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Abstract (machine-independent) complexity theory is basically a theory which
establishes limits on what may be said about the complexity of specific recursive
functions. (For example, the speed-up theorem [1] shows that it is not always
possible to discover close upper and lower bounds for the complexity of a function.)
As such, its basic proof method is diagonalization.

Sacks, Spector, etc. [2], [3] have developed extensive diagonalization machin-
ery for theorems about degrees of unsolvability. Thus far, we have not applied any
except the simplest of the methods devised by the recursion theorists to complex-
ity theory. In this paper, we present two results which arise very naturally out of
complexity theory and whose proofs seem to require use of priority constructions.

The problems we deal with involve finding pairs of recursive sets which are
complex, but for “different reasons”—that is, they don’t “help” each other’s com-
putation.

To handle questions of this type, we use a generalization of Blum’s axioms
for complexity of partial recursive functions, to the case of relative algorithms (as
represented by Turing machines with oracles [2]). Specifically, the axioms we use
are:

(1) (∀i, x, A) ϕ(A)
i (x) ↓ ⇔ Φ(A)

i (x) ↓,

(∃ψ, a relative algorithm)(∀i, x, y, A)(2)

ψ(A)(i, x, y) =

{

1 if Φ(A)
i (x) = y,

0 otherwise.

However, it is more intuitive to keep in mind the “space measure” (number of
worktape squares) on oracle Turing machines when considering our results.

The first theorem is a subrecursive analog to the Friedberg-Muchnik theorem
[2]. Instead of producing two sets which do notpermiteach other’s computation,
we produce two recursive sets which do not make each other’s computation any
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easier. Another way of interpreting the result is to say it produces pairs of recursive
sets which are complex, but for different reasons.

Notation Comp(A)B ≤ f a.e.means(∃i)[ϕ(A)
i = CB and Φ(A)

i ≤ f a.e.]
Comp(A)B > f a.e.(i.o.) means(∀i)[ϕ(A)

i = CB ⇒ Φ(A)
i > f a.e.(i.o.)]

We writeComp B in place ofComp(∅)B.

Theorem 1 There existsh, a recursive function of two variables, with the follow-
ing property:

For all sufficiently large running timestB and tC , there exist recursive setsB
andC such that:

Comp B ≤ h ◦ tB a.e.,

Comp C ≤ h ◦ tC a.e.,

Comp(C)B > tB a.e.,

and
Comp(B)C > tC a.e..

The method of proof we use is to simultaneously construct the two setsB and
C, using diagonalization and a finite-injury priority argument.

There is a small recursive bound on the number of injuries to any condition.
We omit the proof in favor of a proof of theorem 2.

In theorem 1, both sets are constructed by diagonalization; to make the result
more interesting, we would like to fix one of the sets arbitrarily. We may easily
obtain the following:

Proposition There existsh, a recursive function of two variables, with the follow-
ing property:

For any recursive setA, and any recursive functiontA with the property that
Comp A > h ◦ tA i.o., there exist arbitrarily complex recursive setsB such that:

Comp(B)A > tA i.o.

The proof idea is partly due to Machtey, and is similar to the initial segment
constructions in [2]; there is essentially no priority involved.

Our second theorem is similar to the proposition, but involves a stronger kind
of lower bound on the complexity ofA. Specifically,
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Theorem 2 There existsh, a recursive function of two variables, with the follow-
ing property:

For any recursive setA, and any total running timetA, with tA ≥ λx[x], if
Comp A > h ◦ tA a.e., then there exist arbitrarily complex recursive sets B such
that:

Comp(B)A > tA a.e.

.

The method of proof is a finite-injury priority argument with no apparent re-
cursive bound on the number of injuries for each condition.
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