GIT-ICS-80/14

A TECHNIQUE FOR DECOMPOSING ALGORITHYS
WHICH USE A SINGLE SHARFD VARIABLE+

Nancy A, LyncH*
MicHAEL J. FiscHEr™*

OcToBER, 1980

%
Nancy A. Lynch

Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

*ﬁichael J. Fischer

Computer Science Department
University of Washington
Seattle, Washington 98195

*This research was supported in part by the National Science Foundation
under grants MCS77-02474, MCS77~-15628, MCS78-01698, MCS80-03337, U.S.
Army Research Office Contract DAAG29-79-C~0155 and Office of Naval
Research grants N00014-79-C-0873 and N00014-80-C-0221.

A Technique For Decomposing Algorithms Which Use a Single Shared Variable

Nancy A. Lynch

Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

Michael J. Fischer
Computer Science Department
University of Washington
Seattle, Washington 98195

This research was supported in part by the National Science Foundation
under grants MCS77-02474, MCS77-15628, MCS78-01698, MCS80-03337, U.S.
Army Research Office Contract DAAG29-79-C~0155 and Office of Naval
Research grants N00014-79-C-0873 and N00014-80-C-0221.

Abstract: A general theorem is proved which shows how a system of contending
asynchronous processes with a special auxiliary supervisor process can be
simulated by a system of éontending processes without such a supervisor, with
only a small increase in the shared space needed for communication. Two
applications are presented, synchronization algorithms with different

fairness properties requiring N + ¢ and [g] + ¢ (c a constant) shared values

to synchronize N processes, respectively.

e

PN

s

I. Introduction

There are many algorithms in the literature for insuring that the
execution of systems of asynchronous processes exhibits various types of
synchronization. In a typical formulation, asynchronous processes have
"eritical regions".of their code - portions of code whose execution is to be
restricted so that ceftain patterns of simultaneous access to critical regions
by different processes .do not occur. Synchronization protocols are executed
by the processes prior to entry to their critical regions, in order to
prevent forbidden access patterns from occurring.

The simplest such restriction is that of Dijkstra's mutual exclusion

problem [D], which specifies that no pair of proceéses should have simultaneous

access to their critical regions; algorithms satisfying this restriction are

useful for arbitrating requests for exclusive access to a single shared

resource. Dijkstra's restriction can be generalized in a straightforward way,

to specify that no more than £ 2 1 processes should have simultaneous access
to their critical regions. Algorithmsrsatisfying this more general "2—exclusioﬁ"
restriction are useful for érbitrating requests for exclusive access to one

of % identical copies of a shared resource.

The papers [CH1,BFJLP,CH2,FLBB] contain clever synchronization algorithms
for muﬁual exclusion and %-exclusion, in an environment whefe a single shared
variable serves as the only means of communication among the processes. The
algorithms of these papers are designed so that only those processes which
happen to be involved in conflicting demands for critical region access are
available for participation in the synchronization protocols - there are no
permanent, "dedicated" processes available to help achieve the synchronizationm.

The algorithms of those papers are designed to minimize a certain "space"

measure ~ the number of distinct values needed for the single shared variable.
[CH1,BFJLP,CH2] contain small-space algorithms for mutual exclusion with
different fairness properties, while [FLBB] contains corresponding small-
space algorithms for 2—exc1nsion.

Unfortunately, so many programming tricks seem to be required to achieve
the very_small space bounds that several of these algorithms (such as
Algorithm C of [BFJLP] and the algorithm of [CH2]) are vefy difficult
to understand from their programs. There are many different activities
being ‘carried out at once - processes perform many.different funetions at
different times during their protocols, and sometimes share responsibility
for performing cerﬁainffunctions. This responsibility is sometimes passed
from 6ne process to another uéing the comnunication variable. The communication
variable is used for many different purposes, and it muét be insured that
those different uses do not block each.other indéfinitely or become
confused. The resulting programs are very intricately intertwined sequences of
parallel actionms, difficuit to understand in their entifety, but also
apparently difficult to decompose into meaningful suﬁpfoérams. It seems that
considerable benefit would be provided by isolating capabilities generally
useful for presenting such algorithms, and then pfoving general theorems to
show how those capabilities can be achieved using thé given model. This
approach has two advantages - the resulting decomposition should be easierv
tn understand than the original algorithms, and also, portions of the
decomposition should be useful for presenting several different algorithms.

In this paper, we isolate one general capability that seems very useful
for presenting algorithms such as those in [CH1,BFJLP,CH2,FLBB]. A significant
reduction in the length and amount of complication in some of those

algorithms results from assuming the existence of a dedicated "supervisor

process", always available to aid in the synchronization of the other processes.
If such a supervisor is available, a simplifying programming strategy is to
push as much of the computation and decision-making as possible into the

local computation of the supervisor, since properties of such local computation
are well-understood. Ideally, the non-supervisor processes would then have
simple programs, their jobs reduced to carrying out communication with the
supervisor to inform it of their critical region requirements and receive
instructions for proceeding. The communication variable would be used only

for the minimal communication necessary for this information exchange, and

nbt for helping with compﬁtation that could be carried out locally.

In [CHl,BFJLP,CHZ], the processes do, in effect, ''simulate a supervisor"
at various points in their code. However, the presentations in those
papers tie the supervisor simulation responsibility to certain particular
points in the process code, and do not attempt a clean separation between
the basic algorithm and the supervisor function.

Of course, the basic model assumed by [CH1,BFJLP,CH2,FLBB] assumes that
there are no dedicated supervisor processes, so in order to use such a
capability, we must show how to simulate a supervisor process using only the
allowed participating processes. The main theorem of this paper is a general
small-space supervisor simulation theorem. We then give two applications of
this simulation theorem, based on the FIFO mutual exclusion algorithm of
[CHZ] and the lockout-free, mutual exclusion Algorithm C of [BFJLP],
respectively.' Not only can versions of those two mutual exclusion algorithms
be presented more simply using this decomposition strategy, but as a bonus,
this strategy makes these two algorithms immediately extendable to small-space

f~exclusion algorithms. We present the generalizations to f-exclusion. The

L

4
two theorems provide space upper bounds for %-exclusion algorithms satisfying
the two different fairness properties, bounds which are considerably better
than those claimed in Theorem 4.1 of [FLBB]. Gary Peterson [Pet] has
independently obtained versions of the two f%-exclusion algorithms of this
paper. Only his version of the "executive" algorithm appears in detail in
[Pet]; the ideas of the FIFO algérithms are sketched. The bounds claimed in
[Pet] are sharper than ours, (N + £ + 6 and_lgj + £ + 8 respectively), since

a major effort of that paper is devoted to optimizing the constants. No

decomposition of our type is used, however.

‘ We note that tFiBB]ﬂalso pfééeﬁté‘som of its réé&lfs using a generaimm
supervisor simulation theorem. However, the simulation of that paper
is different from the present one. That simulation is designed to build
in immunity to a certain type of process failure, a consideration which is
not treated by the present simulation. Consequently, that simulation is
not as space-efficient as the present one.

The algorithms presented in this paper are not trivial to understand,
even with the given decomposition. There‘are still several types of
éommnnication going on using the same small shared Variable, and care must
be taken to insure that they do not interfere with each other. However,
it seems that now the main strategy of each algorithm is reasonably easy
to explain and that the main correctness arguments to be made involve
the non-interference among the different communications being carried out
in parallel.

There is a cost incurred by the decomposition, of an additive constant
number of values. It séems possible to save a few (around 10) values
by very careful optimization, involving both levels ofvdecomposition. In

the interest of simplicity, we have accepted this extra cost.

o,

The remaining sections are organized as follows. Section II contains
definitions and notation for processes, systems, and simulation, and for
the correctness and fairness properties we wish to achieve. Theorem 1 is
also stated, showing that our definition of simulation preserves all of our
properties. -Section III contains Theorem 2, the general simulation theorem,
the restrictions required on the original supervisor system in order that it
be simulable, a description of a high-level language for presenting our
algorithms, the program for the simulation and arguments for its correctness.
Section IV contains the two applications - an N + £ + 15~valued FIFO

f~exclusion algorithm and an fg] + £ + 18-valued f-exclusion algorithm avoid-

ing lockout, each for N processes. ©Each algorithm is presented by first
providing a version with a supervisor and then appealing to Theorems 1 and 2.
In each case, detailed code is provided, the algorithm is explained informally

and arguments are given for the non-interference of communications.

1

II. Definitions and Notation

Processes and Systems

The definitions in this section are special cases of those in [LF],
describing an environment in which a finite number of deterministic processes
access a single shared communication variable. - Access is by a test-and-
set operation which reads the value of the variable and changes it in a single
indivisible step.

A variable x has an associated finite set of vaiués,’VaIUes(x), which

the variable can assume. A variable action for ¥ is a triple (u,x,v) with

u, v £ values(x); it represents the action of changing the value of x from
u to v. Act(x) is the set of all variable actions for x.

A process p has an associated finite set of states, states(p), which it

can assume. Start(p) is a distinguished starting state. A process action

for p is a triple (s,p,t) with s, t € states(p); it represents p going from
state s to state t. Act(p) is the set of all process actions for p. If P

is a set of processes, then act(g) = U act(p). Variable(g) is the single
pep

variable which p is permitted to access.
Every process action occurs in conjunction with a variable action;

the pair forms a complete execution step. That is, if P is a set of

processes and X a variable, we let steps(P,x) = act(P) x act(x) be the set
of execution steps. OkSteRS(E) is a subset of - steps(p,variable(p)) des—
cribing the permissible steps of p. Oksteps is subject to the condition:

for any s € states(p), u € values (variable(p)),there exist exactly one t,
v with ((s,p,t), (u,variable(p),v)) € oksteps(p). Thus; processes are

deterministic. We also use the alternative functional notation 5p(§,u) = (t,v)

to express the fact that ((s,p,t), (u,variable(p),v)) ¢ oksteps(p). If P is a

set of processes, then oksteps(P) = |J . oksteps (p).
PEP

e,

N

ifin,

%
A denotes A U A@. Length: A

A system of processes S has three components: proc(g), a finite set

of processes, var(s), a variable which. is variable(p) for all p € proc{S),
and init(s8) € values(var(S)), an initial value for var(S).
Let N denote the set of natural numbers, including O. If A is any

*
set,,A_(Afl denotes the set of finite (infinite) sequences of A-elements.

count count

+ N u {=»} denotes the
number of elements in a given sequence.

Let P be a set of processes, x a variable. -E(P,x) = (stepS(?,X))count is
the domain used to describe executions. |

It is convenient in this paper to use one device not included in the
model of [LF]: we sometimes consider several distinct processes operating on
a common local state. This seems quite natural for some algorithms, where
a single process performs more than one logical function. More understandable
code can result from separating those functions into distinct processes. In
the following definitions, the set Q represents such a set of processes
operating on a common state.

Let e ¢ E(P,x), Q c P with start(p) = start(p') for all p, p'e Q.
Define the latest-value function as follows. '

1f length(e) = 0, then latest(Q,e) = start(p) for any ﬁ e Q.

If 1 < length(e) < » , and e = e'((s,p,t), (u,x,y)), then

latest(Q,e) =(t if pe Q,

latest (Q,e'), otherwise.
If length(e) == , fhen latest(Q,e) = latest(Q,e') provided e can be
decomposed as e'e" and no p ¢ Q appears in e, and is otherwise undefined.
If Q= {p}, a singleton (the usual case), we write latest(p,e) instead

of latest({p},e).

L

Cooperative and Hierarchical Systems
A worker is a process p'for which states(p) is partitioned into subsets

R(p), T(p), C(p) and E(p), (called the remainder, trying, critical and exit

regions of p, respectively), so that start(p) € R(p) and so that the
following are true for any ((s,p,t),(ﬁ,k,v)) € oksteps(p):
| (a) s € R(p) implies t € T(P) u cip),
, (b) s e T(p) implies t e T(p) v C(p),
(¢) s e C(p) implies t € E(p) v R(p),
(d) s € E(p) implies t € E(p) u R(p).
That is, a process in its remainder region (resp. critiéal region), if
it takes a step, will either go directly to its critical region (resp.
remainder region) or will enter its trying region (resp. exit region).
Once in the trying’region (resp. exit region), a process will remain'in
that region until it progrésses to its critical region (resp. remaindér'région).
We are not counting local steps taken by the processes while in their
remainder or critical fegions,vbut are only considering steps involving
synchronizatioﬁ.

A cooperative system is a system S of pProcesses whose processes are

all workers. A hierarchical system S is a system of processes in which all

processes but two are workers, comprising workers(S); the remaining two

processes, called manager(S) and clerk(S), have the property that

states(manager(S)) = states(clerk(S)) and start (manager(S)) = start(clerk(S)).
Let MC(S) =‘{manager(S),clErk(S)}, |

A cooperative system is the type of system assumed to be available in
[CH1,BFJLP,CH2,FLBB]. - A hierarchical system is an augmentation of a
cooperative system which allows two additional processes. These processes
will be allowed to share a common local state.

The manager and clerk together comprise the "supervisor process"

o

i,

discussed in the Introduction. For the algorithms we describe, the
supervisor performs two distinct logical functions, and it is convenient
to separate those two functions into those of two distinct processes,

called a manager and a clerk.

Let S be a cooperative system. An execution sequence for S is a

count

sequence e g (oksteps(proc(s))) < E(proc(S), var(s)) for which the

following conditions hold:

length(e)

(Let e = (e;)i1- » where e, = ((si,pi,ti),(ui,var(s),vi)).)

(a) If p € proc{(g) and there is some i with P; = P> then for the smallest

such i it is the case that s; = start(pi). If i < j, Py = pj, and

there is no k, i < k < j with Py = P;» then ti S,.

J
(b) If length(e) > 0, then u

1= init(s). Also, v,oSu for

1 €1 < length(e).

Thus, the states of processes and values of the variable are consistent

from step to step.

il

10

Let S be a hierarchical system. An execution sequence for S is a

sequence e € (okStePS(proc(s)))count

< E(proc(S),var(8)) for which the
following conditions hold. (Notation is as above.)

(d) If p ¢ workers(g) and there is some i with P; =P, then for the

smallest such e; it is the case that s; = start(pi). If § < i,

pi = pj and there is no k, i < k < j with Py = pi, then ti = Sj'
(b) Same as (b) in the preceding definition.

(c) If there is some i with p; € MC(S), . then for the smallest such i

it is the case that s; = start(manager(S)) (= start(clerk(s))). If

i<j, pi, pj € MC(S), and there is no k; i< k< j with
Py € MC(S), . then ti = sj.

Thus, states of worker processes and Qalues.of the variable are con~
sistent from step to step. Also, manager(S) and clerk(S) "share a state':
values of the states of the pair of processes are consistent from step to
step.

An execution sequernce e for»a cooperative system s is admissible
provided latest(p,e) € R(p) u C(p) for every p fqr which lates;(p;e) is
defined. An execution sequence e for a hierarchical system S is worker-
admissible provided latest(p,e) ¢ R(p) U C(p) for every p € workers(s) for
which latest(p,e) is.defined. An execuytion sequence e for a hierarchical system
S is admissible provided it is worker—édmissiblé, and provided if p & MC(S)
and if there are only finitely many i with Py = p, then e is finite.

Thus, admissibiiity requires workers to cbnfinUe taking steps while they

are in their protocols (but not necessarily while they are in their own code.)

i,

i,

11

They are also not required to leave their critical regions. (This is a
weakening of the requirements imposed in [CH1,BFJLP,CH2].) The manager
and clerk are both required to continue taking steps as long as any

workers take steps. If all workers halt, then the manager and clerk are

permitted to halt also.

Let S be a cooperative system, S a hierarchical system, and assume

i: proc(g) + workers(S) is an isomorphism. Then we say that S simulates $
provided for every admissible execution sequence e of S, there is an
admissible execution sequence e of § such that e exhibits the same set of

region changes by the same (up to isomorphism i) worker processes in the same

order, as e.

il
12

Properties of Interest for Cooperative and Hierarchical Systems

(C1) f-exclusion, & > 1

A cooperative (resp. hierarchical) system S violates %-exclusion
provided there exist a finite execution sequence e of S and distinect

PystersPgyy € proc(s) (resp. workers(g)) such that latest(p,e) € C(P}

for all P;» i € [4+1]. S satisfies f-exclusion provided it does not

violate f%-exclusion.

(C2) no 2~deadlock, 221

A cooperative (resp. hierarchical) system S exhibits f-deadlock

provided there is an admissible execution sequence e of S such that:

(a) all region changes eventually stop in e, and
(b) either (bl) orv(bZ) holds.
(b1) latest (p,e) € E(p) for some p € proc(S) (resp. workers(S))
(b2) 1latest(p,e) € T(p) for some p € proc(S) (resp. workers(S))
and at most £-1 distinct p ¢ proc(S) (resp. workers(S)) have

latest(p,e) e C(p).

13

S satisfies "no %-deadlock" provided it does not exhibit £-deadlock.

Thus, the system should continue to make progress as long as either
some process is in its exit region, or some process is in its trying region
with sufficient available space in the eritical region. The system is
permitted to stop making progress with processes still in their trying
regions, in the case that the critical region remains filled. This
formulation is stronger than that in [CH1,BFJLP] and is similar to that

in [FLBB].

(C3) no infinite bypass

A cooperative (resp. hierarchical) system S exhibits infinite bypass

provided there exist an admissible execution sequence e and p £ proc(S)

(resp. workers(S)) such that
(a) latest(p,e) e T(p) u E(p), and
(b) infinitely many region changes occur in e.

S satisfies "no infinite bypass" provided it does not exhibit infinite bypass.

In the literature (including [BFJLP, CH1]) a property.called '"no lockout"

is usually formalized instead of (C3). "No lockout" is generally expressed in

terms of each process making eventual progress. This requirement really
includes two conditions - a condition which states that the system as a whole
continues to make progress, and a condition which states that no process is
indefinitely discriminated against in favor of other processes. Here, these

two conditions are treated separately, as (C2) and (c3).

(C4) FIFO

A cooperative (resp. hierarchical) system S violates FIFO order

provided there exist p, q € proc(S) (resp. workers(S8)) and finite
execution sequence e = e'e" of S such that (a) or (b) holds:

(a) Both (al) and (a2) hold:

(al) latest(p,e') € T(p) and p does not change regions in e",

L

14

(a2) 'latest(q,e') € R(q) and latest(q,e) € c(q).

(b) Both (bl) and (b2) hold:
(b1) latest(p,e') € E(p) and p does not change regions in e",
(b2) latest(q,e') € C(q) and latest(q,e) € R(q).

S satisfies FIFO provided it does not violate FIFO order.

Thus, FIFO o_rdef is preserved both through the trying region and

through the exit region.

o~

15

Preservation of Properties by Simulation

Theorem 1. Let S be a cooperative system, S a hierarchical system, and

assume § simulates S . Then if S satisfies any of properties (Cl)-(C4),
it follows that S satisfies the corresponding property (for the same

value of).

Proof. All properties deal only with order of region changes, so the gesult

is immediate from the definitioms.

L

16

ITI. The Simulation Theorem

General Strategy

In this section, we present the main simulation theorem. We wish to start with as
general a hierarchical system as possible and simulate it using a cooperative system.
Each process of the cooperative system simulates one worker process of the original hier-
archical system. 1In addition, one process of the céopefative system at a time has the
responsibility of simulating the manager and clerk. The first process to enter
its trying or exit region first assumes the responsiblity of.simulating both
the manager and clerk. It continues the simulation of the manager and clerk
as long as it remains in its protqcol. At the point when it is about to leave
the protocol and go to its critical or remainder region, it passes the
responsibility of simulating the manager and.clerk to another process in
its trying or exit region, by a communication protocol. That process behaves
similarly; If at any time, a process simulating the manager and clerk is about
to leave its tfying or exit~region but there is no remaining process'to assume
the responsibility, the leaving process simply puts the necessary manager-
clerk state information in the variable and goes to itg critical or remainder
region. That state information is then available so that any new process that

enters can resume the simulation of the manager and clerk.

Unlike the simulations implicit in the algorithms of [CH1,BFJLP,CH2],
the present simulation does not require processes in their critical regions to
participate in manager-clerk simulation. This is because our formulation

permits processes to halt in their critical regions.

A

S,

17

Restrictions on Hierarchical Systems

Certain restrictions are necessary for this simulation to be carried out.
Definition: A hierarchical system S is called r-regular (r an integer) provided
it satisfies the following six conditions.

1. If p € workers(S), ((s,p,t),(u,x,v)) € oksteps(p) and £ € C{p) (resp. R(p)),
then both (1a) and (1b) hold.

(la) s € T(p) (resp. E(p)) and u = v, and

(1b) if w € values(x), then ((s,p,t),(w,x,w)) € oksteps(p).

That is, the last operation of each worker's protocol is a "NO-0P". This
requirement is necessary because a process about to enter its critical or
remainder region can delay a long time while relinquishing its responsibility
to simulate the manager and clerk, perhaps allowing other processes to
change regions during the delay. It is not permissible for this delay
to introduce orders of region changes not possible in the> simulated
hierarchical system., To prevent the introduction of new behavior, it is
sufficient that the original system also have the possibility of a corresponding
delay bccurring with tﬁe same intervening region changes. Formally, this is
made possible by requiring an extra, dummy step to occur. Since this step
can occur at any time in the original'hiérarchical system, the new delay does
not introduce any new orders of region changes.

Let prelim(p) denvte

fs € states(p): there exists some ((s,p5t), (u,x,v)) € oksteps(p) with t € C(p) U R(p)}.

Thus, prelim(p) denotes states in T(p)AU E(p) immediateiy‘before a "NO-OP" is executed.

An arbitfary subset of states(manager(S)) = states(clerk(S)) is called safe(S).

These states must satisfy several properties.

2. Let e be any execution sequence of S which is worker-admissible, and in

which both clerk(S)'and manager (S) appear infinitely many times. Then for

il

18
infinitely many distinct prefixes e' of e it is the case that

latest (MC(S),e') € safe(S).

Thus, safe states can be made to occur by running the manager and clerk

while the workers continue their normal operation.

3, “Let e = e'e" be any finite execution sequence of S, and suppose
latest (MC(S),e') £ safefS) and manager(s) dees not appear in e". Then

lafest(MC(S),e) e safe(8).

That is, only the manager's own steps can cause its state to change from
safe to unsafe. Thus, a safe state, once achieved, can be made to persist

by stopping fhe manager.

4, Let e = e'e" be any infinite execution sequence of S with latest(MC(S),e’) €
safe(S). Assume e is worker—admissible, that manager(S) does not
appear in e" but clerk(S) appears infinitely many times in e". Then after
some finite initial subsequence of e, all region changes stop and var(S)
always has the value 0 (i.e. all variable actions past that point are

of the form (0,var(s),0)).

Thus, stopping the manager at a safe state and allowing the clerk and
workers to continue to run will eventually result in all activity ceasing

and the shared variable becoming cleared for communicatign.

5. If ((s,p,t),(u,x,v)) and ((s',p,t'), (u,x,v')) € oksteps(clerk(S)), then

That is, the clerk always has the same effect on the variable,
regardless‘of its own current state, Thiskproperty makes it pdséible
to simulate the effect of the clerk on the variable without knowing

the clerk's state.

o,

19

6. l{s £ states(manager(S)): s € safe(S), there is a finite execution
sequence e of S with latest(MC(S),e) = s and for no p € workers(S)

is it the case that latest(p,e) € T(p) u E(p)}] = r.

That is, there are only r different safe manager states which could
exist at times when there is no prbcesé,available for aSSuming,xééponsibility
for -the simulétion.

Let this set of safe states be denoted by free(S).

If S is r-regular, then strengthened versions of Properties 2, 4 and 6

can easily be proved:

L

20

Definition: An execution sequence e of an r-regular hierarchical system §

is semi-worker-admissible provided latest(p,e) € R(p) u C(p) u prelim(p) for
every p € workers(S) for which latest (p,e) is defined.
That is, semi-admissibility requires workers to continue taking steps

while they are in their protocols, unless they are in preliminary states.

Since a preliminary state can be transformed by a "NO-OP" into a critical or
remainder state, the rest of the system cannot distinguish between a process
being in a preliminary state and in its critical or remainder region. Thus,
an r-regular system S satisfies the following three properties:
2'. Let e be any execution sequence of S which is sem;—worker~admissible, and
in which both clerk(S)'and manager(SS appear infinitely many times.
Then for infinitely many distinct prefixes e' of e it is the case that
1atest(MC(S),e') e safe(8).
4', Let e = efe" be any infinite executioniséquence'of S with
latest (MC(S),e') € safe(S). Assume e is semi-worker-admissible, that
manager (S) does not appear in e" but clerk(S) appears infinitely many
times in e'". .Theﬁ after-some finite ipitial 'subsequence.of e, all
region changes stop and var(S) always has the value O (i.e. all variable
actions past that point are of the form (0,var(55,0)).

6'. |{s € states(manager(S)): s € safe(S), there is a finite execution

sequence e of S with latest(MC(S),e) = s and for no p € workers(S) is

E(p)) - prelim(p)}| = r.

[=d

it the case that latest(p,e) € (T(p)

i,

e,

P

s

Tl

e,
e

21

A High-~Level Language for Describing Processes

Algorithms will be described in an Algol-like language similar to the
ones used in [FLBB,CH2,L}] but designed to make the translation into the basic

model transparent. Added to the usual sequential programming constructs are

two synchronization statements, lock and unlock. In addition, the construct
"waitfor C" is used as an abbreviation for "while not C do [unlock;lock]".
Lock and unlock statements always occur in pairs, an "unlock" followed

immediately (syntactically) by a "lock". Location counter values -

correspond to the points in the code immediately preceding each lock statement.
States of the process, p, defined by a program corresponding to a particular
location counter value together with values for all the program's local
variables, with one such combination designated as therstart state. Tran-
sitions are defined as follows. If the program is started with its location
counter and local variable values described by state s, and u as the value of
the shared variable x and if the program is then run according to usual
sequential programming rules, it might or might not reach an unlock statement.
If it does, if t. is the state describing the resulting location counter and
local variable values, and if v is the new value of the shared variable, then

let Sp(s,u) = (t,v). If it does not, then let Gp(s,u) = (s,u). (In general,

of course, this decision is not effective, but still gives a well-defined
answer. In actual execution, the values leading to the second alternative
should never occur.)

Thus, all computation, including local variable changes and control
steps, is done while the shared variable is locked. The variations on the

language used in [CH1,FLBB,L] allow local computation to be performed while

L

22

the variable is unlocked. 1In this paper, where we allow more than one process
to access the same local state, we wish to leave no room for ambiguous

translation.

e

23

Main Result

Theorem 2. Let S be an r-regular hierarchical system with lvalues(var(S))[= m,

Then there is a cooperative system-g which simulates S such that

|values(var(S))| = m + r + 4.

Proof. The shared variable X of S has values(X) =
values(var(S)) u {'"NEW','SEND','ACK','DONE'} u free(S). We assume that the three sets o:
values in this union are all disjoint. We call the values in values(var(8))

the ordinary values, denoted ORD, those in {'NEW'} u free(S) the

selection values, denoted SEL, and those in {'SEND','ACK','DONE'} the

communication values, denoted COMM. Init(S) = start{(manager(8)) £ free(S).

We describe a process E'of S. S'has local variables as follows:
P for the state of simulated process p £ proc(S),
MGR for the state. of the manager (and clerk),

LIST for recording a list of X-values during a restricted mode of simulation
of the clerk,

C for holding a code being transmitted or received,
FINISH for indicating the end of receipt of a message, and

M for holding an interrupted communication value.

The initial value of P is start(p), and all other local variables are

initialized at 0. The starting location counter value of S-is at the last

lock statement of the program.

The components of LIST will be denoted by Ll,L , in the

2""’L!LIST]

_order in which they are placed in the list. We write mgr as an abbreviation

for manager(S) and clk as an abbreviation for clerk(S). States are transmitted
in unary; we assume code to be a function which assigns an integer to each
manager state, and decode the corresponding decoding function. The subscripts
1 and 2 indicate the two components of a (state, variahle-yalue) pair,

respectively.

® ® ® ®

®

L

24

Process P

while true do)
[while (P ¢ prelim(p) and X ¢ SEL) do
[if X € COMM then [M + X; X <« 0];
(®,X) « GP(P,X);

if X = 0 then [X « M; M <« 0];
unlock; lock];

if P ¢ prelim(p) then
[if X € free(S) then [MGR <« X; X < 0]
else (% X = "NEW' #%)
[M « 'ACK'; X < 0;
while FINISH = 0 do
[if X = "SEND' then [M « 'ACK'; C «+ C + 1];
if X = "DONE' then FINISH « 1;
X+« 0; if P ¢ prelim(p) then (P,X) <« GP(P,X);

LIST < LIST,X;
X <« (Gclk(start(clk),x))z;

if X = 0 then [X « M; M <« 0];
unlock; lock]

MGR < 6c1k("'aclk(sclk(dECOde(c)’Ll)’LZ)'”’L

LIST « 0; C <« 0; FINISH <« 0]

lLIsT|

while P ¢ prelim(p) do [(MGR,X) <« Gclk(Smgr(MGR,X)); (P,X) <« 6P(P,X); unlock;

while MGR ¢ safe(S) do [(MGR,X) <« 6clk(6mgr(MGR,X)); unlock; lock];
while X # 0 do [(2,X) + §_. (P,X); unlock; lock];

if MGR € free(S) then X <« MGR

else [X « '"NEW'; C « code(MGR); »
while C > 0 do [waitfor X = "ACK'; X « "SEND'; C « C ~ 1];
waitfor X = 'ACK'; X « "DONE']]

else if M # O then [waitfor X = 0; X « M; M <« 0];

P« (8,(2,00) ;3

unlock; lock]

Algorithm A

lock];

g,

N

2N

o,

25

The regions of E.are defined as follows. Any state s of‘g is in the same region

as the state of p stored in the local variable P of state S.

L

26

We use the facts in the following two paragraphs to justify the faithful-
ness of the simulation.

The variable X is used both for simulating the actions of system S (when
X hgs an ordinary value) and for coordination among processes simulg;ihg the
manager apd clefk (when X has a selection or communication value). Selection
and communication valugs are only placed in X to replace the ordinary value of
0. Thus, if at any time a process sees a selection or communication value in X, and
replaces it with 0 and simulgteg steps gf system S? it will not cause any
incorrect steps of S to be sipulated.

"Property S-impligs that it is possible for a process to simulate steps of
the clerk without knoWing the clerk’s latest state. The correct effect on
the variable X is obtained if the clerk step is simulated starting at an arbitrary
clerk state. However, the proper éffggt on the clerk's stéte must also be
achieved. Provided no other process simulates a manager or c}erk step in the
meantime, it is possible for a process unaware of the clerk's state to simulaﬁe
the effect on X of several clerk steps, saving the X-values seen at each access.
Then if the process later learns the state of the clerk prior to the enactment
9f these steps, it can apply Gclk to this state and the sequence of saved X-values
to bring the clerk state up-to-date.

We now describe thg operation of the algorithm. Process E-is’initially
uninvolved in the simulation of thé clgrk aqd managgr; It executes (:) as long
as p is not ready to leave its protocol (P ¢'prelim(p)) and p has nbt been
asked to simulate the manager and c;erk (X ¢ SEL). While'E is uninvolved, it
will simulate steps of p, unlocking the variable between each step toballow
other processes to take steps. While carrying out this simulation, E.may
occasionally see one of the communication values (indicating that responsibility
‘for the manager and clerk is being passed from one process to another). 1If

this occurs,'g‘does not simply wait and try again. Instead, E.interrupts the

R

27

communication to simulate p's step, using 0 as the presumed value of X

and holding on to the communication value. '5 continues at subsequent steps
to simuiate p's steps, but replaces the held communication value at the
first opportunity.

It is quite possible that.E is never asked to help simulaté the manager
and clerk. Then'g might stay in (:) forever (if p never reaches a preliminary
state). Altermatively, E-might leave (:) when P € prelim(p). In this case,
S-Simply waits © (at (:)) until it can replace any communication value
it still holds, and can thereafter leave the protocol.. p]s final step is a
NO-OP,‘by'Property 1, so it is permissible for'E to assume thaflthe value of X is 0
for the last step.of the protocol.

In the more complicated caée, S'exits (:) without having p ready to
change regions (P ¢ ﬁrelim(p)), upon being asked to simulate the manager and
clerk (X € SEL). 1In this case, ;'must execute (:) . (:) consists of a protocol
to initialize the simulation of the manager and clerk, followed by
which continues the simulation of both the manager and clerk, along with

p. When p is about to change regions (P ¢ Prelim(p)) then P enters @ -
which transfer the control of the simulation of the manager and clerk elsewhere.
We examine - in greater detail.

| is a straightforward loop carrying out a simulation of the manager,
clerk and p. (::) is a loop which is executed until the manager enters a

safe state. is a loop which is executed until the value of X reaches 0;

P attempts to achieve this effect by simulating the clerk but not the

manager. is the actual transfer of manager-clerk state. In case the
manager is in the restricted set free(S) of states, the state is simple left

in X. Otherwise, an initial message 'NEW' is placed in X, followed by a

communication protocol which sends the manager state, coded in unary.

L

28

~ Although the simulation of the manager is to be allowed to be stopped temporarily,

| we wish to continue the simulation of the clerk even during the transfer of

- the manager state. Thus, some process must have responsiblity for the

clerk's simulation during the transfer protocol. We choose to require the
new intended recipient of the manager state to begin simulating the clerk
immediately upon receipt of a selection value. Since this recipient does

not have the clerk's state available at the time the selection value is
received, it simulates the clerk in the "temporary mode" discussed above,
making the required changes to the variable X but saving the values of X

it sées during the temporary mode simulation for later updating of the clerk's
state.

We now consider » the protocol: for assuming the responsib’ility.
for‘simulating the manager and the clerk. If a state in free(S) is
encountered, then'E is able immediately to begin simulating thé manager and
clerk. Otherwise, E.must receive the communicated manager state.‘ The
protocol for receiving the state involvesfg simulating a step of p and a
step of the clerk aﬁ every step of'g. In addition,.g participates in the
communication protocol at every opportunity; when X = 0 and there is an
-acknowledgement to send;‘g sends it. After the state is received, it is
updated with the list of saved ¥-values. |

We now sketch an argument for the correctness of the theorem. The
number of values of the variable X is easy to check. We must show that
S simulates S. Let e be any admissible execution sequence of s. From'g,
define an execution sequence e of S by extracting from e all of the S-steps
simulated. (Clerk steps simulated in temporary mode are counted as
ofdinary clerk steps.) The paragraphs following the code-are usgd to

justify the fact that e is, in fact, an execution sequence of S. Since

o

e

A,

N

£,

29

regions of'E are defined to be the same as the regions of the simulated process
p, and exactly the p-steps which appear in e are included in e, it 1is clear
that the same set of region changes occur, in the same order.

It remains to showrthat e is admissible. If not, then either

(a) e is not worker-admissible, or

-(b) e is infinite and either

- (bl) the clerk only takes finitely many steps or

(b2) the manager only takes finitely many steps.

If e is finite, then admissibility of e implies that each.E is in
either its critical or remainder region at the end of e. Then e is
also finite, and each p € proc(S) is in either its critical or remainder
region at the end of e. Thus, in this case, e is admissible. Thus, we assume
from now on that e is infinite.

Examination of the code shows that every step'of each‘; simulates a step
of the corresponding p except possibly for those steps at the beginning of
which the value of P is in prelim(p). Thus, in e, workers do not halt except
in their critical or remainder regions,bor in preliminary states, so that e
is semi-worker-admissible.

Examination of the code also shows that the manager does not halt in
e unless it halts in a safe state.

We have insured that some process is always responsible for simulating
the clerk; since e is admissible and infinite, it follows that infinitely
many clerk steps are simulated in e.

Thus, the only ways in which e could fail to be admissible are if

some process p stops in e in a preliminary state, or if e is infinite and

the manager stops in e, in a safe state.

30

We argue that the communication of the manager state cannot be interrupted
in e. That is, once a process picks up a 'NEW' message, it is guaranteed
eventually to receive the corresponding 'DONE' message. For if not, then
there is some fixed communication value V which never gets delivered, in.g,
to its intended recipient. Therefore, there must be infinitely many distinct
steps of e after which V is located in the local variable M of some
interrupting process. During this communication, the manager ié stopped
at a safe state in e. As we have already claimed, the clerk takes infinitely
many steps in e. Also, é is semi-worker—admissible. By Property 4', all
region changes eventually stop in e and the shared wvariable retains a value
‘of 0 in e from some point onward. Thus, there is a point in'g beyond
which no further region changes occur and beyond which the simulated shared
variable never takes on a value other than 0. After this point in.g, any
p?ocessva holding value V in its local variable M will copy V into the shared
variable X at the next step ef‘q, and V will never again be removed from
the shared variable to be held in any process' local variable M. This is a
contradictioﬁ.

We next argue that no process p can half, in e, in a preliminary state.
Assume the contrary. ‘5 continues to take steps in‘g since E'remains in its
trying_or exit region and e is admissible. Then-g must eventually continue
looping forev_ér in one of @ s s or @ . We consider cases.

1if ; loops in , then the manager and clel;-l'c each take infinitely many
steps in e. Since e is sgmi~worker—-admissible, Property 2' implies that
the manager eventﬁally réaches a safe state. This (tegether with Property 3)

contradicts the assumption that.g loops in (::).

N

31

If ; loops in, Property 4' leads to a similar contradiction.

If p loops in or @ s then either a 'NEW' message is sent which
never reaches its destination, or else the communication of the manager
state is interrupted. The latter possibility has already been ruled out.
The former possibility cannot occur because Property 6' implies that if a
'NEW' message is put into X, there is some process in its trying or
exit region, but not in a preliminary state, available to receive the
message.

We have thus argued that no process p halts in a preliminary state in

Finally, we argue that the manager cannot stop in e, in a safe state.
Assume the contrary, and consider a point in e beyond which the manager
takes no steps. Since infinitely many clerk steps occur in e and e is
worker-admissible, Property 4 implies that all region changes eventually
stop in e and the shared variable retains a value of 0 in e from some point
onward. Thereafter, from some point onward, no processes are ever in
preliminary states in e. After a corresponding point in Z, the only
possibilities are that there is a value in free(S) in the shared variable X,
that some process is in loop , that a "DONE' message has been sent but
not received by its intended recipient and that a 'DONE' message has been
received but the recipient process has not yet entered loop . (Any
other situation invqlves some process being in a preliminary state in e.)

Assume that a value in free(S) is in X. There must be a process in
its trying or exit re.gi'on but not in a preliminary state (since e is infinite
and if no processes are in their trying or exit regions then any process

which takes a step would change regions). The next time such a process

32

takes a step it will detect the selection value and simulate a manager
step, a contradiction. ‘

If some process is in loop ' , then (since its simulated process
never again enters a preliminary state) its next step will simulate a
manager step, a contradiction.

We have already argued that the communication of the manager state does
not get interrupted. Thus, a 'DONE' message which is sent is eventually
received by its intended recipiént.

Finally, once a 'DONE' message is received, examination of the code
'shows that the recipient process will enter loop '~ on the following step.

Therefore, the manager does not halt in e, and so e is admissible.

]

D

N

33

IV Applications

The remainder of the paper presents two small-shared-variable Z-exclusion
algorithms for hierarchical systems, and then appeals to Theorems 1 and 2
to obtain such algorithms for cooperative systems. We use many ideas from
[CH1,BFJLP,CH2], but make a few changes in the interests of generality and
simplicity.

For example, we describe the two algorithms as much alike as possible,
We make.the trying and exit protocols identical, each simply a general
protocol in which a8 process requests a region change. Since we have a
manager and clerk avéilable, we concentrate as much of the computation as
possible in the manager and clerk, trying to avoid having work which could be
handled locally involve the communication. Since none of the ideas involved
in the local computation pose any difficulty, we do not describé
all the local computation in operational detail, but simply summarize

local steps.

34

An N + £ + ¢ FIFO f-exclusion Algorithm

Theorem 3. Let ¢ >

with fworkers(s)[

]

(C1), no f~deadlock

1, N 2 2. There is an J+1l-regular hierarchical system §

N, and IValues(yar(S)), = N+ 10, satisfying f~exclusion

(C2), and FIFO (c4).

Proof. The following diagram depicts the (trying or exit) protocol of a

worker process:

CRITICAL OR REMAINDER REGION

\\\

N

] e]

L varr .]
TALK, I
IJ
z .
MATN, :
L~——— MATN 1
; TALE, /—

2
|

REMAINDER OR CRITICAL REGION

35

A worker goes to the WAIT subregion (with a possible detour in the HOLD

subregion). From there, it is eventually singled out to go to the TALKl

subregion. There, it communicates its identity, its region (trying or

exit) and other necessary information, to the manager. It then goes to MAINl.
The manager collects information from several workers in this way, until it
finally decides some particular worker is to be permitted to go to its
critical or remainder region. The manager then communicates with each

worker from the MAIN subregion in turn, by singling it out to go to the

TALK2 subregion and from there, to the MAIN2 subregion until the manager locates the

chosen worker. At this point, the manager allows the chosen worker to change regions

and then communicates with all the processes in the MAIN2 subregion to send them

back to the MAIN., subregion.

1
The communication is carried out using a clever device from [CH2]. Each
worker process, upon entering its trying or exit protocol, leaves its process
number in X. If several processes enter in succeésion, each remembers the
number of its predecessor as it leaves its own number in X. Periodically, the
clerk replaces the process number in X with 0, adding that process number to
the end of a "tail list" kept by the manager. The next worker entering its

protocol after X has been set to zero does not know the number of its

predecessor (but recognizes its ignorance). However, if the manager and all

workers are free to communicate, it should be clear that they can together

reconstruct the total arrival order.

' The shared variable X of S has values(X) = {0,...,N} u

{'TALKl','TALKZ','SEND';'ACK',fDONE','YES'%’NO’,*MOVE‘,‘QKf}. Init (S) = 0,

L

36

Elements of the first set in the union are called ordinary values and those

of the second set are called communication values. Communication values are

only placed in X to replace the ordinary value of O.
We first give the programs for the manager and clerk of S. The
combined state of the manager and clerk has local variables

NEXT for recording the number of a worker chosen to be permitted a
requested region change,

CR for recordihg the number of workers in their critical regions,

QUEUE for a queue of process numbers, status indicators ('"TRYING' or
'EXIT'), and tags ('MAINl' or 'MAINZ')-of processes in the MAINl,

MAIN2 and.TAL_K2 subregions, kept ordered by theilr order of entry

to their trying or exit protocols,

TAILLIST for a data structure designed to help form QUEUE. It contains a
list of process numbers for tails of sublists eventually to be
appended to QUEUE.

WORKING for another data structure to help form QUEUE. It contains an
unordered list of process numbers, status indicators :
("TRYING' or 'EXIT') and predecessor numbers (for predecessors in
the order of entry to trying or exit regiomns).

c - § for holding a code Being received,

FINISH for-indicating the end of receipt of a message,

J for a received process number,

STATUS for a received status indicator, and

"PRED for a received predecessor number.

All variables are initialized at 0. The starting location counter value of
clerk(S) is the single lock statement of its program (implicit in the waitfor
construct). The starting location counter value of manager(S) is the last

lock statement of its program.

Code and decode are similar to the corresponding functions

in Algorithm A. The pair (TAILLIST,WORKING) is said to be
complete provided for every process number p in TATLLIST, it is the case

that WORKING

R

37

.contains a chain starting with p and ending with 0. (That is, triples of

the form (pi’ai’pi+1) appear in WORKING, for 0 < i < j, where Py =P and

pj = 0.) The statement "append (TAILLIST,WORKING) to QUEUE", for a complete

pair (TAILLIST,WORKING), ﬁeans to combine the information represented in
TATILLIST AND WORKING to form a total arrival order for the represented worker
processes, and to append this order to the end of the QUEUE. The actual |
information added to the QUEUE, for each process, is jast - its process
number together with its status ('TRYING' or 'EXIT', as recorded in WORKING)

and the tag 'MAINl'. ‘

The statement "NEXT <« chosen process, if any", means to decide based
on the current QUEUE and CR count whether some process is to be permitted-
to chénge regions; if'sp then NEXT is set to the process number of the'nexf
such process, while if~nof, tﬁen NEXT is set to 0. The proper execution
of.this statement by the manager is the key to all of the required propertigs
(€1), (€2) and (C4). That is, the manager must insure that no more than
% workers are ever allowed simultaneously into their critical regions, that
FIFO order is not violated in either the trying or exit regions, that. workers
continue to move from their trying regions to their eritical regions if there is
room, and that workers continue to leave their exit-pegiens in any case. To
be definite, we might cause the manager to alternate between phases when
it allows one worker in its exit region to go to its remainder region
(if possible) and phases when it allows one worker in its trying region to
go to its criticalAregion (if possible). In the first phase, the manager lets the

first worker in QUEUE with status 'EXIT' (if any) go to its remainder region.

-In the second phase, it only lets a worker go to its critical region if

there is room (CR < 2) and in this case it lets the first worker in QUEUE

38

with status "TRYING' (if any) go to its critical region.

Other local action statements should be self-explanatory.

39
Clerk(Ss)

while true do [waitfor X € {1,...,N}; TAILLIST < TAILLIST,X; X < 0]

Manager (S)

. while true do
@) [while (TAILLIST, WORKING) is incomplete do

[waitfor X = 0; X « 'TALKl'; waitfor X = 'OK'; X « '"ACK';

while FINISH = 0 do
[waitfor X € {'SEND','DONE'};
if X = 'SEND' then [X <« "ACK'; C « C + 1] else [FINISH <« 1; X <« 0]]

(J,STATUS,PRED) + decode(C); C + 0; FINISH <« 0;
add (J,STATUS,PRED) to WORKING;

- if STATUS = 'EXIT' then CR <« CR - 1;
J « 0; STATUS < 0; PRED < 0];

(@ append (TAILLIST, WORKING) to QUEUE; TAILLIST < 0; WORKING < O

(:) NEXT < chosen process, if any;
if NEXT # O then
[while J # NEXT do
[waitfor X = 0; X <« 'TALKZ'; waitfor X = '"OK'; X <« "ACK';
while FINISH = 0 do
[waitfor X € {'SEND','DONE'};
if X = "SEND' then [X <« 'ACK'; C « C + 1] else FINISH <« 11
J « decode(C); C « 0; FINISH <« 03
if J # NEXT then
[change J's tag to 'MAIN

X « '"NO'; waitfor X

2' in QUEUE;
'0K'; X <« 0]]

if NEXT's status in QUEUE '"TRYING' then CR < CR + 1;
remove NEXT from QUEUE; X <« 'YES'; waitfor X = '"OK'; X <« 0;
NEXT « 0; J <« 0]

c:) while there is a process in QUEUE with tag 'MAINZ' do

[waitfor X = 0; X « "MOVE'; waitfor X = '"OK'; X <« 0;
change some tag in QUEUE from 'MAINZ' to 'MAINl']

unlock;lock]

Algorithm B(i)

40

The clerk simply executes a loop which zeros the shared variable whenever
it sees a process number, adding the number to the local TAILLIST.
The manager executes loop (:) , which assembles all the newly-available
process entry order information. That is, it repeatedly puts the value
'TALKl' into X, to initiate communication with an arbitrary worker process
in the WAIT subregion, then executes a protocol to receive the worker's
process numBer, status and predecessor (in unary), decrementing the CR-count
if the worker informs the manager that it is in the exit region. The
manager continues executiﬂg (:) until it has complete entry order information.
(While the manager is accumulating this information, the clerk can
continue to add process numbers to TAILLIST. However, since there are only finitely
many workers, eventually a time must be reached when (TAILLIST;WQRKING) is complete.)
The manager then executesﬁ<:> , which adds the nEWIy—assembled information
to the end of the QUEUE. It next execute_é 1 & ’ciecid‘es whether

a process is to be selected, and if so, attempts to locate it. The manager

repeatedly puts the value»'TALKZ' into X to initiate communication with an
arbitrary worker process in the MAIN1 subregion, then executes a protocol to

reéeive the worker's process number. As long as the process is not the

correct one, the manager sends a fesponse of 'NO' to it. When the correct process is
encountered, the manager sends a response of 'YES'. All of Fhevincorreét worker processes
involved in locating the correct process will end this ﬁhase of execution

in the MAIN2 subregion, so the manager executes (:) s a logp which tells these

processes, one by one, to return to the MAIN1 subregion.

Next , we give the program for process p € workers(S). p has local

variables as follows;

SR

41

A

I which stores a process number identifying p, in the range 1 < I < N,

STATUS which holds the value 'TRYING' or 'EXIT', identifying the region of
the protocol,

PRED for recording the predecessor,
C . for holding a code being sent, and
M for holding an interrupted communication value.

The initial value of I is an identifier for p, the initial value of STATUS is
'EXIT', and all other variables are initialized at 0. The starting location

counter value of p is the last lock statement of the program.

L

42
Process p

while true do : ’
(:) [if X € {0,...,N} then [PRED + X; X <« I]
else [M <« X; X « I; waitfor X = 0; X « M; M « 0];

@ waitfor X = 'TALK '; X « 'OK'; C < code(T,STATUS,PRED);

while € > 0 do [waitfor X = "ACK'; X « "SEND'; C « C - 11;
waitfor X = "ACK'; X <« "DONE';

‘ MAIle Wéitfor X 'TALK2 '; X« "0K"; C <« code(I);

while C > 0 do [waitfor X = "ACK'; X < "SEND'; C < C - 1];
waitfor X = 'ACK'; X « '"DONE';
waitfor X € {'YES",'"NO'};

if X = 'NO' then [X « 'OK'; waitfor X = '"MOVE'; X <« 'OK'; goto MAIN. 1;
X <« '"OK'; ’ 1

unlock;lock;

unlock;lock; STATUS <« if STATUS = 'TRYING' then 'EXIT' else "TRYING']

Algorithm B(idi)

43

The regions of p are defined as follows. Any state s of p for which
the location counter is at the final lock statement of the program is in
either the critical or remainder region; if the value of local variable
STATUS in s is "EXIT' then s € R(p), and if the valué is "TRYING' then
s € C(p). In all other cases, s ¢ T(p) u E(p); if the value of STATUS in
s is 'TRYING' then s ¢ T(p), and if it is 'EXIT' then s € E(p).

| Process p, upon entry to its protocol, executes (:>,~WhiCh leaves p's
identifier in X; if a communication value is seen in X, p holds the communi-
cation value, waiting for the first opportunity to replace it in X.

Next p executes (:) . p waits (in the WAIT subregion) until it sees
a 'TALKl' message from the manager. This is p's signal to communicate its
process number, status and predecessor pProcess number to the manager. After

this communication protocol is completed, p moves to the MAIN1 subregion.

-p then executes.<:>. p waits in the MAIN, subregion until it sees a

1 .
'IALKZ' message from the manager. This is p's signal to communicate its process

number to the manager. p waits for the manager's decision, 'YES' or 'NO', on

whether p can change regions. If 'NO' is seen, p waits in subregion MAIN2 for

a 'MOVE' message, before returning to MAIN If '"YES' is seen, p executes

1°
a NO-OP and changes region.

In thé following paragraphs, we give further arguments for Algorithm B's
claimed properties. We rely to a certain extent on the reader's under-
sfanding of the protocols to convince him of their correctness properties;
we provide more detailed arguments to show that the various communications

do not indefinitely block each other.

L

b

We now outline why algorithm B satisfies (Cl), (C2) and (C4) and is
f+l-regular. Properties (C1) and (C4) follow directly from the manager's
correcf choice of a selection policy. Property (C2) also depends on a
correct selection policy, but in addition requires us to argue that all
communication values sent eventually reach their intended recipients (in

spite of interruptions).

45

For showing 2+l-regularity, we define the safe manager states to be
exactly thoée in which the location counter is at the final lock of the
manager's program. With this definition, it is easy to check Properties 1,
3, 4 and 5 of the definition of %+l-regularity. To observe 6, note that the
states of free(S) are exactly those in which the manager's program counter
is at the final lock, and in which NEXT, QUEUE, TAILLIST, WORKING, C,
FINISH, J, STATUS and PRED all have the value 0. Thus, there is exactly one free
state for each possible value of CR, 0 < CR < 2. Verification of Property 2
requifes us to argue that all communication values sent eventually reach
their intended recipients; if this is so, then the manager will not remain
indefinitely in any of parts <i> s (:) ,'533 ;‘or (:) of its code.

-

Assume some communication value V does not reach its intended recipient,
in some admissible execution sequence e of S. Then there must be infinitely
many distinct steps of e after which V is located in the local variable M
of some interrupting worker process. Eventually in e, no further region
changes occur (since if communication is interrupted, the manager will stop
allowing. Processes to change regions). Thereafter, from some point onward,
the only values for X are 0 and V (since the clerk continues to operate,
replacing process numbers in X with 0.) After this point, any process P
holding V in its local variable ﬁ will copy V into X at p's next step, and
V will never again be removed from X to be held in any worker's local
variable M (since no further processes change region), This is a
contradiction.

]

Corollary 3.1. Let £ 2 1, N 2 2. There exists a cooperative

system S With,IPrOC(S)I =N and[values(var(s))l =N+ £ + 15, satisfying

f~exclusion (Cl), no %~deadlock (C2) and FIFO (C&4).

L

46

Proof. By Theorems 1, 2 and 3. (Note that some values of the shared variable
need to be renamed in order to preserve disjointness of ordinary and

communication values in the simulation construction.)

i,

47

Theorem 4., Let £ =2 1, N 2 2. There is an f+1-regular hierarchical system S with

|workers(s)| = N and |values(var(s))| = fg} + 13, satisfying f2-exclusion

(C1), no %-deadlock (C2), and no infinite bypass (C3).

Proof. This proof differs from the previous proof in the protocol up to the

TALK1 subregion, but keeps the same strategy for passing through and for managing the

MAIN,, TALK, and MAIN2 subregions. The protocol used up to the TALK

1° 2 subregion

1

'is based on the surprisingly space-efficient "executive protocol" of Algorithm C

of [BFJLP]. The following diagram depicts the (trying or exit) protocol of a

worker process:

IDLE et~ —-

REMAINDER OR CRITICAL REGION

L

48
Two additional subregions, EXEC and IDLE, which did not appear in the protocel
for Algorithm B, are included in the present protocol.

Each worker process, upon entering its trying‘or exit protocol, attempts
to increment a counter kept in X by 1 in order to communicate its presence to
the manager; (There are insufficiently many permissible values of X for each
process to be able to leave a unique identifier in X, so the entry strategy of
Algorithm B cannot be ﬁsed.) If this increment succeeds, and if the

worker subsequently encounters a 'TALK.' message in X, the worker communicates

1

its process number and status to the manager, and then proceeds to the MAIN. subregion,

1

continuing from that point as in the previous algorithm. However, a difficulty

arises if a worker attempting to increment the value in X sees that the maximum

possible count, [—g],:’is already there. In this case, the entering Work;r

"becomes an executive'', resetting X to 0 and thereby temporarily'hiding the

presence of himself and [g] other workers from the manager and clerk. The

executive, in the EXEC subrégion, sends out special STOP messages to cause

‘%1 workers in WAIT (plus éerhaps some additional workers who enter their

protocols in the meantime) to move to a separate IDLE subregion. The executive

then proceeds to attempt the increment a second time. This time, having insured

that sufficiently many workers are "out of the way" (in the IDLE subregion),

the executive encounters no difficulty and accomplishes the increment.
Periodically, the clefk replaces the count in X with 0, adding the

count found in X to a local variable COUNT of the mapager, Thus, the manager

always has a count of some of the workers in the WAIT and HOLD subregions, but is

possibly missing some of those which are destined to receive STOP messages

and go to the IDLE subregion, and some whose increments have not yet been

replaced in X with 0, by the clerk. However, once the executive aompletes

the protocol which sends all of the necessary workers to the IDLE subregion,

’

B

49

and then completes its own increment of X, the manager 's count

of the number of workers in the WAIT and HOLD subregions (including the executiye) is

missing only those whose increments are not yet recorded by the clerk. Then the

manager is able to insure that it converses with each worker from the WAIT

and HOLD subregions, one at a time, by sending 'TALKl' messages as in the

previous algorithm.

When non-executive workers in the WAIT subregion encounter a 'TALK,'

message, they respond with their process number and move to the MAIN

1

1 subregion,

continuing as in the previous algorithm. When an executive in the WAIT

subregion encounters a 'TALKl' message, it must do more, however. For each

worker in the IDLE subregion, the executive sends a special 'GO' message to the worker

(which will then move into the WAIT subregion) and increments X so that the clerk can

record the presence of a new worker in the WAIT subregion. (Since these workers are bein

introduced by the executive one at a time, ‘there is no danger of too many

increments occurring at once and a worker attempting to increment a value

of X = [g].) Only when all of the workers from IDLE have been integrated into

the system in this way does the executive complete its executive function and

respond to the manager with its process number. From that point onward, the

executive behaves exactly like the other workers. The manager can thus assemble: a *QUEUE

corresponding to the one in Algorithm B; however, the QUEUE-in Algorithm C

represents order of receipt of 'TALKl' messages rather than protocol

arrival order.

It must be noted that two executives cannot exist at once. From the

time one worker becomes an executive until it responds to the manager with

N
its process number, there are always at least f:] processes other than the

2

executive in the WAIT, HOLD and IDLE subregions. Thus, there are insufficiently

2

N
many workers to cause another increment past {—1 to occur.

50

The shared variable X of S has values(X) = {O,l,...,l%l} U

{'TALK,',"TALK,","SEND',"ACK','DONE', 'YES', 'NO', 'MOVE', 'OK', 'STOP','GO',"GONE'}.

Init(S) = 0. Elements of the first set in the union are called ordinary values,

and- thHose of the second set except for 'STOP' are called communication values.

Communication values are only placed in X to replace the ordinary value of O.
We first give the programs for the manager and clerk of S. The combined
state has local variables

NEXT, CR, C, FINISH, J, and STATUS as in Algorithm B(i),

QUEUE for a queue of process numbers, status indicators ('TRYING' or 'EXIT')

MAIN, and TALK

and tags ("MAIN.' or 'MAINZ') of processes in the MAIN, , 2 9

1

1]

subregions, kept ordered by their order of receipt of 'TALK1
messages, and

COUNT to hold a number of workers known to be in WAIT and HOLD.

All variables are initialized at 0. The starting location counter value of
clerk(S) is its single lock statement and that of manager(S) is the last
lock statement of its program.

Code and decode are as before. The statement "add T to QUEUE" adds
triple T to the end éf the QUEUE.
| The manager code is identicai to that of Algorithm B(i) from
section (:) onward ; moreover,*(:> only differs from <:)of B(i)‘in its
decoding function, its disposition of the received triple-and‘its handling

of the variable COUNT.

N

€

© ©

®

51

Clerk(S)

while true do [waitfor X ¢ {1,...,{%‘}; COUNT < COUNT + X; X < 0]

Manager (S)

while true do
[wh%leicgUNT > 0 do - e
wattior Xrsntl § §o TALKy s waitfor X
[waitfor X € {'SEND','DONE'};
if X = "SEND' then [X <« 'ACK'; C <« C + 1] else [FINISH « 1; X <« 0]]
(J,STATUS) <« decode(C); C <« 0; FINISH <« 0;
add (J,STATUS, 'MAIN,') to QUEUE;

if STATUS = 'EXIT' then CR <« CR - 1;
COUNT <« COUNT - 1;
J < 0; STATUS <« 0];

S

'OK'; X + TACK';

b]

append (TAILLIST, WORKING) to QUEUB; TAILLIST <« O; WORKING +« O;

NEXT < chosen process, if any;
if NEXT # O then
[while J # NEXT do
[waitfor X = 0; X + ’TALKZ'; waitfor X = 'OK'; X « "ACK';
while FINISH = 0 do
[waitfor X € {'SEND','DONE'};
if X = "SEND' then [X « 'ACK'; C < C+ 1] else FINISH < 1]
J +« decode(C); C « 0; FINISH « 0;
if J # NEXT then
{change J's tag to 'MAINZ' in QUEUE;
X « '"NO'; waitfor X = "0K'; X « 0]]

-

W

if NEXT's status in QUEUE 'TRYING' then CR « CR + 1;
remove NEXT from QUEUE; X « 'YES'; waitfor X = 'OK'; X « 0;
NEXT « 0; J *.0]

while there is a process in QUEUE with tag 'MAINZ' do

[waitfor X = 0; X « 'MOVE'; waitfor X = 'OK'; X « O;
change some tag in QUEUE from 'MAINZ' to 'MAINl']

unlock;lock]

Algorithm C(i)

o

52

Next, we gi?e the program for process p € workers(S). p has local variables
I, STATUS, C, and M as before,

COUNT wused if p beéomes an exeeutive,.to hold a count eof workers to be
sent to the IDLE subregion.

IDLERS to hold a count of workers which p has caused to enter the
-IDLE subregion. ' '

The initial value of I is an identifier for p, in the range 1 < I < N, the
initial value of STATUS is 'EXIT', and all other variables are initialized at
0. The starting location counter value of p is the last lock statement of

the program.

The worker code is identical to that of Algorithm B(ii) from the middle

of Section (:) (of Algorithm C(ii)) onward.

53

Process p

while true do
[if X = -gl'then
[X « 0; COUNT +« 'g 3
while COUNT > 0 do
[if X € {0,...,{%}—1} then COUNT < COUNT + X else M < X;

X <+ "STOP'; IDLERS <« IDLERS + 1; COUNT < COUNT - 1; waitfor X # 'STOP'];
if M # 0 then [waitfor X = 0; X« M; M+ 0]];

if X = "STOP' then [X « 1; waitfor X = 'G0'; X <« "GONE']
else if X € {0,...,[§]—1} then X « X + 1
else [M « X; X« 1; waitfor X = 0; X <« M; M« 0];

waitfor X = 'TALKl';
while IDLERS > O do
[X « 'GO'; waitfor X = "GONE'; X < 1; IDLERS < IDLERS - 1; waitfor X = 0];
X <« "OK'; C <« code(I,STATUS);
while C > 0 do [waitfor X = "ACK'; X « "SEND'; C <« C ~ 171;
waitfor X = "ACK'; X <« "DONE';

waitfor X 'TALKZ'; X <« '"OK'; C <« code(I);

while C > 0 do [waitfor X = "ACK'; X « "SEND'; C « C - 1];
waitfor X = 'ACK'; X <« "DONE';
waitfor X € {'YES','NO'};

if X = 'NO' then [X « 'OK'; waitfor X = "MOVE'; X « "0OK'; goto MAINl];
X <« 'OK';

unlock; lock;

unlock; lock; STATUS < if STATUS = 'TRYING' them 'EXIT' then 'EXIT' else 'TRYING']

Algorithm C(ii)

54

The regions of p-are defined exactly as for Algorithm B(ii).

Process p,vupon entry to its protocol, first checks to see if it is to
become an executive. If so, then the body of the main conditional in (:)
is executed, which sends 'STOP' messages to as many workers as there are
increments removed by p from X. Along the way, if additional increments are
seen by p, those are also included in the number of workers to be idled. While
executing the stopping protocol, p might see a communication value; if so, p
holds the value until the end of the stopping protocol, and then replaces the
value in X at the first opportunity. After completing the stopping protocol and
replacing any communicétion values it might have picked up, p goes on to (:) .
(If p is not to become an executive, p goes immediately to (:) upon entry to its
protocol.)

In (:) , process p succeeds in incrementing the count in the variable X.
In addition, if p sees a 'STOP' message, p goes to the IDLE subregion, from there
wéiting to be permitted to go to the WAIT subregion. (In this case, p is
accepting a 'STOP' message intended originally for another process, but the
interchange will not affect any of the desired properties of the algorithm.) If
p sees a communicatioh value, p holds the value in order to accomplish the
increment, and later replaces that value in X at the first opportunity.

In 3, p waits for a "TALK.' message. If p is not an executive (IDLERS=0)

1
then P is ready to transmit its process number and status. If p is an executive,

then p first executes a protocol to send all workers in the IDLE subregion to the

WAIT subregion, informing the manager of the result by setting X to 1 for each
transfer of one brocess. After this protocol, p is ready ﬁo transmit its process
number and status. From this point, the code is identical to that in Algorithm B(ii).

As before, we rely on the reader's understanding of the protocols to convince

him of their correctness properties; we argue further why the various communications

55

do not indefinitely block each other.

We require Algorithm C to satisfy (C1l), (C2), (C3) and to be &+l-regular.
Properties (Cl) and (C3) depend on the manager's correct choice of selection
policy, while (C2) depends both on having a correct selection policy and on
the fact that all communication values and 'STOP' messages sent, eventually
reach their intended recipients (in spite of interruptions).

For showing f4+l-regularity, we define the safe manager states as in the
previous algorithm. Properties 1, 3, 4 and 5 are again straightforward, and
6 follows as for Algorithm B. Property 2 again requires us to argue that all
communication values and 'STOP' messages sent, eventually reach their
intended recipients.’

But 'STOP' messages are never interrupted, and so must reach their
intended recipients. Also, if some communication value X does not reach its
intended recipient, in some admissible execution sequence e of S, then the

same contradiction is reached as for Theorem 3.

Corollary 4.1. Let £ 2 1, N = 2. There exists a cooperative system S

with |proc(S)| = N and ‘values(var(S))] = [g} + 2 + 18, satisfying

2~exclusion (Cl), no %-deadlock (C2), and no infinite bypass (C3).

Proof. By Theorems 1, 2 and 4.
r]

Acknowledgements: The author thanks Mike Fischer for extensive discussions

about supervisor simulation strategies. Nancy Griffeth and Jim Burns also

provided helpful suggestions and considerable listening time.

L

56

References

[D] Dijkstra, E. "Solution of a Problem in Concurrent Programming
Control." CACM 9, 9(1965), p. 569.

fcHl] Cremers, A. and Hibbard, T. '"Mutual Exclusion of N processors
Using 0O(N)-valued Message Variable." (extended abstract).
ysc, 1977.

[CcH2] Cremers, A. and HIbbard, T. "Arbitration and Queueing Under
Limited Shared Storage Requirements." Forschungsbericht
Nr. 83, 1979, University of Dortmund.

[BFJLP] Burns, J.E., Fischer, M.J., Jackson, P., Lynch, N.A., and
Peterson, G.L. ''Shared Data Requirements for Implementation
of Mutual Exclusion Using a Test-and-Set Primitive."
Proceedings of 1978 International Conference on Parallel
Processing, 1978, Bellaire, Michigan.
Also, see 'Data Requirements for Implementation of . N-Process
Mutual Exclusion Using a Single Shared Variable." GIT-ICS-79/02.

[FLBB] Fischer, M.J., Lynch, N.A., Burms, J.E., and Borodin, A.
"Resource Allocation with Immunity to Limited Process Failure."
Proceedings of 20th Annual Symposium on Foundations of Computer
Science, 1979, Puerto Rico.

Also, see GIT-ICS-79/10.

[LF] Lynch, N.A., Fischer, M.J. "On Describing the Behavior and
Implementation of Distributed Systems." GIT-ICS-79/03. See
also preliminary version in Lecture Notes in Computer Science,
Semantics of Concurrent Computation Proceedings, Evian, France,
147-171. Also submitted for publication in Theoretical Computer Science.

fL] Lynch, N.A. "Fast Allocation of NearBy Resources in a Distributed
System." Proceedings of 1980 ACM Symposium on Theory of Computing,
Los Angeles.

[Pet] Peterson, G.L. "New Bounds on Mutual Exclusion Problems."
TR-68, 1980, The University of Rochester,

