GIT-ICS-80/13

OPTIMAL PLACEMENT OF IDENTICAL RESOURCES
IN A DISTRIBUTED NETWORK*

Michael J. Fischer#*
Nancy D. Griffeth#**
Leo J. Guibas*##*

Nancy A. Lynch#*

October, 1980

%
Computer Science Department

University of Washington
Seattle, Washington 98195

*%
Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

Khk

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

This research was supported in part by the National Science Foundation
under grants MCS77-02474, MCS77-15628, MCS78-01698, MCS80-03337, U.S.
Army Research Office Contract DAAG29-79-C-~0155 and Office of Naval
Research grants N00014-79-C-0873 and NO0O014-80-C-02221.




OPTIMAL PLACEMENT OF IDENTICAL RESOURCES IN A DISTRIBUTED NETWORK

Michael J. Fischer
University of Washington

Nancy D. Griffeth
Georgia Institute of Technology

Leo J. Guibas
Xerox Palo Alto Research Center

Nancy A. Lynch
Georgia Institute of Technology

Contact Author: Nancy A. Lynch
Information and Computer Science -
Georgia Institute of Technology
Atlanta, Georgia 30332
U.S.A.
Phone: 404~894~2590
Telex: 542507GTRIOCAATL

This research was supported in part by the National Science Foundation
under grants MCS77-02474, MCS77-15628, MCS78-01698, MCS80-03337, U.S.
Army Research Office Contract DAAG29-79-C-0155 and Office of Naval
Research grants N00014-79-C-0873 and N0O001l4-80-C-0221.



Abstract

This paper addresses the problem of allocating resources to nodes of
a distributed network so that the expected cost of servicing requests for
the resources is minimized. The cost of servicing a request is defined
to be the network distance from the request to the resource satisfying
the request.

The network is assumed to be configured as a tree T, with requests
arriving at the leaves. There are t requests for t resources. A whole

resource placement allocates a whole number of resources to each node.

A fair whole resource placement allocates to each subtree a number of

resources equal to the expected number of requests in that subtree rounded
up or rounded down.

It is shown that for any distribution of requests at the leaves,
there is a whole resource placement which minimizes the expected cost of servicing
the requests. An algorithm is described which computes such a placement using
O(t2 . Iedges(T)]) arithmetic operations.

It is shown that if T is a balanced binary tree and the requests are
uniformly distributed over its leaves, then there is a fair whole
resource placement which minimizes the expected cost. An algorithm is

described which computes such a placement in O(t logzn) operations, where

n = |leaves(T)]|.
Finally, it is shown that the expected cost for all t requests,
using any fair whole resource placement, is O(/E vn) if n is 0(t), and

o(t 1og-%) otherwise.




I. Introduction

We consider the problem of locating some number t of identical resources
at nodes of a distributed network, in such a way as to minimize the expected
"eost" of servicing a random set of t requests for those resources. Various
different costs would be expected to be important in different situations.

If, for example, the resources are processors, requests come in
within a short time interval, and the processors are generally used for
very long periods of time, them it is the execution time costs which are
most important. A best placement of resources in this case might be one
which minimizes the expected total of all the network distances (measured
in some appropriate way) between requésting users and their granted resources,
in an optimal matching of requests and resources. For in this situation,
it is probably reasonable to expend considerable effort to match the entire
set of requests to the set of resources in some way approaching an optimal
matching. The total of the network distances provides a measure of the
expected communication traffic introduced into the network by the
computations.

On the other hand, if the resources are tickets in a system for
selling tickets to sporting events (or airline seats), then the most
relevant cost is the expected waiting time for a buyer before he receives
his ticket, or equivalently, the expected total waiting time for all
buyers. In this situation, it is ﬁrobably not reasonable to expend effort
attaining an optimal matching. The cost of a placement should

include consideration of matchings of requests to resources achievable with




partial and out-of-date information about other requests and not just
optimal matchings. In this case, the expected total distance in an
optimal matching is significant as a lower bound for the expected total
waiting time in the achievable matchings.

The present paper aqd a companion paper nmow in progress [FGL] centain results
which characterize optimal resource placements, and (where succinct character-
izations are unavailable) provide fast algorithms for finding optimal
placements. They also prov1de upper bounds for the costs of optlmal
placements and of certaln nearly-optimal and easily~described placements.
Both papers assume the network is configured as a tree, (This is not a
restriction for an arbitrary distributed network, v31nce a spanning tree
can always be constructed for any (connected) network graph ) The
present paper focuses on the "optimal matching" cost measure, while
[FGL] analyzes the expected total waiting
time for matéhings achiévable by particular distributed algorithms. The
results of [FGL] rest heavily on those of this paper.

In this paper, we allow for the possibility that fractions of resources,
and not only whole resources, might be located at some nodes (vertices)
of the network tree. This is reasonable if, for instance, the resources
are large blocks of available data storage space. It would be perfectly
permissible for a user to obtain pa%ts of his needed storage from several
different nodes.

In Section 2, we present our notation, definitions and those results
which apply to arbitrary trees and érbitrary probability distributions
- for arrivals of requests. §2.l defines "matchings" formally in terms
of network flows. §2.2 defines the expected total network distance in

terms of expected total flow. This expected total flow is decomposed




into the sum of the expected flows on all the edges of the network tree,

and‘a binomial sum expression is given for the expected flow on each edge.

It isbseen'that both the functién describing the expected flow on each

edge and the function describing the minimum possible expected total flow

for any subtree are of a particularly simple form - they are unbounded,
convex, piecewise linear functions on the nonnegative reals, with all vertices
at integers. This immediately implies (in §2.3) that there are always
optimal resource placements consisting of whole numbers of resources

located at each vertex; it is never necessary to place fractions of

resources at any node, in order to achieve an optimal placement. An

algorithm using O(t2° edges(T)l) arithmetic operations is presented,

which always finds an optimal whole resource placement in this very general
case. This is the fastest algorithm we have which is completely general.
The.rest of Section 2 and Section 3 yield characterizations and faster
algorithms for special cases.

§2.4 considers what is required for a placement to optimize the
expected flow over any particular edge in the tree - i.e. to be locally
optimal. First, it is seen that the expected flow on any edge is always
minimized by any placement which ﬁuts a number of resources exactly equal
to the median of a certain binomial distribution in the subtree headed
by that edge. It is not completely obvious how to determine the median
of a binomial distribution. An interesting result of Uhlmann [U] is
used to show that the median of a binomial distribution is always exactly
equal to either the distribution's mean rounded up or rounded down. Thus,
each edge individually has its flow optimized at a value which is either
the mean rounded up or down. In cases where the means for all edges happen

to be integers, it is possible to find a single placement which optimizes




the expected flow on each edge of the tree; such a placement is, of course,
globally optimal, and is trivial to determine. Unfortunately, however, it
is not possible, in general, to obtain a single placement which optimizes
the expected flow on all edges.

We call a placement which "almost optimizes" the flow on each edge - that
is, one in which the number of resources in each subtree is either the

mean rounded up or ‘down - a fair whole placement. We see that it is

always possible to obtain a fair whole placement, and while it is not
always the case that there is a fair whole placement which is optimal, it is true
that all fair whole placements are close to optimal.

In §2.5 we show that if there is a probability less than-% that any

request will arrive in a particular subtree, then it is always bad to
place even a very small fraction of a resource anywhere.in that subtree.

In Section 3 we consider a special case of the general problem
which permits better'chafacterizations and much faster algorithms for
determining optimal placements. Namely, we assume here that the network
is configured as a complete binary tree, with equal probabilities of
requests at all leaves of the tree. First, in §3.1 we give a precise level
in the tree below which it is always bad to place any resources or parts
of resources. This allows us to restrict comsideration to fairly small
trees, relative to the number of resources. It also implies that if the
number t of resources is a power of two, then the best distribution is
to place exactly one resource‘at each vertex across the level of/the tree
having exactly t vertices.

In 83.2 we show that the symmetry of the special case of Secfion 3
allows faster algorithms for determining optimal placements, by

permitting pruning of the search space. In particular, an algorithm




using O(tzlog n) arithmetic operations is presented, where n is the number
of leaves in the tree, which finds an optimal (possibly fractional)

placement which is completely symmetric across the levels of the tree.

Also, another algorithm using only O(tz) arithmetic operations is presented,
which finds an optimal whole resource placement.

§3.3 contains the fastest algorithm we have. The results of §2.4
and §3.2 are combined to produce an algorithm using only 0(t log n)
arithmetic operations, which determines a fair whole placement which is
optimal.

So far, we have not said anything about the actual cost of optimal placements.
In Section 4, we analyze this cost for the case of a balanced tree, but
an arbitrary probability distribution for request arrivals. One could
always ''centralize' all resources at the root of the tree, with an
expected total cost of t log n. One would hope that distributing the
resources according to an optimal placement or nearly optimal (such
as fair whole) placement would afford a considerable improvement. We
show that this is indeed the case.

We give a direct analysis for arbitrary fair whole resource placements;
this provides an upper bound for optimal placements as well. A recurrence
equation is derived and solved,
leading to the very small bound of O(/E vYn) for the expected total cost
if n < 2t and O(t 1og(%)) if n = 2t.

This bound is always better than in the centralized case, and if the
‘number t of resources is very much larger than the number n of leaves
of the tree, the improvement is even more notable. In particular, note

that in the very important case where t is roughly proportional to n

(i.e. the number of resources in the network is proportional to the number




' of nodes), that the expected average cost per request is bounded by a constant,

independent of the size of the network. This situation is very different

from the centralized case, where the average cost grows proportionately
with the log of the number of nodes in the network.

In [FGL], the expected waiting time is analyzed for particular new
distributed resource matching algorithms. This study involves many more
factdrs than the abstract problem of this paper, and so analysis is
considerably more difficult. Simulation results are presented where analytic
results are unavailable. In the general case, requests can énter so
close together in time that consideration of optimal matching becomes
possible, or so -far apart in time that each one can get resolved before the
system must consider the next one, or anywhere in between. In the former
case, it is seen that the bounds Qf Section 4 of this paper provide a
good approximationAtq the total expected waiting time. The'lafter case
(where requests enter very far apart) can also be handled analytically; it
is seen that the same recurrence derived in Secﬁion 4 of this paper can be

reinterpreted to model this case also. Therefore, the expected total

. n .
waiting time in this case is also 0(/E vn) if n < 2t and O(t log(g)) if n = 2t.

For intermediate cases,

considerable interference can occur among requests; for instance, the system
can expend considerable effort trying to secure a particular resource to
satisfy a particular request, only to have that resource "snatched away" at
the last moment by another request. These intermediate cases, however,
appear to form a continuum between the two extreme cases with intermediate
expected total waiting times. Hence, the same bounds seem to hold for
these cases as well. These results are still in preliminary form and

will be reported in final form at a later date.




=

2. Notétion, Definitions and General Results

2.1 Matchings

In this subsection, we give formal definitions of matchings in terms

of network flows.

Let T denote a tree and assume that the root of T has exactly one

emanating edge, rootedge(T). Let vert(T), leaves(T)_E vert(T) and edges(T) denote

the sets of vertices, leaves and edges of T respectively. If e ¢ edges(T), then low(e)
and high(e) denote the lower and higher endpoints of e, respectively. (We assume
that T is oriented so that the root is the highest node.)
Let N denote the natural numbers, including 0O, R+ the nonnegative
reals.
In the following, the reader should think of r as representing locations

of requests, and s as representing a placement of resources.

» +,vert(T) :
If r, s € (R) » (that is, the set of functions from vert(T) to

R+), then a matching m of r to s is a pair of functioms, (upflowm,downflowm),

+
from edges(T) to R such that for each v ¢ vert(T), the following is true:
r(v) = s(v) +

(downflowm(e)—uprOWﬁ(e)) + z (upflowm(e)—downflow (e)).
e:low(e)=v eshigh(e)=v m

That is, the matching is formally identified with a description of the
flow of resources. Note that information about specific "pairings' of
requests to resources is not retained; this information is not necessary

for determining the cost measures of this paper.




If r e (R+)vert(T)

,» then total(r) = Z r(v).
vevert (T)

It follows from the definitions that if any matching is defined from

r to s, then total(r) = total(s). Let matchings(r,s) denote the set of

matchings of r to s. If e ¢ edges(T) and m ¢ matchings(r,s), then

netflow(e,m) = upflowm(e) - downflowm(e),,and'flow(e;m) = upflowﬁ(e)'+ downflowm(e).

If m € matchings(r,s), then cost(m) = z flow(e,m).
ecedges(T)

vert(T)

+
If r, se (R) , then cost(r,s) = min cost(m).

mematchings(r,s)
A matching m of r to s is optimal if cost(m) = cost(r,s).

‘vert(T)

If r € (R+) » € € edges(T), then number(e,r) = z r(v).

v a vertex below e

The following three easy theorems lead to an expression of cost(r,s)

in terms of flows on all the edges.




Theorem 2.1.1. If m is any matching of r to s, e € edges(T), then

netflow(e,m) = number(e,s) - number (e,r).

Theorem 2.1.2. If m is any matching of r to s, then m is optimal iff for all

e ¢ edges(T), |netflow(e,m)| = flow(e,m).

gg_g_o_f_.' If m is any matching not satisfying the equality, then

some e ¢ edges(T) has flow(e,m) > Inetflow(e,m)l and so both upflowm(e)
and downflowm(e) are nonzero. Let m' be another matching of r to s,
identical to m except that upflowm,(e) = upflowm(e) - ¢ and downflowm, (e) =
downflowm(e) - €, where € = min(upflowm(e), downflowm(e)). Clearly,

cost(m') < cost(m).

Conversely, for any matching m, we have cost(m) = Z flow(e,m)
: ecedges(T)
= (upflowm(e) + downflow (e)) = }' |upflow (e) - downflow (e)i
ecedges(T) n ecedges(T) m m

lnetflow(e,m) l.
ecedges(T) -

Thus, if m is an optimal matching of r to s, e ¢ edges(T), then
flow(e,m) = |number(e,s) - aumber (e,r)|. If ue R+, let flow(e,r,u)
denote |u - number (e,r)|. so that if m is an optimal matching of r to s,

‘e e edges(T), it is the case that flow(e,m) = flow(e,r,number(e,s)).



10

Theorem 2.1.3. If r,s ¢ (R+)vert(T) with total(r) = total(s), then
cost(r,s) = 2 flow(e,r,number(e,s)).
ecedges(T)

Proof. Cost(r,s) = cost(m) for m an optimal matching of r to S,

= X flow(e,m) = X flow(e,r,number(e,s)).
ecedges(T) ecedges(T)




A

11

2.2 Expected Costs

In this section, we introduce probability distributions for the sets

of requests and define costs of placements in terms of their expected

costs for all sets of requests. For simplicity, we consider requests

entering at the leaves of T only.

If ¢ is a probability function on leaves(T) and t ¢ N, then

r e (R+)vert(T)

determined as follows: for each i in turn, 1 < i

can be chosen according to a probability distribution

< t, ¢ is used to

select a vertex in leaves(T). Then r(v) is the total number of times v

is selected, for each v ¢ vert(T).

Fix ¢, t as above. If s € (Rf)

vert(T)

expcost 't(s) denotes the expected value of cost(r,s), where r is
@,

chosen as described above. If e € edges(T) and u ¢ R+, then

with total(s) = t, then

expflow¢ & e(u) denotes the expected value of flow(e,r,u) where r is
k] F 1~

. chosen as above.

The following two expansions are easy to see.

Theorem 2.2.1. Expcost¢ t(s) = z
’ ecedges(T)

. t
Theorem 2.2.2. Expflow (u) = Z
¢’t’e i=0

expflow

stye

(number(e,s)).

t, 1 t-1 .
(i)P1(1°P) *lu-i|, where p =

)

£ below e

The next theorem shows that the expflow function has a simple form.

Theorem 2.2.3. For any fixed ¢, t, e, it is the case that expflow

st,e

: s s . . +
is an unbounded, convex, piecewise linear function from R+ to R, with

all vertices occurring at integer values.

(%)




12

Proof. By Theorem 2.2.2, expflow¢ t.e is the sum of the functions gi,
2 >
for 0 £ i < t, where gi(u) = kilu—il, ki = (;)pl(l—p)t_l, and

p = z ¢(L). Each g, is an unbounded, convex, piecewise linear
2 below e *

. + + . g . .
function from R to R with a single integer vertex at u = i. Since
addition preserves all four required properties, the result follows.

1]

If e € edges(T), let Ee denote the set consisting of e, together

with all edges below e in T. If $, t, e are as above, u ¢ R+, then

minexpcost¢ t.e
b Sl S

(u) = min ‘ (2 expflow¢,t’d(number(d,s))).
s:number (e, s)=u deEe ‘

That is, the minexpcost function describes the best possible éxpected
total flow for any subtree, if exactly u résources are to be placed in
that subtree. It is easily seen that the expected flow over the top edge
in the subtree is uniquely determined by u. The best possible total cost
is then obtained by é best possible split of the u resources among the
immediate descendant subtrees, and an optimal arrangement of those
resources within each descendant subtree. Thus, ityis straightforward to

observe the following relationship.

Theorem 2.2.4. If ¢, t, e are as above, if ei,...,ez are the immediate
. -+
descendants of edge e, and if u € R', then

minexpcost¢ N e(u) = expflow¢ e(u) + min (Z .minexpcost
s b ] .

ZuiSu I<ig® ¢’t’ei

£, (ui)) .

In order to obtain more information about the values of the minexpcost

function, we first show that it is of a simple form.




13

Theorem 2.2.5. For any fixed ¢, t, e, it is the case that minexpcost¢ c
>

. . . . . + + .
is an unbounded, convex, piecewise linear function from R to R, with

all vertices occurring at integer values.

Proof. We use induction on edges in the tree, working from the leaves
toward the root.

If e is a lowest edge, then there is only one edge, e, in Ee'

Thus, minexpcost = expflow
? P ¢’tse *P ’

dyt,e

» which has the needed properties
by Theorem 2.2.3.
Now assume the result holds for edges below e, and let @iseeesey

denote the immediate descendant edges of e. Consider the expression

for minexpcost¢ . e(u) given in Theorem 2.2.4. The first term has the
s >

needed properties, by Theorem 2.2.3. It remains to show that the second
term is convex, piecewise linear and has all its vertices at integers.

Write f. for minexpcost , g{u) for min (z £,.(u.)).
= ¢,t.e;7 =— Zu <u 1sish L1

By inductive hypothesis, each fi is unbounded, convex and piecewise
linear with all vertices at integers. Therefore, for each i, 1 £ i < &,

. + .
there is some ri € N such that ri is the smallest element of R with

f.(r.) < £,(s) for all s 2 r,. We consider two cases.
ivi i i

Case 1. u =2 z r,.
1<i<g 1
Then g(u) = 2 fi(ri)’ so that g is constant for u sufficiently large.

1<i<®



(*)

14

Then it is possible to select u resly minimizing X

£,(u,)
1<i<f 1

l’
subject to the restriction iui < u, in such a way that u, < ri'for all
i and Zui = u. We give a procedure for selecting for any given u, a

fixed decomposition ViseeesVy having these properties.

For each i, 1 < i < {4, and each j, 1 £ j < ri, define

~ decrease(i,j) =.fi(j—1) - fi(j)' By choice of T, and convexity of fi’

decrease is always positive. Now for any decomposition Upseeeslly with

u, < ri for all i, it is the case that

) f.(u) =
lSiS,Q, 1 1

Yy le.0 - ) decrease(i,j) + (u, - |u,])decrease(di,lu, |+1)].
1<i<g| * 1=isiug ) : .

This equation suggests that g(u) can be minimized by choosing vl,{..,vz

so that the largest [ul walues of decrease(i,j) are used.

Let U denote the set of triples

{(decrease(i,j), 1,3)) : L <41 <8, 1 <3< ri}.

FiX a total ordering < of U satisfying the following properties,
(1) 1If decrease(i,j) < decrease(i',j'), then
(decrease(i,j), 1,j) < (decrease(i',ji'), i',3"),
(2) (decrease(di,j+1), i,j+l) < (decrease(i,j), 1,j).
That these two conditions are compatible with each other follows from the

convexity of the fi'




Pa

15

Now, for Any given u < z r,, select v,,...,v, as follows.
s 1 L
1<i<®

*
Let U < U contain the [ul largest elements of U (according to <).

%
If (decrease(i',j'), 1',j') is the smallest element of U , then for

. *
i #4' let v, = max{j: (decrease(i,j), i,j) € U }, and let

== ' - -— = {
Vit i 1+u [u]l]. Then Zvi u and \ < r, for all i. By

(*) above, it is clear that v ,...,v, minimizes z £f.(u,).
1 2 A i
1<is®

- The form of (*) and the definition of < immediately imply that

min ( 2 f.(ui)) is piecewise linear with vertices at integers, and
ZuiSu 1<i<?

(because the decreases are used in decreasing order) that it is convex.

B

Examination of the proof of Theorem 2.2.5 allows us to sharpen
Theorem 2.2.4 by stating that the minimum cost can always be achieved

by placing whole resources on all vertices.

Theorem 2.2.6. If ¢, t, e are as above, if e seees€ are the

1

immediate descendant edges of e, and if u € N, then

inexpcost = expflow u) + min inexpcost L))
minexp ¢’t’e(U) P ¢’t’e( ) Su <u(l<§_<2,mln *P Cb,t,ei(ul))
5 <i<
u.eN
i



16

2.3 Optimal Placements

. . : - . +
We are interested in determining the "best" functions s e (R )vert(T)

in the following sense. We say s ¢ (R+)vert(T)

is optimal for ¢, ¢t
provided total(s) = t and expcost¢’t(s) = mlneXPCOSt¢,t,rootedge(T)(t)'

The first characterization result follows immediately from Theorem 2.2.6

and shows that there are optimal s which take on integral values only.

Theorem 2.3.1. For any probability function ¢ on leaves(T), and any

vert (T)

t € N, there exists s ¢ (N) which is optimal for ¢, t.

Proof. Theorem 2.2.6 essentially provides an algorithm
for producing such s. For any edge e of T, with immediate descendants

el,...,ez, and any u ¢ N, one determines values of s for all nodes below

e by considering all possible decompositions Ugsenesly with

Zui < u and ui € N for all i. For ea;h such decomposition, one recursively
determines valueé of é fof all nodes below each e, and corresponding costs.

The decomposition with the smallest total cost is chosen.
1

In order to analyze the cost of determining an optimal placement
as above, we do not perform a straightforward recursive analysis of the
algorithm described in the proof of Theorem 2.3.1. Rather, we take
advantage of repeated work in various recursive calls. During the algorithm,

one must calculate expflow (u) forball e € edges(T) and all u,

¢’tse
0 < u < t. The number of arithmetic operations involved in one

calculation of expflow N e(u) is 0(t) (if performed judiciously),
b ]

b




17

independent of e and u. It is these costs which dominate the total count

of arithmetic operations, so that an O(t2° edges(T)]) analysis results.

We summarize this discussion in the following theorem.

Theorem 2.3.2. There is an algorithm using 0(t2°

edges(T)[) arithmetic

operations which, for any tree T, for any probability function ¢ on

vert (T)

leaves(T) and for any t € N, determines an s ¢ (N) which is

optimal for ¢, t.




18

2.4 Optimizing Flow on Individual Edges

In this section, we show that the flow on each individual edge is
optimized for a number equal to the median of an appropriate binomial
distribution. However, we do not have results in this general case which
use this local optimization to produce a globally optimal placement.

Let n e N- {0}, 0sp<1, ce¢ Rf. Let x be a random variable
whose value is the number of successes in n independent trials, each of

whose probability of success is p. Define median(n,p) as the smallest

¢ such that Prlx = c¢] 2-% .

Theorem 2.4.1. Let ¢ be a probability function on leaves(T),

t ¢ N - {0}, e € edges(T). Then expflow t.o 18 minimized at u = median(t,p),
b ] 5
where p = X ¢(e).
% below e

Proof. Write f for expflow . By Theorem 2.2,3, f is minimized at an

stye

integer u which is the smallest r ¢ N with £(r+l) - f(r) nonnegative.

' § é i t-i § ot 1 t-i
Now, £(r + 1) = £(r) = } (Ip (1-p)" "|r+1-1] - J (Dp @-p)* r-1], by
i=0 i=0

Theorem 2.2.2,

oty i =i Tty i t-i § b 4 ei
=1 QP e+ 1-1] - i) = ] QAo - Gpta-p)
i=0 , i=0 i=r+l

r . .
t.—
=2) (;)pl(l-p) R |
=0




19

= 2Pr[x < r] - 1.

Thus, u is the smallest r € N with 2Pr[x < r] - 1 nonnegative, or

Prix < r] 2-%; that is, u = median(t,p).

It is not obvious exactly how to determine the median of
a binomial distribution. Although we do not have an exact characterization,
we can use a result of Uhlmann to show that the median is not more than

: +
one from the mean. For n e N - {0}, 0 <p <1, c e R, x as above,

we let Ln c(p) denote Prix < c].

2

We require the following theorem.

Theorem 2.4.2 (Uhlmann [U])

Ifn, ce N, n 2 2, then

1 c+l . 1,
Ln,c(n- ) 2 7 2 ( ) if 0 < ¢ < 2(n 1),
and
l c+1 1
n,c(n— ) < _2 n,c(n+l) if 2(n-l) <¢cs<n-1.

We can now use Uhlmann's result to show that the median of a binomial
distribution is always exactly equal to either the mean rounded up or

rounded dowm.




20

Theorem 2.4.3

For any n e N, n 21, 0 < p <1, it is the case that Inp] < median(n,p) < [npl.
Proof. Ifn=1o0r p =0 or 1, the result is obvious, so assume n > 2 and 0 < p < 1.

First, we assume np € N and show median(n,p) = np. Since 0 < p < 1, we have
1 <np £n- 1. It suffices to show:

®) <+ and () L (@) > 2.

(a) L 3

n,np~1

Lo = @
(a) If 0 <mp - 1<35(n-1), then Ly, np-1® Lnp-1G)

: npy . . ; , R
< Ln,np—l(n+1) since decreasing the distribution probability serves to

N[

increase strictly the probability of at most np-~1 successes, < ‘by the

first inequality of Theorem 2.4.2. On the other hand, if

BRRy <, @e-ly 1

l .
5(n-1) < np - 1 < n-1, then L n,np-1C1 n,np-1" n-1’ ~ 2

n,np-l(p) - L

by the second inequality.

Lo : = (Bp: np y 1
(b) If O <np < 2(n 1), then Ln,np(p) Ln,np\h ) > Ln,np(n-l) 23

by the first inequality, while if-%(n—l) <np £n -1, then

@Ry 5 @l L1

Ln,np(P) =L n+l n,np = n+l 2"

n,np

Therefore, if np is an integer, we have shown that median(n,p) = np.

Now consider np =k + ¢, k e N, 0 < e < 1. If q-= p - —, then

=R I

nqg = k = |np]. Since nq is an integer, we have median(n,q) = nq. But

since p > q, we have median(n,p) 2 median(n,q) = |np]. Similarly,




21

ifq=p +'li5, then nq = k + 1 = Inpl. Again, median(n,q) = nq, and since
P < q, we have median(n,p) < median(n,q) = [npl.
]

Thus, each edge individually has its flow optimized at a value which is either
the mean rounded up or the mean rounded down. However, it is not possible to
achieve this local optimum consistently throughout the tree. In fact,
in this very general setting, an optimal placement might reguife some
subtree to contain a value other than the mean rounded up or down.

vert(I) i, pe a fair whole placement

For any T, ¢, t define s € (N)
for T, ¢, ; if total(s) = t and for each e ¢ edges(T),
Ltpej < number(e,s) < [tpe], where P, = X | ¢(e). It is not
£ below e
difficult to see that for any T, ¢, t, at least one fair whole placement
exists; in fact, one can be constructed with all nonzero values at the
leaves: we start at the root of T with t resources to distribute. Below

any edge e in the tree, we will have either [tpe] or [tpe] to distribute.

Assume e has descendants ey and ey If we have Lﬁpej, then note that

itp_ | + ltp_ | is either equal to [tp | or to |tp | - 1. In the former case,
e e, e e

distribute resources so that e, gets |tp | and e, gets |tp_ [|. In
1 ey 2 e,

the latter case, it must be that tpe is non-integral. Then [tpe 1=
2 2

[tpe } + 1, and we distribute the resources so that ey gets [tpe | and e,
2 1

gets ftpe 1. The sum is then [tpej in either case. The case where e
2

has [tpe] is dual.



22

Example 2.4.1 fLet T be a 32-leaf balanced binary tree (except for rootedge(T)),

(L) = 535 for each of the leftmost 16 leaves £, and ;6 for each of

the rightmost 16 leaves. Let t = 16. The placement s which has s() =
for each of the leftmost 16 leaves £, and 0 elsewhere, has

number(e,s) = 16 for e the left descendant of rootedge(T). However, the

1. 15, so that the left subtree contains a value other

for e is t
mean 16 .

than its mean rounded up or down. One can calculate expcost¢ t(s) and

determine by exhaustive searching that it is optimal, and strictly

smaller than expcost¢ t(s') for any fair whole placement s'.
s

We note in general, however, that the optimal cost canmot be too

much less than the cost of any fair whole placement.

Theorem 2.4.4. Let s be a fair whole placement for T, ¢, t. Then

expcost¢,t(s) < mlnech°8t¢,t,rootedge(T)(t) + [edges(T)I.

Proof.

By the results of this section, expflow t.a is minimized at some u,
y s .

where ltpeJ <u < [tpe1. Thus, Inumber(e,s) - u[ < 1. But then

lexpflo (number(e,s)) - expflow (u)l < 1, by calculations

“,t, ¢,t,e
similar to those in the proof of Theorem 2.4.1. Since no placement

can do better than the optimal on each edge, s incurs at most an

extra cost of 1 per edge.




o

23

For some choices of T, t and ¢, of course, it is possible to
consistently achieve the median on each edge - for example, if the mean is
an integer for every edge. But in general, we have no global optimality

results. In §3 we obtain optimal results for a special case.

Example 2.4.2. If T is a balanced binary tree, n(T), the number of

leaves of T, =2k, t=a- Zk for integer a, ¢ -the uniform distribution,

then s(2) = a for each leaf £ is optimal, because it achieves the integer

mean on each edge.

Example 2.4.3. Let T be the tree depicted below, ¢ as indicated on

the leaves, t = 12. : ¢

1
A

O

Then the means on each edge are as indicated below, so all tickets can

be placed at the levels as indicated by the circled numbers.

!

12




24

2.5 Nodes with Zero Placements

We conclude this section with a somewhat surpriéing characterization
theorem. It says that if there is a probability less than 1/2 of any
request arriving in a subtree, then it is bad to place even a small

fraction of a resource anywhere in that subtree.

Theorem 2.5.1. Let e ¢ edges(T) satisfy (l—p)t >‘% , where

p = 2 ¢(2). Let s be optimal for ¢, t. Then s(v) = 0 for all
% below e

v € vert(T) below e in T.

Proof. Assuﬁe not, and fix e, s"exhibiting the contrary. Choose e1
below e, a lowest edge for which s(low(el)) > Q. Then consider s' with
s‘(low(el)) = 0, s'(high(el)) = s(high(el)) + s(10w(e1)) and

s'(v) = s(v) for v ¢ {high(el), 1ow(el)}. We show that expcost¢ t(s') <

expcost¢ t(s), which is a contradiction to the optimality of s.
b

Now, expcost¢ t(s) = z expflow¢ ¢ eﬁnumber(e,s))
’ ecedges(T) >
and expcost (s'") = 2 expflow (number(e,s')) by Theorem 2.2.1.
¢st - T Pst,e
ecedges(T)

Since all terms but one in the two sums are identical, we have that

expcost¢,t(s) - expcost¢’t(s') = expflo (number(el,s))

wcb,t,el

- expflow (number(el,s')) = expflow (s(Iow(el)) - expflow ).

¢’t’e1 ,t,el

¢stsel

t . A
zo(z)ri(l-r)-t'll,s(low(el)) - 1],

But expflow¢,t’e(s(1ow(el))) L




25

where r = z (), and

£ below e

t . .
expflow (0) = z (;)rl(l-r)t-l(i), by Theorem 2.2.2. Thus, the

¢’t’el i=0

t . .
difference = ) (;)rl(l—r)t_l([s(low(el)) -] - 1) = (l—r)t(s(low(el))) +
i=0

t . .
y (;)rl(l-r)t~l(|s(low(el)) -1 - 1) > (1—r)t(s(low(el))) +
i=1

. . t . »
(DT -0 s owle; ) = sUow(e,NIA-0F - T (Hrla-nt) -
1 i=1

Z

i

s(low(e, ) [2(1-1)% - 1] > 0 since (1-r)% = 1-p)° >-§ .

This is the needed contradiction.



26

3. Optimal Placements for Balanced Trees

In this section, we give several characterization results and
algorithms for‘optimal placements in an important special case of the problem
considered in Section 2. Namely, we assume the following for this
sectibn:
(a) T is a balanced.binary tree with n(T) leaves (except that, as

before, the root has a single emanating edge, rootedge(T)).

(b) o) =-;?%7 for all £ ¢ leaves(T).

As before, t € N. We classify the vertices of T into levels, the
root at level O.

For the special case being considered in this section, certain of
the relevant definitions can Be generalized to reflect the symmetry.
For example, explicit mention of ¢ can be omitted since ¢ is determined

by T. Also, if e and e, are edges with high(el) and high(ez) at the

same level k, then expflow = expflow . Therefore, we write
t,e1 t,e2

expflowt K in place of either. Similarly, we write minexpcostt x for
3 b

minexpcost¢ f.e where k is ﬁhe level of high(e).

3.1. A Bound on Levels with Nonzero Placements

Theorem 2.5.1 can be used to bound the lowest level at which nonzero

placement can occur in an optimal placement.

Theorem 3.1.1. Assume t > 1. Let v ¢ verticés(T) be at level k, where

k is greater than [log t1 + 1. Let s be optimal for ¢, t. Then

s(v) = 0.




Proof.

By Theorem 2.5.1, it suffices to show that (1 -

27

1

eyt s 2
2[log tl+1 2

s

for t € N. It suffices to consider t a power of 2, and in this case,

the inequality is just (1 --5% t >-% . But an inductive proof of this
3,2 _ 1

fact is easy: t = 2: (&) >

4 2

Inductive step. If the inequality is true for t, show it for 2t.

1 2t
(1 - 575230 = ((1 - 4t) )

1.t
2t

1.2t _ 1 1 .\t _
= (1 o +-——§—) > (1

s 1
16t 2

If T is any balanced binary tree, t = 1 any integer, let '1‘t denote

‘the tree

inclusive. Let ¢t be defined on the leaves of Tt by ¢t(2) =

for all &. If s ¢ (R+)

below [log t1 + 1, then s

consisting of exactly the levels of T from 0 to [log t1 + 1

1
2flog t1

vert (T) is such that s(v) = 0 for all v at levels

. €(R-l-)vert(’rt) can be defined from s by

simply ignoring the missing vertices. Then it is easy to see that

expcost¢

have the

Theorem 3.1.2, If t > 1, then minexpcost

t(s) = expcost¢t,t(st) + t(log(n(T)) - ([log t1)). We then

following.

minexpcost

Proof, 2

A

for T by

¢,t,rootedge(T)(t) =

¢t,t,rootedge(Tt)(t) + t(log(n(T)) - ([log tl1)).

follows from Theorem 3.1.1 and the remarks.
follows because any placement for Tt can be augmented to a placement

placing zeros on the additional nodes, thereby incurring the stated cost.

r]



28

Thus, in the remainder of section 3 and in section 4, we assume
that the number of levels in T is at most [log t1 + 1 (that is, that
n(T) < 2t). The reader can then use Theorem 3.1.2 to infer corresponding

results about cases where n{T) = 2t.

Example 3.1.1. The case where t = 1 is somewhat peculiar. The reader

can verify that for all T with lowest level number at least 2, the

following pictures all represent optimal placements.

lévels: 0

- o - _—— in - o o

That is, in the first case, s(v) = 1 for v the son of the root,
0 otherwise,

{1 for v the left (resp. right) grandson
of the root,

while in the other two cases, s(v)

0 otherwise.
This is the only value of t for which an optimal placement can have
nonzero values below level [log t1 + 1.

Example 3.1.2. 1If T is balanced, t = 2k, n(T) > t, and ¢ is uniform,

then s which places 1 across the level with exactly t vertices is optimal:
nothing is placed below this level, and an optimal.placement for the
whole tree results from an optimal placement within levels up to

log t + 1. But clearly putting 1 across all leaves is optimal for

this subtree, as seen in Example 2.4.2.




29

3.2 Algorithms for Finding Optimal Placements

In this section, we prove two éharper versions of Theorem 2.2.4 for
the special case of this section, and use them as bases for two algorithms

for finding optimal placements.

Theorem 3.2.1. If t € N, u € R+ and k € N, k < log(n(T)) -~ 1, then

minexpcost (u) = expflow,_ . (u) + 2min minexpcost
t,k t,k

(u').
v - u u tykt+1
u e{O,l,...,LZJ,z}

Proof. < is clear. We show 2. Write f for minexpcost Consider

any u,, u, € R* with u, + u, < u and £(u ) + £(u,) minimal. We will
1’ 2 1 2 1 2

produce u' ¢ {0,1,...,E%J;%}‘with 2f(u') < f(ul) + f(uz).

By Theorem 2.2.5, there exists r € N such that r is the smallest

element of Rf with £(r) < £(s) for all s =2 r. We consider two cases.

Case 1. u 2 2r.

Then if w' =r, it is clear that 2f(u') < f(ul) + f(uz).

Case 2. u < 2r.

uytu,

2

Then u, + u, = u. Letting u' ,» we have that u' is in

1 2

u,+u
265D < £(u;) + £(uy) by

the required set; moreover, 2f(u')

convexity of f. ]

Theorem 3.2.2. For any t € N, there exists s such that s(v) = s(v')

for all pairs of vertices v, v' at the same level, which is optimal

for t.



.k
30

Proof. Theorem 3.2.1 essentially provides a recursive algorithm.

1]

We proceed as before t6 analyze the cost of determining an optimal
placement with uniform values at each level. During the algorithm, one

. . p \ . t o PR
must calculate expflowt’o(t), expflowt,l(z), vees eprlowt,log(n(T))(n(T))'

In addition, one must calculate ex’pflowt 1(i) for all 1 ¢ N, i s-%,
expflow (i) for a11 1 e N, 1 <t expflow @i) for all i e N, 1 <<, ..,
t,2°2 > -T2 £,3%% s 1255 eens

. 24 . Y q t

ik : & =
efolOWt,log(n(T))(n(T)) for all i ¢ N, i < 5 -
This is a total of O(t log n(T)) expflow computatishs. Since each such
computation involves 0(t) arithmetic operations, we have the foilowing

theoremn.

Theorem 3.2.3. There is an algorithm using O(tzlog n(T)) arithmetic

operations which for any treée T (that is, satiéfying the assuﬁptions of
this section), and for dny t ¢ N, determines an s such that s(v) = s(v")
for all pairs of vertices v, v' at the same level, which is optimal

for t.

Note that the bound of Theorem 3.2.3 répresents an iﬁprovement over
the bound in Theorem 2.3.2 applied to the special case 6f this section;
the placements produced by the two algorithms have somewhat different
properties, however. The remainder of this subsection deals with integral

placements, the situation considered in Theorem 2.3.2.

Theorem 3.2.4. If t, u, k € N, k < log(n(T)) - 1, then




31

mlnexpcostt,k(u) = expflowt,k(u) +

min ,uzeN (mlnexpcostt,k*l(ul) + minexpcost

1 £,k+1 (9200 -
u < lel—J yuyS l'%‘}, [uz—ullsl

Proof. Again, we show 2.

Write f for minexpcost By Theorem 3.2.1, there is a value

t,k+1"
| P_ B. = '
u' € {0,1,...,[21,2} such that minexpcostt’k(u) expflowt’k(u) + 2f(u').

If u' e {0,...,t%J}, then we simply take u =u, = u'. If u' = %-é N,

then we take u, = tgj and u, = Fg]; in this case, piecewise linearity

guarantees the required properties.

(1

vert(T)

Theorem 3.2.5. For any t € N, there exists s € (N) which is optimal

for t. Moreover, s has the additional properties:

(a) if ey and e, are two edges with high(el) = high(ez), then
Inumber(el,s) - number(ez,s)[ <1,
(b) if e is any edge with high(e) at level k, then number(e,s) < {EEJ.
2 Y

Proof. Theorem 3.2.4 essentially provides a recursive algorithm yielding

a placement in (N)vert(T)

and obviously satisfying (a). To see that (b)
is also satisfied, assume the contrary, and let e be a highest edge in

the tree with number(e,s) > FEE]’ where high(e) is at level k.
2



32

t

Siﬁce number (e,s) is integral, we have number(e,s) > [;E1 +1 =

2

t—k+1.
2

e is not rootedge(T), so let e' be the edge # e with high(e) = high(e"),

and let e" be the edge immediately above e in T. Then

number (e'",s) < | t <Lt _ 4 1. Therefore, number(e';s) <
2k—-l 2k—-l

number (e',s) - number(e,s) < ( ;-l + 1) ~ CEE + 1) =
2 2

L
ok

But then [number(e,s) - numbér(e',s)l > 1, contradicting property (a).

1]

Once again, we analyze the cost of determining an optimal placement

with the properties of Theorem 3.2.5. One must calculate eprlowt O(t),
. b4

and also expflowt l(i) for all i e N, i < IEI, éxpfldwt 2(i) for all
> ) >

2

2

ieN, ic< = Fé}, Cees efolOWt,log(n(T))(i) for all i€ N,

icx F~JL1. This is a total of 0(t) expflow computations, (since we

n(T

are assuming that log(n(T)) is o(t)).

Theorem 3.2.6. There is an algorithm using O(tz) arithmetic operations,

which for any tree T and for any t € N, determines an s € (N)

vert(T)

which is opfimal for t, and which satisfies conditions (a) and (b) of

Theorem 3.2.5.




33

3.3 A Fast Algorithm for Determining Optimal Placements
The results of §2.4 can be used to prune the algorithm's search

space still further, leading to a much faster algorithm
Theorem 3.3.1. Let t, u, k ¢ N, k € log(n(T)) - 1, %—(—J u < Fl—c-“ Then
' 2 2
mlnexpcost (u) = expflow (u) + min K (minexpcost (u,) +
ok u,u, e{l_kHJ ST } t,k+1 1
minexpcostt k+l'(u2))
u,+u,<u ?
172
Proof. Again, we show 2. Write f for minexpcost '.
—_— = ty,k+l
€ N such that

By Theorem 3.2.4, there is a pair u;s u,

J, u, < [2‘{ ]u -u I < 1 and minexpcostt,k(u) = expflow_ . (u) +

b l_’l"z1
f(ul) + f(uz). Assume u < u,-
We must check that u,, u, € 1{ t 1y, Ifu, > t_| then
1> 72 [Zk J’ 2k-i-l * 2 2k+1 ’
K t
Then u = uy + u, > 2 2k+l-| + 1> Ll;l,

t -
;I + 1, and also uy z Lkﬂ'“

u, > |~
s
a contradiction. Thus, u, (and therefore u,) < On the other
1 2k-i-l
_t
k+1t°

t €
hand, if U,y < {1&1}’ then uy < l'2k+lJ - 1, and also u, < l}
Then u - (u +u) 2 5. (=] -1+ ) = 1. Defi d i
1 2/ = 2k ) 2k+1 T+ 2k+1 = erfine a new decomposition

LI v, by v, = u,, Wy =u + 1.

Then wl + w2 < u., Now,



34

t .
expflowt,k+l(wl) < expflowt’k+1(ul) because uy < [_k+1J ~ 1, by Theorems

2

2.4.1 and 2.4.3. Thus, f(wl) < f(ul), by Theorem 2.2.4. (The first

‘term in the sum of that theorem is less for argument vy than for

argument Uy and the minimum in the second term is taken over a larger

, U, is

possible range in the case of wl.) But then the minimality of u 5

1

contradicted. . |

Theorem 3.3.2., For any t € N, there exists a fair whole placement s

which is optimal for t.

Proof. Theorem 3.3.1 yields a recursive algorithm.
]

Note that a result similar to Theorem 3.3.2 does not hold in the
general case-recall Example 2.4.1.

The algorithm resulting from Theorem 3.3.2 is extremely fast. Namely,

9 k

one must calculate expflowt k(i) for i = [%EJ, [t;l, for each k,
’
2

1 <k < log(n(T)), for a total of only 0(log(n(T))) expflow computations.

Theorem 3.3.3. There is an algorithm using 0(t log(n(T))) arithmetic
operations which for any tree T and for any t € N, determines a fair

whole placement s which is optimal for t.




35

3.4 Example

Some of the optimal placements discovered by our algorithms are
rather unexpected. For example, the following represents an optimal
placement of 11 resources in a balanced binary tree with uniform

probability distribution:




36

4. Bounds on the Costs of Optimal Placements

In this section, we assume that T is a balanced binary tree (except
for rootedge(T)) but ¢ is arbitrary. We show that optimal placements are
much better than centralized placements; in fact, their expected cost is
linear in the number of leaves of the tree. We continue to assume
that n(T) < 2t, relying on the reader to infer results about the caée

where n(T) = 2t.

4.1 Cost of Centralized Placement

If s(v) = 0 everywhere except at low(rootedge(T)), s(low(rootedge(T))) = t,

then expcost¢ t(s) = t log(n(T)).

4.2 Cost of Fair Whole i?lac.ements

Since we do not have a direct characterization of optimal placemernts,
we instead bound the expected cost of an arbitrary fair whole
placement. This upper bound, of course, provides an ﬁpper bound for .
optimal placements. Moreover, by Theorem 2.4.4, the costs cannot differ
by more than 2 : n(T).

Define G(n,t) to be

max¢ expcost¢,t(s).'

T:n(T)=n ‘
s a fair whole placement for T,¢,n

We establish a recurrence for G, namely:

t.+t, <t

(*) - G(n,t) < max ©Gt) + 6&,t.)) + 12/ log n, for n = 2,
17, 271 2272 |

G(1,t) = 0,

We first require some technical lemmas.

Lemma 4.2.1, Forte N, t 21, s <t~ 1, 0<p <1, it is the case that

S s s _ .
_ZO (Op" (1-p) T Hep-1) = t(tsl)(l-p)t s s+l
1=




37

Proof. (5p'(1-p)(ep-1) = et Eer) - pla-mFla) -

t-1
i-1

since (}) = (tgl) + &1 =1

e a-» 7t - eCTheta-p

), this expression is in turn equal to

(e "+ pCThetap - eEhptap Y
= (Tt - e The e D,

’ ] .
Thus ) (ti:)pi(l—p)t-l(tp-i)
i=0

S R .
(0 =) “ep + tP[Z <t11>pl(1-p)t‘1 X et ta )t‘(l‘l)]

i=1 i=1
s s-1 |
=w@p" +epl § CThelta-m™ - T hpla-pt j[
1=1 =0

]

tp(1-p)" + tp| (THpS-p)tTS - (E 1)p°<1-p>]

t-1

s+1
s—)p

= t( (1-p) =S,

Lemma 4.2.2. If t e N, t 21, 0 <p <1, it is the case that

t .
; ~1 i t- tpI+l
Z (?)Pl(l-P)t lltp-ll 2t(tt1 ) (1-p) ltPJ Ltp]
i=0 LtpJ



38

t . .
Proof. ] (Dp"(1-p)"M|ep-i| =
i=0 '

ttpl s t e
U OrtamTien - T Getae e
1=0 i={tpJ+l
Ltp] . . t iy
=2 ] (Or @0 1) - § (Opta-p) i1
i=0 i=0
: ; ‘ . t
- 2t(f;;1)(1—p)t'ltpjpltp’+l - X,(E)picl—p)t'i(tp—i) by Lemma 4.2.1.
i=0
N t-1
But ] (,)p (1-p)"  (p-1)
i=0
t , . £ i 1
= ) (E)pl(l—p)t-ltp -1 (z)"p (1-p) "1t
i=0 i=1

t . _ t i sl ;. PP
to ] (ptam T - e I Gopet La-p DG o _ = 0.
i= i=

Lemma 4.2.3. For t ¢ N, t 21, tp 2 1, it is the case that

t-1 t-ltp], Ltp] 1 e
( ) (1-p) p < (l + -—) . -,
ltp} 4t ‘}Zon-ltpj .

Proof. A version of Stirling's formula says that for all n € N, it is

the case that

(E)n/Z'n'n < n! < (%)n/Z'n”n 1+ 215)




39

_t-ltpy ., €
Then (Ltpj) r (Ltpj)

t

< (%ZLER]) . (% +._l) .<r t . . )
“\/c 48/ \ vorTepr (=1t D * Lep) P (e- 1 ep )y B LEP!

Therefore,

t- lth Lepl
([tpj)( -p)

t-1tp] ( t-lth ttpi
( Lo (Ee (“‘p‘) ,/mtp,(t [tp]
Y R = e
= J2rtitp] 4t t—ltp lth

But

Ltpl Ltp} {tp]
_tp tp-itp) 1)
(tth) (1 MY < Q‘ ¥ ltpb =

e o \t-Ttp] o
t-1tp] £ 1. and —E—EE- < 1. The lemma follows.
At-[tp]y q



40

It is obvious that G(1,t) = 0. Now fix n > 2, t, and consider any
T with n(T) = n, any ¢, and s any fair share whole placement for T, ¢, n.

Let e; and e, be the immediate descendant edges of rootedge(T), p = P,
1

and g =1 - p = P, - Now the exXpected value of Itp - number(el,r)l,
2
£ ot t=i . .
Exprltp - number(el,r)L is equal to z (i)p (1-p) ltp—i[,

i=0

- - y 141
t-1 )(1_p)t [tpjp[tpj 1

iy by Lemma 4.2.2, provided p < 1. If p = 1,

= 2t (
then Exprltp - number(efx)l = Eﬁprlt - tl = 0,

4t ”

But 2t(t;1 ) (1-p) PGP pen@ 4Ly o [—2—\if tp = 1, which

is at most 2 (%9 R 5 A 4/t . On the other hand, if tp < 1,
- i i

then 2t(tZ;J)(1-p)t_ltpjp[tpj+1 = th(l‘-p’)t < 2. In any case, the

expectation is less than 4/t.

Let T, denote the subtree of T headed by ess and t; denote -

number(ei,s), i=1,2. Llet s; denote s restricted to the nodes of Ti’

modified slightly by settiﬁg si(high(robtedge(Ti))) = 0. Let ¢1 be
defined on 1eaves(T1)‘by ggz) = %¢(2), and ¢2 on leaVes(Tz) by
d,(2) = Zo(2).
2 q
Now consider any particular sequence L = 21,22;...,2t of elements of
leaves (T)

leaves(T). This sequénce determines r ¢ N with total(r) = t,

as before. We will bduﬁd cost(r,s). Let L, = 2 L s, L i=1, 2,
) i i,a(i)

i,1°71,2°°°




L

41

be the subsequence of L with elements in leaves(Ti), where a(i) =

nunlber(ei’r)° Let Li = gi,l’-ooszi’ti if a(l) _>_ ti’
JLi’l’"'”L:'L,a(i)’di,l”"’di,ti‘a(i) if a(d) <ty

i=1,2, where the di . are chosen independently, at random, according
y

to ¢.. That is, we truncate the sequence to length t, if it is too long,
i i

and pad it out randomly if it is too short.

 £ determines r, € Nleaves(Ti), i=1,2. We claim that

i

cost(r,s) < cost(rl,sl) + cost(rz,sz) + (bi+b2) * (2 log n), where

bi = a(i) - t if a(i) > t,, O otherwise, i = 1,2, (This is because

i,

the requests represented by li 1""’21 ¢ can be matched to resources
3 ’ .
i

in a way which caused flow only within subtree T i=1,2. Each excess

i°
request - can cause additional flow of at most 2 log n, that is, 1 on each
of 2 log n edges, even if matching occurs at theé greatest
possible distance in the tree.)

We now take éxpectations over all L, assuming L is constructed from

t independent trials using ¢. We obtain:

expcost ,t(s) < expcost (sl) + expcost¢2,t2(sz) + (Expr(b1+b2))- 2 log n.

¢ 6158,

n n
< maxtl+t23t(c(2’t1) + G(z’tz)) + (Expr(bl+b2» 2 log n.

It remains to bound the expectations.




42

Since [tp] < < [tp], we have ltl - tp[ < 1, and, simtlarly,

&

Itz - tql < 1. Letting ¢, = a(l) - tp if a(l) > tp, O otherwise, and

c, = a(2) - tq if a(2) > tq, O otherwise, we see that y + c, = [tp - number(el,r)l.
But also, since Itl - tp] < 1 and |t2 - tql < 1, we see that

[bi - cil <1, i =1,2. Then b, +b, = cg te, 2 < |tp - number(el,r)] + 2.

Thus, Expr(bl + b2) < Exprltp - number(el,r)l + 2 < 4/E'+ 2 < 6/t.
Thus, we have the recurrence (*).
We solve (*). Expanding and grouping like terms, and setting

T
j:_’ t =t (A the empty string), we obtain:
2 .

G(n, t)_IZ[J— k+(/"’+ /_)(k 1)+(J"' +F‘£+/§1+JE;2)(1<—2)

k =1logn, x=

+ () e )(k=3) + ...
il,12,1 s{l 2} i11213

+ (zil,...,ik L€l 2}y PEERAC B Zil,,...,ike{l 2}ty 1,...,1k)

t <

for some choice of the t's, with each t 9 S
1,.0.,1],

i ,ov.’iJ 1

1

t . « But the last term of the sum is 0. Also, each summation

Tt ' :
e <23 /= v : . :
.,ije{l,Z} til""’ij oJ because the square root function is

Ly

1°°"

concave and Z t i £ t.
1,...,1 e{l 2} l""’ 3




43

‘t
12[/'{ K + Zg(k—l) + 22 2(k 2) + 23.’f T(k=3) + ... k—l(l)}

Thus, G(n,t)

IA

12/1?[1( + V2 (k1) + (/D2(k=2) + (/D) (k=3) + ... + (ﬁ)k—l(l)}

- 12/1? /1'_1 [k Xk—l + (k-1) Xk—z + (k-2) xk_3 + ...+ XO}

V2

kK, k-1 ( (l'xk))
dx + x + ... + x) dix * ‘"1-x

The expression in brackets is just ax =

dx
_ ((1—x) (ks )- (1x >(—1>) (1-xk)
(l—x) 1-x
B o o h g
(l-X)2
l+logn _ logn+1
Thus, G(n,t) s.lzﬁ /o ﬁi; 5 n
3 - =
()
_ 1212 JE/EQ_L_(ﬁ-l)logn
V2[1- = vn vZn
/2
< Vi Ja =22 5 oo (3677 + 48)VE Va .
/f(-/_—) 3-2/2
p)

Thus, G(n,t) is 0(Yt vn).



44

Therefore, we obtain a function which is 0(Yt V/n(T)) as the
expected cost for any fair share whole placement. We compare this with
the centralized case. Since n(T) is 0(t), this cost is glwazs o(t),
so is better than the centralized case. If n(T) < t, we have an
improvement of O(t) vs. O(t log t). The improvement is even greater if

t > > n(T), approaching 0(Vt) vs. 0(t) as t increases for fixed n(T).

Acknowledgements: The authors thank Carl Spruill, Charles Blair and

Mike Paterson for contributing their ideas and suggestions for some

~ of the results in this paper.

References
[FGL] Fischer, M., Griffeth, N. and Lynch, N. Work in progress.

U] Uhlmann, V.W.,"Vergleich der hypergeometrischen mit der
Binomial-Verteilung," Metrika, 10, 145-148 (1966).






