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ABSTRACT

A system of paraller processes is said to be
svtchronous if all processes run using the same
ciock, and it is !!brorlozs if each process has
its own independent clock. For any s, n, a par
ticular distributed problem is defined involving
system behavior at n ‘ports”. This problem can be
solved in ttme s by a synchronous systei’ but re
quires time at least (5—1) log n on any asynchro
nous system.

INTRODUCT ION

A system of parallel processes is said to be
synchrcncus if all processes run usIng the sate
cloak, so the processes operate in lock—step, and
it is asynchronous If each process has its own in
dependent clock. Examples of synchronous systems
are large centralized Eulti)rocessing computers
and VLSI chips contntng many separate parallel
processing elenents. Exaapres of asynchronous sys
tems are distributed computer networks and I/O
systems far conventional computers.

In this paper, we compare time efficiency of
a simple model of a synchronous system with a
similar asynchronous model. We bound the number
of processes that can access any particular com
munication channel, and that restriction is crucial
to our results. Fore, n 14, we define a partic
ular distributed proble involving n “ports. It
can be solved IU t±e on a synchrnotts syste,
but we show It requires rise at least (s—I) lognJ

on any asynchronous systet. Here b is a constant

*
1fs ateraI is based upon research supported

by the OffIce of Naval esearch under Contracts
N000l’—SU—C—022l and N3Ofll_79__Qg73) and by
the [IS. Army Research Office Contract Number
DAAC29—79—C—0155. also NSF 1NCS77—15628 and
MCS 7924370

Perminion to copy without fee all or part of this maie,ial is ranted

provided iliac the copies are not made or distributed for direct
commercial advantage the ACM copyrigSl notice and the titlc of the
publication and Ia date appear, and felice is given thai copying is by
permission ci the Association for Computing Machinery. To copy

otherwise. or to republish, requitti • fee and/or specific perminion.

reflecting the conunicaLion bound in the model,

whose precise definition is given in the next

section. If we strengthen the comunication sys—

tem slightly to tertit a single designated process

to broadcast to all the others, or if we provide

each process with access to a global clock, then

the asynchronous model can solve the problem in

time 0(s).

THE MODELS

We use a version of the model of a concurrent

system defined in [LFI9,L1813. Briefly, it con

sists of c2lections P of processes and X of

shared vuriables. The global state of the system

consists of the internal state of each process to

gether with the value of each shared variable. A

is an atomic action which consists of sicul—

taneous changes to the state of some process and

the value of some shared variable. For.slly, a

ste, 0 is a pair of triples ((s,p,t),(u,x,v))

where s, t are possible internal states of process

p. and u, v are possible values of variable x. We

define process() = p and variable(o) — x and say

0 involves p and accesses x. Step o is

to any global state in which process p has inter— -

nal state s and variable x contains value u. The

effect of perfoniing a is to change the state of

p to t and sijnultaneously to change the value of

x to v.

A systen is specified by describing P X, an

initial global state, and a set OKSTE?S of possi

ble steps. A process p hlocks in a global state

if there is step a in OKSTEPS applicable to

with process (a) = p. IQ this paper, we require

our systems to be non—blocking for all processes

and all global states.

Let x C X and define locaiity(x) =

Cproces,(a) a € OKSTEPS and variable(o) • ,c}. A

system is b—bounded if I local ity Cx) F b for every

x C X.

A ss!2ation of a system is a finite or in

finite sequence of steps in OKSTEPS such that the

first step is applicable to the initial global

state, and each succeeding step is applicable to

the crate resulting from the application of the

previoua step. The result of a finite computation

is the gobal state after aDplying the sequeace.

An infinite corputatlon is adaissible if every

process appears In infinitely many steps of theol%l ACM 049’91-041—9 /J/O5l/O1fl S&E75
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sequence.

A round is any sequence of steps such that
every process appears at least Once In the se
quence. A minimal round is a round such that no
proper prefix is a round. Every sequence of steps
can be uniquely partitioned into segments such
that every segment is a round, except possibly for
the last if the sequence is finite, and every
round is minimal. We call this a partition into
minimal rounds, even though the last segisent is
not necessarily a round.

A sequence of steps Is snchrooous if in the
unique partition into nin&al rounds:

(1) No two steps in the sate round involve the
sasw process;

(2) No two steps in the sate round access the
saT variable.

(1) and (2) together imply that the steps in each
round are independent and can be performed in any
order or simultaneously, with the same result.

The run time for a finite sequence of steps
is defined to be the ntaber of segments n the
partition into ninial rounds. (This definition
is equivalent to the one in [T.F8I! which says it
is the longest aount of elapsed real time that
the systa could take to execute the sequence.
subject to the constraint that the tie delay
between two steps of the sane process is at nest
unity. For synchronots systeas, this definitIon
is also equivalent to the note usuat one which
simply counts the nuo’ber of synchronous steps of
the system, where one synchronous step consists of
the simultaneous execution of a step by each pro
cess.)

Finally, a synchronous systet. is a concurrent
system whose allowable computations are all of its
infinite synchronous computations. Ai ynchronous
system is a concurrent system whose allowable com
putations are all of its infinite admissible corn—
putations.

THE PROBLEM

We now define a particular behavior for a
concurrent system. Let Y X be a distinguished
set of variables called ports. A 2211 event is
any step that accesses a port. A session is any
sequence of steps containing at least one port
event for every port. A conputat ion performs
sessions if it can be partitioned into s segments,
each of which is a session. An infinite compu
tation is ultimately quiescent if it contains
only a finite nuaber of port events. The time to
quiescence of an ultimately quiescent sequence is
the run time of the shortest prefix containing all
port events.

Let s, a c . The (s.n)—session problem is
the problem of finding a oneurrent system with
ports such that eyery allowable computation per—
forms (at least) a sessicas and is ultimately
quiescent.

Note that the (s,n)—session probln, lIke
the a’trnl exclusion and dining philosophers

problems, concerns possible orderings of sequences

of events rather than the computation of partic

ular outputs. It is an abstraction of the syn
chronization needed in many natural problems.
Consider, for example, a simple nessage distribu

tion system in which a sending process writes a
sequence of a messages one at a time on a board
visible to all and waits after each message until
all n other processes have read the message.
Thatever protocol insures that the sender has
waited sufficiently long will also solve the
(s,n)—session problem.

MAIN RESULT

We show that any asynchronous 5—boonded sys—

tar solving the (s,n)—session problem requires
tine at least (s—l) U.og6nj to qufescence, whereas

there Is a trivial synchronous system which solves
the problem in time exactly s. This is the first
example we know of. of a problem for which an
asynchronous system is provably slower than a
synchronous one, and it shows that a straight
forward step—by—step and process—by—process siwu—
lation of an n—process synchronous systn by an
n—process asynchronous one necessajjy loses a
factor of logn in speed.

The result is even re surprising when one
realizes that the trivial asynchronous syste.
with one process per port (and so coiun±cat ion
,ng the processes) in vhich each process does
nothing except access a port on each step in fart
performs s sessions within time s. The difficul
ty is that no process knows when time s has
elapsed (due to the lack of a global syste
“clock”), nor does ft know when the a sessions
have in fact been achieved, so none of the
processes knows when to stop accessing its port.

A procedure which does work is for a process
associated with each port to perform a port
event, broadcast that fact and then wait until
it has heard that all other port processes have
performed their port events and that the session
has been completed This is repeated a times.
By making the port processes the leaves of a
tree network, the necessary counicationfor one
session can be accomplished in time O(log n);
hence, the total time to quiescence for the
solution is O(s log n) It seems very in
efficient to wait after each port event, and one
might try to invent clever schemes to increase
the concurrency in the system. Our lower bound
shows, however, that this method is optimal to
within a constant factor, so only a limited
amount of improvement is posa3.ble.

We now present the formal results.

Theorem 1. For an a, n 6 • there is a
1—bounded synchronous system which solves the
(s,n)—session problem, such that the time to
quiescence for each allowable computation is a.

Proof. The syste2 has n processes, one
corresponding to each part. Each process
accesses its port on each of Its first a steps
and then ceases performing port events. Lu
every inffnire synchronous computation, each of
the first s ntninl rounds constitutes a session,



and the system becomes quiescent after s rounds.
Hence, the systet salves the (s,n)—€ession probln
in tise 5.

0

Theorem 2 (Main Result). Asse b, s, n E E
2. For every b—bounded asynchronous system

which selves the (s,n)—session problem, the ti,e
to quiescence is at east (s—i.) L1ognj for some

allowable conputacion.

The proof of Theorem 2 involves a series of
three lemmas about a ‘articular partial ordering
of steps of a computation. (The ordering repre
sents a kind of logical dependency.) We break up
the proof of Theorem 2 by presenting the leitmias
before the main proof. These lemmas and their
proofs are self—contained and depend only on the
properties given below. For better intuitive mo
tivation, however, the reader may wish to read the
main proof before reading the lemmas.

Let K be the set (1 a) (of ‘round’

au.bers), F a finite set <of processes’), X a
set (of variables’) - Let S be a set having
masoings round 9 K, pp 0 P and
vat - K. Assine that fcr ever, pair
(r,p) ek P, there is exactly one a €0 having
rouzd(a) r and proc(o) = p. Let Icc(x)

(proc(a) : ,cDandvar(a)x}. LetbZand

a96ue loctI) b for all x X.

Let be a partial order on 5, and write

a ST to indicate chat o rend there is rio0

with a < p < T. A,sume that has the following
properties:

(1) If a S r, then either var(o) — var(r) or
1 proc(a) proc(T).

(ii) If either var(s) = var(r) or proc(a)
procCr), then 0 and r are —comparabe.

(iii) If a i r, then round(o) round(T).

Finally, let deo(t) (var(T) a r}.

Letta I (Monotoniclty). If a1 s
2’

rhen

dep(s2) C dep(C1).

Proof. Obvious from the definition of dep,

Lemma 2. Let C E 0, round(a) r.
varCa) x. Let C {r € D round(T) —

r + 1 and proc(T) E loc(x)}.

Then dep(a) C U dep(T) u lx).
TEC

Proof. Proof is by induction on 5, beginning
with maximal elements. Let a € 0 and assume the
lemma holds for all T > 0. Assume r, x and C are
defined from a as in the statement of the lenma.
If there exists 0’ P with var(o’) = x and o’ > 0,
then fIx z • as the s.allest such reher ci 3.
(PropertY (ii) insures that a’, if it exists, is

deitned •niquely.) Sinijarly, if there exists

C’ S with proc (C’) — proc(t) and a” > o, then

3

fix a” as the smallest such member of 0. Define

B — dep(a’) if c’ exists, otherwise, and

B” • dep(o”) if a” exists, 6 otherwise. Then

properties (I) and (ii) and notonicity show

that dep(0) C B’ J B” u (x. It suffices to shaM

that B’ U B”C LI dep(T) u lx).
reC

We first consider B’, and aseuae a’ exists.
(If a’ dots not exist, there is not;-t±ng to prove.)

By indtction, 3’ C dep(t) U tx}, where
TSC’

C’ (r c 0 : round(r) = rcund(c’) + 1 and
proc(T) loc(x)}. For every -t’ c’, there
exists cc with proc(T) Property
(ii) shows that and r’ are s—comparable;
property (iii) shows that ‘r u. Monotonicity
implies that depQr’) C dep(r). Thus,

B’ £ Ii dep(T) u {x}, as needed
T6C

Finally, we consider B’, and assiae C’

exists. Ihen the propertIes of a2d show

that roud(c”) — r 1, so that C” C.

Thus, 3” U depCr), as needed.

TEC 9

.ea_3. For each a c 0, it is the case

e—round(a)+l
dep(a)I

5b -l
b—l

a-k
so by inductioa. Idep(T) I . Also,

C S. epce, Idep(0)I s

r a—k
lb —ii + 1 — b —l • as needed.

Lb_i J

Proof of Theorem 2. Assume an asynchronous
systen which solves the (s,n)—session problem.

Enumerate the processes arbitrarily. Construct

an infinite admissible computation a by running
the processes in round—robin order (one step of
proeess L, one of process 2 one ste af
process q, one step of process ,., ). Each

round—robIn round is cinital and contains exactl.y
one step of each process; hence, the tfte to

tnat

Proof. We proceed by Induction on

k = rotsnd(a), starting with Ic = a and working
backwards.

BASIS: k a.. By T.eisma 2, dep(a) C {var(a)),
so [dep(a)I 51. as needed.

INDUCTWN: lsk<a. ByLenaZ,wehave

S deoCr) + 1, Jere C is defined as

in I.eitma 2. ach r C has round(z) = k + 1.

0

-C
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perform the first r rounds is exactly r. Because
we aas1 a corre:t Solution, this cocutation is
u.t±ratelv quiescenr. Iet t be the tL,e to qiii—

escence for this co.putation. Then round t Is the
last round at whicS any port event occurs. We wish
to show t (s—i) lognj.

Let — by, where cocrains the Crst
rounds of , an y is the reai,.iog taH. Our
strategy is to construct a new inKnite admissible
computation a ‘y where 5’ is a reordering of
the steps of B that results in the sate global
state as 6, but 3’ performs at most t/Ilogn) + 1

sessions. Since no port events occur in y, it
follows that a’ performs at most tfLlognJ + 1

sessions. Since a’ is an infinite admissible com
putation for the system. t/tlogn ÷ 1 2 s and our

result follows,

To construct 5, we first construct a partial
order of the steps in f, reoresenting “dependency’’.
(F,rrslly, the do*ain o: the part Is’ order consIsts
of ordered pairs (i.C.). where Li is the ith step

o 3.) For every pair of steps a, in . e let

o S T if a precedes I in S and either process (a) —

t

rocess(r) or varabre(c) variableCt). Close

under transitivity. is a partial order, and

every total order of the steps of S consistent
with is a computation which leaves the system in

the same global stare as 8. (Clearly 5 itself
defines such a total ordering.)

Now, let m = [tIL1ognJ] , and write

B1 8m’ where Bk consists of [logn minimal

rounds, 1 k < m. Let y0 be an arbitrary port.

Far k = I we define inductively port

and two sequences of stes and . • as folLows.
k K

There are two cases. First, if there is some port
uhich is rot accessed by any step of S. • rhen take

to be that port and let — A (the null

sequence) and
•k

Otherw±se, let L e the

first ste, in which accesses V. - We now wish

to apply Let,m,a 3, to the subordering of defined

5y restrictizn to rounds with nu:ters

(k—l.>iLag.n:i,..., allog.nJ inclzsiva. The

mapDtng ‘rounds’ requ±red tar the lemmas is oh—
tatned by renumbering the rounds in the same order.
Maoo±ns proc’ and ‘var’ are obtained frcn the
rppIngs process and ‘variable’ respectively.
It is straightforward to see that the necessary
properties of £ and S are sacisried. Then by
Lerma 3. we see that IdepQrk)

log nJ-1+i
—l 5 n — 1. Since there are yi ports.

b—i

this means that there must exist a port

and a step
0k

such that

< is the last step in which accesses

(ii) it Ls false that r. 0
KS k

Thus, addIng the relation to S and

closing under transitivity results in another
partfal order S Chcose any total ordering cf

K

the steps in cnnsistent with S - Let be1
the longest prefix of that ordering not contaLn—
ing any step accessing v, and let

‘k
be the

remainder. This is illustrated in Figure 1,

in either case, does not contain any

step which accesses and does not contain

any step which accesses

Let l1l2*2 . ‘ is consistent

with • but ‘ contains at east m t/LlognI + 1

sessicns. since each SessIon mutt contain ste,s

on both sides of sosa so’andarv. (If a

sequence of steps were completely contained in

,‘. 0., for exampe, then it would fa±l
K—i

to contain a step accessing port y1.)

C

—.

no accesses tO y_i

___________

Tloaccessestoy____.

a———a-——U———o———.. ,——o———o—o——.

Figure 1. A total ordering of steps in consistent with

k
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RESULTS FOR MORE GiERAL MODELS

If the odal Is generalized by renewing the
bound on the number of processes which can access

a shared variable, then a single connunication

variable shared by n port processes can be used to

construct an easy U(s) solution.

In fact, if the original model is only gen
eralized slightly by allowing one of the shared
variables to be read by an arhicrary nuther of
processes (but only to be changed by one process),

then an D(s + log n) solution is possible. In

re detaiL, we use a shared variable, the message

board, which every ptocess can read but onJ.y one

fixed process, the supervisor, can change. Each

port has a corresponding port process and there

are additional coonunication processes whose job

it is to pass messages through a tree network from

the port processes hack to the supervisor. The

.essage board contains an integer which we carl

a “clock” value. The supervisor alternately in

crements the clock and reads the messages being

sent back. Each port process repeatedly perfons

a cycle of reading the clock, performing a port
event, and sending a message back to the super

visor, through the network, which contains the

clock value just read and the port identifier.

If 01 and c2 ar two successive clock values

sent by port process I, then a port event must

occur at port I sowetl,,e after the clock assuites

value c1 and before the clock assurs value

+ 1. By naturafly cowining tMs informatIon

about all ports, the supervisor can construct a

sequenceO”b <b <b <... <b such that for
0 1 2 S

each j, a session is guaranteed to occur between

the times when the clock first assumes values

and b. (Specifically, !et c ,c .,.. denote
- Ii ‘2

denote the successive clock values sent by port

prDcess 1, 1 S I n. Then define

b =max{c. +l:l<Lnandkis the
iOc4l)

smallest index such that Cik b1}, for each j,

j S.) After the supervisor constructs this

entire sequence, it knows that at least S sessions

have in fact occurred, at which time it puts a
STOP’ nessage on its ,essage board. W,an the

port processes read the “S20P’ message, rlev stc.o

performing port events.

assIes values and b4 Is bounded above by *

constant. For, from the tine when the clock

first assumes value b. • ft is at most a fixed
J—l

constailt amount of time before all port processes

have read the clock, perforned port events, sent

messages containing clock values b1, and

read the clock once again. Thereafter, it is at

most one tire tialt before the clock is incro—

aented again, thereby ass’ntng value b1

Thus, die total elapsed time untIl the

clock assumes value b is U(s). Thereafter,

within time O(log n), the supervisor has received

all the needed messages and can deduce that

sessions have occurred and display the IrsTopit

message. Three time units later, all port

processes will have read the “STOP” message and

wilt have stopped perforaing port events.
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It is easy to see that this constructtoi

solves the (s,n)—session problem. We argue that

it satisfies the required O(s + log n) time

bound.

First, we consider message transmission time.

Since we are not assuming any upper bound on size

of variables, the tree network can guarantee (Sy

concatenating messases) that any message can be

sent as soon as a process is ready to senc it,

and also that any nessage sent by tine C is

received by the supervisor by time t + O(log a).

I

EFER!NC ES

[1179]

Next, we claim that for each j, 1 j
the elapsed time between when the clock first


