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Abstrat

Hybrid systems are systems that exhibit a ombination of disrete and ontinu-

ous behavior. Typial hybrid systems inlude omputer omponents, whih operate

in disrete program steps, and real-world omponents, whose behavior over time

intervals evolves aording to physial onstraints. Important examples of hybrid

systems inlude automated transportation systems, robotis systems, proess on-

trol systems, systems of embedded devies, and mobile omputing systems. Suh

systems an be very omplex, and very diÆult to desribe and analyze.

This paper presents theHybrid Input/Output Automaton (HIOA)modeling frame-

work, a basi mathematial framework to support desription and analysis of hybrid

systems. An important feature of this model is its support for deomposing hybrid

system desriptions. In partiular, the framework inludes a notion of external be-

havior for a hybrid I/O automaton, whih aptures its disrete and ontinuous

interations with its environment. The framework also de�nes what it means for

one HIOA to implement another, based on an inlusion relationship between their

external behavior sets, and de�nes a notion of simulation, whih provides a suf-

�ient ondition for demonstrating implementation relationships. The framework

also inludes a omposition operation for HIOAs, whih respets the implementa-

tion relation and a notion of reeptiveness, whih implies that an HIOA does not

blok the passage of time. The framework is intended to support analysis methods

from both omputer siene and ontrol theory.

This work is a simpli�ation of our earlier HIOA model. The main simpli�ation

in the new model is a learer separation between the mehanisms used to model dis-

rete and ontinuous interation between omponents. In partiular, the new model

removes the dual use of external variables for disrete and ontinuous interation.
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1 Introdution

1.1 Overview

Reent years have seen a rapid growth of interest in hybrid systems|systems

that intermix disrete and ontinuous behavior [28,70,12,9,62,10,34,73,80,51,20℄.

Typial hybrid systems inlude omputer omponents, whih operate in dis-

rete program steps, and real-world omponents, whose behavior over time

intervals evolves aording to physial onstraints. Suh systems are used in

many appliation domains, inluding automated transportation, avionis, au-

tomotive ontrol, robotis, proess ontrol, embedded devies, onsumer ele-

tronis, and mobile omputing.

Hybrid systems an be very omplex, and therefore very diÆult to desribe

and reason about. At the same time, beause they involve real-world ativity,

they often have stringent safety requirements. This ombination of fators

leads to a need for rigorous mathematial models for desribing hybrid systems

and their properties, and for pratial analysis methods based on these models.

In this paper, we present a basi mathematial framework to support de-

sription and analysis of hybrid systems: the Hybrid Input/Output Automaton

modeling framework. A Hybrid I/O Automaton (HIOA) is a kind of nonde-

terministi, possibly in�nite-state, state mahine. The state of an HIOA is

divided into state variables, and it may also have additional input variables

and output variables. The state an hange in two ways: instantaneously by

the ourrene of a disrete transition, or aording to some trajetory when

time passes. Formally, a disrete transition is a triple onsisting of a soure

?

An extended abstrat of this paper appeared as [52℄.
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state, an ation (for synhronization with other automata), and a target state.

Trajetories are funtions that desribe the evolution of the state variables,

along with the input and output variables, over intervals of time. Trajetories

may be ontinuous or disontinuous funtions.

HIOAs are intended to be used to model all omponents of hybrid systems,

inluding physial omponents, ontrollers, sensors, atuators, omputer soft-

ware, ommuniation servies, and humans that interat with the rest of the

system. The framework is very general: for example, we do not require that

trajetories be expressible using systems of equations of a partiular form,

and we do not require that disrete transitions be expressible using a parti-

ular logial language. Partiular kinds of systems of equations and partiular

logial languages an be used to de�ne speial ases of the general model.

The most important feature of the hybrid I/O automaton framework is its sup-

port for deomposing hybrid system desription and analysis; this is important

beause many hybrid systems are too omplex to understand all at one. A

key to this deomposition is that the framework inludes a rigorously-de�ned

notion of external behavior for hybrid I/O automata, whih aptures their

disrete and ontinuous interations with their environment. The external be-

havior of eah HIOA is de�ned by a simple mathematial objet alled a trae.

The framework also inludes notions of abstration and parallel omposition.

For abstration, the framework inludes notions of implementation and simu-

lation, whih an be used to view hybrid systems at multiple levels of abstra-

tion, starting from a high-level version that desribes required properties, and

ending with a low-level version that desribes a detailed design or implementa-

tion. In partiular, the HIOA framework de�nes what it means for one HIOA,

A, to implement another HIOA, B, namely, any trae that an be exhibited

by A is also allowed by B. In this ase, A might be more deterministi than B,

in terms of either disrete transitions or trajetories. For instane, B might be

allowed to perform an output ation at an arbitrary time before noon, whereas

A produes the same output sometime between 10 and 11AM. Or B might

allow an output variable y to evolve with

:

y

2 [0; 2℄, whereas A might ensure

that

:

y

= 1.

The notion of a simulation relation fromA to B provides a suÆient ondition

for demonstrating that A implements B. A simulation relation is de�ned to

satisfy three onditions, one relating start states, one relating disrete transi-

tions, and one relating trajetories of A and B.

For parallel omposition, the framework provides a omposition operation, by

whih HIOAs modeling individual hybrid system omponents an be ombined

to produe a model for a larger hybrid system. The model for the omposed

system an desribe interations among the omponents, inluding joint par-
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tiipation in disrete transitions and trajetories. Composition requires ertain

\ompatibility" onditions, namely, that eah output variable and output a-

tion be ontrolled by at most one automaton, and that internal variables and

ations of one automaton annot be shared by any other automaton. The

omposition operation respets the implementation relation, for example, if

A

1

implements A

2

then the omposition of A

1

and B implements the ompo-

sition of A

2

and B. Composition also satis�es projetion results saying that

a trae of a omposition of HIOAs projets to give traes of the individual

HIOAs, and pasting results saying that ompatible behaviors of omponents

are \pastable" to give behaviors of the omposition. Suh results are essential

if the models are to be used for ompositional design and veri�ation of sys-

tems. In addition, the framework inludes hiding operations for output ations

and variables, whih respet the implementation relationship.

An interesting ompliation that arises in the hybrid setting is the possibil-

ity that a state mahine ould \prevent time from passing", for example, by

bloking it entirely, or by sheduling in�nitely many disrete ations to happen

in a �nite amount of time|so-alled Zeno behavior . The HIOA framework in-

ludes a notion of reeptiveness, whih says that an HIOA does not ontribute

to produing Zeno behavior, and whih (under suitable ompatibility ondi-

tions) is preserved by omposition. We also give simple suÆient onditions

for these ompatibility onditions to hold.

The generality of the HIOA framework means that a large olletion of analy-

sis methods, derived from both disrete and ontinuous analysis methods, an

be applied to systems modeled as HIOAs. For example, indutive methods

for proving invariant assertions and simulation relationships (see, e.g, [58,72℄),

whih are ommonly used in omputer siene for reasoning about disrete sys-

tems, an be extended to the hybrid setting and expressed by theorems about

HIOAs. Other disrete analysis methods that should be extendible inlude

proving progress using well-founded sets (see, e.g., [26℄), assume-guarantee

ompositional reasoning (e.g., [36,16℄), and deduing properties within tem-

poral logi and other logial formalisms. All of these methods ould be sup-

ported by interative theorem proving software. Automati methods based on

state-spae searhing and based on deision proedures for automata on in�-

nite paths (see, e.g., [16℄), should also be extendible; however, these methods

will apply only to speial ases of the general model.

Likewise, key methods used in ontrol theory for reasoning about ontinuous

systems, suh as stability analysis using Lyapunov funtions (e.g., [79℄) and

robust ontrol tehniques (e.g., [23℄), should be extendible to hybrid systems

using HIOAs.
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1.2 Evolution of the HIOA Framework:

The HIOA framework has evolved from two earlier input/output automaton

models: the basi I/O automaton model of Lynh and Tuttle [55,56℄ and the

timed I/O automaton model of Lynh, Vaandrager et al. [60,74℄. Basi I/O

automata onsist essentially of states, start states, and disrete transitions.

They have been used fairly extensively to desribe and analyze asynhronous

distributed algorithms|see, for example, [48℄.

Timed I/O automata add expliit time-passage steps, whih allow time to pass

in disrete jumps. In the simplest ases, time-passage steps involve just the

passage of time, with no other hanges to the state. However, in general, they

are allowed to hange the state in more elaborate ways, inluding hanging

variables that represent physial quantities. Timed I/O automata have been

used mainly to desribe timing-based distributed algorithms and ommuni-

ation protools (e.g., [78,45,75,76,19,77,25℄). Timed I/O automata have also

been used in a few ases to model simple hybrid system \hallenge problems",

inluding the Generalized Railroad Crossing problem [30,31℄. In these exam-

ples, the time-passage steps inlude hanges to physial quantities suh as

train position and water level.

An early version of the HIOA modeling framework appeared in [53,54℄. It

augmented timed I/O automata by adding input and output variables and

expliit trajetories; the trajetories desribe the evolution of the state and

external variables over intervals of time, rather than just their umulative

hanges. This version of the HIOA framework was used to desribe and analyze

many hybrid systems examples, inluding automated transportation systems

[61,49,83,81,82,50,42,44℄, intelligent vehile highway systems [22,47℄, airraft

ontrol systems [46,43℄, automotive ontrol systems [24℄, and onsumer ele-

tronis systems [11℄.

We summarize the results of these modeling e�orts briey. In these exam-

ples, HIOAs were used to model system omponents of many di�erent kinds,

inluding real-world omponents, omputer programs, ommuniation han-

nels, sensors, atuators, and humans (for example, pilots interating with air-

raft ontrol systems). Individual omponent automata were generally highly

nondeterministi, and often allowed for bounded unertainty in the values of

quantities represented in the state. Component states often inluded timing in-

formation, for example, the urrent time and deadlines for the performane of

ertain ations. Composition was used to ombine the omponent HIOAs into

models of the omplete systems. Levels of abstration were used to desribe

several kinds of relationships between HIOAs, for example: the relationship

between a detailed view of a system and a more abstrat view; the relation-

ship between a desription of a system in terms of higher derivatives (e.g.,
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aeleration) and a desription in terms of lower derivatives (e.g., veloity or

position); and the relationship between a version of a system that inludes

periodi sampling and orretion and a version in whih adjustment is ontin-

uous, but within an envelope of unertainty.

The examples were analyzed using a variety of methods inluding invariant as-

sertions, simulation relations, ompositional reasoning, di�erential equations

and integration. Many of the invariants and simulation relations involved tim-

ing data and data representing real-world quantities. Invariants and simulation

relations were proved using indutive arguments on the length of exeutions, as

is usual in the purely disrete setting. However, unlike in the disrete setting,

the proofs in the hybrid setting inluded two di�erent kinds of indutive steps:

for disrete steps and trajetories. Arguments about disrete steps involved the

sort of algebrai dedution that is typial in the disrete setting, whereas argu-

ments about trajetories involved manipulation of di�erential equations and

integrals. For example, a tehnique involving \positive invariant sets", derived

from ontrol theory, was used in [15℄ for showing that ertain properties of the

state are preserved during trajetories.

In general, the formal HIOA framework proved to be adequate for these exam-

ples. However, it was not ideal, beause it introdued some ompliations that

proved to be distrating. The main soure of ompliation seemed to be the

fat that the model has two mehanisms for modeling disrete ommuniation:

shared ations and shared variables. Also, it uses the same mehanism|shared

variables|to model both disrete and ontinuous interation between ompo-

nents. This intertwining of mehanisms led to some tehnialities, for example,

eah automaton had to inlude a speial environment ation e, whih is asso-

iated with disrete hanges to input variables. To simplify matters, we were

led to develop the new version of the HIOA model presented in this paper. The

new version has a learer separation between the mehanisms used to model

disrete and ontinuous ativity, and has only one mehanism for disrete

ommuniation: shared ations.

In the literature on disrete state mahine models, both shared ations and

shared variables are popular mehanisms for modeling interations between

system omponents. The shared ation approah is used, for example, in the

extensive researh literature on proess algebras (e.g., [35,66,67℄), and in the

work on I/O automata (e.g., [55,49℄). The shared variable approah is used,

for example, in the temporal logi and model-heking ommunities (e.g.,

[64,40,7℄). The expressive power of shared ation and shared variable ommu-

niation is similar, and translations between speial ases of these two types

of models have been developed [39,18℄. Choosing between these two forms of

ommuniation seems to be generally a matter of ustom and onveniene.

One advantage of the shared-ation approah is that it leads to simple math-

ematial notions of external behavior of state mahines, based on sequenes
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of ations (whih are usually alled \traes").

The new HIOA framework presented in this paper uses (only) shared ations

for disrete ommuniation, and uses shared variables for ontinuous ommu-

niation. Disrete events are not allowed to make hanges to shared variables,

and the speial environment ation e is eliminated. Beause the new model

maintains a learer separation between mehanisms for desribing disrete and

ontinuous ativity, it is simpler overall|in its de�nitions, result statements,

and proofs|than the earlier HIOA model of [53,54℄.

Another simpli�ation in the new framework appears in the de�nitions and

results involving reeptiveness. In the original HIOA model of [53,54℄, and in

other work that dealt with reeptiveness [21,1,74℄ for disrete systems, reep-

tiveness was de�ned in terms of two-player games between the system and its

environment. In suh a game, the goal of the system is to onstrut an in�nite,

non-Zeno exeution, and the goal of the environment is to prevent this from

happening. The simpli�ation in this material in the new model is a result of

our modeling of the game itself as an HIOA.

1.3 Other Related Work

Besides the models already disussed above, other preursors to the new HIOA

model inlude the phase transition system models of [63,3,38℄ and Braniky's

hybrid ontrol systems [13,14℄. Phase transition systems are similar to HIOAs

in their ombined treatment of disrete and ontinuous ativity, for example,

they have notions similar to our trajetories and hybrid sequenes. However,

work on phase transition system models does not address system deomposi-

tion issues suh as external behavior, implementation relationships, and om-

position, whih are emphasized in our paper. Braniky's hybrid ontrol systems

are also similar to ours in their modeling of disrete and ontinuous ativity.

This work has a ontrol theory avor, fousing on standard on�gurations in-

luding plant, ontroller, sensor and atuator, and fousing on stability results.

Again, system deomposition issues are not addressed.

System deomposition issues, inluding levels of abstration, ompositionality,

and reeptiveness have been addressed by Alur and Henzinger [8℄ in their work

on hybrid reative modules. A major di�erene between this work and ours is

that reative modules ommuniate via shared variables and not via shared a-

tions. Another di�erene is that hybrid reative modules inlude an additional

layer of struture tailored to modeling synhronous systems|struture that

is not present in the HIOA model. In [8℄, a de�nition of reeptiveness based

on two-player games, similar to the de�nition in [53,54℄, is proposed, and is

shown to be preserved by parallel omposition. However, in [8℄, no irular
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dependenies (\feedbak loops") are allowed among the ontinuous variables

of di�erent omponents, a restrition that greatly simpli�es the analysis.

In [6,33℄, ompositional trae-based semantis are presented for Stateharts-

like languages that support hierarhial design of hybrid systems. These lan-

guages, alled Charon and Masaio, respetively, allow one to desribe hierar-

hial state mahines that ommuniate with their environment using shared

variables. Communiation via shared ations is not supported. Besides parallel

omposition and variable hiding, the languages also ontain other operations

required for the onstrution of hierarhial state mahines, suh as variable

renaming and serial omposition. The trae semantis presented in [6,33℄ for

Charon and Masaio is more onrete than the one that we present here:

disrete events that do not hange the observable part of the state are not

eliminated from traes. As a onsequene, a system that just lets time pass

and performs a disrete \tik" step one every time unit is not an implemen-

tation of the same system without any disrete steps. The two systems are

equivalent aording to the trae semantis of this paper. We believe that our

semantis are more intuitively appealing; the prie we pay is that the proofs of

our ompositionality results are more ompliated. [33℄ also ontains some in-

teresting proof rules for assume-guarantee reasoning. In [6,33℄, Zeno behavior

and the issue of reeptiveness are not onsidered.

1.4 Paper Organization

The rest of this paper is organized as follows. Setion 2 ontains mathemati-

al preliminaries. Next, Setion 3 de�nes notions that are useful for desribing

the behavior of hybrid systems, most importantly, trajetories and hybrid

sequenes. Setion 4 de�nes Hybrid Automata (HAs), whih ontain all of

the struture of HIOAs exept for the lassi�ation of external ations and

variables as inputs or outputs. It also de�nes external behavior for HAs and

implementation and simulation relationships between HAs. Setion 5 presents

omposition and hiding operations for HAs. Setion 6 de�nes Hybrid I/O Au-

tomata (HIOAs) by adding an input/output lassi�ation to HAs, and extends

the theory of HAs to HIOAs. It also introdues a \strong ompatibility" on-

dition that ensures that HIOAs are omposable, and desribes situations in

whih strong ompatibility is guaranteed to hold. Setion 7 presents the the-

ory of reeptiveness, inluding a main theorem stating that reeptiveness is

preserved by omposition (assuming strong ompatibility). Finally, Setion 8

presents some onlusions. Examples derived from earlier work on hybrid sys-

tem modeling are inluded throughout. Appendix A lists some notational on-

ventions used in the paper.
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2 Mathematial Preliminaries

In this setion, we give basi mathematial de�nitions that will be used as a

foundation for our de�nitions of hybrid automata and hybrid I/O automata.

These de�nitions involve funtions, sequenes, partial orders, and time. The

automata de�nitions appear later, in Setions 4 and 6. Sine most of the

de�nitions here are reasonably standard, we enourage the reader to skip ahead

to Setion 3 and return to this setion as needed.

2.1 Funtions

If f is a funtion, then we denote the domain and range of f by dom(f) and

range(f ), respetively. If also S is a set, then we write f dS for the restrition of

f to S, that is, the funtion g with dom(g) = dom(f)\S suh that g() = f()

for eah  2 dom(g).

We say that two funtions f and g are ompatible if f d dom(g) = g d dom(f). If

f and g are ompatible funtions then we write f [g for the unique funtion h

with dom(h) = dom(f)[dom(g) satisfying the ondition: for eah  2 dom(h),

if  2 dom(f) then h() = f() and if  2 dom(g) then h() = g(). More

generally, if F is a set of pairwise ompatible funtions then we write

S

F

for the unique funtion h with dom(h) =

S

fdom(f) j f 2 Fg satisfying the

ondition: for eah f 2 F and  2 dom(f), h() = f().

If f is a funtion whose range is a set of funtions and S is a set, then we write

f # S for the funtion g with dom(g) = dom(f) suh that g() = f() dS for

eah  2 dom(g). The restrition operation # is extended to sets of funtions

by pointwise extension. Also, if f is a funtion whose range is a set of funtions,

all of whih have a partiular element d in their domain, then we write f # d

for the funtion g with dom(g) = dom(f) suh that g() = f()(d) for eah

 2 dom(g).

We say that two funtions f and g whose ranges are sets of funtions are point-

wise ompatible if for eah  2 dom(f)\dom(g), f() and g() are ompatible.

If f and g have the same domain and are pointwise ompatible, then we denote

by f

_

[ g the funtion h with dom(h) = dom(f) suh that h() = f() [ g()

for eah  2 dom(h).
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2.2 Sequenes

Let S be any set. A sequene over S is a funtion from a downward losed

subset of the natural numbers to S. Thus, the domain of a sequene is either

the set of all natural numbers, or is of the form f0; : : : ; kg, for some natural

number k. In the �rst ase we say that the sequene is in�nite, and in the

seond ase �nite. The sets of �nite and in�nite sequenes over S are denoted

by S

�

and S

!

, respetively. Conatenation of a �nite sequene with a �nite or

in�nite sequene is denoted by juxtaposition. We use � to denote the empty

sequene, that is, the sequene with the empty domain. The sequene ontain-

ing one element  2 S is abbreviated as . We say that a sequene � is a pre�x

of a sequene �, denoted by � � �, if � = � d dom(�). Thus, � � � if either

� = �, or � is �nite and � = ��

0

for some sequene �

0

. If � is a nonempty

sequene then head(�) denotes the �rst element of � and tail(�) denotes �

with its �rst element removed. Moreover, if � is �nite, then last(�) denotes

the last element of � and init(�) denotes � with its last element removed.

2.3 Partial Orders

We reall some basi de�nitions and results regarding partial orders (posets),

and in partiular, omplete partial orders (pos) from [29,32℄. A partial order

(poset) is a set S together with a binary relation v that is reexive, antisym-

metri, and transitive. In the sequel, we usually denote posets by the set S

without expliit mention to the binary relation v.

A subset P � S is bounded (above) if there is a  2 S suh that d v  for eah

d 2 P ; in this ase,  is an upper bound for P . A least upper bound (lub) for

a subset P � S is an upper bound  for P suh that  v e for every upper

bound e for P . If P has a lub, then it is neessarily unique, and we denote it

by

F

P . A subset P � S is direted if every �nite subset Q of P has an upper

bound in P . A poset S is omplete, and hene is a omplete partial order (po)

if every direted subset P of S has a lub in S.

We say that P

0

� S dominates P � S, denoted by P v P

0

, if for every  2 P

there is some 

0

2 P

0

suh that  v 

0

. We use the following two simple lemmas,

adapted from [32℄ [Lemmas 3.1.1 and 3.1.2℄.

Lemma 2.1 If P; P

0

are direted subsets of a po S and P v P

0

then

F

P v

F

P

0

.

Lemma 2.2 Let P = f

ij

j i 2 I; j 2 Jg be a doubly indexed subset of a po

S. Let P

i

denote the set f

ij

j j 2 Jg for eah i 2 I. Suppose
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(1) P is direted,

(2) eah P

i

is direted with lub 

i

, and

(3) the set f

i

j i 2 Ig is direted.

Then tP = tf

i

j i 2 Ig.

A �nite or in�nite sequene of elements, 

0

; 

1

; 

2

; : : :, of a poset S is alled a

hain if 

i

v 

i+1

for eah non-�nal index i. We de�ne the limit of the hain,

lim

i!1



i

, to be the lub of the set f

0

; 

1

; 

2

; : : :g if S ontains suh a bound;

otherwise, the limit is unde�ned. Sine a hain is a speial ase of a direted

set, eah hain of a po has a limit.

A funtion f : S ! S

0

between posets S and S

0

is monotone if f() v f(d)

whenever  v d. If f is monotone and P is a direted set, then the set f(P ) =

ff() j  2 Pg is direted as well. If f is monotone and f(

F

P ) =

F

f(P ) for

every direted set P , then f is said to be ontinuous.

An element  of a po S is ompat if, for every direted set P suh that

 v

F

P , there is some d 2 P suh that  v d. We de�ne K(S) to be the set

of ompat elements of S. A po S is algebrai if every  2 S is the lub of the

set fd 2 K(S) j d v g. A simple example of an algebrai po is the set of

�nite or in�nite sequenes over some given domain, equipped with the pre�x

ordering. Here the ompat elements are the �nite sequenes.

2.4 Time

Throughout this paper, we �x a time axis T, whih is a subgroup of (R;+),

the real numbers with addition. We assume that every in�nite, monotone,

bounded sequene of elements of T has a limit in T. The reader may �nd it

onvenient to think of T as the set R of real numbers, but the set Z of integers

and the singleton set f0g are also examples of allowed time axes. We de�ne

T

�0

�

= ft 2 T j t � 0g.

An interval J is a nonempty, onvex subset of T. We denote intervals as usual:

[t

1

; t

2

℄ = ft 2 T j t

1

� t � t

2

g, et. An interval is left-losed (right-losed)

if it has a minimum (resp., maximum) element, and left-open (right-open)

otherwise. An interval is losed if it is both left-losed and right-losed, and

open if it is both left-open and right-open. We write min(J) and max(J) for

the minimum and maximum elements, respetively, of an interval J (if they

exist), and inf(J) and sup(J) for the in�mum and supremum, respetively, of

J in T[ f�1;1g. For K � T and t 2 T, we de�ne K + t

�

= ft

0

+ t j t

0

2 Kg.

Similarly, for a funtion f with domain K, we de�ne f + t to be the funtion

with domain K + t satisfying, for eah t

0

2 K + t, (f + t) (t

0

) = f(t

0

� t).
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3 Desribing Hybrid Behavior

In this setion, we give basi de�nitions that are useful for desribing disrete

and ontinuous behavior of a system or system omponent, inluding disrete

and ontinuous hanges to the system's state, and disrete and ontinuous

ow of information into and out of the system. The key notions are stati and

dynami types for variables, trajetories, and hybrid sequenes.

3.1 Stati and Dynami Types

We assume a universal set V of variables. A variable represents either a loation

within the state of a system or a loation where information ows from one

system omponent to another. For eah variable v, we assume both a (stati)

type, whih gives the set of values it may take on, and a dynami type, whih

gives the set of trajetories it may follow. Formally, for eah variable v we

assume the following:

� type(v), the (stati) type of v. This is a nonempty set of values.

� dtype(v), the dynami type of v. This is a set of funtions from left-losed

intervals of T to type(v) that satis�es the following properties:

(1) (Closure under time shift)

For eah f 2 dtype(v) and t 2 T, f + t 2 dtype(v).

(2) (Closure under subinterval)

For eah f 2 dtype(v) and eah left-losed interval J � dom(f), f dJ 2

dtype(v).

(3) (Closure under pasting)

Let f

0

; f

1

; f

2

; : : : be a sequene of funtions in dtype(v) suh that, for eah

index i suh that f

i

is not the �nal funtion in the sequene, dom(f

i

)

is right-losed and max(dom(f

i

)) = min(dom(f

i+1

)). Then the funtion f

de�ned by f(t)

�

= f

i

(t), where i is the smallest index suh that t 2 dom(f

i

),

is in dtype(v).

The pasting-losure property is useful for modeling \disontinuities" in the

evolution of variables aused by disrete transitions. Dynami types provide a

onvenient way of desribing restritions on system behavior over time inter-

vals, for example, restritions on the behavior of system input variables.

Example 3.1 (Disrete variables) Let v be any variable and let C be

the set of onstant funtions from a left-losed interval to type(v). Then C is

losed under time shift and subinterval. If the dynami type of v is obtained

by losing C under the pasting operation, then v is alled a disrete variable.

This is essentially the same as the de�nition of a disrete variable in [63℄.

12



Example 3.2 (Standard real-valued funtion lasses) If we take T = R

and type(v) = R, then other examples of dynami types an be obtained by

taking the pasting losure of standard funtion lasses from real analysis, suh

as the set of ontinuous funtions, the set of di�erentiable funtions, the set

of funtions that are di�erentiable k times (for any k), the set of smooth

funtions, the set of integrable funtions, the set of L

p

funtions (for any p),

the set of measurable loally essentially bounded funtions [79℄, or the set of

all funtions.

Standard funtion lasses are losed under time shift and subinterval, but not

under pasting. A natural way of de�ning a dynami type is as the pasting

losure of a lass of funtions that is losed under time shift and subinterval.

In suh a ase, it follows that the new lass is losed under all three operations.

0 4

Fig. 1. Example of a funtion in a dynami type based on ontinuous funtions.

Example 3.3 (Pasting losure of the ontinuous funtions) Figure 1

shows an example of an element f in a dynami type based on (more pre-

isely, equal to the pasting losure of) a sublass of the ontinuous funtions.

Funtion f is de�ned on the interval [0; 4) and is obtained by pasting together

four piees. At the boundary points between these piees, f takes the value

spei�ed by the leftmost piee, whih makes f ontinuous from the left. Note

that f is unde�ned at time 4.

In pratie, most interesting dynami types are pasting losures of sublasses

of the ontinuous funtions. Note that funtions in suh dynami types are

ontinuous from the left. Elsewhere in the literature on hybrid systems (e.g.,

[37℄), funtions that are ontinuous from the right are onsidered. To some ex-

tent, the hoie of how to de�ne funtion values at disontinuities is arbitrary.

An advantage of our hoie is a nie orrespondene between onatenation

and pre�x ordering of trajetories and hybrid sequenes (see Lemmas 3.5 and

13



3.7).

In this paper, we will oasionally be slightly sloppy and say that the dynami

type of a variable v is the funtion lass F , even though F in not losed under

the three required operations. In suh a ase, we mean that the dynami type

of v is the funtion lass that results from losing F under the three operations.

3.2 Trajetories

In this subsetion, we de�ne the notion of a trajetory, de�ne operations on

trajetories, and prove simple properties of trajetories and their operations.

A trajetory is used to model the evolution of a olletion of variables over an

interval of time.

3.2.1 Basi De�nitions

Let V � V be a set of variables. A valuation v for V is a funtion that

assoiates with eah variable v 2 V a value in type(v). We write val(V ) for

the set of valuations for V . Let J be a left-losed interval of T with left endpoint

equal to 0. Then a J-trajetory for V is a funtion � : J ! val(V ), suh that

for eah v 2 V , � # v 2 dtype(v). A trajetory for V is a J-trajetory for V ,

for any J . We write trajs(V ) for the set of all trajetories for V .

A trajetory for V with domain [0; 0℄ is alled a point trajetory for V . If v is

a valuation for V then }(v) denotes the point trajetory for V that maps 0 to

v. We say that a J-trajetory is �nite if J is a �nite interval, losed if J is a

(�nite) losed interval, open if J is a right-open interval, and full if J = T

�0

.

If � is a trajetory then �:ltime, the limit time of � , is the supremum of dom(�).

Also, we de�ne �:fval , the �rst valuation of � , to be �(0), and if � is losed,

we de�ne �:lval , the last valuation of � , to be �(�:ltime). For � a trajetory

and t 2 T

�0

, we de�ne

� � t

�

= � d[0; t℄;

� � t

�

= � d[0; t);

� � t

�

=(� d[t;1))� t:

Note that, sine dynami types are losed under time shift and subintervals,

the result of applying the above operations is always a trajetory, exept when

the result is a funtion with an empty domain. By onvention, we also write

� �1

�

= � and � �1

�

= � .
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3.2.2 Pre�x Ordering

Trajetory � is a pre�x of trajetory �

0

, denoted by � � �

0

, if � an be obtained

by restriting �

0

to a subset of its domain. Formally, if � and �

0

are trajetories

for V , then � � �

0

i� � = �

0

d dom(�). Alternatively, � � �

0

i� there exists

a t 2 T

�0

[ f1g suh that � = �

0

� t or � = �

0

� t. If � � �

0

then learly

dom(�) � dom(�

0

). If T is a set of trajetories for V , then pref (T ) denotes

the pre�x losure of T , de�ned by:

pref (T )

�

= f� 2 trajs(V ) j 9�

0

2 T : � � �

0

g:

We say that T is pre�x losed if T = pref (T ).

The following lemma gives a simple domain-theoreti haraterization of the

set of trajetories over a given set V of variables:

Lemma 3.4 Let V be a set of variables. The set trajs(V ) of trajetories for V ,

together with the pre�x ordering �, is an algebrai po. Its ompat elements

are the losed trajetories.

Proof: It is trivial to hek that (trajs(V );�) is a partial order. In order to

prove that it is a po, assume that T is a direted subset of trajs(V ). We prove

that T has a least upper bound. It is routine to hek that a set of trajetories

is direted i� it is totally ordered by pre�x. So T is totally ordered. Using

this, it follows that the trajetories in T are pairwise ompatible funtions.

Therefore, funtion

S

T is de�ned.

We now prove that

S

T is a trajetory for V . If

S

T 2 T then this is imme-

diate. Otherwise, let t 2 T [ f1g be the supremum of the limit times of all

trajetories in T . There exists an in�nite asending hain t

0

; t

1

; t

2

; : : : of limit

times of trajetories in T suh that t = lim

i!1

t

i

and all the t

i

's are di�erent.

For eah i, let �

i

be a trajetory in T with t

i

= �

i

:ltime. Next de�ne, for eah

i, �

0

i

= �

i+1

� t

i

. Then, by onstrution, the trajetories �

0

0

; �

0

1

; �

0

2

; : : : are losed

and pairwise ompatible, and

S

i

�

0

i

=

S

T . Let �

00

0

; �

00

1

; �

00

2

; : : : be the sequene

of funtions de�ned by

�

00

0

�

= �

0

0

;

�

00

i

�

= �

0

i

d[�

0

i�1

:ltime;1) if i > 0:

By onstrution, the �

00

i

's are losed, pairwise ompatible, and

S

i

�

00

i

=

S

i

�

0

i

.

Using the assumption that dynami types are losed under pasting, it follows

that

S

i

�

00

i

(and hene

S

T ) is a trajetory.

Now we show that

S

T is a lub for T . It follows immediately from the on-

strution of

S

T that

S

T is an upper bound for T . Suppose that �

0

is also
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an upper bound for T . We prove that

S

T � �

0

. Sine eah � 2 T satis-

�es dom(�) � dom(�

0

), also

S

�2T

dom(�) � dom(�

0

). By de�nition of

S

T ,

dom(

S

T ) =

S

�2T

dom(�). Hene dom(

S

T ) � dom(�

0

). Let t be an element

of dom(

S

T ). Then t is in the domain of some � 2 T . Sine � is a pre�x of both

S

T and �

0

, (

S

T )(t) = �

0

(t). Thus, �

0

ddom(

S

T ) =

S

T , that is,

S

T � �

0

. It

follows that trajs(V ) is a po.

We leave it to the reader to hek that the losed trajetories are the ompat

elements in this po, and that the po is algebrai.

3.2.3 Conatenation

The onatenation of two trajetories is obtained by taking the union of the

�rst trajetory and the funtion obtained by shifting the domain of the seond

trajetory until the start time agrees with the limit time of the �rst trajetory;

the last valuation of the �rst trajetory, whih may not be the same as the �rst

valuation of the seond trajetory, is the one that appears in the onatenation.

Formally, suppose � and �

0

are trajetories for V , with � losed. Then the

onatenation �

_

�

0

is the funtion given by

�

_

�

0

�

= � [ (�

0

d(0;1) + �:ltime):

Beause dynami types are losed under time shift and pasting, it follows that

�

_

�

0

is a trajetory for V . Observe that �

_

�

0

is �nite (resp., losed, full) if

and only if �

0

is �nite (resp., losed, full). Observe also that onatenation is

assoiative.

The following lemma, whih is easy to prove, shows the lose onnetion be-

tween onatenation and the pre�x ordering.

Lemma 3.5 Let � and � be trajetories for V with � losed. Then

� � �,9�

0

: � = �

_

�

0

:

Note that if � � �, then the trajetory �

0

suh that � = �

_

�

0

is unique exept

that it has an arbitrary value for �

0

:fval . Note also that the \(" impliation in

Lemma 3.5 would not hold if the �rst valuation of the seond argument, rather

than the last valuation of the �rst argument, were used in the onatenation.

We extend the de�nition of onatenation to any (�nite or ountably in�nite)

number of arguments. Let �

0

; �

1

; �

2

; : : : be a (�nite or in�nite) sequene of

trajetories suh that �

i

is losed for eah non�nal index i. De�ne trajetories

�

0

0

; �

0

1

; �

0

2

; : : : indutively by
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�

0

0

�

= �

0

;

�

0

i+1

�

= �

0

i

_

�

i+1

for non�nal i:

Lemma 3.5 implies that for eah non�nal i, �

0

i

� �

0

i+1

. We de�ne the onate-

nation �

0

_

�

1

_

�

2

� � � to be the limit of the hain �

0

0

; �

0

1

; �

0

2

; : : :; existene of

this limit follows from Lemma 3.4.

3.3 Hybrid Sequenes

In this subsetion, we introdue the notion of a hybrid sequene, whih is used

to model a ombination of hanges that our instantaneously and hanges

that our over intervals of time. Our de�nition is parameterized by a set A

of ations, whih are used to model instantaneous hanges and instantaneous

synhronizations with the environment, and a set V of variables, whih are

used to model hanges over intervals of time and ontinuous interation with

the environment. We also de�ne some speial kinds of hybrid sequenes and

some operations on hybrid sequenes, and give basi properties.

3.3.1 Basi De�nitions

Fix a set A of ations and a set V of variables. An (A; V )-sequene is a �nite

or in�nite alternating sequene � = �

0

a

1

�

1

a

2

�

2

: : :, where

(1) eah �

i

is a trajetory in trajs(V ),

(2) eah a

i

is an ation in A,

(3) if � is a �nite sequene then it ends with a trajetory, and

(4) if �

i

is not the last trajetory in � then dom(�

i

) is losed.

A hybrid sequene is an (A; V )-sequene for some A and V .

Sine the trajetories in a hybrid sequene an be point trajetories, our no-

tion of hybrid sequene allows a sequene of disrete ations to our at the

same real time, with orresponding hanges of variable values. An alternative

approah is desribed in [69℄, where state hanges at a single real time are

modeled using a notion of \superdense time". Spei�ally, hybrid behavior is

modeled in [69℄ using funtions from an extended time domain, whih inludes

ountably many elements for eah real time, to states.

If � is a hybrid sequene, with notation as above, then we de�ne the limit

time of �, �:ltime, to be

P

i

�

i

:ltime. A hybrid sequene � is de�ned to be:

� time-bounded if �:ltime is �nite.

� admissible if �:ltime =1.
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� losed if � is a �nite sequene and the domain of its �nal trajetory is a

losed interval.

� Zeno if � is neither losed nor admissible, that is, if � is time-bounded

and is either an in�nite sequene, or else a �nite sequene ending with a

trajetory whose domain is right-open.

A more standard de�nition of \Zeno" would be simply \a time-bounded in�-

nite sequene". We add the seond option to the de�nition in order to guar-

antee a simple property of the hiding/restrition operator, see Lemma 4.9(2).

Exept for Lemma 4.9(2), all results of this paper hold also for the more stan-

dard de�nition. We say that a hybrid sequene is \non-Zeno" if it is not Zeno,

that is, if it is losed or admissible."

For any hybrid sequene �, we de�ne the �rst valuation of �, �:fval , to be

�

0

:fval . Also, if � is losed, we de�ne the last valuation of �, �:lval , to be

last(�):lval , that is, the last valuation in the �nal trajetory of �.

3.3.2 Pre�x Ordering

We say that (A; V )-sequene � = �

0

a

1

�

1

: : : is a pre�x of (A; V )-sequene

� = �

0

b

1

�

1

: : :, denoted by � � �, provided that (at least) one of the following

holds:

(1) � = �.

(2) � is a �nite sequene ending in some �

k

; �

i

= �

i

and a

i+1

= b

i+1

for every

i, 0 � i < k; and �

k

� �

k

.

Like the set of trajetories over V , the set of (A; V )-sequenes is a po:

Lemma 3.6 Let V be a set of variables and A a set of ations. The set of

(A; V )-sequenes, together with the pre�x ordering �, is an algebrai po. Its

ompat elements are the losed (A; V )-sequenes.

Proof: We leave to the reader the routine hek that� is a partial order. Note

that this uses the fat that � is a partial order on trajetories (Lemma 3.4).

In order to prove that we have a po, let S be a direted subset of (A; V )-

sequenes. We prove that S has a least upper bound. It is easy to hek that

S is totally ordered by the pre�x ordering �. We distinguish two ases.

(1) There is no �nite upper bound on the number of trajetories that our

in the sequenes in S. In this ase, we an onstrut an in�nite sequene

�

0

; �

1

; �

2

: : : of elements of S suh that, for eah i, �

i

ontains at least i

ations and i+1 trajetories, and �

i

� �

i+1

. For eah i 2 N, let �

i

be the

i+ 1-st trajetory (the one indexed by i) in �

i+1

, and for i � 1, let a

i

be
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the i-th ation in �

i

. Let � = �

0

a

1

�

1

a

2

�

2

: : :. It is easy to verify that �

is an upper bound of the set f�

i

j i 2 Ng and in fat, is the only upper

bound of this set. It follows that � is the lub of S, as needed.

(2) There is a �nite upper bound k on the number of trajetories that our

in the (A; V )-sequenes in S. In this ase, let S

0

be the set obtained by

removing all sequenes with fewer than k trajetories from S. Sine S

0

is totally ordered, init(�) = init(�

0

) for any �; �

0

2 S

0

. (Reall that init

is an ordinary sequene operation|it yields all but the last element of

the sequene.) Choose any � 2 S

0

and let � = init(�). Let T be the set

of �nal trajetories of sequenes in S

0

. Again using the fat that S

0

is

totally ordered, we obtain that T is totally ordered by the pre�x ordering

on trajetories. Let � be the least upper bound of T (this upper bound

exists by Lemma 3.4). It is routine to hek that � � is a least upper

bound of S

0

, and thus of S.

We leave it to the reader to hek that the losed (A; V )-sequenes are the

ompat elements in this po, and that the po is algebrai.

3.3.3 Conatenation

Suppose � and �

0

are (A; V )-sequenes with � losed. Then the onatenation

�

_

�

0

is the (A; V )-sequene given by

�

_

�

0

�

= init(�) (last(�)

_

head(�

0

)) tail(�

0

):

(Here, init, last, head and tail are ordinary sequene operations.)

Lemma 3.7 Let � and � be (A; V )-sequenes with � losed. Then

� � �,9�

0

: � = �

_

�

0

:

Note that if � � �, then the (A; V )-sequene �

0

suh that � = �

_

�

0

is unique

exept that it has an arbitrary value in val(V ) for �

0

:fval .

As we did for trajetories, we extend the onatenation de�nition for (A; V )-

sequenes to any �nite or in�nite number of arguments. Let �

0

; �

1

; : : : be a

�nite or in�nite sequene of (A; V )-sequenes suh that �

i

is losed for eah

non�nal index i. De�ne (A; V )-sequenes �

0

0

; �

0

1

; : : : indutively by

�

0

0

�

=�

0

;

�

0

i+1

�

=�

0

i

_

�

i+1

for non�nal i:
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Lemma 3.7 implies that for eah non�nal i, �

0

i

� �

0

i+1

. We de�ne the onate-

nation �

0

_

�

1

� � � to be the limit of the hain �

0

0

; �

0

1

; : : :; existene of this limit

is ensured by Lemma 3.6.

3.3.4 Restrition

Let A and A

0

be sets of ations and let V and V

0

be sets of variables. The

(A

0

; V

0

)-restrition of an (A; V )-sequene �, denoted by � d(A

0

; V

0

), is obtained

by �rst projeting all trajetories of � on the variables in V

0

, then removing the

ations not in A

0

, and �nally onatenating all adjaent trajetories. Formally,

we de�ne the (A

0

; V

0

)-restrition �rst for losed (A; V )-sequenes and then

extend the de�nition to arbitrary (A; V )-sequenes using a limit onstrution.

The de�nition for losed (A; V )-sequenes is by indution on the length of

those sequenes:

� d(A

0

; V

0

)= � # V

0

if � is a single trajetory,

� a � d(A

0

; V

0

)=

8

>

<

>

:

(� d(A

0

; V

0

)) a (� # V

0

) if a 2 A

0

;

(� d(A

0

; V

0

))

_

(� # V

0

) otherwise.

Note that in the ase where, due to removal of some ation, we onatenate

two adjaent trajetories, we lose the �rst state of the seond trajetory (by

letting the last state of the �rst trajetory dominate). It is easy to see that the

restrition operator is monotone on the set of losed (A; V )-sequenes. Hene,

if we apply this operation to a direted set, the result is again a direted set.

Together with Lemma 3.6, this allows us to extend the de�nition of restrition

to arbitrary (A; V )-sequenes by:

� d(A

0

; V

0

)=tf� d(A

0

; V

0

) j � is a losed pre�x of �g:

Lemma 3.8 (A

0

; V

0

)-restrition is a ontinuous operation.

Proof: This follows by general domain-theoreti arguments. For onveniene,

in this proof we write f(�) as an abbreviation for � d(A

0

; V

0

).

First we establish that (A

0

; V

0

)-restrition is monotone for arbitrary (A; V )-

sequenes. Let �; �

0

be (A; V )-sequenes with � � �

0

; we show that f(�) �

f(�

0

). Let P and P

0

denote the set of losed pre�xes of � and �

0

, respe-

tively. By transitivity of the pre�x ordering, it follows that P

0

dominates

P , that is, P v P

0

. Sine the restrition operation is monotone on losed

(A; V )-sequenes, it follows that f(P ) v f(P

0

). Then Lemma 2.1 implies that

tf(P ) � tf(P

0

). By the de�nition of the restrition operation, this implies

that f(�) � f(�

0

), whih shows monotoniity.
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Now we omplete the proof that (A; V )-restrition is ontinuous by assuming

that P is any direted set of (A; V )-sequenes and showing that f(tP ) =

tf(P ). By the de�nition of the restrition operation, f(tP ) = tff(�) j

� is a losed pre�x of t Pg. By Lemma 3.6 and the de�nition of ompat

elements, any losed pre�x � of tP is also a pre�x of some � 2 P . Therefore,

f(tP ) = tff(�) j � is losed and 9� 2 P : � is a pre�x of �g.

Now we apply Lemma 2.2 to the right hand side of this last equation. To do

this, we must show:

(1) Q

�

= ff(�) j � is losed and 9� 2 P : � is a pre�x of �g is a direted set.

To see this, onsider any nonempty �nite subset R � Q. Eah element

of R is a pre�x of some � 2 P . Therefore, sine P is a direted set,

there is some single �

0

2 P suh that eah element of R is a pre�x of �

0

.

Therefore, R is a direted set; sine R is �nite, it has a lub in R, and

hene in Q, as needed.

(2) For eah � 2 P , ff(�) j � is losed and � is a pre�x of �g is a direted

set with lub f(�). The �rst part follows beause the set of losed pre�xes

of � is a direted set and f is monotone. The seond part follows from

the de�nition of restrition.

(3) The set f(P ) is direted. This follows beause P is a direted set and f

is monotone.

Then Lemma 2.2 implies that

tff(�) j � is losed and 9� 2 P : � is a pre�x of �g =

= tff(�) j � 2 Pg = tf(P ):

Thus, f(tP ) = tf(P ), as needed.

The proofs of the following three lemmas are left to the reader.

Lemma 3.9 (�

0

_

�

1

_

� � �) d(A; V ) = �

0

d(A; V )

_

�

1

d(A; V )

_

: : :.

Lemma 3.10 (� d(A; V )) d(A

0

; V

0

) = � d(A \ A

0

; V \ V

0

).

Lemma 3.11

(1) � is time-bounded if and only if � d(A; V ) is time-bounded.

(2) � is admissible if and only if � d(A; V ) is admissible.

(3) If � is losed then � d(A; V ) is losed.

(4) If � is non-Zeno then � d(A; V ) is non-Zeno.
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4 Hybrid Automata

In this setion, as a preliminary step toward de�ning hybrid I/O automata, we

de�ne a slightly more general hybrid automaton model. In hybrid automata,

ations and variables are lassi�ed as external or internal. External ations

and variables are not further lassi�ed as input or output; the input/output

distintion is added later, in Setion 6. We de�ne how hybrid automata exeute

and de�ne implementation and simulation relations between hybrid automata.

4.1 De�nition of Hybrid Automata

A hybrid automaton is a state mahine whose states are valuations of vari-

ables, and that uses other variables for ommuniation with its environment.

It also has a set of ations, some of whih may be internal and some exter-

nal. The state of a hybrid automaton may hange in two ways: by disrete

transitions, whih hange the state atomially and instantaneously, and by

trajetories, whih desribe the evolution of the state over intervals of time.

The disrete transitions are labeled with ations; this will allow us to synhro-

nize the transitions of di�erent hybrid automata when we ompose them in

parallel. The evolution desribed by a trajetory may be desribed by ontin-

uous or disontinuous funtions.

De�nition 4.1 A hybrid automaton (HA) A = (W;X;Q;�; E;H;D; T ) on-

sists of:

� A set W of external variables and a set X of internal variables, disjoint

from eah other. We write V

�

= W [X.

� A set Q � val(X) of states.

� A nonempty set � � Q of start states.

� A set E of external ations and a set H of internal ations, disjoint from

eah other. We write A

�

= E [H.

� A set D � Q�A�Q of disrete transitions. We use x

a

!

A

x

0

as shorthand

for (x; a;x

0

) 2 D. We sometimes drop the subsript and write x

a

! x

0

, when

we think A should be lear from the ontext. We say that a is enabled in x

if there exists an x

0

suh that x

a

! x

0

.

� A set T of trajetories for V suh that �(t) dX 2 Q for every � 2 T and

t 2 dom(�). Given a trajetory � 2 T we denote �:fval dX by �:fstate and,

if � is losed, we denote �:lval dX by �:lstate. We require that the following

axioms hold:

T1 (Pre�x losure)

For every � 2 T and every �

0

� � , �

0

2 T .

T2 (SuÆx losure)
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For every � 2 T and every t 2 dom(�), � � t 2 T .

T3 (Conatenation losure)

Let �

0

; �

1

; �

2

; : : : be a sequene of trajetories in T suh that, for eah

non�nal index i, �

i

is losed and �

i

:lstate = �

i+1

:fstate. Then �

0

_

�

1

_

�

2

� � � 2 T .

AxiomsT1-3 express some natural onditions on the set of trajetories that we

need to onstrut our theory. A key part of this theory is a parallel omposition

operation for hybrid automata. In a omposed system, any trajetory of any

omponent automaton may be interrupted at any time by a disrete transition

of another (possibly independent) omponent automaton. Axiom T1 ensures

that the part of the trajetory up to the disrete transition is a trajetory, and

axiom T2 ensures that the remainder is a trajetory. Axiom T3 is required

beause the environment of a hybrid automaton, as a result of its own internal

disrete transitions, may hange its ontinuous dynamis repeatedly, and the

automaton must be able to follow this behavior.

The earlier de�nition of hybrid automata in [53,54℄ used a speial stuttering

ation e instead of axiom T3. Another key di�erene between the new de�ni-

tion of hybrid automaton and the earlier one is that in [53,54℄, the external

variables were onsidered to be part of the state. This meant, for example, that

disrete transitions ould depend on the values of these variables, a situation

that introdued tehnial ompliations. A loal transition of one automaton

ould hange an output variable, whih ould ause a disrete hange in a

seond automaton, whih in turn ould hange an input variable in the �rst

automaton. To avoid yli onstraints during the interation of systems, we

had to add several axioms, whih ompliated the use of our automaton de�-

nitions in appliations.

In the new de�nition, we expliitly identify the set Q of states as a subset of

val(X). In the earlier de�nition of [53,54℄ any valuation in val(X) was alled

a state. The reason for introduing Q is that in Setion 6, we will require that

in eah state eah input trajetory is aepted. In atual system desriptions,

we often enounter valuations whih are not reahable from the initial state,

whih in fat we do not want to view as states, and from whih no behavior

is enabled.

4

By exluding these \ghost" valuations from Q, we save ourselves

the trouble of having to think about them.

Hybrid automata that have no external variables are very similar to the timed

automata de�ned in [60,74℄. The main di�erene is that hybrid automata have

trajetories as a primitive rather than a derived notion. Also, the state of a

timed automaton need not be organized using variables with partiular types

and dynami types.

4

Typial examples are the valuations that do not satisfy the \loation invariants"

of Alur-Dill style timed automata [2℄.
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Notation: We often denote the omponents of an HA A by W

A

, X

A

, Q

A

,

�

A

, E

A

, et., and the omponents of an HA A

i

by W

i

, X

i

, Q

i

�

i

, E

i

, et. We

sometimes omit these subsripts, where no onfusion seems likely.

Notation: In examples we typially speify sets of trajetories using di�eren-

tial and algebrai equations and inlusions. Below we explain a few notational

onventions that help us in doing this. Suppose the time domain T is R, �

is a (�xed) trajetory over some set of variables V , and v 2 V . With some

abuse of notation, we use the variable name v to denote the funtion � # v in

dom(�)! type(v), whih gives the value of v at all times during trajetory � .

Similarly, we view any expression e ontaining variables from V as a funtion

with domain dom(�). Using these onventions we an say, for example, that

� satis�es the algebrai equation

v= e;

whih means that, for every t 2 dom(�), v(t) = e(t), that is, the onstraint on

the variables expressed by equation v = e holds for eah state on trajetory

� . Suppose that v is a variable and e is a real-valued expression ontaining

variables from V . Suppose also that e, when viewed as a funtion, is integrable.

Then we say that � satis�es

_v= e

if, for every t 2 dom(�), v(t) = v(0)+

R

t

0

e(t

0

)dt

0

. Note that this interpretation

of the di�erential equation makes sense even at points where v is not di�eren-

tiable. A similar interpretation of di�erential equations is used by Polderman

and Willems [71℄, who all these \weak solutions".

In the remainder of this subsetion, we give two simple examples of hybrid

automata.

Example 4.2 (Vehile HA) We desribe an HA Vehile, displayed

5

in

Figure 2, whih models a vehile that follows a suggested aeleration ap-

proximately, to within an error of � � 0. The time domain T is R. The state

of the Vehile automaton inludes two real-valued internal variables vel and

a, whih represent the atual veloity and aeleration of the vehile, re-

spetively. In addition, the automaton has two real-valued external variables,

vel-out and a-in, representing reported veloity and suggested aeleration.

5

We use an arrow notation beause later on in this paper, in Setion 6, we will view

a-in as an input variable and vel-out as an output variable. Within the ontext

of the present hapter the arrow notation has no meaning.
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acc-in vel-out

Vehicle

acc

vel

Fig. 2. The hybrid automaton Vehile.

The dynami type of the variables vel , vel-out , and a-in is the (pasting lo-

sure of the) set of ontinuous funtions. The dynami type of a is the set of

integrable funtions.

Vehile is de�ned to be the HA suh that W = fa-in; vel-outg, X =

fvel ; ag, Q is the set of all valuations of the variables vel and a, and

� onsists of the single valuation that assigns 0 to both state variables. The

set of ations is empty, and (therefore) D, the set of disrete transitions, is

empty. Set T onsists of all trajetories that satisfy:

_

vel= a (1)

a(t) 2 [a-in(t)� �; a-in(t) + �℄ for t > 0 (2)

vel-out= vel (3)

Equation (1) says that the veloity is obtained by integrating the aeleration.

Inlusion (2) asserts that, exept possibly for the left endpoint, the atual a-

eleration is within � of the suggested aeleration. Equation (3) says that the

veloity is reported aurately. We leave the reader to show that the trajetory

axioms T1{T3 are satis�ed; the form of the equations and inlusions used to

de�ne the trajetories should make this lear. We restrit to the ase t > 0

in equation (2) beause we do not want to onstrain either the input or the

starting state of trajetories. The reason for this restrition is tehnial (it

ensures that Vehile an be viewed as a proper HIOA that satis�es the input

trajetory enabling property) and should beome learer in Setion 6.

Example 4.3 (Controller HA) Now we desribe an HA Controller , dis-

played in Figure 3, whih models a ontroller that suggests aelerations for

a vehile, with the intention of ensuring that the vehile's veloity does not

exeed a pre-spei�ed veloity vmax. The ontroller monitors the vehile's ve-

loity, and every time d, for some �xed d > 0, it produes a new suggested

aeleration to be followed for the next time d. The aeleration is hosen in
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vel-out acc-in

Controller

clock

vel-sensed

acc-suggested

suggest

Fig. 3. The hybrid automaton Controller .

suh a way that, if it is followed to within an error of �, the veloity will remain

below vmax (provided the vehile is not going too fast in the �rst plae). We

assume that vmax � � d.

The omponents of the Controller HA are as follows: W = fvel-out ; a-ing

and X = fvel-sensed ; a-suggested ; lokg. All variables are of type R. The

dynami types of vel-out , vel-sensed , a-in, and lok are the (pasting losure

of the) set of ontinuous funtions, and a-suggested is a disrete variable. Q

is the set of valuations of X in whih lok � d. � onsists of one valuation,

whih assigns 0 to all state variables. E = ; and H ontains the single ation

suggest . Set D onsists of the suggest steps spei�ed by

6

:

lok= d (4)

vel-sensed+ (a-suggested

0

+ �)d� vmax (5)

lok

0

=0 (6)

vel-sensed

0

= vel-sensed (7)

Equation (4) says that the lok indiates that it is time for the suggested

aeleration to be omputed. Inequality (5) says that the new suggested a-

eleration is hosen so that, if the vehile follows it for the next time d, even

with an error of �, the veloity will still remain at most vmax. Equation (6)

says that the lok is reset after the disrete transition. Equation (7) says that

the transition does not hange the value of vel-sensed . Set T onsists of all

trajetories that satisfy:

_

a-suggested=0 (8)

_

lok=1 (9)

vel-sensed(t)= vel-out(t) for t > 0 (10)

6

Here we use the standard onvention that v denotes the value of a variable in the

start state of a disrete transition, and v

0

denotes the value in the end state.
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a-in= a-suggested (11)

Sine a-suggested is a disrete variable, the reader might think that adding

onstraint (8) makes no di�erene. However, if we expand this onstraint using

our de�nition of solutions for di�erential equations, we obtain

a-suggested(t) = a-suggested(0) +

t

Z

0

0 dt

0

= a-suggested(0);

whih means that a-suggested remains onstant throughout the full traje-

tory. So the e�et of adding di�erential equation (8) is that it rules out the

jumps that are allowed by the dynami type of a-suggested . Equation (9)

states that lok has rate 1, and is therefore a lok variable in the sense of

the timed automaton model of [5℄.

Equation (10) says that the veloity sensed by the ontroller is the same as the

veloity reported to the ontroller by its environment. Equation (11) asserts

that the aeleration that the ontroller provides to its environment is the

same as the aeleration that it has most reently omputed. Again, we leave

the reader to show that the trajetory axioms T1{T3 are satis�ed.

4.2 Exeutions and Traes

We now de�ne exeution fragments, exeutions, trae fragments, and traes,

whih are used to desribe automaton behavior. An exeution fragment of a

hybrid automaton A is an (A; V )-sequene � = �

0

a

1

�

1

a

2

�

2

: : :, where (1)

eah �

i

is a trajetory in T , and (2) if �

i

is not the last trajetory in � then

�

i

:lstate

a

i+1

! �

i+1

:fstate. An exeution fragment reords what happens during

a partiular run of a system, inluding all the instantaneous, disrete state

hanges and all the hanges to the state and external variables that our

while time advanes. We write frags

A

for the set of all exeution fragments of

A.

If � is an exeution fragment, with notation as above, then we de�ne the �rst

state of �, �:fstate, to be �

0

:fstate. We say that � is an exeution fragment

from a state x if �:fstate = x. An exeution fragment � is de�ned to be an

exeution if �:fstate is a start state, that is, �:fstate 2 �. We write exes

A

for

the set of all exeutions of A. If � is a losed (A; V )-sequene then we de�ne

the last state of �, �:lstate, to be last(�):lstate. A state of A is reahable if it

is the last state of some losed exeution of A.

Example 4.4 (Vehile exeution) Sine the Vehile HA of Example 4.2 has
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no disrete steps, eah of its exeutions is a one-element sequene onsisting

of a single trajetory over all the variables of Vehile. An example of suh

= acc

= acc-in

= vel = vel-out

1

2

3

4

1 2 3

Fig. 4. An exeution of the Vehile (lower two lines after 3 are supposed to oinide).

an exeution, depited graphially in Figure 4, is the one onsisting of the

trajetory � with �:ltime =1, and suh that:

a-in(t) = 0 if t � 1;

2 if 1 < t � 3;

0 if t > 3:

a(t) = � if t � 1;

2 + � if 1 < t � 3;

0 if t > 3:

vel(t) = vel-out(t) = �t if t � 1;

(2 + �)t� 2 if 1 < t � 3;

4 + 3� if t > 3:

Any �nite pre�x of � would also yield an exeution of Vehile. The trae of �

is the one-element sequene obtained by projeting � on fa-in; vel-outg.

Example 4.5 (Controller exeution) In the Controller HA of Exam-

ple 4.3, suppose d = 1, so the suggested aeleration is realulated at times
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1, 2, et. Also suppose that vmax � 4 + 4�. Then an example exeution of

Controller is the in�nite sequene � = �

0

suggest �

1

suggest �

2

: : :, where, for

every i and for every t 2 dom(�

i

)

(1) �

i

:ltime = 1.

(2) �

i

(t)(lok) = t.

(3) If i = 0 then �

i

(t)(v) is equal to 0 for v 2 fa-suggested ; a-ing and �t

for v 2 fvel-out ; vel-sensedg.

(4) If 1 � i � 2 then �

i

(t)(v) is equal to 2 for v 2 fa-suggested ; a-ing and

(2 + �)(i + t)� 2 for v 2 fvel-out ; vel-sensedg.

(5) If i � 3 then �

i

(t)(v) is equal to 0 for v 2 fa-suggested ; a-ing and

4 + 3� for v 2 fvel-out ; vel-sensedg.

The assumed bound on vmax implies that the suggested aelerations in this

exeution are atually possible suggestions aording to the rule given in the

Controller automaton de�nition. The trae of exeution � onsists of a sin-

gle trajetory beause Controller has no external ations. This trajetory is

de�ned by:

a-in(t) = 0 if t � 1;

2 if 1 < t � 3;

0 if t > 3:

vel-out(t) = �t if t � 1;

(2 + �)t� 2 if 1 < t � 3;

4 + 3� if t > 3:

Like trajetories also exeution fragments are losed under ountable onate-

nation.

Lemma 4.6 Let �

0

; �

1

; : : : be a �nite or in�nite sequene of exeution frag-

ments of A suh that, for eah non�nal index i, �

i

is losed and �

i

:lstate =

�

i+1

:fstate. Then �

0

_

�

1

_

� � � is an exeution fragment of A.

Proof: Follows easily from the de�nitions, using axiom T3.

Lemma 4.7 Let � and � be exeution fragments of A with � losed. Then

� � � , 9�

0

2 frags

A

: � = �

_

�

0

:

Proof: Impliation \(" follows diretly from the orresponding impliation
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in Lemma 3.7. Impliation \)" follows from the de�nitions and T2.

The external behavior of a hybrid automaton is aptured by the set of \traes"

of its exeution fragments, whih reord external ations and the trajetories

that desribe the evolution of external variables. Formally, if � is an exeution

fragment, then the trae of �, denoted by trae(�), is the (E;W )-restrition of

�. (Reall that E denotes the external ations and W the external variables.)

A trae fragment of a hybrid automaton A from a state x of A is the trae

of an exeution fragment of A from x. We write traefrags

A

(x) for the set

of trae fragments of A from x. Also, we de�ne a trae of A to be a trae

fragment from a start state, that is, the trae of an exeution of A, and write

traes

A

for the set of traes of A.

The following lemma follows trivially from Lemma 3.11:

Lemma 4.8 If � is an exeution fragment of A then

(1) � is time-bounded if and only if trae(�) is time-bounded.

(2) � is admissible if and only if trae(�) is admissible.

(3) If � is losed then trae(�) is losed.

(4) If � is non-Zeno then trae(�) is non-Zeno.

In parts (3) and (4) of the above lemma, the onverse impliations do not

hold. Counterexamples an be obtained by taking an exeution fragment �

that ends with an in�nite sequene of internal ations without any delay in

between. However, a slight weakening of the onverse impliations does hold:

Lemma 4.9 If � is a trae fragment of A from state x then

(1) If � is losed then there exists an exeution fragment � of A from x suh

that trae(�) = � and � is losed.

(2) If � is non-Zeno then there exists an exeution fragment � of A from x

suh that trae(�) = � and � is non-Zeno.

If the de�nition of non-Zeno were broadened to inlude the ase of a right-

open �nal trajetory, then part 2 of the above lemma an fail. It might be that

the only exeution that leads to suh a trae is a Zeno exeution, one with

in�nitely many internal events, and delays whih get smaller and smaller.

The next de�nition de�nes an implementation relation between hybrid au-

tomata in terms of inlusion of traes: a low-level spei�ation A implements

a high-level spei�ation B if any behavior (trae) of A is also an allowed

behavior of B. Without additional assumptions, our implementation relation

only preserves safety properties. However, in Setion 7 we will see that if the

low-level spei�ation automaton is required to be reeptive, our implementa-

tion relation also preserves bounded liveness properties.

30



De�nition 4.10 Hybrid automata A

1

and A

2

are omparable if they have the

same external interfae, that is, if W

1

= W

2

and E

1

= E

2

. If A

1

and A

2

are

omparable then we say that A

1

implements A

2

, denoted by A

1

� A

2

, if the

traes of A

1

are inluded among those of A

2

, that is, if traes

A

1

� traes

A

2

.

7

4.3 Simulation Relations

In this subsetion, we de�ne simulation relations between hybrid automata.

Simulation relations may be used to show that one HA implements another,

in the sense of inlusion of sets of traes.

Let A and B be omparable HAs. A simulation from A to B is a relation

R� Q

A

� Q

B

satisfying the following onditions, for all states x

A

and x

B

of

A and B, respetively:

(1) If x

A

2 �

A

then there exists a state x

B

2 �

B

suh that x

A

R x

B

.

(2) If x

A

R x

B

and � is an exeution fragment of A onsisting of one ation

surrounded by two point trajetories, with �:fstate = x

A

, then B has a

losed exeution fragment � with �:fstate = x

B

, trae(�) = trae(�), and

�:lstate R �:lstate.

(3) If x

A

R x

B

and � is an exeution fragment of A onsisting of a single

losed trajetory, with �:fstate = x

A

, then B has a losed exeution

fragment � with �:fstate = x

B

, trae(�) = trae(�), and �:lstate R

�:lstate.

The de�nition of a simulation from A to B yields a orrespondene for open

trajetories:

Lemma 4.11 Let A and B be omparable HAs and let R be a simulation

from A to B. Let x

A

and x

B

be states of A and B, respetively, suh that

x

A

R x

B

. Let � be an exeution fragment of A from state x

A

onsisting of a

single open trajetory. Then B has an exeution fragment � with �:fstate = x

B

and trae(�) = trae(�).

Proof: Let � be the single open trajetory in �. Using axioms T1 and T2, we

onstrut an in�nite sequene �

0

; �

1

; : : : of losed trajetories of A suh that

7

In [60,27,53,54℄, de�nitions of the set of traes of an automaton and of one au-

tomaton implementing another are based on losed and admissible exeutions only.

The results we obtain in this paper using the newer, more inlusive de�nition imply

orresponding results for the earlier de�nition. For example, we have the following

property: If A

1

� A

2

then the set of traes that arise from losed or admissible

exeutions of A

1

is a subset of the set of traes that arise from losed or admissible

exeutions of A

2

.
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� = �

0

_

�

1

_

� � �. Then, working indutively, we onstrut a sequene �

0

; �

1

; : : :

of losed exeution fragments of B suh that �

0

:fstate = x

B

and, for eah i,

�

i

:lstate R �

i

:lstate, �

i

:lstate = �

i+1

:fstate, and trae(�

i

) = trae(�

i

). This

onstrution uses indution on i, using Property 3 of the de�nition of a simu-

lation relation in the indution step. Now let � = �

0

_

�

1

_

� � �. By Lemma 4.6,

� is an exeution fragment of B. Clearly, �:fstate = x

B

. By Lemma 3.9 applied

to both � and �, trae(�) = trae(�). Thus � has the required properties.

Theorem 4.12 Let A and B be omparable HAs and let R be a simulation

from A to B. Let x

A

and x

B

be states of A and B, respetively, suh that

x

A

R x

B

. Then traefrags

A

(x

A

) � traefrags

B

(x

B

).

Proof: Suppose that Æ is the trae of an exeution fragment of A that starts

from x

A

; we prove that Æ is also a trae of an exeution fragment of B that

starts from x

B

. Let � = �

0

a

1

�

1

a

2

�

2

: : : be an exeution fragment of A suh

that �:fstate = x

A

and Æ = trae(�). We onsider ases:

(1) � is an in�nite sequene.

Using axioms T1 and T2, we an write � as an in�nite onatenation

�

0

_

�

1

_

�

2

� � �, in whih the exeution fragments �

i

with i even onsist

of a trajetory only, and the exeution fragments �

i

with i odd onsist of

a single disrete step surrounded by two point trajetories.

We de�ne indutively a sequene �

0

; �

1

; : : : of losed exeution frag-

ments of B, suh that �

0

:fstate = x

B

and, for all i, �

i

:lstate = �

i+1

:fstate,

�

i

:lstate R �

i

:lstate, and trae(�

i

) = trae(�

i

). We use Property 3 of the

de�nition of a simulation relation for the onstrution of the �

i

's with

i even, and Property 2 for the onstrution of the �

i

's with i odd. Let

� = �

0

_

�

1

_

�

2

� � �. By Lemma 4.6, � is an exeution fragment of B.

Clearly, �:fstate = x

B

. By Lemma 3.9, trae(�) = trae(�). Thus � has

the required properties.

(2) � is a �nite sequene ending with a losed trajetory.

Similar to the �rst ase.

(3) � is a �nite sequene ending with an open trajetory.

Similar to the �rst ase, using Lemma 4.11.

Corollary 4.13 Let A and B be omparable HAs and let R be a simulation

from A to B. Then traes

A

� traes

B

.

Proof: Suppose � 2 traes

A

. Then � 2 traefrags

A

(x

A

) for some start state

x

A

of A. Property 1 of the de�nition of simulation relation implies the exis-

tene of a start state x

B

of B suh that x

A

R x

B

. Then Theorem 4.12 implies

that � 2 traefrags

B

(x

B

). Sine x

B

is a start state of B, this implies that

� 2 traes

B

, as needed.
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Example 4.14 (Vehile implementation) Now denote the Vehile HA of

Example 4.2 by Vehile(�), making the unertainty parameter expliit. Assume

that 0 � �

1

� �

2

. Let A = Vehile(�

1

) and B = Vehile(�

2

). We laim that

A � B. We an show this by demonstrating that the identity mapping is

a simulation relation from A to B. Sine these HAs have no disrete steps,

we need only show Properties 1 and 3 of the de�nition of simulation relation.

Property 1 is obvious beause the two HAs have the same (unique) start state,

whih assigns 0 to both state variables. For Property 3, assume that x

A

R x

B

and � onsists of a losed trajetory � of A with �:fstate = x

A

. Let � = �.

Clearly, � is a losed hybrid sequene, �:fstate = x

B

, trae(�) = trae(�), and

�:lstate R �:lstate. It remains to show that � is an exeution fragment of B,

that is, that � is a trajetory of B. This follows immediately from the de�nition

of trajetories for Vehile(�

1

) and Vehile(�

2

); the only interesting point is

that, for every t 2 dom(�), t > 0, we have: [a-in(t) � �

1

; a-in(t) + �

1

℄ �

[a-in(t)� �

2

; a-in(t) + �

2

℄.

Example 4.15 (Controller implementation)Denote the Controller HA of

Example 4.3 by Controller(vmax), making the maximum veloity parameter

expliit. Assume that 0 � vmax

1

� vmax

2

. We laim that Controller(vmax

1

) �

Controller(vmax

2

); again, we show this by demonstrating that the identity

mapping is a simulation relation. This requires showing all three properties of

the de�nition of simulation relation. Properties 1 and 3 are immediate, beause

vmax does not appear in the de�nitions of the start states and the trajetories.

For Property 2, the key is that, if vel-sensed + (a-suggested

0

+ �)d � vmax

1

,

then also vel-sensed + (a-suggested)

0

+ �)d � vmax

2

.

5 Operations on Hybrid Automata

In this setion, we present two kinds of operations on hybrid automata: parallel

omposition and hiding.

5.1 Composition

We now introdue the operation of parallel omposition for hybrid automata,

whih allows an automaton representing a omplex system to be onstruted

by omposing automata representing individual system omponents. Our om-

position operation identi�es external ations with the same name in di�erent

omponent automata, and likewise for external variables. When any ompo-

nent automaton performs a disrete step involving an ation a, so do all ompo-
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nent automata that have a in their signatures. Likewise, when any omponent

automaton performs a trajetory involving a partiular evolution of values for

an external variable v, then so do all omponent automata that have v in their

signatures. We prove several results that say that the omposition operation

respets our notions of external behavior and implementation.

We de�ne omposition as a partial, binary operation on hybrid automata.

Sine internal ations of an automaton A

1

are intended to be unobservable

by any other automaton A

2

, we allow A

1

to be omposed with A

2

only if the

internal ations of A

1

are disjoint from the ations of A

2

. Similarly, we require

disjointness of the internal variables of A

1

and the variables of A

2

.

De�nition 5.1 We say that hybrid automata A

1

and A

2

are ompatible if

H

1

\ A

2

= H

2

\ A

1

= ; and X

1

\ V

2

= X

2

\ V

1

= ;. If A

1

and A

2

are

ompatible then their omposition A

1

kA

2

is de�ned to be the struture A =

(W;X;Q;�; E;H;D; T ) where

� W = W

1

[W

2

and X = X

1

[X

2

.

� Q = fx 2 val(X) j x dX

1

2 Q

1

^ x dX

2

2 Q

2

g.

� � = fx 2 Q j x dX

1

2 �

1

^ x dX

2

2 �

2

g.

� E = E

1

[ E

2

and H = H

1

[H

2

.

� For eah x;x

0

2 Q and eah a 2 A, x

a

!

A

x

0

i� for i = 1; 2, either (1)

a 2 A

i

and x dX

i

a

!

i

x

0

dX

i

, or (2) a 62 A

i

and x dX

i

= x

0

dX

i

.

� T � trajs(V ) is given by � 2 T , � # V

1

2 T

1

^ � # V

2

2 T

2

.

Whenever we write A

1

kA

2

, we impliitly assume that A

1

and A

2

are ompat-

ible.

Theorem 5.2 If A

1

and A

2

are hybrid automata then A

1

kA

2

is a hybrid

automaton.

Proof: Let A denote A

1

kA

2

as above. We show that A satis�es the properties

of a hybrid automaton (f. Setion 4.1). Disjointness of W and X follows

from disjointness of W

1

and X

1

, disjointness of W

2

and X

2

, and ompatibility.

Similarly, disjointness of E and H follows from disjointness of E

1

and H

1

,

disjointness of E

2

and H

2

, and ompatibility. Nonemptiness of � follows from

nonemptiness of �

1

and �

2

and disjointness of X

1

and X

2

. We verify the T

properties:

T1 Let � 2 T , let �

0

be a trajetory suh that �

0

� � , and let i 2 f1; 2g.

By the de�nition of omposition, � # V

i

2 T

i

. By the de�nition of pre�x,

�

0

# V

i

� � # V

i

. By T1 applied to A

i

, �

0

# V

i

2 T

i

. Then by de�nition of

omposition, �

0

2 T , as needed.

T2 Let � 2 T , t 2 dom(�), �

0

= � � t, and i 2 f1; 2g. By the de�nition of

omposition, � # V

i

2 T

i

. Then by T2 applied to A

i

, (� # V

i

) � t 2 T

i

.

Observe that (� # V

i

) � t = �

0

# V

i

; therefore, �

0

# V

i

2 T

i

. Then by the
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de�nition of omposition, �

0

2 T , as needed.

T3 Let �

0

; �

1

; �

2

; : : : be a sequene of trajetories in T suh that, for eah

non�nal index j, �

j

is losed and �

j

:lstate = �

j+1

:fstate. Let � denote �

0

_

�

1

_

�

2

� � �, and let i 2 f1; 2g. By the de�nition of omposition, operation,

for eah index j, �

j

# V

i

2 T

i

, and for eah non�nal index j, �

j

# V

i

is losed

and (�

j

# V

i

):lstate = (�

j+1

# V

i

):fstate. By T3 applied to A

i

, �

0

# V

i

_

�

1

#

V

i

_

�

2

# V

i

� � � 2 T

i

. Observe that � # V

i

= �

0

# V

i

_

�

1

# V

i

_

�

2

# V

i

� � �;

therefore, � # V

i

2 T

i

. Then by the de�nition of omposition, � 2 T , as

needed.

The following \projetion lemma" says that exeutions of a omposition of

HAs projet to give exeutions of the omponent automata. Moreover, ertain

properties of the exeutions of the omposition imply, or are implied by, similar

properties for the omponent exeutions.

Lemma 5.3 Let A = A

1

kA

2

and let � be an exeution fragment of A. Then

� d(A

1

; V

1

) and � d(A

2

; V

2

) are exeution fragments of A

1

and A

2

, respetively.

Furthermore,

(1) � is time-bounded i� both � d(A

1

; V

1

) and � d(A

2

; V

2

) are time-bounded.

(2) � is admissible i� both � d(A

1

; V

1

) and � d(A

2

; V

2

) are admissible.

(3) � is losed i� both � d(A

1

; V

1

) and � d(A

2

; V

2

) are losed.

(4) � is Zeno i� at least one of � d(A

1

; V

1

) and � d(A

2

; V

2

) is Zeno.

(5) � is an exeution i� both � d(A

1

; V

1

) and � d(A

2

; V

2

) are exeutions.

Proof: Simple appliation of the de�nitions.

Example 5.4 (Composition and Zeno exeutions) Consider a omposi-

tion A = A

1

kA

2

in whih the two omponents have no ations or variables in

ommon. We desribe a Zeno exeution fragment � of A in whih only one of

the projeted exeution fragments is Zeno. Namely, let � = �

0

a

1

�

1

a

2

�

2

: : :,

where �

0

:ltime = 1 and for all i � 1, �

i

is a point trajetory. Also, all the a

i

's

are ations of A

1

but not of A

2

. Then � d(A

1

; V

1

), whih inludes all the a

i

's,

is a Zeno exeution fragment, whereas � d(A

2

; V

2

), whih onsists of the single

right-losed trajetory �

0

# V

2

, is a losed exeution fragment.

Example 5.5 (Exeution of vehile and ontroller) Consider the Vehile

and Controller automata of Examples 4.2 and 4.3 (for the same �). These two

HAs are ompatible. Their omposition is displayed in Figure 5. An example

exeution of the omposition is the in�nite sequene � = �

0

suggest�

1

suggest�

2

: : :,

where, for every i and for every t 2 dom(�

i

):

(1) �

i

:ltime = 1.
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Controller

clock

vel-sensed

acc-suggested

suggest

vel-out

acc-in
Vehicle

vel

acc

Fig. 5. Composition of hybrid automata Vehile and Controller .

(2) �

i

(t)(lok) = t.

(3) If i = 0 then �

i

(t)(v) is equal to 0 for v 2 fa-suggested ; a-ing, � for

v = a, and �t for v 2 fvel ; vel-out ; vel-sensedg.

(4) If 1 � i � 2 then �

i

(t)(v) is equal to 2 for v 2 fa-suggested ; a-ing,

2 + � for v = a, and (2 + �)(i+ t)� 2 for v 2 fvel ; vel-out ; vel-sensedg.

(5) If i � 3 then �

i

(t)(v) is equal to 0 for v 2 fa-suggested ; a-in; ag and

4 + 3� for v 2 fvel ; vel-out ; vel-sensedg.

This exeution is admissible. Its projetions on the Vehile and Controller

automata are given by the admissible exeutions in Examples 4.4 and 4.5,

respetively.

The following lemma says that we obtain the same result for an exeution

fragment � of a omposition if we �rst extrat the trae and then restrit to

one of the omponents, or if we �rst restrit to the omponent and then take

the trae.

Lemma 5.6 Let A = A

1

kA

2

, and let � be an exeution fragment of A. Then,

for i = 1; 2, trae(�) d(E

i

;W

i

) = trae(� d(A

i

; V

i

)).

Proof: Reall that trae(�) = � d(E;W ). The result follows straightforwardly

by Lemma 3.10 and the observation that W \ W

i

= W

i

= V

i

\ W

i

and

E \ E

i

= E

i

= A

i

\ E

i

.

The following fundamental theorem relates the set of traes of a omposed

automaton to the sets of traes of the omponent automata. It is expressed

in terms of equality between two sets of traes. Set inlusion in one diretion

expresses the idea that a trae of a omposition \projets" to yield traes of the

omponents. Set inlusion in the other diretion expresses the idea that traes

of omponents an be \pasted together" to yield a trae of the omposition.

Theorem 5.7 Let A = A

1

kA

2

. Then traes

A

is exatly the set of (E;W )-
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sequenes whose restritions to A

1

and A

2

are traes of A

1

and A

2

, respe-

tively. That is,

traes

A

= f� j � is (E;W )-sequene and � d(E

i

;W

i

) 2 traes

A

i

; i = 1; 2g:

Proof: For one diretion, suppose that � is a trae of A. Then by de�nition,

� is an (E;W )-sequene. Let � be an exeution of A suh that � = trae(�).

Let i 2 f1; 2g. Then Lemma 5.6 implies that � d(E

i

;W

i

) = trae(� d(A

i

; V

i

)).

Sine, by Lemma 5.3, � d(A

i

; V

i

) is an exeution of A

i

, � d(E

i

;W

i

) is a trae

of A

i

.

Conversely, let � be an (E;W )-sequene suh that � d(E

i

;W

i

) is a trae of A

i

,

i = 1; 2. Then there are exeutions �

1

and �

2

of A

1

and A

2

, respetively, suh

that, for i = 1; 2, trae(�

i

) = � d(E

i

;W

i

). Deompose �

1

into �

0

1

_

�

1

1

_

�

2

1

_

� � �,

deompose �

2

into �

0

2

_

�

1

2

_

�

2

2

_

� � �, and deompose � into �

0 _

�

1 _

�

2 _

� � �

in suh a way that for eah j, (1) trae(�

j

i

) = �

j

d(E

i

;W

i

) for i 2 f1; 2g,

(2) �

j

i

is either a trajetory or an ation surrounded by point trajetories,

i 2 f1; 2g, and (3) if both �

j

1

and �

j

2

onsist of ations surrounded by point

trajetories then these ations are idential. Axioms T1 and T2 imply that

suh deompositions exist.

8

Now we de�ne a sequene of exeution fragments of A, �

0

; �

1

; : : :, suh that:

(1) �

0

:fstate 2 �

A

,

(2) For every non�nal j, �

j

:lstate = �

j+1

:fstate, and

(3) For every j, trae(�

j

) = �

j

.

By Lemma 4.6, the onatenation �

0_

�

1_

� � � is an exeution of A. Moreover,

by Lemma 3.9, the trae of this exeution is �. To de�ne eah �

j

, we distinguish

the following ases:

(1) Eah of �

j

1

and �

j

2

is a trajetory.

Then suppose that �

j

1

= �

1

and �

j

2

= �

2

. De�ne �

j

to be the funtion �

with domain dom(�

1

) suh that �(t) = �

1

(t)[ �

2

(t) for every t. (Compat-

ibility of �

1

and �

2

follows here, and in the remaining three ases, from

the fats that �

j

1

= �

j

d(E

1

;W

1

) and �

j

2

= �

j

d(E

2

;W

2

).)

(2) �

j

1

is a trajetory and �

j

2

is an ation surrounded by point trajetories.

Then �

j

1

must be a point trajetory as well. Let �

j

1

= }(v

1

) and �

j

2

=

}(v

2

)a}(v

0

2

). Then de�ne �

j

to be }(v

1

[ v

2

) a }(v

1

[ v

0

2

).

(3) �

j

1

is an ation surrounded by point trajetories and �

j

2

is a trajetory.

This is symmetri with the previous ase.

(4) Eah of �

j

1

and �

j

2

is an ation (the same in both ases) surrounded by

point trajetories.

8

See [59℄ for a detailed existene proof for similar deompositions.
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Let �

j

1

= }(v

1

)a}(v

0

1

) and �

j

2

= }(v

2

)a}(v

0

2

). De�ne �

j

to be }(v

1

[

v

2

) a }(v

0

1

[ v

0

2

).

It is straightforward to verify that the �

j

fragments satisfy the required prop-

erties.

The following theorem desribes a basi substitutivity property:

Theorem 5.8 Suppose A

1

and A

2

are omparable HAs with A

1

� A

2

. Sup-

pose B is an HA that is ompatible with eah of A

1

and A

2

. Then A

1

kB and

A

2

kB are omparable and A

1

kB � A

2

kB.

Proof: The fat that A

1

kB and A

2

kB are omparable follows from the fat

that A

1

and A

2

are omparable and the de�nition of omposition.

Let � 2 traes

A

1

kB

. By Theorem 5.7, � d(E

1

;W

1

) 2 traes

A

1

and � d(E

B

;W

B

) 2

traes

B

. Sine A

1

� A

2

, � d(E

1

;W

1

) 2 traes

A

2

. Sine A

1

and A

2

have the

same external interfae, (E

1

;W

1

) = (E

2

;W

2

). Thus, � d(E

2

;W

2

) 2 traes

A

2

.

It follows from Theorem 5.7 that � 2 traes

A

2

kB

.

Example 5.9 (Invariant for ombined vehile and ontroller)Consider

again the omposition of the Vehile and Controller automata of Examples 4.2

and 4.3 (for the same �). In the omposed automaton, it turns out that the

veloity is always less than or equal to vmax, that is, in all reahable states,

vel� vmax (12)

This statement may be proved by indution on the length of losed exeution

fragments. In the proof, we use the fat that lok � d, whih follows from the

de�nition of Q. We also use assertions (3) and (11). In addition, we require

the following auxiliary invariants:

vel + (a-suggested+ �)(d� lok)� vmax (13)

lok > 0) a� a-suggested+ � (14)

vel-sensed= vel (15)

0� lok (16)

Here the interesting assertion is (13), whih says, essentially, that the veloity

will stay less than or equal to vmax if the vehile aelerates at the urrently

suggested aeleration plus � until the next realulation. The main invariant

(12) and the auxiliary invariants (13)-(16) an all be proved together. All are

easily seen to be true in the initial state. There are two kinds of indutive

steps, for disrete suggest transitions and for trajetories. Disrete transitions
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are easily seen to preserve all the assertions; the most interesting property

to show is invariant (13), whih holds beause of the onstraints on the new

suggested aeleration, the fat that vel-sensed = vel , and the fat that, in

the new state, lok = 0.

Trajetories also preserve all the assertions; now the interesting thing to show

is the onjuntion of (12) and (13). Depending on whether or not a-suggested+

� � 0, it suÆes to show only (12) or only (13). For example, suppose

a-suggested + � � 0; we show the auxiliary invariant (13). The trajetory

guarantees that vel

0

� vel +(a-suggested + �)t and lok

0

= lok + t, where

t is the limit time of the trajetory and unprimed and primed instanes of the

variables are used (as usual) to indiate their values at the beginning and end

of the trajetory, respetively. The inequality is based on the integral de�ni-

tion of vel in terms of a and the relationship between a and a-suggested .

Then

vel

0

+ (a-suggested

0

+ �)(d� lok

0

)

= vel

0

+ (a-suggested+ �)(d� lok � t)

= vel

0

� (a-suggested+ �)t + (a-suggested+ �)(d� lok)

� vel + (a-suggested+ �)(d� lok)

� vmax (by indutive hypothesis)

Note that, beause of the two kinds of indutive steps, the indutive proof

divides leanly into separate parts that involve disrete and ontinuous rea-

soning.

5.2 Hiding

We de�ne two hiding operations for hybrid automata, whih hide external a-

tions and external variables, respetively, and we prove that these operations

respet the implementation relationship. The hiding operations relassify ex-

ternal ations or external variables as internal ations or variables.

� If E � E

A

, then AtHide(E;A) is the HA B that is equal to A exept that

E

B

= E

A

� E and H

B

= H

A

[ E.

� If W � W

A

, then VarHide(W;A) is the HA B that is equal to A exept that

W

B

= W

A

�W and T

B

= T

A

# (V

A

�W ).

Lemma 5.10 Let E � E

A

andW � W

A

. Then AtHide(E;A) and VarHide(W;A)

are HAs.

Proof: This is a straightforward appliation of the de�nitions.
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The following lemma haraterizes the traes of the automata that result from

applying the hiding operations:

Lemma 5.11 Let A be an HA.

(1) If E � E

A

then traes

AtHide(E;A)

= f� d(E

A

� E; V

A

) j � 2 traes

A

g.

(2) If W � W

A

then traes

VarHide(W;A)

= f� d(A

A

;W

A

�W ) j � 2 traes

A

g.

Proof: For (1), �rst observe that AtHide(E;A) has the same set of exeutions

as A. Then apply Lemma 3.10. The proof of (2) is straightforward.

Theorem 5.12 Suppose A and B are HAs with A � B, and suppose E � E

A

and W � W

A

.

Then AtHide(E;A) � AtHide(E;B) and VarHide(W;A) � VarHide(W;B).

Proof: Straightforward, using Lemma 5.11.

Example 5.13 (Implementing a veloity spei�ation) In the omposi-

tion of the Vehile and Controller automata de�ned in Example 5.5, we may

hide the a-in variable used for ommuniation between the two omponents.

Thus, we de�ne

A=VarHide(fa-ing;VehilekController):

In the resulting automaton A, the only external variable is vel-out .

We may express the orretness ofA by showing that it implements an abstrat

spei�ation automaton VSpe, displayed in Figure 6, that simply represents

the onstraint that the vehile's veloity is at most vmax. VSpe has one ex-

vel-out

vel

VSpec

Fig. 6. Spei�ation automaton VSpe.

ternal variable vel-out , one state variable vel , and the sets of states and initial

states both onsist of all valuations satisfying vel � vmax. Both variables
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have type R and dynami type equal to the (pasting losure of the) ontinu-

ous funtions. VSpe has no ations. The trajetories of VSpe are those that

satisfy:

vel-out= vel (17)

We may argue thatA implements VSpe using a simulation relationR. Most of

the work has already been done by proving invariants, in Example 5.9. Relation

R relates states x

A

of A and x

B

of B

�

= VSpe exatly if x

A

is a reahable

state of A and x

B

(vel) = x

A

(vel). It is easy to see that R satis�es the start

ondition of the simulation relation de�nition. The disrete step ondition

follows beause disrete ations of A do not hange vel . For the trajetory

ondition, assume x

A

R x

B

and � is a trajetory of A with �rst state x

A

.

The de�nition of R implies that x

A

is a reahable state of A. Therefore all

states in trajetory � are also reahable states of A. Therefore, the invariant

vel � vmax, whih was proved for A in Example 5.9, is also true of all states

in � . Now de�ne the orresponding exeution fragment of B to onsist of the

single trajetory �

0

suh that �

0

# vel = �

0

# vel-out = � # vel . This satis�es

all the required properties.

Example 5.14 (Sensor and disrete ontroller) We desribe how to im-

plement the Controller of Example 4.3, whih reeives ontinuous informa-

tion about the vehile's veloity through vel-out and suggests aelerations,

using two other omponents: a Sensor , whih periodially samples the on-

tinuous veloity information and produes disrete veloity reports, and a

DisreteController , whih uses the disrete veloity reports and immediately

suggests aelerations. These two omponents are displayed in Figure 7.

Sensor

clock

suggest

report(v)

vel-sensed

acc-suggested

vel-reported

stable

DiscreteController

vel-out acc-in

Fig. 7. The hybrid automata Sensor and DisreteController .

The Sensor automaton has state variables lok and vel-sensed , both initially

0, and external variable vel-out . All variables have type R and dynami type

equal to the (pasting losure of the) ontinuous funtions. The set Q of states

onsists of all valuations in whih lok � d. Sensor also has external ations

report(v), v 2 R. D onsists of report(v) steps spei�ed by:
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lok= d (18)

lok

0

=0 (19)

v= vel-sensed (20)

That is, when the lok reahes d, the Sensor may reset the lok to 0 and

report the urrent veloity. Set T onsists of trajetories that satisfy:

_

lok=1 (21)

vel-sensed(t)= vel-out(t) for t > 0 (22)

That is, the lok inreases at rate 1 and the veloity sensed is exatly what

is seen in vel-out .

The DisreteController HA has state variables vel-reported and a-suggested ,

both disrete variables of type R, initially 0, a disrete Boolean state variable

stable, initially true, and one external variable a-in, of type R and dynami

type equal to (the pasting losure of) the ontinuous funtions. The state on-

sists of all valuations of the internal variables. The DisreteController also has

external ations report(v), v 2 R, and an internal ation suggest . D inludes

report(v) steps that satisfy:

vel-reported

0

= v (23)

stable

0

= false (24)

and suggest steps that satisfy:

stable= false (25)

stable

0

= true (26)

vel-reported+ (a-suggested

0

+ �)d� vmax (27)

That is, a new veloity report sets the ag that triggers the DisreteController

to realulate the suggested aeleration. Trajetories satisfy:

stable(t)= stable(0) (28)

stable(t)= true for t > 0 (29)

_

a-suggested=0 (30)

a-in= a-suggested (31)

That is, the DisreteController does not allow time to pass if stable = false; it

must perform a suggest ation after reeiving a report input and before time

an pass. The DisreteController does not hange the suggested aeleration

during a trajetory, and submits it aurately to its environment. Now de�ne
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A=AtHide(freport(v) j v 2 Rg; SensorkDisreteController):

We laim that A implements B

�

= Controller . We may argue this using the

simulation relation R that relates states x

A

of A and x

B

of Controller pro-

vided that x

A

is a reahable state of A, x

B

(vel-sensed) = x

A

(vel-sensed),

x

B

(a-suggested) = x

A

(a-suggested) and x

B

(lok) = x

A

(lok) if x

A

(stable) =

true, else d. A key to the argument is that a suggest step ours in B when

suggest ours in A, rather than when a report ours.

Sine A � Controller , Theorem 5.8 implies AkVehile � ControllerkVehile.

Then Theorem 5.12 implies

VarHide(fa-ing;AkVehile)�VarHide(fa-ing;ControllerkVehile):

Sine, by Example 5.13, VarHide(fa-ing;ControllerkVehile) � VSpe, tran-

sitivity of implementation implies that VarHide(fa-ing;AkVehile) imple-

ments VSpe.

6 Hybrid I/O Automata

In this setion we re�ne the hybrid automaton model of Setion 4 by dis-

tinguishing between input and output ations and between input and output

variables. The results on simulation relations and operations for hybrid au-

tomata presented in Setions 4.3 and 5 an be extended to this new setting.

6.1 De�nition of Hybrid I/O Automata

De�nition 6.1 A hybrid I/O automaton (HIOA) A is a tuple (H; U; Y; I; O)

where

� H = (W;X;Q;�; E;H;D; T ) is a hybrid automaton.

� U and Y partition W into input and output variables, respetively.

Variables in Z

�

= X [ Y are alled loally ontrolled; as before, we write

V

�

=W [X.

� I and O partition E into input and output ations, respetively.

Ations in L

�

= H [ O are alled loally ontrolled; as before we write

A

�

= E [H.

� The following additional axioms are satis�ed:

E1 (Input ation enabling)

For every x 2 Q and every a 2 I, there exists x

0

2 Q suh that x

a

! x

0

.
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E2 (Input trajetory enabling)

For every x 2 Q and every � 2 trajs(U ), there exists � 2 T suh that

�:fstate = x, � # U � �, and either

(1) � # U = �, or

(2) � is losed and some l 2 L is enabled in �:lstate.

Input ation enabling is the input enabling ondition of ordinary I/O au-

tomata. Input trajetory enabling is a new, orresponding ondition for in-

teration over time intervals. It says that an HIOA should be able to aept

any input trajetory, that is, any trajetory for the input variables, either by

letting time advane for the entire duration of the input trajetory, or by re-

ating with a loally ontrolled ation after some part of the input trajetory

has ourred. In Setion 7, we will see that by repeated appliation of axiom

E2 a HIOA is able to fully aept any input trajetory, possibly interleaved

with loally ontrolled ations, provided the HIOA does not exhibit unwanted

Zeno behavior.

Note the role of dynami types in axiom E2. Input trajetory enabling means

that an automaton annot restrit the inputs. The problem we hit is that with

absolutely no way of restriting the inputs, the inputs were just too ill-behaved.

In examples, we typially want to be able to integrate the input to get the

value of internal variables, but we annot do this unless the input is integrable.

Axiom E2 states that a HIOA needs to be able to aept any input trajetory

in trajs(U ). By de�nition, the trajetories in trajs(U ), when projeted on an

individual variable u 2 U , must be in agreement with the dynami type of

u. For instane, by taking as the dynami type of variables in U the set of

pieewise smooth funtions, we impose some rather minimal onstraints on

the input trajetories that allow us to give meaningful automaton de�nitions

involving integrals, di�erential equations, et.

In ontrol theory it is ustomary to require ausality, that is, the output at

time t depends only upon the input trajetory up to, and possibly inluding,

time t [71℄. In our setting, there is no need to enfore ausality expliitly sine

it is implied already by the losure of the set of trajetories under pre�x and

onatenation. Assume that in a trajetory � the output at time t \depends"

on the input trajetory after t. By pre�x losure of trajetories (axiom T1),

� � t is also a trajetory. Let x be the state of � at time t, and let � be any

input trajetory. By axiomE2 there exists a trajetory �

0

with �rst state x that

agrees with � (at least up to a ertain point). By axiom T3 the onatenation

of � � t and �

0

is again a trajetory. The output of this trajetory at time

t agrees with the output of � at time t, even though the subsequent inputs

will in general be di�erent. It follows that in � the output at time t does not

depend on the input after t, a ontradition. Also note that our de�nition

does not enfore funtional dependene of outputs from inputs: HIOAs may

be nondeterministi, allowing for several possible outputs for any given input
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trajetory.

It will sometimes be onvenient for us to onsider automata in whih inputs

and outputs are distinguished, but that do not neessarily satisfy the proper-

ties E1 or E2. We all suh an automaton a pre-HIOA.

Notation: As we did for HAs, we denote the omponents of a (pre-)HIOA

A by H

A

; U

A

; Y

A

; : : : ;W

A

; X

A

; Q

A

;�

A

, et., and those of a (pre-)HIOA A

i

by

H

i

; U

i

; Y

i

; : : : ;W

i

; X

i

, Q

i

;�

i

, et. We sometimes omit these subsripts, where

no onfusion is likely. We abuse notation slightly by referring to a (pre-)HIOA

A as an HA when we intend to refer to H

A

.

Example 6.2 (Vehile and ontroller HIOAs) The Vehile HA of Ex-

ample 4.2 an be onverted into an HIOA by lassifying a-in as an input

variable and vel-out as an output variable. Property E1, input ation enabling,

holds vauously. It is also easy to see that E2 holds, in fat, the �rst alter-

native always holds|from any state the Vehile automaton an aept any

input trajetory. Note that, in order for E2 to hold, it is essential that we do

not require inlusion (2) to hold for initial states of trajetories.

Similarly, the Controller HA of Example 4.3 an be onverted into an HIOA by

lassifying vel-out as an input variable and a-in as an output variable. Again,

E1 holds vauously. To see E2, onsider a state x, and an input trajetory

�. The de�nition of Q implies that x(lok) � d. Then the de�nition of the

Controller trajetories implies that there is some trajetory � starting from

x that is onsistent with � and that either spans all of � or stops short, at a

valuation v in whih lok = d. Then the de�nition of the suggest transitions

implies that this loally ontrolled ation is enabled in v dX, as needed.

Example 6.3 (Sensor and disrete ontroller HIOAs) The Sensor au-

tomaton from Example 5.14 an be onverted into an HIOA by lassifying

vel-out as an input variable and the report ations as output ations. The

argument that Sensor is atually an HIOA is similar to the argument for the

Controller in Example 6.2.

Similarly, the DisreteController automaton from Example 5.14 an be on-

verted into an HIOA by lassifying the report ations as input ations and

the a-in variable as an output variable. It is straightforward to verify E1.

E2 is not ompletely trivial, even though the automaton has no input vari-

ables: from any state x we must onsider \null" input trajetories, whih map

a time interval to the empty valuation (the valuation for no variables). If

x(stable) = true, then the DisreteController an aept the entire input tra-

jetory, and if x(stable) = false, then suggest is enabled in x. This implies E2.
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6.2 Exeutions, Traes, and Simulation Relations

An exeution of a pre-HIOA A is de�ned to be an exeution of H

A

, a trae of

A is a trae of H

A

, and similarly for exeution fragments and trae fragments.

We extend the notation exes

A

, et. to pre-HIOAs in the obvious way. Two

pre-HIOAs A

1

andA

2

are omparable if their inputs and outputs oinide, that

is, if I

1

= I

2

, O

1

= O

2

, U

1

= U

2

, and Y

1

= Y

2

. If A

1

and A

2

are omparable,

then A

1

� A

2

is de�ned to mean that the traes of A

1

are inluded among

those of A

2

: A

1

� A

2

�

= traes

A

1

� traes

A

2

.

Lemma 6.4 Let A

1

and A

2

be two omparable pre-HIOAs. Then H

1

and H

2

are omparable and A

1

� A

2

i� H

1

� H

2

.

Proof: Immediate from the de�nitions.

The de�nition of simulation for pre-HIOAs is the same as for HAs. Formally,

if A

1

and A

2

are omparable pre-HIOAs, then a simulation from A

1

to A

2

is

a simulation from H

1

to H

2

.

Theorem 6.5 If A

1

and A

2

are omparable pre-HIOAs and there is a simu-

lation from A

1

to A

2

, then A

1

� A

2

.

Proof: Immediate from the de�nition of simulation, Theorem 4.12, and

Lemma 6.4.

6.3 Composition

The de�nition of omposition for HIOAs is based on the orresponding de�ni-

tion for HAs, but also takes the input/output struture into aount. Just as

for HAs, we allow an HIOA A

1

to be omposed with an HIOA A

2

only if the

sets of internal ations and variables of A

1

are disjoint from the sets of ations

and variables, respetively, of A

2

. In addition, in order that the omposition

operation might satisfy ertain desirable properties (see, for example, the re-

sults in Setion 6.5), we require that at most one omponent should \ontrol"

any given ation or variable; that is, we allow A

1

and A

2

to be omposed only

if the sets of output ations of A

1

and A

2

are disjoint and the sets of output

variables of A

1

and A

2

are disjoint.

Formally, we say that pre-HIOAs A

1

and A

2

are ompatible if H

1

and H

2

are

ompatible and

Y

1

\ Y

2

= O

1

\ O

2

= ;:
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Lemma 6.6 If A

1

and A

2

are ompatible pre-HIOAs, then H

1

and H

2

are

ompatible HAs.

Proof: Immediate from the de�nitions.

If A

1

and A

2

are ompatible pre-HIOAs then their omposition A

1

kA

2

is

de�ned to be the tuple A = (H; U; Y; I; O) where

� H = H

1

kH

2

,

� Y = Y

1

[ Y

2

,

� U = (U

1

[ U

2

)� Y ,

� O = O

1

[ O

2

, and

� I = (I

1

[ I

2

)� O.

Thus, an external ation or variable of the omposition is lassi�ed as an

output if it is an output of one of the omponent automata, and otherwise it

is lassi�ed as an input.

The omposition of two HIOAs (or pre-HIOAs) is guaranteed to be a pre-

HIOA:

Theorem 6.7 If A

1

and A

2

are pre-HIOAs then A

1

kA

2

is a pre-HIOA.

Proof: Let A denote A

1

kA

2

. Lemma 5.2 implies that H = H

1

kH

2

is an HA.

By onstrution, U and Y form a partition ofW and I and O form a partition

of E. This suÆes.

Example 6.8 (Interfaes for ompositions of HIOAs)When the Vehile

and Controller HIOAs from Example 6.2 are omposed, the external interfae

of the resulting pre-HIOA onsists of U = I = O = ; and Y = fa-in; vel-outg.

When the Sensor and DisreteController from Example 6.3 are omposed,

the external interfae of the resulting pre-HIOA onsists of U = fvel-outg,

Y = fa-ing, I = ;, and O = freport(v) j v 2 Rg.

Composition of pre-HIOAs satis�es the following substitutivity result:

Theorem 6.9 Suppose A

1

and A

2

are omparable pre-HIOAs with A

1

� A

2

.

Suppose B is a pre-HIOA that is ompatible with eah of A

1

and A

2

. Then

A

1

kB and A

2

kB are omparable and A

1

kB � A

2

kB.

Proof: The fat that A

1

and A

2

are omparable and the de�nition of om-

position for pre-HIOAs implies that A

1

kB and A

2

kB are omparable.

Sine A

1

and A

2

are omparable and A

1

� A

2

, Lemma 6.4 implies that H

A

1
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and H

A

2

are omparable and H

A

1

� H

A

2

. Lemma 6.6 implies that H

A

1

and

H

B

are ompatible HAs and H

A

2

and H

B

are ompatible HAs. Theorem 5.8

then implies that H

A

1

kH

B

� H

A

2

kH

B

. By the de�nition of omposition, it

follows that H

A

1

kB

� H

A

2

kB

. Then the de�nition of implementation for pre-

HIOAs implies that A

1

kB � A

2

kB.

We would like to show that the omposition of two HIOAs is an HIOA; how-

ever, this is not true in general. Property E1 is preserved by omposition:

Lemma 6.10 If A

1

and A

2

are pre-HIOAs that satisfy E1, then the ompo-

sition A

1

kA

2

also satis�es E1.

Proof: Let A = A

1

kA

2

. Assume that A

1

and A

2

satisfy E1. We verify that

A satis�es E1. Consider x 2 Q and a 2 I. We distinguish three ases.

(1) a 2 I

1

\ I

2

. By de�nition of omposition, x dX

i

2 Q

i

for i 2 f1; 2g. Then

by E1 applied toA

i

, there exists a state x

0

i

of A

i

suh that (x dX

i

)

a

!

i

x

0

i

.

Let x

0

�

= x

0

1

[x

0

2

. We know that x

0

is well de�ned sine, by ompatibility,

X

1

\X

2

= ;. Then by de�nition of omposition, x

0

2 Q and x

a

! x

0

.

(2) a 2 I

1

� I

2

. By de�nition of omposition, x dX

1

2 Q

1

. By E1 applied

to A

1

, there exists a state x

0

1

of A

1

suh that (x dX

1

)

a

!

1

x

0

1

. Let x

0

�

=

x

0

1

[ (x dX

2

). We know that x

0

is well de�ned sine, by ompatibility,

X

1

\ X

2

= ;. Then by de�nition of parallel omposition, x

0

2 Q and

x

a

! x

0

.

(3) a 2 I

2

� I

1

. Symmetri to the previous ase.

However, E2 is not neessarily preserved by omposition:

Example 6.11 (Two HIOAs whose omposition does not satisfy

E2) Suppose that A

1

has no disrete ations, no state variables, one output

variable v

1

and one input variable v

2

. All variables are of type R and dynami

type the (pasting losure of the) ontinuous funtions. The sets Q

1

and �

1

of states and start states onsist of the unique valuation of the empty set of

variables. The trajetories are all those funtions that satisfy v

1

(t) = v

2

(t)+ 1

for t > 0. It is easy to hek that A

1

is an HIOA. De�ne A

2

symmetrially,

with output variable v

2

and input variable v

1

; A

2

's trajetories are those that

satisfy v

2

(t) = v

1

(t) + 1 for t > 0.

The omposition pre-HIOA, A

1

kA

2

, does not satisfy E2. Satisfying E2 would

require (sine the omposition has no disrete ations) that the omposition

inlude at least one trajetory with limit time 1 starting from the initial

state. However, no suh trajetory exists, beause the ombined onstraints

are inonsistent for every t > 0.
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As a way out of the diÆulties noted in Example 6.11, we might onsider

introduing a stati dependeny relation �

A

between the external variables

of a hybrid automaton. If x �

A

y then the value of y is allowed to depend

without delay on the value of x. As an additional ondition for ompatibility

of A and B, we would then require that A and B do not share variables x

and y suh that x � Ay and y �

B

x. This approah, whih is followed, for

example, in the Masaio language of [33℄, would rule out the above example.

However, it would also rule out any form of dynami feedbak as studied in

ontrol theory (for instane, PID ontrol) [79℄. We therefore think that this

stati approah is overly restritive. Within ontrol theory there is no generally

appliable syntati riterion to test whether ombinations of di�erential and

algebrai equations are well-de�ned; onsequently, we have no simple riterion

to test whether the omposition of two HIOAs satis�es E2.

As a tehnial way out of the diÆulty, we de�ne a stronger notion of om-

patibility. Namely, we say that ompatible pre-HIOAs A

1

and A

2

are strongly

ompatible if A

1

kA

2

satis�es axiom E2. Strong ompatibility says that any

input trajetory � of the omposition must be aeptable by the omposition:

the two omponent automata are able to evolve together, following the input

trajetory �, in suh a way that either they aept all of � or else they a-

ept part of �, up to a point where one of them an interrupt with a loally

ontrolled ation.

Theorem 6.12 If A

1

and A

2

are strongly ompatible HIOAs, then A

1

kA

2

is

an HIOA.

Proof: Lemma 6.7 implies that the omposition is a pre-HIOA. Lemma 6.10

implies that the omposition satis�es E1. Property E2 follows immediately

from strong ompatibility.

Strong ompatibility is a tehnial notion. By itself, it does not seem to be

very useful, beause heking it involves verifying ompatibility between the

ontinuous dynamis of two systems. In Setion 6.5, we give some suÆient

onditions for strong ompatibility that are easier to hek.

6.4 Hiding

The de�nitions of variable and ation hiding extend to any pre-HIOA A. For

input/output automata, we allow hiding outputs only (but not inputs):

(1) If O � O

A

, then AtHide(O;A) is the pre-HIOA B that is equal to A

exept that O

B

= O

A

�O and H

B

= H

A

[ O.
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(2) If Y � Y

A

then VarHide(Y;A) is the pre-HIOA B given by:

� H

B

= VarHide(Y;H

A

).

� Y

B

= Y

A

� Y .

� U

B

= U

A

, I

B

= I

A

, and O

B

= O

A

.

Lemma 6.13 Suppose A is a pre-HIOA, O � O

A

and Y � Y

A

. Then:

(1) AtHide(O;A) and VarHide(Y;A) are pre-HIOAs.

(2) If A satis�es E1 then so do AtHide(O;A) and VarHide(Y;A).

(3) If A satis�es E2 then so do AtHide(O;A) and VarHide(Y;A).

Lemma 6.14 Let A be a pre-HIOA.

(1) If O � O

A

then traes

AtHide(O;A)

= f� d(E

A

� O; V

A

) j � 2 traes

A

g.

(2) If Y � Y

A

then traes

VarHide(Y;A)

= f� d(A

A

;W

A

� Y ) j � 2 traes

A

g.

Proof: Straightforward, see also the proof of Lemma 5.11.

Theorem 6.15 Suppose A and B are pre-HIOAs with A � B, and suppose

O � O

A

and Y � Y

A

.

Then AtHide(O;A) � AtHide(O;B) and VarHide(Y;A) � VarHide(Y;B).

Proof: Straightforward, using Lemma 6.14.

Example 6.16 (Interfaes for automata with hiding) In Example 5.14,

we de�ned the HA B

�

= VarHide(fa-ing;AkVehile), where

A

�

=AtHide(freport(v) j v 2 Rg; SensorkDisreteController):

This models the three-way omposition of the sensor, disrete ontroller, and

vehile, with the internal report ations and aeleration suggestions hidden.

If we interpret the three automata as HIOAs, then these de�nitions still make

sense beause the ations and variables that are hidden are outputs. The

external interfae for A is given by U

A

= fvel-outg, Y

A

= fa-ing, and

I

A

= O

A

= ;, and the external interfae for B is given by U

B

= I

B

= O

B

= ;

and Y

B

= fvel-outg.

6.5 SuÆient Conditions for Strong Compatibility

Cheking strong ompatibility of two HIOAs an be diÆult beause it requires

heking ompatibility between the ontinuous dynamis of two systems. How-
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ever, for ertain restrited lasses of HIOAs, strong ompatibility is implied

by ompatibility, whih is easy to hek.

Example 6.17 (HIOAs for whih ompatibility implies strong om-

patibility) It is routine to verify that two HIOAs without input variables are

strongly ompatible if and only if they are ompatible. In the lassial on-

trol theory setting, a system without input variables is uninteresting beause

it annot be ontrolled. However, in the hybrid setting, suh a system an

still interat with its environment via disrete input ations. Linear hybrid

automata as desribed in [4,3℄, for instane, have no input variables.

Symmetrially, two HIOAs without output variables are strongly ompatible

if and only if they are ompatible. The same equivalene holds if one of the

HIOAs has no input variables and the other has no output variables, or if one

has no external variables at all.

The following theorem generalizes all the laims in Example 6.17. It applies

to pairs of HIOAs that annot mutually a�et eah other beause the output

variables of one are disjoint from the input variables of the other.

Theorem 6.18 Let A

1

and A

2

be two ompatible HIOAs suh that U

1

\Y

2

=

;. Then A

1

and A

2

are strongly ompatible.

Proof: Let A denote A

1

kA

2

. We need to show that A satis�es E2. Let x

be a state of A and let � be a trajetory in trajs(U ). Sine U

1

\ Y

2

= ;, the

de�nition of omposition implies that U

1

� U . By E2 applied to A

1

, there

exists a trajetory �

1

2 T

1

, with �

1

:fstate = x dX

1

that is pointwise ompatible

with � and suh that either dom(�

1

) = dom(�), or else dom(�

1

) � dom(�), �

1

is losed, and a loally ontrolled ation of A

1

is enabled in �

1

:lstate.

Let �

2

be ((� d dom(�

1

))

_

[ �

1

) # U

2

. That is, �

2

is an input trajetory for

A

2

. Eah input variable of A

2

is either an input variable of A or an output

variable of A

1

; the valuations in �

2

for those that are inputs of A are obtained

from �, whereas the valuations for those that are output variables of A

1

are

obtained from �

1

. By E2 applied to A

2

, there exists a trajetory �

2

2 T

2

, with

�

2

:fstate = x dX

2

, that is pointwise ompatible with �

2

and suh that either

dom(�

2

) = dom(�

2

), or else dom(�

2

) � dom(�

2

), �

2

is losed, and a loally

ontrolled ation of A

2

is enabled in �

2

:lstate.

In the seond ase, (�

1

d dom(�

2

))

_

[ �

2

is a trajetory of T that starts from

x, is pointwise ompatible with �, is losed, and enables a loally ontrolled

ation of A (in partiular, of A

2

) in its last state. In the �rst ase, �

1

_

[ �

2

is a trajetory of T that starts from x, is pointwise ompatible with �, and

either spans all of � or is losed and enables a loally ontrolled ation of A
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(in partiular, of A

1

) in its last state. This shows that A satis�es E2.

We an also onsider HIOAs that do not exhibit any dependenies between

inputs and outputs during a trajetory. In partiular, the values of the in-

put variables should a�et neither the values of the output variables nor the

amount of time that elapses until a loally ontrolled ation is enabled. For-

mally, we say that an HIOA A is oblivious if it satis�es the following axiom:

OBL For all � 2 T and � 2 trajs(U ) with dom(�) = dom(�), there exists

�

0

2 T suh that:

(1) �

0

# U = �.

(2) �

0

# Y = � # Y .

(3) If � is losed and some loally ontrolled ation is enabled in �:lstate

then some loally ontrolled ation is enabled in �

0

:lstate.

Theorem 6.19 Let A

1

and A

2

be two ompatible HIOAs and suppose that

A

1

is oblivious. Then A

1

and A

2

are strongly ompatible.

Proof: Let A denote A

1

kA

2

. We need to show that A satis�es E2. Let x

be a state of A and let � be a trajetory in trajs(U ). Let �

1

be any trajetory

of trajs(U

1

) that is pointwise ompatible with � and suh that dom(�

1

) =

dom(�). ByE2 applied toA

1

, there exists a trajetory �

1

2 T

1

, with �

1

:fstate =

x dX

1

, that is pointwise ompatible with �

1

and suh that either dom(�

1

) =

dom(�

1

), or else dom(�

1

) � dom(�

1

), �

1

is losed, and a loally ontrolled

ation of A

1

is enabled in �

1

:lstate.

Let �

2

be ((� d dom(�

1

))

_

[ �

1

) # U

2

. By E2 applied to A

2

, there exists a

trajetory �

2

2 T

2

, with �

2

:fstate = x dX

2

, that is pointwise ompatible with

�

2

and suh that either dom(�

2

) = dom(�

2

), or else dom(�

2

) � dom(�

2

), �

2

is

losed, and a loally ontrolled ation of A

2

is enabled in �

2

:lstate.

Let �

0

1

be ((� d dom(�

2

))

_

[ �

2

) # U

1

. By OBL applied to A

1

, there exists a

trajetory �

0

1

2 T

1

suh that �

0

1

# U

1

= �

0

1

, �

0

1

# Y

1

= (�

1

d dom(�

2

)) # Y

1

, and

if �

1

d dom(�

2

) is losed and some loally ontrolled ation of A

1

is enabled in

its last state, then some loally ontrolled ation is also enabled in �

0

1

:lstate. It

follows that �

0

1

and �

2

are pointwise ompatible, and that �

0

1

_

[ �

2

is a trajetory

in T that starts from x and is pointwise ompatible with �. We laim that

�

0

1

_

[ �

2

satis�es the requirements for E2. We onsider ases:

(1) dom(�

2

) � dom(�

2

).

Then �

0

1

_

[ �

2

is losed and enables a loally ontrolled ation (of A

2

)

in its last state, whih satis�es the requirements for E2.

(2) dom(�

2

) = dom(�

2

)(= dom(�

1

)).

We onsider two subases. First, if dom(�

1

) � dom(�), then �

1

is losed

and enables some loally ontrolled ation (of A

1

) in its last state. By
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axiomOBL, some loally ontrolled ation is also enabled in �

0

1

_

[�

2

:lstate,

whih suÆes for E2. In the other subase, if dom(�

1

) = dom(�), then

�

0

1

_

[ �

2

spans all of �, whih again suÆes for E2.

Example 6.20 (Oblivious ontroller) The Controller HIOA of Exam-

ple 4.3 and 6.2 satis�es OBL. During any trajetory � of Controller , veloity

information arrives in vel-out but does not a�et the Controller 's output; the

output is only hanged when a (loally ontrolled) suggest transition ours.

Enabling of the suggest ation is not a�eted by hanges in vel-out , but only

by the value of lok .

Beause Controller is oblivious and ompatible with the Vehile HIOA, The-

orem 6.19 implies that Vehile and Controller are strongly ompatible. It

follows that their omposition, VehilekController , is an HIOA.

Example 6.21 (Plant and ontroller)Figure 8 displays a standard senario

studied in ontrol theory involving a plant P ontrolled by a digital ontroller

C. The interfae from the ontroller to the plant is given by a digital/analog

A

6

-

P

?

D

�

C

ControlMeasurement

Input symbol Output symbol

Fig. 8. Hybrid Control System.

onverter D, while the interfae from the plant to the ontroller is given by

an analog/digital onverter A. The ontroller C monitors the input variables

and hanges its output variables only at the lok tiks via some disrete

transitions. Thus, C satis�es OBL. The output variables of A are disjoint

from the input variables of both P and D, and the output variables of P
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are disjoint from the input variables of D. Thus, if P; C;A;D are pairwise

ompatible, then P and A are strongly ompatible (by Theorem 6.18), PkA

and D are strongly ompatible (by Theorem 6.18), and ((PkA)kD) and C are

strongly ompatible (by Theorem 6.19). Hene, ((PkA)kD)kC is an HIOA.

Example 6.22 (Lipshitz HIOAs) We may de�ne a sublass of HIOAs

alled Lipshitz HIOAs, in whih some of the state variables are disrete

\mode" variables, and in whih, for eah mode, the rest of the variables evolve

aording to a system of di�erential equations based on globally Lipshitz fun-

tions. We may restrit this lass further by imposing a bound on the range of

the input variables (by restriting their dynami types), thus obtaining the set

of input-bounded Lipshitz HIOAs. Then it is possible to show that two om-

patible input-bounded Lipshitz HIOAs are strongly ompatible, whih implies

that the omposition of two ompatible input-bounded Lipshitz HIOAs is a

(Lipshitz) HIOA. A areful development will be reserved for another paper.

7 Reeptive Hybrid I/O Automata

In this setion, we de�ne the notion of reeptiveness for HIOAs. An HIOA

will be de�ned to be reeptive provided that it admits a strategy for resolv-

ing its nondeterministi hoies that never generates in�nitely many loally

ontrolled ations in �nite time. This notion has two important onsequenes:

First, a reeptive HIOA provides some response from any state, for any se-

quene of disrete input ations and input trajetories. This implies that the

automaton has a nontrivial set of exeution fragments, in fat, it has exeution

fragments that aommodate any inputs from the environment. The automa-

ton annot simply stop at some point and refuse to allow time to elapse; it must

allow time to pass to in�nity if the environment does so. Seond, reeptive-

ness is losed under omposition. Previous studies of reeptiveness properties

inlude [21,1,74,54℄.

If HIOA A implements HIOA B and if A is reeptive, then besides preserva-

tion of \may" properties (any trae of A is also a trae of B) we also have

preservation of \must" properties. For instane, if in B an input ation a al-

ways must be followed by an output b within 10 time units, then this property

will also hold for A: (1) sine A is input enabled it will always aept input

a, (2) sine A is reeptive it will never end up in a time deadlok or a Zeno

exeution; time an always advane, (3) A must always perform a b before or

at time 10 sine otherwise a trae is generated that is not allowed by B.
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We formally de�ne reeptiveness by �rst de�ning what it means for an HIOA

to be progressive. A progressive HIOA never generates in�nitely many loally

ontrolled ations in �nite time. Thus, in all of its exeution fragments, it

allows time to pass to in�nity provided that its environment also does so.

We then de�ne a strategy for resolving nondeterministi hoies, and de�ne

reeptiveness in terms of the existene of a progressive strategy.

The treatment of reeptiveness in this paper is muh simpler than that in pre-

vious papers. One reason is that we address only the generation of admissible

exeutions here, rather than general liveness properties. Also, we formulate

strategies as restrited automata, rather than introduing separate de�nitions

based on two-player games.

7.1 Progressive HIOAs

We say that an exeution fragment of a pre-HIOA is loally-Zeno if it is Zeno

and ontains in�nitely many loally ontrolled ations, or equivalently, if it

has �nite limit time and ontains in�nitely many loally ontrolled ations. A

pre-HIOA A is progressive if it has no loally-Zeno exeution fragments.

The following lemma says that any progressive pre-HIOA that satis�es E2,

and therefore any HIOA, is apable of following any input trajetory.

Lemma 7.1 Let A be a progressive pre-HIOA that satis�es property E2, let x

be a state of A, and let � 2 trajs(U ). Then there exists an exeution fragment

� of A suh that �:fstate = x and � d(I; U) = �. (Here � denotes the hybrid

sequene onsisting of the single trajetory �. Reall that we write a for a

sequene onsisting of just a.)

Proof: We onstrut a �nite or in�nite sequene �

0

; �

1

; : : : of exeution frag-

ments of A suh that:

(1) �

0

:fstate = x.

(2) For every non�nal index i, �

i

:lstate = �

i+1

:fstate.

(3) For every i � 0, (�

0

_

�

1

_

� � �

_

�

i

) d(I; U) � �.

(4) For every i � 0, either (�

0

_

�

1

_

� � �

_

�

i

) d(I; U) = � or �

i

inludes a

loally ontrolled ation.

The onstrution is arried out reursively. To de�ne �

0

, we begin with state

x and use E2 either to span all of �, or to span a pre�x of � and then perform

a loally ontrolled ation. For i > 0 (assuming that we have not already

spanned all of �), we de�ne �

i

by beginning with �

i�1

:lstate and using E2

either to span the entire suÆx of � starting from �

0

_

� � �

_

�

i�1

:ltime, or to

span a pre�x of that suÆx and then perform a loally ontrolled ation.
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Now we onsider two ases:

(1) The onstrution ends after a �nite number of stages, having spanned all

of �, say with �

k

as the last exeution fragment in the sequene.

In this ase, the onatenation �

0

_

�

1

_

� � �

_

�

k

satis�es the onditions

of the lemma.

(2) The onstrution proeeds through in�nitely many stages.

In this ase, the exeution fragment �

�

= �

0

_

�

1

_

� � � ontains in�nitely

many loally ontrolled ations. Sine A is progressive, it must be the

ase that �:ltime =1, and therefore � d(I; U):ltime =1. Sine the set

of trajetories for U is a po, � d(I; U) � �. Sine � d(I; U) � �, and

� d(I; U):ltime =1, it follows that � d(I; U) = �, as needed.

The following theorem says that a progressive HIOA is apable of following

not just individual input trajetories, but entire input hybrid sequenes.

Theorem 7.2 Let A be a progressive HIOA with state x, and let � be an

(I; U)-sequene. Then there exists an exeution fragment � of A suh that

�:fstate = x and � d(I; U) = �.

Proof: Let � = �

0

a

1

�

1

a

2

�

2

: : :. We de�ne a �nite or in�nite sequene �

0

; �

1

; : : :

of exeution fragments of A suh that:

(1) �

0

:fstate = x.

(2) For every non�nal index i, �

i

:lstate = �

i+1

:fstate.

(3) For every i, (�

0

_

�

1

_

� � �

_

�

i

) d(I; U) = �

0

a

1

�

1

a

2

�

2

: : : �

i

.

The onstrution is arried out reursively. To de�ne �

0

, we begin with x and

use Lemma 7.1 to span �

0

. For i > 0, we de�ne �

i

by starting with �

i�1

:lstate,

using property E1 to perform ation a

i

and move to a new state, and then

using Lemma 7.1 to span �

i

.

Let � = �

0

_

�

1

_

� � �. By Lemma 3.8 we onlude that � d(I; U) = �, as

needed.

The property asserted in Theorem 7.2 has been alled I/O feasibility elsewhere

in the literature [59℄. Thus, we de�ne a pre-HIOA to be I/O feasible provided

that, for eah state x and eah (I; U)-sequene �, there is some exeution

fragment � suh that �:fstate = x and � d(I; U) = �. Theorem 7.2 may then

be restated as:

Corollary 7.3 Every progressive HIOA is I/O feasible.
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I/O feasibility implies that any �nite exeution fragment an be extended to

an admissible exeution in response to any admissible input from the envi-

ronment. A related, weaker property that has also been studied is feasibility

[57℄. In terms of our model, we may say that a pre-HIOA is feasible provided

that, for eah state x, there is some admissible exeution fragment � suh that

�:fstate = x.

Feasibility implies that any �nite exeution fragment an be extended to some

admissible exeution fragment|no onstraints are imposed on the inputs. Ob-

serve that any I/O feasible HIOA must be feasible, as long as the dynami

type of eah input variable inludes at least one admissible trajetory. Feasibil-

ity should be regarded as a minimal liveness requirement that any reasonable

HIOA should satisfy. I/O feasibility is a strengthened version of feasibility

that takes inputs into aount.

Closure under omposition is easy to show:

Theorem 7.4 If A

1

and A

2

are ompatible progressive pre-HIOAs, then their

omposition is also progressive.

Proof: Let A be A

1

kA

2

. Suppose for the sake of ontradition that A is

not progressive. Then, by de�nition, A has a loally-Zeno exeution frag-

ment �, that is, � ontains in�nitely many loally ontrolled ations of A.

Therefore, � ontains either in�nitely many loally ontrolled ations of A

1

or

in�nitely many loally ontrolled ations of A

2

. Suppose without loss of gen-

erality that � ontains in�nitely many loally ontrolled ations of A

1

. Then,

by Lemma 5.3 and the de�nition of restrition, � d(A

1

; V

1

) is a time-bounded

exeution fragment of A

1

with in�nitely many loally ontrolled ations, that

is, a loally-Zeno exeution fragment of A

1

. This ontradits the assumption

that A

1

is progressive.

Example 7.5 (Progressive and non-progressive pre-HIOAs) The Vehile

HIOA is obviously progressive beause it has no disrete ations. The Controller

and Sensor HIOAs are progressive beause their loally ontrolled ations are

separated in time. The DisreteController HIOA is not progressive, beause

if report inputs arrive in a Zeno fashion, the DisreteController may respond

by performing suggest internal ations in a Zeno fashion. However, the om-

position SensorkDisreteController is progressive.

Consider a more nondeterministi version of Sensor , NSensor , that is allowed

to perform report ations for any value of lok (� d), rather than just for

lok = d. Formally, NSensor is idential to Sensor exept that ondition

(18) is dropped. NSensor is not progressive, beause it may perform in�nitely

many report ations in �nite time. Also, the omposition of NSensor with
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DisreteController is not progressive.

7.2 Strategies

In this subsetion, we de�ne the notion of a strategy, whih provides a way

to resolve some of the nondeterministi hoies in a pre-HIOA. We will use

strategies in the next subsetion to de�ne reeptiveness.

We de�ne a strategy for a pre-HIOA A to be an HIOA A

0

that di�ers from A

only in that D

0

� D and T

0

� T . That is, we require:

� D

0

� D.

� T

0

� T .

� W = W

0

, X = X

0

, Q = Q

0

, � = �

0

, E = E

0

, H = H

0

, U = U

0

, Y = Y

0

,

I = I

0

, and O = O

0

.

Our strategies are nondeterministi and memoryless. They serve to hoose

some of the evolutions that are possible from eah state x of A. The fat that

the state set Q

0

of A

0

is the same as the state set Q of A implies that A

0

hooses evolutions from every state of A.

Strategy notions have been used elsewhere in de�ning reeptiveness, for ex-

ample, in [21,1,74℄. In this earlier work, strategies have been formalized using

two-player games rather than restrited automata. De�ning strategies using

automata instead of two-player games allows us to avoid introduing extra

mathematial mahinery. A drawbak of our approah is that it is not appli-

able in a setting with general liveness properties.

Lemma 7.6 If A

0

is a strategy for A, then every exeution fragment of A

0

is

also an exeution fragment of A.

Theorem 7.7 Let A

1

and A

2

be two ompatible pre-HIOAs with strongly om-

patible strategies A

0

1

and A

0

2

, respetively. Then A

0

1

kA

0

2

is a strategy for A

1

kA

2

.

Proof: Let A denote A

1

kA

2

and let A

0

denote A

0

1

kA

0

2

. Sine A

0

1

and A

0

2

are strongly ompatible, Theorem 6.12 implies that A

0

is an HIOA. From the

de�nitions of omposition and strategy, A

0

di�ers from A only in that D

0

� D

and T

0

� T . Then the de�nition of strategy implies that A

0

is a strategy for

A.

Lemma 7.8 Let A

1

and A

2

be two ompatible pre-HIOAs with strongly om-

patible strategies A

0

1

and A

0

2

, respetively. Then A

1

and A

2

are strongly om-

patible.
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Proof: Let A denote A

1

kA

2

and let A

0

denote A

0

1

kA

0

2

. Theorem 7.7 implies

that A

0

is a strategy for A. Sine A

0

1

and A

0

2

are strongly ompatible, their

omposition A

0

satis�es E2. We show that also A satis�es E2.

Let x 2 Q and let � 2 trajs(U ). Then sine A

0

is a strategy for A, we have

Q

0

= Q and U

0

= U , Y

0

= Y , and so x 2 Q

0

and � 2 trajs(U

0

). Sine A

0

satis�es E2, there exists � 2 T

0

suh that �:fstate = x, � # U

0

� �, and either

� # U

0

= �, or else � is losed and some l 2 L

0

is enabled (in A

0

) in �:lstate.

Sine A

0

is a strategy for A, it follows that also � 2 T , � # U � �, and either

� # U = �, or else � is losed and some l 2 L is enabled (in A) in �:lstate.

Therefore, A satis�es E2, that is, A

1

and A

2

are strongly ompatible.

Example 7.9 (Strategy for nondeterministi sensor) The Sensor HIOA

de�ned in Example 5.14 is a strategy for the NSensor HIOA de�ned in Ex-

ample 7.5.

7.3 Reeptive HIOAs

Finally, we de�ne a pre-HIOA to be reeptive if it has a progressive strategy.

Example 7.10 (Reeptive and non-reeptive HIOAs) The NSensor

HIOA of Example 7.5 is not progressive, but it is reeptive. That is beause the

original Sensor HIOA, as de�ned in Example 5.14, is a progressive strategy

for NSensor .

The DisreteController HIOA is not reeptive: beause any strategy for it

must satisfy E1 and E2, suh a strategy must be able to perform disrete

steps in response to any report input, and so must be apable of performing

in�nitely many suggest ations in �nite time.

Consider a variant NDController of DisreteController that has its own lok

and may wait any amount of time, up to a �xed d' (> 0), to respond to eah

report input with a new suggest . (Several reports may our in suession; a

single suggest may be used to handle all of them, as long as it ours within

time d' of the �rst of these reports.) NDController is not progressive, beause

it has the option of responding immediately to reports, and thus may gener-

ate in�nitely many suggestions in �nite time. It is reeptive, however, using

a progressive strategy that always waits the maximum allowed time before

generating a suggestion.
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The two most important general properties of reeptive HIOAs are expressed

by the following two theorems. The �rst expresses nontriviality|that any re-

eptive HIOA (or pre-HIOA) an respond to any inputs from the environment.

The seond theorem shows that reeptiveness is preserved by omposition.

Theorem 7.11 Every reeptive pre-HIOA is I/O feasible.

Proof: Let A be a reeptive pre-HIOA. By de�nition of reeptive, there exists

a progressive strategy A

0

for A. Sine A

0

is a progressive HIOA, Corollary 7.3

implies that A

0

is I/O feasible. We show that also A is I/O feasible.

Let x 2 Q and let � be an (I; U)-sequene. Then sine A

0

is a strategy for

A, we have Q

0

= Q, I

0

= I, and U

0

= U , and so x 2 Q

0

and � is an

(I

0

; U

0

)-sequene. Sine A

0

is I/O feasible, there is some exeution fragment

� of A

0

suh that �:fstate = x and � d(I

0

; U

0

) = �. By Lemma 7.6, � is

also an exeution fragment of A. Sine A

0

is a strategy for A, it follows that

� d(I; U) = �. Therefore, A is I/O feasible.

The question of whether the onverse of Theorem 7.11 holds is still open.

Finally, we have our theorem about omposability of reeptive HIOAs:

Theorem 7.12 Let A

1

and A

2

be two ompatible reeptive HIOAs with strongly

ompatible progressive strategies A

0

1

and A

0

2

, respetively. Then A

1

kA

2

is a re-

eptive HIOA with progressive strategy A

0

1

kA

0

2

.

Proof: Let A and A

0

denote A

1

kA

2

and A

0

1

kA

0

2

, respetively. The fat that A

is an HIOA follows from Lemma 7.8 and Theorem 6.12. Theorem 7.7 implies

that A

0

is a strategy for A. Theorem 7.4 and the fat that A

0

1

and A

0

2

are

progressive implies that A

0

is progressive. Thus, A is a reeptive HIOA and

A

0

is a progressive strategy for A.

Example 7.13 (Composition of reeptive sensor and reeptive dis-

rete ontroller)As noted in Example 7.10, both NSensor andNDController

are reeptive, using progressive strategies that always wait the maximum al-

lowed amount of time. These two strategies are strongly ompatible, by Theo-

rem 6.18. Therefore, by Theorem 7.12, the ompositionNSensorkNDController

is a reeptive HIOA with a progressive strategy that is the omposition of the

two progressive strategies for the two piees.
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8 Conlusions

In this paper, we have de�ned a new hybrid I/O automaton (HIOA) modeling

framework for desribing and reasoning about the behavior of hybrid systems.

Many future researh diretions remain.

First, the expressive and analytial power of the new model should be tested

further by using it to desribe and analyze many more examples. These should

inlude many of the examples that have been used as illustrations elsewhere in

the hybrid systems literature. The automated transportation examples studied

using the previous version of the HIOA model should be revisited using the

new model to see what hanges arise, and new and more ambitious ase studies

should be attempted.

It would be interesting to de�ne and prove formal relationships between the

HA and HIOA models of this paper and other models of hybrid systems, in-

luding those of [63,3,13,8,14,38℄. Also, one an de�ne a timed input/output

automaton model by simply restriting the HIOA model of this paper so that

it does not inlude any external variables. It remains to onsider the formal

relationship between this model and other timed automaton models, for ex-

ample, those of [1,5,60,74,65℄.

It would also be useful to inorporate additional analysis methods, inluding

assume-guarantee reasoning [16,36℄ and a variety of methods from ontrol

theory, into the HIOA framework. Control theory methods to onsider should

inlude Lyapunov stability analysis methods [79℄ and robust ontrol methods

[23℄. Results about these methods should be formulated in terms of HIOAs,

and the methods should be extended where neessary in order to aommodate

a ombination of disrete and ontinuous behavior.

Other extensions of the HIOA framework are also desirable. In some prior work

(e.g., [21,1,74℄), strategies are used to desribe how a system interats with its

environment to guarantee that the outome of the interation satis�es a target

liveness property. In this paper, we do not onsider general liveness properties,

but only the speial ase of admissibility. It remains to extend the theory to

more general liveness properties. Another important extension would be the

addition of probabilities, whih would make it possible to model and analyze

probabilisti hybrid systems. Suh an extension ould be used, for example, to

prove bounds on the probability of errors in safety-ritial real-time systems.

This extension appears to be a very hallenging problem.

Future work will inlude tool support for modeling and analysis as desribed in

this paper. This will inlude a formal modeling language based on HIOA, with

onstruts similar to those used in the examples of this paper, and onnetions

to a theorem prover. A preliminary language proposal appears in [68℄.
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A Notational Conventions

a; b ation

; d element of some set

f; g; h funtion

i; j index

k natural number

l loally ontrolled ation

t time point

u input variable

v variable

w external variable

x internal variable

y output variable

z loal variable

A set of ations

D set of disrete transitions

E set of external ations

F set of funtions

H set of internal (hidden) ations

I set of input ations or index set

J interval or index set

K set of time points

L set of loally ontrolled ations

O set of output ations

P set of elements in po

Q set of automaton states

R (simulation) relation

S set
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T set of trajetories

U set of input variables

V set of variables

W set of external (Duth: waarneembare) variables

X set of internal variables

Y set of output variables

Z set of loal variables

x state

v valuation

A, B, C hybrid (I/O) automaton

H hybrid automaton

T set of trajetories

N the natural numbers

R the real numbers

T the time axis

Z the integers

V the universe of variables

�; �; Æ hybrid sequene

 sequene

� the empty sequene

� projetion funtion

�; � sequene

� , � trajetory

� set of start states
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