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1 Introduction

A hybrid system is one in which digital components and analog components interact. Typical examples
of hybrid systems are real-time process-control systems such as automated factories or automated trans
portation systems, in which the digital components monitor and control continuous physical processes in
the analog components. The computer science community has developed formal models and methods for
reasoning about digital systems, while the control theory community has done the same for analog systems.
However, systems that combine both types of activity appear to require new methods. The development
and application of such methods is an active area of current research.

Among the formal tools that have been developed are the timed I/O automaton model of Lynch and
Vaandrager. Timed I/O automata are (possibly infinite state) labeled transition systems that can be
composed by synchronizing on common actions. Timed I/O automata support proof methods based on
invariant assertions and simulations [1, 2], as well as compositional reasoning [3]. Invariants and simulations
may include statements about time, including deadlines for future events. These tools have previously been
used for verifying several timing-based algorithms [4, 5, 6], and for a small case study on railroad control
[7,8].

In this paper, we describe our recent application of timed I/O automata, invariants and simulations,
to reasoning about problems arising in automated transportation systems. This work has led to new
development of the formal tools as well as insights about the application systems.

Typical examples of automated transportation systems include the Raytheon Personal Rapid Transit
System and the California PATH project [9, 10, 11]. In these systems, a number of computer controlled
vehicles share a network of tracks or highways. The digital part of the system is the computer vehicle
controller and the analog part of the system is the vehicle, its engine, the guideway, and so forth. In [9]
the control of the transportation system is described hierarchically. The higher levels of such a hierarchical
system coordinate and determine strategy while the lowest level performs specific maneuvers. In this
paper we focus on a single maneuver: the task of decelerating a vehicle to a target speed within a certain
distance. A scenario in which such a maneuver would be used is when a vehicle is approaching an area
whose maximum allowable velocity is lower than the vehicle’s current velocity.

Previous applications of timed I/O automaton methods recommend them for several reasons. First,
invariant assertions are usually proved by induction on the length of an execution, in a stylized form
that makes them easy to write, check and understand. Second, systems can be described using levels of
abstraction, where each level is a separate timed automaton. The levels of the hierarchy are related to one
another using a mapping called a simulation, which formally expresses the abstraction relation. Assertions
proved on the high level models extend to the lower level models via the simulation mapping. This is
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useful because assertions are usually easier to prove on the more abstract models. Third, system models
and reasonillg methods can be parameterized, allowing reasoning in terms of abstract constraints among
the parameters. Fourth and finally, the methods are not completely automatic. They require the user to
supply invariants and simulations, which serve as useful documentation of the system. In an exploratory
work such as this paper, the insight gained through this manual process is particularly useful.

Our work required us to extend the timed I/O automaton model slightly, adding some extra flexibility
in the types of analog behavior that can be expressed. We call the resulting extension the hybrid I/O
automaton model. We model our hybrid systems as compositions of hybrid I/O automata, with separate
automata for the discrete and analog components. The physical equations that describe the vehicle in
volve position, velocity, and acceleration. Hybrid I/O automata are able to capture the integration (or
differentiation) relation between these physical variables.

This paper develops four cases of the deceleration maneuver. The first case is the simplest. The second
case introduces a communication delay between the controller and the vehicle. The third case introduces
feedback; the vehicle periodically sends sensory information to the controller. The fourth case involves
both feedback and delay. For each case, we give a formal specification of what it means for a controller
to correctly implement the deceleration maneuver, then we give an example implementation of such a
controller and formally verify that it correctly implements the maneuver. Most of the proofs are proofs by
induction of an invariant assertion. The proof of the second case, delay, employs a simulation mapping.

We describe related work. Roy Johnson and Steve Spielman at Raytheon are leading the design and
development of a prototype advanced personal rapid transit system, based partly on concepts developed
by Ed Anderson of the Taxi2000 Corp. Prof. Shankar Sastry and his colleagues at Berkeley have studied
inteffigent highway systems [9, 10, 11] and specific scenarios that arise therein. For example. they have
considered equipping cars with “smart” cruise controls that can adapt to other cars in the vicinity [10].
Another project involving formal modeling of advanced vehicle control systems, using some computer
science techniques, was carried out by Schneider and co-workers [12]. Their emphasis was on the use of a
particular methodology to derive correct solutions.

The development of models and verification methods for timing-based systems is an active research
area within computer science. Our timed I/O automaton model is similar, for example, to a model of Alur
and Dill [13], to one of Lamport [14] and to one of Henzinger, Manna and Pnueli [15]. Some have extended
their models to treat hybrid systems, for example, Manna and Pnueli [16].

The methods of invariant assertions, abstraction mappings, forward and backward simulations, history
and prophecy variables are used in many places in computer science. We will not attempt to attribute all
these notions. An overview of these methods, for untimed and timed systems, appears in [17, 18]. Typical
work on temporal logic appears in [19]. Typical algorithmic solutions to problems of fault-tolerance,
communication, synchronization, distributed agreement, resource allocation, etc., are presented in [20].
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2 Model

In this section, we present an informal description of the hybrid I/O automaton model. Formal definitions
and statements of major theorems of the model appear in Appendix A. The hybrid I/O automaton model
presented here is an extension of the timed I/O automaton model. We assume the reader is familiar with
timed I/O automata.

A hybrid I/O automaton is an infinite state machine with two types of transitions: discrete steps and
time passage steps. Discrete steps capture discrete state transition and are no different from those of
timed I/O automata. The discrete steps of the automaton are labeled with actions and the actions are
partitioned into input, output, and internal actions. When automata are composed, they synchronize on
input/output actions. On the other hand, time passage steps, also called trajectories, capture continuous
evolution through a set of states. A trajectory is a mapping w : I — states, where I is a left-closed interval
of 1I0 with left endpoint equal to zero. There are no further restrictions placed on an individual trajectory.
This is the main difference between the hybrid and timed models: trajectories are primitive in the hybrid
model. The only restriction placed on trajectories is that the set of trajectories for an automaton is closed
under countable “concatenation” and “splitting”. We define these terms formally in the appeildix. We
state without proof that these properties hold for the trajectory sets of all automata defined in this paper.

A number of definitions and results for timed I/O automata have been extended to hybrid I/O automata,
including: executions, traces, admissibility, sampling, simulations, and composition.

We use two notations for specifying hybrid I/O automata: standard and MMT-style. The standard
notation corresponds closely to the formal definition of the automata. The states of the automaton are
specified as the possible assignments to a set of variables. The discrete transitions of the automaton are
specified in the precondition-effect style of [21, 22]. The trajectories are specified directly. We discuss
standard notation in the context of an example in Section 3.2. The MMT-style notation is a convenient
shorthand for a useful subclass of hybrid I/O automata. Converting an MMT-style description to a
standard description is a purely syntactic transformation. This traiisformation and related theorems are
described formally in Appendix B. The name “MMT” derives from the names of the authors of [23] where
they present a model which corresponds to this subclass. We will discuss MMT-style notation in more
detail when it is first used in Section 3.5.
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Figure 1: Overview of Basic Deceleration Model

3 Basic Deceleration

In the deceleration problem we model a computer controlled train moving along a track1. The task of the
controller is to slow the train within a given distance. In this section we consider a very simple model of the
train and the controller. The train has two modes, braking and not braking. The controller can instantly
effect a change in the mode of the train (relaxed in Section 4). The controller receives no information from
the train (relaxed in Section 5). The braking strength of the train varies nondeterministically within known
bounds. We will model both the train and the controller as hybrid I/O automata. Figure 1 illustrates the
components and their communication:

In the following subsections we describe the parameters of the specification, give a hybrid I/O automaton
for the train, define correctness of a controller for this train, give an example correct controller, and prove
that it is correct.

3.1 Parameters

All the parameters of the specification are constants denoted by c with some dots above it and a subscript.
Dots above the constant identify the type of the constant: position (none), velocity (one), or acceleration
(two). The subscript identifies the particular constant. Initial values of the train’s position, velocity and
acceleration are c5, 35, 35. The goal of the deceleration maneuver is to slow the train to a velocity in
[minf, Cmaxf] at position c. When the train is not braking its acceleration is exactly zero. When the train
is braking its acceleration varies non-deterministically between [3mm, max] both negative. The range is
intended to model inherent uncertainty in brake performance. We impose the following constraints on the
parameters:

1. Cg < Cf 4. 3mim Cmax < 0

e2 _62

2.3s>3maxf>3minf>O 5. CfC> “7L1X8

3. E = 0 6. Cm fCs
< 0minfs

Cmar — Cm,n

The first three constraints are self-explanatory. Since braking is stronger when acceleration is more
negative, notice that 6min is the strongest braking power, and 3max the weakest. The fifth constraint
ensures that with the weakest possible braking there is still enough distance to reach the highest allowable
speed. The right hand side of this equation uses a familiar equation for “change in distance for change
in velocity” from constant acceleration Newtonian physics. To understand the sixth constraint consider
that since the controller receives no sensory information from the train, it must decide a priori how long
to brake. The sixth constraint ensures that the least amount of time the controller must brake is less than
the greatest amount of time that it can brake.

3.2 Train

We model the train as a single hybrid I/O automaton called train. The train accepts brake commands.
While braking the train applies an acceleration that is non-deterministic at every point but is constrained

1We use the terms “train” and “track” but we could also use “car” and “road”, or “vehicle” and “guideway”.
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to be an integrable function with range in the interval [3mim, max]. While not braking the train has exactly
zero acceleration.

Inputs: brakeOn, brakeOff, Outputs: none
Variables: x, th, ê 1, initially x = c8, th = é, and = 0

b E { true, false }, initially false
now E 1°, initially zero

Discrete Actions:
brake On:

Effect: b’ = true , and ä’ E [4Smjn, 6max]
brakeOff:

Effect: b’ = false, and ‘ = 0
Trajectories:

An I-trajectory w is a trajectory when for all t e I the following hold:
w(t).now = w(0).now + t
if b = true then

w(t). is an integrable function with range [min, max]

else
w(t).â = 0

w(0).± + f w(s). ds
w(t).x w(0).x + j w(s). d.s

Table 1: The train automaton.

The formal description of train appears in Table 3.2. Since this is the first example of a standard
automaton definition, we explain some of the major features. The description identifies the inputs, outputs,
variables, discrete actions, and trajectories of train. The automaton has two inputs and no outputs. The
variables x,, and à model the position, velocity, and acceleration; b determines whether the train is
braking or not; now represents time. When describing the effects of a discrete transition, a primed value
of a variable refers to the value in the post-state. If no value is assigned to the primed variable then it
is assumed to remain unchanged by the transition. Thus, the effect of the brakeOff action only changes
variables and b. In the specification of the trajectory set we use the term I-trajectory for a function of
the correct type: I — states(train) where I is a left-closed interval of IR° with left end-point equal to
zero. Notice that the “now” variable increases linearly with slope 1 during time passage.

3.3 Properties of train

We prove some properties of train that will be needed later. The two lemmas and three corollaries all
relate the initial state and final states of a trajectory. In the next two lemmas we characterize the train’s
behavior when not braking and when braking, respectively.

Below and throughout this work, if s and s are states and x is a variable, we often write x for s.x and
x’ for s’.x when s and s’ are understood.

Lemma 3.1 For all closed trajectories w of train where s is the initial and s’ is the final state of w and
= now’ — now, if b = false then the following hold:
= = 0
=

x’=x+thA

Proof: By the definition of integrator variable and train.
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Lemma 3.2 For all closed trajectories w of train where s is the initial and s’ is the final state of w and
A = now’ — now, if b = true then the following hold:

X+CminA ‘ th+maxA

X + hA + mimA2 <X’ < X + A + maxA2

Proof: We prove oniy one side of the inequalities; the other side is symmetric. Let z be a trajectory
of train with the domain I the same as w; and let z(t). max for all t E I and z(O). = w(O). and
z(O).x = w(O).h. Notice that w(t).â5 < z(t). for all t I. Because definite integrals preserve inequalities,
we know that for all t I, w(t).th < z(t).i and w(t) .x < z(t).x. Furthermore, by integration, we know
that z(t). = w(O).x + moA. This establishes the first inequality. Also by integration, we know that
z(t).x = w(O).x + w(O).±A + 3maxA2. This establishes the second inequality.

The following corollaries further describe the train’s behavior during braking. The first bounds change
in time by change in velocity. The second bounds change in position by change in the square of velocity.

Corollary 3.3 For all closed trajectories w of train where s is the initial and s’ is the final state of w and
A = now’ — now, if b = true then:

Cram — — Cmax

Proof: We use Lemma 3.2. The steps for only one side are shown:

th’ < by3.2

— maxA subtract

Cmax 0 assumption

division

Corollary 3.4 For all closed trajectories w of train where s is the initial and s’ is the final state of w the
following holds:
b A (0 th’) (th’)22

—

(!)22

Cm,n Cmax

Proof: Again, we show only one side of the inequalities. Let A = — now. Let z be a trajectory
as in the proof of Lemma 3.2 and let f denote the final state of z. To make the following algebra
easier to read, we let ñ

= f.i and n’ f.x. As usual, x = s.x, = s.th,x’ s’.x, and ‘ =

= X+CmacA integration

‘U’ = X + A + ëmaxA2 integration

A = solve for A
/

______

1
‘U IC + I + cmax , substitution

= x + a_(2thY — 22 + (I)2
— 2i’ + th2) distr.

/ ()22
‘U = IC + 2Im cance

is’ < n’ as in 3.2

x’ < +
(ti’)2th2 transitivity

0 < i’ anteceedent

th’ < i’ asin3.2

ii! < ii (6max < 0)

is’ < + substitution
/

— < suotraction
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3.4 Controller

We define a brake-controller to be a hybrid I/O automaton with no input actions, and output actions
brakeOn, and brakeOff. A correct brake-controller is one that when composed with train, yields a set of
finite executions which satisfy the following formal axioms:

1. There exists t IR° such that in all finite executions
if time progresses past t, then for some state sin the execution s.x = s.cj.

2. If s is the final state of some finite execution, then (s.x = s.cr S.Cmjnf 5.Cmarcf).

These can be stated informally as: (1) the train eventually reaches reaches cf; and (2) when it gets there,
it has achieved an appropriate speed. The formal definitions of finite executions and related concepts
appears in Appendix A. Note in (1) that the state s where x = c can occur during time passage, i.e.
within a trajectory. Both of these properties are technically safety properties; the first is a bounded-liveness
property and the second is an invariant. For convenience we call the first property the “liveness” property
and the second property the “safety” property.

3.5 An Example Controller: one-shot

Here we give an example of a correct brake-controller called one-shot. We provide a description of one-shot
in MMT shorthand. First we define some convenient constants, A, B, C:

/ .1 Cmaxf —
c5

— cmaxf — cminf — c3
A=----lcf—cS—

..

B— .. , C=
cmax cmax crn,n

Now we define one-shot as: The formal description of one-shot appears iii Table 3.5. The controller is called

Inputs: none, Outputs: brakeOn, brakeOff
Variables: phase E { idle, braking, done }, initially idle.
Actions:

brake On:
Precondition: phase = idle
Effect: phase’ = braking

brakeOff:
Precondition: phase = braking
Effect: phase’ = done

Tasks: ON = { brakeOn } : [0, A]
OFF = { brakeOff } : [B,C]

Table 2: The one-shot automaton.

“one-shot” because it applies the brake only once. Since this is the first time the MMT-style notation is
used, we attempt to explain the specification informally. The automaton’s executions consist of three
phases idle, braking, and done. It waits between zero and A time units (idle phase), then it applies
the brake for at least B and at most C time units (braking phase), and then removes the brake (done
phase). The controller is called “one-shot” because it applies the brake only once. The ON task governs
the transitions from idle to braking and the OFF task governs the transitions from braking to done.

What is a task? A task is a set of actions and an associated lower and upper time bound. The OFF
task consists of only the brakeOff output action and the bounds B and C. Notice that constraint (6) on
the parameters in Section 3.1 ensures that B C. The task OFF is enabled when the precondition of its
action is satisfied, i.e. when phase braking . The time bounds ensure that the braIeOff action: (1)
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cannot occur until it has been continuously enabled for at least B time units and (2) must occur before it
is continuously enabled for more than C time units.

When an MMT specification is “translated” into a hybrid I/O automaton, state variables called
first(X) and last(X) are added for each task X to keep track of the task’s time bounds. For example,
the OFF task has associated auxiliary variables first(OFF) and last(OFF). These auxiliary variables
are manipulated so as to enforce the time bounds on the OFF task. For example, one of the effects of
the brakeOn action is to update the deadlines for the OFF task as follows: first’(OFF) = now + B
and last’(OFF) = now + C. A precondition of the brakeOff action is that first(OFF) < now. These
auxiliary variables are described in more detail in Section B.

3.6 Correctness of ome-shot-system

The following lemmas and corollaries describe properties of the composition of train and one-shot called
one-shot-system. Almost all the properties are invariant assertions. The first subsection proves the liveness
property, the second proves the safety property. Together they establish the correctness of the controller.

3.6.1 Liveness

In this subsection we prove the liveness property, namely that there is a bound t on the time it takes to
reach Cf. Our method is to prove that at all times there is a positive lower bound on velocity, specifically
Cmimf. We do this by characterizing velocity for each of the three phases: idle in Lemma 3.7, braking in
Lemma 3.8. and done in Lemma 3.9. Some of the results are more general than necessary because they
will be used in the safety section.

The following two technical lemmas will be used in the correctness proof.

Lemma 3.5 In all reachable states of one-shot the following holds:
(phase = idle ) = (first(ON) = 0 A last(ON) = A)

Proof: By induction.

Lemma 3.6 In all reachable states of one-shot-system the following hold:
1. (b = E [min,max]) 2. (-b = 0)
3. b (phase = braking)

Proof: Trivial induction.

The following lemma characterizes the velocity and position of the train during the controller’s idle
phase.

Lemma 3.7 In all reachable states of one-shot-system, if phase = idle the following hold:

1. :i =

2. x = c + (now)é3

Proof: By induction. The interesting case is time passage where we note that â = 0 and Lemma 3.1
applies. Some trivial algebra yields the desired result.

The following lemma characterizes the velocity of the train during braking. It is interesting because it
involves reasoning about the controller’s deadline variables. While in the braking phase, last(OFF) — now
is the greatest amount of time the system will continue braking. This time must be bounded in order to
avoid slowing down below the minimum final speed, minf. A similar result holds for first(OFF) and the
upper bound on velocity.
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Lemma 3.8 In all reachable states of one-shot-system, if phase = braking the following hold:

1. first(OFF) —

Cf_X

— Cmax

2. last(OFF) — now <

Proof: By induction. The two interesting cases are the ON task that sets phase = braking and a time
passage step while phase = braking. For the ON task the pre-state has phase = idle and Lemma 3.7
and the definitions of B and C yield the desired results as follows (only (1) is shown):

B = CmfC by definition

= by3.7

first(OFF)’ = now’ + B one-shot definition
• / I CfXf2’rst(OFF) — now

=
subst. and subt.

For time passage steps we use Lemma 3.6 and the equation from Corollary 3.3. Subtraction and expansion
of z = now’ — now yields the desired results as follows (only (1) is shown):

now’ — now by 3.3.

fzrst(OFF) — now 6 inductive hyp.
• Cjfzrst(OFF) — now > subt. and cancel

The following corollary uses basic properties of deadline variables and the preceeding lemma to prove
that as we exit the braking phase and thereafter, we are in the target velocity range.

Corollary 3.9 In all reachable states of one-shot-system, if phase = done the following holds:
Cmaxf X Cjf

Proof: By induction. The interesting cases are the OFF action and time passage in the done phase. For
the OFF action we know that in the pre-state phase = braking so Lemma 3.8 applies. Furthermore
first(OFF) < mow < last(OFF) by a property of MMT automata. From this we can conclude that
Cmaxf l Cmirf (details for one side shown below). For the time passage step, we know that i = 0 so

= ‘, by Lemma 3.6 and Lemma 3.1.

first(OFF) — now >
Cf from 3.8

first(OFF) < now MMT property

first(OFF) — now < 0 subtraction

o >
C,,f—X trans.

o > Cma assumption

o < Cmarf — X milk.

X Cmarf subtr.

I

The following lemma and associated corollary combines the above phase-by-phase results to yield the
global result and the time bound.

Lemma 3.10 In all reachable states of one-shot-system th minf.

Proof: We break on cases of phase. When phase = idle Lemma 3.7 gives th and by assumption
Cs > Cmaxf Cminf. When phase = braking, Lemma B.1 gives now last(OFF) and Lemma 3.8 gives
the desired result. Finally when phase = done corollary 3.9 applies. I
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Corollary 3.11 In all reachable states of one-shot-system:

X > C5 + Cminf(flOW)

Proof: Lemma 3.10 establishes that in all reachable states (including those in trajectories) rninj. At
all times x

—
c is the integral of th. It is a property of definite integrals that lower bounds are preserved.

flowTherefore x — C5 > f Cminf dt = Cminf(flOW).

Since minf > 0, the above lemma guarantees that for any admissible timed execution of one-shot-system
for all states where now we have x Cf. This is the t required by the liveness property.

minI

3.6.2 Safety

In this subsection we prove the safety property, namely that the following formula is an invariant of the
system:

(x = Cf = Cmimf 2 Cmaxf)

We have already shown that at all times minf < th, therefore we need only establish the other half of the
inequality. To prove this invariant we prove a stronger invariant:

2 _2
maxf

.(Cmax

Intuitively, this invariant says that before reaching the final position there must be enough distance left to
brake, even at the weakest braking. It has as a special case the safety property (note that i-mar is negative).
Once again, we prove the invariant for each phase (3.12, 3.13, 3.14) and combine the results (3.15). The
safety property is proved in corollary 3.16.

Lemma 3.12 in all reachable states of one-shot-system, if phase = idle then Cf — x>
Cf

Proof: By Lemmas B.1 and 3.5 we know now < A. Using the equations for th and z from Lemma 3.7 we
substitute and simplify, yielding the desired result (see definition of A).

< -. (j —

—

from now <A

+ (now)63 < Cf — mult. é3 and add c3

x = c + (now)é8 from 3.7

x
—

= and < transitive

— x subt. Cf and reverse sign

Lemma 3.13 In all reachable states of one-shot-system, if phase = braking then Cf — x

Proof: By induction. The interesting cases are the ON task and time passage while phase = braking
In the ON task case Lemma 3.12 applies to the pre-state; since none of the state variables mentioned in
the formula change during the ON task the formula still holds. In the time passage case we substitute
from Lemma 3.4 into the inductive hypothesis and simplify.

Cf — X > inductive hyp

XI — X from 3.4
e_ —r—

Cj — X — X1 + X 23m subt.
e2

Cf — X cancel
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Lemma 3.14 In all reachable states of one-shot-system, if x < Cf and phase = done then

Cmaxf — X
CfX ..

Proof: Directly using 3.9. The left hand side is bounded below by zero because x Cf. The right hand
side is bounded above by zero because th maxf.

Corollary 3.15 In all reachable states of one-shot-system, if x < Cf then

CfX>

Proof: Directly using corollaries 3.12, 3.13, and 3.14.

Corollary 3.16 In all reachable states of one-shot-system:

Cf = X Cmaxf X Cminf

Proof: Directly using 3.15 and 3.10.
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Figure 2: Overview of Delay Deceleration Model

4 Delay

In this section we extend the model of the train by nondeterministically delaying the acceleration com
mands. Rather than modify the train automaton itself, we introduce a new automaton called accel-buffer
that will serve as a buffer between the train and a controller. Figure 2 illustrates the components and their
communication.

In the following subsections we present the buffer, extend the correctness criteria, give an example
controller, and prove that it is correct. The proof of correctness relies on the correctness of the previous
controller and a simulation mapping. Note that the specification of the train remains unchanged.

4.1 The Buffer

The buffer stores a single command from the controller. It forwards it to the train after some delay. For
each command, the delay is nondeterministically chosen from interval [6,6j (where 0 6 6+)

Inputs: bufBrakeOn, bufBrakeOff, Outputs: brakeOn, brakeOff
Variables: request E { on, off, none }, initially none

violation e { true, false }, initially false
Actions:

bufBrakeOn:
Effect: Cases of request,

on : no effect
off : violation’ = true
none : request’ = on

bufBrakeOff:
Effect: Cases of request,

on : violation’ = true
off : no effect
none : request’ = off

brake On:
Precondition: request = on
Effect: request’ = none

brakeOff:
Precondition: request = off
Effect: request’ = none

Tasks: BUFF = { brakeOn, brakeOff } : [6, 6+]

Table 3: The buffer automaton.

The buffer automaton appears in Table 4.1. It is largely self explanatory. The variable request stores
a command while it is being buffered. The variable violation is true when the buffer overflows.
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4.2 Definition of a valid buffered brake controller

We modify the definition of a valid controller. A valid buffered-brake-controller is a timed I/O automaton
with output actions bufBrakeOn and bufBrakeOff that when composed with both brake-buffer and train
yields a timed I/O automaton whose finite executions satisfy the “liveness” and “safety” properties of
Section 3.4 and the additional invariant:

violation = false

This property guarantees that the controller never overflows the buffer; we call it the “non-violation”
property.

4.3 Parameters Revisited

Not only do we need to place restrictions on the value of the new parameters (6, 6j, but we also iwed to
revise the constraints among the original parameters in light of these new ones. Intuitively, the controller
is subject to more uncertainty and therefore needs less stringent requirements. The further constraints can
be viewed as forcing the target velocity range, Vminf,êmaxf] to be wider and hence the controller’s task
easier. These are the additional constraints:

1. 0 6 <6

2. é8 maxf + Cmax6

3. maxf Cjf + Cmin6

4.
C

+ 6 — 6 < Cm;rfCs
— 6+ + 6

Cmax — Cjj

The first constraint ensures that the delay interval is well-defined. The next two are necessary to
ensure the non-violation. The last constraint replaces constraint number six in Section 3.1; the new
version accounts not only for the non-determinism of the braking strength but also for the buffer. The
other five original constraints remain as well but are not shown here.

4.4 Example buffered brake controller: buffered-one-shot

Here we give an example of a valid buffered-brake-controller called buffered-one-shot. This automaton is
identical to one-shot (Section 3.4) except in the names of its actions and the duration of its phases. The
output actions brakeOn, brakeOff are replaced by bufBrakeOn, bufBrake0ff. The time bounds A, B, C
are replaced by A’, B’, C’. These new bounds are:

A’ = max(0,A— 6j, B’ = B+6 — 6, C’ = C— 6 + 6

Buffered-one-shot-system is the name for the composition of buffered-one-shot, buffer, and train. We will
also be interested in buffer-and-one-shot, the composition of only the buffer and the controller.

4.5 Proof of Correctness for buffered-one-shot

The proof of correctness of the controller requires proofs of the non-violation, liveness, and safety properties.
In the next Section 4.5.1 we prove non-violation. In Section 4.5.2 we prove liveness and safety using a
simulation mapping to the unbuffered case. The liveness and safety results of the unbuffered case extend
via the simulation to this case.
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one-shot-system

brakeOn, braieOf
trazn one-shot

buffered-one-shot-system

Ebrake0n brakeO!
buffer

bufBrakeOn, bufBrakeOfi

Figure 3: Systems with and without buffering compared. The thick line is a common interface.

4.5.1 Non-Violation

Non-violation is proved directly.

Lemma 4.1 In all reachable states of buffered-one-shot-system violation = false

Proof: Violation occurs when request $ none and a bufBrakeOn or bufBrakeOff action takes place.
Since these actions are controlled by the ON and OFF tasks it is sufficient to show that first(ON) and
first(OFF) are greater than now whenever request none . The following invariant of the system is
sufficient:

request none == (last(BUFF) first(ON)) A (last(BUFF) first(OFF))

This follows from a simple inductive argument that uses the new constraints on the target velocities and
the definition of B’.

4.5.2 Liveness and Safety

In this section we prove the liveness and safety properties for buffered-one-shot-system via a simulation
mapping. The simulation is a mapping between the original controller one-shot and buffer-and-one-shot
(the composition of the buffer and the controller but not the train.) Notice that the safety and liveness
properties only mention variables in train. In light of this, it may appear counter-intuitive that the
simulation mapping excludes the train. We explain this informally here and more formally in at the end
of this section. Consider Figure 3 which shows the automata and inter-automata communication of one-
shot-system and buffered-one-shot-system together. The dark vertical line represents a common interface in
both systems, namely the interface to train. A consequence of our simulation mapping is that the external
behavior of buffer-and-one-shot is a subset of the external behavior of one-shot. Their external behavior is
precisely the interface across the dark line and this is all train experiences; therefore train’s behavior in the
buffered case is a subset of its behavior in the unbuffered case. Thus, invariants that only involve variables
of train extend from the unbuffered case to the buffered case.

In the following three subsections we give some supporting lemmas, the simulation mapping, and then
a rigorous version of the preceding discussion.

Supporting Lemmas

The following lemma helps reduce the number of cases that need to be considered in the simulation proof.

Lemma 4.2 In all reachable states of buffer-and-one-shot exactly one of the following is true:
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1. phase = idle A request = none

2. phase = braking A request on

3. phase = braking A request = none

. phase = done A request off

5. phase = done A request = none

Furthermore, all transitions lead from a state in one category to a state in the same or immediately
subsequent category.

Proof: Simple induction, uses 4.1.

The following two technical lemmas make the simulation proof more readable the same arguments
could be embedded in the simulation proof itself. Both lemmas concern the time bounds on the idle phase.

Lemma 4.3 In all reachable states of buffered-one-shot, the following holds:
phase idle =‘ first(OJ’/) = 0 A last(OFF) = A’.

Proof: Exactly analogous to 3.5.

Lemma 4.4 In all reachable states of buffered-one-shot-system the following holds: (phase = braking A
request none)

== last(BUFF) <A’ + + — A.

Proof: Simple induction, uses 4.2.

Simulation

In this section we present a simulation relation R from buffer-and-one-shot to one-shot. The key insight is
that since external behavior must be preserved, the timing of external actions must coincide, specifically
brakeOn and brakeOff.

Let s denote a state in the implementation (buffered, buffer-and-one-shot, and u denote a state in the

specification (unbuffered, one-shot); the states are related via R (denoted sRu) when the following two
conditions hold:

1. u.now s.now

2. By cases of s.phase:

(a) idle , then u.phase = idle

(b) braking, by cases of s.request:

i. on , then u.phase idle

ii. none, then u.phase = braking and

u.first(OFF) <s.first(OFF) + 6 and
u.last(OFF) s.last(OFF) + +

(c) done , by cases of s.request:

i. of f , then u.phase = braking and
u.first(OFF) <s.first(BUFF) and

u.last(OFF) > s.last(BUFF)

ii. none, then u.phase = done
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Time

one-shot
phase idle braking done

buffer-and-one-shot
phase idle braking done

request on off

Mapping Clause 2 \____/‘__________

___________

(a) (b) (c)

Figure 4: Overview of Simulation Mapping

Intuitively, the simulation is mapping the “virtual” phases of buffer-and-one-shot to the actual phases of
one-shot. This is illustrated in Figure 4. The figure depicts an execution of one-shot above a corresponding
execution of buffered-on-shot. A virtual phase of buffered-one-shot is the portion of its execution that
corresponds to an actual phase of one-shot. For example the virtual idle phase consists of the period
between the first and second dotted line. The second and third dotted lines represent the times when
brakeOn and brakeOff actions occur, respectively. The figure also shows how mapping clause 2 applies to
different portions of the execution.

The proof that the relation R is in fact a simulation mapping appears below. The form of simulation
proofs is that of an exhaustive case analysis. To those familiar with the style of simulation proofs, this one
is straightforward and unremarkable.

Lemma 4.5 The above relation R is a simulation mapping.

Proof: Let s lead to s’ via action ir in the implementation and let sRu. We must find u’ such that s’Ru’
and there exists an execution fragment from u to ‘u’ with the same trace as K. We break by cases on the
type of :

1. If ir is a time passage step then we must show that there is an equivalent time passage step enabled
from u. Since the barriers to time progress are the last(.) variables, it is sufficient to show that they
are all greater in the specification. More exactly:

min{u.last(ON), u.last(OFF)} > mirt{s.last(ON), s.last(OFF), s.last(BUFF)}

Cases by u.phase:

(a) u.phase = idle
The OFF task is disabled in u so u.last(OFF) = oc and we are concerned only with u.last(ON).
From the relation R we can break into the following two cases:

i. s.phase = idle — then s.last(OFF) = cc and s.last(BUFF) = cc (by automaton
definition and 4.2). By lemmas 3.5 and 4.3 ‘u.last(ON) = A and s.last(ON) = A’ and by
definition A> A’.

ii. s.phase = braking A s.request none — Follows from lemmas 3.5 and 4.4.

(b) u.phase = braking
The ON task is disabled in u so u.iast(ON) = cc and we are concerned only with u.last(OFF).
From the relation R we can break into the following two cases:
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i. s.phase = braking A s.request none — then s.last(ON) = cc and s.last(BUFF) = cc.
By clause 2(b)ii of the relation u.la.st(OFF) = s.last(OFF) + .

ii. s.phase = done A s.request none — then s.last(ON) = s.last(OFF) = cc. By clause
2(c)i of the relation u.last(OFF) = s.last(BUFF).

(c) u.phase = done
Trivial. Both tasks OFF and ON are disabled in u, so u.last(OFF) = u.last(ON) = cc.

2. If iv is bufBrakeOn then let u’ = u and the execution fragment be empty. We must show that
Note that LO.phase = idle by the definition of the buffered-one-shot automaton. Also note that
s.request none by Lemma 4.1 (non-violation). The results follows by clause 2a of the relation.

3. If iv is bufBrake Off then it is similar to the previous case. We let u’ = u and the execution fragment
is empty. It follows from clause 2(c)i that s’Ru’.

4. If iv is brakeOn then let u’ be the unique state that follows u via the brakeOn action and let the
execution fragment contain only that action. We must show that brakeOn is enabled in u and that
s’Ru’. Note that s.request = on by the definition of the buffer automaton. By lemma 4.2 we know
that s.phase = braking . Therefore by clause 2a of the relation we know that u.phase = idle
Since u.first(ON) = 0 by Lemma 3.5, brakeOn is enabled in u. It remains to show that u’ satisfies
the relation. Since s’ satisfies the antecedent of clause 2(b)ii, u’ must satisfy its consequent. By the
definitions of B, B’, C, C’ it does.

5. If iv is brakeOff then we proceed much as in the above case. Let u’ be the unique state that follows u
via the brakeOff action and let the execution fragment contain only that action. First, s.’request =

off by the definition of the buffer automaton. By lemma 4.2, s.phase done . By clause
2(c)i of the relation we know that u.phase = braking and that [u.first(OFF), u.last(OFF)] D
[s.first(BUFF), s.last(BUFF)] and brakeOff is enabled in s, therefore it is enabled in u. Finally
s’Ru’ by clause 2(c)ii.

These are all the cases of iv.

Using the Simulation

This section requires familiarity with Appendix A. In order to simplify the exposition of this section, let
T denote the train automaton, C denote one-shot and B denote the composition of buffer and buffered-
one-shot. The above simulation R is a forward simulation from B to C. By Theorem A.1 we conclude
that:

t_traces*(B) C t_traces*(C)

In turn, by Theorem A.4 we can conclude that:

texecs*(A x B)IA C texecs*(A x C)IA

As first presented in Section 3.4, the liveness and safety properties are defined over the finite timed execu
tions of A x C. The similar properties for the buffered case are the identical properties but for the finite
timed executions of A x B. Since the properties only mention the variables of A, we need oniy consider
the projection of finite timed executions on A. Therefore, the above inclusion of the projected executions
is sufficient.
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Figure 5: Overview of Feedback Deceleration Model

5 Sensor Feedback

In this section we describe a more complex model of the deceleration problem where the train provides
the controller with sensor feedback at periodic intervals. We define a new train automaton called train
with-sensors. We also define correctness conditions, give an example controller and prove that it is correct.
Figure 5 illustrates the components and their communication.

5.1 Train with Sensors

The train-with-sensors automaton appears in Table 5.1. It accepts accel(a) messages which are requests
to accelerate at a rate a E [min+err, max]. If a is the requested acceleration then the achieved acceleration
of the train is in the interval [a

— err, a]. The train provides sensor information periodically; it sends a
status message giving the current values of ace, ±, and x every 6seflse time units.

accel(a) for a E [3mm + Cerr,Cmax]

status(a,v,p) for a,v,p ER
E IR,initially x = = é, and ii =

aec E [3min + 3err,3max], initially ë
next,now e O, both initially zero

Discrete Actions:
accel(a):

Effect: ace’ = a and i’ [a
— 6err, a]

status (a ,v ,p):
Precondition: a = ace, V = i, p = x, and now = next
Effect: next’ = now + 6semse

Trajectories:
An I-trajectory w is a trajectory when for all t E I the following hold:

w(t).now = w(O).now + t
w(t).à is an integrable function with range [ace

— 6err, ace]
w(t). = w(O). + f w(s). ds
w(t).x = w(O).x + f w(s). ds

Table 4: The train-with-sensors automaton.

5.2 Properties of train-with-sensors

The following two properties of train-with-sensors are similar to the train properties of Section 3. The first
bounds change in velocity by change in time. The second bounds change in position by change in velocity.

Lemma 5.1 For all closed trajectories w of train-with-sensors where s is the initial and s’ is the final
state of w the following holds:

acc(now’ — now) > ‘ — ± > (ace — ëerr)(now’ — now)
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Proof: As in the first part of Lemma 3.2, except that acc and (acc—i3err) replace max and mim respectively.

Lemma 5.2 For all closed trajectories w of train-with-sensors where s is the initial and s” is the final
state of w, if acc < 0 and 0 <th’ then the following holds:

(I)2 — (j1)2 —

>x,—x>
2acc — — 2(acc

— Cerr)

Proof: Similar to Lemma 3.4, except that acc and (acc
—

herr) replace max and min respectively.

The following property is like the now < last(.) property for MMT automata, Theorem B.1.

Lemma 5.3 The following is an invariant of train-with-sensors:

0 < next — flOW 6semse

Proof: Simple Induction.

5.3 Controller under Feedback

We define a correct controller-under-feedback to be a hybrid I/O automaton that when composed with train-
with-sensors yields an automaton that satisfies the “liveness” and “safety” properties from Section 3.4.

5.4 Parameters Revisited

In order to guarantee that a valid controller exists, we impose the following constraints on the parameters:

1. C < Cf

2. ê5 > maxf Cjjf > 0

3 err > 0

4. 6sns > 0

5. 5min < min + err < 0 max — err < mar

6. Cf - C5
2(Emin+er)

7. Cmf — Cminf Cmin5semse

Note that these constraints supersede the original constraints given in section 3.
Recall that in the description of train-with-sensors the initial values of both acc and z5 are set to . In

order to avoid a tedious treatment of certain initial conditions, we assume that the train is initially at a
convenient acceleration. Let ë5 be the acceleration needed to reach Cmarf at exactly Cf, as follows:

— CmaxfCs
Cs —

2(cf — c5)

Notice that ë is negative.
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Inputs: status(a,v,p) for a,v,p e 1l
Outputs: accel(a) for a é [i-imin + err,ëmax]
Variables: send E [min + err, max] U { none }, initially none
Discrete Actions:

status (a, v ,p):
Effect:

if V < imaxf then

send’ = mill (max, Crnaxf_v)

accel(a):
Precondition: send = a
Effect: send’ = none

Trajectories:
An I-trajectory w is a trajectory when for all t e I the following hold:

w(t).now = w(O).now + t
w(O).send = w(t).send = none

Table 5: The fall-and-zig-zag automaton.

5.5 Example Controller under Feedback

Controlling the train in the presence of sensory feedback appears to require a substantially different algo
rithm from that in the non-feedback case. Here we give an example valid controller-under-feedback called
fall-and-zig-zag. The composed system is called feedback-system. We describe fall-and-zig-zag in timed I/O
automaton format in Table 5.5.

The controller is called fall-and-zig-zag because of the the shape of the curve in th x now space of the
worst-case behavior of the composed system. Figure 5.5 depicts a possible behavior for the system; it
assumes constant acceleration. The train begins at time zero with velocity é,9 and acceleration ë. If it
achieved ë acceleration it would reach the goal velocity of maxf (the upper dotted line). However, for the
first three 6sense periods it only achieves

—
acceleration (the solid line). At that point the controller

sees that th maxf and changes the acceleration (first beild in solid line). Every time ilnits the
controller continues to adjust acceleration to maintain the trains velocity in the target range [minf, Cmaxf].

0

Figure 6: Possible behavior of feedback-system.

x

CmaJ

Cmjnl

I I I I I I I I

5 sense
now
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5.6 Correctness of feedback-system

The structure of the proof is very similar to that of the simple case examined in Section 3: first, we show
the liveness property via a global lower bound on velocity; second, we show the safety property via a more
complex invariant that has as a sub-case the invariant used in Section 3. To make the structure of the
overall proof more clear and increase general readability, we have relegated the large proofs of the two
main lemmas to their own subsections.

5.6.1 Liveness

In this section we prove the liveness property. The first lemma is a technical lemma needed in the proof of
the second one.

Lemma 5.4 The following is. an invariant of feedback-system:

send none == next = flOW + 6sense

Proof: Trivial induction.

The next lemma is the major new result needed to prove the liveness property. It is an invariant that
describes a lower bound on velocity for the near future, i.e. the current sensory interval. The associated
corollary states the resulting global property. This property uses a set of implications with mutually
exclusive and exhaustive anteceedents. Each implication corresponds to one of the periodic logical phases
of the system. This type of invariant is seen again later in more complex forms.

Lemma 5.5 The conjunction of the following statements is an invariant of feedback-system:

send = none zzz th minf A th + (acc
— ëerr)(next — now) minf

send none X Cminf A + (send
— err)6sense mjn

Proof appears in Section 5.6.3.

Corollary 5.6 The following is an invariant of feedback-system:

X Cminf

Proof: Directly from 5.5. The anteceedents form an exhaustive set of cases, and in all cases the property
is true.

This leads to the liveness property as Lemma 3.10 did in Section 3. The corollaries which yield the
liveness property are exactly analogous and are not restated here.

5.6.2 Safety

The following technical lemma is needed for the subsequent lemma.

Lemma 5.7 For all w trajectories of feedback-system where s is the initial state and s’ is the final state
of w. Ifacc = x < c, and x’ < c1, then,

Cf — x
axf

Cf — x’> maxf
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Proof: The proof is similar to those in Section 3.6.2.

acc = ë <0 assumption

— > assumption

— < by Lemma 5.2
,

_______

X — X 2acc multiply

cj —x+x—x’ > add
/ C

Cf — x 2, cancel

The following lemma is the major result needed to prove the safety property. It is similar to two other
results: (1) Corollary 3.15 and its supporting lemmas, which used a similar equation to bound “distance
remaining”; and, (2) Lemma 5.5 of this section, which provides a set of implication with an exhaustive set
of anteceedents.

Lemma 5.8 The conjunction of the following statements is an invariant of feedback-system:

th> Cmaxf äCC = s A send = none A ((x <cj) Cf — X )
1 marf A send = none == ( + acc(next — now)) maxj

X Cmaxf A send none ==‘ (th + send(6sense)) maxj’

Proof appears in Section 5.6.4.
The following corollaries correspond directly to Corollary 3.15 and Corollary 3.16.

Corollary 5.9 The following is an invariant of feedback-system:

(x<cf)cf—x> max!

‘ Cs

Proof: Directly from 5.8. If the first implication applies, then it appears in the consequent. If the second
implication or third applies, then — th is positive, hence, the fraction is negative and the inequality
holds. These cases are exhaustive.

Corollary 5.10 The following is an invariant of feedback-system:

Cf X Cmarf :1; Cminf

Proof: Directly from 5.9 and 5.6.

This establishes the safety property.

5.6.3 Proof of Lemma 5.5:

Proof: By induction. Notice that the antecedents of the three implications are mutually exclusive and
exhaustive; we will refer to them as Rule 1 and 2. We say that a rule applies when it’s anteceedeilt is true
and that it holds when it applies and its consequent is true. Basis: in the initial state X > Cmaxf so Rule
1 applies. It holds because of our assumptions on the parameters, the definition of ë5, and the definition
of the initial states of the automata.

Induction: Suppose the property is true in state s; we must show that it is true in s’ which follows from
s in one step called r. For the sake of brevity, we denote variables in the post-state by adding primes, e.g.
we write now’ instead of s’.now. We brake by cases on the type of ir: accel, status, or time passage.
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1. ir = accel : notice that send none by the action’s precondition, so Rule 2 applies in s and
by the inductive hypothesis it holds. The only variables which change are send and ace; the action
sets ace’ = send and send’ = none . Therefore Rule 1 must apply in s’. We must show that it
holds. Clearly, th’ = th minf by the inductive hypothesis. By Lemma 5.4 next — flOW = 6sense and
because none of these variables change next’ — now’ = By substituting next’ — now’ =

ace’ = send and send’ = none into the inequality in Rule 2 we get
th + (ace’

— err)(next’ — now’) = d + (send
— err)6sense minf

This shows that Rule 1 holds in s’.

2. ir = status : notice that next = now by the action’s precondition, so next now + 6sense and by
the contra-positive of Lemma 5.4 send = none ; therefore, Rule 1 applies in s and by the inductive
hypothesis it holds. The oniy variables which change are send and next. We break by cases of send’:

(a) send’ = none : Rule 1 applies in 5’; must show that it holds. According to the automata
definitions h’ = V Cmxf, next’ — now’ sense, and ace’

— 3er, > By assumption
on the parameters: marf — Cminf > 3min6sense From these, we reach the desired conclusion
with some algebra:

Crnarf — Cminf > CmSnj param.

Cmavf + Cminôsense Cj,J subtr.

‘ irnarj auto. def.

th’ + ‘min6sense rninj subst.

6sense > 0 pararn.

UCC1 Cerr > Cinin. auto.def.

b’ + (ace’
— err)bsense > Cjf subst.

5serzse = next’ — now’ auto. def.

+ (ace’
— 3err)(next’ — now’) minj subst.

Thus Rule 1 holds in s’.

(b) send’ none: Rule 2 applies in 5’; must show that it holds. Above we showed that next = now
and Rule 1 holds in state s from which we know that th minf. This is half of Rule 2; it remains
to show the other half. According to the automata definitions: send’ = min(ëmar, CTaxf_X)

By assumption on the parameters rnax —
err > 0, therefore if = max Rule 2 ap

plies trivially. Assume that send’ = CrraxfX
< max Some algebra yields the desired result:

Cmin + Cerr < 0 param. assum.

> 0 param. assum.

Cmz6sens > err5sense subtr. & mult.

Cma3rf — Cminf Cmin6sense param. assum.

Cmarf — Cminf Cerr5sense transitivity

Cmavf
— errsense cirninj subtract

X’ + Cmaxf —
— Cerr45serse Cjf anti-cancel

‘ + (:::‘ — err) 6sense rninj anti-distribute

send = 6 assumption

‘ + (send’
— 6err)6sense minj substitute

Thus Rule 2 holds in s’.

3. ir is a time passage step, then send = send’ = none according to the trajectories of the controller.
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Thus, Rule 1 holds in s, applies in s’ and must be shown to hold in s’. This cases uses Lemma 5.1,
the inductive hypothesis and some simple algebra.
Notice that ace = ace’, so let X = (ace

—
= (acc’ — ëerr):

+ X(next — now) Cminf md. hypothesis

— x > X(now’ — now) by 5.1

— th — X(now’ — now) 0 subtract

± + x’ — ± + X(next — now) — X(now’ — now) minf add

±‘ + X(next — now’) èj cancel
For the ± minf requirement: if X > 0 then th’ th dminf; otherwise, ±‘ ±‘ + X(next — now’) >

Cmjnf (by Lemma 5.3). Thus Rile 1 holds in s’.

5.6.4 Proof of Lemma 5.8:

Proof: This is an inductive proof very similar to the proof of Lemma 5.5 above. As in that lemma,
the property is the conjunction of a set of implications whose antecedents are mutually exclusive and
exhaustive. We use similar terminology here, caffing them Rules 1, 2, and 3. Notice that Rules 2 and 3
are analogous to Rules 1 and 2 of the previous lemma except that they guarantee an upper bound instead
of a lower bound. We omit portions of this proof which are directly analogous.

Basis: In the initial state Rule 1 applies and is satisfied trivially. Induction: Suppose the property is
true in state s; we must show that it is true in s’ which follows from s in one step called ir. For the sake of
brevity, we denote variables iii the post-state by adding primes, e.g. we write now’ instead of s’.now. We
brake by cases on the type of 7r: time passage, accel, or status.

1. r = accel : Either th maxf or not.

(a) x Cmasf This case is exactly analogous to the r = accel case of the proof of Lemma 5.5.
Here, Rule 3 holds in state s and Rule 2 can be shown to hold in state s’. We omit the proof.

(b) ± > émarf: by the inductive hypothesis Rule 1 holds in s and therefore send = false ; however
in that case, this action was not enabled in s. Therefore ± > maxf is impossible for the accel
action case.

2. ir = status : Either th mavf or not.

(a) ± <êmaf: This case is exactly analogous to the ir = status case of the proof of Lemma 5.5.
Here, Rule 2 holds in state s and Rule 3 can be shown to hold in state s’. We omit the proof.

(b) ± > émaxf: Thus, Rule 1 holds in states s. By the automata definitions only variable next
changes as a result of this action (because th > imaxf). Since next does not appear in Rule 1, it
must continue to hold in state s’.

3. ‘r is a time passage step: Either th maxf

(a) th < Cmaxf This case is exactly analogous to the time passage case of the proof of Lemma 5.5.
Here, Rule 2 holds in state s and can be shown to also hold in state s’. We omit the proof.

(b) ± > émxf: Thus, Rule 1 holds in states s. By the definition of automata, we know that only the
variables now, , ±, and x are modified by this action. Therefore, we know that ace’ = ace =

and send’ = send = none . There are two cases, either Rule 1 holds in s’ or Rule 2 does.

X > Cmaxf Rule 1 applies in s’ and we must show that it holds. This is guaranteed by
Lemma 5.7.
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11. X’ maxf Rule 2 applies in s’. Note that ace’ = e3 is negative, while (next — now’) is
always positive by Lemma 5.3. Since ci? < maxf, we know ci? + aee’(next — now’) maxf.

Therefore Rule 2 holds in s’.
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Figure 7: Overview of Feedback with Delay Deceleration Model

6 Feedback and Delay

In this section we combine periodic sensor feedback and command delay. As in Section 4, we introduce delay
via a buffer. We make no modification to the train-with-sensors automaton and only minor modifications
to the fall-and-zig-zag automaton. A new buffer called accel-buffer is introduced. Figure 7 illustrates the
components and their communication.

6.1 Buffer Revisited

The buffer has much the same structure as that of Section 4. The accel-buffer is defined in Table 6.1.

Inputs: bufAccel(a) for a E [Emin + err,ëmax]
Outputs: accel(a) for a E [min + err,max]

Variables: request E [min + err, max} U { none }, initially none
violation e { true, false }, initially false

Actions:
bufAccel(a):

Effect: if request = none then
request’ = a

else
violation’ = true

accel(a):
Precondition: request = a
Effect: request’ = none

Tasks: BUFF = { accel(a) } : [6,]

Table 6: The accel-buffer automaton.

6.2 Controller under Feedback and Delay

A valid controller-under-feedback-and-delay is a hybrid I/O automaton that when composed with train-
with-sensors yields an automaton that satisfies the “non-violation”, “ liveness”, and “safety” properties
from Section 4.2.

6.3 Parameters Revisited

In order to guarantee that a valid controller, exists we impose the following constraints on the parameters:

1. C < Cf

2. i8 > maxf Cjf > 0

3 err > 0
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4. bsns > + b > 0

3min < mim + ierr < 0
— err < max

6. Cf
-

C
2(6min+6rr)

‘7 é —ê >—ë ö i.5+maxf m:nf — mzn sense I

Most of these constraints are identical to those in Section 5, they are restated here for convenience. Where
they differ these constraints supersede those in that section. For convenience, we also continue to assume
that the initial values of ace and âi are set to ë, where:

— Cmaxf —

C5 —

2(cf
—
c5)

Notice that ë is negative.

6.4 Example Controller under Feedback and Delay

We need not completely redefine the fall-and-zig-zag controller of Section 5. Instead we define buffered-fall-
and-zig-zag to be identical to fall-and-zig-zag except that we rename its output accel(a) to bufAccel(a)
and redefine the status (a,v,p) action, as follows:

status (a, v ,p):
Effect:

jf V < maxf then
if mcisf < v + a(6sense + 6+) then

send’ = cmaxj_V_e6+

& Sen SC

else
— Cmaxf —v—aSsen
— Ssense+6+_5

The composition of train-with-sensors, accel-buffer, and buffered-fall-and-zig-zag is called buffered-feedback-
system.

6.5 Proof of Correctness for buffered-fall-and-zig-zag

The proof of correctness of the controller requires proofs of the non-violation, liveness, and safety properties.
The structure of the proofs is similar to that of Section 5. We prove each property in a separate subsection.

6.5.1 Non-Violation

In this section we prove the non-violation property for buffered-feedback-system. It follows as a corollary
of two preliminary lemmas. Note, the following lemma is indentical to Lemma 5.4.

Lemma 6.1 The following is an invariant of buffered-feedback-system:

send none == next = now + 6sense

Proof: Trivial induction.

Lemma 6.2 The following is an invariant of buffered-feedback-system:

request none == last(BUFF) <next A send = none

Proof: Straightforward induction, uses Lemma 6.1.
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Corollary 6.3 In all reachable states of buffered-one-shot-system violation = false

Proof: Violation occurs when request none and a bufAccel action takes place. These actions are only
enabled when send none . Therefore we would like to show that request none V send none
This is an immediate consequence of Lemma 6.2.

6.5.2 Liveness

We do not present all the lemmas results necessary for the liveness result. The structure of the proof is
similar to that in Section 5. As in that section, the major result we require is a case-by-case invariant
that has as a corollary the lower bound on velocity. The following lemma establishes such a result. It
is analogous to Lemma 5.5; it is more complex because of extra cases and uncertainty introduced by the
buffer. We have changed the notation slightly to accomodate the more complex conditions.

Lemma 6.4 Let denote Zerr. The conjunction of the following statements is an invariant of buffered-
feedback-system

1. send none =‘ request = none A X Cminf

th + (6) + min(,)(6
—

6) + send(sense) m’inf

2. send = none

(a) request = none d iminf A + 5Z( next — now + 5+) minf

(b) request none ==

i. now < first(BUFF) 1 minjA

______ ______

th + iiee(first(BUFF) — now) + min(iëë, request)(ö — b—) + request(bsense) mnj

ii. now> first(BUFF) minf A
th + min(iëë, request)(last(OFF) — now) + request(6sense) imimjr

Proof: Long induction. I

6.5.3 Safety

As in the preceeding section, we give only the major lemma. It is similar to Lemma 5.8.

Lemma 6.5 The following is an invariant of buffered-feedback-system:

1. X> ace = Asend = none A ((x <cf) c — x
e2_th2)

2. X Cmaxf

(a) send none =‘ request none A
th + acc(öj + max(acc,send)(5+

— ) + send(ö88) maxj

(b) send = none

i. request = none =‘ ± + acc(next — now + t) maxf

ii. request none

A. now < first(BUFF) =

+ acc(first(BUFF) — now) + max(acc,request)(b
—

b) + request(5ses) maaf

B. now> first(BUFF)
+ max(acc, request)(last(OFF) — now) + request(68) imczxf

Proof: Long induction.
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7 Conclusions and Future Work

Timed I/O automaton techniques have been extended and applied to a non-trivial hybrid system case-
study. Many of the methods and proof techniques used in previous work were useful in this effort. These
include: MMT-style notation, invariant assertions, simulations, and automata composition. The case-study
begins with a very simple problem and introduces complexity selectively first communication delay, then
periodic feedback, then both. All the cases are highly parameterized and therefore the results general. The
proofs are simple and scale well from the simple case to the delay and feedback cases.

This is a work in progress and there are a number of areas for further work. First, we continue to
develop complications of the basic case. For example, the model of the braking error is very crude; we
would like to develop a vehicle model where the error is more realistic. Second, we would like to prove that
the constraints chosen for the parameters are not arbitrary but are instead necessary. Third and finally,
we would like to investigate the relationship between our models and those that control theorists use for
the same type of problem.
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A Formal Hybrid I/O Automaton Model

In this appendix we provide formal definitions for hybrid I/O automata. We state without proof some
related theorems that are needed in the text. The hybrid I/O automaton model is based on the timed I/O
automaton model of [1, 2], but includes more explicit treatment of continuous behavior. Specifically, it
includes trajectories as primitive objects.

A.l Automaton Definition

A hybrid I/O automaton A consists of:

• a set states(A) of states,

• a nonempty subset start(A) of start states,

• a set dacts(A) of discrete actions, partitioned into external and internal actions; the external actions
are further partitioned into input and output actions,

• a set dsteps(A) of discrete steps; this is a subset of states(A) x dacts(A) x states(A);

• a set trajs(A) of trajectories; each trajectory is a mapping w : I —÷ states(A), where I is a left-closed
interval of 11° with left endpoint equal to 0.

The components are mostly self-explanatory; the only unusual one is trajs(A), which specifies how states
may be associated with times in an interval of real time. We write s s as shorthand for (s, K, s’) E
dsteps(A).

If w : I —+ states(A), then we say that w is an I-trajectory of A. If I consists of of just a single point,
we way that I and w are trivial. If w is an I-trajectory then define w.ltime, the “last time” of w, to be the
supremum of I. We define w.fstate = w(O), and if I is right-closed, we also define w.lstate = w(w.ltime).
If I is a closed interval, then an I-trajectory w is said to span from state s to state s’ if w.w.fstate = s and
w.lstate = s”.

If w is an I-trajectory, where I is right-closed, w’ is an I’-trajectory, and if w.lstate = w’.fstate, then
we define the concatenation W w’ to be the least function ‘w” such that w”(t) = W(t) for all t E I and
w”(t + W.ltime) = w’(t) for all t e F.

We extend the concatenation operator to a countable sequence of trajectories: if w is an I, trajectory,
1 < i < , where all I are right-closed, and if ‘w.lstate = w+i.fstate for all i, then we define the infinite
concatenation w1 ... to be the least function w such that w(t + <w.ltime) = w(t) for all t E I.

Let v be a special symbol denoting (nonzero) time-passage. Let acts(A), the set of actions, denote
>0 . v(d) , . .

dacts(A) U {v(d) : d E 1l }. We write s —A s as shorthand for existence of a nontrivial trajectory that
spans from s to s’. Let steps(A) denote dsteps(A) U {(s, v(d), s’) : s iQ1 s’}. In all these definitions, we
sometimes suppress the argument A when no confusion seems likely.

A hybrid I/O automaton must also satisfy the following two axioms:

Al: (Closure under countable concatenation)
If ‘w is an I trajectory, 1 < i < cc, where all I are right-closed, and w.lstate = W+l.fstate for all
i, then ‘w1 ... is in trajs(A).

A2: (Closure under subinterval)
If w e trajs(A) is an I-trajectory and J is a left-closed subinterval of I then the function w’ given by

— mm J) = ‘w(t) for all t E J is in trajs(A).
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A.2 Timed Executions

In this subsection, we define a notion of “timed execution” for a hybrid I/O automaton. A timed execution
fragment is a finite or infinite alternating sequence a =w0ir1w17r2w2”,where:

1. Each w, is a trajectory and each ir is a discrete action.

2. If a is a finite sequence, then it ends with a trajectory.

3. If w is not the last trajectory in a then its domain is a right-closed interval
and w.lstate±4w+i.fstate.

The trajectories describe the changes of state during the time-passage steps. The last item says that the
discrete actions in a span between successive trajectories.

If a is a timed execution fragment then we let a.ltime denote w.ltime. We define the initial state of
a, a.fstate, to be wo.fstate. A timed execution is a timed execution fragment a for which the first state,
a.fstate, is a start state.

In what follows, we will be interested in certain subclasses of the set of timed executions: the admissible
timed executions and the finite timed executions. Thus, we define a timed execution fragment a to be

1. finite if a is a finite sequence and the domain of its final trajectory is a right-closed interval,

2. admissible if a.ltime = cc.

We use the notation t-execs(A), t-execs(A) and t-execs°(A) for the sets of all timed executions, finite
timed executions, and admissible timed executions, of A, respectively.

A state of a hybrid I/O automaton is defined to be reachable if it is the final state of the final trajectory
in some finite timed execution of the automaton.

If a is a finite timed execution fragment with final trajectory w, is a timed execution fragment with
initial trajectory w, and w.lstate = w.fstate then we define a a’ to be the timed execution fragment
obtained by concatenating the sequences a and a’, except that the consecutive pair of trajectories w and
w is replaced by wj . w.

A.3 Timed Traces

In order to describe the problems to be solved by hybrid I/O automata, we require a definition for their
visible behavior. We use the notion of timed traces. The timed trace of any timed execution fragment a,
t_trace(a), is a pair consisting of:

1. the sequence of external discrete events that occur in a, each paired with its time of occurrence, and

2. the final time a.ltime.

The timed traces of a hybrid I/O automaton A are the timed traces that arise from all the admissible
and finite timed executions. The admissible timed traces of A are those that arise from all the admissible
timed executions, while the finite timed traces of A are those that arise from the finite timed executions.

We write t-traces(A) for the set of timed traces, t_traces*(A) for the set of finite timed traces, and
t_traces(A) for the set of admissible timed traces of A.

If a problem P is formulated as a set of (finite and infinite) sequences of actions paired with times,
then a hybrid I/O automaton A is said to solve P if all its admissible timed traces are in P. Often, it is
natural to express a problem P as the set of admissible timed traces of another hybrid I/O automaton B.
Thus, the iiotion of admissible timed traces induces a preorder on hybrid automata: A < B is defined to
mean that the set of admissible timed traces of A is a subset of the set of admissible timed traces of B.
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A.4 Simulation Relations

In this subsection we present a proof technique for the above mentioned pre-order. A forward simulation
from hybrid I/O automaton A to hybrid I/O automaton B with the same visible actions is a relation R
from states(A) to states(B) satisfying the following conditions:

1. If s E start(A) then there exists u E start(B) such that sRu.

2. If (s, ir, s’) € dsteps(A) and sRu then there exists a timed execution fragment a of B with a.fstate =

and a.lstate = u’, such that s’Ru’ and t-trace(wirw3i)= t-trace(a), where w and wi are the trivial
trajectories with range s and s’ respectively.

3. If w E trajs(A), s = w.fstate, and sRu then there exists a timed execution fragment a of B with
a.fstate = u and cx.lstate = u’, such that s’Ru’ and t-trace(w) = t-trace(a).

The definition says that every step in A has a corresponding execution fragment iii B with the same
external behavior.

Theorem A.1 If A and B are hybrid I/O automata with the same external actions and there is a forward
simulation from A to B, then

1. t-traces(A) C t-traces(B).

2. t_traces*(A) C t-traces’(B).

3. t-traces(A) C t-traces°°(B).

A.5 Composition

It is easy to extend the usual composition definition for timed automata to hybrid I/O automata, as follows:
Let A and B be hybrid I/O automata satisfying the following compatibility conditions:

1. A and B have no output actions in common.

2. No internal action of A is an action of B, and vice versa.

Then the composition of A and B, written as A x B, is the hybrid I/O automaton defined as follows.

• states(A x B) = states(A) x states(B);

• start(A x B) = start(A) x start(B);

• dacts(A x B) = dacts(A) U dacts(B); a discrete action is external in A x B exactly if it is external
in either A or B, and likewise for internal actions; an external action of A x B is an output in A x B
exactly if it is an output in either A or B, and is an input otherwise;

• If K E dacts(A x B) then (SA, SB) (s, ‘B) exactly if

1. sA —*A s if ir dacts(A), else 8A = s, and

2. 5B B if K E dacts(B), else 5B

• If w : I — states(A x B) then w E trajs(A x B) exactly if the following hold:

1. WA E trajs(A), where ‘WA : I —÷ states(A) is defined by WA(t) = w(t)Istates(A).

2. WB € trajs(B), where WB : I —+ states(B) is defined by WB(t) = w(t)Istates(B).

Theorem A.2 A x B is a hybrid I/O automaton.
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The composition operator is also associative and commutative, up to isomorphism, so can be extended
to a k-ary operator for any finite k.

Typically the states of automata are specified as the possible assignments to a set of variables. By
convention, when we compose hybrid I/O automata which have the usual now variable, we elide the
distinction between the now variables ill the composition. This is well-defined only when the now variable
has its customary meaning.

Let Abe the composition ofafinite collection of hybrid I/O automata A, i E I. If is a timed execution
of A, then for each i I, we can define cIA, the projection of on i by projecting all trajectories onto
the state of A, keeping only the actions in dacts(A), and merging adjacent trajectories. Note that axiom
[Allis required, to ensure that the merged trajectories are actually trajectories. Also, if is a timed trace
of A, then for each i e I, we can define /3IA by projecting onto the (discrete) external actions of A (and
keeping the same final time).

We give a theorem that allows projection of timed executions, finite timed executions, and admissible
timed executions onto components.

Theorem A.3 Let A be the composition of a finite collection of hybrid I/O automata A, i E I.

1. If c is a timed (resp., finite timed / admissible timed) execution of A, then for each i E I, cIA is a
timed (resp., finite timed / admissible timed) execution of A.

2. If,13 is a timed (resp., finite timed / admissible timed) trace of A, then for each i é I, IA is a timed
(resp., finite timed / admissible timed) trace of A.

3. If c is a timed execution of A, then for each i el, t-trace(oIA) = t-trace(o)IA.

Theorem A.4 Let A be a hybrid I/O automaton. Let B and C be hybrid I/O automata with the same
external signatures and both compatible with A.

1. If t_traces*(B) C t_traces*(C) then t_execs*(A x B)IA C t_execs*(A x C)IA.

2. If t-tracesco(B) C t-traces°°(C) then t-execs°°(A x B)IA C t-execs°°(A x C)IA.

B Formal MMT Automaton Model

This section is based on a similar exposition in [6]. We give a formal definition of an MMT-specification
and of the corresponding hybrid I/O automaton.

An MMT-specification A consists of six components:

• a set states(A) of states,

• a non-empty set start(A) of start states,

• a set acts(A) of actions,

• a set steps(A) C states(A) x acts(A) x states(A),

• a collection tasks(A) of disjoint subsets of acts(A),

• a function bounds(A) : tasks(A) —* IR° x

The tasks are sets of actions which share the same timing behavior. The bounds function specifies that
behavior by giving a lower and upper time bound for execution of each task. For convenience we write
b1(C) and b(C) for the lower and upper time bounds of task C, respectively. An action a is enabled
in state s when (s, a, s’) E steps(A) for some s. A task C is enabled in a state if one of its actions is
enabled. The lower time-bound on a task specifies how long the task must be continuously enabled before
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one of its actions can be performed. The upper time-bound on a task specifies how long the task can
be continuously enabled before one of its actions must be performed. We formalize this description by
describing the equivalent hybrid I/O automaton.

Let be an MMT-specification. Then time(AMMT) is the hybrid I/O ailtomaton A with the
following components:

states(A) are the possible assignments to the following variables: basic E states(AMwT); now E IR°; and
fi’rst(C) IR°° and last(C) E Il°° for all C E tasks(AMWT).

start(A) are all the elements s of states(A) where s.basic E start(A1WMT), s.now = 0, and for each
C E tasks(A) if C is enabled in s.basic then first(C) b1(C) and last(C) b(C); otherwise,
first(C) = 0 and last(C) cX.

dacts(A) are acts(ApIMT).

dsteps(A) are all (s,a,s’) where:

1. s’.now = s.now

2. (s.basic, a, .s’.basic) StePS(AMMT)

3. for each C c tasks(AMMT)

(a) If a € C, then s.first(C) < s.now.

(b) If C is enabled in both s.basic and s’.basic, and a C,
then s’.firs(C) = s.first(C) and s’dast(C) = s.last(C).

(c) If C is enabled in s’.basic and either a C C or C, is not enabled in s.basic,
then s’.first(C) = s’.now + b1(C) and s’.last(C) = s’.riow + b(C).

(d) If C is not enabled in s’.basic then s’.first(C) = 0 and s’.last(C) = co.

trajs(A) are the set of I-trajectories w where for all t C I:

1. w(t).now = w(0).now + t

2. w(t).basic w(0).basic

3. for all C, C tasks(AMMT)

(a) w(t).now < w(0).last(C)

(b) w(t).first(C) = w(0).first(C)

(c) w(t).last(C) = w(0).last(C)

In practice, we elide the distinction between the MMT-specification and its corresponding hybrid I/O
automaton. The stylized nature of MMT-specifications yields some useful properties:

Theorem B.1 If AMMT is an MMT-specification and A = time(AMMT), then in all reachable states s
of A and for all U, tasks(A1j1WT) the following hold:

1. s.first(C) < s.last(C)

2. s.now < s.last(C)

3. if C is enabled in s.basic then 0 < last(C) — now < b(C)
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