
Distrib. Comput. (2009) 21:353–366
DOI 10.1007/s00446-009-0079-3

On the weakest failure detector ever

Rachid Guerraoui · Maurice Herlihy ·
Petr Kuznetsov · Nancy Lynch · Calvin Newport

Received: 24 August 2007 / Accepted: 25 November 2008 / Published online: 30 January 2009
© Springer-Verlag 2009

Abstract Many problems in distributed computing are
impossible to solve when no information about process fail-
ures is available. It is common to ask what information about
failures is necessary and sufficient to circumvent some spe-
cific impossibility, e.g., consensus, atomic commit, mutual
exclusion, etc. This paper asks what information about fail-
ures is necessary to circumvent any impossibility and suffi-
cient to circumvent some impossibility. In other words, what
is the minimal yet non-trivial failure information. We present
an abstraction, denoted Υ , that provides very little informa-
tion about failures. In every run of the distributed system, Υ

eventually informs the processes that some set of processes
in the system cannot be the set of correct processes in that
run. Although seemingly weak, for it might provide random
information for an arbitrarily long period of time, and it even-
tually excludes only one set of processes (among many) that
is not the set of correct processes in the current run, Υ still
captures non-trivial failure information. We show that Υ is
sufficient to circumvent the fundamental wait-free set-agree-
ment impossibility. While doing so, (a) we disprove previous
conjectures about the weakest failure detector to solve set-

R. Guerraoui · N. Lynch · C. Newport
Computer Science and Artificial Intelligence Laboratory,
MIT, Cambridge, USA

R. Guerraoui
School of Computer and Communication Sciences, EPFL,
Lausanne, Switzerland

M. Herlihy
Computer Science Department, Brown University,
Providence, USA

P. Kuznetsov (B)
Deutsche Telekom Laboratories, Technische Universität Berlin, Berlin,
Germany
e-mail: petr@net.t-labs.tu-berlin.de

agreement and (b) we prove that solving set-agreement with
registers is strictly weaker than solving n + 1-process con-
sensus using n-process consensus. We show that Υ is the
weakest stable non-trivial failure detector: any stable fail-
ure detector that circumvents some wait-free impossibility
provides at least as much information about failures as Υ

does. Our results are generalized, from the wait-free to the
f -resilient case, through an abstraction Υ f that we intro-
duce and prove minimal to solve any problem that cannot be
solved in an f -resilient manner, and yet sufficient to solve
f -resilient f -set-agreement.

1 Introduction

Fischer et al. [11]’s seminal result in the theory of distrib-
uted computing says that the seemingly easy consensus task
(a decision task where a collection of processes starts with
some input values and needs to agree on one of the input
values) cannot be deterministically solved in an asynchro-
nous distributed system that is prone to process failures,
even if processes simply fail by crashing, i.e., prematurely
stop taking steps of their algorithm. Later, three indepen-
dent groups of researchers [2,14,20] extended that result by
proving the impossibility of wait-free n-set-agreement [5], a
decision task where processes start with distinct input values
and need to agree on up to n input values, in an asynchronous
shared memory model of n+1-processes among which n can
crash. This result was then extended to prove the asynchro-
nous impossibility of f -resilient f -set agreement [2], i.e.,
f -set agreement among n +1 processes among which f can
crash.

Asynchrony refers to the absence of timing assumptions on
process speeds and communication delays. However, some
timing assumptions can typically be made in most real

123

354 R. Guerraoui et al.

distributed systems [9,10]. In the best case, if we assume
precise knowledge of bounds on communication delays and
process relative speeds, then it is easy to show that
known asynchronous impossibilities can be circumvented.
Intuitively, such timing assumptions circumvent asynchro-
nous impossibilities by providing processes with informa-
tion about failures, typically through time-out (or heart-beat)
mechanisms.

In general, although certain information about failures can
indeed be obtained in distributed systems, it is nevertheless
reasonable to assume that this information is only partial and
might sometimes be inaccurate. Typically, bounds on process
speeds and message delays hold only during certain periods
of time, or only in certain parts of the system. Hence, the
information provided about the failure of a process might
not be perfect. It is common to ask what information about
failures is necessary and sufficient to circumvent some spe-
cific impossibility, e.g., consensus [3], atomic commit [7],
mutual exclusion [8], etc.

This paper asks, for the first time, what information about
failures is necessary to circumvent any (asynchronous)
impossibility and yet sufficient to circumvent some impos-
sibility. In other words, we seek for the minimal non-triv-
ial information about failures or, in the parlance of Chandra
et al. [3], the weakest failure detector that cannot be imple-
mented in an asynchronous system. By doing so, and assum-
ing that this minimal information is sufficient to circumvent
the impossibility of some problem T , we can derive that T ,
from the failure detection perspective, belongs to the equiv-
alence class of the “weakest” impossible problems in asyn-
chronous distributed computing.

We focus in this paper on the shared memory model. For
presentation simplicity, we also consider first the n-resilient
(wait-free) case and assume a system with n + 1 processes
among which n can crash. Then we move to the f -resilient
case where f ≤ n processes can crash.

We define a new failure detector oracle, denoted by Υ .
This oracle outputs, whenever queried by a process, a non-
empty set of processes in the system. The output might vary
for an arbitrarily long period. Eventually, however, the output
set should:

(a) be the same at all correct processes and
(b) not be the exact set of correct processes.

Failure detector Υ provides very little information about
failures: in each execution, it only excludes one (among
many) set of processes that is not the set of correct processes,
and it does so eventually. In particular, Υ does not say which
set of processes are correct, and the set it outputs might never
contain any correct (resp. faulty) process.

To illustrate Υ , consider for instance a system of 3 pro-
cesses, p1, p2, p3, and a run where p1 fails while p2 and

p3 are correct. Oracle Υ can output any set of processes
for an arbitrarily long period, it can keep arbitrary chang-
ing this set and can output different sets at different pro-
cesses. Eventually however, Υ should permanently output,
at p2 and p3, either {p1}, {p2}, {p3}, {p1, p3}, {p1, p2} or
{p1, p2, p3}, i.e., any subset but {p2, p3}.

We prove that, although seemingly pretty weak, Υ is suf-
ficient to solve n-set-agreement with read/write objects (reg-
isters), in a system of n + 1 processes among which n might
crash. In other words, Υ is sufficient to circumvent the sem-
inal wait-free set-agreement impossibility.

This result (a) disproves the conjecture of [19] about the
weakest failure detector to implement n-resilient n-set agree-
ment and (b) proves that implementing n-resilient n-set
agreement with read/write objects is strictly weaker than
solving n + 1-process consensus using n-process consensus.

We then extend our result to the f -resilient case, and pro-
pose an algorithm that solves f -set-agreement in a system
of n + 1 processes where f ≤ n processes can fail, using a
generalization of Υ , which we denote Υ f . This oracle out-
puts a set of processes of size at least n + 1 − f such that (as
for Υ) eventually: the same set is permanently output at all
correct processes, and this set is not the exact set of correct
processes.

We finally prove that Υ f encapsulates, in a precise sense,
minimal failure information to circumvent any impossibility
in an asynchronous shared memory system where f pro-
cesses can crash. This minimality holds even if the shared
memory contains any atomic object type, beyond just regis-
ters. Our notion of minimality relies on a restricted variant
of the reduction notion of Chandra et al. [3]. We show that
any oracle that (1) eventually outputs a permanent (stable)
value, as well as (2) helps circumvent some impossibility
in an asynchronous system with f failures, can be used to
compute a set of processes of size n + 1 − f that is not
the set of correct processes, i.e., can be used to emulate Υ f .
Our necessity result is very general: the minimal information
about failures to solve a non-trivial problem is extracted from
the impossibility of the problem itself, i.e., unlike the classi-
cal weakest failure detector result by Chandra et al.[3], we do
not explicitly use the problem semantics. Also, our necessity
proof is non-constructive: we show that a reduction algorithm
exists, but do not provide an explicit construction of it. As a
result, the proof turns out to be much simpler than the proof
of [3].

Roadmap. The rest of the paper is organized as follows.
Section 2 discusses some related work on the weakest fail-
ure detector question. Section 3 gives some basic definitions
needed to state and prove our results. Section 4 defines and
discusses Υ . Section 5 describes our set-agreement algorithm
using Υ . Section 6 proves the minimality of Υ and Υ f in
the class of stable failure detectors. Section 7 concludes the
paper with some final remarks.

123

On the weakest failure detector ever 355

2 Related work

Chandra et al. [3] established the weakest failure detector
to solve consensus, in the form of a failure detector oracle,
denoted by Ω . This oracle outputs, whenever queried by a
process, a single leader process. Eventually, the outputs sta-
bilize on the same correct leader at all processes. Ω is the
weakest failure detector to solve consensus in the sense that
(a) there is an algorithm that solves consensus using Ω , and
(b) for every oracle D that provides (only) information about
failures such that some algorithm solves consensus using D,
there is an algorithm that emulates Ω using D. In short, every
such D encapsulates at least as much information about fail-
ures as Ω . The motivation of our work is to address the
general question of the necessary information about failures
that is needed to circumvent any asynchronous impossibility,
i.e., beyond consensus.

Not surprisingly, in the case of two processes (i.e., the
case where set agreement coincides with consensus), Ω and
Υ are equivalent. Our minimality result is more restrictive: it
is restricted to failure detectors that are stable. On the other
hand, the proof is significantly simpler than that of [3]: in
short, our approach extracts Ω from the fact of consensus
impossibility [11] without having to go through valence argu-
ments as in [3].

In the same vein, and in the general case of 2 or more
processes, our approach extracts Υ directly from the fact of
set-agreement impossibility, without having to go through
topological arguments as in [2,14,20]. In this case, we prove
that Υ is strictly weaker than failure detector Ωn introduced
in [18]. The latter failure detector outputs, whenever queried
by a process, a subset of n processes such that, eventually, it
is the same subset at all correct processes and it contains at
least one correct process. Failure detector Ωn was shown to
be sufficient to solve (1) n-resilient n-set-agreement among
n + 1 processes using registers [18], and (2) n + 1-process
consensus using n-process consensus [21]. In fact, Ωn was
also shown to be necessary to implement n + 1-process con-
sensus using n-process consensus [13] and conjectured to be
necessary to solve set-agreement [19]. It was our long quest
to prove this conjecture that led us identify Υ and devise our
set-agreement algorithm based on this oracle.

In a prior conference paper [12], we posed the question of
the weakest failure detector ever and showed that Υ is the
weakest non-trivial failure detectors among failure detectors
that are stable and depend only on the set of correct processes
(not on the finite prefix of a failure pattern). In this paper, we
extend this result by getting rid of the second assumption.
Chen et al. [6] presented unstable failure detectors that are
weaker than Υ but still strong enough to solve set-agreement.

We also conjectured in [12] that n-set agreement is the eas-
iest problem that cannot be solved asynchronously by n +
1 processes communicating via read-write shared-memory.

Zielinski recently proved this conjecture, by introducing
anti-Ω , an unstable failure detector that is strictly weaker
than Υ , and showing that (1) anti-Ω is the weakest non-
trivial eventual failure detector [22], and (2) anti-Ω is the
weakest failure detector for solving set-agreement without
any restrictions on failure detectors [23]. The minimality
proof of [23] follows our approach of building upon the very
fact that set-agreement is impossible to solve asynchronously
which establishes that set-agreement is indeed the easiest
unsolvable problem. However, the proof of [23] goes through
a non-trivial simulation à la CHT, and it is unclear whether
the proof can be generalized to the f -resilient case. In con-
trast, our minimality proof is much simpler, and it allows
for a straightforward extension to f -resilient impossible
problems.

3 Model

Our model of processes communicating through shared
objects and using failure detectors is based on [3,15,16]. We
recall below the details necessary for describing our results.

3.1 Processes and objects

The distributed system we consider is composed of a set
Π of n + 1 processes {p1, . . . , pn+1}. Processes are sub-
ject to crash failures. A process that never fails is said to
be correct. Process communicate through applying atomic
operations on a collection of shared objects. We assume that
the shared objects include registers, i.e., objects that export
only base read-write operations. When presenting our algo-
rithms (Sect. 5), we assume that only registers are available.
The impossibility (Theorems 1 and 5) and necessity (Sect. 6)
parts of our results do not restrict the types of shared objects
that can be used in addition to registers.

3.2 Failure patterns and failure detectors

Besides accessing shared objects, processes can also make
use of failure detectors, i.e., oracles that provide them with
information about failures of other processes [3,4]. The local
module for process pi of failure detector D is denoted by Di .
Defining the notion of failure detector more precisely goes
through defining the notions of failure pattern and failure
detector history. A failure pattern F is a function from the
time range T = {0} ∪ N to 2Π , where F(t) denotes the set
of processes that have crashed by time t . Once a process
crashes, it does not recover, i.e., ∀t : F(t) ⊆ F(t + 1). We
define faulty(F) = ∪t∈TF(t), the set of faulty processes
in F . Processes in correct(F) = Π − faulty(F) are called
correct in F . A process p ∈ F(t) is said to be crashed at
time t . An environment is a set of failure patterns. Unless

123

356 R. Guerraoui et al.

stated otherwise, we assume the environment that includes
all failure patterns in which at least one process is correct,
i.e., we assume that n or less processes can fail.

A failure detector history H with range R is a function
from Π × T to R. Informally, H(p, t) is the value output
by the failure detector module of process p at time t . A fail-
ure detector D with range RD is a function that maps each
failure pattern to a nonempty set of failure detector histo-
ries with range RD (usually defined by a set of requirements
that these histories should satisfy). D(F) denotes the set of
possible failure detector histories permitted by D for failure
pattern F . Note that we do not restrict possible ranges of
failure detectors.

3.3 Algorithms

We define an algorithm A using a failure detector D as a
collection of deterministic automata, one for each process in
the system, and an initial memory state, i.e., the initial states
of all shared objects used by the algorithm. Ai denotes the
automaton on which process pi runs the algorithm A. Com-
putation proceeds in atomic steps of A. In each step of A,
process pi

(i) invokes an operation on a shared object and receives a
response from the object, or queries its failure detector
module Di and receives a value from Di (in the latter
case, we say that the step of pi is a query step),

(ii) applies its current state, the response received from the
shared object or the value output by Di to the automaton
Ai to obtain a new state, and

(iii) accepts an application input in I or produces (according
to the automaton Ai) an output in O (I and O here are
sets of all possible inputs and outputs, respectively).

A step of A is thus identified by a triple (pi , x, y), where
x is either the value returned by the invoked operation on a
shared object and the resulting object state or, if the step is a
query step, the failure detector value output at p during that
step, and y is an input or an output. If no input is accepted
and no output is produced in this step, then y = ⊥.

A run of algorithm A using a failure detector D is a
tuple R = 〈F, H, S, T 〉 where F is a failure pattern, H ∈
D(F) is a failure detector history, S is an infinite sequence
of steps of A, and T is an infinite list of non-decreasing time
values indicating when each step of S has occurred such
that:

(1) For all k ∈ N, if S[k] = (pi , x, y) (x and y denote here
any legitimate values), then pi has not crashed by time
T [k], i.e., pi /∈ F(T [k]);

(2) For all k ∈ N, if S[k] = (pi , x, y) and x ∈ RD, then x
is the value of the failure detector module of pi at time
T [k], i.e., x = H(pi , T [k]);

(3) For all k, � ∈ N, k 	= �, if T [k] = T [l], then S[k] and
S[l] are steps of different processes.

(4) S respects the specifications of all shared objects and all
process automata, given their initial states and sequence
of inputs that occur in S;

(5) Every process in correct(F) takes infinitely many steps
in S.

A partial run of an algorithm A is a finite prefix of a run of
A.1

3.4 Traces and Problems

A trace is a tuple 〈F, σ, T 〉 where F is a failure pattern,
σ ∈ (Π × (I ∪ O))∗, and T is a sequence of non-decreasing
time values, such that for all k ∈ N, if σ [k] = (pi , x), then
pi /∈ F(T [k]). We say that a run R = 〈F, H, S, T 〉 induces
a trace 〈F, σ, T̄ 〉, if σ contains the sequence of all inputs
and outputs that take place in S and T̄ is the sequence of the
corresponding times in T .

A problem is a set of traces, usually defined by a set of
properties traces must satisfy. A problem thus specifies the
permitted sequences of inputs and outputs given the failure
pattern and sequences of times when each input and output
in the sequences takes place. In this paper, we consider prob-
lems that are closed under the indistinguishability: if a trace
〈F, σ, T 〉 is in problem M , then any trace 〈F ′, σ, T ′〉, such
that correct(F) = correct(F ′), is also in M .

An algorithm A solves a problem M using a failure detec-
tor D, if the trace of every run of A using D is in M .

3.5 Comparing failure detectors

If, for failure detectors D and D′, there is a reduction algo-
rithm using D′ that extracts the output of D, i.e. implements
a distributed variable D-output such that in every run R =
〈F, H ′, S, T 〉 of the reduction algorithm, there exists H ∈
D(F) such that for all pi ∈ Π and t ∈ T, H(pi , t) =
D-outputi (t) (i.e., the value of D-output output at pi at time
t), then we say that D is weaker than D′. If D is weaker than
D′ but D′ is not weaker than D, then we say that D strictly
weaker than D′. If D and D′ are weaker than each other, we
say they are equivalent.

If D is weaker than D′, then D′ provides at least as much
information about failures as D: every problem that can be
solved using D can also be solved using D′. D is the weakest
failure detector to solve a problem M if there is an algorithm

1 A more formal definition of a run of an algorithm using a failure
detector can be found in [3,13].

123

On the weakest failure detector ever 357

that solves M using D and D is weaker than any failure
detector that can be used to solve M . If the weakest fail-
ure detector to solve a problem A is strictly weaker than the
weakest failure detector to solve a problem B, then we say
that A is strictly weaker than B, i.e., A requires strictly less
failure information than B.

4 A very weak failure detector

We introduce failure detector Υ , which outputs a non-empty
set of processes (RΥ = 2Π − {∅}), such that for every fail-
ure pattern F and every failure detector history H ∈ Υ (F),
eventually:

(1) the same set U ∈ 2Π − {∅} is permanently output at all
correct processes.

(2) this set U is not the set of correct processes in F , i.e.,
U 	= correct(F).

In a system of 2 processes, Υ and Ω [3] are equivalent.
(Recall that Ω outputs a leader process so that eventually
the same correct leader is output at all correct processes).
Basically, to get Υ from Ω , every process outputs the com-
plement of Ω in Π . On the other hand, to get Ω from Υ , every
process outputs the complement of Υ if this is a singleton,
and outputs the process identifier otherwise.

Ω was generalized to a failure detector Ωn [18], which
outputs a set of processes of size n so that, eventually, the
same set containing at least one correct process is perma-
nently output at all correct processes. (Clearly, Ω1 is Ω .)
The complement of Ωn in Π is a legal output for Υ . Hence,
Υ is weaker than Ωn . The converse is however not true in the
environment where n processes can fail, as we show below.

Theorem 1 Υ is strictly weaker than Ωn if n ≥ 2.

Proof We just discussed how to transform Ωn into Υ , so it
remains to show that Υ cannot be transformed into Ωn .

Assume, by contradiction, that we can extract the output
of Ωn from Υ . Extracting the output of Ωn is equivalent to
eventually identifying, in every run and at every correct pro-
cess, the same process pc that is not the only correct process
in that run. Thus, our assumption implies that there exists an
algorithm A that, using Υ , eventually outputs the same pc

at every correct process and Π − {pc} contains at least one
correct process. To establish a contradiction, we construct a
run of A in which the extracted failure detector output never
stabilizes.

We consider the set of runs of A in which Υ permanently
outputs {p1, . . . , pn} at all processes. Recall that this is a
legitimate output of Υ if either pn+1 is correct or there is at
least one faulty process in {p1, . . . , pn}.

Consider partial runs of A in which no process fails but
pn+1 is the only process that takes steps. Note that these
partial runs are indistinguishable for pn+1 from partial runs
in which every process but pn+1 is faulty. Thus, there exists a
sufficiently long such partial run R1 in which Υ always out-
puts {p1, . . . , pn} at all processes and A outputs a process
pi1 ∈ {p1, . . . , pn} at pn+1.

Now consider partial runs extending R1 in which (1) no
process fails, and (2) every process takes exactly one step
after R1 after which pi1 is the only process that takes steps.
Again, these partial runs are indistinguishable for pi1 from
partial runs in which every process but pi1 is faulty. Note that,
since n ≥ 2, if pi1 is the only correct process in a run, then at
least one process in {p1, . . . , pn} is faulty, and thus it is still
legitimate for Υ to always output {p1, . . . , pn}. Thus, there
exists a failure-free partial run R2 extending R1 in which Υ

always outputs {p1, . . . , pn} at all processes and A outputs
a process pi2 ∈ Π − {pi1} at pi1 after R1 (i.e., after the last
step of R1 in R2).

Now consider partial runs extending R2 in which (1) no
process fails, and (2) every process takes exactly one step
after R2 and then pi2 is the only process that takes steps.
Similarly, there exists a sufficiently long such partial run in
which Υ always outputs {p1, . . . , pn} at all processes and A
outputs a process pi3 ∈ Π − {pi2} at pi2 after R2.

By repeating this procedure, we obtain a failure-free run R
of A in which Υ always outputs {p1, . . . , pn} at all processes,
but the extracted failure detector output never stabilizes — a
contradiction. ��

5 Set-agreement

5.1 The problem

In the k-set-agreement problem, processes need to agree on
at most k values out of a possibly larger set of values. Let V
be the value domain such that ⊥ 	∈ V . Every process pi starts
with an initial value v in V (we say pi proposes v), and aims
at reaching a state in which pi irrevocably commits on a deci-
sion value v′ in V (we say pi decides on v′). Every run of a
k-set-agreement algorithm satisfies the following properties:
(1) Termination: Every correct process eventually decides on
a value; (2) Agreement: At most k values are decided on; (3)
Validity: Any value decided is a value proposed.

In the following, we first focus on solving n-set-agree-
ment in a system of n + 1 processes. We sometimes also talk
about implementing n-resilient n-set agreement. This prob-
lem is impossible if processes can only communicate using
registers, n processes can crash, and no information about
failures is available [2,14,20].

We show how to circumvent this impossibility using Υ :
we describe a protocol that solves n-set-agreement using

123

358 R. Guerraoui et al.

registers and Υ , while tolerating the failure of n processes.
Basically, implementing set-agreement aims at excluding at
least one proposed value among the n +1 possible ones. Our
protocol achieves this by using the output of Υ to eventually
split the processes into two non-overlapping subsets: those
in the subset output by Υ , and which we call gladiators, and
those outside that subset, and which we call citizens. Intui-
tively, gladiators do not decide on any value until either they
make sure one of them gives up its value, which is guaran-
teed to happen if one of them crashes, or they see a value
of a citizen, in which case they simply decide on that value.
The property eventually ensured by Υ is that either at least
one of the gladiators crash or at least one of the citizens is
correct.

Besides putting this intuition to work, technical difficulties
handled by our protocol include coping with the facts that (1)
Υ might output random sets for an arbitrarily long periods of
time, providing divergent and temporary information about
who is gladiator and who is citizen, and (2) citizens might
be faulty. A key procedure we use to handle these difficul-
ties is the k-converge routine, introduced in [21]. A process
calls k-converge with an input value in V and gets back an
output value v ∈ V and a boolean c. We say that the process
picks v and, if c = true, we say that the process commits v.
The k-converge routine ensures the following properties: (1)
C-Termination: every correct process picks some value; (2)
C-Validity: if a process picks v then some process invoked k-
converge with v; (3) C-Agreement: If some process commits
to a value, then at most k values are picked; (4) Convergence:
If there are at most k different input values, then every pro-
cess that picks a value commits. For any k ∈ {1, . . . , n + 1},
the k-converge routine can be implemented using registers
in an asynchronous system where any number of processes
may fail [21]. By definition, 0-converge(v) always returns
(v, false).

5.2 The protocol

The abstract pseudo-code of the protocol that solves n-set
agreement using Υ and registers is described in Fig. 1.

The protocol proceeds in rounds. In every round r , the
processes first try to reach agreement using n-convergence
(line 4). If a process pi commits to a value v, then pi writes
v in register D and returns v. If pi fails to commit (which
can only happen if all n + 1 processes take part in the n-
convergence instance), then pi queries Υ . Let U be the
returned value.

Now pi cyclically executes the following procedure (lines
12–17). If pi does not belong to U (pi believes it is a citi-
zen), then pi writes its value in a shared register D[r] and
proceeds to the next round. Otherwise (pi believes it is a glad-
iator), pi takes part in the (|U |−1)-convergence protocol try-
ing to eliminate one of the values concurrently proposed by

processes in U . (Recall that, by definition, 0-converge(v)

always returns (v, false).) The procedure is repeated as long
as none of the conditions in line 17 is satisfied, i.e., (a) no
process participating in the current round r reports that the
output Υ has not yet stabilized, (b) (|U | − 1)-convergence
does not commit to a value, and (c) no non-⊥ value is found
in D[r] or D (line 17). If pi finds D[r] 	= ⊥, then pi adopts
the value in D[r] and proceeds to round r + 1. If pi finds
D 	= ⊥ then pi returns D.

Remember that there is a time after which Υ perma-
nently outputs, at all correct processes, the same set U that is
not the set of correct processes: U either contains a
faulty process or there is a correct process outside U . Thus,
no process can be blocked in round r by repeating forever
the procedure described above: eventually, either some pro-
cess outside U writes its value in D[r], or some process is
faulty in U and (|U | − 1)-convergence returns a committed
value.

As a result, eventually, there is a round in which at least
one input value is eliminated: either some process in U adopts
a value from outside U , or processes in U commit to at most
|U | − 1 input values. In both cases, every process that par-
ticipates in n-convergence in round r + 1 (line 4) commits
one of at most n “survived” values.

Theorem 2 The algorithm in Fig. 1 solves n-set agreement
using Υ and registers.

Proof Consider an arbitrary run R of the algorithm in Fig. 1.
Validity immediately follows from the protocol and the

C-Validity property of k-converge.
Agreement is implied by the fact that every decided value

is first committed by n-convergence (line 4). Indeed, let r be
the first round in which some process pi commits to a value
after invoking n-converge[r]. By the C-Agreement property
of n-convergence, every process that invoked n-converge[r]
picked at most n different values. Thus, no more than n differ-
ent values can ever be written in register D. Since a process is
allowed to decide on a value only if the value was previously
written in D (lines 6 and 21), at most n different values can
be decided on.

Now consider Termination. We observe first that no pro-
cess can decide unless D contains a non-⊥ value, and if
D 	= ⊥, then every correct process eventually decides. This
is because the converge instances are non-blocking and every
correct process periodically checks whether D contains a
non-⊥ value and, if there is one, returns the value (lines 20
and 17). Assume now, by contradiction, that D = ⊥ forever
and, thus, no process ever decides in R.

Let U be the stable output of Υ in R, i.e., at every correct
process, Υ eventually permanently outputs U . Whenever a
process observes that the output of Υ is not stable in round
r , it sets register Stable[r] to true (line 16) and proceeds
to the next round. Further, if a process finds D[r] 	= ⊥,

123

On the weakest failure detector ever 359

Fig. 1 Υ -Based set agreement
protocol

then eventually every correct process finds D[r] 	= ⊥ and
proceeds to the next round. Moreover, by our assumption, no
process ever writes in D and returns in line 6. Thus, there
exists a round r such that every correct process reaches r ,
and the observed output of Υ at every process that reached
round r has stabilized on U .

Recall that U is a non-empty set of processes that is not
the set of correct processes in R, i.e., U 	= ∅ and U 	=
C , where C is the set of correct processes in R. Thus, two
cases are possible: (1) C is a proper subset of U , and (2)
C − U 	= ∅.

In case (1), there is at least one faulty process in U .
Since every faulty process eventually crashes, there exists
k ∈ N, such that at most |U | − 1 values are proposed to
(|U | − 1)-converge[r][k]. By the Convergence property of
the (|U |−1)-converge procedure, every correct process even-
tually commits to a value, writes it in D[r] and proceeds to
round r + 1.

In case (2), there is at least one correct process p j outside
U . Thus, p j eventually reaches round r and writes its current
value in D[r]. Thus, every correct process eventually reads
the value, adopts it and proceeds to round r + 1.

In both cases, every correct process reaches round r + 1.
By the algorithm, every process that reaches round r + 1
adopted a value previously written in D[r].

A process is allowed to write a value in D[r] only if (a)
the process is in Π −U , or (b) a process is in U and the value
is committed in (|U | − 1)-converge[r][k] for some k.

If (b) does not hold, then at most n + 1 −|U | ≤ n distinct
values can be found in D[r]. Otherwise, consider the first sub-
round k such that some process in U has committed a value
in (|U | − 1)-converge[r][k]. By the C-Agreement property
of (|U | − 1)-convergence, at most |U | − 1 distinct values
are picked by processes in U in (|U | − 1)-converge[r][k].
If a process does not commit on a value picked in (|U | −
1)-converge[r][k], it uses the value in (|U | − 1)-converge[r]
[k + 1] (line 14). By the Convergence, C-Agreement, and
C-Validity properties of (|U | − 1)-convergence, every cor-
rect process in U commits on one of at most |U | − 1 distinct
proposed values in sub-round k or k + 1.

In both cases, at most n + 1 − |U | + |U | − 1 = n distinct
values can ever be found in D[r]. Hence, at most n distinct
values can be proposed to n-convergence (line 4) in round
r +1. By the Convergence property of n-convergence, every
correct process commits and decides—a contradiction. Thus,
eventually, every correct process decides. ��

Remark Our algorithm actually solves a stronger version
of set-agreement that terminates even if not every correct
process participates, i.e., proposes a value and executes the

123

360 R. Guerraoui et al.

protocol. Indeed, assume (by slightly changing the model)
that some (possibly correct) process does not participate in a
given run of the algorithm in Fig. 1. Thus, in round 1, at most
n different values are proposed to n-converge (line 4) and, by
the Convergence property of n-converge, every correct par-
ticipant commits to a value. Thus, every correct participant
returns in line 6 of round 1.

As a corollary to Theorems 1 and 2, we disprove the conjec-
ture of [19] by showing that:

Corollary 3 For all n ≥ 2, Ωn is not the weakest fail-
ure detector to implement n-resilient n-set-agreement among
n + 1 processes using registers.

As a corollary to Theorems 1 and 2, and the fact that Ωn

is the weakest failure detector to implement n + 1-process
consensus using n-process consensus [13], we obtain that
implementing n-set-agreement using registers is strictly eas-
ier than solving consensus using n-process consensus objects
and registers:

Corollary 4 For all n ≥ 2, in a system of n + 1 processes
where up to n can fail, every failure detector that can be used
to solve consensus using n-consensus objects and registers
can also be used to solve n+1-set-agreement using registers,
but not vice versa.

5.3 f -Resilient set-agreement

For pedagogical purposes, we focused so far on the environ-
ment where n out of n + 1 processes can crash, i.e., on the
“wait-free” case. In this section, we consider the more gen-
eral environment where f processes can crash, and 0 < f <

n+1. More specifically, we consider the environment E f that
consists of all failure patterns F such that faulty(F) ≤ f .

By reduction to the impossibility of wait-free set agree-
ment, Borowsky and Gafni showed that f -set agreement is
impossible in E f [2]. We present a failure detector, which
generalizes Υ , and which circumvents this impossibility.
This failure detector, which we denote by Υ f , outputs a set of
processes of size at least n+1− f (RΥ f = {U ⊆ Π : |U | ≥
n + 1 − f }), such that, for every failure pattern F ∈ E f and
every failure detector history H ∈ Υ f (F), eventually (as
for Υ): (1) the same set is permanently output at all correct
processes, and (2) this set is not the set of correct processes
in F . Clearly, Υ n is Υ .

Failure detector Ω f can also be used to solve f -resilient
f -set agreement [17,18]. It is easy to see that Υ f is weaker
than Ω f in E f : to emulate Υ f , every process simply out-
puts the complement of Ω f in Π . Eventually the correct
processes obtain the same set of n + 1 − f processes that is
not the set of correct processes: the output of Ω f eventually
includes at least one correct process.

It is also straightforward to extract Ω1 = Ω from Υ 1 in
E1. In the reduction algorithm, every process pi periodically
writes ever-growing timestamps in the shared memory. If Υ 1

i
outputs a proper subset of Π (of size n), then pi elects the pro-
cess p� = Π − Υi , otherwise, if Υ 1 outputs Π (i.e., exactly
one process is faulty), then pi elects the process with the
smallest id among n processes with the highest timestamps.
Eventually, the same correct process is elected by the cor-
rect processes—the output of Ω is extracted. However, in
general, Υ f is strictly weaker than Ω f :

Theorem 5 Υ f is strictly weaker than Ω f in E f if 2 ≤
f ≤ n.

Proof We generalize the proof of Theorem 1. By contradic-
tion, assume there exists an algorithm A using Υ f that, in
every run with at least n+1− f correct processes, eventually
outputs at every correct process the same set of processes L
such that |L| = f and L contains at least one correct process.
To establish a contradiction, we construct a run of A in which
the extracted output never stabilizes.

We consider the set of runs of A in which Υ f permanently
outputs U = {p1, . . . , pn} at all processes. Recall that this
is a legitimate output if either pn+1 is correct or there is at
least one faulty process in {p1, . . . , pn}.

Let R1 be any partial run of A in which no process fails
and Υ f always outputs U . Let L1 be the set output by A at
some process in run R1.

Now consider partial runs that extend R1 in which (1) no
process fails, and (2) every process takes exactly one step
after the last step of R1 and then only processes in Π − L1

take steps. These partial runs are indistinguishable for pro-
cesses in Π − L1 from partial runs in which the processes in
L1 are faulty. Note that, since 2 ≤ f ≤ n, U 	= Π − L1, and
it is thus legitimate for Υ f to output U in any run in which
every process in L1 is faulty. Thus, there exists such a partial
run R2 in which Υ f always outputs U and A outputs a set
L2 	= L1 at some process after R1.

Now consider partial runs that extend R2 in which (1) no
process fails, and (2) every process takes exactly one step
after the last step of R2 and then only processes in Π − L2

take steps. Similarly, there exists such a partial run R3 in
which Υ f always outputs U and A outputs a set L3 	= L2 at
some process after R2.

Following this procedure, we obtain a failure-free run of
A in which Υ f always outputs U = {p1, . . . , pn} but the
extracted output of Ω f never stabilizes—a contradiction. ��

A generalized f -resilient f -set-agreement algorithm
using Υ f is presented in Fig. 2. The algorithm essentially
follows the lines of our “wait-free” algorithm described in
Fig. 1, except that now the set U of n + 1 − f or more
gladiators (processes that are eventually permanently out-
put by Υ f) have to be able to eventually commit on at most

123

On the weakest failure detector ever 361

|U |+ f −n −1 distinct values, so that, together with at most
n + 1 − |U | values chosen by the citizens, there would even-
tually be at most f distinct values in the system. To achieve
this, we add a simple mechanism based on the use of atomic
snapshots [1].

An atomic snapshot object has n +1 positions and exports
two atomic operations: update and snapshot. Operation
update(i, v) writes value v in position i , and snapshot()
returns the content of the object. Note that the results of every
two snapshots are related by containment, i.e., one of them
contains, in each position, the same or more recently written
value than the other. Atomic snapshots can be implemented
in an asynchronous system using registers [1].

In our algorithm, the use atomic snapshots ensures that, if
at least one gladiator is faulty and all citizens are faulty, then
the correct gladiators eventually eliminate at least n + 1 − f
values, and, thus, at most f values will eventually be decided.
In each iteration (r, k) (lines 15–30 in Fig. 2), every gladiator
(process in U) first updates its value in atomic snapshot object
A[r][k], and then repeatedly takes snapshots of A[r][k] until
a snapshot with at least n + 1 − f non-⊥ values is obtained
(line 19). Since all snapshots of A[r][k] are related by con-
tainment, and assuming that each resulting snapshot contains
at least n + 1 − f and at most |U | − 1 values (at least one
process does not access A[r][k]), at most |U | + f − n − 1
distinct snapshots of A[r][k] can be obtained by processes in
U . Every process in U adopts the minimal value in its latest
snapshot of A[r][k] (line 25), and, thus, at most |U |+ f −n−1
distinct values can be adopted. As a result, gladiators commit
on at most |U |+ f −n−1 values using the (|U |+ f −n−1)-
converge[r][k] procedure (line 26).

Theorem 6 There is an algorithm that implements f -set
agreement using Υ f and registers in E f .

Proof Consider an arbitrary run of the protocol in Fig. 2.
The Agreement and Validity properties are immediate from
the algorithm. Termination is shown along the lines of the
proof of our “wait-free” algorithm described in Fig. 1, except
that now we have a new potentially blocking loop (in lines
17–19).

Suppose, by contradiction, that some correct process is
blocked in the loop of lines 17–19, while executing a sub-
round k of a round r (let k and r be the earliest sub-round
and round, respectively, in which this happens). It is easy
to see that, if a correct process exits the loop (by evaluating
the condition of line 19 to true), then eventually every cor-
rect process is freed too. Further, since no correct process
was blocked in the loop of lines 17–19 before sub-round
k of round r , using the arguments presented in the proof of
Theorem 2, we observe that every correct process also
reached round r . Note that in round r , no process has writ-
ten a non-⊥ value in D[r] (line 11): otherwise, every cor-
rect process that is blocked in lines 17–19 would eventually

Fig. 2 Υ f -Based f -resilient f -set agreement protocol

read the value and escape. Thus, every correct process is
eventually blocked in lines 17–19, while executing sub-round
k of round r . Previously, every correct process pi has written
a non-⊥ value in A[r][k][i] (line 16). But since there are at
least n + 1 − f correct processes in R, A[r][k] eventually
contains at least n+1− f non-⊥ entries and, thus, the condi-
tion in line 19 is eventually satisfied—a contradiction. Thus,
no correct process can be blocked forever, while executing
lines 17–19.

Suppose, by contradiction, that there is a run R of our
algorithm in which some correct process never decides. By
repeating the arguments presented in the proof of Theorem 2,
D always contains ⊥ in R, and there exists a round r such
that every correct process reached round r , and the observed

123

362 R. Guerraoui et al.

output of Υ f at every process that reached round r has
stabilized on some set U in round r . By the properties of
Υ f , U is of size at least n + 1 − f and U is not the set of
correct processes in R.

Hence, Π − U contains no correct process: otherwise,
some correct process in Π − U would eventually write a
non-⊥ value in D[r] in line 11, and every correct process
would eventually exit the loop. Thus, every correct process
pi belongs to U and eventually writes a non-⊥ value in
A[r][k][i] (line 16). But since there are at least n + 1 − f
correct processes in R, A[r][k] eventually contains at least
n + 1 − f non-⊥ entries and, thus, the condition in line 19
is eventually satisfied—a contradiction.

In every sub-round k of round r , each correct process
eventually exits the loop in lines 17–19 and, since D is
never ⊥, reaches line 23 (if D[r] 	= ⊥) or line 26 (other-
wise).

Note that at most n + 1 − |U | different non-⊥ values can
be written in D[r] by processes not in U . On the other hand,
a process in U is allowed to write v in D[r] only if it has
committed on v in some instance of (f + |U | − n − 1)-
converge[r][k]. By the C-Agreement and Validity proper-
ties of (f + |U | − n − 1)-convergence and the fact that
every value returned by (f + |U | − n − 1)-converge[r][k]
is adopted, at most f + |U | − n − 1 distinct values can ever
written by processes in U . Thus, at most n + 1 − |U | +
f + |U | − n − 1 = f distinct values can ever be written in
D[r].

Suppose that D[r] 	= ⊥ at some point in R. Thus, even-
tually every process either fails or adopts one of at most f
values written in D[r] (line 23 or 33), and then proceeds
to round r + 1. Hence, by the Convergence property of
f -convergence, every correct process commits a value after
invoking f -converge[r + 1] and decides—a contradiction.

Now suppose that D[r] = ⊥ forever. By the algorithm,
there are no correct processes outside U and, thus, there is
at least one faulty process in U (otherwise, U would be the
set of correct processes, violating the properties of Υ f). Let
k be a sub-round of round r in which no faulty process par-
ticipates (every faulty process fails before starting the sub-
round). Since there is at least one faulty process in U , at most
|U | − 1 values can be written in A[r][k].

Now consider all sets that can be returned by A[r][k]
snapshot() at different processes right before the process
exits the repeat-until loop in lines 17–31. Every such set
contains at least n + 1 − f and at most |U | − 1 non-⊥ val-
ues. Moreover, by the properties of atomic snapshot [1], all
these sets are related by containment. Thus, there can be
at most |U | − 1 − (n + 1 − f) + 1 = |U | + f − n − 1
distinct sets, and, thus, at most |U | + f − n − 1 differ-
ent values can be computed by the processes in line 25.
Hence, by the Convergence property of (|U | + f − n − 1)-
converge[r][k], every correct process that invokes the

operation, commits on a value and writes it in D[r]—a
contradiction.

Thus, eventually, every correct process decides. ��

6 The necessity of Υ f

In this section we show that, in a certain sense, Υ f is minimal
in systems where up to f processes can crash. Our minimali-
ty result holds within the class of stable failure detectors that
eventually stick to the same information about failures, say
after all faulty processes have crashed. More specifically, we
show that Υ f is weaker than any stable f -non-trivial fail-
ure detector, i.e., any stable failure detector that cannot be
implemented in an f -resilient asynchronous system. This
implies that Υ is also minimal when up to n processes can
crash.

6.1 Intuition

To get intuition about our minimality result, let us consider
the case f = n and focus on a restricted class of “faithful”
non-trivial failure detectors that, in every run, output the same
value at every correct process, and the output value depends
only on the set of correct processes. The immediate observa-
tion is that for each faithful failure detector D, and for each
value d ∈ RD, there exists C ∈ 2Π − {∅} such that, for all
F with correct(F) = C , D cannot output d for F . Indeed,
if there is a value that can be output by D in every failure
pattern, then D can be implemented from the “dummy” fail-
ure detector that always outputs d. But this would contradict
the assumption that D is non-trivial. Thus, in every run, by
observing the output of a “faithful” failure detector D, we
can deterministically choose a non-empty set of processes
that cannot be the set of correct processes in that run—this
is sufficient for emulating Υ .

Note that the sketched necessity proof is non-constructive.
Indeed, determining the set of processes C that is “incom-
patible” with d is in general undecidable. However, to show
that a reduction algorithm exists, it is sufficient to show that
there exists a deterministic map from RD

In the following, we extend this intuition to the class of
stable failure detectors.

6.2 Stable failure detectors

Establishing our most general necessity result goes through
delimiting the scope of failure detectors within which Υ f is
minimal. We consider the class of stable failure detectors.
We say that a failure detector, D, is stable if the same value is
eventually permanently output by D at all correct processes.
Formally, for every failure pattern F and every H ∈ D(F),
there exists a value d ∈ RD and t ∈ N such that for all

123

On the weakest failure detector ever 363

t ′ ≥ t and pi ∈ correct(H), H(pi , t ′) = d (we say that d
is stable in H).2 Most failure detectors proposed in the lit-
erature for solving decision problems in the shared memory
model [3,4,7,18] are stable or equivalent to some stable fail-
ure detectors. Some failure detectors are nevertheless unsta-
ble and cannot be shown equivalent to a stable one [22,23].

6.3 Minimality

Before we proceed with the minimality proof, we introduce
some auxiliary notions.

Let D be a failure detector with range R. Let σ be an
element in (Π × R)∗, i.e., a sequence (q1, d1), (q2, d2), . . .,
where for all k ∈ N, qk ∈ Π and dk ∈ R. We denote by
correct(σ) the set of processes that appear infinitely often
in σ . We say that σ is an f -resilient sample of D if
|correct(σ)| ≥ n + 1 − f and there exist a failure pattern
F ∈ E f , a history H ∈ D(F) and a list T of non-decreasing
time values such that,

(i) for all k ∈ N, qk /∈ F(T [k]),
(ii) for all k ∈ N, dk = H(qk, T [k]), and

(iii) for all k, � ∈ N, k 	= �, if T [k] = T [l], then qk 	= q�.

Intuitively, σ = (q1, d1), (q2, d2), . . . is an f -resilient sam-
ple of D if failure-detector values d1, d2, . . . could have been
observed (in this order) by processes q1, q2, . . . in a run of
some algorithm using D in F ∈ E f . The following observa-
tion is immediate from the definition.

Lemma 7 Let σ ∈ (Π × R)∗ be an f -resilient sample of
D, and σ ′ be a subsequence of σ such that correct(σ) =
correct(σ ′). Then σ ′ is also an f -resilient sample of D.

We also introduce the notion of a dummy failure detec-
tor, which always outputs the same value (i.e., its range is
a singleton {d}). Clearly, a dummy failure detector D can
be emulated in an asynchronous system. If a problem can be
solved in E f using a dummy failure detector, then we say that
the problem is f -resilient solvable. Otherwise, we say that
the problem is f -resilient impossible. We say that a failure
detector is f -non-trivial if it can be used to solve an f -resil-
ient impossible problem in E f . By definition, an n-resilient
impossible problem is wait-free impossible.

First we observe that the output of an f -non-trivial failure
detector can be associated with a sequence in (Π ×R)∗ that
is “incompatible” with the current run:

Lemma 8 Let D be an f -non-trivial failure detector. Let R
be the range of D. Then, for all d ∈ R, there exists a sequence

2 Our lower bound proofs actually work also for “locally stable” failure
detectors that eventually permanently output a “stable” value at every
correct process (the stable values output at different correct processes
can be different though).

σ ∈ (Π × {d})∗ such that |correct(σ)| ≥ n + 1 − f and σ

is not an f -resilient sample of D.

Proof Let A be an algorithm that solves an f -resilient impos-
sible problem M using D.

By contradiction, suppose that there exists a value d ∈ R
such that each σ ∈ (Π ×{d})∗ with |correct(σ)| ≥ n+1− f
is an f -resilient sample of D, i.e., there exist a failure pattern
F ∈ E f , a history H ∈ D(F) and a list T of increasing time
values such that for all k ∈ N, (i) qk /∈ F(T [k]), (ii) d =
H(qk, T [k]), and (iii) for all � ∈ N, k 	= �, if T [k] = T [l],
then qk 	= q�.

Consider algorithm A′ that is defined exactly like A except
that, instead of D, A′ uses a dummy failure detector Id that
always outputs d: each time a process is expected (according
to its state in A) to query D we substitute D with Id .

For each run R′ = 〈F ′, H ′, S, T ′〉 of A′ where F ′ ∈
E f , there exists a run R = 〈F, H, S, T 〉 of A. Indeed, let
q1, q2, . . . be the sequence of process ids such that ∀k ∈ N,
S[k] = (qk,−,−) and H ′(qk, T ′[k]) = d. Let F be a failure
pattern in E f , H be a history in D(F), and T be a list of non-
decreasing time values such that correct(F) = correct(F ′),
and ∀k ∈ N, qk /∈ F(T [k]), H(qk, T [k]) = d, and for all
k, � ∈ N, k 	= �, if T [k] = T [�], then qk 	= q�. By construc-
tion, R = 〈F, H, S, T 〉 is a run of A, and, thus, the trace of R
is in M . But the traces of R and R′ are indistinguishable, and,
thus, the trace of R′ is also in M . Hence, A′ solves M using
Id - a contradiction to the assumption that M is f -resilient
impossible.

Thus, for all d ∈ R, there exists a sequence σ ∈ (Π ×
{d})∗, with |correct(σ)| ≥ n+1− f , that is not an f -resilient
sample of D. ��
For a sequence σ ∈ (Π × {d})∗, let w(σ) denote the length
of the shortest prefix of σ that includes all steps that pro-
cesses in Π − correct(σ) take in σ ; if correct(σ)= Π , then
w(σ) = 0. The following corollary follows immediately
from Lemma 8:

Corollary 9 For each f -non-trivial failure detector D with
range R, there exists a map ϕD that carries each d ∈ R
to a tuple (correct(σ),w(σ)), where σ ∈ (Π × {d})∗,
|correct(σ)| ≥ n +1− f , and σ is not an f -resilient sample
of D.

Note that we do not construct the map ϕD here: it is sufficient
for us to know that such a map exists for each f -non-trivial
failure detector.

Now we are ready to prove the necessity part of our result.
Roughly, we extract the output of Υ from the output of an f -
non-trivial failure detector D as follows. Processes periodi-
cally query their modules of D and report the obtained values
by writing the values equipped with increasing timestamps
in the shared memory. Each output failure detector value d is

123

364 R. Guerraoui et al.

associated with an sequence σ ∈ (Π × R)∗ (|correct(σ)| ≥
n + 1 − f) that is suspected to be “incompatible” with the
current run (here we use the map ϕD the existence of which
is guaranteed by Corollary 9).

For a stabilized value d, if the shortest prefix of σ that
includes all steps of processes appearing only finitely often
in σ was observed in the current run (could have taken place
with the current failure pattern), then the processes evaluate
the extracted output of Υ f as the set of processes that appear
infinitely often in σ . Indeed, correct(σ) cannot be the set of
correct processes: otherwise, by Lemma 7, σ would be an
f -resilient sample of D. Here to make sure that a given finite
schedule of length r could have happened with the current
failure pattern, it is sufficient for some process to observe r
consecutive batches of steps such that, in every batch, every
process queried its failure detector module and obtained d at
least once.

On the other hand, as long as the finite prefix of σ is not
observed, the processes evaluate the extracted output of Υ f

as Π . Note that a given finite prefix of σ is never observed
only if some process is faulty. In that case, Π cannot be the
set of correct processes.

In both cases, every process evaluates an extracted value of
Υ f . If a value different from d is reported, then the extraction
procedure is restarted. Eventually, the values will stabilize,
and the extracted output will conform with the specification
of Υ f .

Theorem 10 Υ f is weaker than any f -non-trivial stable
failure detector.

Proof Let D be any stable failure detector that can be used
to solve an f -resilient impossible problem M . Let A be the
corresponding algorithm. Let R be the range of D.

The reduction algorithm that transforms D into Υ f is pre-
sented in Fig. 3. In the algorithm, every process pi runs two
parallel tasks, Task 1 and Task 2. Here ϕD denotes a map
that carries each d ∈ R to a tuple (correct(σ),w(σ)), where
σ ∈ (Π × {d})∗, |correct(σ)| ≥ n + 1 − f , and σ is not
an f -resilient sample of D. (By Corollary 9, such a map
exists.)

In Task 1, pi periodically queries its module of D and
writes the returned value, equipped with an ever-increasing
timestamp, in a register R[i] that is periodically read by all.
The ever-increasing timestamps allows pi to detect when a
given process p j reports a new failure detector value: it is suf-
ficient to wait until p j increases its timestamp (i.e., writes in
R[j]) at least twice.

In Task 2, pi proceeds in rounds. In every round, con-
sisting of steps described in lines 7–21 of Fig. 3, pi tries to
compute the stable output of Υ f , as long as the observed out-
put of D at every process does not change (lines 15 and 21).
When some process reports that its output of D has not sta-
bilized yet, pi proceeds to the next round. Since D eventually

outputs the same value at every correct process, every
correct process is eventually blocked forever in line 15 or
line 21.

Let d be the output of D at pi in a given round of Task 2. In
the beginning of the round, pi sets Υ f -outputi to Π (line 8),
and deterministically evaluates (S, r) as (correct(σ),w(σ)),
where σ ∈ (Π × {d})∗, |correct(σ)| ≥ n + 1 − f , and σ is
not an f -resilient sample of D (line 10). If S = Π , then pi

simply waits until some process reports that its module of D
outputs a value different from d (line 21).

If S 	= Π , then pi first waits until any process observes
r = w(σ) batches of steps such that, in every batch, every
process took at least one new query step in which D returned
d (line 15). If r such batches are observed, then pi concludes
that S cannot be the set of correct processes in the current
run, sets Υ f -outputi to S, and blocks in line 21.

Now we show that, in every run of our algorithm, vari-
ables {Υ f -output j } satisfy the properties of Υ f , i.e., there is
a time after which the correct processes output the same non-
empty set of processes that is not the current set of correct
processes.

Consider any run of the reduction algorithm. Let F be the
failure pattern and H be the failure detector history in that
run. Consider the time after which no process ever observes
that a new value other than d is output by D at any process,
i.e., no process ever reports a new step with a value d ′ 	= d.
Let (S, r) = ϕD(d), S = correct(σ), r = w(σ), where
σ ∈ (Π × {d})∗, |correct(σ)| ≥ n + 1 − f , and σ is not an
f -resilient sample of D.

If correct(σ) = Π , then every correct process eventually
sets Υ f -outputi to Π in line 8 and blocks forever in line 21.
Note that σ is a subsequence of every σ ′ ∈ (Π × {d})∗ such
that correct(σ ′) = Π .

Suppose, by contradiction, that correct(F) = Π . Since
d is the failure detector value that every process eventually
obtains, there exists σ ′ ∈ (Π ×{d})∗ such that correct(σ ′) =
Π and σ ′ is an f -resilient sample of D. By Lemma 7, σ is
also an f -resilient sample of D—a contradiction. Hence,
correct(F) 	= Π , and Π is a legitimate stable output of Υ f

in this case.
Now assume that correct(σ) 	= Π . Suppose that a cor-

rect process is blocked forever in line 15. Thus, eventually,
every correct process is also blocked in line 15. Indeed, since
we assume that no process observes a failure detector value
other than d, no process can proceed to the next round in line
18. Thus, when a correct process p j exits the wait clause, it
sets D[j] = d in line 19 and blocks in line 21. Every correct
process blocked in line 15 will eventually find D[j] = d and
exit the wait clause.

Hence, we only need to consider two cases: (1) all correct
processes are blocked forever in the wait clause in line 15,
and (2) all correct processes exit the wait clause in line 15
and block forever in line 21.

123

On the weakest failure detector ever 365

Fig. 3 Transforming D into
Υ f

In case (1), every correct process pi sets Υ f -outputi to
Π and blocks forever waiting for some process p j to take
one more step in Task 1. This can only happen if p j is faulty.
Thus, correct(F) 	= Π , and Π is a legitimate stable output
of D.

In case (2), some process previously observed w(σ)

batches of steps such that, in every batch, every process
p j reported, at least twice, that its module of D output d
by writing new values in register R[j]. By our algorithm
(Task 1), between these two writing steps, p j queried D and
obtained d. Thus there exists σ ′, an f -resilient sample of
D, where correct(σ ′) = correct(F), that begins with w(σ)

batches of the form (q1, d), (q2, d), . . . , (qn+1, d), where
{q1, q2, . . . , qn+1} = Π .

Suppose now that correct(σ) = correct(F) = correct
(σ ′). Note that the prefix of σ of length w(σ) is a subse-
quence of the prefix of σ ′ of length w(σ)(n + 1). Since the

prefix of σ of length w(σ) includes all steps that processes
in Π − correct(F) take in σ , σ is a subsequence of σ ′. By
Lemma 7, σ is an f -resilient sample of D—a contradiction.
Thus, correct(σ) 	= correct(F), and correct(σ) is a legiti-
mate stable output of Υ f .

Thus, in every run, the correct processes eventually set
their emulated outputs of Υ f to the same non-empty set of at
least n+1− f processes that is not the set of correct processes
in that run—the output of Υ f is extracted. ��

7 Concluding remarks

We established in this paper that Υ (resp. Υ f) is weaker
than any stable failure detector that circumvents a wait-free
(resp. f -resilient) impossibility. Most failure detectors (we

123

366 R. Guerraoui et al.

are aware of) that have been proposed to capture minimal
information to circumvent asynchronous impossibilities in
the shared memory model are stable or have stable equiva-
lents [3,4,7,18].

An interesting aspect of our minimality result is that it
holds regardless of which shared objects are used to cir-
cumvent an impossibility. Indeed, the only fact we use to
extract the output of Υ f is the very impossibility to solve
a given problem in a given model. On the other hand, our
Υ (Υ f)-based algorithms work in the “weakest” shared mem-
ory model where processes communicate through registers.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.:
Atomic snapshots of shared memory. J. ACM 40(4), 873–890
(1993)

2. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for
t-resilient asynchronous computations. In: Proceedings of the 25th
ACM Symposium on Theory of Computing, pp. 91–100. ACM
Press, New York (1993)

3. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure
detector for solving consensus. J. ACM 43(4), 685–722 (1996)

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

5. Chaudhuri, S.: More choices allow more faults: set consensus
problems in totally asynchronous systems. Inf. Comput. 105(1),
132–158 (1993)

6. Chen, W., Zhang, J., Chen, Y., Liu, X.: Weakening failure detec-
tors for k-set agreement via the partition approach. In: Proceedings
of the 21st International Symposium on Distributed Computing,
pp. 123–138 (2007)

7. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos, V.,
Koutnetzov, P., Toueg, S.: The weakest failure detectors to solve
certain fundamental problems in distributed computing. In: Pro-
ceedings of the 23th ACM Symposium on Principles of Distributed
Computing (2004)

8. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov,
P.: Mutual exclusion in asynchronous systems with failure detec-
tors. J. Parallel Distrib. Comput. 65(4), 492–505 (2005)

9. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchro-
nism needed for distributed consensus. J. ACM 34(1), 77–97
(1987)

10. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the
presence of partial synchrony. J. ACM 35(2), 288–323 (1988)

11. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of
distributed consensus with one faulty process. J. ACM 32(2),
374–382 (1985)

12. Guerraoui, R., Herlihy, M., Kouznetsov, P., Lynch, N.A., Newport,
C.C.: On the weakest failure detector ever. In: Proceedings of the
26th ACM Symposium on Principles of Distributed Computing,
pp. 235–243 (2007)

13. Guerraoui, R., Kouznetsov, P.: Failure detectors as type boost-
ers. Distrib. Comput. 20(5), 343–358 (2008)

14. Herlihy, M., Shavit, N.: The asynchronous computability theorem
for t-resilient tasks. In: Proceedings of the 25th ACM Symposium
on Theory of Computing, pp. 111–120 (1993)

15. Herlihy, M., Wing, J.M.: Linearizability: a correctness condi-
tion for concurrent objects. ACM Trans. Program. Lang. Syst.
12(3), 463–492 (1990)

16. Jayanti, P.: Robust wait-free hierarchies. J. ACM 44(4), 592–614
(1997)

17. Mostéfaoui, A., Raynal, M., Travers, C.: Exploring Gafni’s
reduction land: from omega to wait-free adaptive (2p-[p/k])-
renaming via k-set agreement. In: Proceedings of the 20th
International Symposium on Distributed Computing, pp. 1–15
(2006)

18. Neiger, G.: Failure detectors and the wait-free hierarchy. In: Pro-
ceedings of the 14th ACM Symposium on Principles of Distributed
Computing (1995)

19. Raynal, M., Travers, C.: In search of the holy grail: looking for the
weakest failure detector for wait-free set agreement. In: Proceed-
ings of the 10th International Conference on Principles of Distrib-
uted Systems, pp. 3–19 (2006)

20. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossi-
ble: the topology of public knowledge. In: Proceedings of the 25th
ACM Symposium on Theory of Computing, pp. 101–110. ACM
Press, New York (1993)

21. Yang, J., Neiger, G., Gafni, E.: Structured derivations of consensus
algorithms for failure detectors. In: Proceedings of the 17th ACM
Symposium on Principles of Distributed Computing, pp. 297–306
(1998)

22. Zielinski, P.: Automatic classification of eventual failure detectors.
In: Proceedings of the 21st International Symposium on Distrib-
uted Computing, pp. 465–479 (2007)

23. Zielinski, P.: Anti-Omega: the weakest failure detector for set
agreement. In: Proceedings of the 27th ACM Symposium on Prin-
ciples of Distributed Computing (2008)

123

	On the weakest failure detector ever
	Abstract
	1 Introduction
	2 Related work
	3 Model
	3.1 Processes and objects
	3.2 Failure patterns and failure detectors
	3.3 Algorithms
	3.4 Traces and Problems
	3.5 Comparing failure detectors

	4 A very weak failure detector
	5 Set-agreement
	5.1 The problem
	5.2 The protocol
	5.3 f-Resilient set-agreement

	6 The necessity of f
	6.1 Intuition
	6.2 Stable failure detectors
	6.3 Minimality

	7 Concluding remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

