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ABSTRACT

The Byzantine Generals problem involves a system of N processes, t of which may be unreliable.

The problem is for the reliable processes to agree on a binary value sent by a "general”, which may

itself be one of the N processes. If the general sends the same value to each process, then all reliable

processes must agree on that value, but in any case, they must agree on the same value. We give an

explicit solution for N = 3t+ 1 processes, using 2t + 4 rounds and O(t3 log t) message bits, where t

bounds the number of faulty processes. This solution is easily extended to the general case of N >

3t+1togivea solution using 2t + 5 rounds and O(iN + Taiog t) message bits.

1. Introduction

The Byzantine Generals problem (or, the problem of "assuring interactive consistency”) is
defined in [PSL]. It is assumed that there are N isolated processes, of which at most t are faulty. The
processes can communicate by means of two-party messages, using a medium which is reliable and
of negligible delay. The sender of a message is always identAifiable by the receiver. The problem is for
the nonfaulty processes to agree on a binary value sent by a "general”, which may itself be one of the
N processes. If the general sends the same value to each process, then all reliable processes must
agree on that value. If the general sends different values to different processes (i.e. the general is

"fauity"), then all reliable processes must agree on some value.

Algorithms for solving this problem are surprisingly difficult to devise. The difficulty is that fauity
processes can provide conflicting information to different parts of the system. This fact causes
simple solutions based on majority voting to fail, since a faulty process could cause two nonfaulty

processes to decide that the majority voted in opposite ways.

An efficient solution to the Byzantine Generals problem would be a valuable tool for the
construction of reliable computer systems. Such systems should be able to handle malfunctioning

components which provide conflicting information.

The algorithms in the earliest papers on this problem [PSL, LSP] seem to be quite expensive, both
in terms of number of message bits (exponential in t, the number of faults) and time (t+ 1 rounds of
synchronous message exchange). This is true even in the presence-of certain authentication
capabilities. It is shown in [FL], in the simplest case of non-authenticated communication, that t + 1
rounds are optimal, for worst-case algorithm behavior. This lower bound result is extended in [DS,
DLM] to the case in which arbitrary authentication capabilities are allowed. Thus, there is no way to

improve on the number of rounds in the earlier algorithms.
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The more serious drawback of the earlier algorithms is the large amount of message traffic which
is sent among the processes. There is essentially no structure to the information which is exchanged
in those algorithms; processes repeatedly broadcast everything they know, and then apply certain
decision functions to the final results. It is cbviously desirable to discover ways of summarizing the

" information, only sending what is relevant.

The first solution which requires an amount of communication polynomial in the number of faults
appears in [DS]. The authors summarize the information in clever ways, and obtain a solution which
uses 4t + 4 rounds and O(n“ log n) message bits. (Their solution can easily be modified, using the

same trick we use in Section 3., to use 4t + 5 rounds and O(tN + t* log t) message bits.)

In the present paper, we use many of the ideas of [DS], plus several new ones, to devise another
solution with polynomial communication. Our solution uses only 2t + 5 rounds, and O(IN + 2 log t)
message bits, thus giving important savings both in time and amount of communication. In addition,

we think that the new algorithm is considerably simpler than the algorithm of [DS].

We do not know if our algorithm is optimal; in particular, we have so far been unsuccessful at
removing the factor of 2 which separates the number of rounds used by our algorithm from the known

minimum.

2. The Model
Let [N] denote {1,...,N}.

We model a Byzantine Generals algorithm as a synchronous system of automata. Such a system

* S is described by the following:

N -- the number of processes;

Q= (01,...,QN) -- the state sets of each of the N processes;

q0 = (q01,...,q0N) -- initial states for each process indicating the general’s value is "0",
q1 = (q1 el N) -- initial states for each process indicating the general's value is "1",
F = (F 1,...,FN), where each F, - ()i -- accepting states for each process,

M= (M1,...,MN) -- the sets of possible messages which each procéss might send,

[TAe Q — M, i€ [N] -- the message generation functions,
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(where p., ; describes messages sent from process i to process j)

and

§j: Qi XM, X XM — Qj, j € [N]--the state transition functions.

Let T C [N], and let v € {0,1,?}. (T is the set of reliable processes or "truthtellers”, and v is the

general’s value. A value of 2 indicates that the general himself is unreliable.) A sequence of state

vectors q(0), q(1), ..., q(R) is an R-round (T,v)-computation if there exist messages mij(r) € Mi, ij €
[N]J,0<r<R,suchthat '

1. INITIALIZATION:
Ifv = Othen gq(0) = qO.
fv = 1then q(0) = q1.
lftv = ?then q,(0) € {q0;, q1.}, foralli € [N].

2. CORRECT MESSAGES:
Foreachr,0 <r<Randeachi€T,j€[N], m, i(r) =B, i(qi(r)).

3. CORRECT TRANSITIONS:
Foreachr,0 <r<{R,andeachj€T, q‘.(r+ 1) = {l.(qj(r), m, j(r), vy mNi(r)).

We say that S solves the Byzantine Generals problem in R rounds if for every T C [N] with |T] 2> N-t,

every v € {0,1,7}, and every R-round (T,v)-computation gq(0),...q(R), the final state vector q(R)

satisfies the following:

1. AGREEMENT: Ifi,j € T, then q,(R) €F, iff qi(R) € Fj.

2, VALIDITY: ifv#'?, thenforalli€ T, q,R) € F, iffv = 1.

Intuitively, a step or round of the computation takes place in two phases. First, every process

sends a message to every other. Secondly, each process’ changes state based on its old state and the
messages it receives. Unreliable processés can send arbitrary messages, so there are in general

many possible computations, all of which must satisly the agreement and validity conditions above.

We assume about the general only that it is a possibly-unreliable data source that communicates a
(binary) value to each of thé N processes in the system before the algorithm begins. Thus, the
general might be one of the N processes, or it might be a sensor or 170 device that all processes can
read. In our formalization, the general’s value is encoded by each process’s start state. In other
treatments of this problem, the general is identified with one of the N processes which carry out the
algorithm, and each other process starts in the same state regardless of the general's value. Our

version is slightly stronger, for a solution to our problem solves the other version by simply adding an
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initial round in which the general sends his value to each other process. The converse, however, is
not in general true, for an algorithm might make use of the fact that at most t-1 unreliable processes

remain when the general has been determined to be unreliable and is a known one of the processes.

3. A Simplification

We give an explicit construction for the case N = 3t+ 1. To handle the case of N> 3t+ 1, just run
the given algorithm on any subset A with JA] = 3t+ 1. After the last round, a designated subset B C A,
IB] = 2t+ 1, broadcasts its answers to all N processes. Since all the (t -+ 1 or more) reliable processes
in B agree, a simple majority vote gives all the other reliable processes consistent answers. This takes

only one additional round and O(tN) additional message bits above and beyond the basic algorithm.

4. Basic Solution

Now assume N = 3t+ 1. Let LOW = t+ 1 and HIGH = 2t+ 1. We describe a system S.

1)

The only pieces of information sent in messages are process indices and one special value

Formally, let | (the set of message items) = {'*’} U [N]. Messages are sets of message items; thus,
eachM, = 2. '

A process state consists of a number (representing the current round) together with a set of "data
entities”. A data entity is either the single value 0 or 1 (representing a value of 0 or 1 received from
the general) or else a pair consisting of a message item and a process from which that message is
received. Each process remembers the initial value and all the messages it has ever received from
any process. Formally, a data entity is an element of D= {0,1} U (I X [N]). A process state q is a pair
(data(qg), round(q)), where data(q) C D and round(g) € N. That is, each Qi = 2P X N. The initial states
are q0;, = ({0},0) and ql; = ({1},0). The transition function simply records all new messages
received, together with their senders, and increments the round number. Thatis,

¢(@,m,...my) = (data(q) U{xj)ED|x€E mi}, round(q) +1).
Thus, the data component of the process state behaves "monotonically"-new data entities can get

added during the course of an execution, but nothing is ever deleted.

We require some notation for characterizing' process states. Let q be any process state and
letx € 1. Wé define v |
W (a) = {i € [N]] () € data(q)},
the witnesses to x, and we letw_(q) = IWx(q)I. We define
C(a) = {k € [N]|w,(q) > HIGH},
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the confirmed processes, and we let c(q) = |C(q)l. Processiinitiates in q if either

11. 1 € data(q),
i2. ¢(q) > LOW + l'round(q)/27-1, or

13.1 € W,(q).
Process i commits in q if ¢(q) > HIGH.

The heart of the algorithm is thé message generation function. The function is defined to be
monotonic in the data component of the state - more data entities can only cause more messages to
be sent. Since the data component of the state behaves monotonically, this definition implies that any
message, once sent, will be sent on all subsequent rounds. This is an obvious inefficiency which is
removed by a trivial optimization. (See Section 6.) It is useful to describe the algorithm in this way,

however, since the monotonic algorithm is easier to reason about than its optimized version.

We define g, j(q) to be the smallest set satisfying the following rules:

M1. (Initiation) If i initiates in g, then **' € T8 i(q).
M2, (Direct witness) W, (q) C |78 i(q);

M3. (Indirect witness) if w,(q) > LOW, thenk € T8 j(q) for each k € [N].

Finally,F, = {€Q | i commits in q}.
Theorem 1: Let R = 2t + 4. Then S solves the Byzantine Generals problem in R
. rounds.

_ The correctness of this algorithm is somewhat subtle and is proved in the next section. However,

the following intuition should help the reader’s understanding.

During the course of execution, processes initiate from time to time. This means that they know
that the general has sent a "1" to some reliable process and that they are proposing to accept. A

process announces initiation by sending a’*’ to the other processes.

A procesé receiving a '*’ becomes a witness to the sending process’s initiation. A process can
become an "indirect” witness by hearing about it from at least LOW other processes, since then at
least one of them must be reliable. In either case, it broadcasts that fact to all processes, including
itself. (The sending process will thus record itself as a witness at the same time as all other processes
do.)
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A process receiving a message item k € [N] from process j records the fact that j claims to be a
witness k. When at least HIGH distinct j's claim to be witnesses to k, then k is confirmed. The
confirming process then knows one of two things must be true: Either k is reliable and indeed has
initiated, or k is unreliable but nevertheless has told at least LOW reliable processes that it had

initiated.

A process initiates on the first round if it receives a "1" from the general. Thereafter, it can only
initiate if it has confirmed sufficiently many initiations by other processes. This threshold number for
initiation starts out at LOW and increases by one every two rounds until it reaches HIGH. By that time,
either at least LOW reliable processes will have initiated or it is no longer possible for a reliable
process to initiate. In the former case, after three more rounds every reliable process will commit. In
the latter case, no reliable process can commit. The delicate part of the algorithm concerns these last
two facts; namely, initiating and committing are easy enough so that as soon as LOW reliable
processes initiate, then an avalanche begins which results in all reliable processes initiating and
committing a small number of rounds later. On the other hand, committing is hard enough so that no

process commits in the last three rounds except as a result of an avalanche started earlier.

5. Pfoof of Correctness

The following lemmas prove Theorem 1 and establish the correctness of the algorithm. All refer to
a fixed (T,v)-computation q(0), ..., g(R), R = 2t + 4, with associated messages m, j(r), i,jeE[N],0<r«
R.

Lemma 2 formalizes the monotonicity properties of process states.
~ Lemma 2: Let0 <r <r<Ri€T.Then W (q(r) C W, (qin) for all x € I, and
C(a,(r')) € Cla,(r)). Moreover, if i initiates (commits) in q,(r'), then i initiates (commits) in
g(n).
Proof: If r' = r, then there is nothing to prove. So assume r’' <r. Monotonicity of W and
C are obvious; hence, if i commits in qi(r’), then it commits in qi(r). Suppose i initiates in
qi(r‘). Then’*' € mi,i(r’), SO €_W,,(qi(r’ +1)), and by monotonicity of W, i € W.(q,(r). Thus,
i initiates in q,(r) by Rule 13.
O

The next lemma says that whenever a truthteller initiates, it is confirmed at all truthtellers two
rounds later.
Lémma 3: Leti,j € T. Ifiinitiates in q(r), 0 <r<R-2theni€ C(qj(r+ 2)).
Proof: Letk € T. Theni € W, (q,(r + 1)) by Rule M1. Similarly, k € ‘Ni(qi(r+ 2)) by Rule
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- M2. Hence, W,(ay(r +2)) 2 T. The lemma follows since [T] > HIGH.

O
Next, we show that whenever all truthtellers initiate, they all commit two rounds later.
Lemma 4: Let0 < r < R-2. If alti € Tinitiate in q,(r), then all i € T commitin q(r+2).
Proof: ByLemma 3,i € C(qi(r +2)) forallj € T; hence, c(qi(r +2)) > HIGH.
0

\

The next lemma describes some information that the views of different truthtellers at the same
round must have in common. ‘
Lemma5: Letijk €ET,x€1. Thenk € Wx(qi(r)) iffk € Wx(qj(r)).
Proof: Follows from an easy induction on r using the fact that reliable processes
always broadcast their messages to every process.
O

Next, we show the important fact that any prdcess which gets confirmed at one truthteller, will be
confirmed at all truthtellers one round later.
Lemma6: Let0<r <R-1,j,k '€ T.Hi€ C(qk(r)) theni € C(qi(r+ 1)).
Proof: Since i € C(q,(r)), there isasetAC TN Wi(q'k(r)) with JA] = LOW. Lletj €
T. Then by Lemma 5, A C Wi(qi,(r)). Thus, i € M ; (r), by Rule M3. Hencs, j'€ Wi(q‘.(r+ 1)).
Thus,i € C(qi(r + 1)) : '

Lemma 7: Let0 <r<R,i,j € T.Ificommits in q,(r),thenj commits in qj(r +1).
Proof; by Lemma 6.
0

The next lemma says that if there are sufficiently many witnesses for a truthteller, then that
truthteller has actually ihitiated. _

Lemma 8: letij€T. If wi(qj(r_)) > LOW, then r > 2 and i initiates in qi(r-2).

Proof: We proceed by induction on r. Suppose the lemma is true for all r'<r, for r >0,
and suppose wi(qi(r)) > LOW. Then thereissomek € TN Wi(qi(r)). Butthenr>1andi€
My (r-1), and this is either because of M2 or M3. If it is because of M2, then i €W,.(qk(r-1)),
sothatr > 2and’® € mi|k(r-2) and hence i initiates in qi(r-2). If it is because of M3, then
wi(qk(r-1)) > LOW. Then by induction, r-1 > 2 and i initiates in qi(r-3). Application of
Lemma 2 shows that i initiates in qi(r-2).
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The following lemma follows easily from Lemma 8.
Lemma 9: Leti EIT, and suppose i commits in qi(r). Thenr > 2and thereisaset AC
T with JA] = LOW such that every j € A initiates in qj(r-2).
Proof: c(q,(r) > HIGH, so thereisaset AC TN C(q,(r)) with |A] = LOW. Eachj€ A
has wj(qi(r)) 2 HIGH; hence, by Lemma 8, r > 2 and j initiates in qj(r-2).
O

The following key lemma says that whenever LOW truthtellers initiate, then all truthtellers commit
four rounds later. This is the "avalanche" described in the intuitive discussion of the algorithm.
Lemma 10: Let 0 <r < R-4. Ifthereisaset AC T, |]A] = LOW, such thatalli € A
initiate in q.(r), then all j € T commit in qj(r +4),
Proof: Let r’ be the least number such that all i € A initiate in q(r'). ByLemma 3, AC
C(qj(r’ +2)) for all | € T. We now argue that j initiates in qj(r’ +2)). It will then follow by
Lemma 4 that j commits in qi(r’ + 4}, and hence also in qj(r +4) by Lemma 2.

fr = 0,then c(qj(r’ +2)) > |A] = LOW + I'(r'+2)/7271- 1. Thus, j initiates invqj(r’ +2) by
Rule 12. If I > 0O, then there is some k € A such that k initiates in qk(r’) and k does not
initiate in a,(r'-1). Then K initiates in qk(r’) using Rule 12, so c(qk(r’))z LOW + /211 i
k€ C(qk(r’)), then Lemma 8 implies that k initiates in qk(r’-2), a contradiction (using Lemma
2). Thus, k § C(qk(r’)). By Lemmas 2 and 6, C(qj(r’ +2)) 2 C(qk(r’)) forallj € T. By Lemma
3, k€ C(qj(r’ + 2)). Hence, c(q‘.(r’ +2)) 2 LOW + Tr'/27 = LOW + T(r'+2)/271- 1. Thus,j
initiates in qj(r’ + 2) by Rule 12 as desired.

We are now ready to prove the properties required for Theorem 1 - agreement and validity.
‘Lemma 11: ifanyi € T commits in qi(R), thenallj € T commitin qi(R).
Proof: Assume i € T commits in q,(R). By Lemma 9, there is a set A C T with |A] =
LOW such that every j € A initiates in q,(R-2).

‘ We consider two cases. First, assdme all j € A initiate in qj(R-4). In this case, Lemma
10 implies the result. Second, assume that some j € A initiates in qj(r) but not in qj(r-1), for
somer € {R-3,R-2}. Thenj initiates by 2. Then c(qj(r)) S>LOW + /211 2> LOW + t =
HIGH, so j commits in qi(r). Then Lemmas 7 and 2 imply the result.
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Lemma 12: Leti€T.
(@) If v = 0, then q(R) ¢ F.
(b) If v = 1, then q,(R) € F,.

Proof: (a) v = 0. Suppose i commits in qi(R). Then by Lemma 9, there is an element j
€ T that initiates in q’.(R-Q). Consider the least r for which some j € T initiates in qi(r).
Clearly r > 0 by the initial conditions. Hence, j initiates by Rule 12, so c(qj(r)) > LOW. Thus,
thereisak € TN C(qj(r)), S0 wk(qj(r))z HIGH. But then it follows from Lemma NANCY7
that k initiates in qk(r-2), contradicting the choice of r. We conclude that qi(R) ¢ Fi.

(b) v = 1. Eachi € T initiates in qi(()) by Rule 1. By Lemma 4, each i € T commits in
a,2). Thus, g, (R) €F,. ’

6. Complexity Analysis

Since lIf = N+1,; each message item can be encoded by O(log N) bits, and a message m
consisting of k message items can be encoded in Iength'O(k log N). The algorithm of the previous
section sends N? messages on each round, and each message potentially contains N + 1 message
items; hence an upper bound on the number of message bits sent is O(N2 R(N+1)log N} =

O(t4 log 1). {The log factor can be eliminated by a bitwise encoding of the entire message.)

A minor modification of the algorithm however results in a saving of the factor of R. The algorithm
is monotone in the sense that data entities are never deleted from the data part of the state, and
incoming messages have no effect except to be added into the state. Thus, the algorithm would
operate exactly the same if each message item were sent from i to j only once. The only change to the
algorithm would be that each process would have. to remember in its state which messages had
previously been sent out and to whom, and to omit sending a previously-sent message. The result is
that each process i would send a maximum of [I| message items to each process j during the entire
course of the algorithm. .The total number of message bits then would be
O(N? (N +1) log N) = O(t3 log 1).

. Combining the ideas of the previous paragraph with those of Section 3, we obtain:
Thedrem 13: There is an algorithm which solves the Byzantine Generals problem for t
unreliable processes out of a total of N > 3t+1, uses 2t+5 rounds of information
exchange, and sends 'O(t3 logt + tN) message bits.
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