadcast emanates from the new core edge and the
newly-formed fragment begins once more to look for its overall MWOE. If an absorbing
CONNECT occurs, from a lower-level to a higher-level fragment, then the node in the high-
level fragment knows whether it has found its own MWOE and thus whether to send back
an INITIATE message to be broadcast in the lower-level fragment.

Message Complexity of the Gallager-Humblet-Spira Algorithm

In order to analyze the message complexity of the Gallager-Humblet-Spira algorithm, we
have to apportion the messages into two different sets, resulting separately (as we will see)
in the O(nlogn) term and the O(e) term.

The O(e) term arises from the fact that each edge in the graph must be tested at least
once: in particular, we know that TEST messages and associated REJECT messages can
occur at most once for each edge. Thus we get an O(e) term resulting from the 2 messages
(the TEST-REJECT pair) over each edge. (It is important to recall in this regard that once
a REJECT message has been sent over an edge, that edge will never be tested again.)
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All other messages sent in the course of the algorithm—the TEST-ACCEPT pairs that go
with the acceptances of edges, the INITIATE-REPORT broadcast-convergecast messages,
and the CHANGEROOT-CONNECT messages that occur when fragments combine—can
be considered as part of the overall process of finding the MWOE for a given fragment. In
performing this task for a fragment, there will be at most one of these messages associated
with each node (each node receives at most one INITIATE and one ACCEPT; each sends
at most one successful TEST, one REPORT, and one of either CHANGEROOT or CON-
NECT). Thus, the number of messages sent within a fragment in finding the MWOE is o(f)
where f is the number of nodes in the fragment.

" The total number of messages sent in the MWOE-finding process, therefore, is

Z number of nodes in F

all fragments F

which is

Z number of nodes in F)

all level numbers L(a.ll fragments F of level L

Now, the total number of nodes in thé inner sum at each level is at most n, since each
node appears in at most one fragment at a given level-number L. And since the biggest
possible value of L is log n, the sum above is bounded by:

logn

> n=0O(nlogn)
1
Thus, the overall message complexity of the algorithm is O(e + (nlogn)).

Proving Correctness for the Gallager-Humblet-Spira Algorithm

A good deal of interesting work remains to be done in the field of proving correctness
for communications algorithms like the Gallager-Humblet-Spira algorithm. One promis-
ing approach—and an approach that, in fact, works for this particular algorithm—is to
prove correctness for a high-level description of the algorithm (e.g., at the graph level) using
invariant-assertion and other standard techniques. Having done that, one can prove indepen-
dently that the code in fact correctly simulates the high-level description. (See [WelchLL88].)

This latter stage of proof can be formalized by implementing the high-level algorithm
within an I/O automaton (in which the state consists of fragments, and actions include
merge and absorb operations); implementing the low-level code in another I/O automaton;
and then showing that there is a mapping from sets of actions of the low-level automaton
to the high-level one such that fair behaviors of the low-level automaton correspond to fair
behaviors of the high-level automaton.
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17.2 Dynamic Network Algorithms: Distributed Snap-
shots

So far we’ve been talking about static network algorithms. Now we're going to look at
algorithms with a more dynamic nature in that they are designed to interact with some
other, ongoing distributed algorithm.

The first algorithm we will consider is one for computing distributed snapshots, due to
Chandy and Lamport. The idea is that we want to determine a “consistent global state”
for a distributed system running some algorithm. Our model for the system of interest is a
set of processes communicating via messages over FIFQ channels; we could think of these as
1/0 automata with SEND and RECEIVE actions.

An important question, of course, is defining just what we mean by a “consistent global
state” —in particular, what is a “global state,” and what do we mean by “consistency”?

We think of a global state as a state for all nodes and all channels in the system—i.e., the
values of variables in the nodes of the system, and the particular messages being sent along
the channels of the system.

The notion of consistency is a bit subtler; to define this term, we have to go back to
Lamport’s earlier notion of logical time. Recall that a logical time ordering for events in a
- system is a total ordering for the events with the following properties:

¢ Events at any particular node are ordered in order of occurrence at that node.

¢ SEND actions for a particular message are ordered before RECEIVE actions for that
message.

¢ Ouly finitely many events can occur before any particular event.

This definition implies that the same execution could have many possible logical time order-
ings assigned to it.

Each consistent state is going to arise from a particular logical time assignment at a
particular time. That is, we look at some execution; we find some way of assigning a logical
time to all the events; and then we pick a particular time, and freeze what’s happening in
the system at that logical time. Note that this may not correspond to any real time—it may

the information for a logical time assignment at that particular time.

So, once you fix a logical time assignment and a particular time, the consistent state that
you want is the states of the nodes up through time ¢; and the channe] state consists of those
messages that were sent but not yet received at time ¢, in order of sending.
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time ¢

Figure 17.9: An execution represented by individual process timelines.

One way to think of the snapshot notion is to imagine a picture of the execution drawn
as a set of timelines, one for each process (see Figure 17. 9). The events that happen at each
process are consistent with those in the given asynchronous execution. We can now imagine
that the timelines are stretched and shrunk in various places individually so that logical
time ¢ corresponds to a horizontal line: all events after time t appear below the line, and all
events before time ¢ are above the line. Again, even though the events may not really have
occurred in the order depicted, as far as each node is concerned the diagram is consistent

with the events seen at that node.

We want more than just a consistent global state: after all, the initial state of the system
fits this definition. What we want is, loosely, a recent consistent global state—a state that
conveys information about the system at some recent time. For instance, we might like the
result of our snapshot algorithm to reflect all the events that occurred in real time before

the algorithm began running.

Now, why would we want to get a global snapshot of a system? One application might
occur in maintaining databases we might like to get a consistent state of a distributed
database (e.g., a bank audit over multiple branches of a bank). Another use is in deadlock
detection: you can use a global snapshot to find out if every node is (or might conceivably be,
in some execution) waiting for a result from some other node in order to proceed. Yet another
idea is to use a global snapshot algorithm to detect the termination of some distributed
algorithm: the snapshot might show, for instance, that each node is in an idle state and no
messages are in transit, in which case we know that the algorithm has terminated. Trying to
determine this by querying the nodes individually is problematic: a node might tell us that
it is currently idle, but it might receive an incoming message as soon as we have moved on
to query another node. A
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17.3 Exercises

1. Look at the synchronous anonymous ring {n known). Assume processors do not start
simultaneously, and consider the problem of start synchronization:

Each processor has to computes an offset to its local clock, so as to bring all clocks
to show the same time.

Show that any algorithm that achieves start synchronization sends at least (nlogn)
messages in the worst case.

2. Consider comparison algorithms for leader election on synchronous rings of size n = 2!
(where processors have distinct identifiers).

(a) Show the following for the identifier assignment, I, that was described in class:
For any k£ < %, if a k-neighborhood appears in I, then there are at least b- } order
equivalent k-neighborhoods that appear in I (calculate the constant b).

(b) Show that if the k-neighborhoods of processors p and ¢ (in the same configuration)
are order-equivalent, then p and ¢ are in the same state after k& active cycles.

(c) Combine (a) and (b) to show that any such algorithm must send at least Qnlogn)
messages on L :

3. Consider the problem of electing a leader in a synchronous ring of size n, where n is
known to all the processes and the processes have no id’s. Devise a randomized leader
election algorithm that has the best expected time and message performance that you
can achieve.

4. Consider the Gallager et al minimum spanning tree algorithm.

(a) State and prove an upper bound on the time from when the first node wakes up
until the last node announces its results. (Assure upper bounds of 1 on message
delivery time and 0 on local processing time.)

(b) How tight is your upper bound proved in (a)?
That is, describe a particular execution of the algorithm in which the best upper
bound that can be proved on time, (subject to the assumptions above) is as large
as you can find.

*5. In the Gallager algorithm, why is the conditional test needed in the line of code “if
SE(j)=Basic then SE(j) «— Rejected ” which appears in the Test and Reject subrou-
tines? That is, why doesn’t that line read simply “ SE(j) «— Rejected ” ?



L

210 Lecture 17: November 10



6.852 Distributed Algorithms Fall Semester, 1988

Lecture 18: November 15 |
Lecturer: Nancy Lynch Scribe: Jeff Fried

18.1 Global Snapshots

At the end of Lecture 17, we introduced the idea of a global snapshot, or a consistent global
state of a distributed system. In many applications, such as databases, termination detection,
and deadlock detection, it is crucial to be able to capture a state which is both consistent
and recent (these terms will be more formally defined soon). Algorithms and conditions
for global snapshots have been explored in [ChandyL85,FischerGL82]; in these approaches,
each processing node in a system snapshots its own state and the state of its incoming
communication channels. The trick is to find some rules defining when and how to have each
node capture these states.

The model we assume is communicating processes with messages sent over FIFO links
with guaranteed message delivery. A global state consists of states for all nodes and all

channels in the system.

18.1.1 What could go wrong in capturing a global snapshot

In order to understand how to construct a global snapshot, let’s consider what could go
wrong with the naive approach via a few examples. Consider an audit algorithm running on
two nodes, p and q, with two communication channels, C and D. Assume we start with a
single dollar at p, as shown in Figure 18.1 (this is a poor rural bank). Consider the following

sequence:

1. p records its own state (as $1)
2.- p sends the dollar to ¢ on channel C
3. ¢ receives the dollar over channel C

4. g records its own state (as $1)

When the local state of the processes is collected, it looks as though there are two dollars in
the system! This is bad because it is not a consistent state.

What does it mean for a global state to be consistent? Loosely, each consistent state
consists of the state of the processors and channels at a particular time from a particular

logical time assignment.
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Figure 18.1: Example of global audit (initial conditions)

Definition A logical time assignment is a global time ordering of events which has the
following properties:

1. Events at every node are ordered in their local order of occurrence,
2. Every send action is ordered before its corresponding receive action.

3. Only finitely many many events are ordered before any particular event.

A consistent global state will correspond to a time for some logical time assignment. In the
example with banks p and ¢, the problem arises because messages sent between the processes
are counted inconsistently (the same dollar is counted more than once). The snapshot
collected in this case did not correspond to any time in any logical time assignment.

Let n = the number of messages sent on C before p’s state is recorded

Let n’ = the number of messages sent on C before ¢’s state is recorded

Then n < n' causes the above problem. We need any global snapshot algorithm to ensure
that n’ < n. We could also have a similar problem if n’ < n:

1. ¢ records its own state (as $0)
2. p sends the dollar to ¢ on channel C

3. p records its own state (as $0)
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This time, it looks as though the bank is broke; to ensure that messages are not lost in the

snapshot, we need n’ = n.
Since every process records the state of its incoming communication channels as iwell as

its own state, we need to insure that messages are counted consistently between processes

and their incoming channels. ;

Let m = the number of messages received by ¢ along C before ¢’s state is recorded

Let m' = the number of messages received by ¢ along C before C’s state is recorded

To ensure that the state of processes and their incoming channels is consistently recorded,
we need m’ = m. Because we cannot receive more messages than were sent along a channel,

we haven =n’ > m' = m.

18.1.2 Rules for capturing a global snapshot

We can use these conditions to derive some rules about how to record states. The rules will
define an algorithm for capturing a consistent global snapshot.

Rule 1 any process recording its own state will send a special marker (#) along an outgoing
channel C:

o after recording its own state

o before sending anything else along channel C

Rule 2 The state of a channel C is recorded by process q as the sequence of messages received
by ¢ along C:

o after recording q’s own state

o before receiving the marker along channel C

In order to insure that n > m, process ¢ shouldn’t count any messages received after the
marker in its own state. This leads us to the following rule:

Rule 3 Upon receiving a marker # along on incoming channel C, a process q should do the
following: '

® case I: q has already recorded its own state. Then g records the state of C as the
sequence of messages received after it recorded its state and before it received #.

® case 2: g has not already recorded its own state. Then g records its own state, and
records the state of C as empty.
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Rules 1-3 define an algorithm. This algorithm can start spontaneously in one or more
places. A process starts the algorithm by recording its own state, then sending markers along
all outgoing links. The connectivity of the network implies termination, since the markers
eventually reach everywhere, and incoming markers cause a snapshot to be recorded if it
hasn’t already been done. The algorithm records a consistent snapshot. The snapshot is
also “recent” in the following sense: it is reachable from the global beginning state of some
execution sequence and the global ending state is reachable from it.

To illustrate this notion of “recent”, consider the execution sequence in Figure 18.2. The
execution sequence shown in the figure is as follows:

At the Beginning State, both p and ¢ have one dollar.

Between the Beginning State and State Al:

1. p records its own state (as $1)

o)

. p sends the marker to ¢
“' 3. p sends a dollar to ¢
Between State Al and State A2:
1. ¢ sends a dollar to p
2. g receives the marker from p along C
3. ¢ records its own state (és empty)
4. g records the state of C (as empty)
5. ¢ sends the marker to p
Between State A2 and the Ending State:
1. p receives a dollar from ¢ along D
2. p receives the marker from ¢ along D

3. p records the state of D (as $1)

The global snapshot is consistent in that it is a feasible state of the system, even though
it never actually arose during the computation. The total amount of money in system ($2)
1s consistent with the execution sequence. The global snapshot is also recent, as described
above. We could find a total ordering of the events in the execution such that the snapshot
would be ordered between the beginning and the ending state, and such that this total
ordering would be consistent with the local partial order of events.
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Figure 18.2: Execution sequence illustrating a recent global snapshot
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Figure 18.3: Global Snapshot as a warping of local time

A good way to think of global snapshots is as a warping of local time at each process.
Although the order of global events recorded by the snapshot may not correspond to any
actual state, the local view at every process is consistent with the execution sequence. This

is illustrated in Figure 18.3.

18.1.3 Using global snapshots for stable property detection

An important application of global snapshots is stable property detection. Intuitively, we
would like a stable property to be something which persists, so that a global snapshot of a
system which provides information about that property at a given time can be useful at any
later time.

Definition A property P is stable if, for all executions e, if P holds in some state R of e,
then P holds in every state reachable from R.

Examples of stable properties are deadlock and termination. If we assume that processes
that are waiting for resources held by other processes never give up and never release their
own resources, deadlock is stable. Once a computation is deadlocked, it stays deadlocked.
A deadlock detection algorithm might collect a global snapshot, then check for cycles in a
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dependency graph tracking which processes are waiting for which. Similarly, a termination
checking algorithm could collect a global snapshot, and check if “all processes are idle and

all channels are empty”.

Lemma 18.1 If a stable property holds in a global snapshot, then it will hold at the end of
a global execution sequence.

Proof: If a stable property holds in the global snapshot, it will hold in every state
reachable from that snapshot by the definition of stable. Since a global snapshot must be"
recent, the global ending state is reachable from it by definition. =

Lemma 18.2 If a stable property doesn’t hold in a global snapshot, it doesn’t hold at the
‘beginning of a global execution sequence.

Proof: The reasoning is similar to above: If the property was true at the global beginning
state, it would be true in the global snapshot, since the snapshot is reachable from the

beginning state. =

18.2 Consensus Problems in the presence of faults

The problem of consensus in the presence of faults has two roots: distributed database
(commit) protocols, and real-time processing. In commit protocols, processes must reach
agreement about whether to make the result of a computation permanent or to abort. In
real-time processing, there may be a set of sensors, some faulty, and we wish to agree
on a majority value. The Byzantine agreement problem is both important and famous,
and there are numerous variants, such as clock synchronization in the presence of faults,
approximate agreement, etc. The first important consensus problem posed in the literature
was in [Gray78], with distributed database systems as the application. ,

We are concerned with correct operation even when there are failures in the system.
Byzantine agreement uses the most general model of node failures; anything can go wrong
with a faulty node. These may be communications failures, such as the loss of messages, site
failures such as the loss of a process, or malicious failures in which multiple processes may
collude in the worst possible way (often called Byzantine failures). Continued operation in
the face of these failures is important for many real systems.

Agreement is very easy if all processes and the communications network are reliable, but
the problem becomes hard when failures are allowed. This is true even when the only failures
are lost messages.
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18.2.1 An impossibility result for agreement with lost messages

C onsider, for example, two armies trying to surround an enemy army. If both attack simulta-
neously, they win, but if they attack separately, they lose. The only communication available

to the generals is by runners carrying messages, and these runners may be captured behind

enemy lines. Then there is no strategy allowing the generals to synchronize their attack.
An informal proof that no such strategy exists is as follows: Let a be the shortest possible

protocol which solves the armies’ problem. Then the last message must be necessary, or «

could be shortened by deleting it. However, if this last message is lost, then a different

decision must be made, so that the protocol doesn’t work in the presence of lost messages.
We can show this more formally as follows:

 Assume two processes, p and ¢, operating with a comn timebase. Without loss of
generality, we will allow them perfectly synchronized locai ks, and a common starting
" time 0. Each general (process) starts with an initial indepe: “opinion”. Any algorithm
must meet a validity condition: if both generals have the sam sien NO, and if no messages

get through, neither will attack. (This is a very weak conditic:. Any correct algorithm must
also meet an agreement condition: if either process decides YES, the other must decide YES
as well. Finally, to preclude a trivial solution in which all processes simply decide not to
march, we require that there be some situation in which the decision agreed upon is to march.
Our model of a protocol is that of two synchronous automata p and ¢ with send and
receive actions. There are two possible initial states (1,0) for each automaton, corresponding
to “march” and “don’t march”. At some point in the protocol, either process can output
the decision to “march” (= 1). Our correctness conditions can be more formally stated as:

o agreement: If either p or ¢ outputs 1, then so does the other.

e validity. If both p and ¢ have initial state 0 and no messages are delivered, then neither
automaton outputs 1. There 1s some execution of the protocol in which both p and ¢

output 1.

Theorem 18.3 There is no correct agreement protocol in which the automata can output 1
in the presence of arbitrary loss of messages.

Proof: Assume that such a protocol exists. Then consider some execution « in which the
automata output 1. Let R be the last receive action by the first automaton which outputs
1 (p), as shown in Figure 18.4. :

- We can construct another execution o’ in which no messages are received after R This
is shown in the second execution of Figure 18.4. Since this execution looks identical to P, it
will output 1. By the agreement condition, ¢ must output 1 as well.

We can construct yet another execution o in which the receive action R is missing. Since
this execution looks unchanged to ¢, it will output 1. Then p must output 1 as well.
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By continuing this process of throwing away receive actions, we eventually reach the
point at which no messages are communicated. Both automata output 1 in this execution
as well, since at every step they are bound by consistency with the previous step and the
agreement condition.

" This execution oy could still be valid, since we do not know what the initial condition
of the processes is. However, we could construct another execution ay in which the initial
state of g is 0. Since this execution looks identical to p, it will still output 1. Then ¢ must
output 1 as well.

In turn we can construct a final execution o~ in which the initial states of both p and
g are 0. In this execution, both processes will still output 1, since the execution looks the
- same as ap to q. '

However, this last execution violates the validity condition, since neither automata re-

ceives anything, and they both output 1 even if they began with the initial condition 0. This

is a contradiction. N

18.2.2 The Byzantine agreement problem

Another failure model often used is one in which communication is reliable (perhaps through
the use of timeouts, retransmissions, etc.), but some processes are maliciously faulty. We will
consider this model, called the Byzantine Agreement Problem, over the next several lectures;
[DolevS83,LamportSP82] give relevant results.

Assume a fully connected synchronous network of processes py, ps, ..., p,. Each process
p; has some initial value v;, and all processes want to agree on some value. We will examine
the case where communication is reliable, but processes may be faulty.

There are three conditions necessary for the protocol to work correctly:

e agreement: If any process decides on V, then no process decides any value but V.

e validity. If all processes start with initial value V, then V is the only allowable decision.

e termination: All processes decide.

With no failures, this is a simple problem; we can use a majority function. However, we
want to tolerate Byzantine failures, in which faulty processes could do anything, including
sending contradictory information, not sending messages, etc. Without a bound on the
number of failures, it is impossible to prove anything. If we assume that we have < t traitors
with malicious behavior, then the problem is still much more difficult than the no-failure
case. We must first refine the correctness conditions to provide for faulty processes.

e agreement: If any nonfaulty process decides on V, then no nonfaulty process decides
any value but V.
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Figure 18.5: trio of processes with one fault

o validity: If all processes start with initial value V, then V is the only allowable decision
by a nonfaulty process.

e termination: All nonfaulty processes decide.

As an example of why this problem is difficult, consider an example with three processes, -
as shown in Figure 18.5. Assume that we have one fault (¢ = 1), and the protocol goes
through two rounds of communications. More than two rounds of communication buys us
nothing, since we can only communicate our value, or the value that some other process sent
us.

- We wish to carry out some decision rule, but there can be no correct decision rule. If
process A is faulty, it could send different values to the other processes in the first round,
while processes B and C send their correct values. In the second round, A might in turn lie
about what the processes said to it.

From process B’s point of view, a configuration in which A is nonfaulty with value 0 but
C is maliciously faulty is indistinguishable from a configuration in which C is nonfaulty with
value 1 but A is faulty. C must decide the same way in either case, but in either case, C’s
decision might violate the validity condition.

A process with Byzantine faults is like a worst-case adversary. Although randomized
algorithms can be used to solve Byzantine agreement with high probability, no deterministic
algorithm can solve Byzantine Agreement when more than a third of the processes are
faulty. To show this, we first need to prove that three processes cannot tolerate one fault,
as suggested in the example above; a formal proof of this is given in [PeaseSL80]; this proof
follows that in [FischerLM86].
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Lemma 18.4 Three processes cannot solve Byzantine Agreement in the presence of one
fault.

~ Proof: Assume they can. Then there exist three processes, A, B, and C which, when
Aarra,nged in a system, run with arbitrary inputs and satisfy the Byzantine Agreement con-
ditions even if one process malfunctions.

We could take two copies of each process, and arrange them as shown in Figure 18.6.
When configured in this way, the system appears to every process as if it is configured in the
original three-process system. When started up with the given inputs, they will have some
behavior; we want to show that this behavior violates the correct-BA assumption.

Consider the processes A-B-C-A’. The two different processes A and A’ could send
different messages to B and C. To B and C, it appears as if they are running in a three
process system A-B-C, in which A is faulty. This is an allowable behavior for Byzantine
Agreement, on three processes, so.B.and C would eventually agree on 0 in the three-process
system. Since the six-process system S appears identical to them, B and C will eventually
agreeon 0 in S as well. :

Next consider the processes A’-B’-C’-A. By similar reasoning, B’ and C’ will eventually
agreeon 1 in S.

Finally consider the processes B-C-A’-B’. To C and A/, it appears as if they are in a
three-process system with B faulty. By our initial hypothesis, C and A’ must eventually
agree. Although there is no requirement on which value they agree upon, either value they
agree upon causes a contradiction with the value that one of the processes must agree upon
with other processes. Thus there is a contradiction, and there can be no solution to the
Byzantine Agreement problem for three processes when one is faulty. =

We can use this theorem to show a more general result for Byzantine Agreement [Lam-
portPS582]. We will do this by constructing a three-process solution from an n-process solu-
tion. If there were such a solution, we could solve the 3-process problem, which we know is

impossible.
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Figure 18.6: Impossibility result for Byzantine agreement on three processes with one fault

Theorem 18.5 There is no solution to the Byzantzne Agreement problem on n processes in
the presence of t arbitrary node failures, when 1 < n < 3t.

Proof: Assume there is a solution for Byzantine Agreement with 3 < n < 3. (For n=2,
there can be no agreement since each process has no defense against the possibility that the
other could be lying).

Construct a three-process system with each new process simulating approximately one-
third of the original processes. This can be done by partitioning the original processes into
three subsets, P, P2, and Ps, each of size s, where 1 < s < t. Each simulating process D;
keeps copies of the states of all of the original processes in subset P;, assigns its own initial
value to every member of the set, and simulates the steps of all the processes in P; and the
messages between the processes in the subset. Messages from processes in P; to processes in
another subset are sent from P; to the process simulating that subset.

This simulation is a protocol between three processes, p;, ps, and ps. Only one of these
processes is allowed to be faulty, and each simulates between 1 and ¢ original processes, so
no simulation contains more than ¢ simulated faults. The two non-faulty processes, running
a simulation correctly, can then gain agreement using the solution for 1 < n < 3¢. But
_ they could use this as a solution to the 3- process Byzantine Agreement problem; this is a

contradiction. )
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Last lecture, we presented a lower bound of 3¢ + 1 on the number of processes needed in
a Byzantine Generals problem with ¢ faulty processes. Although is not immediately obvious
that Byzantine agreement can be achieved at all, an algorithm presented in [LamportSP82],
can be shown to implement Byzantine Generals with 3¢ + 1 processes, confirming that the

bound is tight.

-19.1 The Broadcast Problem

Lamport, Pease, and Shostak consider a variant of the Byzantine Generals problem, called

the broadcast problem. In the broadcast problem we have a set of processes, py,...,p,, in

which there may be ¢ faulty processors. We designate a particular process, Ds, as the sender,

and assign it a start value, v. The broadcast problem has conditions of agreement, validity,
and termination that closely resemble those for the Byzantine Generals problem:

¢ agreement: If one non-faulty process halts with a value, v/, then no non-faulty pro-
cesses may halt with a value other than v’

. validity: Given a non-faulty sender, no non-faulty receiver will halt with a value other
~ then the sender’s start value v.

¢ termination: All non-faulty processes eventually decide on a value.

It is possible to use an arbitrary solution to this broadcast problem to construct a solution
to the Byzantine Generals problem. The idea is that each process, in parallel, will use an
algorithm that solves the broadcast problem to broadcast its own value. At the completion of
these algorithms, each non-faulty process will have a value, say v;, that it received from each
pi- The solution to the Byzantine Generals problem is then defined by a selection function
on these values, say s(vy,...,v,). By the agreement condition of the broadcast problem,
each v; is guaranteed to be the same for each non-faulty processor. Therefore, the result of
the selection function will be the same for each non-faulty process, satisfying the agreement
condition for the Byzantine Generals problems. We assume that the selection function will
be able to satisfy the validity condition of the Byzantine Generals problem because at least
2¢ + 1 values are generated from non-faulty processes.

225




u

226 ‘ ' Lecture 19: November 17

19.1.1 A Basic Solution to the Broadcast Problem

A recursive solution to the broadcast problem is presented in [LamportSP82]. In discussing
the solution, we will refer to a family of algorithms, B(n,t), as follows. If n is the number
of procésses involved in the algorithm, and ¢ is the number of faulty processes, we require

B(n,t) to have the following properties:

1. if n > 3t + 1 then the properties of the broadcast problem are satisfied.

9. For any k, if n > 2k+t+1, if we have at most k failures, and if the sender is non-faulty
then all non-faulty processes eventually halt with the sender’s value.

The first condition simply states that B(n,t) solves the broadcast problem for n > 3t+1.
The second condition is an extra constraint that will be used as a stepping stone in the proof .

of correctness. Consider the following algorithm for B(n, ?):
Code for B(n,0)
1. The sender uses its own value.

9. It sends this value to all other processes, and they use it too.

Code for B(n,t),t >1

1. The sender, p,, uses its own value.
9. It sends this value to all other processes.

3. Each other process, p; runs B(n-1,t— 1) to get all processes except p, to agree on a
value for p,. (Process p; uses the value received from p, as its initial value, or a default

if no value was received.)

4. Each p; then considers the set of values which it decided on in the n —1 subcalls, using
defaults for missing values. If a majority exists for some value p; chooses it; otherwise

p; chooses the default.

We now show that Condition 2 (above) holds for this family of algorithms.

Lemma 19.1 If the sender is non-faulty, there are at most k faults, and n > 2k +t + 1,
then B(n,t) will terminate with each non-faulty ¢ ~ess choosing the sender’s value.
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Proof: We will prove this theorem by induction on ¢t. The base case B(n,0) is easily seen
to satisfy the condition. Since the sender is non-faulty, it will send its start value, v, to each
receiver, and halt with v. Each non-faulty process will correctly receive and halt with that
value.
- Now, assuming the lemma holds for ¢ — 1, we show that it holds for ¢. Since the sender is
non-faulty, we know that it uses its own value, v, and sends v to all other processes in Step
2. Since n > 2k +t + 1, we can subtract 1 from both sides to get (n —1) > 2k + (¢ — 1) + 1.
" Therefore, by the induction hypothesis, for every non-faulty process, p; that is a sender
in a B(n — 1,t — 1) protocol in Step 3, we know that all the other non-faulty processes
participating in that protocol must decide on the value sent by p;. Since p; is non-faulty, it
must have sent the value v it received in Step 2.

So, it remains to be shown that enough of the processes that are senders in Step 3 are non-
faulty, so that a majority function in Step 4 yields v. We derived above that n —1 > 2k + 1.
Therefore, since there are at most k faults, the non-faulty processes form a majority. =

Using this lemma, we can now go on to show that B(n,t) solves the broadcast problem.

Theorem 19.2 B(n,t) solves the broadcast problem with n processors and t faulty proces-
sors, ifn > 3t +1. :

Proof: The base case, t = 0, is easy: Since there are no faulty processes, the sender will
send its value to each of the receivers. The receivers, being non-faulty, will halt with this
value. ‘

For t > 0, we assume the theorem holds for B(n — 1, — 1). There are two cases, either
the sender is faulty, or the sender is not faulty. If the sender is non-faulty, we have a special
case of Lemma 19.1. Let £ = ¢t. Since n > 3t + 1, we have n > 2k + t + 1, satisfying
the preconditions of the lemma. Applying the lemma, we get that each non-faulty process
terminates with the sender’s value.

In the case of a faulty sender, we need only argue agreement and termination. Since the
sender is faulty, we know that at most ¢ — 1 receiving processes are faulty. Therefore we
have n — 1 > 3(t — 1) + 1 and by the induction hypothesis, the calls to B(n — 1,¢ — 1) in
Step 3 will result in agreement by all non-faulty processes. This means that every non-faulty
process will have the same vector of values. The majority function will result in agreement
by all non-faulty processes. =

Since we have shown that B(n,t) solves the broadcast problem, we can construct a
Byzantine Agreement algorithm by the method outlined at the beginning of Section 19.1.

19.1.2 Authenticated Algorithms

One of the factors that makes the broadcast problem difficult is the ability of a faulty process
to incorrectly relay information from a non-faulty process. If we can prevent this, then the
solutions to the problem can be drastically simplified.
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In [LamportSP82] and [PeaseSL80], a model is considered in which each process has
a unique unforgeable signature, which can be validated by anyone. As values are passed
around in the system, each process that sends the value apphes its signature function to the

message. Authenticated messages are represented by v : s 12y : 25 : ... 1 ., where v is the
value of the message, s is the signature of the original sender, and ¢;,1 < j < k are the

signatures of the processors that have retransmitted v.

It is easy to see that any process receiving such a message can reliably determine its
authenticity. All it must do is validate the signature s. Since only one process has the
ability to put s in the message, if s is valid then the message originally came from the
process with signature s. As a result of this property, we refer to algorithms of this sort as

authenticated algorithms.

A Simple Authenticated Solution

[LamportSP82] and [PeaseSL80] proposed a fairly simple broadcast algorithm with the au-
thentication assumption. This algorithm can satisfy agreement, validity, and termination
with n processors and at most ¢ faulty processes, where n > ¢t + 1. This improves on the

n > 3t + 1 lower bound of the previous algorithm.

In the following algorithm, we denote the original sender as S, its signature as s, and
its value as v,. Each receiving process, p;, has two local variables: V; holds a subset of the
possible values of v,, and accepted; holds a set of authenticated messages. Initially, both V;

and accepted; are empty.
We assume that a predetermined default value is known by all non-faulty processes

Definition A message is valid for p; at round & if it is of the form v : s : ¢y : ... : 44_;, where
s and each 7 are valid, distinct signatures, and p;’s signature is not among them.

Code for Authenticated Byzantine Agreement
Before the start of the algorithm, S decides on its value v,.

¢ Code for round 1:

1. § transmits v, : s to all other processes.

2. For every 2, accepted; «— set of messages received by p; that are valid for p; at
round 1.

3. For every 1, for each message m in accepted;, the value of m is added to V..

e Code for rounds 2 through t+1:

1. For every i, for each message m in accepted;, p; signs m and retransmits it to all
other processes.
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2. For every i, accepted; — set of all messages received by p; that are valid for p; at
this round.

3. For every i, for each message m in accepted;, the value of m is added to V.

After the last round, each p; examines the values of V;. If V; is a singleton set, p; decides
on the value in this set. Otherwise, p; decides on the predefined default.

Theorem 19.3 The Lamport-Pease-Shostak authenticated algorithm solves Byzantine agree-

ment.

Proof: Termination is obvious, since the algorithm halts immediately after round ¢ + 1.

Consider the case where S is non-faulty. Every non-faulty process, p;, accepts v, : s
at round 1, and puts v, into V,. Since no other process can produce s, no valid messages
will contain a value other than v,. Therefore, upon termination, each V; = {v,}, and each
non-faulty process decides v,. Therefore, agreement and validity hold.

In order to show agreement in the case where S is faulty, we will argue that upon
termination, V; = V; for all non-faulty 7,5. If v € V,, then let m be the first message
accepted by p; that contains v. If m arrives before or at round ¢, then p; will sign and relay
the message to p;. In the next round, p; will accept the message and add it to V;. If m
arrives in round ¢+ 1, we know that ¢ receivers have previously accepted it. Since the sender
is faulty, there are at most ¢t — 1 faulty receiving processes. Therefore, at least one of the
signatures in m is for a non-faulty process, which must have also sent m to p;. Since V; = V;
for all non-faulty ¢, j, each decides on the same value. _ [

Achieving Polynomial Communication

The message complexity of the above algorithm is exponential in ¢. We shall now examine

an algorithm that achieves polynomial message complexity, [DolevS82].

The Dolev-Strong algorithm is a simple modification of the authenticated algorithm pro-
posed above. A process, p;, upon accepting a message v : s: 1ty : ... : i, will only rebroadcast
that message if adding v to V; will result in |V;| < 2. In other words, each non-faulty process
will only sign and relay the first 2 accepted messages that have distinct values.

Theorem 19.4 The Dolev-Strong authenticated algorithm solves the broadcast problem us-
ing O(n?) messages.

Proof: For the message complexity, we note that any message sent by p; after the first
round results from an addition to the set V. Since |V;| < 2 for all ¢, each p; will send at
most 2 messages to each p;. This gives a message complexity of O(n?).

Now, on to the the proof of correctness. Termination is obvious, since the algorithm will
halt after ¢ + 1 rounds. When the sender S is non-faulty, the arguments for agreement and
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validitjy are the same as for the [LamportSP82] algorithm. Therefore, we can move directly
on to the case of a faulty sender.

In proving agreement when S is faulty, we first show that after round t + 1, V; = {v} =
V; = {v}. First, assume V; = {v} and fix some j. We first show that v € V;. Let m be the
first message that arrives at p; with value v. If p; has signed m, then v € V;. If m has not
been signed by p;, it is necessary to consider two cases. If m arrives at p; before round ¢+ 1,
then p; will sign and relay m to p;- Then p; will accept v, resulting in v € V;. If m arrives at
round ¢ + 1, we know that ¢ receivers have previously accepted it. Since the sender is faulty,
at most ¢ — 1 of these receivers could be faulty. Therefore, by the pigeonhole principle, at

-least one of these is non-faulty, and must have also sent m to p;. Therefore p; must accept
vbyround t+1 and v € V;.

Now we must show that no value other than v can be in any V;. Assume, for contradiction,
that V; contains some value other than v. Let m be the first message with value w # v
accepted by any non-faulty process p;. Arguing as before, either (1) p’s signature is in m,
so w € V;, or (2) p;’s signature is not in m and m arrives at p; before or at rount ¢, so p;
relays m to p; (since w is at most its second value), resulting in w € V;, or (3) p;’s signature
is not in m and m arrives at p; at rount ¢ + 1, so some non-faulty process signed and sent m
to p;, resulting in w € V. In all three cases w € V;, a contradiction.

After round ¢ + 1, each p; will terminate with the default if |V}| > 1. If [Vil <1 we are
guaranteed that each V' is the same. In both cases, we have agreement. [ ]

At IBM, variants of this algorithm have been implemented in which process identifiers
are used as signatures, since the faulty processors are not malicious. With a large enough id
domain, it is reasonable to assume that an accidental forgery is unlikely.

19.2 Limiting Communication Cost

We have seen that the communication cost for authenticated agreement algorithms is small,
but that the communication cost in the Byzantine fault model without authentication is
very large (exponential in the number of faults). One way to cut down on communication
cost is to reduce the lengths of the messages by cutting down the domain of possible values.

This approach was taken in [TurpinC84]. The idea is to solve Byzantine agreement for
a multivalued domain by running a Byzantine agreement algorithm for a single bit as a
subroutine. If the multivalued domain is large, the savings can be substantial.

The Turpin-Coan algorithm requires that n > 3¢ 4+ 1. A default value is known initially
by all non-faulty processes. For each process, a local variable z is initialized to the input
value for that process. (Notice that we are returning to the consensus version of the problem,
as opposed to the broadcast version.)
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¢ Code for round 1:

1. Broadcast z to all other processes.

2. In the set of messages received, if there are > n — ¢ for a particular value, vz,
then r «— v0z, otherwise z «— nil.

e Code for round 2:

1. Broadcast z to all other processes.

2. Let vp,, be the value, other than nil, that occurs most often among those values
received, with ties broken in some consistent way. Let num be the number of
occurrences of Vpqz.

3. if num > n —t then vote = 1 else vote = 0.

After round 2, run the binary Byzantine agreement subroutine using vote as the input
value. If the bit decided upon is 1, then decide v,,,., otherwise decide the default value.

Claim 19.5 At most one value v is sent in round 2 messages by correct processes.

Proof: Any process p sending a value v in round 2 must have received at least n — ¢
messages containing v in round one. Since there are at most ¢ faulty processes, this means
that all other processes received at least n — 2¢ copies of v. Since the number of messages
received is n, no process could have received n — ¢t messages containing a value v’ # v in
round 1. Therefore, the claim holds. =

Theorem 19.8 The Turpin-Coan algorithm solves multivalued Byzantine agreement when
given a boolean Byzantine agreement algorithm as a subroutine.

Proof: It is easy to see that this algorithm terminates.

To show validity, we must prove that if all non-faulty processes start with a value, w,
then all non-faulty processes must decide w. After the first round, all non-faulty processes
will have set ¢ «— w because at least n — ¢ processes broadcast it reliably. Therefore, in the
second round, each non-faulty process will have v, = w, num > n —t, and vote = 1. The
binary agreement subroutine is therefore required to choose 1, and each non-faulty process
will choose w. ,

In showing agreement, there are two cases. If the subroutine decides on vote = 0, then
the default value is chosen by all non-faulty processes, so agreement holds. If the subroutine
decides on vote = 1, then we must argue that the local variable z is the same for each
non-faulty process. Note that for the subroutine to agree on vote = 1, then some non-faulty
process p must have started with vote = 1. Therefore, process p must have received at
least n — ¢ round 2 messages containing some value v. Since there are at most ¢ faulty
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processes, each other process must have received at least n — 2¢ round two messages with
non-nil values from non-faulty processes. By Claim 19.5, all of the non-nil messages from
non-faulty processes must have the same value, namely v. Therefore, v must be the value
.occurring most often, since there are at most ¢ faulty processes and n — 2t > t. =

19.3 Subsequent Results

- There has been a subsequent series of papers giving polynomial communication algorithms
for Byzantine Agreement. We will not give the details here, but only summarize the results.

Polynomial communication and 2k +t rounds (for constant k), assuming 3t + 1 processes,
was achieved without cryptographic assumptions in a brute force algorithm by Dolev, Fischer,
Fowler, Lynch, and Strong [DolevFFLS82]. ‘

These ideas were rethought by Srikanth and Toueg [SrikanthT87], who essentially sub-
stituted an authentication protocol for the assumed signature scheme in the Dolev-Strong
algorithm. Using this authentication protocol requires twice the number of rounds as does
the Dolev-Strong algorithm, and also needs 3¢+ 1 processes. The basic idea is that whenever
a message was sent in the Dolev-Strong algorithm, Srikanth and Toueg run a protocol to
send and accept the message.

An improvement on the 2t rounds required by the above algorithms was achieved by Coan
[Coan86], who presented a family of algorithms requiring t + €t rounds, where 0 < € < 1. The
message complexity is polynomial, but as € approaches zero, the degree of the polynomial
increases. This result implies that no lower bound bigger than ¢ + 1 rounds can be proved
for polynomial algorithms, although no fixed degree polynomial algorithm is actually given
for t + 1 rounds. A paper by Bar Noy, Dolev, Dwork, and Strong [BarNoyDDS87] presents
these 1deas in a different way. :

Finally, a new paper by Moses and Waarts claims to achieve 41 rounds with polynomial

communication [MosesW88].

19.4 More on the Numbers of Processes

We have shown that Byzantine agreement can be solved with 7 processes and ¢ faults, where
n 2 3t+ 1. In proving this result, we assumed that any process could send a message
directly to any other process. We now consider the problem of Byzantine agreement in
general communication graphs [Dolev82).

Consider a communication graph, G, where the nodes represent processes and an edge
exists between two processes if they can communicate. It is easy to see that if G is a tree, we
cannot accomplish Byzantine agreement with even one faulty process. Any faulty process
that is not a leaf would essentially cut off one section of G from another. The non-faulty
processors in different components would not be able to reliably communicate, much less
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C
‘Figure 19.1: A graph G with conn(G) = 2.

reach agreement. Similarly, if removing ¢ nodes can disconnect the graph, it should also be
impossible to reach agreement with ¢ faulty processes. :

Definition The connectivity of a graph G, conn(G), is the minimum number of nodes whose
removal results in a disconnected graph. We say that a single node graph has a connectivity
of 1. Furthermore, we say a graph G is k-connected if conn(G) > k.

Figure 19.1 shows a graph with a connectivity of two. If B and D are removed, then we
are left with two disconnected pieces, A and C.

- Our proof for the lower bound on connectivity for Byzantine agreement uses methods
similar to those used in our upper bound proof for the number of faulty processes. Recall
the technique of joining up arbitrary processes to appropriately-named neighbors, such that
the resulting configuration must do something. Also, recall the following two axioms.

¢ Locality Axiom: A process’s actions depend only on messages from its input channels
and its initial value.

¢ Fault Axiom: A faulty process is allowed to exhibit any combination of behaviors
on its outgoing channels, provided that the behavior of each channel can arise in some
system in which the process is acting correctly.

The locality axiom basically states that communication only takes place over the edges
~of the graph, and thus it is only these inputs and a process’s initial value that can affect
its behavior. The fault axiom expresses a masquerading capability of failed processes. We
cannot determine if a particular edge leads to a correct process, or to a faulty process
simulating the behavior of a correct process over the edge. The fault axiom gives faulty
processes the ability to simulate the behaviors of different correct processes over different
edges. '
With these basic concepts, we can now prove a lower bound on connectivity for solving
Byzantine agreement.
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Theorem 19.7 It is possible to solve Byzantine agreement on a grap/- 7, with n nodes and
t faults if and only if n > 3t + 1 and conn(G) > 2t + 1.

Proof: We already know that n > 3t + 1 processes are required. For a fully connected

graph. It is easy to see that this situation will not improve for an arbitrary communication
graph.
We start by showing that Byzantine agreement is possible if conn(G) > 2t + 1. (The if
direction.) Menger’s Theorem states that a graph is k-connected if and only if every pair
of points is joined by at least k¥ node-disjoint points. Since we are assuming G is 2¢ + 1-
connected, there are at least 2¢ + 1 node disjoint paths between any two nodes. We can
simulate a direct connection between these nodes by sending the value along each of the
2t + 1 paths. Since only ¢ processes are faulty, we are guaranteed that the value received in
the majority of these messages is correct. Therefore, simulation of a fully connected graph
can be accomplished.

We now prove the only if direction of the connectivity argument. The argument that
Byzantine agreement is not possible if conn(G) < 2¢ 41 is a bit more intricate. We will first
take t = 1, for simplicity.

Assume there exists a graph, G, with conn(G) < 2 which can solve Byzantine agreement
with one fault. Two points in G can disconnect the graph. The graph in Figure 19.1 can
be generalized to any graph with a connectivity of 2 by replacing B and D with arbitrary
graphs. To keep our argument simple, however, we will consider B and D to be single nodes.
We can construct a graph C by “rewiring” two copies of graph G, as shown in Figure 19.2.
Each process in C behaves as if it was the same-named process in Figure 19.1 with the input
denoted by the subscript. ‘

Consider the behavior of the processes outlined in Figure 19.3, and the corresponding
behavior in 19.4, where F is a faulty process. Since F' is allowed to simulate any graph, the
outlined processes cannot tell the difference between Figure 19.3 and Figure 19.4. Therefore,
by the validity property, these processes must all decide 0. Now consider Figure 19.5 and
the analogous situation in Figure 19.6. By the same argument, all the outlined processes
are required to decide 1. Finally, consider Figure 19.7, which is analogous to the situation
in Figure 19.8. Since only F is faulty, the agreement condition requires that the outlined
processes decide on the same value. However, we have already shown that process A; must
decide 1 and process Cy must decide 0. Thus, we have reached a contradiction. It follows
that we cannot solve Byzantine agreement for conn(G) < 2 and ¢ = 1.

To generalize the result to { > 1, we use the same diagrams, with B and D replaced by
graphs of at most ¢ nodes each. Again, removing B and D disconnects A and C. The edges
of Figure 19.1 now represent all possible edges between A, B, C, and D. |

The bounds of n > 3t +1 and conn(G) > 2t + 1 carry over to a wide variety of consensus
problems. [FischerLM85] show that these bounds also hold for problems such as weak Byzan-
tine agreement, Byzantine firing squad, approximate agreement, and clock synchronization.
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Figure 19.4: A configuration (with F faulty) that the outlined processes cannot distinguish
from Figure 19.3.
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Figure 19.6: A configuration (with F' faulty) that the outlined processes cannot distinguish
from Figure 19.5.
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Figure 19.7: A set of processes in C.

=
S

.-
!
!
'
t
i
[}
[}
1
!
!
]
]
t
-

Figure 19.8: The non-faulty processes must agree, giving us a contradiction.
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Lecture 20: November 22
Lecturer: Nancy Lynch Scribe: George Varghese

In the previous lecture we looked at synchronous algorithms to solve the Byzantine Agree-
ment (BA) problem. It so happened that all the algorithms we saw used ¢ + 1 rounds of
communication to reach consensus, with at most ¢t faulty processes. This suggests the ques-
tion: can we find a faster synchronous algorithm that solves BA in ¢ or fewer rounds?

The answer to this question is basically no, and was established in a series of papers. The
fundamental result was proved by Fischer and Lynch [FischerL85] for the symmetric version
of BA assuming that processes could not use authentication. Later papers showed that the
lower bound holds even if processes are allowed to use authentication [DolevS82], and even
if failures are restricted to weaker stopping failures [MosesT88].

In this lecture we will examine only the basic Fischer-Lynch result and the extension by
Merritt [MosesT88] to the case of stopping failures. An important theme of this lecture will
be the use of chain arguments to establish impossibility results.

20.1 Using chain arguments for Impossibility Results

In a sense lower bounds and impossibility results are labor saving devices: they prevent
fruitless effort. But they also capture the essence of why a problem is hard. Any effort to do
better must change some assumption under which the lower bound was proved - for instance
by introducing randomization.

All the impossibility and lower bound results we have seen arise from a property of
distributed algorithms: the action taken by a process in the algorithm is determined by what
the process knows locally. Given this, an impossibility proof for a distributed algorithm often
runs as follows.

First we assume that the distributed algorithm can be solved subject to the specified cost
constraints. The distributed algorithm is unspecified, except for the result it must produce.
Next we choose a set of executions of the distributed algorithm. For each execution, we
know what a local process must compute based on what the process sees locally and what
the result of the distributed algorithm must be. Finally, we show that, when taken together,
the values computed in each instance lead to a contradiction.

In this lecture the structure of the impossibility proofs will be in the more specific form
of a “chain argument”. Suppose we model the behaviour of a process in the distributed
algorithm by a function F. A chain is a chain of equalities on the value of F on different
input i.e. '

F(L) = F(I)) = F(I3) = ..... = F(I,))

239
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Each equality in the chain (i.e. F(I;) = F(I;4+1) is established by considering an execution

(or executions) of the distributed algorithm with process inputs [; and I;4; that must (by the

problem definition) produce the same result. Finally we obtain a contradiction by showing

separately that F'(I;) cannot equal F(I,). Note that we typically use different executions to

establish each link in the chain, but the function stays the same.

In this lecture we will see three chain arguments — two in the Fischer-Lynch result, and

one in the Merritt result.

20.2 The Fischer-Lynch Lower Bound

Theorem 20.1 Any synchronous algorithm that solves the symmetric version of BA without
using authentication must take at least t + 1 rounds, if there are t faulty processes.

The proof consists of three parts: a model of any synchronous algorithm that solves
BA, an intermediate Lemma that shows there is no loss in generality by assuming that all
non-faulty processes follow the same algorithm; and finally the main proof.

20.2.1 Model used in Fischer-Lynch Lower Bound

We first describe a way to model any synchronous algorithm that solves the BA problem
under the given assumptions. Each non-faulty synchronous process is modelled by an au-

tomaton that has:

e A Message Generation Function to decide what messages to send to other processes
based on its state. :

e A State Transition Function that determines a new state based on previous state and
incoming messages.

Faulty processes do not follow these functions and can exhibit arbitrary behaviour.

The execution is synchronized. On each round each process sends messages to other
processes. Each process then computes its new state based on all received messages before
the next round starts. (Note: We cannot model these process automata as I/O Automata
since I/O automata essentially operate asynchronously; we could, however, model the whole
collection of processes as one big I/O automaton, but we do not do so in what follows.)

Because the algorithm does not use authentication, we argue that we can cast any syn-
chronous algorithm that solves BA in a “normal form”. This simplifies the notation and
what we have to reason about. Informally, in normal form each process always broadcasts
“everything it knows” to every other process.

More precisely, the behavior of each process p; is:
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¢ First round: Broadcast initial value.
o Second round: Broadcast what everyone told p; their initial values were.

e Third round: Broadcast what everyone told p; that everyone told them their initial
values were.

. and so on :
Given normal form, we can use a simple notation for the information sent in messages

on each round:

¢ First round: X (i.e. my valueis X)-
e Second round: Xp (i.e. p told me X)

e Third round: Xpq (i.e. g told me p told him X )

. and so on
Assume also that processes send messages to themselves just as they do to other processes

—e.g. process ¢ sends Xp to itself, then X pq to itself etc. This simplifies things nicely because
the information available to process ¢ after round i is captured by the set of messages that
process g receives in round ¢. Thus process ¢’s actions in round ¢ only depend on the messages
it receives in round i.

This produces an exponential number of messages (N*® messages for N processes and i
rounds). However, we are interested only in time bounds. What we are saying is that even
given as much message complexity as it can possibly use (as expressed by normal form), no
algorithm can beat the lower bound on time of ¢ + 1 rounds.

Why is it the case that we can transform any algorithm that solves BA (under the given
assumptions) to normal form? After all, a particular algorithm may choose not to send
certain pieces of “what it knows” or even send “only some function of what it knows”.
However, we can simulate all such algorithms by appropriate changes to the process state
transition functions while preserving normal form. We see this informally by considering the
following cases:

¢ Algorithms in which processes send some other function of the message information
in each round: Instead of computing the function at the sender, send all possible
information in normal form and compute the function at the receiver.

e Algorithms in which processes don’t send some information in some rounds: instead,
send all possible information in normal form, and ignore appropriate pieces of infor-
mation at the receiver.
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e Algorithms in which non-faulty processes determine that some processes are faulty,
and choose not to send information to faulty processes: In this case, modify the faulty
process functions (which are arbitrary) to guess anything that a non-faulty process
does not send it in a round. Because we are doing a worst case analysis, we can confine
ourselves to executions in which these guesses are always correct!

A careful proof of this model’s generality can be found in [FischerL85].

Given this model, we now have a simple representation of a process’s state. After k
rounds, a process’s state is simply a k-dimensional array A (each dimension of length n) of
initial values. If your state is represented by the array A, then A(éy, ¢2,..7) is the value that
process 1 told you process 1;_; told him . . . process i3 told him was process z; ’s initial
value. Another recursive way of looking at this is that A consists of n subarrays of dimension
k—1, each of which are the states of every other process after the k — 1st round. The second
view explains how the state of a process is updated after each round: each non-faulty process
broadcasts its state after £ — 1 rounds to all other processes in round k. In what follows we
will sometimes refer to an instance of the array A as a “view”.

Finally, if the protocol terminates after » rounds, then there must also be a function F,
for each process p, that maps every view A to a value V. The value V is the value decided
by process p at the completion of the Byzantine Agreement protocol. Note that F, can be
derived from the message sending and state transition functions of the automaton.

20.2.2 Intermediate Lemma for Fischer-Lynch lower bound

Now it is possible that each process p has a different F,. The intermediate lemma below
simplifies the reasoning needed for the final proof by showmg that wlog all functions F), can
be considered the same.

Lemma 20.2 Letn > 2t+1. In a synchronous BA algorithm with t faults, we have F, »{A) =
F,(A) for all processes p and q and all views A such that:

1. A is the view of p in some ezecution in which p is non-faulty and there are no more
than t faults.

- 2. A also is the view of q in some ezecution in which q is non-faulty and there are no
more than t faults.

- Proof: First there is no loss in generality in assuming n > 2¢ + 1 because in the previous
lecture we proved that any solution of BA (regardless of time constramts) must have n > 3¢.
Next, the Lemma is trivially true if the two executions referred to in the Lemma are the
same. (In that case p and ¢ are non-faulty in the same execution and must decide the same

value by the Agreement property.)
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E . Transform by E'
masking some
faults

Figure 20.1: Transforming one execution into another by masking faults

The difficult part is to show the Lemma to be true if A occurs in some execution E in
which p is non-faulty and also in another execution G in which ¢ is non-faulty. The proof is
by the chain argument we referred to at the start. ' _

First, we show that there must be at least one process r that is non-faulty in both E and
G. ,

The number of faulty processes in E is no more than ¢. The number of faulty processes
in G is no more than t. Thus the number of processes that are faulty in either E or G is no
more than 2¢. Since n is at least one greater than 2¢, there must be at least one process r
that is not faulty in either £ or F. This is the only place where we need n > 2¢ + 1.

We now use process r as a “bridge” between executions £ and G. To do so we transform
E into another execution E’ which is identical to £ except that in E’ process p and process
r get exactly the same messages in the last round. This is illustrated in Figure 20.1.

We claim that E’ is a valid execution of the algorithm (with less than ¢ faults and process
p and r non-faulty) just as F is. Why is this true? Suppose in E, processes p and r receive
different information from process f in the last round. Then since p and r are non- faulty,
f must be faulty. But since f’s behaviour is arbitrary we can always consider another valid
execution (i.e. E' ) in which f sends the same information to r as it does to p. Proceeding
in this way, we can transform E to E’ by “masking” all faults in the last round of E.

Thus in E’ both process p and r see the same view A. Thus by Byzantine agreement we
must have F,(A) = F,.(A).

We do the same thing to execution G i.e. transform it into another valid execution G’
in which process ¢ and r both see the same view A. By Byzantine agreement this gives us

F(A) = Fy(A) |

Together the two equalities give us our first example of a chain, a chain of size two. (The

chains get bigger as the later proofs become more intricate.):
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FP(A) =F.(A)= Fq(A)
-]

This intermediate lemma allows to drop the subscript and assume thereis a single function
F' used by all non-faulty processes to decide a value based on their views. This simplifies
our reasoning and notation in the main proof.

20.2.3 Proof of Fischer-Lynch lower bound

Proof: Assume for simplicity that the value V' to be agreed upon by the processes is either
0 or 1. Assume we have an algorithm that reaches consensus in t rounds, with ¢ faulty
processes.

Again our strategy is to find a chain of equa:: s on the function F that leads to a
contradiction. We start by picking the end points . rhe chain.

If a process p has a view A consisting of all 0's then p’s decision must be 0. This is
because process p could obtain this view if all processes were non-faulty and started with a
0. Thus by the validity condition, process p must decide on 0. Denote the view consisting
of all 0’s by As. Then F(Aq) = 0.

By similar arguments, if we denote the view consisting of all 1’s as A, then F(A,) = 1.

Then we can get the required contradiction if we can produce a chain of equalities leading
to F(Ao) = F(A;) ie. F(A1) = F(A3) = ..F(Ay) = F(Agy1) = ... F(A,).

To establish each equality in the chain, we have to show that any two consecutive views
A; and A;4, appear as the views of two different non-faulty processes in the same ¢ round
execution with no more than ¢ faulty processes. Then by agreement we must have F(A4;) =
F(Ak+1). As usual we will establish each equality by a different execution.

To understand how this is done, we first examine the chain for the special case of t = 2;
the extension to general ¢ is considered later.

For ¢ = 2, after the second round, each view must be a two dimensional n x n matrix,
where Ai, j] is the value that j told you that 7 said his initial value was.

Consider a general link in the chain that establishes that F(4;) = F(Ar41),0 < k < n.
Ay and Agy; are identical except for position 7,5 . Our goal is to construct a single execution
in which one non-faulty process will “see” view A; and a second non-faulty process will “see”
view Agyq1. This is shown in Figure 20.2.

To do so, consider an execution E(k) with the following properties:

1. All processes except ¢ and j are non-faulty.

o

. All processes less than 7 have initial value 0.

. 3. All processes greater than ¢ have initial value -
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Figure 20.2: Two consecutive views used to establish a link in the chain
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Since all non-faulty processes send and relay correctly, all non-faulty processes will receive
views identical to Ax and A4, except for the ith row and jth column. -

To fill in most of the jth column assume that process 7 (perversely) relays every value it
receives correctly except for the value received from process 7. Thus all non-faulty processes
have the same jth column in their views except for element (z,j).

To fill in most of the ith row, assume that ¢ sends 0 to all processes < j and 1 to processes
> 7. The value ¢ sends to j doesn’t matter because j is faulty. Thus all non-faulty processes
will have the same ¢th row in their views except for element (3, 7).

Taken together, the constructions in the last three paragraphs imply that all non-faulty
processes see exactly the same views except for element (z, j).

We now apply the coup de grace. Process j tells one non-faulty process (say r) that 7 told
him 0, and then process j tells a second non-faulty process (say s) that 7 told him 1. This
fills in Element (¢, j) differently for process r and process s. Process r sees view A while
process s sees view A;,;. But process r and process s are non-faulty in the same execution.
Hence by agreement: F(Ag) = F(Akt1).

We have now established a generic link in the chain. To get the entire chain (that links
a view with all 0’s to one with all 1’s) we use n? — 1 intermediate views. Each intermediate
view has an extra 1 over the previous views. This can be done systematically by working in
row order (“creeping across rows”) changing one bit at a time.

The generalization to more than two dimensions (i.e t > 2) is similar: once again we
work in lexicographic order converting 1’s to 0’s. Now the chain will be longer (there are
now n' 1’s we need to change to 0’s) and we will need ¢ faults to establish a generic link in

the chain. ‘ B

20.3 Impossibility Result for Stopping Faults

We have proved that any synchronous algorithm that achieves distributed consensus in the
presence of up to ¢t processes with Byzantine faults must take at least ¢ + 1 rounds. Sur-
prisingly, the result is still true if process failures are restricted to simpler stopping failures
- i.e. processes can only fail by stopping completely. The theorem was first described in
[MosesT88] based on unpublished work by Merritt (based in turn on preliminary results by
Hadzilacos and Fischer-Lamport).

Theorem 20.3 In the crash model (i.e. processes can only fail by stopping), consensus
requires t + 1 rounds in the worst case, with t faulty processes.

To establish an impossibility result, a theoretician is almost in the position of an adversary
who draws upon possible failure modes to “attack” the result and get a contradiction. While
simpler failure modes make life easier for protocol designers, they make it harder to establish

impossibility results.
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. PROCESSES

TIME

Figufe 20.3: Example of a communication pattern

For instance, in the previous proof we used a simplifying reduction to normal form. Part
of the justification for this was that faulty processes could guess any values they were not
sent. Clearly we cannot use normal form if processes are restricted to stopping failures.
Similarly, the main proof happily used faulty processes that sent conflicting information.
Because this “power” is no longer available to us, the proof is more intricate and the chains
are longer.

Once again the proof has three parts: a model, a proof based on an intermediate lemma,

and finally the proof of the lemma.

,20'3‘1 Model and Notation

We assume a protocol in which each process sends information to every other process at

every round. All processes start with initial values; eventually a process may write “decide

~ V” in its state. But for simplicity, we assume a process continues executing forever even after

it decides. As usual each process that is alive has a deterministic state transition function.

’ Define an ezecution as an infinite sequence of tuples. The 7th tuple in the sequence
contains all the process states at time z and all the messages sent in the zth round.

Define a communication pattern of an execution as some representation of which processes
send to which other processes in each round. A communication pattern does not tell us the
actual information sent but only “who sent to whom” in a round. A communication pattern
can be depicted graphically as shown in Figure 20.3.
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In the figure, p; does not send to p3 in round 2. Thus p; must have stopped and will send
nothing further in round 3 and future rounds. Essentially a communication pattern depicts
how processes fail in a run.

Given the initial state tuple and the communication pattern, we can determine an exe-
cution uniquely from the (deterministic) process state transition functions.

Define a run as an initial state tuple plus the communication pattern. Denote by ezec(p)
the execution generated by run p.

A process is faulty in a run or an execution exactly if it stops sending somewhere in the
communication pattern. There are never more than ¢ faulty processes in a run.
~ We write (p,1) X (o',1), (where p and p' are runs, ! is a time, and p is a non-faulty
.process in both p and p’) to mean that exec(p) and ezec(p’) are indistinguishable to process
P through time [. That is, process p sends and receives the same messages and has the same
state tuple sequence in executions p and p’ up through time [.

We write (p, 1) ~ (p',1) if there is some non-faulty process p in both p and p’ such that
"(p, ) X (¢,1) - that is the two executions look the same to some non-faulty process up

through time [. _
We write (p,{) ~ (p',1) for the transitive closure of ~. That is there exists some sequence

of runs such that (p,1) ~ (p1,{) ~ (p2,1) ~ ... ~ (p', 1).
Finally, analogous to the function F' we used in the previous proof, we define a decision
function dec(p, t) that when applied to a run produces the value decided by a process at time

t.

20.3.2 Proof using an Intermediate Lemma
Proof: Suppose we had the following lemma to work with.

Lemma 20.4 Let p and p’ be two runs, each with < f faulty processes, where f < t. Letp
be some process and assume that p and p' only differ in p’s failure behavior after time k. If

I—k<t+1~ f then (p,1) ~ (o', 1).

This lemma can be used to show it is impossible to reach consensus in ¢ rounds. Assume
we had such a protocol and that 1 and 0 are the only possible initial values. Then we arrive
at a contradiction as follows.

The strategy is to set up a chain starting from a run that starts with all 0’s and has no
failures (and hence must decide 0) to a run that starts with all 1’s and has no failures (and
hence must decide 1). We first see how the first link in the chain is set up.

We know that every (p,t) has a corresponding decision value dec (p,t). If (p,t) ~ (o', 1)
then dec(p,t) = dec(p’,t) (since some non-faulty process has the same view and uses the
same decision function in both executions). Thus if (p,t) & (o', t) then dec(p,t) = dec(p’, t)

Let pp and p’ be two runs that both start with 0’s. In pp, no one fails. In P, Process p;
fails at time 0, and sends no messages. Now apply the lemma to these two runs with f=1
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fonly 1 failure), p = p; (only process whose behaviour is different in the two runs). & = 0
(time after which the runs look different), and [ = t. With these values [ —k < t+1 - f
because (by plugging in values) t—0 < ¢+ 1—2. Thus the lemma tells us that (po.t) = (p}, t)

Let pg have 1000...0 as input (i.e. the initial value of process 1 is a 1, while that of all
other processes is a 0) and where process 1 fails at time 0. Clearly (p},t) = (pg,t) since the
only change is not seen.

Let p; have 1000...0 as input but no one fails. By applying the Lemma again (and using
the same values of f,p,k,l etc.) to the two runs p; and pfl we get (p2,t) =~ (p1,t). The last
three equalities taken together imply that (po, ) = (p1,t). Thus we have set up the first link
in the chain which shows that the value of the decision function on failure-free runs starting
with 000..0 and 100..0 must be same.

In general, let (p;,t) for 2 < 72 < n be a failure-free run in which the first i processes
get 1’s and the remainder get 0’s, By using exactly the same technique we used to establish
(po,t) = (p1,t), we can show in general that (pi_1,t) = (pi,t) This, of course, sets up a
chain which leads to (po,t) = (pn,t), which in turn implies that dec(po,t) = dec(p..t). But
this contradicts validity: the left hand side must be 0, as it is the value decided when all
processes get initial value 0 and no process fails; the right hand side must be 1 as it is the
value decided when all processes get initial value 1 and no process fails. ]

20.3.3 Proof of Intermediate Lemmma

We now prove the Intermediate Lemma. Refer back to the statement of Lemma 2 in the
previous section.

Proof: If k > 1, then the two runs p and p’ only differ in their behaviour after time I, and
must be indistinguishable up to time I. In this case the Lemma is trivially satisfied.

So assume k > . We will use backwards induction on j =1 — k.

The lemma is also trivially satisfied if process p is non-faulty in both p and p’. So assume
that process p is faulty in one of the two runs. Each of p and p’ has < f faults. Also, if p
is non-faulty in one run, then it must have < f — 1 faults in that run. (If it had f faults,
the other run would have f +1 faults because p must be an additional faulty process in the
other run.)

-Induction Basis: | — k = 1.

p and p’ agree up to time k. Consider round k + 1. Thus up to the /th round. the two
runs only differ in whom p sends to on round & + 1(={).

Since we know that n > 2t + 1 there must at least ¢ + 1 non-faulty processes in'p. Of
these, we pick two non-faulty processes in p, say ¢ and r.

First construct a new run p, that is identical to p except that p sends to r exactly if p
sends to r in p’. Next construct a second new run p, that is identical to p except that p
sends to exactly the same processes in round & + 1 that p sends to in p’. An example of how
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p p p p p p p

q q q q

r s r r

S S S S
P Pr Pr! p'

Figure 20.4: Example of the first set of constructions used to prove Lemma 20.4

p, and p. are constructed from p and p' is sketched in Figure 20.4. Each of the four figures
in Figure 20.4 represent a communication pattern in round & + 1.

Then p, has < f failures and (by construction) p and p, are indistinguishable to process
q up time I. Thus (p,1) ~ (p,,1). Also, p. has < f failures and (by construction) p; and
p, are indistinguishable to process r up time l. Thus (p,,1) ~ (p},1). Also, p] is clearly
identical (by construction) to p’ up to time I. Thus (p},1) ~ (o', 1).

Thus the last three identities set up a chain that links p and p’. This leads to (p,{) = (¢, 1)
which proves the lemma.

Inductive Step: | —k >'1
Let p;,1 < i < n, be the same as p except in the messages process p sends to the first s

processes in round k + 1. The difference is that in round k + 1, process p sends to py,...p;

exactly as it does in p'.
We will first prove that (rho;, 1) = (pi+1,1),1 <2 < n. We observe that:

1. p; and p;4; differ at most in what process p sends to process p;y; in round k + 1.
2. At most f processes fail (if we are to apply the lemma) in both p; and piy;.

3. We know that 1 < [ — k (assumed for inductive step) and that (if we are to apply the
lemma) [ — k <t+1— f. These two inequalities together imply that f < ¢.

This suggests constructing two intermediate processes p; and p; ;. Let p! be identical to p;
except that process p;4q is silent (i.e. dies) after time k + 1. Similarly, let p; , be identical
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Pi+1Y . Pi+1 ; Pi+1 Pi+1

pi | Pi Pis1 Pi+1

Figure 20.5: Example of the second set of constructions used to prove Lemma 20.4

to pi+1 except that process piy; is silent after time k+ 1. Note that by the third observation,
adding an extra failure to p; and p;y; does not cause the total number of failures to exceed
t. '

An example of these constructions is sketched in Figure 20.5.

We observe that:

1. p; and py differ only in the behaviour of process p;y after time k + 1.
2. Less than f + 1 processes fail in p; and p;.
3. 1-k+1<t+1—(f+1)sincel—k<t+1—f.

Thus we can apply the inductive hypothesis to conclude that (p;,!) = (p},{). A corre-
sponding argument shows that (piy1,1) & (pi4,1). But clearly (piy1,!) = (pi41,1) since the
two runs look identical to any non-faulty process. (The only way they can differ is in terms
“of messages sent to p;4; in round k + 1; but p;4, is silent after round k +1.) Together these
three equations yield a generic link in the chain: (p;,1) = (piy1,0),1 <t < n.

The transitive closure of this relation gives us (p,) = (po, ) = (pn,{) But (p., ) = (p',]).
This follows from the inductive hypothesis, since the two runs differ only in the failure
behaviour of process p after time k+1; also I - (k+1) <t+1—fif -k <t+1— f. These
last two equations give us (p,!) = (p’,{) which completes the proof of the lemma. ]
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20.4 Exercises

1.

Can the Chandy-Lamport global snapshot algorithm be described as a collection of
new “filter” automata, one per node of the original system?

Each filter f; should intercept all the send and receive actions to and from the corre-
sponding automaton P; of the original system, and should carry on some new processing
before passing the send and receive actions to their intended destinations.

Sketch how such f; might be constructed. If modifications to F; or extra assu‘mptions
about P; are needed, discuss those. :

What happens to solvability of the two-generals consensus problem, if

(a) messages are guaranteed to eventually arrive, but there is no bound on how long
they take?

(b) there exists a bound & such that all messages either arrive within time 4 or not at
all?

(c) there exists a fixed bound b such that all messages always arrive within time b
(and none are lost)?

Analyze the communication and number of round complexities of the basic Lamport-
Pease-Shostak Byzantine agreement algorithm.

Suppose n > 4t + 1. Design an algorithm that uses a subroutine for binary Byzan-

tine agreement and solves multivalued Byzantine agreement. This algorithm should
improve on the Turpin-Coan algorithm by only requiring one additional round rather

than two.

Reconsider the proof that Byzantine agreement cannot be reached in the graph:

A

in the presence of one fault. 8

Why doesn’t the proof extend to the graph:
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6. Complete the proof of the ¢ + 1 lower bound on rounds for Byzantine agreement. That
is, for the case where ¢t > 2, describe the chain of views and show any consecutive pair
can be produced in a single execution with at most ¢ faulty processes.
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| Lecture 21: November 29
Lecturer: Mark Tuttle Scribe: John Keen

21.1 Knowledge

The intuition underlying the theory of knowledge is that a processor has some idea about its
surrounding environment. We will formalize this intuitive idea of knowledge in this lecture.

The theory of knowledge will be seen to be quite useful. It will allow us to construct good
(optimal, in fact) protocols for consensus, where all processors start with some input bit and
they all reach agreement on some value. For such an algorithm, we want all processes to
reach agreement in the same round.

21.1.1 Optimality
In the crash failure model, a run p is determined by three things:
1. The protocol P executed by each processor in the system.
| 2. The input I to each of the iproc&ssors.
3.’ The communication graph G (which describes the pattern of process failures).

Note that in the consensus problem processors receive input only at time 0, the initial input
bits, but in other problems the processors might receive input from some external source at
other times as well. We now state some basic definitions.

Definition Two runs p and p’ are corresponding runs if they have the same input and
communication graphs. That is, p and p’ differ only in the protocol followed being during
the runs.

Definition A consensus protocol P is optimal in all runs if
V P’, where P’ is an arbitrary consensus protocol, it is true that
Vp, p’ being corresponding runs of P and P’, respectively,
if the nonfaulty processes decide at time 1l in o/,
then the nonfaulty processes decide no later than 1 in p.

In this definition, we measure performance (and hence optimality) orﬂy in terms of the
number of rounds. This definition is a very strong condition for optimality, since it applies
to all runs for protocol P, and not merely the worst case.

255
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21.1.2 The Muddy Children Story

A cute story will give us a good feel for the theory of knowledge. It captures the notion of
‘knowledge in a distributed system. The story is called the muddy children problem.

One rainy day, a bunch of children went outside to play. Their mother warned them to
keep clean and stay away from the mud, but they foolishly ignored her and frolicked in the
mud. Some of them got mud on their foreheads and were therefore dirty, but some others
managed to stay clean. Eventually, their mother came out and saw that some were dirty.
She told them, “Someone is dirty.” She asked them, “Can you prove that you are dirty?”
She continued to ask this question until all the dirty children responded “yes” in unison.
That is, if there are k dirty children, all children respond “no” in the first k-1 rounds, but
all dirty children answer “yes” in round k. Why does this happen?

Theorem 21.1 If there are k dirty children, then all children will all answer “no” in rounds
1,2,....k-1 and all dirty children will answer “yes” in round k.

Proof: We will prove this by induction on k.

The basis is for k=1. Recall that we must have at least one dirty child, due to the
statement of the problem. If there is only one dirty child, he will see that all the other
children have clean foreheads. Since everyone else is clean, he must therefore be dirty and
so he answers “yes”.

Now consider the case for k>1. Consider one of the dirty children. We will call her Nancy,
for example. Nancy can see k-1 other children that are dirty, but cannot see whether or not
her forehead is dirty. She knows there can be either k-1 or k dirty children. For any round i,
where i<k-1, Nancy will respond “no”, as will all the other dirty children. She must respond
“no” because she cannot prove that she is dirty. The other children would have given the
same response in the rounds preceding round i regardless of whether she was clean or dirty.
But now consider round k. If Nancy were clean, there would be only k-1 dirty children, and
they would have all answered “yes” in round k-1, by our inductive hypothesis. Since this
did not happen in round k-1, Nancy now knows that it is not possible that she is clean. She
knows she is dirty, and answers “yes” in round k, as do all the other dirty children. [ |

The moral of this entertaining story is that knowledge somehow depends on what we
know is possible, given that we are in a particular state. In rounds 1 through k, Nancy does
not know that she is dirty since there are two worlds, one in which she is dirty and one in

“which she is not, that are indistinguishable from the current state of the world. Finally, in
round k. Nancy is able to eliminate the world in which she is no dirty as a possibility. Since
Nancy is dirty in all worlds (in this case, the single world) that she is unable to distinguish
from the actual world, she knows that she is indeed dirty. In general, if a fact is known to
hold in all possible worlds that cannot be distinguished from the current state of the world,
then the fact is known to be true. We will now define this formally.
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21.1.3 Formal Theory of Kndwledge

Consider a protocol P. Let Sp denote the set of all runs for P with all possible inputs and
all possible communication graphs.
Recall that (p,]) denotes a point in a run. It represents the state of the system after the
first | rounds in run p. We will abuse notation somewhat and write (pl)e Sp iff p e Sp.
We write
(p,)) = ¢ iff ¢ is true in (p,]) :
to indicate that the fact ¢ is considered to be true in the system if it is in state corresponding
to point (p,1). : v
We define knowledge of a fact ¢ by a processor q when the system is at a point (p,l) by
(p]) b= Ko iff (51) = ¢ for all (p',0)€ Sp satisfying (o',)3(p))).
The symbol K, means “processor q knows”. Recall that if nonfaulty processor q has the
same view at point (p',') as at point (p,1), then we write (o',I')3(p,]). '
As a first attempt to define the notion of "everyone knows”, we might say
EG' = /\qGG Kq‘P : _
to mean that every processor in some set G of processors knows . This is a very natural
definition if a processor can determine whether or not it belongs to G, but it is problematic
when it cannot.
Consider any run of a consensus protocol and let ¢, denote the fact that some nonfaulty
processor is deciding v. Let N represent the set of nonfaulty processors. One property it
seems natural to expect runs of P to satisfy is the following:

Py = ENSDv '

To provide a proof for this claim, we might try to argue as follows. Suppose some
nonfaulty process q is deciding v. Then all nonfaulty processors must be deciding v. Then
all nonfaulty processors know that some nonfaulty processor (namely, itself) is deciding v.
End of proof. But a processor doesn’t know whether or not it is nonfaulty. It may know that
it has not failed as of yet, but it does not know it will never fail in the future. A nonfaulty
process deciding v knows only that if is nonfaulty, then there is some nonfaulty processor
(itself) that is deciding v.

Because of this difficulty of a processor not knowing whether or not it is nonfaulty, we
_ revise our first attempt given above. We state the following definition.

Definition Eng = Ngen Ko(g € N = o)

This definition says that every nonfaulty processor knows  iff every nonfaulty processor
q knows that if it is nonfaulty then ¢ is true.
With this modified definition, our preceding argument proves the following:

Theorem 21.2 ¢, = Eyg,.
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It turns out that the state of common knowledge is crucial to the construction of optimal
protocols. Intuitively, a fact ¢ is common knowledge if ¢ is true, everyone knows ¢, everyone
knows everyone knows ¢, and so on. Formally, we have the following.

Definition Common knowledge of a fact ¢ by the nonfaulty processors is defined as
Cnvo =9 AN Eno A ENEnp A ---
We can imagine the idea of a similarity graph for the system. It serves as a useful way
of thinking about common knowledge.

Definition A similarity graph can be constructed from all the points of a system as follows:

nodes: (p,l)

| edges: (o) 3 (o)
That is, the nodes are all possible points for the system, and an edge connects any two points

for which the view is the same for some nonfaulty processor q.

As in the previous lecture, let us define (p1)~(p',0’) iff 3 points (p;,l;) and runs ¢; such

that
(p.0) & (p,l) & --- & (1),
We can prove the following characterization of common knowledge.

Theorem 21.3 (p,l) = Cno iff (0,0 ¢ V(p',l)~(p,]).

Since (o,)~(p',1’) iff 3 a path from (p,l) to (p',') in the similarity graph, this theorem
means that a fact is common knowledge at a point (p,1) only if it holds at all points in the
connected component of (p,1). Some interesting properties follow from this theorem.

Property 1: If ¢ = Eny is true, then ¢ = Cyy is true. This is proven by an induction
on k that ¢ holds at all points of distance at most k from any point satisfying o, and hence

at all points in this point’s connected component.
Property 1 allows us to prove the following claim (recall that ¢, = Eng,).

Claim 21.4 ¢, = Cny,.

Property 2: If Cp and ¢ = ¢ are true, then C% is true. The proof for this is simply that
if both ¢ and ¢ = ¥ hold at all points in the computation, then so does .
Property 2 lets us prove the following claim.

Claim 21.5 ¢, = Cy (at least one input bit is v)

As proof of this claim, recall that ¢, = Cn,. The definition of consensus says ©, = “3Iv”.
Thus, Yy = Cypy = Cn(3v).

- We see that common knowledge is a necessary condition for making a decision for con-
sensus.
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Theorem 21.6. Let P be an arbitrary consensus protocol. If some nonfaulty processor de-
cides on the value v € {0,1} at time £ in run p of P, then (p,€) = Cy(3v).

Property 3: Cnyy = EnCne

This says that as soon as a fact becomes common knowledge to the nonfaulty processors,
all nonfaulty processors know the fact is common knowledge. Thus, as soon as the value
of an input bit becomes common knowledge, all nonfaulty processors can decide on a value
simultaneously. This suggests that we want a protocol that leads to knowledge about all the
input bits becoming common knowledge as fast as possible. This leads us to define the full
information protocol F:

repeat every round
send your current state to-all processors

forever
We can prove the following.

Theorem 21.7 Let P be an arbitrary protocol and let F be the full information protocol
Let p and 1 be corresponding runs of P and F, respectively, and let ¢ be a fact about the

input. If (p,£) = Cwp then (7,€) = Cuep.

In particular, we can take ¢ to be Iv. We therefore claim that the following protocol P is
the fastest protocol for consensus. That is, we claim that the protocol solves the consensus .
problem and is optlmal in all runs.

repeat every round
send your current state to all processors
until Cy(30) or Cpr(31)
if Car(30) then
decide on 0 and halt
else
decide on 1 and halt

Here, for v € {0,1}, we write Cy/(3v) as shorthand for

Cn(some processor’s input bit is equal to v).
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' Let us complete the proof of the claim that this protocol is the fastest protocol for
consensus. Recall that A protocol P for a problem X is said to be optimal in all runs if the
following condition holds: for every protocol P’ solving X and for all pairs of corresponding
runs p and p’ of P and P’, respectively, if the nonfaulty processors halt at time £ in the
run p’ of P’, then the nonfaulty processors halt at time ¢ or earlier in the run p of P. In
other words, fix the input processors receive and fix the pattern of processor failures, and run
consider runs of the two protocols P and P’ in this fixed setting. Processors are guaranteed
to halt in the run of P at least as soon as they halt in the run of P Thus, not only is P
optimal in the sense that it meets the worst-case lower bound in its worst-case run, it does
as well in every run as any other protocol could possibly do.

Notice that P is essentially the full-information protocol F, except that it halts as soon
as one of two facts become common knowledge, rather than continuing forever. Recall also
that a fact about the input is a fact that depends only on the input processors receive during
the run, a fact such as “at least four processors have input bits equal to 1.”
~ Now, ignoring for the moment the problem of proving that P actually solves the consensus
problem, let us prove a result saying that P should be optimal in all runs.

Lemma 21.8 Let P be an arbitrary consensus protocol. Let p and 7 be corresponding runs
of P and P. If the nonfaulty processors decide on a value at time € in p, then the nonfaulty
processors decide on a value no later than time £ in T.

Proof: Suppose the nonfaulty processors decide on v at time ¢ in the run p of P. Since
some nonfaulty processor is deciding on v at time £ in p, Theorem 21.6 implies that (p,0) =
Ca(Fv). Since (p,£€) = Cn(3v), Theorem 21.7 implies that (7, £) k= Cu(Fv). It follows,
therefore. that all nonfaulty processors can halt at time £ in the run 7 of P and decide on
value. unless, of course, they have already halted. u

Now let us prove that P is a consensus protocol optimal in all runs.
Theorem 21.9 The protocol P is a consensus protocol that is optimal in all runs.
Proof: To prove that P is a consensus protocol we must prove that in every run

1. all nonfaulty processors decide on a value v € {0,1},

2. all nonfaulty processors decide simultaneously on the same value, and -

3. if all input bits are v, then all nonfaulty processors decide on v.

To see that all nonfaulty processors do decide on a value, observe that there are consensus
protocols that halt within ¢+ 1 rounds in every run, and hence by Lemma 21.8 the protocol
P also halts within ¢ + 1 rounds in every run. To see that all nonfaulty processors decide
simultaneously on the same value v, recall that Cae = En(Cye). It follows that as soon
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as one nonfaulty processor decides on v, by Theorem 21.6 we have Cy(3v), and hence all
nonfaulty processors know Ca(3v). It follows that all nonfaulty processors will decide on v
and halt. To see that if all input bits are v then all nonfaulty processors decide on v. notice
that if all input bits are v then Cx(3%) can never hold, and hence no nonfaulty processor
will decide on ©. Since all nonfaulty processors must eventually decide, they must decide on
v. Finally, the fact that P is optimal in all runs follows directly from Lemma 21.8. ]
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22.1 Consensus in Asynchronous Systems

Up to this point the consensus problems we have considered have all presumed some level
of synchronization between the processes. We now consider the more general problem of
consensus in a completely asynchronous distributed system. No assumptions are made about
the relative speeds of the processes or about the length of any delays in message delivery. In
particular, we assume that it is not possible to distinguish between a process that has halted
~ and one that is merely running very slowly (or is experlencmg a very long delay in receiving

a message). It is assumed that all processes execute in a deterministic fashion—randomized
solutions will be examined in a future lecture.

Under these conditions, we find the surprising result that consensus is not possible. Even
if we restrict failures simply to stopping faults (i.e. Byzantine types of failures are disallowed)
and assume a completely reliable message passing system, the possibility of the failure of
even a single process precludes any solution to the consensus problem. This result has far-
reaching implications, and at the end of this section a similar argument is used to show the
impossibility of constructing atomic test-and-set registers from atomic read-write registers.
(This result was claimed without proof in Lecture 14.) '

22.1.1 The Consensus Problem

Assume that every process starts with an initial value from {0,1}. A process decides on a
value in {0, 1} by entering an appropriate decision state. A process fails by halting (i.e. not
_taking any more steps). The requirements for a solution are as follows:

1. Agreement: No two non-faulty processes may decide on different values.

2. Validity: If all non-faulty processes have the same initial value, then no other value
may be decided upon by a non-faulty process.

3. Termination: All non-faulty processes must eventually decide.

263
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22.1.2 Modeling the System

We will use I/O automata to model the asynchronous system, as shown in F igure 22.1. (This
~ presentation is somewhat simpler than the presentation in the original paper [FischerLP85].)
- Each process p;, 1 <1 < n, is modelled as an I /O automaton with the following restrictions

for simplicity:

¢ All state transitions are deterministic. That is, for any state s of p; and action 7 there
is at most one transition (s, r,s’).

e For each initial value (in {0,1}), p; has a unique start state.
o There is exacly one equivalence class in pi’s partition.!

The message system is modelled by a particular I/O automaton as follows. The state of the
message system is a multiset of (m, ) pairs, where m is a message from some universal set of
messages and 1 < i < n. Each input action to the message system is of the form beast;(m)
(an output of p;) and results in the insertion of the n pairs (m, j), for all 1 < j < n, into
the multiset. Each output action of the message sytem is of the form receive;(m) (an input
to pi), is enabled whenever (m, i) is an element of the multiset, and results in the deletion
of that pair from the multiset. Each recetve;(m) action is in its own class of the partition.
In this way, a fair execution of the message system must have every message sent eventually
being delivered.

Note that there are no internal actions of the message system. Thus, every step of the
message system involves exactly one process p;. Furthermore, the structure of the system
ensures that any step is a step of only one process since all interactions between processes
must occur via the message system.

Definition A I-fair ezecution is an execution in which the message system and all but
possibly one process continue to take locally controlled steps. (This corresponds to the
possible stop-fault of a single process. )

Definition A 0-resilient consensus protocol (0-RCP) is a protocol that solves the consensus
problem in the absence of faults—it must solve consensus for all fair executions. Similarly, a
L-resilient consensus protocol ( 1-RCP) is a protocol that solves the consensus problem in the
presence of at most one stop-fault—it must solve consensus for all 1-fair executions. Note

If an algorithm makes use of countably many equivalence classes, then it may be simulated with a single
class by dovetailing. :
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beast;(m) receive;(m)

MESSAGE SYSTEM

Figure 22.1: 1/O Automata Model of the System

that a 1-RCP is necessarily also a 0-RCP.

Definition A configuration consists of the set of all process states together with the state
of the message system.

~'Given a configuration C, we say that schedule 8 can be applied to C (or alternatively,
that 8 is enabled at C) iff for each receive;(m) event occurring in S, either the corresponding
bcastj(m) event occurs earlier in 3 or a pair (m, 1) is present in the multiset of the message
system in C. ' '
Note that because of the deterministic restriction placed on the processes, the configura-
tion resulting from the application of a given schedule to a given configuration is uniquely
determined.

22.1.3 Impossibility Result

Our goal is to show that a 1-RCP does not exist. We will begin by proving a key fact about
‘the commutativity of certain schedules.

Lemma 22.1 Given e configuration C and two schedules 8 and B, enabled at C involving
disjoint sets of processes®, the schedules B8, and 28, are also enabled at C, and when
applied at C both lead to the same configuration D.

2For 3; and B, to involve disjoint sets of processes means that if any step of 3, is a step of process p then
no step of f; is a step of p.
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Proof: If B; and B, are enabled at C and involve disjoint sets of processes, a straightfor-

ward induction shows that $,43; and 3,3 must also be enabled at C. ,
To see that 8,3, and B,8; both lead to the same configuration, consider Figure 22.2.

D

Figure 22.2: Commutativity of Disjoint Schedules

Because §; and f; involve disjoint sets of processes, the configurations C; and C, differ
from C in a disjoint manner, i.e. the process states that are changed in C; are unchanged
in C; and vice versa, and the elements of the message system multiset that are changed
(added/removed) in C; are unchanged (absent/still present) in C,, and vice versa.

We assumed earlier that all process state transitions are deterministic, so applying &
to Cz will result in the same changes to the same set of process states as would occur in
applying By to C since C and C; agree on the state of all processes involved in 4.

It follows then that applying f; to C; produces a configuration which agrees with C; on
the state of processes affected by 5; and agrees with C; on the state of processes not affected
by Bi. Similarly, applying 8, to C; produces a configuration which agrees with C, on the
state of processes affected by 3, and with C; on the state of those not affected by 8. In
both cases, the resulting configuration agrees with C on the state of processes not affected
by either B; or 8;. Therefore the configurations resulting from applying 5,8, and 53,5, to C
agree on the state of all processes.

As for message system, the fact that 8; and f§, are both enabled at C ensures that
there cannot be a receive;(m) in one schedule for which the corresponding bcast;(m) is in
the other; otherwise one of the schedules would produce an execution which is not well-
formed. Therefore, since the message system state changes in C; are disjoint from those in
C2, applying $;; to C produces a configuration with the same message system state as the
configuration obtained by applying 3.3, to C.

Therefore the configurations resulting from 3, P2 and B, are identical. ]
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During the execution of a given consensus protocol the system proceeds through a se-
quence of configurations, and at some point it is determined what the decision value of the
processes will be. Obviously this must occur by the point where the first process decides, but
it may well be that the choice is determined at some earlier point. The following definition

clarifies this idea.

Definition A configuration C is bivalent if there exist configurations C; and C3, both
reachable from C, such that in C; some process decides on the value 0 and in C, some
process decides on the value 1. A configuration is univalent if there is only one reachable
decision value. A univalent configuration is said to be 0-valent if the reachable decision value
is 0 and I-valent if it is 1. ‘

Note that it is not clear at this point that bivalent configurations must exist. In the
absence of failures it is easy to see how one could construct a consensus protocol which has
a predetermined decision value for each possible set of initial values (e.g., majority). The
following lemma shows that the possibility of a fault precludes such a consensus protocol.

Lemma 22.2 Every 1-RCP has a bivalent initial configuration.

Proof: Suppose not. Then every initial configuration is univalent. Note that the initial
configuration of the system consists simply of the vector of the processes’ initial values and
an empty multiset of messages. Therefore, each vector in {0,1}" (where n is the number
of processes) corresponds to a univalent initial configuration which has some fixed decision
value. By the definition of the consensus problem, the vector of all 0’s must correspond to a
0-valent configuration, while the vector of all 1’s must correspond to a 1-valent configuration.

Now consider the sequence of vectors: 000...0, 000...01, 000...011, ..., 00111...1,
0111...1, 111...1. There must be two adjacent vectors in this sequence (differing in only
one element) such that the first corresponds to a 0-valent configuration Cp, and the second
to a l-valent configuration C;. Let p be the process whose initial value differs in the two
vectors.

Consider a 1-fair execution with schedule 8 in which p takes no locally-controlled steps,
leading from configuration Cy to a configuration where some process ¢ chooses 0 as its
decision value. If we now apply § to C;, the determinism of the processes requires that ¢
must again choose 0 as the decision value, since the difference in p’s state is not visible to
them and C is identical to C in all other respects. But this contradicts the fact that Cy is
1-valent. _ |

We now present the main lemma, which claims that in the transition from a bivalent con-
figuration to a univalent configuration there is always some single process which is responsible
for the decision, and whose possible failure will prevent the system from reaching a univalent
configuration. In the proof of this lemma we use some of the ideas in [BridgelandW87] to
give a slightly cleaner argument than is given in [FischerLP85).
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Lemma 22.3 Consider any 0-RCP with a bivalent initial configuration. There exists a
reachable bivalent configuration C and a process p such that:

1. There exists a schedule involving only steps of p that leads to a 0-valent configuration
when applied to C.

2. There exists a schedule involving only steps of p that leads to a I-valent configuration
when applied to C.

 The process p is called a decider.

Proof: Suppose not, i.e. assume we have a bivalent initial configuration and that there is
no decider. We shall construct a schedule that produces a fair execution when applied from
_the given configuration, but never reaches a univalent configuration—this implies that the
processes never reach a decision, which violates the termination condition for consensus.

Consider a schedule consisting of a sequence of finite rounds such that in each round
there is at least one turn for each process, where a turn consists of alternately either letting
the process take a locally controlled step, or delivering the oldest message pending for that
process (if any). Delivering the oldest message for each process ensures that every message
that is sent is eventually received and so.is fair to the classes of the message system. Letting
each process take another locally controlled step within a finite number of steps ensures that
the execution is fair to the processes.

‘We now need to show that we can construct a schedule with these properties, but that
continues to lead to bivalent configurations indefinitely. It suffices to consider a single turn,
and then proceed inductively. We shall consider the case of delivering a message to a process
during its turn — the case of a process taking a locally controlled step on its turn may be
argued similarly.

Assume we have a bivalent configuration C and in the current round of scheduling we
need to give p; a turn to receive a particular message m (the oldest message waiting to be
delivered to p;). We want to find an allowable schedule that delivers m to p; and results in a
bivalent configuration. (We assume there is a message pending for p;—if not, we don’t need
to do anything on p,’s turn and we are done.)

Consider the tree of configurations resulting from all possible schedules enabled at C
ending in a step in which-m is delivered to p; (i.e. a receive;j(m) action), as in Figure 22.3.
If any of the leaves of this tree are bivalent, we may choose the schedule leading to it and
we are done. If not, then all of the leaves of the tree are univalent.

We claim that among the leaves of this tree there is a configuration that is 0-valent and
a configuration that is 1-valent. We will only prove the existence of a 0-valent leaf—the
argument for the 1-valent case is analogous.

~ The fact that C is bivalent requires that there exist a 0-valent configuration D reachable
from C. There are two cases: (1) If message m is delivered to p; in the schedule 5 leading
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receive;(m)

receive;(m) receive;(m)

Figure 22.3: Tree of Configurations

to D, let B’ be the prefix of 3 en\fling in receive;(m) and let D' be the configuration obtained
by applying 5’ to C. Clearly D’ is a leaf in our tree, and must therefore be univalent. Since
D is O-valent and reachable from D, it must be the case that D’ is also 0-valent. (2) If m is
not delivered to p; in the schedule leading to D then we can append the step of delivering
a m to p; to the schedule leading to D (note that this step must be enabled since it was
enabled at C and hasn’t yet occurred). The resulting configuration must be 0-valent, since
D is, and we have again found a 0-valent leaf of the tree.

The existence of a 0-valent configuration and a 1-valent configuration among the leaves
~ of the tree requires that somewhere in the tree there is an adjacent® pair of leaves such that
‘one is a 0-valent configuration (Co) and the other is a 1-valent configuration (C).

The least common ancestor of Cp and Cj is a bivalent configuration C’. By the definition
of the tree, every leaf is a result of the step receive;j(m), and every internal node is the
parent of a single leaf, since the tree contains all possibilities. This implies that in order for
Co and C) to be adjacent leaves, C’ must be the parent of one of them and the grandparent
of the other. Assume without loss of generality that C’ is the parent of Cy, and let 7 be the
step leading to the parent of Cy. (See Figure 22.4 for a diagram of this situation.)

Let ¢ be the process involved in the step 7. If ¢ # p; then we may apply Lemma 22.1 to
show that applying step 7 to Co must lead to C; since the steps receive;(m) and 7 do not
~ involve the same process and therefore commuting them results in the same configuration.
But Cy is 0-valent and C; is 1-valent, so we have obtained a contradiction. On the other
hand, if ¢ = p; then p; is a decider, and this contradicts our assumption that no decider

exists.

3We say that two leaves are adjacent if their parents are connected by an edge in the tree.
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recetve;(m)

recetve;(m)

C

Figure 22.4: Adjacent 0-valent and 1-valent leaves

Therefore the leaves of the tree cannot all be univalent and we are able to construct an
allowable schedule which leads to a bivalent configuration. Applying this inductively, we can

obtain an execution which never terminates, violating the termination requirement of the

consensus problem. n

We are now ready to prove the impossibility result.

Theorem 22.4 A 1-RCP does not ezist.

Proof: Assume there exists a 1-RCP. Then by Lemma 22.2 it has a bivalent initial
configuration. By Lemma 22.3 there must be a configuration C' at which point there is a
deciding process p. Now consider an execution a from C in which p takes no locally controlled
steps. Assume without loss of generality that in the execution a some process ¢ decides on
the value 0. Let 3 be the schedule associated with o, but with all steps involving message
delivery to p removed. In applying the schedule 8 to C, ¢ cannot tell that p doesn’t get its
messages; so ¢ must again choose 0.
~ The process p is a decider, so there exists a schedule v from C involving only steps of
p that leads to a 1-valent configuration. 2 and 4 involve a disjoint set of processes, so by
Lemma 22.1 we may apply them in either order and obtain the same configuration. But

this is a contradiction since 8 leads to a 0-valent configuration and v leads to a 1-valent

configuration. =

22.1.4 Construction of Atomic Test-And-Set Registers

In Lecture 14 it was claimed that it is not possible to construct a wait-free atomic test-
and-set register from atomic read-write registers. ' «ing ideas from the above impossibility
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result, we are now able to prove this. We use a similar model for the system, except that
the message system is replaced by a collection of registers, and the beast and receive actions
are replaced by invocations and responses for register operations.*
, We begin by noticing that it is possible to solve asynchronous consensus using atomic
test-and-set registers. Given an atomic test-and-set register with an initial value of nil we
can simply have the process that first accesses the register set the register to its initial value
and then decide on that value. All other processes will then see that the register has a value
other than nil, and decide on that value. Clearly this protocol guarantees agreement and
validity, and any process that does not halt will immediately reach a decision, so termination
is also satisfied.
Note that this protocol is fully resilient to stop-faults. The failure of any number of
processes does not affect the ability of a non-faulty process to access the register.
'So, we can solve the asynchronous consensus problem using atomic test-and-set registers.
It follows that if the wait-free construction of atomic test-and-set registers from atomic
read-write registers is possible, then asynchronous consensus can be solved using atomic
read-write registers. Note that the wait-free property of the construction is a key point—if
the construction were not wait-free our consensus protocol that used test-and-set registers
would not be resilient to halting, since a situation could arise where the register was waiting
on a halted process.
We will now show that it is not possible to design a fully resilient consensus protocol using
atomic read-write registers. The impossibility of constructing an atomic test-and-set register
from atomic read-write registers will then follow immediately from the above argument.

Lemma 22.5 Given a fully resilient consensus protocol there erists a reachable bivalent
configuration C from which every step leads to a univalent configuration. C is called a
deciding configuration.

Proof: Suppose that no deciding configuration exists. A fully resilient consensus protocol
clearly must tolerate the failure of a single process. Therefore, by a chain argument similar
to the one used in Lemma 22.2, we know that there must exist a bivalent initial configuration
for the consensus protocol.

Since there is no deciding configuration, from every bivalent configuration we can take
some step and get to a new bivalent configuration. By applying this process repeatedly
starting at a bivalent initial configuration, we can continue to pass through bivalent config-
" urations indefinitely. It does not matter that the resulting schedule is not necessarily fair,
since the consensus protocol is fully resilient,

Therefore in the absence of a deciding configuration we can construct an execution which
never leads to a univalent configuration, and this violates the termination condition of the
consensus problem. ( -

“In the proofs, we assume that the invocation-response pair is indivisible.
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Now suppose that we have a fully resilient consensus protocol based on atomic read-write
registers and consider a deciding configuration C. C is bivalent, so there must be a 0-valent
configuration Cy and a 1-valent configuration C; which are reachable in one step. Let 7y be
the step leading to Co and let 7, be the step leading to Cy. (See Figure 22.5.) Let 7y and

71 be steps of p and ¢, respectively.

To T

Co o Ch

F igure 22.5: Deciding Configuration

Suppose 7y is a read action for process p. Then consider running ¢ by itself from Cj,
starting with 7;. Since Cp and C are identical except in the local variables of p, it must
be the case that m, is enabled at Cp, and, moreover, that g eventually decides 1. But this
contradicts the fact that Cy is 0-valent.

Therefore 7 is not a read action, and similarly, neither is 7;. So they must both be write
actions. If my and =, write to different registers, then clearly we can apply them in either
order and reach the same configuration, but this is a contradiction since Co is 0-valent and
(1 is 1-valent.

So mo and m; must both write to the same register. Consider running ¢ by itself from Cj,
starting with ;. Since Cy and C are identical in the local variables of ¢, it must be the case
that m; is enabled at Cy. And since #; overwrites the register written by p in step 7o, g sees
the same state that it would if run from C. Therefore, ¢ eventually decides 1, contradicting
the fact that Cj is 0-valent.

We have thus exhausted all possibilities for o and 7; and must now conclude that a fully
resilient consensus protocol is not possible using atomic read-write registers.

22.2 Exercises

1. Prove statements b-e:
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(a) If ¢ is true at all points, then K ¢ is true at all points.

(b) If (p,€) b= Ko then (p,8) = .

(0) T (p,) = Kyp and (p,) = Koo = %), then (p,8) b= K.
(d) I (p, ) = Ky then (p,6) b= Ky(Ky).

(e) If (p,£) = ~Kyp then (p,¢) = K (—K,p).

For example, here is the proof of statement a. Suppose (p',¢) = ¢ for all points
(¢',€), and consider an arbitrary point (p,#). Since (¢',¢') |= ¢ for all points (o, #'),
in particular (p,¢’) = ¢ for all point (p’,¢') satisfying (p,¢) 7 (o', ). It follows that

(0 ) = K.

2. The distributed firing squad problem is defined as follows. An external source may
send “start” signals to some of the processors in the system at unpredictable, possibly
different, times. It is required that

(a) if any nonfaulty processor receives a “start” signal, then all nonfaulty processors
perform “fire” action at some later point, '

(b) whenever any nonfaulty processor “fires,” all nonfaulty processors do so simulta-
neously, and

(c) if no processor receives a “start” signal, then no nonfaulty processors “fires.”

This is obviously a synchronization problem: even though processors may receive
“start” signals at different times, and in fact it may be that only one of the pro-
cessors actually receives a “start” signal, we want all nonfaulty processors to “fire” at
the same time. When answering the following questions, Handout 25 may be useful.

(a) Construct a fact ¢ making the following statement true, and prove that the re-
sulting statement is true: Given a run p of a protocol P for the distributed firing
squad problem, if the nonfaulty processors “fire” at time £ in p, then (p, £) = Cyep.

(b) State a knowledge-based protocol P for the firing squad problem that is optimal
in all runs (similar to the protocol we constructed in class for consensus).

- (c) Prove that the following is true of your protocol P: Let P’ be an arbitrary protocol
for the firing squad problem. Let p and p’ be corresponding runs of P and P,
respectively. If the nonfaulty processors “fire” at time £ in p', then the nonfaulty
processors “fire” no later than time ¢ in p.

(d) Prove that your protocol P solves the firing squad problem and is optimal in all
runs. (It may be useful to know that there are protocols for the firing squad
problem that halt in ¢ + 1 rounds in every run.) :
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3. Prove or disprove: Every 0O-resilient consensus protocol has a bivalent initial state.

4. Suppose the network is not entirely asynchronous, in the sense that processes are
equipped with perfectly synchronized local clocks, but messages can still take arbitrar-
ily long to be delivered. Show that impossibility still holds for 1-resilient consensus.
(Hint: A reduction might be easier than a direct proof.)
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23.1 Randomized Consensus Algorithms

Impossibility results from previous classes require that in a fully connected synchronous
network of n nodes with at most ¢ faulty processes, consensus can be reached only if n > 3¢+1.
Also, at least ¢ 4+ 1 rounds are required.

This bound on the number of rounds can be reduced by introducing randomization in
consensus protocols. In this lecture, we present Ben-Or’s basic idea of introducing ran-
domization to achieve consensus in fewer rounds[Ben-Or83]. Although the first algorithm
presented below has exponential expected time, refinements to the algorithm achieve good

time performance.

'23.1.1 Ben-Or’s Randomized Algorithm

The code is shown in Figure 23.1. Each processor starts out with an input bit (), and
agreement, validity and termination conditions are as before. We let random denote a coin
toss producing 0 or 1 with with equal probability.

We say that one phase of the algorithm is the two round synchronous execution by
processes. If n > 3t+1, then Ben-Or’s algorithm always preserves the validity and agreement
conditions. In addition it also has a high probability of termination. The algorithm is similar
to the Turpin-Coan multivalued consensus protocol. In fact, as in Turpin-Coan’s algorithm.
at most one value (non-nil) is sent by any nonfaulty process during Round 2 in any phase
of the algorithm. '

Agreement

If any nonfaulty process decides in phase r of an execution, no one else can decide differently
-at phase r (since nonfaulty processes don’t send different values in round 2 of any phase). If
this is the case, all nonfaulty processes choose this value for the next phase of the algorithm.

Validity

Suppose all nonfaulty processes start with the same input bit 4. In Round 1 of the first
phase, all non-faulty processes broadcast b and receive at least n — ¢ messages with value b.

275
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Process p’s code: (same for all processes)

repeat forever

Round 1: broadcast z _
if > (n —t) msgs. recd. with value v
thenz « v
else z « nil

Round 2: broadcast z
if > (n —t) msgs. recd. with value v
then (DECIDE v; z « v) |
else if > (t 4+ 1) msgs. recd. with value v
then z « v
else z « random

endrepeat

Figure 23.1: Ben-Or’s Randomized Consensus Algorithm

Then, in Round 2 of the first phase, they will all broadcast b again and receive at least n — ¢
messages with that value. Therefore, all non-faulty processes will decide b (in Round 2 of
the first phase). This satisfies the validity requirement.

Termination

In order to send a non-nil value w at Round 2 of any phase, a non-faulty process must have
received n — t messages with the same value w in Round 1 of that phase. Therefore, no two
non-faulty processes can send different non-nil values in Round 2 of the same phase. So,
in Round 2 of any phase, if any two non-faulty process each receive at least # + 1 (non-n:l)
messages containing values w; and w,, respectively, then w; = w,. Therefore, at most one
decision value can be forced on non-faulty processes during Round 2 of any phase of the
algorithm.

So, in each phase there are two cases. If a value w is forced in Round 2, then with
probability > 1/2" all nonfaulty processes will also choose the value w for the next phase
of the algorithm, resulting in termination. If no value is forced in Round 2, then with
probability > 1/2” sufficiently many processes will choose the same value to force a value at
the next phase. Thus, expected number of phases is at most 2".
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23.1.2 Improving Expected Time

Rabin suggested that if processes coordinated their coin tosses, with probability 1 all pro-
cesses will agree on a forced value [Rabin83]. Thus, the expected time is reduced to a constant
number of rounds if a global coin tossing mechanism is used. Although it is not clear how
this global coin tossing is realized, cryptographic ideas were suggested (e.g., Shamir’s secret
sharing protocol). Bracha, using Ben-Or’s idea, improved the expected number of rounds
to O(log n) assuming private channels for interprocess communication [Bracha87]. Feldman
and Micali [Feldman88] realized the global coin tossing idea without using cryptography for
a verifiable secret sharing protocol. Their algorithm assumes interprocess communication
through private channels. That is, a byzantine process can be seen as an adversary whose
behavior is a function of the history of messages arriving on its own channels. Chor and Coan
[ChorC87] realized an O(TS:_E) bound on expected number of rounds with no cryptographic
assumptions.

Thus expected time can be improved using probabilistic algorithms, but the absolute
minimum time is still unknown.

23.1.3 Randomized Consensus in Asynchronous Networks

Fischer, Lynch and Paterson show that consensus is impossible in asynchronous environment
using deterministic ideas even in presence of stopping faults [FisherLP85]. However, the
problem can be solved in asynchronous environment using randomization, with probability
1 of eventually terminating, even in presence of Byzantine faults.

The algorithm, shown in Figure 23.2, is also based on [Ben-Or83]. The algorithm assumes
verifiable (but not necessarily secret) message channels. Although the algorithm needs addi-
tional processes (n > 7t + 1), this number is reduced to 3¢t +1 in [Bracha87], which also uses
cryptographic techniques to reduce the expected time from exponential to O(log n) rounds.
The algorithm works in ‘phases’, where each phase has two rounds. Each process sends
messages of the form (r,s,v), where r is the phase number, s is the round number within
the phase and v is the ‘value’ of the message.

The correctness arguments are similar to those for Ben-Or’s synchronous algorithm, but
the proofs are slightly more complicated in order to deal with asynchrony of phases.

Agreement

Here we show that the nonfaulty processes cannot disagree. Consider the case where p
decides v at phase r. This can happen only if p gets > (n — 2t) occurrences of v, which by
counting arguments guarantees that other nonfaulty processes get > (n — 4¢) occurrences
of v, hence they cannot decide on a different value in this round. Moreover, agreement will
hold for the next phase if v is chosen at the end of the current phase by other nonfaulty
processes. '
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Process p’s code:

Initially each process’ initial value = z
repeat forever
Round 1: broadcast (r,1,z)
wait for (n — ) msgs. with value (7,1, %)
if > (n — 2t) msgs. received with value v
thenz « v
else z « nil

Round 2: broadcast (r,2,z)
wait for (n — t) msgs. with value (r,2, %)
Let v = value occurring most often, with m = # of occurrences
if m > (n—2t)
then (DECIDE v; ¢ « v)
else if m > (n — 4t)
thenz « v
else z — random
endrepeat

Figure 23.2: Randomized Consensus Algorithm for Asynchronous Network
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Validity

The validity condition is guaranteed using same argument as in the synchronous case.

Termination

The agreement condition shows that if any process decides on v during a phase of the
algorithm, termination will occur if all processes choose v at the end of the phase. This
event will occur with probability greater than 2%,, same as the result for synchronous case.
But for the synchronous case, the forced value was determined by the end of Round 1 during
any phase, which is before any nonfaulty process’ random choices are made. The same
notion should therefore be preserved for this case. Thus, the algorithm must guarantee
that no nonfaulty process tosses a coin before this forcible value is determined, to prevent
the adversary from using the coin toss results to determine the forcible value. In the next
paragraph, we argue that this condition is guaranteed.

Call messages sent in Round 2 suggestions. Consider the first process that reaches phase
r of the algorithm, at the point where it receives at (n — t) messages of type (r,1,%). Let ¢
denote the majority value in the messages received (a tie break, if no distinct majority). We

then make the following claims.
Claim 23.1 In phase r, any suggestion sent by a nonfaulty process must have value v.

Proof: If some other value w was suggested by nonfaulty process p, then p sees > (n —2t)
messages with value w. Again, by counting arguments, at least (n — 4t) messages with value
w appear in the set (n — t) processes that suggested w. Since n > 7t + 1, it is clear that
(n — 4t) is still a majority of nonfaulty processes and thus w = v. |

Claim 23.2 In phase r, v is the only possible forcible value.

Proof: To force a nonfaulty process to choose w, the process must receive at least (n—4t)
suggestions of w. At least one of these processes is nonfaulty, so the value suggested is v.
Consequently, the forcible value is determined before any nonfaulty process tosses a coin. m

Hence, with probability > 517;, all processes tossing coins will choose v, and will then
decide v in the next phase.

23.2 Concurrency Control

The last major topic covered in the class is Concurrency Control. During this course, many
distributed algorithms and impossibility results in the field were discussed. We now con-
sider principles for programming distributed systems. The languages used in programming
distributed systems vary widely with the application (commurication protocols, real-time
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Figure 23.3: Atomic View of a database system

process control systems, distributed data-processing systems, resource management systems
etc.). A lot of research has been done in design of languages for distributed data processing
systems.

The remaining lectures will be devoted to study of important language constructs for
data-oriented distributed programming. The text for the material is the monograph by
Lynch, Merritt, Weihl and Fekete titled Atomic Transactions. We begin by introducing
basic distributed data processing concepts, covered in Chapters 1 and 2 of the monograph.

The operational view of a database system is shown in Figure 23.3. This view is similar
to an atomic register, in that an operation is performed on the database as if it was shrunk
to a point. Consequently, the operations appear to be performed in a serial fashion.

But the analogy to the atomic register stops here. In the case of atomic transactions,
‘some operations may not succeed. Successful operations COMMIT, whereas operations that
do not succeed ABORT. As a result, the wait free property in atomic registers is also not
preserved by transactions.

Since transactions may or may not succeed, this may result in two different courses
of action for the creator of the transaction. Thus the result of each tramsaction invoked
is reported back to its creator. Report for COMMIT transactions is accomplished by a
REPORT_COMMIT(T,v), where T denotes the transaction name and v is the value returned
by the successful completion. For transactions that ABORT, the results are reported using
REPORT.ABORT(T) action. For obvious reasons, a REPORT_ABORT does not have a

return value v.
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A sequence of operations within an atomic transaction (considering COMMIT and ig-
noring ABORT operations) can be viewed as a serial execution.

In a typical database, the system behavior can be partitioned into separate objects. Hence,

-an operation may involve several objects. As a result, an operation can be subdivided into op-
erations on individual objects. For example, a bank transfer operation TRANSFER(A,B.k)
first withdraws 8k from Account A and then deposits $k into Account B. Consequently, the
TRANSFER(A,B k) can be decomposed into WITHDRAW(A k) followed by DEPOSIT(B,k)
operations.

Thus a transaction can be thought of as a sequence of operations, involving many abjects.

But the semantics of the transaction should be such that it appears to the outs1de world
that the whole transaction happened atomically.
Ezample: Consider the bank AUDIT operation, which returns the sum of money in all
accounts. The AUDIT operation could be realized in a logical way by expanding it into a
transaction that reads values of balances in all accounts one at a time, in some order. If
operations could interleave other transactions say TRANSFER(A,B,k) as before, the AUDIT
could end up returning an incorrect total. Thus a correct operation for the banking system
should make it appear to the user as if the AUDIT and TRANSFER operations happen
consecutively.

In addition, a transaction could also include conditionals, which may result in different
actions. In the banking system example, a WITHDRAW(A k) transaction may take a dif-

~ ferent action if it finds an insufficient starting balance. Thus we use the word transaction to
describe a ‘program’. In our case, we choose to model transactions as I/O automata.

A transaction T is shown in Figure 23.4. T wakes up when it gets a special create input,
and starts computing. In turn T may request that certain operations (its children) be invoked
and their results be reported back. The children in turn get created and presumably operate
directly on the data. A REPORT_COMMIT with results or a REPORT_ABORT reports
the outcome of each child transaction. The transaction may choose to use information about
ABORT as well as COMMIT operations of its children to decide its own course of action.
Eventually T completes and requests to commit with its own result v. All these actions
should appear atomic from outside of T.

Consider the actions where T invokes its children. In classical database theory, these
actions occur sequentially, waiting for report of one before requesting the next, to ensure
that they occur in a given order. In general, this may not be necessary. Thus, T could take
actions invoking its children concurrently. Again, this results in semantics that are similar
to an atomic register. If T requires that its children be executed in a certain order, then it
would wait for a report about each child before invoking the next transaction.

-Readers familiar with the classical approach of modeling transactions (covered in the
book Concurrency Control and Recovery in Database systems by Bernstein, Hadzilacos and
Goodman) will recall that transactions are viewed as a two level structure. Instead of stop-
ping at the second level, we shall model transactions as nested structures with no restrictions
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CREATE(T) REQUEST_-COMMIT(T,v)

REQUEST_CREATE(T’) g

Figure 23.4: Transaction Model

on the level of nesting. Operations can thus be expanded into transactions at a next level.
Semantics say that each set of siblings execute in accordance with the shrinking definition -
as if serially and consistent with the order of invocations and responses.

Nested transactions are convenient structures to use as a basis for distributed program-
ming languages such as the Swallow project, Argus, Camelot, etc.

Consider a distributed system in which a centralized serial scheduler gets requests from
all transactions and runs them one at a time. This system has no concurrency and is not
of much practical interest. On the other hand, such a system can be used as the basis of a
correctness definition. A scheduler that allows concurrency is correct as long as it preserves
the properties exhibited in some serial execution of the system.

This can be achieved by using exclusion mechanisms such as locks. A transaction goes
around locking all objects that it modifies. These locks are retained until the transaction
completes its operation. Thus no two operations on the same object can appear interleaved.
Mechanisms such as timestamps and version management can be used instead of locking to
achieve the same effect. ,

Consider the case where a transaction makes a lot of modifications to the database and is
then aborted for some reason. Here, mechanisms should ensure that no effects of the aborted
transaction show up later. Thus, recoveryis also an important part of transaction algorithms.
Recovery mechanisms also include handling database consistency problems occurring due to
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crashes in a system which result in loss of information.
We will be concerned only with safety properties, and will not deal with liveness issues.
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| Lecture 24: December 8
Lecturer: Nancy Lynch Scribe: Sanjay Ghemawat

Atomic transactions were introduced in Lecture 23 as means of handling concurrency
and limiting the effects of failures in a distributed data processing system. We now present
formal notions of what it means for a transaction system to be “correct”. Most of the terms
used in the following presentation are not defined here. Atomic Transactions (by Lynch,
Merritt, Weihl, and Fekete) should be consulted for the appropriate definitions. The reader
will be referred to the book as necessary in the following discussion.

24.1 I/0 Automata

We model the individual components of a transaction system with I/O Automata, and model
the whole transaction system with the composition of the individual I/O Automata. The
rest of this section is just an intuitive description of some of the key ideas from Chapter 3.

24.1.1 Modification to the I/O Automaton Model

The original I/O automaton model included a partitioning of locally controlled actions to
model fair scheduling of different threads of control in an automaton. This was used to prove
fairness and liveness properties about the composition of I/0 automata. Since we will only
be considering safety properties in the following discussion, partitioning of locally controlled
actions is not needed.

24.1.2 Implementations

Correctness proofs presented in later lectures will prove the correctness of very general non-
deterministic algorithms. We would like to be able to reuse these proofs for less general, more
deterministic versions of these algorithms. Therefore, we need to rigorously define what it
means for an automaton A to implement another automaton B. If we can prove that A
implements B, and we can prove some properties about B, then the same proofs can easily
be extended to A. :

24.1.3 Possibilities Mappings

An easy way to show one automaton implements another is by demonstrating a correspon-
dence between the states of the two automata. Such a correspondence is called a possibilities
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mapping. Refer to the book for a formal definition of a possibilities mapping; and a proof
that if a possibilities mapping from automaton A to automaton B exists, then A implements

B.

24.1.4 Safety Properties

.Sifice automata in this model are unable to block input actions, it is often convenient to
restrict attention to those behaviors in which the environment provides “sensible” inputs to
the automaton, i.e., the environment obeys certain “well-formedness” restrictions. -

A useful way of discussing such restrictions is by saying that an automaton “preserves”
a property of behaviors of the system: i.e., as long as the environment does not violate
the property, neither does the automaton. Such a notion is primarily interesting for safety

_properties. A safety propertyis a predicate P on the set of behaviors of the system such that
if P holds for a behavior 3 of the system, then P holds for all prefixes of 3. Refer to the
book for a formal definition of when an automaton preserves a safety property.

24.2 Transaction System Model

We now present an intuitive description of the system model used in the following discussion.
For a formal presentation of the model, refer to Chapter 4 (Serial Systems and Correctness)
of the book. The system contains several transactions and objects. A transaction is allowed
to access the objects, or invoke other transactions, or both. This nesting of transactions
gives rise to a forest of transactions with top-level transactions at the roots of the forest, and
accesses to'objects at the leaves of the individual trees. To simplify the discussion, we convert
this forest to a tree structure by adding a “dummy transaction” as the root of the transaction
- structure, and by making all the top-level transactions children of this root transaction. This
root transaction can be thought of as modeling the outside world from which invocations of
top-level transactions originate, and to which reports of the results of such transactions are
sent. We will generally regard the boundary between this root transaction and the rest of
the system as the user interface to the system.

24.2.1 Serial System Model

We now model a serial transaction system. A serial transaction system model consists
of transactions as in Figure 24.1, a set of serial object automata, and a serial scheduler
automaton (see Figure 24.2). A serial system runs sibling transactions sequentially, and
aborts a transaction only if the transaction has not actually been “started”. Therefore, a
serial system looks like a data processing system in which execution is sequential, and no
activity needs to be undone.
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Transaction Automaton

A transaction automaton 7T has the signature denoted by Figure 24.3.
CREATE(T) Tells T to start itself.
REQUEST-COMMIT(T,v) Asks scheduler to commit 7' with return value v.
REQUEST-CREATE(T")  Asks scheduler to create child 7".
REPORT-COMMIT(T",v)  Reports commit of child 7".

REPORT-ABORT(T") Reports abort of child 7".
CREATE(T) REQUEST-COMMIT(T ,v)

@

/ N

REQUEST-CREATE(T") REPORT-COMMIT(T",v)
or REPORT-ABORT(T")

. Figure 24.3: Transaction Automaton
Note that there is no REQUEST-ABORT(T) in the signature. This is because the scheduler,

since it is non-deterministic, could decide to abort T on its own. Therefore, a REQUEST-
ABORT operation is not needed.

Serial Object Automaton

A serial object X serially executes the operations invoked on it. Object X has an input actio:
CREATE(T), and an output action REQUEST-COMMIT(T,v) for each access transaction

T for X (see Figure 24.4).
CREATE(T) — @ — REQUEST-COMMIT(T,v)

Figure 24.4: Serial Object Automaton
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Serial Scheduler Automaton

A serial scheduler accepts requests to create and to commit transactions. It decides when
to actually create and commit the transaction. It might also decide to abort a transaction
T provided that T has not yet been actually created. The interface of a serial scheduler is
summarized in Figure 24.5. Note that the COMMIT and ABORT actions appear as outputs
for technical convenience. They do not compose with any input and can be thought of as

internal actions.
/ \ — CREATE

REQUEST-CREATE — — COMMIT

Serial

Scheduler — ABORT
REQUEST-COMMIT — — REPORT-COMMIT

\ /' — REPORT-ABORT

Figure 24.5: Serial Scheduler Automaton

24.3 Well-Formedness

We now'describe some properties that will be preserved by the components of the serial
system. ‘

24.3.1 Transaction Well-Formedness
1. Transactions must be created before anything else happens at them.
2. A transaction may be invoked (created) at most once.

3. A transaction can be committed or aborted at most ohce, and cannot be aborted if it
is created. ‘

4. A transaction can be committed or aborted only after its creation has been requested.

5. A commit can be requested for a transaction only after all created children have been
either committed or aborted.
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6. Nothing happens at a transaction after it requests to be committed.

24.3.2 Serial Object Well-Formedness

Operat_‘;ions on an -object must be invoked serially; i.e., an operation on an object must be
allowed to finish (REQUEST-COMMIT) before another operation (CREATE) is invoked on
it. ’

’-24‘.44 Correctness Conditions

Intuitively, we say that a transaction jprocessing 'system s :correct if it dooks like a serial
system to the world. We definea sequence B-of actions to be serially correctfor-a transaction
T provided there exists a behavior of a serial system such that BT = ~|T. Given this
definition, a transaction system A is serially correct for transaction T if all of its finite
behaviors are serially correct for T. This means that at transaction T, any execution of
system A looks like an execution .of a serial system.

‘We use serial .correctness for Tp (the dummy root transaction) to check whether a trans-
action system appears «correct to the external world. Note that-even though A might appear
serially correct to the external world, internal -components of A might witness non-serial
behavior. Refer to the book for some stronger correctness «conditions which handle this.

24.5 Exercises

1. Design a serial system representing a banking system. The system should contain a se-
rial object corresponding to each-of a fixed finite number of bank accounts, and should
‘have top-level transactions of types WITHDRAW{(A k), DEPOSIT(A,k), TRANS-
FER(A,Bk) and AUDIT. (There may also be subtransactions.) The WITHDRAW
and TRANSFER transactions should have no effect if there are insufficient funds in
the account. '

Describe the transactions :and serial objects of the system. Give the nesting structure,
and give specific I/O autoimata for the serial objects and transactions. Be sure to
include descriptions of what a transaction does when the abort of a child transaction
is reported to it. ’ ‘

9. Consider a subsystem S of your system in 1. above, another serial system fconsistiﬁg
of TRANSFER and AUDIT transactions only (but no WITHDRAW or DEPOSIT
transactions). Suppose that the total of all the money imitially in the accounts is k
dollars. . : j
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(a) Sketch a proof that the answer returned by any AUDIT transaction in S is k.

(b) Suppose another system S’ is serially correct for 7, with respect to the serial
system S. Prove that the answer returned by any AUDIT transaction in S’ is also
k‘ .

3. Prove the lemma about the elementary properties of “visibility” (in Chapter 6 — The
Serializability Theorem). ‘

4. Consider the lemma in Chapter 6 which states that all members of pictures(3,T,R) are
finite behaviors of the serial scheduler. The definitions of “pictures” given in Chapter 6
requires that 7 be chosen to be a certain prefix of §, rather than all of §. Why is this
“chopping” needed in the proof of the lemma?
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Lecture 25: December 13
Lecturer: Nancy Lynch Scribe: Jon Riecke

25.1 Serial Correctness

In the last lecture, we defined a serial system for processing transactions. Basically, the
serial scheduler proceeds depth-first through the transaction tree, scheduling transactions
one at a time. Such a system yields no concurrency, and so has little practical import; the
purpose of the serial system is to formalize the correctness of an arbitrary concurrency control
algorithm. The serial system is analogous to a serial register: as the correctness of an atomic
register implementation can be stated in terms of the behavior of a serial register (i.e., where
reads and writes are processed sequentially), so can the correctness of a concurrency control
algorithm be stated in terms of the serial system.

. Suppose we are given an arbitrary concurrency control algorithm; from the perspective
of the user, top-level transactions are invoked and results appear via REPORT actions.
In our model, the transaction T represents. the user (see Figure 25.1). In order for the

REQUEST-CREATE(T)

Figure 25.1: A transaction processing system, from the perspective of the user.

ransaction
Processing
Algorithm

REPORT

implementation to be correct, results returned by the implementation must look the same
as some execution of the serial system. More formally, recall from Lecture 24 that an
implementation is serially correct for Ty if, for all finite behaviors 3, there is a behavior v of
‘the serial system with 8|Tp = 9|T5.

In a serially correct transaction processing algorithm, one can imagine each top-level (i.e.
user) transaction as being atomic. An interval corresponding to a transaction consists of five
actions: REQUEST-CREATE(T), CREATE(T), REQUEST-COMMIT(T), COMMIT(T),
and a REPORT-COMMIT(T,v) (or ABORT replacing COMMIT), where the middle three
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Figure 25.2: An atomic register 1mp1emented along the lines of a transaction processing

sy stem.

actions are invisible to the user. The user may see a delay between the REQUEST-CREATE
and actual CREATE, and between the COMMIT and actual REPORT-COMMIT actions.
Nevertheless, due to the serial correctness of the system, one may think of these actions
as happening at a single instant—an interval shrinking argument, as is used in the case of
atomic registers. '

It is interesting to note that the correctness of an atomic register may be formulated
along analogous lines. Any atomic register may be thought of as having two buffers: one
to receive read and write actions, and one to store return results and acknowledgments (see
Figure 25.2). Reads or writes come into the register, the register processes them with some
delay, the register reports its results, and the user finally receives the results after some delay.

25.2 A Note of Comparison

By way of comparison, there are at least three differences between this model and the
model described in Bernstein, Hadzilacos and Goodman’s book [BernsteinHG87]. First,
the model here incorporates nested transactions—a feature of many distributed database
sy stems, 1nclud1ng Argus. Second, the model incorporates an interface to the user, the
transaction Ty, which coordinates all other transactions. This extra top-level transaction
greatly simplifies the theory by making the model more uniform. Finally, the model is more
detailed than the model in [BernsteinHG87]. Of course, proofs may become hairy using
the more detailed model, but the model is more flexible and so more concurrency control
algorithms can be modeled using the framework set forth.
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25.3 Serializability Theorem

Verifying the serial correctness of a transaction processing algorithm can be difficult given
only the definition of serial correctness: we must be able to construct a serial schedule for
each schedule of the implementation. Not only is the effort potentially great, the argument
must be duplicated for each implementation we wish to verify. Given the large number of
.concurrency control algorithms in existence (e.g., locking, time-stamp algorithms), the task
seems daunting. , ’

Fortunately, the proofs of most transaction processing algorithms can be based on a single
general theorem, the Serializability Theorem: if certain local conditions on the transactions,
objects, and scheduler are met, and some global ordering on the transactions is known (which
may be partial), then there is a behavior of the serial system that produces the same results
from the perspective of Ty. In other words, the Serializability Theorem shows that the system
will be serially correct. .

The Serializability Theorem is proved for a very general transaction processing system,
which we call the simple system; there will be a correspondence (via a possibilities mapping.
for example) between the simple system and most transaction processing algorithms, as we
shall see in Lecture 26. The simple system is composed of a transaction tree and a simple
database, which both schedules the transactions and models the objects (see Figure 25.3.) A
complete I/O automaton definition of the simple database is given in Atomic Transactions
[LynchMWF88], Chapter 6, pages 65-67. The simple database is basically the minimum

- system that produces well-formed behaviors (e.g., responses follow the appropriate requests.)
If an algorithm implements the simple system (i.e., its behaviors are a subset of the simple
system’s), then the transactions, objects, and scheduler will produce well-formed behaviors:;
this is the local condition mentioned above.

‘The simple system will not, however, always produce serially correct behaviors (this is
a necessity if we wish to use the simple database to prove the correctness of a wide variety
of algorithms.) One way to derive a non-serially correct behavior for a transaction T is to
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T/I

Figure 25.4: A piece of the transaction tree, with 7" the least common ancestor of 7' and
7.

access an object based on information that could not be known to T'. For example, suppose
we have the subtree depicted in Figure 25.4 in our transaction tree. T should not be able to
use any information ‘about the results of 7" unless T has COMMIT'ted; then the information
could be “passed” to T via T during the CREATE(T). A transaction T is thus said to be
visible to T in a behavior 8 if there is a COMMIT(U) action for every ancestor U of T” up
to the least common ancestor of 7" and T” (see Figure 25.5.) |

The sequence of actions visible to T in f is denoted visible(3,T'); a precise definition
may be found in Chapter 6 of [LynchMWF88]. Since a transaction 7" is either visible or

“not visible to T in any particular behavior 3, all of the actions or none of the actions of T"
are in visible(3, T'); this important property is formalized on page 71 of [LynchMWF88], in
Lemma 6-9.

In a serially correct behavior, transactions are run in an order where all child transactions
of a particular transaction must complete before a sibling starts. We call an irreflexive partial
order R on a transaction tree a sibling order if R relates only siblings.! For example, in
Figure 25.5, T' cannot be related to T nor T” via a sibling order. In order to extend a
sibling order R to order non-siblings, let R¢;qns be an extension of R such that Ryens(7,T)
when T is a descendant of U, T’ is a descendant of U’ and R(U,U’). Finally, let Reyen:(5)
(where f# is a behavior) be a sequence with the events ordered by Ry,...,; see Chapter 6 of
[LynchMWF88], page 74 for a precise definition. ,

Not <all sibling orders are useful; we must, for example, make sure that all siblings are
ordered if we wish to obtain a serial-like behavior. We call a “good” sibling order suitable.
More precisely, a sibling order R is suitable for a behavior 8 and transaction T if

' The partial order must be irreflexive to aveid. identifying transactions: For example, suppose R were a
partial order with. R(7,T") and' R(T”,T); by the antisymmetry axiom, 77 = T, something we do not wish to
permit.
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Must have T

committed\

T

Figure 25.5: Some transactions that are visible to T—those that may affect T in a serially
correct behavior. '

® R orders all pairs of siblings in visible(3, T); and
® Re,ent and affects(f) are consistent partial orders on the actions in visible(3, T).

Here, affects(f) is another irreflexive partial order that orders the actions in 8 so that a
reordering of # consistent with affects(8) is a behavior of the simple system. A complete
definition of affects(3) may also be found in Chapter 6 of [LynchMWF88]. :

These are the definitions we need in order to prove the Serializability Theorem, which
we now state: ’ '

Theorem 25.1 (Serializability) Let 3 be a finite behavior of the simple system, T a trans-
action name such that T is not an orphan in 8, and R a sibling order suitable for B and
T. Suppose that for each object name X, the actions in visible(8,T) occurring at X and
reordered by R, denoted view(B3,T, R, X), is a finite behavior of the serial object Sx. Then B
is serially correct for T

Both a rough sketch and a complete proof of this important theorem appear in Chapter 6
of [LynchMWF88], pages 76-81.

~ In Lecture 26, we shall see how to apply this important theorem to proofs of correctness
for various concurrency control algorithms.
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~ This lecture has two major parts. The first part describes how to apply the Serializability
Theorem to provide a general proof frameork for Locking and Timestamp based concurrency
control algorithms. The second part describes a modular proof technique for proving the
correctness of data replication algorithms.

26.1 Locking Algorithms

Chapter 7 of [LynchMWF88] describes a proof technique for locking algorithms in nested
transaction systems. We will not repeat this description here; instead, we only make a few
comments and refer the reader to specific portions of Chapter 7. We will also refer the reader
to portions of preceding chapters for an explanation of necessary terminology and sometimes
to provide a contrast.

In the previous lecture, we studied the Serializability Theorem, as described in Chapter
6 of [LynchMWF88]. Essentially, to apply this theorem to show that a concurrency control
algorithm is correct, we must .

e find a suitable sibling order R, and

e show that every object in the system satisfies the view condition required in the hy-
pothes1s of the Serializability Theorem.

This technique is a.pplied to Locking Algorithms in Chapter 7 of [LynchMWF88]. For
locking algorithms, the sibling order we choose is simply the completion order of transactions.
Intuitively, this is because concurrent transactions are not given conflicting locks until the
transactions holding them commit. Thus transactions with conflicting accesses to objects
are serialized by the order in which they obtain conflicting locks. But this order can be
inferred (by the preceding argument) by looking at the order in which they commit, since
“'locks are held until commit. Chapter 7 formalizes these ideas.

~In Chapter 7, Iockmg algorithms are modelled using a very simple and unrestrictive
controller (called a generic controller). The concurrency control algorithms are modelled
as residing in the objects themselves. Such objects are called generic objects. The whole
system model (i.e. the composition of the transaction automata, generic object automata,
and generic controller) is called a generic system (Section 7.2.2). This is illustrated in Figure
26:1.
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géneric controller
o O o O
locking objects

Figure 26.1: Generic System: a model for locking algorithms

If objects are to do all the concurrency control work in this model, they need to know
the fate of some of the transactions, especially those that access objects. To model this, we
add two input actions to the usual object automaton signatures (compare with serial object
automaton signatures): INFORM_COMMIT and INFORM_ABORT can be used by the
generic controller to tell objects about the fate of arbitrary transactions. This is described
in Section 7.2.2.1. It is also useful to compare the well-formedness conditions for generic
objects with the corresponding conditions in Section 4.4.2.2 for serial objects.

The generic controller automaton is described in Section 7.2.2.2. It is very useful to
compare this to the corresponding automation for the serial system controller (Section 4.5.3)
and the simple database (Section 6.1.1). Unlike the serial scheduler, the generic controller
does not restrict concurrency in any way. It is much more like the simple database; both
of them only try to preserve some basic well-formedness conditions and impose no other
restrictions on concurrency. The transition relation for the generic controller is identical
to that of the simple database of Section 4.5.3 except for the additional mput events for
INFORM.COMMIT and INFORM_ABORT.

To apply the Serializability Theorem, we need to show that a certain view condition holds
for all objects in the system, assuming the use of completion order as a suitable sibling order.
This gives the ~roofs a nice modularity because we can show this condition (which is called
dynamic atom: ty, Sec 7.2.3) separately for each object. However, the view condition is
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defined (Section 6.4) in terms of the system containing the object, and not the object itself."
Consequently Section 7.2.4 introduces a notion of local dynamic atomicity, a condition that
is expressed only in terms of the behaviour of the object under consideration. Section 7.2.4
shows that local dynamic atomicity is sufficient to show dynamic atomicity. Showing that
each locking object separately satisfies local dynamic atomicity makes the proofs even more
modular.

Section 7.3 applies this modular proof technique to a commutativity based locking al-
gorithm. This commutativity based locking algorithm generalizes several existing locking
algorithms. A simpler proof of correctness (based on invariants) has since been found and
will probably be added to a later version of [LynchMWF88].

Finally Section 7.4 presents Moss’s algorithm for read-update locking and its proof.
Moss’s algorithm is shown to be a special case of the commutativity based locking algo-
rithm, except that it uses a more efficient data structure to summarize lists of operations at
the cost of reduced concurrency. Because the data structures are very different, the Moss
objects (Mx) cannot be treated as a special case of a commutativity based locking object
(Lx). Instead Section 7.4.2 described a possibilities mapping between Mx and Lx; But Sec-
tion 7.3.2 has already shown that Lx is dynamic atomic; thus My is also dynamic atomic.
The serializability theorem then allows us to conclude that Moss’s algorithm is correct.

26.2 Timestamp Algorithms

Chapter 8 of [LynchMWF88] provides a framework for proving the correctness of timestamp
based concurrency control and recovery algorithms for nested transactions.

The technique that was applied to locking algorithms in Chapter 7 of [LynchMWF88] is
applied to timestamp based algorithms. A model of a general system that uses timestamp
based concurrency control is shown in Figure 26.2. The generic controller of Chapter 7 has
been replaced by a pesudotime controller and the locking objects by pseudtotime objects.

The basic notion is that before each transaction gets created a pseudotime interval (Sec-
tion 8.2.1) is assigned to it. Different top-level transactions are assigned disjoint intervals.
However, subtranactions are assigned time intervals within the parent’s interval.

, The treatment is very similar to that of locking algorithms; we refer the reader to Chapter

8 for details. There are some interesting differences to note in the two frameworks. First, for
timestamp based algorithms, the sibling order we choose is the pseduotime order (Section
8.2.2.2) and not completion order. Second the pseudotime objects (Section 8.2.3.1) need to
be informed about the timestamps of transactions as well as their fates; locking objects need
to know only about the fate of transactions. Third, to apply the serialability theorem, we can
test each pseudotime object separately for a condition called local static atomicity (Section
8.2.4 and 8.2.5); the equivalent condition for locking objects is local dynamic atomcity.
Fourth, in Chapter 8 considerable stress is laid on distributed implementations and their
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pseudotime controller
pseudotime objects

Figure 26.2: System model for Timestamp based locking algorithms

proofs.
Using this framework, Section 8.3.1 proves that a generalization of Reed’s algorithm

[Reed78] is correct. Section 8.3.3. models Reed’s original algorithm and proves that it is
correct by describing a possibility mapping between it and the more general algorithm of
Section 8.3.1. :

26.3 Data Replication Algorithms

We now describe a framework for proving the correctness of data replication algorithms in

nested transaction systems.
Data replication is the technique by which we keep more than one copy of each data item
at different nodes in the network. The advantages of data replication are:

o Database Availability: The database can continue to make progress even if some nodes
in the network crash.

¢ Reliability: Data can survive a catastrophe at some of the machines.

o Performance: By storing copies of the data close to the points at which they are
accessed, we can reduce access time.
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These advantages are, however, purchased at a price. We must maintain some kind of
consistency among the multiple copies of the same datum. Achieving this consistency is the
purpose of a data replication algorithm. There are several such algorithms in the literature.
Here we focus on a framework developed in [GoldmanL87] for proving the correctness of data
replication algorithms in the context of nested transaction systems.

It happens that we can do nearly all our reasoning in terms of Serial Systems. This
gives the proofs a very nice modularity: we can concentrate on proving that the replication
algorithms have the desired properties independent of the concurrency control and recovery,
which can be proved separately. :

To capture the essential features of items in the database, we use a logical data item
X (Vz,ix), where Vx is the domain of values for X and ix is the initial value of X.

To model the replicas we use read-write objects, which have two kinds of accesses: write
accesses (that have an associated value), and read accesses (that return the value associated

with the preceding write access).

26.4 Quorum Consensus Algorithm

We consider the Quorum Consensus algorithm of Gifford as an example of a data replication
algorithm. We will use this to introduce (and test) a correcteness proof framework for data

rephca.txon algorithms.

26.4.1 Description

We briefly describe the basic quorum consensus algorithm [Gifford79].

For each logical data item X, we associate some number n of replicas. Each replica is
modelled as read-write objects X3, X3, ...X,, each with initial value (ix,0), where the first
element in the tuple is the initial value and the second the initial version number.

Associated with X is a piece of state called the configuration. A configuration consists
of a set of read quorums and a set of write quorums. Each read or write quorum is a set
of names of replicas such that every read-quorum has a non-empty intersection with every
write-quorum (quorum intersection rule).

The algorithm that follows is reminiscent of some of the atomic register constructions we
have seen (i.e. logical operations decompose into little sub-operations).

- The algorithm to do a READy is as follows. First do a read access at all replicas in
some read-quorum for X. Return the value at the replica with highest version-number.

The algorithm to do a WRIT Ex is as follows. First do a read access at all replicas in
some read quorum of X. Let NewVn be the maximum version number read plus 1. Finally
do a write access with (v, NewVn) at all replicas in some write quorum for X.

This algorithm generalizes the read-one/write-all and read-majority/write majority schemes
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Figure 26.3: System A

We begin considering the proof of this algorithm assuming that the configuration is fixed.
Later we consider a modification that allows reconfiguration. :

26.4.2 Proof for a fixed configuration

We consider three systems for the purposes of the proof. Figure 26.3 depicts a non-replicated
serial systems which we will call System A. To do a read we simply do a read acess, and to
do a write we do a write access.

Figure 26.4 depicts a replicated but serial system that we call System B. System B has
two kinds of Transaction Managers (TMs): Read TMs and Write TMs. The children of
the TMs are accesses to the replicas. However, to the users (U’s in the figure), the TM’s
interface looks like the interface to the corresponding read/write objects in System A.

Finally, we consider a third system we call system C which looks like B but allows
concurrency. For example, this can be done by replacing the read/write objects with locking
objects and the serial scheduler with a concurrent scheduler. Clearly System C is the system

of interest. .
We now give a high level, top-down description of the proof. See [GoldmanL87] for more

details.
First we need to show that the serial but replicated system B simulates the serial and




Quorum Consensus Algorithm

Figure 26.4: System B
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non-replicated system A in some sense. That is,
A(a) sim‘tiztes B(ﬂ)

where the notion of simulation is that any schedule of B (denoted by 5) looks the same
to all user transactions as a schedule () of A. This can be stated formally as:

Theorem 26.1 V3,3, YU,a |U =8 |U

The order of the quantifiers makes this a very strong statement. It says that there exists
a corresponding schedule of system A (Ja) for all users (YU ). That is all user transactions
think they are running in the same schedule of the serial system.

To complete our proof we also need a notion of transitivity for the simulations. That is,

B atmgl_atea C A stm(zilg.tes C

This in turn can be stated formally as:

Theorem 26.2 VaVT,38,8 | T =4 | T = Vy,YU,3e,a | U =~ | U, where T and U are
non-orphan transactions in . '

This theorem follows immediately from Theorem 1. In this theorem <4 refers to a be-
haviour of C, and T denotes a transaction. Note the weaker order of quantification.

The two theorems give us a very nice separation of concerns. We can use our usual
serializability theorems to show the hypothesis of Theorem 2.

A proof of Theorem 26.1 needs a few preliminary definitions.

Define an Access Sequence of X in B (Acess(X,f)) as the set of CREATE and REQ-
COMMIT actions of TM’s for X in B. Define a LogicalState(X, B) as the value of write-TM
with last REQ-COMMIT action in access (X, 8) We want read-TM’s to always return the
logical state. This is stated formally in the following lemma.

Lemma 26.3 Let B be a schedule of B. If § ends in REQUEST-COMMIT (T,v) with T a
read-TM for X, then v = LogicalState(X, 3).

Proof: An easy induction, because B is a serial system. -
Given this lemma, Theorem 1 follows almost immediately.
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26.4.3 Reconfiguration

In order to accomodate reconfiguration, each replica must now store the 4-tuple:
(value, Version Number, con figuration, Con figuration Number).

The algorithm do a READjx is now as follows. First access (read) a read-quorum in the
configuration with the highest configuration number seen; then return the value with the
highest version number. Note that the highest configuration number seen may change as
more replicas are read. ;

The algorithm to do a WRITEx is now as follows. First access (read) a read-quorum in
the configuration with the highest configuration number seen exactly as for READx. Let
NewVn = HighestVersionNumberSeen + 1; now do write accesses with (v, NewVn) to a
write quorum in the configuration with highest configuration number seen.

The algorithm to do a RECONFIGURE is similar to a WRITE, except that in this
case we must write to the configuration and configuration number components of an object,
while incrementing highest-configuration-number-seen. This is actually an improvement over
Gifford’s scheme. In his original version, the new configuration was written to both an old
and new write-quorum. This simplification was discovered when a certain precondition was
not used to prove Gifford’s algorithm correct — proofs are useful!

In order to prove the reconfiguration algorithm correct, it would be nice to introduce
Reconfiguration-TMs as children of the user transactions so we can model the right atomicity.
But that is difficult because we also want reconfiguration to be transparent to the user. A
solution is to use Spy Automata which we compose with the user transactions. These spy on
user activities and have the Reconfiuration-TMs nested below them. The final solution in
[Goldman87] introduced another level of nesting beneath all the TMs for better modularity.
This is illustrated in Figure 26.5 and 26.6. Please refer to [GoldmanL87] for more details.
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Figure 26.5: System A with Reconfiguration

Figure 26.6: System B with Reconfiguration. A spy automaton, not shown, is composed
with each user automaton. All reconfigure-TM’s are invoked by the spy, and the results are
reported back to the spy. Other TM’s are invoked by the user automata as before.
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