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Abstract

Brain networks exhibit many complications, such as noise, neuron failures, and partial synaptic
connectivity. These can make it difficult to model and analyze the behavior of the networks. This paper
describes one way to address this difficulty, namely, breaking down the models and analysis using levels
of abstraction. We describe the approach for a particular problem, recognition of hierarchically-structured
concepts, as considered, for example, in [2, 4, 3].

Realistic models for representing hierarchical concepts use multiple neurons to represent each concept,
in order to tolerate variations such as failures of limited numbers of neurons; see, for example, early work
by Valiant [10], work on the assembly calculus [1, 7], and our own recent work [3]. These models are
intended to capture some behaviors present in actual brains; however, analysis of mechanisms based
on multi-neuron representations can be somewhat complicated. On the other hand, simpler mechanisms
based on single-neuron representations can be easier to understand and analyze [2, 4], but are less realistic.

In this paper, we show that these two types of models are compatible, and in fact, networks with
single-neuron representations can be regarded as formal, mathematical abstractions of networks with
multi-neuron representations. We do this by revisiting networks with multi-neuron representations like
those in [3], and relating them formally to networks with single-neuron representations like those in [2].
As in [2, 3], we consider the problem of recognizing hierarchical concepts based on partial information.

Specifically, we consider two networks, H and L, with multi-neuron representations, one with high
connectivity and one with low connectivity. We define two abstract networks, A1 and A2, with single-
neuron representations, and prove that they recognize concepts correctly. Then we prove correctness
of H and L by relating them formally to A1 and A2. In this way, we decompose the analysis of each
multi-neuron network into two parts: analysis of abstract, single-neuron networks, and proofs of formal
relationships between the multi-neuron network and single-neuron networks.

These examples illustrate what we consider to be a promising, tractable approach to analyzing other
complex brain mechanisms.

1 Introduction
We continue our work in [2, 4, 3] on representing hierarchically-structured concepts in layered Spiking Neural
Networks, in such a way that concepts can be recognized based on only partial input information. Our first
paper [2] began the study by considering simple representations of concepts in feed-forward networks with
total connectivity between layers. There, each concept is represented by a single reliable neuron, at a
layer of the network corresponding to the level of the concept. The focus in that paper is on learning the
representations, in both noise-free and noisy settings. Next [4], we extended the recognition work in [2] to
concepts that allow some exceptions to strict hierarchical structure and networks that include some feedback
edges.

Most recently [3], we extended the recognition work of [2] in order to tolerate limited numbers of neuron
failures and partial network connectivity, in addition to partial input information. Now, in order to tolerate
failures and disconnections, our networks use multiple neurons to represent each concept. This is reminiscent
of work on assembly calculus [1, 7, 8], and is realistic for concept representations in actual brains.

The proofs of our networks in [3] are somewhat complicated, which led us to look for ways of simpli-
fying them by decomposing them into smaller pieces. One approach that has been used successfully in
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the distributed algorithms and formal methods communities is to describe and prove properties of systems
using levels of abstraction. We wondered whether we could view the detailed networks of [3], which use
multiple neurons to represent each concept in order to tolerate neuron failures and edge disconnections, as
"implementations" of more abstract networks based on a single reliable neuron for each concept. This paper
demonstrates that this can work.

Our first observation was that the models for failures and disconnections in [3] are probabilistic, based
on random initial failures of neurons and random connections between layers. We considered introducing a
small probability of failure into the abstract networks, and using a probabilistic mapping between detailed
and abstract networks, similar to mappings in [9]. But this approach does not seem so natural, since it
involves preserving exact probabilities, which seems like too stringent a requirement for our purposes. For
example, failure probabilities are normally not intended to describe exact probabilities, but as overestimates.

So we took a different approach: extract the probabilities from each detailed network, leaving us with a
network that behaves deterministically, for each particular failure pattern, connectivity pattern, and input.
The failure pattern and connectivity pattern are required to satisfy certain constraints, and the probabilistic
network should "behave like" the deterministic network with high probability. Then establish a formal
correspondence between the detailed deterministic network and an abstract deterministic network (with the
same input). Since this involves a mapping between two deterministic networks, the mapping could be a
simpler type of (non-probabilistic) mapping, similar to those used in [5].

In our case, the detailed networks include the constraint that at least m(1− ϵ) of the reps of each concept
"survive", that is, do not fail. Here, m is the number of reps for each concept, and ϵ is a small recognition
approximation parameter. The value of ϵ can be computed as 1− p(1− ζ), where p = 1− q, q is the neuron
failure probability for the probabilistic version of the detailed network, and ζ is a concentration parameter for
a Chernoff bound. For the case with limited connectivity, the detailed network also includes the constraint
that for every v ∈ reps(c), and each child c′ of c, at least am(1− ϵ) surviving reps of c′ are connected to v.
Here, a is a coefficient used to capture the notion of partial connectivity.

So, we wanted to relate our deterministic detailed networks, with failures and disconnections, to a de-
terministic abstract network A with no failures or disconnections. We wanted to prove separately that the
abstract network A is correct and that the behavior of the detailed networks corresponds closely to that of
A; then together this should yield that the detailed networks behave correctly. That would further imply
that, with high probability, the probabilistic versions of the detailed networks behave correctly.

But that is not quite how it worked out. As it happens, correctness for the recognition problem has
two aspects: with enough partial information, concepts should be recognized, and with too little partial
information, the concepts should not be recognized. That is, we have a firing requirement and a non-firing
requirement. There is also a "middle ground": with intermediate amounts of information, either outcome
is permissible. To cope with this middle ground, we found it convenient to consider two abstract networks
rather than just one: a network A1 that guarantees the firing requirement and a network A2 that guarantees
the non-firing requirement.

We consider two detailed networks, H with high connectivity and L with low connectivity, both based on
detailed probabilistic networks from [3]. We show that each of these corresponds to both A1 and A2, which
implies that both networks H and L perform correct recognition. In order to establish these correspondences,
we define formal notions of implementation to map detailed networks to abstract networks while preserving
correct behavior.

Outline of the paper: In Section 2, we define our model for hierarchies of concepts, including the
notion of when certain partial information is sufficient to "support" recognition. In Section 3, we define
our general Spiking Neural Network model, which we use to describe all of our networks, both abstract and
detailed. Section 4 contains our definitions for the recognition problem; we have two separate definitions,
one for networks in which concepts have single-neuron representations and one for networks with multi-
neuron representations. Section 5 contains our definitions of implementation relationships between detailed
networks and abstract networks. Section 6 contains definitions of our abstract networks A1 and A2 and
proofs that they work together to solve the recognition problem for hierarchical concepts. Section 7 contains
definitions for our first detailed network, H, with high connectivity, and proves its correctness by showing
that it implements both A1 and A2. Section 8 contains definitions for our second detailed network, L, with
low connectivity, and proves its correctness, again by showing that it implements both A1 and A2. Section 9
contains our conclusions.
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2 Concept Model
We define concept hierarchies as in [2]. In general, we think of a concept hierarchy as containing all of the
concepts that have been learned by an organism over its lifetime.

2.1 Preliminaries
In referring to concept hierarchies, we use the following parameters:

• ℓmax, a positive integer, representing the maximum level number for the concepts that we consider.

• n, a positive integer, representing the total number of lowest-level concepts that we consider.

• k, a positive integer, representing the number of top-level concepts in any concept hierarchy, and also
the number of child concepts for each concept whose level is ≥ 1.

• r1, r2, reals in [0, 1] with r1 ≤ r2; these represent thresholds for noisy recognition.

We assume a universal set D of concepts, partitioned into disjoint sets Dℓ, 0 ≤ ℓ ≤ ℓmax. We refer to any
particular concept c ∈ Dℓ as a level ℓ concept, and write level(c) = ℓ. Here, D0 represents the most basic
concepts and Dℓmax

the highest-level concepts. We assume that |D0| = n.

2.2 Concept hierarchies
A concept hierarchy C consists of a subset C of D, together with a children function. For each ℓ, 0 ≤ ℓ ≤ ℓmax,
we define Cℓ to be C ∩Dℓ, that is, the set of level ℓ concepts in C. For each concept c ∈ Cℓ, 1 ≤ ℓ ≤ ℓmax,
we designate a nonempty set children(c) ⊆ Cℓ−1. We call each c′ ∈ children(c) a child of c. We assume the
following properties.

1. |Cℓmax
| = k; that is, the number of top-level concepts is exactly k.

2. For any c ∈ Cℓ, where 1 ≤ ℓ ≤ ℓmax, we have that |children(c)| = k; that is, the degree of any internal
node in the concept hierarchy is exactly k.

3. For any two distinct concepts c and c′ in Cℓ, where 1 ≤ ℓ ≤ ℓmax, we have that children(c) ∩
children(c′) = ∅; that is, the sets of children of different concepts at the same level are disjoint.1

Thus, a concept hierarchy C is a forest with k roots and height ℓmax. Of course, this is a drastic simplification
of any real concept hierarchy, but the uniform structure makes networks easier to analyze.

We extend the children notation recursively by defining a concept c′ to be a descendant of a concept c if
either c′ = c, or c′ is a child of a descendant of c. We write descendants(c) for the set of descendants of c.
Let leaves(c) = descendants(c) ∩ C0, that is, all the level 0 descendants of c.

2.3 Support
Now we define which sets of level 0 concepts provide enough partial information to "support" recognition of
higher-level concepts.

We fix a particular concept hierarchy C, with its concept set C partitioned into C0, . . . , Cℓmax
. For any

given subset B of the universal set D0 of level 0 concepts, and any real number r ∈ [0, 1], we define the
set suppr(B) of concepts in C. This is intended to represent the set of concepts c ∈ C at all levels that
have enough of their leaves present in B to support recognition of c. The notion of "enough" here is defined
recursively, based on having an r-fraction of children supported for every concept at every level.

Definition 2.1 (Supported). Given B ⊆ D0, define the following sets of concepts at all levels, recursively:

1. B(0) = B ∩ C0.

2. For 1 ≤ ℓ ≤ ℓmax, B(ℓ) is the set of all concepts c ∈ Cℓ such that |children(c) ∩B(ℓ− 1)| ≥ rk.

Define suppr(B) to be
⋃

0≤ℓ≤ℓmax
B(ℓ). We say that each concept in suppr(B) is r-supported by B.

1Thus, we allow no overlap between the sets of children of different concepts. We study overlap in [4].
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3 Spiking Neural Network Model
We consider feed-forward networks in which all edges point from neurons in one layer to neurons in the
next-higher-numbered layer.

We consider neuron failures during the recognition process. For our failure model, we consider initial
stopping failures: if a neuron fails, it never performs any activity, that is, it never updates its state and never
fires.

We do not consider learning in this paper, only recognition. So we omit all aspects of our previous network
model [2] that involve learning.

3.1 Preliminaries
Throughout the paper, in referring to our networks, we use the following parameters:

• ℓ′max, a positive integer, representing the maximum number of a layer in the network.

• width, a mapping from the set of layer numbers {1, . . . , ℓ′max} to nonnegative integers, giving the
number of neurons in each layer.

• τ , a nonnegative real, representing the firing threshold for neurons.

3.2 Network structure
Our networks are directed graphs consisting of neurons arranged in layers, with forward edges directed from
each layer to the next-higher layer. Specifically, a network N consists of a set N of neurons, partitioned into
disjoint sets Nℓ, 0 ≤ ℓ ≤ ℓ′max, which we call layers. We refer to any particular neuron u ∈ Nℓ as a layer ℓ
neuron, and write layer(u) = ℓ. We refer to the layer 0 neurons as input neurons.

We assume total connectivity between successive layers, that is, each neuron u ∈ Nℓ, 0 ≤ ℓ ≤ ℓ′max − 1,
has an outgoing edge to each neuron v ∈ Nℓ+1. In this paper, these are the only edges.

We assume that the state of each neuron consists of several state components:

• firing, with values in {0, 1}; this indicates whether or not the neuron is currently firing, where 1
indicates that it is firing and 0 indicates that it is not firing.

• failed, with values in {0, 1}; this indicates whether or not the neuron has failed,where 1 indicates that
it has failed and 0 indicates that it has not failed. In this paper we consider initial stopping failures
only.

We denote the firing component of neuron u at integer time t by firingu(t) and the failed component of
neuron u at time t by failedu(t). In this paper, failures occur only at the start, thus, each failedu component
is constant over time.

For our abstract networks, we will not consider failures; for this case, to simplify matters, we omit the
failed component.

Each non-input neuron u ∈ Nℓ, 1 ≤ ℓ ≤ ℓ′max, has an additional state component:

• weight, a real-valued vector in {0, 1}n representing the weights of all incoming edges.

We denote this component of non-input neuron u at time t by weightu(t).

3.3 Network operation
The network operation is determined by the behavior of the individual neurons. We distinguish between
input neurons and non-input neurons.

If u is an input neuron, then it has only two state components, failed and firing. Since u is an input
neuron, we assume that the values of both failedu and firingu at all times t are controlled by the network’s
environment and not by the network itself; that is, the values of failedu(t) and firingu(t) are set by some
external force, which we do not model explicitly. Since we assume initial stopping failures, the value of
failedu is the same at every time t, that is, failedu(t) = failedu(0) for every t ≥ 0. We assume that if an
input neuron fails, it never fires, that is, failedu(0) = 1 implies that firingu(t) = 0 for every t ≥ 0.
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If u is a non-input neuron, then it has three state components, failed, firing, and weight. The values
of failedu at all times t are set by an external force, as for input neurons. Again, since we assume initial
stopping failures, the value of failedu is the same at every time t, that is, failedu(t) = failedu(0) for every
t ≥ 0. A non-input neuron u that fails never fires, that is, failedu(0) = 1 implies that firingu(t) = 0 for
every t ≥ 0.

For a non-input neuron u that does not fail, the value of firingu(0) is determined by the initial network
setting, whereas the value of firingu(t), t ≥ 1, is determined by u’s incoming potential and its activation
function. To define the potential, let xu(t) denote the vector of firing values of u’s incoming neighbor
neurons at time t. These are all the nodes in the layer numbered layer(u)− 1. Then the potential for time
t, potu(t), is given by the dot product of the weight vector and incoming firing pattern at neuron u at time
t− 1, that is,

potu(t) = weightu(t− 1) · xu(t− 1) =
∑
j

weightuj (t− 1)xu
j (t− 1)j,

where j ranges over the set of incoming neighbors. The activation function, which specifies whether or not
neuron u fires at time t, is then defined by:

firingu(t) =

{
1 if potu(t) ≥ τ,

0 if otherwise,

where τ is the assumed firing threshold.
For a non-input neuron u, the value of weightu(0) is determined by the initial network setting. In this

paper, we assume that the weight vector remains unchanged: weightu(t) = weightu(0) for every t ≥ 0.
During execution, the network proceeds through a sequence of configurations, where each configuration

specifies a state for every neuron in the network, that is, values for all the state components of every neuron.

4 Two Recognition Problems
In this section, we define our recognition problem formally. We define two versions of the problem, one for
"abstract" networks with single-neuron representations and one for "detailed" networks with multi-neuron
representations. We need two different definitions because we assume different conventions for input and
output for these two cases. In Section 5 we describe how these two definitions are related.

The input to the networks involves "presenting" a set B of level 0 concepts, according to a presentation
convention. This convention is different for abstract networks with single-neuron representations and de-
tailed networks with multi-neuron representations. The output requirements are expressed in terms of firing
guarantees for certain sets of neurons. We do not consider probabilities here, but express the behavior just
in terms of sets of firing neurons. In realistic versions of the multi-neuron networks, these sets of neurons
could be said to fire only with high probability, not with certainty. However, we leave these probabilities to
be analyzed elsewhere, for example, [3].

We consider a particular concept hierarchy C, with concept hierarchy notation as defined in Section 2.2
For our networks, we use notation as defined in Section 3.

4.1 Recognition for a single-neuron representation
In this subsection, we define what it means for an "abstract" network A that uses a single-neuron represen-
tation to recognize concept hierarchy C.

The definition assumes that every level 0 concept c has a single designated representing layer 0 neuron
rep(c); this will be used to provide c as an input to the network. For any B ⊆ D0, we define reps(B) =
{rep(b) | b ∈ B}. That is, reps(B) is the set of all reps of concepts in B. Furthermore, we assume that
every concept c ∈ C with level(c) ≥ 1 has a representing neuron, rep(c), in some layer ≥ 1 of the network.
All of the rep(c) neurons are distinct.

2This is slightly different from what we did in [3], where we restricted attention to a single concept c and all its descendants,
i.e., a tree rather than a k-root forest. Here we use the full concept hierarchy, with k roots. The main difference in the results
is that we have more concepts in the concept hierarchy, which would require the probability bounds from [3] to be adjusted
accordingly. Since we are not focusing on probabilities in this paper, this will not affect our results.

5



Note that these conventions require that width(0) ≥ |D0|, that is, the number of neurons in layer 0, is
at least |D0|. Similarly, there must be sufficiently many neurons in higher layers to accommodate all of the
reps.

Our recognition problem definition relies on the following definition of how a particular set B of level 0
concepts is “presented” to the network. This involves firing exactly the input neurons that represent these
level 0 concepts.

Definition 4.1 (Presented). If B ⊆ D0 and t ≥ 0, then we say that B is presented at time t (in some
particular network execution) exactly if the following holds. For every layer 0 neuron u:

1. If u ∈ reps(B), then u fires at time t.

2. If u /∈ reps(B), then u does not fire at time t.

Now we can define what it means for network A to recognize concept hierarchy C. The definition says that,
for each concept c that is r2-supported by B, rep(c) must fire. On the other hand, if c is not r1-supported
by B, then rep(c) must not fire. To simplify things a bit, we assume here that B ⊆ C0, that is, B is a subset
of the actual level 0 concepts in the concept hierarchy C.

Definition 4.2 (Recognition problem for single-neuron representations). Network A (r1, r2)-recognizes
C provided that the following holds. Assume that B ⊆ C0 is presented at time 0. Then:

1. When rep(c) should fire: If c ∈ suppr2(B), then neuron rep(c) fires at time layer(rep(c)).

2. When rep(c) should not fire: If c /∈ suppr1(B), then neuron rep(c) does not fire at time layer(rep(c)).

For use later in the paper, we find it convenient to split this two-part definition into two parts:

Definition 4.3 (Firing guarantee for single-neuron representations). Network A guarantees r2-firing
for C provided that the following holds. If B ⊆ C0 is presented at time 0 and if c ∈ suppr2(B), then neuron
rep(c) fires at time layer(rep(c)).

Definition 4.4 (Non-firing guarantee for single-neuron representations). Network A guarantees
r1-non-firing for C provided that the following holds. If B ⊆ C0 is presented at time 0 and if c /∈ suppr1(B),
then neuron rep(c) does not fire at time layer(rep(c)).

4.2 Recognition for a multi-neuron representation
Now we define what it means for a "detailed" network D that uses a multi-neuron representation to recognize
concept hierarchy C. The definition assumes that every level 0 concept c has exactly m layer 0 neurons reps(c).
For any B ⊆ D0, we define reps(B) =

⋃
b∈B reps(b). That is, reps(B) is the set of all reps of concepts in

B. Furthermore, we assume that every concept c ∈ C with level(c) ≥ 1 has a set of m representing neurons,
reps(c), in layers ≥ 1 of the network. All of these reps sets are disjoint.

Note that this requires that width(0) ≥ |D0| m, that is, the number of neurons in layer 0 is at least
|D0| m. Also, there must be sufficiently many neurons in higher layers to accommodate all of the reps.

Our recognition problem for multi-neuron representations uses the following new parameter:

• ϵ ∈ [0, 1]; this is the recognition approximation parameter, representing a fraction of rep neurons that
might not fire.

We assume that the set F of failed neurons (including the input neurons) is determined at the start. For
every neuron u ∈ F , the failed flag of u is set to 1 at time 0 and remains 1 thereafter, that is, failedu(t) = 1
for every t ≥ 0. For every neuron u /∈ F , the failed flag of u is set to 0 at time 0 and remains 0 thereafter,
that is, failedu(t) = 0 for every t ≥ 0.

Our recognition problem definition relies on the following definition of how a particular set B of level 0
concepts is presented to the network. This involves firing exactly the input neurons that represent these
level 0 concepts and have not failed.

Definition 4.5 (Presented). If B ⊆ D0 and t ≥ 0, then we say that B is presented at time t (in some
particular network execution) exactly if the following holds. For every layer 0 neuron u:
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1. If u ∈ reps(B)− F , then u fires at time t.

2. If u /∈ reps(B) or u ∈ F , then u does not fire at time t.

Now we can define what it means for network D to recognize concept hierarchy C. We require that, for
each concept c that is r2-supported by B, then at least m(1− ϵ) of the neurons in reps(c) must fire. On the
other hand, if c is not r1-supported by B, then none of the neurons in reps(c) should fire.

Definition 4.6 (Recognition problem for multi-neuron representations). Network D (r1, r2)-recognizes
C provided that the following holds. Assume that B ⊆ C0 is presented at time 0. Then:

1. When reps(c) neurons should fire: If c ∈ suppr2(B), then at least m(1− ϵ) of the neurons v ∈ reps(c)
fire at time layer(v).

2. When reps(c) neurons should not fire: If c /∈ suppr1(B), then no neuron v ∈ reps(c) fires at time
layer(v).

Unlike in the single-neuron case, we will not need to split this definition into two parts. We find such a
split to be useful in this paper for abstract networks, but not for detailed networks. We will show that each
of our detailed networks implements two different abstract networks, one for each part of the recognition
requirement.

5 Relating Solutions to the Two Recognition Problems
In this section, we define formal implementation relationships between a detailed network D and an abstract
network A. We would like to use these to show that, if A solves the recognition problem for single-neuron
representations, then D solves the recognition problem for multi-neuron representations.

Throughout the rest of this paper, we fix a particular concept hierarchy C. We assume that, in A, every
concept c ∈ C has one representing neuron, rep(c), as specified in Section 4.1. In D, every concept c has a
size-m set of representing neurons, reps(c), as specified in Section 4.2. A does not admit any neuron failures,
whereas D allows failures, as defined by a set F of failed neurons.

We will define these implementation relationships in terms of individual executions of the two networks.
To do this, we remove some complications, by assuming that the layers in the networks correspond to the
levels in the hierarchy. That is:

• ℓ′max = ℓmax; the number of layers in the network is the same as the number of levels in the concept
hierarchy.

• In A, for every concept c, layer(rep(c)) = level(c).

• In D, for every concept c and every v ∈ reps(c), layer(v) = level(c).

Moreover, we assume that, in both networks A and D, the input set B ⊆ C0 is presented at time 0, and no
firing of layer 0 neurons occurs at any other time.

With these assumptions, network A behaves deterministically given a particular input set B, and network
D behaves deterministically given a particular set F of failed neurons and input set B.

5.1 First attempt
Here is our first attempt at an approach to proving the correctness condition in Definition 4.6 using imple-
mentation relationships between abstract and detailed networks. We assume an abstract network A and a
detailed network D. D includes a fixed set F of failed neurons. Constraints on F will be defined in Sections 7
and 8, for our particular detailed networks H and L.

Definition 5.1 (Implements, ≤impl). Network D implements network A provided that, for every B ⊆ C0,
for the two unique executions of these two networks on B, the following holds: For every concept c ∈ C,

1. If rep(c) fires at time level(c) in A, then in D, at least m(1− ϵ) of the neurons v ∈ reps(c) fire, each
such v at time level(c).
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2. If rep(c) does not fire at time level(c) in A, then in D, no neuron v ∈ reps(c) fires at time level(c).

We write D ≤impl A as shorthand for D implements A.

Note that Part 1 of the definition is stated in terms of the approximation parameter ϵ.
This implementation definition is enough to infer correctness of the detailed network D from correctness

of the abstract network A:

Theorem 5.2. Let r1 and r2 be reals in [0, 1] with r1 ≤ r2. If A (r1, r2)-recognizes C according to Defini-
tion 4.2 and D ≤impl A, then D (r1, r2)-recognizes C according to Definition 4.6.

Proof. Assume that A (r1, r2)-recognizes C and D ≤impl A. To show that D (r1, r2)-recognizes C, we show
the two parts of Definition 4.6 separately. Fix some particular B ⊆ C0.

First, suppose that c ∈ suppr2(B). Then by Part 1 of Definition 4.2, rep(c) fires at time level(c) in A.
Then Part 1 of Definition 5.1 implies that, in D, at least m(1− ϵ) of the neurons v ∈ reps(c) fire, each such
v at time level(c). This shows Part 1 of Definition 4.6.

Second, suppose that c /∈ suppr1(B). Then by Part 2 of Definition 4.2, rep(c) does not fire at time level(c)
in A. Then Part 2 of Definition 5.1 implies that, in D, no neuron in reps(c) fires at time level(c). This
shows Part 2 of Definition 4.6.

In Sections 6-8, we define particular abstract and detailed networks. We would like to apply Theorem 5.2
to show that the detailed networks solve the multi-neuron recognition problem. This would entail showing
that the abstract networks solve the single-neuron recognition problem and that the detailed networks are
related to the abstract networks using the implementation relation ≤impl.

However, that is not quite how it worked out. Instead of a single abstract network A, we found it
convenient to use two abstract networks A1 and A2, one to show the firing guarantee and one to show the
non-firing guarantee. We describe this alternative approach in the next subsection.

The difficulty with using the approach of this subsection seems to arise because our correctness require-
ments allow some uncertainty in the firing requirements. Having at least r2-support is supposed to guarantee
firing, and not having r1-support is supposed to guarantee non-firing. But there is a middle area, in which
we have r1-support but do not have r2-support, in which firing is permitted to occur or not occur. But our
definition of ≤impl requires that the exact firing behavior of the abstract network A be emulated in D. That
seems to be requiring too much, leading us to the alternative approach of the next subsection.

5.2 Second attempt
Here is our second attempt at an approach to proving our correctness condition in Definition 4.6 using
implementation relationships between abstract and detailed networks. This approach is based on splitting
the requirements in Definition 4.6 into two conditions, one for firing and one for non-firing. We define
two abstract networks, A1 and A2, and show that each satisfies one of the two conditions. We define two
notions of implementation, one preserving the firing guarantees and one preserving the non-firing guarantees.
We show that the same detailed network D implements A1 using the first notion of implementation, and
implements A2 using the second notion of implementation. Combining the two results gives us the combined
correctness condition for D, i.e., that D solves the recognition problem for multi-neuron representations.

We start by defining our two different implementation relationships between a detailed network D and an
abstract network A. As before, D includes a fixed set F of failed neurons, satisfying constraints that will be
defined in Sections 7 and 8.

Definition 5.3 (Implements1, ≤impl1). Network D implements1 network A provided that, for every B ⊆
C0, for the two unique executions of these two networks on B, the following holds: For every concept c, if
rep(c) fires at time level(c) in A, then in D, at least m(1 − ϵ) of the neurons v ∈ reps(c) fire, each such v
at time level(c).

We write D ≤impl1 A as shorthand for D implements1 A.

Definition 5.4 (Implements2, ≤impl2). Network D implements2 network A provided that, for every B ⊆
C0, for the two unique executions of these two networks on B, the following holds: For every concept c, if
rep(c) does not fire at time level(c) in A, then in D, no neuron v ∈ reps(c) fires at time level(c).

We write D ≤impl2 A as shorthand for D implements2 A.
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Using the two implementation relationships ≤impl1 and ≤impl2, we obtain two theorems:

Theorem 5.5. Let r2 be a real in [0, 1]. If A guarantees r2-firing for C according to Definition 4.3 and
D ≤impl1 A, then D satisfies Part 1 of Definition 4.6.

Proof. Assume that A guarantees r2-firing for C and D ≤impl1 A. We must show that D satisfies Part 1 of
Definition 4.6. Fix some particular B ⊆ C0.

Suppose that c ∈ suppr2(B). Then by Definition 4.3, rep(c) fires at time level(c) in A. Then Definition 5.3
implies that, in D, at least m(1− ϵ) of the neurons v ∈ reps(c) fire, each at time level(c). This shows Part
1 of Definition 4.6.

Theorem 5.6. Let r1 be a real in [0, 1]. If A guarantees r1-non-firing for C according to Definition 4.4 and
D ≤impl2 A, then D satisfies Part 2 of Definition 4.6.

Proof. Assume that A guarantees r1-non-firing for C and D ≤impl2 A. We must show that D satisfies Part
2 of Definition 4.6. Fix some particular B ⊆ C0.

Suppose that c /∈ suppr1(B). Then by Definition 4.4, rep(c) does not fire at time level(c) in A. Then
Definition 5.4 implies that, in D, no neuron in reps(c) fires at time level(c). This shows Part 2 of Defini-
tion 4.6.

Now we consider two abstract networks A1 and A2, where A1 guarantees r2-firing for C and A2 guarantees
r1-non-firing for C. Combining the two previous results, we get:

Theorem 5.7 (Combined mapping theorem). Suppose that network A1 guarantees r2-firing for C and
network A2 guarantees r1-non-firing for C. Suppose that D ≤impl1 A1 and D ≤impl2 A2. Then D (r1, r2)-
recognizes C according to Definition 4.6.

Proof. Immediate from Theorems 5.5 and 5.6.

6 Abstract Networks
In this section, we define two abstract networks, A1 and A2. They are identical except for different firing
thresholds. In Sections 7 and 8, A1 and A2 will serve as abstract networks for two detailed networks, H and
L, with high connectivity and low connectivity respectively. We will use A1 for proving firing guarantees
and A2 for non-firing guarantees.

We assume that, in A1 and A2, ℓ′max = ℓmax. Also, every concept c ∈ C has one representing neuron,
rep(c), as described in Section 4.1, with layer(rep(c)) = level(c). The rep functions may be different for A1

and A2. A1 and A2 do not admit any neuron failures.
For each of these networks, we assume:

• r1 ≤ r2.

• For each neuron v of the form rep(c) with level(c) ≥ 1, there are weight 1 edges from all reps of
children of c to v. All other edges have weight 0.

The assumption that r1 ≤ r2 is sufficient to argue correctness of the two abstract networks A1 and A2 on their
own. Later, in order to use them as abstractions of the detailed networks H and L, we will need something
stronger: an appropriate gap between r1 and r2 to accommodate failures and limited connectivity.3 We
assume weight 1 edges from reps of children to reps of their parents.

6.1 Abstract Network A1

For A1, we make the additional assumption:

• τ = r2k.
3For network H, we must take account of failures, but not of disconnections. So we will assume there that r1 ≤ r2(1 − ϵ).

For network L, we will need a greater gap, r1 ≤ ar2(1 − ϵ), where a is some constant < 1, to handle limited connectivity as
well as neuron failures.
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Thus, we assume a fairly high firing threshold.
Recognition in network A1 proceeds as in [2]. That is, we start by presenting a set B ⊆ C0 at time 0.4

More precisely, we assume that the rep of each level 0 concept in B fires at time 0, and only at time 0, and no
other layer 0 neurons ever fire. This leaves us with a deterministic system. Then the neuron firing propagates
up the layers, one time unit per layer, according to the deterministic firing rule defined in Section 3.3.

The global states of A1 consist of the following components:

• For each neuron u in the network, firingu ∈ {0, 1}. Initially, the layer 0 neurons’ firing components
are set according to the definition of presenting B for single-neuron representations. All the higher-layer
neurons have their initial firing components set to 0.

• For each neuron v with layer(v) = ℓ ≥ 1, a mapping weightv from neurons at layer ℓ− 1 to {0, 1}. For
each neuron v of the form rep(c), we have weight 1 edges from all reps of children of c to v. All other
edges have weight 0. That is, weightv(u) = 1 exactly if u = rep(c′) for some child c′ of c.

We omit the failed components, since we are not considering failures here.
The transitions are also global. The weight components don’t change. For the firing flags, the values for

the layer 0 neurons are 0 after any transition, since we are assuming that inputs are presented only at time
0. The value for each higher-layer neuron v after a transition is determined based on the incoming potential:
if that is at least r2k, then the new value of firingv is 1, and otherwise it is 0.

Theorem 6.1. A1 guarantees r2-firing for C, as in Definition 4.3.

Proof. (Sketch) We can argue correctness as in [2, 4]. Here we need to show that, for any concept c in C that
is r2-supported by the presented set B, the neuron rep(c) fires at time level(c). This can be shown using an
inductive proof on levels.

The key is the inductive step, where we consider a concept c at level ℓ ≥ 1 that is r2-supported by B.
Then by the definition of r2-supported, it must be that at least r2k of c’s children are r2-supported by B.
By the inductive hypothesis, all of the reps of these children fire at time ℓ − 1. Since the edges from these
reps to rep(c) all have weight 1, the total incoming potential to rep(c) is at least r2k. This meets the firing
threshold r2k for rep(c) and ensures that rep(c) fires at time ℓ.

In fact, we can show the following stronger two-directional result, though we will not use it in this paper.
The proof is as in [2, 4].

Theorem 6.2. A1 (r1, r2)-recognizes C, as in Definition 4.2.

6.2 Abstract Network A2

This is exactly the same as A1, but with a somewhat lower firing threshold:

• τ = r1k.

The network operates in the same way as A1. That is, we start by presenting a set B ⊆ C0 at time
0. More precisely, we assume that the rep of each level 0 concept in B fires at time 0, and only at time
0, and no other layer 0 neurons ever fire. This leaves us with a deterministic system. Then the neuron
firing propagates up the layers, one time unit per layer, according to the deterministic firing rule defined in
Section 3.3.

The global states again consist of:

• For each neuron u in the network, firingu ∈ {0, 1}. Initially, the layer 0 neurons’ firing components
are set according to the definition of presenting B for single-neuron representations. All the higher-layer
neurons have their initial firing components set to 0.

• For each neuron v with layer(v) = ℓ ≥ 1, a mapping weightv from neurons at layer ℓ− 1 to {0, 1}. For
each neuron v of the form rep(c), we have weight 1 edges from all reps of children of c to v. All other
edges have weight 0. That is, weightv(u) = 1 exactly if u = rep(c′) for some child c′ of c.

4This requires that layer 0 contain at least |C0| neurons. From now on, we will just assume that we have enough neurons to
represent all the concepts.
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We again omit the failed components. The transitions are exactly as for A1.

Theorem 6.3. Network A2 guarantees r1-non-firing for C, as in Definition 4.4.

Proof. (Sketch) Now we must show that, for any concept c ∈ C that is not r1-supported by B, the neuron
rep(c) does not fire at time level(c). Again this can be shown using induction on levels.

For the inductive step, we consider a concept c at level ℓ ≥ 1 that is not r1-supported by B. Then it must
be that strictly fewer than r1k of c’s children are r1-supported by B. By the inductive hypothesis, the reps
of only these children could fire at time ℓ − 1. Therefore, the total incoming potential to rep(c) is strictly
less than r1k. This does not meet the firing threshold r1k for rep(c), which ensures that rep(c) does not fire
at time ℓ.

Again, we can show the stronger two-directional result, though we will not use it in this paper. The proof
is as in [2, 4].

Theorem 6.4. A2 (r1, r2)-recognizes C, as in Definition 4.2.

Theorems 6.2 and 6.4 say that each of A1 and A2 satisfies both parts of the correctness condition for
recognition, in Definition 4.2 . In fact, we have enough freedom in setting the thresholds so that any threshold
in the range [r1k, r2k] would also work correctly, for both parts.

The reason we separate these two conditions here is that we will use the separation in showing correctness
for our detailed networks H and L. For each of these, we will use two separate implementation relationships,
mapping to A1 via ≤impl1 to show the firing condition and mapping to A2 via ≤impl2 to show the non-firing
condition.5

7 Detailed Network for a Network Model with High Connectivity
We are finally ready to describe our first detailed network, H. It is based on a feed-forward network model
with total connectivity from each layer ℓ − 1 to layer ℓ. In H, ℓ′max = ℓmax. Also, every concept c ∈ C
has exactly m representing neurons, reps(c), as described in Section 4.2, and every neuron v ∈ reps(c) has
layer(v) = level(c). Network H includes a set F of failed neurons, subject to constraints that we define
below.

Network H is a deterministic version of the first probabilistic network in [3]. In [3], we gave a direct proof
that the network of that paper works correctly, that is, that it (r1, r2) recognizes C. The definition of (r1, r2)
recognition in that paper is probabilistic, asserting recognition only with high probability.6

In this paper, we give a different style of proof for H, based on implementation relationships ≤impl1 and
≤impl2 from H to our abstract networks A1 and A2, respectively. We know from Theorem 6.1 that A1

guarantees r2-firing for C, and from Theorem 6.3 that A2 guarantees r1-non-firing for C. We argue here that
the implementations carry over these correctness properties to the detailed network H. This argument is
based on the combined mapping theorem, Theorem 5.7.

The first thing we do here, compared to [3], is to remove all the probabilistic choices from the network,
in order to produce a deterministic network. The only probability in the network of [3] is in the choice of
the set of neurons that fail: each neuron fails independently, with the same probability q. Here we assume
simply that some arbitrary set F of neurons fail, subject to some constraints, namely, that the number of
surviving (i.e., non-failing) neurons among the reps of any c is at least m(1 − ϵ), where ϵ is a recognition
approximation parameter. The first "survival lemma" in [3], Lemma 5.2, says that this bound is achieved in
the network of [3] with high probability.

Thus, we rely on a survival lemma from [3] to argue that the probabilistic version of the network satisfies
our desired constraints on the set F of failed neurons. Here, we just assume the constraints and forget about
the probability. Once we fix F , the behavior of the network is completely determined by the input set B.

5It might be possible to define a single nondeterministic abstract network that can be used for both parts, but that seems
more complicated and we haven’t done this.

6Also, as noted earlier, in [3] we assumed a variant of our concept hierarchy definition, with only one root. The proofs in
that paper could be extended to the more general case, with suitably modified probability bounds.

11



7.1 The network H
We use the following assumptions:

• τ = r2km(1− ϵ). That is, compared to what we used for A1, the threshold now includes the number
m of reps of each concept, as well as a factor of 1− ϵ that is used in bounding the number of failures.7

• r1 ≤ r2(1− ϵ).

• For each neuron v of the form rep(c) with level(c) ≥ 1, there are weight 1 edges from all reps of
children of c to v. All other edges have weight 0.

• F is the set of failed neurons. We assume that the number of surviving (i.e., non-failed) neurons among
the reps of any c is at least m(1 − ϵ). For non-rep neurons, we have no constraints on their failures,
but we use the fixed set F in order to ensure that the network’s behavior is deterministic, for a given
input B.

Thus, we assume a fairly high firing threshold and limited failures. Now we assume a gap between r1 and
r2, namely, r1 ≤ r2(1 − ϵ), in order to accommodate neuron failures. We assume weight 1 edges between
reps of children and reps of their parents.

The network operates as in [3]. That is, we start by presenting a set B ⊆ C0 at time 0. More precisely,
we assume that all surviving reps of each level 0 concept in B fire at time 0, and only at time 0, and no
other layer 0 neurons fire at any time. This leaves us with a deterministic system. Then the neuron firing
propagates up the layers, one time unit per layer, according to the deterministic firing rule in Section 3.3.

The global states of H consist of the following components:

• For each neuron u in the network, failedu ∈ {0, 1}. The initial values are set according to F : failedu =
1 if and only if u ∈ F .

• For each neuron u in the network, firingu ∈ {0, 1}. Initially, the layer 0 neurons’ firing components
are set according to the definition of presenting B for multi-neuron representations. That is, if u ∈
reps(c)− F then u fires at time 0, whereas if u /∈ reps(c) or u ∈ F , then u does not fire at time 0. All
the higher-layer neurons have their initial firing components set to 0.

• For each neuron v with layer(v) = ℓ ≥ 1, a mapping weightv from neurons at layer ℓ− 1 to {0, 1}. For
each neuron v ∈ reps(c), we have weight 1 edges from all reps of children of c to v. All other edges
have weight 0. That is, weightv(u) = 1 exactly if u ∈ reps(c′) for some child c′ of c.

The firing and weight components are analogous to the corresponding components of A1 and A2, except
that now we consider multiple reps for each concept c. In particular, we have weight-1 connectivity between
all of the reps of concepts and reps of their children. The failed component is new.

As for the transitions: The weight and failed components don’t change. For the firing flags, the values
for the layer 0 neurons are 0 after any transition. The firing values of higher-layer neurons are computed
based on potential, with a sharp threshold of r2km(1 − ϵ). The failed neurons do not contribute to this
potential.

7.2 H implements A1

In this section, we establish an implementation relationship between the detailed network H and the ab-
stract network A1. We use this to carry over firing guarantees from A1 to H, in the manner described by
Theorem 5.5.

We assume a fixed set F of failed nodes in H, subject to the constraint that the number of surviving
neurons among the reps of any c is at least m(1− ϵ). We show:

Theorem 7.1. H ≤impl1 A1.

In other words, for every B ⊆ C0, for the two unique executions of the two networks A1 and H on B, the
following holds: For every concept c, if rep(c) fires at time level(c) in A1, then in H, at least m(1− ϵ) of the
neurons in reps(c) fire at time level(c).

7To make our results a bit more general, we could use an arbitrary threshold in the range r1km(1− ϵ), r2km(1− ϵ)] instead
of just the higher threshold r2km(1− ϵ). The proof would be mostly unchanged.
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Proof. Fix B ⊆ C0, and consider the unique executions of A1 and H on input B. We prove the following
statement P (t), for every t ≥ 0. This immediately implies the result.

P (t): For every concept c with level(c) = t, if rep(c) fires at time t in A1, then in H, at least m(1− ϵ) of
the neurons in reps(c) fire at time t.

We prove P (t) by induction on t, for all concepts c.
Base: t = 0. Suppose that c is a concept with level(c) = 0 and rep(c) fires at time 0 in network A1. Then

by definition of presentation in A1, c ∈ B. Then by definition of presentation in H and the assumption on
H that at least m(1− ϵ) of the neurons in reps(c) survive, at least m(1− ϵ) of the neurons in reps(c) fire at
time 0 in H, as needed.

Inductive step: t ≥ 1: Assume that P (t − 1) holds. Consider c with level(c) = t. Suppose that rep(c)
fires at time t in A1. Then rep(c) must have enough incoming potential from the reps of its children to fire.
Since the threshold in A1 is r2k, this means that the reps of at least r2k of c’s children fire at time t− 1.

Then by the inductive hypothesis P (t − 1), we have that, in H, for each of these r2k children c′ of c, at
least m(1 − ϵ) of the neurons in reps(c′) fire at time t − 1. This yields a total incoming potential to each
neuron v ∈ reps(c) of at least r2km(1− ϵ). This is enough to meet the firing threshold for v. By assumption
on H, at least m(1 − ϵ) of the neurons v ∈ reps(c) survive. Therefore, since their thresholds are met, they
fire. Thus, at least m(1− ϵ) of the neurons in reps(c) fire at time t in H, as needed.

Now we can show that H satisfies the firing requirement.

Theorem 7.2. H satisfies Part 1 of the definition of the recognition problem for networks with multi-neuron
representations, Definition 4.6.

Proof. Theorem 6.1 says that A1 guarantees r2-firing for C. Theorem 7.1 says that H ≤impl1 A1. Then
Theorem 5.5 implies that H satisfies Part 1 of Definition 4.6.

7.3 H implements A2

Now we establish a second implementation relationship, between the detailed network H and the abstract
network A2, in order to carry over non-firing guarantees from A2 to H, in the manner described by Theo-
rem 5.6.

Again we assume a fixed set F of failed nodes, subject to the constraint that the number of surviving
neurons among the reps of any c is at least m(1− ϵ). Now we show:

Theorem 7.3. H ≤impl2 A2.

In other words, for every B ⊆ C0, for the two unique executions of the two networks A2 and H on B, the
following holds: For every concept c, if rep(c) does not fire at time level(c) in A2, then in H, no neurons in
reps(c) fire at time level(c).

Proof. Fix B ⊆ C0, and consider the unique executions of A2 and H on input B. We prove the following
statement P (t), for every t ≥ 0, which immediately implies the result.

P (t): For every concept c with level(c) = t, if rep(c) does not fire at time t in A2 then in H, no neurons
in reps(c) fire at time t.

We prove P (t) by induction on t, for all concepts c.
Base: t = 0: Suppose that c is a concept with level(c) = 0 and rep(c) does not fire at time 0 in network

A2. Then by definition of presentation in A2, c /∈ B. Then by definition of presentation in H, none of the
neurons in reps(c) fire at time 0, as needed.

Inductive step: t ≥ 1: Assume that P (t− 1) holds, and consider c with level(c) = t. Suppose that rep(c)
does not fire at time t in A2. Then rep(c) must not have enough incoming potential from its children to fire.
Since the threshold in A2 is r1k, this means that the reps of strictly fewer than r1k of c’s children fire at
time t− 1.

Then by inductive hypothesis P (t−1), we have that, in H, for each child c′ of c that does not fire, none of
the neurons in reps(c′) fire at time t− 1. This yields a total incoming potential to each neuron v ∈ reps(c)
of strictly less than r1km. But the firing threshold for each such v is r2km(1 − ϵ). Since we have assumed
that r1 ≤ r2(1− ϵ), we know that r1km ≤ r2km(1− ϵ). So the incoming potential to each such v is strictly
less than its firing threshold r2km(1− ϵ), which implies that v does not fire at time t, as needed.
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Now we can show that H satisfies the non-firing requirement.

Theorem 7.4. H satisfies Part 2 of the definition of the recognition problem for networks with multi-neuron
representations, Definition 4.6.

Proof. Theorem 6.3 says that A2 guarantees r1-non-firing for C. Theorem 7.3 says that H ≤impl2 A2. Then
Theorem 5.6 implies that H satisfies Part 2 of Definition 4.6.

7.4 Correctness of H
Theorem 7.5. H (r1, r2)-recognizes C.

Proof. By Theorems 7.2 and 7.4.

Thus, we have shown correctness of the deterministic network H. The network of [3] is probabilistic, in
that it chooses the failed set F randomly. It is shown in [3] that, with high probability, that network achieves
the restrictions on failures that are assumed here. Therefore, we can infer a claim about the probabilistic
version of the network: that with high probability it (r1, r2)-recognizes C.8

8 Detailed Network for a Network Model with Low Connectivity
Now we add the complication of limited connectivity, in addition to neuron failures. We describe our second
detailed network, L. L is also based on a feed-forward network, but now with partial connectivity from each
layer ℓ − 1 to layer ℓ. In L, as in H, ℓ′max = ℓmax. Also, every concept c ∈ C has exactly m representing
neurons, reps(c), as described in Section 4.2, and every neuron v ∈ reps(c) has layer(v) = level(c). Network
L includes a set F of failed neurons, subject to constraints that we define below.

Network L is a deterministic version of the second probabilistic network in [3]. In [3], we gave a direct
proof that the network of that paper works correctly, that is, that it (r1, r2)-recognizes C, using a probabilistic
version of the definition. In this paper, we give a new proof based on implementation relationships ≤impl1

and ≤impl2 from L to our abstract networks A1 and A2, respectively.
Again, we begin by removing all of the probabilistic choices from the network, in order to produce a

deterministic network. Again, the only probability in the network of [3] is in the choice of the set F of
failed neurons. The connectivity of the algorithm in [3] is not determined probabilistically, but rather,
nondeterministically subject to some constraints. Here we assume that some arbitrary set F of neurons fails,
subject to the same constraint as for H, that is, that the number of surviving neurons among the reps of
any c is at least m(1 − ϵ). We also add a new constraint: that for any concept c with level(c) ≥ 1, any
v ∈ reps(c), and any child c′ of c, there are at least am(1 − ϵ) neurons in reps(c′) that both survive and
are connected with weight 1 edges to v. Two of the "survival lemmas" in [3], Lemmas 6.2 and 6.4, say that
these bounds are achieved in the network of [3] with high probability.

Thus, we again rely on survival lemmas from [3] to argue that the probabilistic version of the network
satisfies our desired constraints. Here, we just assume the constraints and forget about the probability. Once
we fix F and the edge weights, the behavior of the network is completely determined by the input set B.

8.1 The network L
Now we use the following assumptions:

• τ = ar2km(1− ϵ).9

• r1 ≤ ar2(1− ϵ).

• F is the set of failed neurons. We assume that the number of surviving neurons among the reps of any
c is at least m(1− ϵ).

8Again, we remark that the probabilities here are slightly larger than in [3], because the "shapes" of the hierarchies are
slightly different.

9As before, to make our results a bit more general, we could use an arbitrary threshold in the range
ar1km(1− ϵ), ar2km(1− ϵ)] instead of just the higher threshold ar2km(1− ϵ).
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• E is the set of weight 1 edges from reps of children to reps of their parents. These represent the
(partial) connectivity of the network. We assume that, for any concept c with level(c) ≥ 1, any
v ∈ reps(c), and any child c′ of c, there are at least am(1− ϵ) neurons u ∈ reps(c′) such that u survives
and (u, v) ∈ E.

Thus, we assume a fairly low firing threshold and limited failures. Now we assume a larger gap between
r1 and r2 than in H, namely, r1 ≤ ar2(1 − ϵ), in order to accommodate both neuron failures and limited
connectivity. We assume weight 1 edges between "sufficiently many" surviving reps of children and reps of
their parents.

The network operates as in [3]. That is, we start by presenting a set B ⊆ C0 at time 0. Then the neuron
firing propagates up the layers, according to the deterministic firing rule in Section 3.3.

The global states of L consist of the following components, which are the same as for H. The only
difference is in the weights of edges, reflecting partial connectivity.

• For each neuron u in the network, failedu ∈ {0, 1}. The initial values are set according to F : failedu =
1 if and only if u ∈ F .

• For each neuron u in the network, firingu ∈ {0, 1}. Initially, the layer 0 neurons’ firing components
are set according to the definition of presenting B for multi-neuron representations. That is, if u ∈
reps(c)− F then u fires at time 0, whereas if u /∈ reps(c) or u ∈ F , then u does not fire at time 0. All
the higher-layer neurons have their initial firing components set to 0.

• For each neuron v with layer(v) = ℓ ≥ 1, a mapping weightv from neurons at layer ℓ − 1 to {0, 1}.
For each neuron v ∈ reps(c), we have weight 1 edges to v from all u ∈ reps(children(c)) such that
(u, v) ∈ E. All other edges have weight 0.

The transitions are as for H. Now only the surviving neurons that are connected to a neuron v via edges in
E contribute to the incoming potential to v.

8.2 L implements A1

Now we establish an implementation relationship between the detailed network L and the abstract network
A1. We use this to carry over firing guarantees from A1 to L, as described by Theorem 5.5.

We assume a fixed set F of failed nodes in L, and a fixed set E of weight 1 edges, subject to the constraints
given in Section 8.1. We show:

Theorem 8.1. L ≤impl1 A1.

In other words, for every B ⊆ C0, for the two unique xecutions of the two networks A1 and L on B, the
following holds: For every concept c, if rep(c) fires at time level(c) in A1, then in L, at least m(1− ϵ) of the
neurons in reps(c) fire at time level(c).

In order to prove the corresponding theorem for H, Theorem 7.1, we used induction on t to prove the
following statement P (t): For every concept c with level(c) = t, if rep(c) fires at time t in A1, then in
H, at least m(1 − ϵ) of the neurons in reps(c) fire at time t. However, for L, the combination of partial
connectivity and failures adds new complications, which require us to state a stronger predicate to be proved
by induction.

Proof. Fix B ⊆ C0, and consider the unique executions of A1 and L on input B. We prove the following
statement Q(t), for every t ≥ 0:

Q(t): For every concept c with level(c) = t, if rep(c) fires at time t in A1, then in L, every surviving
neuron in reps(c) fires at time t.

By our assumptions on F , we know that, for any c, the number of surviving neurons in reps(c) is at least
m(1− ϵ). Therefore, Q(t) implies: For every concept c with level(c) = t, if rep(c) fires at time t in A1, then
in L, at least m(1− ϵ) of the neurons in reps(c) fire at time t. This is what is needed for the implementation
relationship ≤impl1.

We prove Q(t) by induction on t, for all concepts c.
Base: t = 0: Suppose that c is a concept with level(c) = 0 and rep(c) fires at time 0 in A1. Then by

definition of presentation in A1, c is in B. Then by definition of presentation in L, all surviving neurons in
reps(c) fire, as needed.
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Inductive step: t ≥ 1: Assume that Q(t− 1) holds, and consider c with level(c) = t. Suppose that rep(c)
fires at time t in A1. Then rep(c) must have enough incoming potential from the reps of its children to fire.
Since the threshold in A1 is r2k, it means that the reps of at least r2k of c’s children fire at time t − 1.
Let C ′ be the set of children of c whose reps fire at time t − 1, in A1, so |C ′| ≥ r2k. Then the inductive
hypothesis Q(t− 1) implies that, in L, for each c′ ∈ C ′, every surviving neuron in reps(c′) fires at time t− 1.

Now consider any particular surviving neuron v ∈ reps(c); we show that v fires at time t. Consider any
particular c′ ∈ C ′. By an assumption on L, we know that there are at least am(1−ϵ) neurons in reps(c′) that
both survive and are connected to v. Since these neurons all survive, by the inductive hypothesis Q(t− 1),
all of these neurons fire at time t − 1. So this entire collection of neurons in reps(c′) contributes at least
am(1− ϵ) potential to v. Considering all the concepts c′ ∈ C ′ together, we get a total incoming potential to
v of at least ar2km(1− ϵ), which is enough to meet the firing threshold for v. Therefore, since v survives, it
fires at time t, as needed.

Now we can show that L satisfies the firing requirement.

Theorem 8.2. L satisfies Part 1 of the definition of the recognition problem for networks with multi-neuron
representations, Definition 4.6.

Proof. Theorem 6.1 says that A1 guarantees r2-firing for C. Theorem 8.1 says that L ≤impl1 A1. Then
Theorem 5.5 implies that L satisfies Part 1 of Definition 4.6.

8.3 L implements A2

Now we establish one more implementation relationship, between the detailed network L and the abstract
network A2, in order to carry over the non-firing guarantees from A2 to L. We assume fixed sets F of failed
nodes and E of weight 1 edges, subject to the constraints given in Section 8.1. We show:

Theorem 8.3. L ≤impl2 A2.

In other words, for every B ⊆ C0, for the two unique executions of the two networks A2 and L on B, the
following holds: For every concept c, if rep(c) does not fire at time level(c) in A2, then in L, no neurons in
reps(c) fire at time level(c).

Proof. Fix B ⊆ C0, and consider the unique executions of A2 and L on input B. We prove the following
statement Q(t), for every t ≥ 0:

Q(t): For any t, and every concept c with level(c) = t, if rep(c) does not fire at time t in A2, then in L,
no neurons in reps(c) fire at time t.

We prove Q(t) by induction on t, for all concepts c.
Base: t = 0: Suppose that c is a concept with level(c) = 0 and rep(c) does not fire at time 0 in A2. Then

by definition of presentation in A2, c /∈ B. Then by definition of presentation in L, none of the neurons in
reps(c) fire at time 0, as needed.

Inductive step: t ≥ 1: Assume that Q(t− 1) holds, and consider c with level(c) = t. Suppose that rep(c)
does not fire at time t in A2. Then rep(c) must not have enough incoming potential from its children to fire.
Since the threshold in A2 is r1k, this means that the reps of strictly fewer than r1k of c’s children fire at
time t− 1.

Then by inductive hypothesis Q(t−1), we have that, in L, for each child c′ of c that does not fire, none of
the neurons in reps(c′) fire at time t− 1. This yields a total incoming potential to each neuron v ∈ reps(c)
of strictly less than r1km. But the firing threshold for each such v is ar2km(1− ϵ). Since we have assumed
that r1 ≤ ar2(1− ϵ), we know that r1km ≤ ar2km(1− ϵ). So the incoming potential to each such v is strictly
less than its firing threshold ar2km(1− ϵ), which implies that v does not fire at time t, as needed.

Now we can show that L satisfies the non-firing requirement.

Theorem 8.4. L satisfies Part 2 of the definition of the recognition problem for networks with multi-neuron
representations, Definition 4.6.

Proof. Theorem 6.3 says that A2 guarantees r1-non-firing for C. Theorem 8.3 says that L ≤impl2 A2. Then
Theorem 5.6 implies that L satisfies Part 2 of Definition 4.6.
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8.4 Correctness of L
Theorem 8.5. L (r1, r2)-recognizes C.

Proof. By Theorems 8.2 and 8.4.

Thus, we have shown correctness of the deterministic network L. The corresponding network of [3] is
probabilistic, in that it chooses the failed set F randomly. It is shown in [3] that, with high probability, that
network achieves the restrictions on failures that are assumed here. Therefore, we can make a claim about
the probabilistic version of the network: that with high probability it (r1, r2)-recognizes C.10

9 Conclusions
In this paper, we have demonstrated how detailed, failure-prone Spiking Neural Networks can be proved
to work correctly by relating them to more abstract, reliable networks. We focus here on the problem of
recognizing structured concepts in the presence of partial information, The detailed networks use multiple
neurons to represent each concept, whereas the abstract networks use only one. The resulting proofs nicely
decompose the reasoning into high-level arguments about the correctness of recognition and lower-level
arguments about how networks with multi-neuron representations can emulate networks with single-neuron
representations.

Specifically, we consider two detailed networks: H, a failure-prone, feed-forward network with full con-
nectivity between layers, and L, a failure-prone feed-forward network with partial connectivity. Both H and
L are based on similar networks in [3]. We show that each of H and L implements two abstract networks
A1 and A2, where A1 expresses firing guarantees and A2 expresses non-firing guarantees. We use the two
notions of implementation ≤impl1 and ≤impl2 to relate the detailed networks to A1 and A2, respectively.

One difference between our networks and those in [3] is that the networks in [3] are probabilistic, based
on random failures. Here we abstract away from issues of probability, by assuming that the failures are
well distributed with respect to various sets of surviving neurons and with respect to edge connections. Our
presentation also differs from that in [3], in that in [3], our proofs intertwine reasoning about correctness of
recognition with reasoning about multi-neuron representations. Here we separate these two aspects.

This paper, as well as [3], were partially inspired by work on the assembly calculus [7, 1, 6]. That work
studies multi-neuron representations of structured concepts in networks with partial connectivity, but does
not consider the main issue we emphasize here, namely, how mechanisms using multi-neuron representations
might be regarded as implementations of simpler mechanisms using single-neuron representations.

Another difference is that much of the assembly calculus work focuses on learning, not just representation.
Presumably one could study a correspondence between learning in networks with multi-neuron representa-
tions and networks with single-neuron representations, but we have not yet considered this.

Future work: The approach of this paper basically involves embedding concept structures in Spiking
Neural Networks in two ways: using single-neuron representations, and using multi-neuron representations.
Then we relate the two types of representation using formal implementation relationships, and use these
connections to prove properties of the detailed networks based on properties of the abstract networks.

This approach might be applied to study many other neural networks. For starters, our paper [3] contains
a third detailed network for recognizing hierarchical concepts, in addition to the two we adapted for this
paper. That network has lateral edges, in addition to forward edges, and is more closely related to the
assembly calculus work than the strictly feed-forward networks studied here. It would be interesting to
extend the approach of this paper to that network, by abstracting away from its use of probability, introducing
appropriate abstract versions, and demonstrating implementation relationships between the detailed network
and the abstract networks.

Other networks for recognizing hierarchical concepts might allow some feedback edges in addition to
forward edges, as in [4]. It remains to define versions of those networks with multi-neuron representations,
and to try to understand them by relating them formally to networks with single-neuron representations.

Our approach could be useful in studying some brain mechanisms that have been studied previously using
the assembly calculus. The usual assembly calculus approach models the mechanisms in detail, and attempts

10Again, we remark that the probabilities here are slightly larger than in [3], because the "shapes" of the hierarchies are
slightly different.
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to understand them directly via simulation and analysis. But since the mechanisms are complicated, this
does not seem easy. It might be useful to first consider abstract versions of the networks, and ascertain
that they work as desired. Then one could study the detailed versions by showing that they implement the
abstract versions.

In this paper, our concept structures are simple hierarchies. However, we might also consider more general
concept structures, modeled as arbitrary labeled directed graphs. The abstract networks could involve rather
direct embeddings in which each graph vertex is represented by a single node, whereas the detailed networks
could include multiple representations for each node, neuron failures, and partial connectivity.

Viewed very generally, our approach involves defining a detailed, realistic version of a network, then trying
to understand its behavior by relating it formally to an abstract version, or abstract versions, of the network.
This general approach seems promising as a way of understanding and analyzing complex brain mechanisms.
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