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Abstract

We establish that on the domain of probabilistic automata, the trace distribution precon-
gruence coincides with the simulation preorder.

1 Introduction

Probabilistic automata [13, 15, 18] constitute a mathematical framework for modeling and analyzing
probabilistic systems, specifically, systems of asynchronously interacting components that may make
nondeterministic and probabilistic choices. They have been applied successfully to distributed
algorithms [7, 11, 1] and practical communication protocols [19].

An important part of a system modeling framework is a notion of external behavior of system
components. Such a notion can be used to define implementation and equivalence relationships
between components. For example, the external behavior of a nondeterministic automaton can
be defined as its set of traces—the sequences of external actions that arise during its executions
[9]. Implementation and equivalence of nondeterministic automata can be defined in terms of
inclusion and equality of sets of traces. By analogy, Segala [13] has proposed defining the external
behavior of a probabilistic automaton as its set of trace distributions, and defining implementation
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and equivalence in terms of inclusion and equality of sets of trace distributions. Stoelinga and
Vaandrager have proposed a simple testing scenario for probabilistic automata, and have proved
that the equivalence notion induced by their scenario coincides with Segala’s trace distribution
equivalence [20]. Another equivalent testing scenario was proposed by Segala [14].

However, a problem with these notions is that trace distribution inclusion and equivalence are
not compositional. To address this problem, Segala [13] defined more refined notions of implemen-
tation and equivalence. In particular, he defined the trace distribution precongruence, ≤DC , as the
coarsest precongruence included in the trace distribution inclusion relation. This yields composi-
tionality by construction, but does not provide insight into the nature of the ≤DC relation. Segala
also provided a characterization of ≤DC in terms of the set of trace distributions observable in a
certain principal context—a rudimentary probabilistic automaton that makes very limited nonde-
terministic and probabilistic choices. However, this indirect characterization still does not provide
much insight into the structure of ≤DC , for example, it does not explain its branching structure.

In this paper, we provide an explicit characterization of the trace distribution precongruence,
≤DC , for probabilistic automata, which completely explains its branching structure. Namely, we
show that P1 ≤DC P2 if and only if there exists a weak probabilistic (forward) simulation relation
from P1 to P2. Moreover, we provide a similar characterization of ≤DC for nondeterministic au-
tomata in terms of the existence of a weak (non-probabilistic) simulation relation. It was previously
known that simulation relations are sound for ≤DC [13], for both nondeterministic and probabilistic
automata; we show the surprising fact that they are also complete. That is, we show that, for both
nondeterministic and probabilistic automata, probabilistic contexts can observe all the distinctions
that can be expressed using simulation relations.

Another approach to achieving compositionality for behaviors of probabilistic automata is to
define implementation as trace distribution inclusion, but to restrict parallel composition so that
the nondeterminism of each component is resolved based only on externally-visible behavior of the
other components. This approach was investigated by De Alfaro, Henzinger, and Jhala [4] in a
synchronous model; however, it is still an open problem to find appropriate restrictions for parallel
composition in a model with asynchronous computation. Some initial steps toward this goal appear
in [3].

Sections 2 and 3 contain basic definitions and results for nondeterministic and probabilistic
automata, respectively, and for the preorders we consider. These sections contain no new material,
but recall definitions and theorems from the literature. For a more leisurely introduction see
[9, 10, 18, 16]. The last two references also contain an extensive discussion of the relationships of our
probabilistic automata with other modelling frameworks for probabilistic systems. The proofs of our
completeness results rely on a special context for a probabilistic automaton, the dual probabilistic
automaton, which is introduced in Section 4. Sections 5 and 6 contain our characterization results
for nondeterministic and probabilistic automata. Since the proof of the characterization result for
the general case of probabilistic automata with internal actions is highly complex, we first present
a proof for the special case of nondeterministic automata without internal actions (Section 5.1).
Then we successively show how we can also handle internal actions (Section 5.2) and probabilistic
choice (Section 6.1) before dealing with the general case of probabilistic automata with internal
actions (Section 6.2). Section 7 contains our conclusions.
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2 Definitions and Basic Results for Nondeterministic Automata

2.1 Nondeterministic Automata, Executions, and Traces

A (nondeterministic) automaton is a tuple A = (Q, q̄, E,H,D), where

• Q is a set of states,

• q̄ ∈ Q is a start state,

• E is a set of external actions,

• H is a set of internal (hidden) actions with E ∩H = ∅, and

• D ⊆ Q× (E ∪H)×Q is a transition relation.

We denote E ∪H by A and we refer to it as the set of actions. We denote a transition (q, a, q′) of
D by q

a→ q′. We write q → q′ if q
a→ q′ for some a, and we write q → if q → q′ for some q′.

We assume finite branching1: for each state q the number of pairs (a, q′) such that q
a→ q′ is

finite. We denote the elements of an automaton A by QA, q̄A, EA,HA, DA, AA,
a→A. Often we use

the name A for a generic automaton; in this case, we usually omit the subscripts, writing simply
Q, q̄, E, H, D, A, and a→. We extend this convention to allow indices and primes as well; thus,
the set of states of automaton A′

i is denoted by Q′
i.

An execution fragment of an automaton A is a finite or infinite sequence α = q0a1q1a2q2 · · · of
alternating states and actions, starting with a state and, if the sequence is finite, ending in a state,
where each (qi, ai+1, qi+1) ∈ D. State q0, the first state of α, is denoted by fstate(α). If α is a
finite sequence, then the last state of α is denoted by lstate(α). An execution of A is an execution
fragment whose first state is the start state q̄. We let frags(A) denote the set of execution fragments
of A and frags∗(A) the set of finite execution fragments. Similarly, we let execs(A) denote the set
of executions of A and execs∗(A) the set of finite executions.

Execution fragment α is a prefix of execution fragment α′, denoted by α ≤ α′, if sequence α is
a prefix of sequence α′. Finite execution fragment α1 = q0a1q1 · · · akqk and execution fragment α2

can be concatenated if fstate(α2) = qk. In this case the concatenation of α1 and α2, α1
_ α2, is

the execution fragment q0a1q1 · · · akα2. Given an execution fragment α and a finite prefix α′, α.α′

(read as “α after α′”) is defined to be the unique execution fragment α′′ such that α = α′ _ α′′.
The trace of an execution fragment α of an automaton A, written traceA(α), or just trace(α)

when A is clear from context, is the sequence obtained by restricting α to the set of external actions
of A. For a set S of executions of an automaton A, tracesA(S), or just traces(S) when A is clear
from context, is the set of traces of the executions in S. We say that β is a trace of an automaton
A if there is an execution α of A with trace(α) = β. Let traces(A) denote the set of traces of
A. We define the trace preorder relation on automata as follows: A1 ≤T A2 iff E1 = E2 and
traces(A1) ⊆ traces(A2). We use ≡T to denote the kernel of ≤T .

If a ∈ A, then q a=⇒ q′ iff there exists an execution fragment α such that fstate(α) = q,
lstate(α) = q′, and trace(α) = trace(a). (Here and elsewhere, we abuse notation slightly by
extending the trace function to arbitrary sequences.) We call q a=⇒ q′ a weak transition.

We let tr range over either transitions or weak transitions. For a transition tr = (q, a, q′), we
denote q by source(tr) and q′ by target(tr).

1This restriction is given for technical reasons. The results generalize to countable branching at the cost of adding
complexity to the proofs.
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2.2 Composition

Automata A1 and A2 are compatible if H1 ∩ A2 = A1 ∩ H2 = ∅. The composition of compatible
automata A1 and A2, denoted by A1‖A2, is the automaton A ∆= (Q1 × Q2, (q̄1, q̄2), E1 ∪ E2,H1 ∪
H2, D) where D is the set of triples (q, a, q′) such that, for i ∈ {1, 2}:

a ∈ Ai ⇒ (πi(q), a, πi(q′)) ∈ Di and a /∈ Ai ⇒ πi(q) = πi(q′).

Let α be an execution fragment of A1‖A2, i ∈ {1, 2}. Then πi(α), the ith projection of α, is
the sequence obtained from α by projecting each state onto its ith component, and removing each
action not in Ai together with its following state. Sometimes we denote this projection by αdAi.

Proposition 2.1 Let A1 and A2 be automata, with A1 ≤T A2. Then, for each automaton C
compatible with both A1 and A2, A1‖C ≤T A2‖C.

2.3 Simulation Relations

We define two kinds of simulation relations: forward simulations, which provide a step-by-step
correspondence, and weak forward simulations, which are insensitive to the occurrence of internal
steps. Namely, relation R ⊆ Q1×Q2 is a forward simulation (resp., weak forward simulation) from
A1 to A2 iff E1 = E2 and both of the following hold:

1. q̄1 R q̄2.

2. If q1 R q2 and q1
a→ q′1, then there exists q′2 such that q2

a→ q′2 (resp., q2
a=⇒ q′2) and q′1 R q′2.

We write A1 ≤F A2 (resp., A1 ≤wF A2) when there is a forward simulation (resp., a weak forward
simulation) from A1 to A2. It is easy to prove that both ≤F and ≤wF are preorders, that is,
reflexive and transitive. Since all simulation relations in this paper are forward simulations, we
often omit the word “forward”.

Proposition 2.2 Let A1 and A2 be automata. Then:

1. If A1 ≤F A2 then A1 ≤wF A2.

2. If H1 = H2 = ∅, then A1 ≤F A2 iff A1 ≤wF A2.

3. If A1 ≤wF A2 then A1 ≤T A2.

Proof. Standard; for instance, see [10]. 2

2.4 Tree-Structured Nondeterministic Automata

An automaton is tree-structured if each state is reached via a unique execution.
The unfolding of automaton A, denoted by Unfold(A), is the tree-structured automaton B

obtained from A by unfolding its transition graph into a tree. Formally,

• QB = execs∗(A),

• q̄B = q̄A,
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• EB = EA,

• HB = HA, and

• DB = {(α, a, αaq) | (lstate(α), a, q) ∈ DA}.

Proposition 2.3 A ≡F Unfold(A).

Proof. See [10]. It is easy to check that the relation R, where α R q iff lstate(α) = q, is a forward
simulation from Unfold(A) to A and that the inverse relation of R is a forward simulation from A
to Unfold(A). 2

Proposition 2.4 A ≡T Unfold(A).

Proof. By Proposition 2.3 and Proposition 2.2, Parts 1 and 3. 2

3 Definitions and Basic Results for Probabilistic Automata

3.1 Preliminaries and Notation on Measure Theory

We recall a few basic definitions and results from measure theory that can be retrieved from any
standard book on the subject [5].

A σ-field over a set X is a set F ⊆ 2X that contains the empty set and is closed under
complement and countable union. A pair (X,F) where F is a σ-field over X, is called a measurable
space. A measure on a measurable space (X, F ) is a function µ : F → [0,∞] that is countably
additive: for each countable family {Xi}i of pairwise disjoint elements of F , µ(∪iXi) =

∑
i µ(Xi).

A probability measure on (X,F) is a measure µ on (X,F) such that µ(X) = 1. A sub-probability
measure on (X,F) is a measure µ on (X,F) such that µ(X) ≤ 1. A discrete probability measure on
a set X is a probability measure µ on (X, 2X). A discrete sub-probability measure on X is a sub-
probability measure µ on (X, 2X). We denote the set of discrete probability measures and discrete
sub-probability measures on X by Disc(X) and SubDisc(X), respectively. We denote the support
of a discrete measure µ, that is, the set of elements that have non-zero measure, by supp(µ). We
let δ(q) denote the Dirac measure for q, the discrete probability measure that assigns probability 1
to {q}. Finally, if X is nonempty and finite, then U(X) denotes the uniform distribution over X,
the measure that assigns probability 1/|X| to each element of X. Given two discrete probability
measures µ1, µ2 on (X, 2X) and (Y, 2Y ), respectively, we denote by µ1×µ2 the product measure, that
is, the measure on (X × Y, 2(X×Y )) such that µ1 × µ2((x, y)) = µ1(x)µ2(y) for each x ∈ X, y ∈ Y .

A function f : X → Y is said to be measurable from (X,FX) to (Y,FY ) if the inverse image of
each element of FY is an element of FX , that is, for each C ∈ FY , f−1(C) ∈ FX . In such a case,
given a measure µ on (X,FX), the function f(µ) defined on FY by f(µ)(C) = µ(f−1(C)) for each
C ∈ FY is a measure on (Y,FY ) and is called the image measure of µ under f .

Given a countable collection of measures {µi}i on (X,FX) and a countable collection {pi}i of
real numbers in [0,∞), denote by

∑
i piµi a new function µ such that, for each element C ∈ FX ,

µ(C) =
∑

i piµi(C). We state a few standard properties.

Proposition 3.1 The following hold.

1.
∑

i µi is a measure on (X,FX).
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2. If each µi is a (sub)-probability measure and
∑

i pi = 1, then
∑

i piµi is a (sub)-probability
measure.

3. If f is a measurable function from (X,FX) to (Y,FY ), then f(
∑

i piµi) =
∑

i pif(µi).

3.2 Probabilistic Automata, Executions, and Traces

A probabilistic automaton (PA) is a tuple P = (Q, q̄, E,H,D), where all components are exactly as
for nondeterministic automata, except that:

• D, the transition relation, is a subset of Q× (E ∪H)×Disc(Q).

We define A as before. We denote transition (q, a, µ) by q
a→ µ. We assume finite branching: for

each state q the number of pairs (a, µ) such that q
a→ µ is finite. Given a transition tr = (q, a, µ)

we denote q by source(tr) and µ either by target(tr) or by µtr .
Thus, a probabilistic automaton differs from a nondeterministic automaton in that a transition

leads to a probability measure over states rather than to a single state. A nondeterministic automa-
ton is a special case of a probabilistic automaton, where the last component of each transition is a
Dirac measure. Conversely, we can associate a nondeterministic automaton with each probabilistic
automaton by replacing transition relation D by the relation D′ given by

(q, a, q′) ∈ D′ ⇔ (∃µ)[(q, a, µ) ∈ D ∧ µ(q′) > 0].

Using this correspondence, notions such as execution fragments and traces carry over from nonde-
terministic automata to probabilistic automata.2

A scheduler for a PA P is a function σ : frags∗(P) → SubDisc(D) such that tr ∈ supp(σ(α))
implies source(tr) = lstate(α). A scheduler σ is said to be deterministic if for each finite execution
fragment α, either σ(α)(D) = 0 or else σ(α) = δ(tr) (the Dirac measure for tr) for some tr ∈ D.

A scheduler σ and a state q induce a measure ε on the σ-field generated by cones of execution
fragments as follows. If α is a finite execution fragment, then the cone of α is defined by Cα =
{α′ ∈ frags(P) | α ≤ α′}. The measure ε of a cone Cα is defined to be 1 if α = q, 0 if α = q′ 6= q,
and, if α is of the form α′aq′, it is defined by the recursive equation

ε(Cα) = ε(Cα′)
∑

tr∈D(a′)

σ(α′)(tr)µtr (q′), (1)

where D(a′) denotes the set of transitions of D that are labeled by a′. Standard measure theoretical
arguments ensure that ε is well defined. We call the measure ε a probabilistic execution fragment
of P and we say that ε is generated by σ and q0. We call state q0 the first state of ε and denote it
by fstate(ε). If fstate(ε) is the start state q̄, then ε is called a probabilistic execution.

The trace function is a measurable function from the σ-field generated by cones of execution
fragments to the σ-field generated by cones of traces, where the cone of a finite trace β is defined
by Cβ = {β′ ∈ E∗ ∪ Eω | β ≤ β′}. Here ≤ denotes the prefix ordering on sequences. Given a
probabilistic execution fragment ε, we define the trace distribution of ε, tdist(ε), to be the image
measure of ε under trace. We denote the set of trace distributions of probabilistic executions of a

2The correspondence between nondeterministic automata and probabilistic automata is worked out in great detail
in [2].
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PA P by tdists(P). We define the trace distribution preorder relation on probabilistic automata
by: P1 ≤D P2 iff E1 = E2 and tdists(P1) ⊆ tdists(P2).

An example of a measurable set of traces that is used extensively throughout the paper is the
set of traces in which a specific action a occurs. We denote this set by �a. The inverse image under
trace of �a can be expressed as a disjoint union of cones of executions. Thus, we have the following
proposition.

Proposition 3.2 Let η be the trace distribution of a probabilistic execution ε of a probabilistic
automaton P, and let Θa be the set of finite executions of P with a single occurrence of action a
whose last transition is labeled by a. Then,

η(�a) =
∑

α∈Θa

ε(Cα). (2)

3.3 Combined Transitions and Weak Transitions

Let {q a→ µi}i∈I be a collection of transitions of a PA P, and let {pi}i∈I be a collection of proba-
bilities such that

∑
i∈I pi = 1. Then the triple (q, a,

∑
i∈I piµi) is called a combined transition of

P.
Consider a probabilistic execution fragment ε that assigns probability 1 to the set of all finite

execution fragments with trace a. Let µ be the measure defined by µ(q) = ε({α | lstate(α) = q}).
Then fstate(ε) a=⇒ µ is a weak combined transition of P. If ε can be induced by a deterministic
scheduler, then fstate(ε) a=⇒ µ is a weak transition. We refer to ε as a representation of fstate(ε) a=⇒
µ. Observe that the measure µ can be seen alternatively as the image measure of ε under lstate.
This is an abuse of notation because lstate is not defined for infinite executions; however, since ε
assigns measure 1 to the set of finite executions, we can extend arbitrarily and safely the definition
of lstate to infinite executions for this purpose.

Proposition 3.3 Let {tr i}i∈I be a collection of weak combined transitions of a PA P, all starting
in the same state q, and all labeled by the same action a, and let {pi}i∈I be probabilities such that∑

i∈I pi = 1. Then
∑

i∈I pitr i is a weak combined transition of P labeled by a.

Proof. For each i ∈ I, let εi be a representation of tr i, and σi be a scheduler that, together with
state q, induces εi. We omit the index set I in the rest of the proof. Define a new scheduler σ as
follows.

σ(α) =


∑

i

piεi(Cα)∑
i piεi(Cα)

σi(α) if ∃ipiεi(Cα) > 0

arbitrarily otherwise.

Let ε be the probabilistic execution fragment induced by σ and q. Let α be a finite execution
fragment of P. We prove by induction on the length of α that ε(Cα) =

∑
i piεi(Cα). The base

case is trivial since ε(Cq) = 1 and for each i, εi(Cq) = 1, which implies
∑

i εi(Cq) = 1; similarly,
for each state q′ 6= q, ε(Cq′) = 0 and for each i, εi(Cq′) = 0. For the inductive step, let α = α′a′q′.
If ε(Cα′) = 0, then, by induction,

∑
i piεi(Cα′) = 0, which implies that for each i, piεi(Cα′) = 0.

By definition of measure of a cone, Equation (1), ε(Cα) = 0. Furthermore, for each i, if pi = 0
then piεi(Cα) = 0 trivially, and if pi > 0, then εi(Cα′) = 0 and by definition of measure of a
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cone, Equation (1), εi(Cα) = 0, which implies piεi(Cα) = 0. Thus,
∑

i piεi(Cα) = 0 as needed. If
ε(Cα′) > 0, then, by definition of measure of a cone, Equation (1),

ε(Cα) = ε(Cα′)
∑

tr∈D(a′)

σ(α′)(tr)µtr (q′).

By expanding σ(α′)(tr) with the definition of σ we obtain

ε(Cα) = ε(Cα′)
∑

tr∈D(a′)

(∑
i

piεi(Cα′)∑
i piεi(Cα′)

σi(α′)(tr)

)
µtr (q′),

where we know that the denominator is strictly positive by hypothesis. By standard algebraic
manipulations (exchanges of sums and rearrangements of constants) we obtain

ε(Cα) =
ε(Cα′)∑

i piεi(Cα′)

∑
i

∑
tr∈D(a′)

piεi(Cα′)σi(α′)(tr)µtr (q′).

By induction, ε(Cα′) =
∑

i piεi(Cα′). Thus, by simplifying (removing) the leftmost term and
rearranging constants we obtain

ε(Cα) =
∑

i

piεi(Cα′)
∑

tr∈D(a′)

σi(α′)(tr)µtr (q′)

 .

Finally, by definition of measure of a cone, Equation (1), we get the desired equation

ε(Cα) =
∑

i

piεi(Cα).

Thus, ε =
∑

i piεi, which implies that the probability of termination in ε is 1. Furthermore, by
Proposition 3.1, Item 3, lstate(ε) =

∑
i pi lstate(εi). That is, ε is a representation of

∑
i pitr i. 2

3.4 Composition

Two PAs, P1 and P2, are compatible if H1∩A2 = A1∩H2 = ∅. The composition of two compatible
PAs P1 and P2, denoted by P1‖P2, is the PA P = (Q1×Q2, (q̄1, q̄2), E1 ∪E2,H1 ∪H2, D) where D
is the set of triples (q, a, µ1 × µ2) such that, for i ∈ {1, 2}:

a ∈ Ai ⇒ (πi(q), a, µi) ∈ Di and a /∈ Ai ⇒ µi = δ(πi(q)).

Let ε be a probabilistic execution (fragment) of P1‖P2 and let i ∈ {1, 2}. Define πi(ε), the ith

projection of ε, to be the image measure under πi of ε. It is easy to verify that the projection
function is measurable. When convenient, we denote a projection by εdPi, where Pi is the PA that
appears in the ith position.

Proposition 3.4 Let P1 and P2 be compatible PAs and let ε be a probabilistic execution (fragment)
of P1‖P2. Then for each i ∈ {1, 2}, πi(ε) is a probabilistic execution (fragment) of Pi.

Proof. By Propositions 4.3.4 and 4.3.5 of [13]. 2
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Figure 1: Trace distribution inclusion is not preserved by composition (without communication).

The trace distribution preorder is not preserved by composition [15, 17] as is shown by the
following example.

Example 3.1 Failure of compositionality

Consider the two automata P1 and P2 of Figure 1. The two automata are trace equiva-
lent, and it is easy to see that they are also trace distribution equivalent. Now consider
the compositions P1‖C and P2‖C, where C is the probabilistic automaton of Figure 1
and we assume that the actions of C are not shared with P1 and P2. It is possible to
build a probabilistic execution of P1‖C as follows: first a is scheduled followed by d;
then e or f is scheduled depending on the outcome state of the transition labeled by
d; finally, b or c is scheduled depending on whether e or f was scheduled. Thus, in the
resulting trace distribution there is a total correlation between e, b and f, c, respectively.
The same trace distribution cannot be obtained from P2‖C because after scheduling the
transition labeled by a we are already bound to b or c, and thus the occurrence of b or
c cannot be correlated to e or f in this case.

Example 3.1 may appear pathological since, in the probabilistic execution of P1‖C that correlates
the choices between e and f and between b and c, a nondeterministic choice of P1 is resolved based
on information that is not available to P1. This may lead us to propose a naive solution to the
non-preservation of trace distribution inclusion by parallel composition where we require that each
probabilistic automaton in a parallel composition can resolve its nondeterministic choices based on
local knowledge only. However, a more elaborate example shows that this naive idea also does not
work.

Example 3.2 Failure of compositionality

Consider the two automata P1 and P2 of Figure 2, which are essentially the automata
of Example 3.1 where self-loop transitions labeled by e and f are added to each state.
In this case the context C synchronizes with P1 and P2 on actions e and f , and P1 is
able to learn which of e or f occurs, thus determining the correlation with b and c based
on local knowledge only.

The solution of resolving nondeterminism based on local knowledge is adopted in [4] for a
probabilistic extension of reactive modules; however the idea of [4] cannot be extended easily to
probabilistic automata because of key structural differences in the models: in probabilistic automata
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Figure 2: Trace distribution inclusion is not preserved by composition (with communication).

there is a total interleaving of the transitions taken by different automata in a parallel composition,
while in probabilistic reactive modules there are several independent atoms that are not forced to
interleave. A direct adaptation of the idea of [4] to probabilistic automata would require drastic
modifications of the model that go beyond the scope of this paper: transitions should be labeled
by sets of actions and should be structured in such a way that each action affects different parts of
the state.

An alternative approach, followed in [13] and adopted in this paper, consists of defining a
new trace distribution precongruence relation, denoted by ≤DC , as the coarsest precongruence
that is included in the trace distribution preorder ≤D, and finding alternative characterizations of
≤DC . It is known from [13] that there exists a simple context, called the principal context, that is
sufficiently powerful to distinguish all probabilistic automata that are not in the trace distribution
precongruence relation; alternatively, a testing scenarios is proposed in [14].

In this paper we characterize ≤DC in terms of probabilistic simulation relations. Another simple
alternative characterization of ≤DC that is useful for our study is given by the following proposition.

Proposition 3.5 Let P1 and P2 be PAs. Then P1 ≤DC P2 iff for every PA C that is compatible
with both P1 and P2, P1‖C ≤D P2‖C.

Proof. Define relation v such that P1 v P2 iff P1 and P2 have the same external actions and
for every PA C that is compatible with both P1 and P2, P1‖C ≤D P2‖C.

Let P1 ≤DC P2 and let C be a PA compatible with both P1 and P2. Since ≤DC is a precongru-
ence by definition, then P1‖C ≤DC P2‖C. Since, again by definition, ≤DC is included in ≤D, then
P1‖C ≤D P2‖C. Thus, P1 v P2, which implies that ≤DC is included in v.

Conversely, observe that v is reflexive and transitive, and thus a preorder relation. Observe
also that, by using a trivial context C with no external actions and no transitions, v is included in
≤D. Finally, using the associativity of parallel composition, observe that v is preserved by parallel
composition, and thus is a precongruence. This means that v is a precongruence included in ≤D.
Since ≤DC is the coarsest precongruence included in ≤D, we get that v is included in ≤DC . 2
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3.5 Simulation Relations

The definitions of forward simulation and weak forward simulation in Section 2 can be extended
naturally to PAs [15]. However, Segala has shown [12] that the resulting simulations are not
complete for ≤DC , and has defined new candidate simulations. These new simulations relate states
to probability measures on states.

In order to define the new simulations formally, we need three new concepts. First we show
how to lift a relation between sets to a relation between measures over sets [6]. Let R ⊆ X × Y .
The lifting of R is a relation R′ ⊆ Disc(X) × Disc(Y ) such that µX R′ µY iff there is a function
w : X × Y → [0, 1] that satisfies:

1. If w(x, y) > 0 then x R y.

2. For each x ∈ X,
∑

y∈Y w(x, y) = µX(x).

3. For each y ∈ Y ,
∑

x∈X w(x, y) = µY (y).

We abuse notation slightly and denote the lifting of a relation R by R as well.
Second, we define a flattening operation that converts a measure µ in Disc(Disc(X)) into a

measure flatten(µ) in Disc(X). Namely, we define flatten(µ) =
∑

ρ∈supp(µ) µ(ρ)ρ.
Third and finally, we lift the notion of a transition to a hyper-transition [17] that begins and

ends with a probability measure over states. Thus, let P be a PA and let µ ∈ Disc(Q). For each
q ∈ supp(µ), let q

a→ µq be a combined transition of P. Let µ′ be
∑

q∈supp(µ) µ(q)µq. Then µ
a→ µ′

is called a hyper-transition of P. Also, for each q ∈ supp(µ), let q a=⇒ µq be a weak combined
transition of P. Let µ′ be

∑
q∈supp(µ) µ(q)µq. Then µ a=⇒ µ′ is called a weak hyper-transition of P.

We now define simulations for probabilistic automata. A relation R ⊆ Q1 × Disc(Q2) is a
probabilistic forward simulation (resp., weak probabilistic forward simulation) from PA P1 to PA
P2 iff E1 = E2 and both of the following hold:

1. q̄1 R δ(q̄2).

2. For each pair q1, µ2 such that q1 R µ2 and each transition q1
a→ µ′1, there exists a measure µ′2 ∈

Disc(Disc(Q2)) such that µ′1 R µ′2 and such that µ2
a→ flatten(µ′2) (resp., µ2

a=⇒ flatten(µ′2))
is a hyper-transition (resp., a weak hyper-transition) of P2.

We write P1 ≤PF P2 (resp., P1 ≤wPF P2) whenever there is a probabilistic forward simulation
(resp., a weak probabilistic forward simulation) from P1 to P2. Note that a forward simulation
between nondeterministic automata is a probabilistic forward simulation between the two automata
viewed as PAs:

Proposition 3.6 Let A1 and A2 be nondeterministic automata. Then:

1. A1 ≤F A2 iff A1 ≤PF A2, and

2. A1 ≤wF A2 iff A1 ≤wPF A2.

Proof. The left-to-right inclusions are easy since, given a (weak) forward simulation R from A1

to A2, it is immediate to observe that the relation R′∆= {(q1, δ(q2) | q1 R q2} is a (weak) probabilistic
forward simulation from A1 to A2.
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For the converse implication, let R be a (weak) forward simulation from A1 to A2. Define a
relation R′∆= {(q1, q2) | ∃µq1 R µ, q2 ∈ supp(µ)}. We show that R′ is a (weak) forward simulation
from A1 to A2.

The start condition is trivial since q̄1 R δ(q̄2), and thus q1 R′ q2. For the step condition,
let q1 R′ q2, and let q1

a→ q′1. By definition of R′, there exists a measure µ such that q1 R µ and
q2 ∈ supp(µ). Since R is a (weak) forward simulation, there exists a hyper-transition µ

a→ µ′ (a weak
hyper-transition µ a=⇒ µ′) where µ′ is the flattening of some measure µ′′ such that δ(q′1) R µ′′.
Observe that, since µ′ = flatten(µ′′), each element q′2 ∈ supp(µ′) is also in the support of some
measure ρ ∈ supp(µ′′). Thus, q′1 R ρ, and, by definition of R′, q′1 R′ q′2. Observe also that, by
definition of hyper-transition, there is a combined transition q2

a→ µ2 (a weak combined transition
q2

a=⇒ µ2) such that supp(µ2) ⊆ supp(µ′). Thus, by choosing any of the transitions that are
combined in q2

a→ µ2, we obtain a transition q2
a→ q′2 such that q′1 R′ q′2 as needed. Similarly, for

the weak case, it is enough to consider a scheduler σ that generates q2
a=⇒ µ2 and replace it by a

new scheduler σ′(α) that stops (does not return any transition) if σ(α) stops with some non-zero
probability, and chooses any transition in supp(α) that reduces the distance from a stopping point
otherwise. This leads to a weak transition q2

a=⇒ q′2 such that q′1 R′ q′2 as needed. 2

Proposition 3.7 Let P1 and P2 be PAs. Then:

1. If P1 ≤PF P2 then P1 ≤wPF P2.

2. If H1 = H2 = ∅ then P1 ≤PF P2 iff P1 ≤wPF P2.

3. If P1 ≤wPF P2 then P1 ≤DC P2.

Proof. The first item follows from the fact that a combined transition is a special case of a weak
combined transition; the second item follows from the fact that in the absence of internal actions
a weak combined transition is a combined transition. For the third item see Proposition 8.7.1 of
[13]. 2

3.6 Tree-Structured Probabilistic Automata

A path of a PA P is a finite sequence γ = q0a1µ1q1a2µ2q2 . . . qn of alternating states, actions and
distribution over states, starting with the start state of P such that for each non-final i, qi

ai+1→ µi+1

and qi+1 ∈ supp(µi+1). We write lstate(γ) to denote qn and paths(P) for the set of all path of
P. We say that P is tree-structured if each state is reached via a unique path. Tree-structured
probabilistic automata are characterized uniquely by the property that all states are reachable, the
start state does not occur in the target of any transition, and each of the other states occurs in the
target of exactly one transition. Also tree-structured nondeterministic automata are characterized
uniquely by this property, albeit for a different notion of transition.

If a probabilistic automaton is tree-structured then its underlying automaton is also tree-
structured. The following example shows that the converse does not hold.

Example 3.3 Non-tree-structured probabilistic automata

Figure 3 shows a probabilistic automaton that is not tree-structured, as state q′ can be
reached via two different paths. The underlying automaton is tree-structured, however,
since the only way to reach state q′ is via the execution qaq′.
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Figure 3: A PA that not tree-structured even though its underlying automaton is.

The unfolding of a probabilistic automaton P, denoted by Unfold(P), is the tree-structured
probabilistic automaton Q obtained from P by unfolding its transition graph into a tree. Formally,

• QQ = paths(P),

• q̄Q = q̄P ,

• EQ = EP ,

• HQ = HP , and

• DQ = {(γ, a, µ) | (∃µ′)[(lstate(γ), a, µ′) ∈ DP ∧ (∀q ∈ supp(µ′))[µ′(q) = µ(γaµ′q)]]}.

Proposition 3.8 P ≡PF Unfold(P).

Proof. It is easy to check that the relation R where α R δ(q) iff lstate(α) = q is a probabilistic
forward simulation from Unfold(P) to P and that the “inverse” of R, i.e., the relation R′ such that
q R′ δ(α) iff α R δ(q), is a probabilistic forward simulation from P to Unfold(P). 2

Proposition 3.9 P ≡DC Unfold(P).

Proof. By Proposition 3.8, and Proposition 3.7, Parts 1 and 3. 2

3.7 Truncations and Continuations

We now define two simple constructions on probabilistic execution fragments that will be useful
for our proofs. Specifically, we define the truncation of a probabilistic execution fragment, which
is the result of stopping the computation at some designated points, and the continuation of a
probabilistic execution fragment, which represents the rest of a probabilistic execution fragment
after some finite execution fragment has occurred.

Let ε be a probabilistic execution fragment of a PA P, generated by some scheduler σ, and let
Θ be a set of finite execution fragments of P. Define the truncation of ε at Θ to be the same as
ε except that no transition is scheduled from all the Θ places, that is, the probabilistic execution
fragment ε′, with the same start state as ε, generated by a new scheduler σ′ such that σ′(α) = σ(α)
if α 6∈ Θ and σ′(α)(D) = 0 if α ∈ Θ.
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Proposition 3.10 The definition of truncation of a probabilistic execution fragment ε is indepen-
dent of the choice of the inducing scheduler.

Proof. Let q be the first state of ε and let σ1, σ2 be two schedulers that, together with q, induce
ε. Let Θ be a set of finite execution fragments of P, and let σ′1, σ

′
2 be the schedulers built from

σ1, σ2, respectively, according to the definition of truncation. Let ε1, ε2 be the induced probabilistic
execution fragments, and suppose by contradiction that ε1 6= ε2. Then there exists a finite execution
α such that ε1(Cα) 6= ε2(Cα). Consider such a finite execution α of minimum length. Observe that
|α| > 0 since ε(Cq) = ε1(Cq) = ε2(Cq) = 1 and, for each state q′ 6= q, ε(Cq′) = ε1(Cq′) = ε2(Cq′) = 0.
Thus, α = α′a′q′ for some α′, a′, q′, where ε1(Cα′) = ε2(Cα′). We distinguish two cases.

If α′ ∈ Θ, then, by definition of σ′1 and σ′2, σ′1(α
′)(D) = σ′2(α

′)(D) = 0. Thus, ε1(Cα) =
ε2(Cα) = 0, a contradiction.

If α′ 6∈ Θ, then, by definition of σ′1 and σ′2, σ′1(α
′) = σ1(α′) and σ′2(α

′) = σ2(α′). Since σ1

and σ2 induce the same probabilistic execution fragment ε, by definition of measure of a cone,
Equation (1),

∑
tr∈D(a′) σ1(α′)(tr)µtr (q′) =

∑
tr∈D(a′) σ2(α′)(tr)µtr (q′). Thus, it is also the case

that
∑

tr∈D(a′) σ′1(α
′)(tr)µtr (q′) =

∑
tr∈D(a′) σ′2(α

′)(tr)µtr (q′). By definition of measure of a cone,
Equation (1), ε1(Cα) = ε2(Cα), again a contradiction. 2

Proposition 3.11 The truncation of ε at Θ is a probabilistic execution fragment of P.

Proof. Trivial since the definition of truncation provides the generating scheduler. 2

Let ε be a probabilistic execution fragment of a PA P, generated by a scheduler σ, and let α be
a finite execution fragment with the same start state as ε. Define ε . α, the rest of ε after prefix α,
to be the probabilistic execution fragment generated by the following scheduler σ′ from lstate(α):

σ′(α′) =
{

σ(α _ α′) if fstate(α′) = lstate(α)
σ(α′) otherwise

Observe that the second line in the definition of σ′ is irrelevant, and thus can be replaced by any
arbitrary expression, since the execution fragment generated by σ′ from lstate(α) depends only on
σ′ applied to execution fragments that start from lstate(α).

Proposition 3.12 The definition of ε . α is independent of the choice of the inducing scheduler.

Proof. Let q be the first state of ε and let σ1, σ2 be two schedulers that, together with q, induce
ε. Let q′ be lstate(α). Let σ′1, σ

′
2 be the schedulers built from σ1, σ2, respectively, according

to the definition of ε . α. Let ε1, ε2 be the induced probabilistic execution fragments from q′,
and suppose by contradiction that ε1 6= ε2. Then there exists a finite execution α′ such that
ε1(Cα′) 6= ε2(Cα′). Consider such a finite execution α′ of minimum length. Observe that |α′| > 0
since ε(Cq′) = ε1(Cq′) = ε2(Cq′) = 1 and, for each state q′′ 6= q′, ε(Cq′′) = ε1(Cq′′) = ε2(Cq′′) = 0.
Thus, α′ = α′′a′′q′′ for some α′′, a′′, q′′, where ε1(Cα′′) = ε2(Cα′′). We distinguish two cases.

If fstate(α′′) 6= q′, then, by definition of ε1 and ε2, ε1(Cα′) = ε2(Cα′) = 0, a contradiction.
If fstate(α′′) = q′, then, by definition of σ′1 and σ′2, σ′1(α

′′) = σ1(α_α′′) and σ′2(α
′′) = σ2(α_α′′).

Since σ1 and σ2 induce the same probabilistic execution fragment ε, by definition of measure of a
cone, Equation (1),

∑
tr∈D(a′′) σ1(α _ α′′)(tr)µtr (q′′) =

∑
tr∈D(a′′) σ2(α _ α′′)(tr)µtr (q′′). Thus, we

derive
∑

tr∈D(a′′) σ′1(α
′′)(tr)µtr (q′′) =

∑
tr∈D(a′′) σ′2(α

′′)(tr)µtr (q′′). By definition of measure of a
cone, Equation (1), ε1(Cα′) = ε2(Cα′), again a contradiction. 2
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Proposition 3.13 The following properties are valid.

1. ε . α is a probabilistic execution fragment of P.

2. For each finite execution α′ with lstate(α) = fstate(α′), ε(Cα_α′) = ε(Cα) · (ε . α)(Cα′).

Proof. The first item is trivial since the definition of . provides the generating scheduler. The
second item follows directly from the definition of the probability of a cone. 2

4 Dual Probabilistic Automata

The proofs of our completeness results rely on a special context for a probabilistic automaton, which
we call its dual probabilistic automaton. The dual automaton, dual(P), of a PA P can observe the
states P goes through and the transitions that are scheduled during a probabilistic execution. This
information is revealed by means of externally visible transitions of dual(P) with the help of a
specific scheduler that synchronizes P with its dual.

In this section we introduce the construction of a dual probabilistic automaton, we introduce
the scheduler that synchronizes a probabilistic automaton with its dual, and we prove some results
about the resulting trace distributions.

Informally, the dual of a probabilistic automaton P is a probabilistic automaton C whose states
include a distinguished start state, all the states of P, and all the transitions of P. Automaton
C has a special transition from its own start state, q̄C , to the start state of P, q̄P , labeled by q̄P .
Also, from every state q of P, C has a uniform transition labeled by ch to the set of transitions of
P that begin in state q. Finally, for every transition tr of P, and every state q in the support of
µtr , C has a transition labeled by q from tr to q.

Definition 4.1 The dual probabilistic automaton of a PA P is a PA C such that

• QC = {q̄C} ∪QP ∪DP ,

• EC = QP ∪ {ch},

• HC = ∅, and

• DC = {(q̄C , q̄P , q̄P)}∪
{(q, ch,U({tr ∈ DP | source(tr) = q})) | q ∈ QP ∧ q →}∪
{(tr , q, q) | tr ∈ DP , q ∈ supp(µtr )}.

Observe that the dual of an ordinary nondeterministic automaton enables at most one transition
from each state. Indeed, the only states that may enable more than one transition are the states
of the form tr ∈ DP , which enable one transition for each state in supp(µtr ). However, the size of
supp(µtr ) is 1 in an ordinary automaton.

We assume without loss of generality that a probabilistic automaton P and its dual do not have
any actions in common (otherwise we can simply rename states of P to achieve our goal), and thus
P and its dual are compatible.

Since C and P share no actions, merely composing C with P does not ensure that C faithfully
emulates the behavior of P. However, an appropriate scheduler can synchronize the two automata
and ensure such an emulation, which will be sufficient for our purposes. Given a probabilistic

15



automaton P and its dual C, we define a scheduler σ for P‖C, called the observer of P, that
synchronizes the two automata so that the internal structure of P is visible in the trace. Specifically,
the scheduler σ starts by scheduling the transition of C from the start state of C to the start state
of P, leading to state (q̄, q̄), which is of the form (q, q). Then σ repeats the following as long as
q →:

1. Schedule the ch transition of C, thus choosing a transition tr of P.

2. Schedule transition tr of P, leading P to a new state q′.

3. Schedule the transition of C labeled by the state q′, resulting in the state (q′, q′), which is
again of the form (q, q).

Scheduler σ induces a trace distribution η for P‖C where all states and external actions of P appear
explicitly.

We state and prove some properties of η. The first property, Equation (3), says that the cone
of traces beginning with the start state of P has probability 1. The second property, Equation (4),
says that for any state q of P from which some transition is enabled and for each finite trace β
of P‖C, the probability of the cone of traces beginning with βq is the same as the probability of
the cone beginning with βq ch, that is, once βq occurs, the probability that ch follows is 1. The
third property, Equation (5), says that for any state q of P and for each finite trace β of P‖C, the
probability of the cone of traces beginning with βq ch is the same as the sum of the probabilities
of the cones beginning with βq ch β′ where β′ represents one single step of P from q, that is, once
ch occurs, one of the transitions of A that are enabled from q is exposed. The right-hand side of
Equation (5) consists of two parts dealing with external and internal transitions, respectively.

Proposition 4.2 The trace distribution η induced by the observer of a probabilistic automaton P
satisfies the following three properties, for all finite traces β of P‖C and for all states q of P:

η(Cq̄) = 1 (3)

q → =⇒ η(Cβq) = η(Cβq ch) (4)

η(Cβq ch) =
∑

(a,q′)|a∈E,(∃µ)[(q,a,µ)∈D,q′∈supp(µ)]

η(Cβq ch aq′) +

∑
q′|(∃(a,µ))[a∈H,(q,a,µ)∈D,q′∈supp(µ)]

η(Cβq ch q′) (5)

Proof. Equation (3) follows from the fact that σ schedules action q̄ immediately. Equation (4)
follows from the fact that, after scheduling action q, thus leading to a state of the form (q, q), σ
immediately schedules action ch if q enables at least one transition. Equation (5) follows from the
fact that, after scheduling ch, σ schedules one of the transitions of P that are enabled from q, say
q

a→ µ, followed by a transition of C labeled by a state in supp(µ). 2

Observe that Equation (5) has a simpler formulation in case P is an ordinary nondeterministic
automaton.
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Proposition 4.3 The trace distribution η induced by the observer of an automaton A satisfies the
following property, for all finite traces β of A‖C and for all states q of A:

η(Cβq ch) =
∑

(a,q′)|a∈E,q
a→q′

η(Cβq ch aq′) +
∑

q′|(∃a)a∈H,q
a→q′

η(Cβq ch q′) (6)

The following properties are not needed for the proof of completeness for nondeterministic
automata, so the reader may skip them for the moment and return here when reading the proofs
of Section 6.

Proposition 4.4 Let η be the trace distribution induced by the observer of a tree-structured proba-
bilistic automaton P, and let tr = (q, a, µ) be a transition of P. Let k be the number of transitions
that are enabled from q in P, and let q′ be a state in supp(µ). Then the following properties hold:

η(�q′) =
η(�q)

k
µ(q′) (7)

η(�q′) =

 ∑
q′′∈supp(µ)

η(�q′′)

µ(q′) (8)

Proof. Let σ be the observer of P, and let εσ be the probabilistic execution induced by σ. Since P
is tree-structured, the set Θq contains a single execution α. Indeed, by definition of tree-structured,
there is only one execution in P ending with state q, and σ simply interleaves this execution with
transitions labeled by ch, by the names of the transitions of P that are needed to reach q, and by
the names of the states that are reached. Similarly, Θq′ contains a single execution α′.

Once state q is reached, σ schedules action ch, reaching state tr of C with probability 1/k. Then,
σ schedules transition tr , reaching state q′ in P with probability µ(q′), and finally σ schedules the
transition of C labeled by q′. Thus, εσ(Cα′) = εσ(Cα)(1/k)µ(q′). Then Equation (7) follows by
Equation (2).

By summing over supp(µ) in Equation (7), we get∑
q′′∈supp(µ)

η(�q′′) =
η(�q)

k

∑
q′′∈supp(µ)

µ(q′′) (9)

Observe that
∑

q′′∈supp(µ) µ(q′′) = 1. Thus, deriving η(�q) from Equation (9), replacing it in
Equation (7), and cancelling k from numerator and denominator, we get Equation (8) as needed.

2

5 Characterizations of the Trace Distribution Precongruence Re-
lation for Nondeterministic Automata

In this section, we present our characterization theorems for ≤DC for nondeterministic automata:
Theorem 5.2 characterizes ≤DC in terms of ≤F , for automata without internal actions, and Theo-
rem 5.4 characterizes ≤DC in terms of ≤wF , for arbitrary nondeterministic automata. In each case,
we prove the result first for tree-structured automata and then extend it to the non-tree-structured
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case via unfolding. The interesting direction for each of these results is the completeness direction,
showing that A1 ≤DC A2 implies the existence of a simulation relation from A1 to A2.

Our proofs of completeness for nondeterministic automata use the simple characterization in
Proposition 3.5, applied with C equal to the dual probabilistic automaton of A1.

5.1 Nondeterministic Automata Without Internal Actions

We begin by considering nondeterministic automata without internal actions. We first consider
tree-structured automata.

Proposition 5.1 Let A1, A2 be nondeterministic automata without internal actions such that A1

tree-structured. Then A1 ≤DC A2 implies A1 ≤F A2.

Proof. Assume that A1 ≤DC A2. Let C be the dual probabilistic automaton of A1 and consider
the observer σ1 of A1 as defined in Section 4. Let η be the trace distribution induced by σ1.

Since A1 ≤DC A2, Proposition 3.5 implies that η is also a trace distribution of A2‖C. That is,
there exists a probabilistic execution ε ofA2‖C, induced by some scheduler σ2, such that tdist(ε) = η.

For each state q1 in Q1, let Θq1 be the set of finite executions of A2‖C whose last transition is
labeled by q1. For each state q2 of A2, let Θq1,q2 be the set of executions in Θq1 whose last state is
the pair (q2, q1).

Define a relation R as follows: q1 R q2 if and only if there exists a finite execution α in Θq1,q2

such that ε(Cα) > 0. We claim that R is a forward simulation from A1 to A2.
For the start condition, we must show that q̄1 R q̄2. Consider the start state (q̄2, q̄C) of A2‖C.

Since there are no internal actions in A2 or C, and since, by Equation (3) from Proposition 4.2,
η(Cq̄1) = 1, the only action that is scheduled initially by σ2 is q̄1, leading to state (q̄2, q̄1). Thus,
the finite execution α = (q̄2, q̄C)q̄1(q̄2, q̄1) is an element of Θq̄1,q̄2 such that ε(Cα) > 0, as needed.

For the step condition, assume q1 R q2 and let q1
a→1 q′1 be a transition of A1, which we denote

by tr for convenience. We exhibit a matching transition q2
a→2 q′2.

By definition of R, there exists a finite execution α in Θq1,q2 , such that ε(Cα) > 0. Since
Θq1,q2 is a subset of Θq1 , by definition of Θq1 , trace(α) = βq1 for some finite trace β. Therefore,
η(Cβq1) > 0. Since q1 enables at least one transition in A1, specifically transition tr , Equation (4)
from Proposition 4.2 implies that η(Cβq1 ch) = η(Cβq1). Then, since A2 and C have no internal
actions, σ2 schedules action ch from α with probability 1.

By definition of dual(A1), the transition labeled by ch that leaves from state q1 of C leads to state
tr with non-zero probability. Therefore, ε(Cα ch (q2,tr)) > 0. By Equation (6) from Proposition 4.3,
where only the first term of the right-hand side is used due to the absence of internal actions, σ2

must extend α ch (q2, tr) with two steps labeled by an action and a state of A1, respectively, where
the action and the state are compatible with one of the transitions of A1 that are enabled from
q1. Since state tr of C enables only action q′1, and since, by the tree-structure of A1, a is uniquely
determined by q′1, the action and state scheduled by σ2 are a and q′1. Therefore, there exists a state
q′2 of A2 such that the execution α′ = α ch (q2, tr)a(q′2, tr)q′1(q

′
2, q

′
1) is an execution in Θq′1,q′2

such
that ε(Cα′) > 0. Then q′1 R q′2 and q2

a→ q′2 as needed. 2

Now we present our result for general (non-tree-structured) nondeterministic automata without
internal actions.
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Theorem 5.2 Let A1, A2 be nondeterministic automata without internal actions. Then A1 ≤DC

A2 if and only if A1 ≤F A2.

Proof. First we prove soundness of forward simulations:

A1 ≤F A2 ⇒ (Proposition 3.6, Part 1)
A1 ≤PF A2 ⇒ (Proposition 3.7, Part 1)
A1 ≤wPF A2 ⇒ (Proposition 3.7, Part 3)
A1 ≤DC A2 .

Next we prove completeness:

A1 ≤DC A2 ⇒ (Proposition 2.3)
Unfold(A1) ≤F A1 ≤DC A2 ⇒ (as in soundness proof)
Unfold(A1) ≤DC A1 ≤DC A2 ⇒ (≤DC is transitive)
Unfold(A1) ≤DC A2 ⇒ (Proposition 5.1)
Unfold(A1) ≤F A2 ⇒ (Proposition 2.3)
A1 ≤F Unfold(A1) ≤F A2 ⇒ (≤F is transitive)
A1 ≤F A2 .

2

5.2 Nondeterministic Automata With Internal Actions

Next we extend the results of Section 5.1 to automata that may include internal actions. The
proofs are analogous to those in Section 5.1. The difference is that, in several places in the proof of
Proposition 5.3, we need to reason about multi-step extensions of executions instead of single-step
extensions. Again, we begin with tree-structured automata.

Proposition 5.3 Let A1, A2 be nondeterministic automata such that A1 is tree-structured. Then
A1 ≤DC A2 implies A1 ≤wF A2.

Proof. Assume that A1 ≤DC A2. Define the dual probabilistic automaton C of A1, the observer
σ1, the trace distribution η, the scheduler σ2, and the probabilistic execution ε as in the proof of
Proposition 5.1. Without loss of generality we assume that σ2 schedules action q̄1 with probability
1 from the start state of A2‖C (essentially, since internal transitions are only transitions of A2 and
the transition labeled by q̄1 is only a transition of C, we can exchange any internal transitions of A2

that occur before the transition labeled by q̄1 with the transition labeled by q̄1 and reach exactly
the same states with the same probabilities).

Define the Θ sets and the relation R as in the proof of Proposition 5.1. Now we claim that R
is a weak forward simulation from A1 to A2.

For the start condition, we must show that q̄1 R q̄2. Consider the start state (q̄2, q̄C) of A2‖C.
Since, by assumption, σ2 schedules action q̄1 with probability 1 from the start state of A1‖C, the
finite execution α = (q̄2, q̄C)q̄1(q̄2, q̄1) is an element of Θq̄1,q̄2 such that ε(Cα) > 0, as needed.

For the step condition, assume q1 R q2 and let q1
a→1 q′1 be a transition of A1, which we denote

by tr . We exhibit a matching weak transition q2
a=⇒ 2 q′2.

By definition of R, there exists a finite execution α in Θq1,q2 such that ε(Cα) > 0. Since
Θq1,q2 is a subset of Θq1 , by definition of Θq1 , trace(α) = βq1 for some finite trace β. Therefore,
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η(Cβq1) > 0. Since q1 enables at least one transition in A1, specifically transition tr , Equation (4)
from Proposition 4.2 implies that η(Cβq1 ch) = η(Cβq1). Thus, there exists an execution fragment α′

of A2‖C with trace ch such that ε(Cα_α′) > 0. Furthermore, since, by definition of dual(A1), the
transition of C labeled by ch that leaves from state q1 leads to state tr with non-zero probability,
we can assume that the last state of α′ is of the form (q′, tr) for some state q′ of A2.

Since η(Cβq1 ch) > 0, by Equation (6) from Proposition 4.3, σ2 must extend α _ α′ in such a
way that the first or the first two external actions are compatible with one of the transitions of
A1 that are enabled from q1. (The number of external actions depends on whether the compatible
transition of A1 is labeled by an internal or external action.) Since state tr of C enables only action
q′1, and since, by the tree-structure of A1, a is uniquely determined by q′1, the first or first two
external actions of A2‖C scheduled by σ2 are either q′1 or aq′1 depending on whether a is internal
or external. Thus, there exists an execution fragment α′′ of A2‖C, with trace trace(aq′1), such that
ε(Cα_α′_α′′) > 0. Furthermore, we can assume that the last transition of α′′ is labeled by q′1
(simply truncate α′′ otherwise).

Let (q′2, q
′
1) be the last state of α′′. Then, α _ α′ _ α′′ ∈ Θq′1,q′2

, thus showing that q′1 R q′2.
It remains to show that q2

a=⇒ q′2. For this, it suffices to observe that the execution fragment
(α′ _ α′′)dA2 has trace a, first state q2, and last state q′2. 2

Theorem 5.4 Let A1, A2 be nondeterministic automata. Then A1 ≤DC A2 if and only if A1 ≤wF

A2.

Proof. Analogous to the proof of Theorem 5.2. First we prove soundness of weak forward simu-
lations:

A1 ≤wF A2 ⇒ (Proposition 3.6, Part 2)
A1 ≤wPF A2 ⇒ (Proposition 3.7, Part 3)
A1 ≤DC A2 .

Now we prove completeness:

A1 ≤DC A2 ⇒ (Proposition 2.3)
Unfold(A1) ≤F A1 ≤DC A2 ⇒ (as in proof Theorem 5.2)
Unfold(A1) ≤DC A1 ≤DC A2 ⇒ (≤DC is transitive)
Unfold(A1) ≤DC A2 ⇒ (Proposition 5.3)
Unfold(A1) ≤wF A2 ⇒ (Proposition 2.3)
A1 ≤F Unfold(A1) ≤wF A2 ⇒ (Proposition 2.2, Part 1)
A1 ≤wF Unfold(A1) ≤wF A2 ⇒ (≤wF is transitive)
A1 ≤wF A2 .

2

6 Characterizations of the Trace Distribution Precongruence Re-
lation for Probabilistic Automata

Now we present our characterization theorems for ≤DC for probabilistic automata: Theorem 6.3
characterizes ≤DC in terms of ≤PF , for PAs without internal actions, and Theorem 6.5 characterizes
≤DC in terms of ≤wPF , for arbitrary probabilistic automata. Again, we give the results first for
tree-structured automata and extend them by unfolding. Again, the interesting direction is the
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completeness direction, showing that P1 ≤DC P2 implies the existence of a simulation relation
from P1 to P2. Our proofs of completeness for PAs are analogous to those for nondeterministic
automata.

6.1 Probabilistic Automata Without Internal Actions

We first consider tree-structured automata.

Proposition 6.1 Let P1, P2 be probabilistic automata without internal actions such that P1 is
tree-structured. Then P1 ≤DC P2 implies P1 ≤PF P2.

Proof. Assume that P1 ≤DC P2. Define the dual probabilistic automaton C of A1, the observer
σ1, the trace distribution η, the scheduler σ2, and the probabilistic execution ε as in the proof of
Proposition 5.1. Define the Θ sets as in the proof of Proposition 5.1.

Define a relation R as follows: q1 R µ2 if and only if
∑

α∈Θq1
ε(Cα) > 0 and for each state

q2 ∈ Q2,

µ2(q2) =

∑
α∈Θq1,q2

ε(Cα)∑
α∈Θq1

ε(Cα)
. (10)

That is, the measure µ2 describes probabilities of the various Θq1,q2 ’s relative to Θq1 . Note that the
equation above is well defined since, by the tree-structure of P1, all the cones represented by Θq1

are disjoint, and thus
∑

α∈Θq1
ε(Cα) ≤ 1. We claim that R is a probabilistic forward simulation

from P1 to P2.
Before proving that R is a probabilistic forward simulation we make several observations.

1. Relation R is a function from Q1 to Disc(Q2).

Indeed, if
∑

α∈Θq1
ε(Cα) > 0, then there exists exactly one measure that satisfies Equa-

tion (10). Furthermore, given the construction of η, every state q1 of Q1 occurs with some
positive probability in η, thus,

∑
α∈Θq1

ε(Cα) > 0 for all states q1 of Q1.

2. If q1 R µ2, then, for each state q2 ∈ Q2 and each execution α ∈ Θq1,q2 ,

ε(Cα) > 0 ⇒ q2 ∈ supp(µ2). (11)

That is, the execution α occurs with non-zero probability in ε only if µ2 assigns non-zero
probability to q2. This property is a direct consequence of Equation (10).

3. For each transition q1
a→ µ′1 of P1, the following equation holds:

µ′1(q
′
1) =

∑
α∈Θq′1

ε(Cα)∑
q∈supp(µ′

1) , α∈Θq
ε(Cα)

. (12)

That is, the relative probabilities of the states of supp(µ′1) in ε are given by µ′1. This result
follows by instantiating Equation (8) from Proposition 4.4 with q1

a→ µ′1 to derive the proba-
bility of a state q′1 in the support of µ′1, and by replacing the diamond expressions according
to Equation (2) from Proposition 3.2.
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4. For each transition q1
a→ µ′1 of P1, the following equation holds:∑

α∈Θq1

ε(Cα) = k
∑

q∈supp(µ′
1) , α∈Θq

ε(Cα), (13)

where k is the number of transitions of P1 enabled from q1. That is, the probability of
reaching q1 in ε is k times the probability of reaching q1 and scheduling tr , where tr denotes
the transition q1

a→ µ′1. Informally, transition tr is scheduled only if state q1 is reached and
the outcome of the following transition labeled by ch is tr , which happens with probability
1/k. The reason why

∑
q∈supp(µ′

1) , α∈Θq
ε(Cα) is the probability of reaching q1 and scheduling

tr is that states from supp(µ′1) can occur only after q1 has occurred and tr is reached (see the
definition of dual automaton and of observer of a dual automaton) and furthermore states from
supp(µ′1) occur with probability 1 once tr is reached (see Equation (5) from Proposition 4.2).

This result follows by instantiating Equation (7) from Proposition 4.4 with q1
a→ µ′1 to

derive the probability of a state q′1 in the support of µ′1, replacing the diamond expressions
according to Equation (2) from Proposition 3.2, summing over supp(µ′1), observing that∑

q′1∈supp(µ′
1) µ′1(q

′
1) = 1, and deriving

∑
α∈Θq1

ε(Cα) from the resulting equation.

We are now ready to show that R is a probabilistic forward simulation. For the start condition,
we must show that q̄1 R δ(q̄2).

Consider the start state (q̄2, q̄C) of A2‖C. Since there are no internal actions in A2 or C, and
since, by Equation (3) from Proposition 4.2, η(Cq̄1) = 1, the only action that is scheduled initially by
σ2 is q̄1, leading to state (q̄2, q̄1) with probability 1. Thus, the finite execution α = (q̄2, q̄C)q̄1(q̄2, q̄1)
is an element of Θq̄1,q̄2 such that ε(Cα) = 1, and, by definition of R, q̄1 R δ(q̄2) as needed.

For the step condition, assume that q1 R µ2 and let q1
a→1 µ′1 be a transition of P1, which we

denote by tr . We must exhibit a probability measure µ′2 ∈ Disc(Disc(Q2)) and a hyper-transition
µ2

a→2 µ′′2, matching the given transition, where µ′′2 = flatten(µ′2) and µ′1 R µ′2. We do this by
deriving a transition trα for each execution α of Θq1 and by combining the trα’s appropriately into
transitions tr q, for each state q ∈ supp(µ2), that are the basis for the required hyper-transition. The
trα transitions are derived from η; the construction considers only those α’s for which ε(Cα) > 0.
The other α’s can be treated arbitrarily.

Consider an execution α of Θq1 such that ε(Cα) > 0. By Property (11), α ∈ Θq1,q2 for some
state q2 in supp(µ2). Since Θq1,q2 is a subset of Θq1 , by definition of Θq1 , trace(α) = βq1 for some
finite trace β. Therefore, η(Cβq1) > 0. Since q1 enables at least one transition in P1, specifically
transition tr , Equation (4) from Proposition 4.2 implies that η(Cβq1 ch) = η(Cβq1). Then, since A2

and C have no internal actions, σ2 schedules action ch from α with probability 1.
By definition of dual(A1), the transition labeled by ch that leaves from state q1 of C leads to state

tr with non-zero probability. Therefore, ε(Cα ch (q2,tr)) > 0. By Equation (5) from Proposition 4.2,
where only the first term of the right-hand side is used due to the absence of internal actions, σ2

must extend α ch (q2, tr) with two steps labeled by an action and a state of A1, respectively, where
the action and the state are compatible with one of the transitions of A1 that are enabled from
q1. Since state tr of C enables only actions in supp(µ′1), and since, by the tree-structure of A1, a
is uniquely determined by µ′1, the action that is scheduled is a and the state that is scheduled is a
state in supp(µ′1). Thus, σ2(α ch (q2, tr)) returns a probability measure over transitions labeled by
a. This measure identifies a combined transition of A2 labeled by a that leaves from q2, which we
denote by trα.
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Now, using the trα transitions, we define a combined transition from each state in the support
of µ2. Namely, for each state q ∈ supp(µ2), let tr q be the combined transition of P2 defined by:

tr q
∆=

∑
α∈Θq1,q

ε(Cα)∑
α′∈Θq1,q

ε(Cα′)
trα. (14)

Informally, each element of Θq1,q is an execution in are ε that contributes to the emulation of
transition q1

a→1 µ′1 from q. Equation (14) computes tr q, the overall contribution to the emulation
from q, by averaging over all elements of Θq1,q. We could prove that Θq1,q contains only one element
α′ such that ε(Cα′) > 0 and simplify Equation (14) accordingly. However, this simplification is not
necessary for the proof. Now we define the measure µ′′2 ∈ Disc(Q2):

µ′′2
∆=

∑
q∈supp(µ2)

µ2(q)µtrq . (15)

Then, by construction, µ2
a→ µ′′2 is a hyper-transition of P2.

It remains to define a probability measure µ′2 ∈ Disc(Disc(Q2)) such that µ′′2 = flatten(µ′2) and
µ′1 R µ′2.

For each q ∈ supp(µ′1), let µq be the unique measure such that q R µq. We can identify µq

because R is a function. Define µ′2 ∈ Disc(Disc(Q2)) such that, for each q ∈ supp(µ′1), µ′2(µq) =∑
q′∈supp(µ′

1)|µq′=µq
µ′1(q

′). Then µ′1 R µ′2 by definition of µ′2.
It remains to show that µ′′2 = flatten(µ′2), that is, that µ′′2 =

∑
ρ∈supp(µ′

2) µ′2(ρ)ρ. From the
definition of µ′2 and of the flatten operator, it suffices to show that for every q2 ∈ Q2,

µ′′2(q2) =
∑

q∈supp(µ′
1)

µ′1(q)µq(q2). (16)

To prove Equation (16) we first claim that the following equation is valid for each pair of states
q1, q2 of P1 and P2, respectively, if k denotes the number of transitions of P1 that are enabled from
q1: ∑

α∈Θq1

ε(Cα)µtrα(q2) = k
∑

q∈supp(µ′
1) , α∈Θq,q2

ε(Cα). (17)

Informally, the left-hand side of Equation (17) represents the probability of scheduling q1 and
then reaching q2 according to the transition trα, without considering the outcome of the transition
labeled by ch. The right-hand side, on the other hand, computes the probability of scheduling q1,
scheduling ch and reaching µ′1, and then scheduling trα and reaching q2. State µ′1 is reached by ch
with probability 1/k, which justifies the k factor in the right-hand side.

To prove Equation (17), consider an execution α ∈ Θq,q2 where q ∈ supp(µ′1). Since q oc-
curs always after q1, execution α can be split into α′ _ α′′ where α′ ∈ Θq1 . Furthermore,
trace(α′′) = ch aq, and since there are no internal actions in P2 and C, α is the unique exten-
sion of α′ that is in Θq,q2 . In particular, α′′ = (q′, q1) ch (q′, tr)a(q2, tr)q(q2, q) for some state q′

of A2, and ε(Cα) = ε(Cα′)(1/k)µtrα′ (q2). Thus, each summand in the right-hand side of Equa-
tion (17) has a corresponding summand in the left-hand side that differs by a factor of k, and the
correspondence relation is an injection. If the correspondence is not a bijection, then the α terms
that are left out on the left-hand side are such that µtrα(q2) = 0 (otherwise an extension in Θq,q2

for some q exists). This suffices.
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We now consider the left-hand side of Equation (16). Consider the definition of µ′′2 given by
Equation (15). By expanding µ2(q) according to the definition of µ2 given by Equation (10), and
expanding µtr (q2) according to the definition of µtr given by Equation (14), we obtain

µ′′2(q2) =
∑

q∈supp(µ2)

∑
α∈Θq1,q

ε(Cα)∑
α∈Θq1

ε(Cα)

∑
α∈Θq1,q

ε(Cα)µtrα(q2)∑
α∈Θq1,q

ε(Cα)
.

By cross simplifying the top leftmost and bottom rightmost factors, and by factoring the left
denominator out of the sum, we obtain

µ′′2(q2) =

∑
q∈supp(µ2)

∑
α∈Θq1,q

ε(Cα)µtrα(q2)∑
α∈Θq1

ε(Cα)
.

By Property (11), we can rewrite the numerator as follows:

µ′′2(q2) =

∑
α∈Θq1

ε(Cα)µtrα(q2)∑
α∈Θq1

ε(Cα)
.

By multiplying numerator and denominator by k, applying Equation (17) to the numerator, and
applying Equation (13) to the denominator, we obtain

µ′′2(q2) =

∑
q∈supp(µ′

1) , α∈Θq,q2
ε(Cα)∑

q∈supp(µ′
1) , α∈Θq

ε(Cα)
. (18)

We now consider the right-hand side of Equation (16). By applying Equations (12) and (10)
to the two factors of the right-hand side of Equation (16), and by simplifying common factors
algebraically, we obtain

∑
q∈supp(µ′

1)

µ′1(q)µq(q2) =

∑
q∈supp(µ′

1) , α∈Θq,q2
ε(Cα)∑

q∈supp(µ′
1) , α∈Θq

ε(Cα)
. (19)

Now Equation (16) follows by direct combination of Equations (18) and (19). 2

Interestingly, the probabilistic forward simulation that we constructed in the above proof is
functional. Functional simulations are usually called refinement mappings. Write P1 ≤PR P2 if
there exists a functional probabilistic forward simulations from P1 to P2. Then we can state the
following corollary of Proposition 6.1, which is a probabilistic version of Proposition 3.12 in [10]:

Corollary 6.2 Let P1, P2 be probabilistic automata without internal actions such that P1 is tree-
structured. Then P1 ≤PF P2 iff P1 ≤PR P2.

Proof. It is enough to observe that each state q1 of P1 occurs with some positive probability in
the trace distribution η of the proof of Proposition 6.1. 2

Theorem 6.3 Let P1, P2 be probabilistic automata without internal actions. Then P1 ≤DC P2 if
and only if P1 ≤PF P2.
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Proof. First we prove soundness of probabilistic forward simulations:

P1 ≤PF P2 ⇒ (Proposition 3.7, Part 1)
P1 ≤wPF P2 ⇒ (Proposition 3.7, Part 3)
P1 ≤DC P2 .

Now we prove completeness:

P1 ≤DC P2 ⇒ (Proposition 3.9)
Unfold(P1) ≤DC P1 ≤DC P2 ⇒ (≤DC is transitive)
Unfold(P1) ≤DC P2 ⇒ (Proposition 6.1)
Unfold(P1) ≤PF P2 ⇒ (Proposition 2.3)
P1 ≤PF Unfold(P1) ≤PF P2 ⇒ (≤PF is transitive)
P1 ≤PF P2 .

2

6.2 Probabilistic Automata With Internal Actions

Again, we start with tree-structured PAs.

Proposition 6.4 Let P1, P2 be probabilistic automata with P1 tree-structured. Then P1 ≤DC P2

implies P1 ≤wPF P2.

Proof. Assume that P1 ≤DC P2. Define the dual probabilistic automaton C of A1, the observer
σ1, the trace distribution η, the scheduler σ2, and the probabilistic execution ε as in the proof of
Proposition 5.1. Without loss of generality we assume that σ2 schedules action q̄1 with probability
1 from the start state of A2‖C (essentially we can exchange the internal transitions of A2 that occur
before the transition labeled by q̄1 with the transition labeled by q̄1).

Define the Θ sets as in the proof of Proposition 5.1, and define relation R according to Equa-
tion (10) as in the proof of Proposition 6.1. Observe that Property (11) and Equations (12) and (13)
hold for the same reasons as before.

The proof that R is a weak probabilistic forward simulation is exactly as before except for the
definition of the trα transitions. Thus, in the rest of the proof we construct the trα’s and prove
that Equation (17) still holds.

Assume that q1 R µ2 and let q1
a→1 µ′1 be a transition of P1, which we denote by tr .

We introduce a special conditional construction that is needed for the definition of the trα’s.
Let Ctr be the same as C except that the transition q1

ch→ µ, where µ is uniquely determined by q1,
is replaced by q1

ch→ δ(tr). Given a scheduler σ for A2‖C, define the scheduler σ | tr for A2‖Ctr

that is the same as σ except that transition q1
ch→ δ(tr) of Ctr is chosen whenever σ chooses q1

ch→ µ.
Given a probabilistic execution fragment ε′ of A2‖C, generated by some scheduler σ, define ε′ | tr
to be the result of σ | tr applied to A‖Ctr from the start state of ε′. The intuition behind ε′ | tr
is that we study ε′ under the condition that tr is the outcoming state of C whenever q1

ch→ µ is
scheduled. Then, the following two properties are valid.

1. (ε′ | tr)dA2 is a probabilistic execution fragment of A2.

2. For each finite execution fragment α of A2‖C where state tr occurs and such that fstate(α)
is not of the form (·, tr), (ε′ | tr)(Cα) = kε(Cα), where k is the size of supp(µ).
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The first item follows immediately from Proposition 3.4 given that ε′ | tr is a probabilistic execution
fragment of A2‖Ctr . The second item follows directly from the definition of probability of a cone
since in ε′ the probability associated with the edge q ch (·, tr) is 1/k while in ε′ | tr the probability
of the same edge is 1.

We now define the trα’s. Consider an execution α of Θq1 such that ε(Cα) > 0. Let ε1 be the
truncation of ε at all the points in ∪q∈supp(µ′

1)Θq, which is a probabilistic execution of A2‖C by
Proposition 3.11. Let ε1α be ε1 . α, which is a probabilistic execution fragment of A2‖C by Item 1
of Proposition 3.13. Finally, let ε2α be (ε1α | tr)dA2, which is a probabilistic execution fragment of
A2 by Property 1.

By definition of Θq1 , trace(α) = βq1 for some finite trace β. Therefore, η(Cβq1) > 0. Since q1

enables at least one transition in P1, specifically transition tr , Equation (4) from Proposition 4.2 im-
plies that η(Cβq1 ch) = η(Cβq1). Thus, action ch occurs as the first external action with probability
1 in µ1

α.
By Equation (6) from Proposition 4.3, if the occurrence of action ch leads C to state tr , then an

action in supp(µ′1) occurs eventually in ε with probability 1, leading C to a state in supp(µ′1), which
is a truncation point according to the definition of ε1. Thus, the probability of termination in ε1α | tr
is 1, as well as the probability of termination in ε2α, i.e., ε2α assigns probability 1 to the set of finite
executions. Furthermore, given that action a is uniquely determined by µ′1 (A1 is tree-structured),
again by Equation (6) from Proposition 4.3 all finite executions α′ with ε2α(α′) > 0 have trace a
(empty trace if a is internal). Thus, ε2α denotes a weak combined transition labeled by a (no action
if a is internal) from lstate(α)dA2. Denote such transition by trα.

We are left to show that Equation (17) still holds. That is,∑
α∈Θq1

ε(Cα)µtrα(q2) = k
∑

q∈supp(µ′
1) , α∈Θq,q2

ε(Cα).

We consider first the term µtrα(q2). From the definition of trα and of weak combined transition
we get

µtrα(q2) =
∑

α′|lstate(α′)=q2

ε2α(α′).

By applying the definition of projection, and using the fact that ε1α | tr assigns probability 1 to the
set of finite executions, we get

µtrα(q2) =
∑

α′|lstate(α′dA2)=q2

(ε1α | tr)(α′).

Given that the truncation points of ε1 are all at the ∪q∈supp(µ′
1)Θq points, the only finite executions

α′ that have non-zero probability are such that α _ α′ is in some set Θq. Furthermore, given that
no execution in ∪q∈supp(µ′

1)Θq is a prefix of another (our PAs are tree-structured and all actions in
supp(µ′1) occur in different branches), the probabilities of the finite executions can be replaced by
the probabilities of their cones, thus getting

µtrα(q2) =
∑

q∈supp(µ′
1)

∑
α′|α_α′∈Θq,q2

(ε1α | tr)(Cα′).

By Property 2 we can get rid of the conditional on tr by introducing a k factor, thus getting

µtrα(q2) =
∑

q∈supp(µ′
1)

∑
α′|α_α′∈Θq,q2

kε1α(Cα′). (20)
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By replacing µtrα(q2) according to Equation (20) in the left-hand side of Equation (17), and by
rearranging terms algebraically, we obtain∑

α∈Θq1

ε(Cα)µtrα(q2) = k
∑

q∈supp(µ′
1)

∑
α∈Θq1

∑
α′|α_α′∈Θq,q2

ε(Cα)ε1α(Cα′).

By using the definition of ε1α and Item 2 of Proposition 3.13, the two probabilities in the equation
above can be grouped into ε(Cα_α′). By observing that all elements in Θq,q2 , with q ∈ supp(µ′1),
have a prefix in Θq1 , the intermediate sum can be removed, thus getting∑

α∈Θq1

ε(Cα)µtrα(q2) = k
∑

q∈supp(µ′
1)

∑
α∈Θq,q2

ε(Cα),

which is Equation (17) as needed. 2

Theorem 6.5 Let P1, P2 be probabilistic automata. Then P1 ≤DC P2 if and only if P1 ≤wPF P2.

Proof. Soundness of weak probabilistic forward simulations follows immediately from Proposi-
tion 3.7. Completeness is established by:

P1 ≤DC P2 ⇒ (Proposition 3.9)
Unfold(P1) ≤DC P1 ≤DC P2 ⇒ (≤DC is transitive)
Unfold(P1) ≤DC P2 ⇒ (Proposition 6.4)
Unfold(P1) ≤wPF P2 ⇒ (Proposition 2.3)
P1 ≤PF Unfold(P1) ≤wPF P2 ⇒ (Proposition 3.7)
P1 ≤wPF Unfold(P1) ≤wPF P2 ⇒ (≤wPF is transitive)
P1 ≤wPF P2 .

2

7 Concluding Remarks

We have characterized the trace distribution precongruence for nondeterministic and probabilistic
automata, with and without internal actions, in terms of four kinds of simulation relations, ≤F ,
≤wF , ≤PF , and ≤wPF . In particular, this shows that probabilistic contexts are capable of observing
all the distinctions that can be expressed using these simulation relations.

Some technical improvements are possible. For example, our finite branching restriction can
be relaxed to countable branching, simply by replacing uniform distributions in the dual automata
by other distributions such as exponential distributions. Calculations become more complicated,
however.

For future work, it would be interesting to try another approach to achieving compositionality
for PA behaviors: define implementation as trace distribution inclusion, but restrict parallel com-
position so that the nondeterminism of each component is resolved based only on externally-visible
behavior of the other components. This approach also requires some ways of resolving the nonde-
terminism of scheduling different components. Some initial steps towards this goal appear in our
recent work on switched automata [3].
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