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ABSTRACT

A system of parallel processes is saild to be
synchronous if all processes run using the same
clock, and it is asynchronous if each process has
its own independent clock. For any s, n, a par-
ticular distributed problem is defined involving
system behavior at n "ports'. This problem can be
solved in time s by a synchronous system but re-
quires time at least (s-1) log n on any asynchro-
nous system.

INTRODUCTION

A system of parallel processes is said to be
synchronous if all processes run using the same
clock, so the processes operate in lock-step, and
it is asynchronous if each process has its own in-
dependent clock. Examples of synchronous systems
are large centralized multiprocessing computers
and VLSI chips containing many separate parallel
processing elements. Examples of asynchronous sys-
tems are distributed computer networks and I/0
systems for conventional computers.

In this paper, we compare time efficiency of
a simple model of a synchronous system with a
similar asynchronous model. We bound the number
of processes that can access any particular com—
munication channel, and that restriction is crucial
to our results. For s, n € N, we define a partic-
ular distributed problem involving n "ports". It
can be solved in time s on a synchronous system
but we show it requires time at least (s-1) Llogan

on any asynchronous system. Here b is a constant
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reflecting the communication bound in the model,
whose precise definition is given in the next
section. If we strengthen the communication sys-
tem slightly to permit a single designated process
to broadcast to all the others, or if we provide
each process with access to a global clock, then
the asynchronous model can solve the problem in
time 0(s).

THE MODELS

We use a version of the model of a concurrent
system defined in [LF79,LF81]. Briefly, it com—
sists of collections P of processes and X of
shared variables. The global state of the system
consists of the internal state of each process to-
gether with the value of each shared variable. A
step is an atomic action which consists of simul-
taneous changes to the state of some process and
the value of some shared variable. Formally, a
step 0 is a pair of triples ((s,p,t), (u,x,v))
where s, t are possible internal states of process
p, and u, v are possible values of variable x. We
define process(g) = p and variable(o) = x and say
o involves p and accesses X. Step O 1s applicable
to any global state in which process p has inter- "’
nal state s and variable x contains value u. The
effect of performing 0 is to change the state of
p to t and simultaneously to change the value of
x to v.

A system is specified by describing P, X, an
initial global state, and a set OKSTEPS of possi-
ble steps. A process p blocks in a global state
g if there is no step o in OKSTEPS applicable to g
with process(o) = p. In this paper, we require
our systems to be non-blocking for all processes
and all global states.

Let x € X and define locality(x) = :
{process(g) : o e OKSTEPS and variable(o) = x}. A
system is b-bounded if |locality(x)| < b for every
x € X.

A computation of a system is a finite or in-
finite sequence of steps in OKSTEPS such that the
first step is applicable to the initial global
state, and each succeeding step is applicable to
the state resulting from the application of the
previous step. The result of a finite computation
is the global state after applying the sequence.
An infinite computation is admissible if every
process appears in infinitely many steps of the




sequence,

A round is any sequence of steps such that
every process appears at least once in the se-
quence. A minimal round is a round such that no
proper prefix is a round. Every sequence of steps
can be uniquely partitioned into segments such
that every segment is a round, except possibly for
the last if the sequence is finite, and every
round is minimal. We call this a partition into
minimal rounds, even though the last segment is
not necessarily a round.

A sequence of steps is synchronous if in the
unique partition into minimal rounds:

(1) No two steps in the same round involve the
same process;

(2) No two steps in the same round access the
same variable.

(1) and (2) together imply that the steps in each
round are independent and can be performed in any
order, or simultaneocusly, with the same result.

The run time for a finite sequence of steps
is defined to be the number of segments in the
partition into minimal rounds. (This definition
is equivalent to the one in [LF81] which says it
is the longest amount of elapsed real time that
the system could take to execute the sequence,
subject to the constraint that the time delay
between two steps of the same process is at most
unity. For synchronous systems, this definition
is also equivalent to the more usual one which
simply counts the number of synchronous steps of
the system, where one synchronous step consists of
the simultaneous execution of a step by each pro-
cess.)

Finally, a synchronous system is a concurrent
system whose allowable computations are all of its

infinite synchronous computations. An asynchronous

system is a concurrent system whose allowable com-
putations are all of its infinite admissible com-
putations.

THE PROBLEM

We now define a particular behavior for a
concurrent system. Let Y c X be a distinguished
set of variables called ports. A port event is
any step that accesses a port. A session is any
sequence of steps containing at ledst one port
event for every port. A computation performs s
sessions if it can be partitioned into s segments,
each of which is a session. An infinite compu-
tation is ultimately quiescent if it contains
only a finite number of port events. The time to
quiescence of an ultimately quiescent sequence is
the run time of the shortest prefix containing all
port events.

Let s, ne€ N. The (s,n)-session problem is
the problem of finding a concurrent system with n
ports such that every allowable computation per-
forms (at least) s sessions and is ultimately
quiescent.

Note that the (s,n)-session problem, like
the mutual exclusion and dining philosophers

problems, concerns possible orderings of sequences
of events rather than the computation of partic-
ular outputs. It is an abstraction of the syn-
chronization needed in many natural problems.
Consider, for example, a simple message distribu-
tion system in which a sending process writes a
sequence of s messages one at a time on a board
visible to all and waits after each message until
all n other processes have read the message.
Whatever protocol insures that the sender has
waited sufficiently long will also solve the
(s,n)~session problem.

MAIN RESULT

We show that any asynchronous b-bounded sys-
tem solving the (s,n)-session problem requires
time at least (s-1) Llog,nl to quiescence, whereas

there is a trivial synchronous system which solves
the problem in time exactly s. This is the first
example we know of, of a problem for which an
asynchronous system is provably slower than a
synchronous one, and it shows that a straight-
forward step-by-step and process-by-process simu-
lation of an n-process synchronous system by an
n-process asynchronous one necessarily loses a
factor of logbn in speed.

The result is even more surprising when one
realizes that the trivial asynchronous system
with one process per port (and no communication
among the processes) in which each process does
nothing except access a port on each step in fact
performs s sessions within time s. The difficul-
ty is that no process knows when time s has
elapsed (due to the lack of a global system
"elock™), nor does it know when the s sessions
have in fact been achieved, so none of the
processes knows when to stop accessing its port.

A procedure which does work is for a process
associated with each port to perform a port
event, broadcast that fact and then wait until
it has heard that all other port processes have
performed their port events and that the session
has been completed. This is repeated s times.
By making the port processes the leaves of a
tree network, the necessary communication for one
session can be accomplished in time O(log n);
hence, the total time to quiescence for the
solution is 0(s log n). It seems very in-
efficient to wait after each port event, and one
might try to invent clever schemes to increase
the concurrency in the system. Our lower bound
shows, however, that this method is optimal to
within a constant factor, so only a limited
amount of improvement is possible.

We now present the formal results.

Theorem 1. For all s, n € W, there is a
1-bounded synchronous system which solves the
(s,n)-session problem, such that the time to
quiescence for each allowable computation is s.

Proof. The system has n processes, one
corresponding to each port. Each process
accesses its port on each of its first s steps
and then ceases performing port events. In
every infinite synchronous computation, each of
the first s minimal rounds constitutes a session,




and the system becomes quiescent after s rounds.
Hence, the system solves the (s,n)-session problem
in time s. 0

Theorem 2 (Main Result). Assume b, s, ne N,
b = 2. For every b-bounded asynchronous system
which solves the (s,n)-session problem, the time
to quiescence is at least (s-1) Llogbnj for some

allowable computation.

The proof of Theorem 2 involves a series of
three lemmas about a particular partial ordering
of steps of a computation. (The ordering repre-
sents a kind of logical dependency.) We break up
the proof of Theorem 2 by presenting the lemmas
before the main proof. These lemmas and their
proofs are self-contained and depend only on the
properties given below. For better intuitive mo-
tivation, however, the reader may wish to read the
main proof before reading the lemmas.

Let R be the set {1,...,a} (of "round"
numbers), P a finite set (of "processes"), X a
set (of "variables'"). Let D be a set having
mappings round : D + R, proc : D+ P and
var : D + X. Assume that for every pailr
(r,p) € R x P, there is exactly one 0 € D having
round(og) = r and proc(g) = p. Let loc(x) =
{proc(c) : ¢ € D and var(c) = x}. Let b 2 2 and
assume |loc(x)| < b for all x e X.

Let < be a partial order on D, and write

0 £ T to indicate that 0 < T and there is no p
1

with 0 < p < T. Assume that < has the following
properties:

(i) If ¢ < T, then either var(c) = var(7t) or
1 proc(g) = proc(T).

(11) If either var (o) = var(T) or proc(g) =
proc(t), then o and T are <-comparable.

(iii) If o < T, then round(og) £ round(T).
Finally, let dep(g) = {var(t) : o s t}.

Lemma 1 (Monotonicity). If 0, <0y then
dep(Uz) g_dep(cl).

Proof. Obvious from the definition of dep.
]

Lemma 2. Let o ¢ D, round(g) = r,
var(oc) = x. Let € = {T € D : round(T) =
r + 1 and proc(t) e loe(x)}.

Then dep(c) = || dep(t) u {x}.
TeC

Proof. Proof is by induction on £, beginning
with maximal elements. Let ¢ € D and assume the
lemma holds for all T > 0. Assume r, x and C are
defined from 0 as in the statement of the lemma.

If there exists o' € D with var(¢') = x and o' > 0,
then fix o' as the smallest such member of D.
(Property (ii) insures that ¢', if it exists, is
defined uniquely.) Similarly, if there exists

o" € D with proc(o") = proc(g) and ¢" > g, then

fix o" as the smallest such member of D. Define
B' = dep(c') if o' exists, ¢ otherwise, and

B" = dep(c") if o" exists, ¢ otherwise. Then
properties (i) and (ii) and monotonicity show
that dep(o) < B' u B" u {x}. It suffices to show

that B' u B" < |] dep(t) u {x}.
TeC

We first consider B', and assume o' exists.
(If o' does not exist, there is nothing to prove.)

By induction, B' c |] dep(t) u {x}, where
TeC'
¢' = {1t € D : round(t) = round(c') + 1 and
proc(t) € loc(x)}. For every 7' € C', there
exists T € C with proc(t) = proc(t'). Property
(11) shows that T and T' are <-comparable;
property (iii) shows that T < T'. Monotonicity
implies that dep(t') < dep(t). Thus,

B' c |} dep(t) u {x}, as needed.
TeC

Finally, we consider B", and assume ¢"
exists. Then the properties of D and < show
that round(c") = r + 1, so that o" € C.

Thus, B" < |] dep(t), as needed.
TeC 0

Lemma 3. For each ¢ € D, it is the case
that

a-round (0)+1_
b-1

1

fdep(o) | <

Proef. We proceed by induction on
k = round(o), starting with k = a and working
backwards.

BASIS: k = a., By Lemma 2, dep(o) < {var(o)},
so |dep(o)| € 1, as needed.

INDUCTION: 1 <k <a. By Lemma 2, we have

|dep(o)| < ] |dep(t)| + 1, where C is defined as

TeC
in Lemma 2. Each T ¢ C has round(T) = k + 1,
s
so by induction, |dep(t)| = e Also,
€] < b, Hepce, |dep(o)| <
b [87%a) 1 =555 | as needed.
b-1 b-1
0

Proof of Theorem 2. Assume an asynchronous
system which solves the (s,n)-session problem.
Enumerate the processes arbitrarily. Construct
an infinite admissible computation @ by running
the processes in round-robin order (one step of
process 1, one of process 2,..., one step of
process q, one step of process 1,...). Each
round-robin round is minimal and contains exactly
one step of each process; hence, the time to




perform the first r rounds is exactly r. Because
we assume a correct solution, this computation is
ultimately quiescent. Let t be the time to qui-
escence for this computation, Then round t is the
last round at which any port event cccurs. We wish
to show t 2 (s-1) [logbnj.

Let o = By, where P contains the first t
rounds of o, and Y is the remaining tail. Our
strategy is to construct a new infinite admissible
computation o' = B'Y , where B' is a reordering of
the steps of B that results in the same global
state as B, but B' performs at most tf[logbnj + 1

sessions. Since no port events occur in 7y, it
follows that o' performs at most t/Llugbnj + 1

sessions. Since o' is an infinite admissible com—
putation for the system, t!Llogan + 1 > s and our

result follows.
To construct B', we first comstruct a partial
order of the steps in B, representing "dependency".

(Formally, the domain of the partial order consists
of ordered pairs (i,ﬁi), where Ei is the ith step

of B.) For every pair of steps 0, T in B, we let

a E T if ¢ precedes T in § and either process(g) =

process(T) or variable(g) = variable(t). Close g

under transitivity. é is a partial order, and

every total order of the steps of B consistent
with é is a computation which leaves the system in

the same global state as R. (Clearly B itself
defines such a total ordering.)

Now, let m = Ft/LlogbuJT , and write
R.= Bl"'Bm’ where Bk consists of [logbn] minimal
rounds, 1 = k < m. Let Yo be an arbitrary port.
For k = 1,...,m, we define inductively a port Yie
and two sequences of steps ¢k and wk’ as follows.

There are two cases. First, if there is some port
which is not accessed by any step of Bk’ then take
¥, to be that port and let ¢ = A (the null

sequence) and wk = Bk' Otherwise, let Tk be the

first step in Bk which accesses Vi-i+ We now wish

P

to apply Lemma 3, to the subordering of g defined
by restriction to rounds with numbers
(k—l)Llogbnj+1,..., k[logbn] inclusive. The

mapping '"rounds" required for the lemmas is ob-
tained by renumbering the rounds in the same order.
Mappings "proc" and "var" are obtained from the
mappings "process' and "variable" respectively.

It is straightforward to see that the necessary
properties of D and < are satisfied. Then by
Lemma 3, we see that fdep{rk)I <

1 =1+1
h[ e -1 £n - 1. Since there are n ports,
b-1
this means that there must exist a port Yie
and a step Uk such that

(i) T is the last step in Bk which accesses
Yid
(11) 4t is false that Ty g ak.

Thus, adding the relation o, < Tk to < and
8

kB
closing under transitivity results in another

partial order i . Choose any total ordering of
the steps in Sk consistent with ﬁ . Let ¢k be

the longest prefix of that ordering not contain-
ing any step accessing Yie-1? and let mk be the

remainder. This is illustrated in Figure 1.

In either case, ¢k does not contain any
step which accesses y, _, and wk does not contain

any step which accesses Vi

'= Fid . ' is consistent
Let B LI L DR B' is ¢
with < , but B' contains at most m < tfklogbnj +1
sessions, since each session must contain steps
on both sides of some ¢k—¢k boundary. (If a

sequence of steps were completely contained in
wk-l¢k’ for example, then it would fail

to contain a step accessing port yk—l')
0

no accesses to ¥y, .
k-

no accesses to ¥
T R —

0==mQ==mQ=mm Q. , , == Q== Qe Q= o == 0mrtm Q=== 0=, o , === 0===0==~0-==0

Ok

Tk

Figure 1. A total ordering of steps in Bk consistent with < .

k



RESULTS FOR MORE GENERAL MODELS

If the model is generalized by removing the
bound on the number of processes which can access
a shared variable, then a single communication
variable shared by n port processes can be used to
construct an easy 0(s) soluticn.

In fact, if the original model is only gen-
eralized slightly by allowing one of the shared
variables to be read by an arbitrary number of
processes (but only to be changed by one process),
then an 0(s + log n) solution is possible. In
more detail, we use a shared variable, the message
board, which every process can read but only one
fixed process, the supervisor, can change. Each
port has a corresponding port process, and there
are additional communication processes whose job
it is to pass messages through a tree network from
the port processes back to the supervisor. The
message board contains an integer which we call
a "clock" value. The supervisor alternately in-
crements the clock and reads the messages being
sent back. Each port process repeatedly performs
a cycle of reading the clock, performing a port
event, and sending a message back to the super-
visor, through the network, which contains the
clock value just read and the port identifier.

If cl and c, are two successive clock values

sent by port process i, then a port event must
occur at port i sometime after the clock assumes

value ol and before the clock assumes value

<, + 1. By naturally combining this information

about all ports, the supervisor can construct a
sequence 0 = bo < bl < b2 £ e % b5 such that for

each j, a session is guaranteed to occur between
the times when the clock first assumes values bj

and b (Specifically, let €12 pset denote

j+1°
denote the successive clock values sent by port
process i, 1 < 1 < n. Then define

bj = max {ci(k+l) +1:1<1i<n and k is the

smallest index such that c 2 bj-l}’ for each j,

1 € j <s.) After the supervisor constructs this
entire sequence, it knows that at least s sessions
have in fact occurred, at which time it puts a
"STOP" message on its message board. When the
port processes read the "STOP" message, they stop
performing port events.

It is easy to see that this construction
solves the (s,n)-session problem.. We argue that
it satisfies the required 0(s + log n) time
bound.

First, we consider message transmission time.
Since we are not assuming any upper bound on size
of variables, the tree network can guarantee (by
concatenating messages) that any message can be
sent as soon as a process is ready to send it,
and also that any message sent by time t is
received by the supervisor by time t + 0(log n).

Next, we claim that for each j, 1 £ j < s,
the elapsed time between when the clock first

4-1 and bj is bounded above by a
constant. For, from the time when the clock
first assumes value bj—l’ it 1s at most a fixed

assumes values b

constant amount of time before all port processes
have read the clock, performed port events, sent
messages containing clock values = p 1 and

read the clock once again. Thereafter, it is at
most one time unit before the clock is incre-
mented again, thereby assuming value bj'

Thus, the total elapsed time until the
clock assumes value bs is 0(s). Thereafter,

within time O(log n), the supervisor has received
all the needed messages and can deduce that s
sessions have occurred and display the "STOP"
message. Three time units later, all port
processes will have read the "STOP" message and
will have stopped performing port events.
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