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Abstract. Easy proofs are given, of the impossi- 
bility of solving several consensus problems 
(Byzantine agreement, weak agreement, Byzan- 
tine firing squad, approximate agreement and 
clock synchronization) in certain communi-  
cation graphs. 

It is shown that, in the presence of m faults, 
no solution to these problems exists for com- 
munication graphs with fewer than 3 m +  1 no- 
des or less than 2 m + l  connectivity. While 
some of these results had previously been 
proved, the new proofs are much simpler, pro- 
vide considerably more insight, apply to more 
general models of computation, and (particular- 
ly in the case of clock synchronization) signifi- 
cantly strengthen the results. 
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1 Introduction 

in this paper, we present easy proofs for the 
impossibility of solving several consensus prob- 
lems in particular communication graphs. We 
prove results for Byzantine agreement, weak 
agreement, the Byzantine firing squad problem, 
approximate agreement and clock synchroni- 
zation. The bounds are all the same: tolerating 
m faults requires at least 3 m + l  nodes, and 
requires at least 2m + 1 connectivity in the com- 
munication graph. (The connectivity of a graph 
is the minimum number of nodes whose re- 
moval disconnects the graph. Also, we assume 
throughout that graphs have at least three 
nodes.) For a given value of m, we call graphs 
with fewer than 3 m + l  nodes or less than 
2m+ 1 connectivity inadequate graphs. 

Each of our proofs is an argument by con- 
tradiction. We assume that a given problem can 
be solved in a system with an inadequate com- 
munication graph, and construct a set of system 
behaviors, which cannot all satisfy the correct- 
ness conditions for the given problem, although 
they are required to do so. Versions of many of 
the results were already known, with proofs of 
this same general form. Our proofs differ from 
the earlier proofs in the technique we use to 
construct the set of behaviors. Our technique is 
simpler, and applies to more general models of 
distributed computation. 

For Byzantine agreement, both bounds were 
already known [12, 5]. The 3m+ 1 node lower 
bound in [12] was proved only for a particular 
synchronous model of computation. Although 
carefully done, the proof is somewhat compli- 
cated and not as intuitive as one might like. In 
contrast, our proof is simple and transparent, 
and applies to general models of computation. 
A proof of the 2 m + 1 connectivity lower bound 
was presented informally in [5]; we prove that 
bound more formally and for more general 
models. 

For weak Byzantine agreement, the require- 
ment of 3m+ 1 nodes was known [9], but was 
proved using a complicated construction. The 
new proof is easy and extends to more general 
models (although not as general as those for 
Byzantine agreement and approximate agree- 
ment). The 2m+ 1 connectivity requirement was 
previously unknown. The result for the Byzan- 
tine firing squad problem follows from a re- 
duction to weak agreement in [4]. We provide 
a direct proof. For approximate agreement, the 
3m+1 bound was noted, but not proved, in 

[7], while the 2m+1 connectivity requirement 
was previously unknown. 

For clock synchronization, the 3m+ 1 node 
bound was proved in [6], with a complicated 
proof. The authors of [6] also claimed that they 
knew how to prove the corresponding 2m+ 1 
connectivity lower bound, but we presume that 
such a proof would also be complicated. We 
prove both the 3 m + l  node and the 2m+1  
connectivity bounds, for a much more general 
notion of clock synchronization than in [6]. 
These synchronization bounds assume that 
there is no direct way nodes measure the pas- 
sage of time, other than by reading their in- 
accurate hardware clocks. 

Since we obtain the same lower bounds for 
each problem, one might think that the prob- 
lems are equivalent in some sense. This is not 
the case. We see that the bounds for the dif- 
ferent problems require different assumptions 
about the underlying model. For example, the 
lower bounds for Byzantine and approximate 
agreement work with virtually any reasonable 
computational model, while the lower bound 
for weak agreement requires a special assump- 
tion, placing a bound on the rate of propaga- 
tion of information through the system. The 
bound for clock synchronization requires a dif- 
ferent assumption about how devices can mea- 
sure time. Many of the results are sensitive to 
small differences in underlying assumptions 
(about such factors as communication delay or 
the behaviors of faulty nodes.) This paper helps 
to clarify these issues. 

2 A model of distributed systems 

In order to make the impossibility results clear, 
concise and general, we introduce a simple 
model of distributed systems. 

A communication graph is a direct graph G 
with node set nodes(G) and edge set edges(G), 
such that the directed edges occur in pairs; 
edge (u, v) ~ edges (G) if and only if 
(v, u)~edges (G). (We consider a pair of directed 
edges rather than a single undirected edge in 
order to model the communication in each di- 
rection separately). We call the edge (u, v) an 
outedge of u, and an inedge of v. Given U a 
subset of nodes (G), the subgraph G v induced by 
U is the graph containing all the nodes in U 
and all the edges between nodes in U. The 
inedge border of G U is the set of edges from 
nodes outside U into U; that is, 
edges (G) c~ ((nodes (G)\ U) x U). 
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A sys t em ~ is a communicat ion graph G 
with an assignment of a device  and an input to 
each node of G. Devices are undefined primitive 
objects. The specific inputs we consider are en- 
codings of Booleans, real numbers of real-va- 
lued functions of time (e.g., local clocks). The 
particular type of input depends on the agree- 
ment problem addressed. If a node is assigned 
device A in system fr we say that the node runs 
A. A subsys t em oR of ff is any subgraph G v of G 
with the associated devices and inputs. 

Every system ~ has a sys t em behavior,  ~,  
which is a tuple containing a behavior  of every 
node and edge in G. (We also describe E as a 
behavior of the communicat ion graph G. Note 
that a system has exactly one behavior, while a 
graph may have several, depending on the de- 
vices and inputs assigned to the nodes.) The 
restriction of a system behavior g to the be- 
haviors of the nodes and edges of a subgraph 
G U of G is the scenario  C U of G v in & 

For now, we take node and edge behaviors 
as primitives. In more concrete and familiar 
models, a node or edge behavior might be a 
finite or infinite sequence of states, or a map- 
ping from the positive reals to some state set, 
denoting state as a function of time. (We use 
the latter interpretation for later results.) Less 
familiar models might interpret behaviors as 
mappings from reals to states, or from trans- 
finite ordinals to states. To obtain our first re- 
sults, the precise interpretation of node and 
edge behaviors is unimportant.  We need only 
restrict our model so that the following two 
axioms hold. (We assume these two axioms 
throughout  the paper. Some of the later results 
require additional assumptions.) 

Loca l i t y  ax iom.  Let fr and ~'  be systems with 
behaviors C and g', respectively, and isomor- 
phic subsystems ~ and ~ ' ,  (with vertex sets U 
and U'). If the corresponding behaviors of the 
inedge borders of U and U' in g and g'  are 
identical, then scenarios E v and ~v' are identi- 
cal. 

At heart, the Locality axiom says that com- 
munication only takes place over the edges of 
the communicat ion graph. In particular, it ex- 
presses the following property: The only pa- 
rameters affecting the behavior of any local 
portion of a system are the devices and inputs 
at each local node, together with any infor- 
mation incoming over edges from the remain- 
der of the system. If these parameters are the 
same in two behaviors, the local behaviors 

(scenarios) are the same. 1 Clearly, some such 
locality property must hold, or agreement is 
trivially achievable by having devices read 
other device's inputs directly. 

Faul t  ax iom.  Let A be any device. Let 
E 1 . . . .  , E a be d edge behaviors, such that each 
E i is the behavior of the i'th outedge, in some 
system behavior gi, of a node running A. Let u 
be any node with d outedges (u, v0, ..., (u,/)e). 
There is a device F such that in any system in 
which u runs F, the behavior of each outedge 
(u,/)i) is E i. 

In this case, we write FA(E 1 . . . .  , Ea) for F. 
This axiom expresses a powerful masquerading 
capability of failed devices. Any behavior exhi- 
bited by a device over different edges in dif- 
ferent behaviors can be exhibited by a failed 
device in a single system behavior. When this 
axiom is significantly weakened (say, by adding 
an unforgeable signature assumption), the fol- 
lowing impossibility results do not hold [10, 
123. 

In order to establish the relevance of our 
impossibility results to more concrete models of 
distributed systems, it is sufficient to interpret 
our definitions in the particular model and then 
to prove the Locality and Fault  axioms. 

Our proofs utilize the graph-theoretic no- 
tion of a covering.  For any graph G, let neigh- 
b o r s = { ( u ,  V)[u  is a node of G and V is the set 
of all nodes /) such that there is an edge from /) 
to u in G}. A graph S covers G if there is a 
mapping ~o from the nodes of S to the nodes of 
G that preserves "neighbors". That  is, if node u 
of S has d neighbors l)1 . . . .  , va, and ~0(u)=w for 
a node w of G, then w has d neighbors 
x 1 . . . .  , x a and ~o(vi)=x i for 1 <i<_d.  Under  such 
a mapping, S looks locally like G. 

Graph coverings play an important role in 
our understanding of the interaction of network 
topology and distributed computation. A dis- 
cussion appears in [1], and indeed, some of our 
proofs are surprisingly similar to Angluin's. 
Similar techniques also appear in [-8, 2] and 
elsewhere. 

3 Byzantine agreement 

We say that Byzantine agreement is possible in 
a graph G (with n nodes) if there exist n devices 

1 For weak agreement and the firing squad problem, we 
need to extend this locality property to include time, as 
well 
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A 1, . . . ,A ,  (which we call agreement devices), 
with the following properties. 

Each agreement device A, takes a Boolean 
input and chooses 1 or 0 as a result. (To model  
choosing a result, assume there is a function 
C H O O S E  from behaviors of nodes running 
agreement devices to the set {0, 1}.) A node u 
of G is correct in a behavior g of G if node u 
runs A u in g. Any system behavior ~ of G in 
which at least n - m  nodes are correct is a cor- 
rect system behavior. Correct system behaviors 
must satisfy the following conditions. 

Agreement. Every correct node chooses the 
same value. 

Validity. If all the correct nodes have the same 
input, that input must be the value chosen. 

Theorem 1. Byzantine agreement is not possible 
in inadequate graphs. 

3.1 Number of  nodes 

We begin with the lower bound of 3 m + l  for 
the number of nodes required for Byzantine 
agreement. First consider the case where ]G] = n  
= 3 and m = 1. Assume that the problem can be 
solved for the communicat ion graph G consist- 
ing of three nodes fully connected by communi- 
cation edges. Let the three nodes of G be a, b 
and c, and assume that they run agreement 
devices A, B and C, respectively. We represent 
each pair of directed edges by a single un- 
directed edge, and label the nodes with the de- 
vices they run. 

A 

/ \  
B C 

The covering graph S is as follows. 

U - - 2  

/ \ 
v y 

\ / 
W X 

This graph looks locally like G under the 
mapping (p defined by q~(u)=q~(x)=a, q~(v) 
=~0(y)=b and (p(w)=q)(z)=c. 

Now specify the system by assigning devices 
and inputs for the nodes in S as follows. 

A C /0 1\ 
B B 0\ /1 

C A 
0 1 

By this we mean that node u runs device A 
with input 0, node v runs B with input 0, and 
so on. Let ~ denote the resulting behavior of 
the system; 5 ~ includes a behavior for each of 
the six nodes and twelve directed edges in S. 

Now consider scenarios ~w ,  5Pw~ and 5P~y in 
5 P, where each consists of the behaviors of the 
two indicated nodes in S, along with the ac- 
tivity over the two connecting edges. We argue 
that each of these scenarios is identical to a 
scenario in a correct behavior of G. 

The first scenario 5~w is shown below. 

Y 

A C gl 

/ \  
1 B C 

A 0 0 

vw 

~vw 

This scenario is the behavior in J of nodes 
v and w, together with that of the communi-  
cation edges between v and w. Now consider 
the behavior gl of G in which node b runs B on 
input 0, node c runs C on input 0, and node a 
runs a device that mimics node u in talking to 
b, and mimics node x in talking to c. Formally, 
if E(,,v ) and E~x,w ) are the indicated edge be- 
haviors in 5 P, node a runs device 
FA(E(,,vI, E(x,w)) (we have written just  F in the 
figure). This device exists, by the Fault  axiom, 
and in the resulting behavior, edges from node 
a to node b and to node c have behaviors E(u,~ ) 
and E(x,w~, respectively. By the Locality axiom, 
the scenario containing b and c's behaviors in 
gl is identical to 5~,w. Validity requirements 
insure that node b and node c must choose 0 in 
o~1. Since their behavior is identical in 5 P, v and 
w choose 0 in 5 P. 

Next, consider scenario 5Pvx. 

Y g2 
A C /o 

Y y wx 
WX 
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This scenario includes the behavior of nodes 
w and x in 5C It is also the behavior of nodes a 
and c in a behavior g2 of G which results when 
they run their devices A and C on inputs 1 and 
0, respectively, and node b is faulty, exhibiting 
the same behavior to node x that v exhibits to 
w in 5 P, and the same behavior to node a that y 
exhibits to x in Y. The behavior of node c in 
o~2 is identical to that of node w in Y, so node 
c chooses 0 in g2, from the argument above. By 
agreement, node a decides 0 in o~2. Thus node x 
dccidcs 0 in J .  

Now consider the third scenario, 5lxy. 

A /0 
13 ~ 

C 
0 

~' g3 

C 

% 
xy 

This scenario is the behavior of nodes x and 
y in ~ .  It is also the behavior of nodes a and b 
in a correct behavior d~3 of G which results 
when they both run their devices on input 1, 
and node c is faulty, exhibiting the same be- 
havior to node a that w exhibits to x in 5 P, and 
the same behavior to node b that z exhibits to y 
in ~ .  Validity requirements insure that nodes a 
and b must choose 1. Thus nodes x and y 
choose 1. But we have already established that 
node x must choose 0, a contradiction. 

Now consider the general case of IG] 
=n_<3m. Partition the nodes of G into three 
sets, a, b and c, so that a, b and c have at least 
1 and at most m nodes. This means that any 
two sets together contain at least n - m  nodes. 
The nodes in each set are running agreement 
devices, and we denote by A the set of devices 
running at the nodes in a, and similarly for B 
and C. Now construct the covering graph S in 
the obvious way. Briefly, take two copies of G, 
and label the sets a, b and c in each copy by u, 
v and w, respectively, in one copy, and x, y and 
z in the other. Now replace the edges between 
nodes in u and w and between nodes in x and z 
by corresponding edges between u and z and 
between x and w. Assign devices to nodes of S 
according to their corresponding node in G. We 
represent the covering graph S and assigned 
devices exactly as above, so that the edges de- 
picted between two sets of nodes in S, say sets u 

and v, are now a shorthand representation for 
all the edges in S between nodes in set u and 
nodes in set v. The inputs depicted for the sets 
of devices A, B and C are assigned to all the 
devices in the respective sets. The arguments 
proceed exactly as in the preceding pictures. We 
consider only one in detail. 

A C ~i 

, \  /F \  ~ 
B 

1 
~vw 

le 
v w  

This scenario is now the behavior of the sets of 
nodes in v and w in the behavior 5C It is the 
same as the behavior of the sets b and c in a 
behavior o~1 of G in which all nodes in both sets 
run their devices with input 0 and the nodes in 
set a exhibit the same behavior to members of b 
that the corresponding nodes in set u exhibit to 
the members of v in ~ ,  and the same behavior 
to nodes in c that the corresponding nodes in y 
exhibit to the members of x in 5 P. Since sets b 
and c together contain at least n - m  correct 
nodes, gl is a correct behavior of G. Thus, all 
the nodes in b and c must decide 0, by the 
validity condition, and c contains at least one 
node, by construction. 

3.2 Connectivity 

Now we carry out the 2 m + l  connectivity 
lower bound proof. Let c(G)= connectivity of G. 
We assume we can achieve Byzantine agree- 
ment in a graph G with c(G)<2m, and derive a 
contradiction. 

For now, we consider the case m = 1 and the 
communication graph G of four nodes a, b, c 
and d, running devices A, B, C and D, as in- 
dicated below. 

A / \  
B - - D  \ /  

C 

The connectivity of G is two; the two nodes b 
and d disconnect G into two pieces, the nodes a 
and c. 

We consider the following system, with the 
eight-node graph S and devices and inputs as 
indicated. 
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/?\ 
D - - B  

/I IN 
A A 
o \  / 1  

B - - D  

0 

The resulting behavior of the system is 5 P. We 
consider three scenarios in ~ :  ~ ,  Y2 and J3.  

The first scenario, ~ ,  is shown below. 

gl 

/ ? \  

This is also a scenario in a correct behavior 
gl of G. In ~1, nodes a, b and c are correct. 
Node  d is faulty, exhibiting the same behavior 
to node a as one node running D in the cover- 
ing graph, and the same behavior to b and c as 
the other node running D exhibits in the cover- 
ing graph. Then nodes a, b and c must choose 0 
in ~1, and so must the nodes running A, B and 
C in 5P~. 

Now consider the second scenario, 5P 2. 

Y g2 

- - B  

o\ ~ F 

This scenario in 5 ~ is also a scenario in a 
correct behavior g2 of G in which nodes c, d 
and a are correct. This time, node b is faulty, 
exhibiting the same behavior to nodes c and d 
as one node running B in the covering, and the 
same behavior to node a as the other node 
running B. So nodes a, c and d must agree in 
o~2, and so do the corresponding nodes in 5P 2. 
Since the node running C chooses 0 from the 
argument above, the nodes running D and A in 
5P2 choose 0, too. 

Finally, consider the last scenario 5P3 . 

Y g3 

A/1 F 
~ __ D~ o\ /o 

0 

This scenario is again the same as a scena- 
rio in a behavior g3 of G in which nodes a, b 
and c are correct, but  have input 1. Node  d is 
faulty, exhibiting the same behavior to node a 
that one node running D in the covering graph 
exhibits, and the same behavior to nodes b and 
c as the other D in the covering exhibits. Then 
nodes a, b and c choose 1 in o~3, and so must 
the nodes running A, B and C in 503, con- 
tradicting the argument above that the node 
running A chooses 0. 

The general case for arbitrary c(G)<2m is 
an easy generalization of the case for m = 1. The 
same pictures are used. Just choose b and d to 
be sets consisting of at most  m nodes each, such 
that removing the nodes in b and d from G 
disconnects two nodes u and v of G. Let G' be 
the graph obtained by removing b and d from 
G, let the set a contain those nodes connected 
to u, and the set c contain the remaining nodes 
of G' (c contains at least one node, v). Construct  
S as before, by taking two copies of G and 
rearranging edges between the ' a '  sets and their 
neighbors. The nodes and edges in our figures 
are now a shorthand for the actual nodes and 
edges of G and S. 
This completes the proof  of Theorem 1. [] 

The succeeding impossibility results for 
other consensus problems follow the same gen- 
eral form as the two arguments above. We as- 
sume a problem can be solved by specific de- 
vices in an inadequate graph, G, install the de- 
vices in a graph S that covers G, and provide 
appropriate inputs. Using the Locality and 
Fault  axioms, we argue the existence of a se- 
quence of correct behaviors of G that have 
node and edge behaviors identical to some of 
those in the behavior of S. (This sequence was 
(ga, ~ g3), in the argument above.) By the 
agreement condition, correct nodes in each of 
the behaviors of G have to agree. Because each 
successive pair of system behaviors has a cor- 
rect node behavior in common,  all of the cor- 
rect nodes in all the behaviors in the sequence 
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have to agree. But by the validity condition, 
correct nodes in the first behavior in the se- 
quence must choose different values than those 
in the last behavior, a contradiction. 

As we indicated in the introduction, a less 
general version of Theorem 1 was previously 
known, and the structure of our proofs is very 
similar to that of earlier proofs [12, 5]. Our 
proof  differs in the construction of t h e  system 
behaviors gl ,  g2 and g3. Earlier results con- 
struct these behaviors inductively, in less gener- 
al models of distributed systems. The detailed 
assumptions of the models are necessary to car- 
ry out the tedious and involved constructions. 

Rather than construct the behaviors ex- 
plicitly, we build them from pieces (node and 
edge behaviors) extracted from actual runs of 
the devices in a covering graph. The Locality 
and Fault  axioms imply that scenarios in the 
covering graph are also found in correct be- 
haviors of the original inadequate graph. 

The model used to obtain these results is an 
extremely general one, but it does assume that 
systems behave deterministically. (For every set 
of inputs, a system has a single behavior.) By 
considering a system and inputs as determining 
a set of behaviors, nondeterminism may be in- 
t roduced in a straightforward manner. One 
changes the Locality axiom to express the fol- 
lowing; if there exist behaviors of two systems 
in which the inedge borders of two isomorphic 
subsystems are identical, there exist such be- 
haviors in which the behaviors of the subsys- 
tems are also identical. Using this axiom, the 
same proofs suffice to show that nondeterminis- 
tic algorithms cannot guarantee Byzantine 
agreement. 

4 Weak agreement 

Now we give our impossibility results for the 
weak agreement problem. As in the Byzantine 
agreement case, nodes have Boolean inputs, and 
must choose a Boolean output. The agreement 
condition is the same as for Byzantine agree- 
ment - all correct nodes must choose the same 
output. The validity condition is weaker, how- 
ever. 

A g r e e m e n t .  Every correct node chooses the 
same value. 

Validi ty .  If all nodes are correct and have the 
same input, that input must be the value cho- 
sen. 

The weaker validity condition has an in- 
teresting impact on the agreement problem. If 
any correct node observes disagreement or 
faulty behavior, then all are free to choose a de- 
fault value, so long as they still agree. 

Lampor t  notes that there are devices for 
reaching a form of approximate weak con- 
sensus, which work when I G[ < 3 m. Running these 
for an infinite time produces exact consensus 
(at the limit) [9]. In such infinite behaviors, if 
any correct node observes disagreement or 
faulty behavior, it has plenty of time to notify 
the others before they choose a value. Thus, 
strengthening the choice condition, to prohibit 
such infinite solutions, is necessary to obtain 
the lower bound. 

We must also bound communication delays 
away from zero, or a similar type of infinite 
behavior is possible. In fact, if we assume there 
is no lower bound on transmission delay, and 
that devices can control the delay and have 
synchronized clocks, we have found an algo- 
rithm for reaching weak consensus. This algo- 
rithm requires at most two broadcasts per node, 
all with non-zero transmission delay, and works 
with any number of faults. Again, this is be- 
cause any correct node which observes dis- 
agreement or faulty behavior has plenty of time 
to notify the others before they choose a val- 
ue. 2 In more realistic models it is impossible to 
reach weak consensus in inadequate graphs. To 
show this, the minimal semantics introduced in 
the previous sections must be extended to ex- 
clude these infinitary solutions. We do this as 
follows. Previously, behaviors of nodes and 
edges were elements of some arbitrary set. Hen- 
ceforth, we consider them to be mappings from 
[0, oo), (our definition of time), to arbitrary 
state sets. Thus, if E is a behavior of node u, 
then u is in state E ( t )  at time t. 

We add the following condition to the weak 
agreement problem. 

Choice .  A correct node must choose 0 or 1 
after a finite amount  of time. 

This means there is a function C H O O S E  
from behaviors of nodes running weak agree- 
ment devices to {0, 1}, with the following prop- 
erty: Every such behavior E has a finite prefix 

2 Nodes start at time 0, and decide at time 1. They 
broadcast their value at time 0, specifying it to arrive at 
time 1/2. If a node first detects disagreement or failure 
(at time 1-t), it broadcasts a "failure detected, choose 
default value" message, specifying it to arrive at time 
1 - t/2. The obvious decision is made by everyone at time 1 
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E t (E restricted to the interval [0, t]) such that 
all behaviors E' extending E t have C H O O S E ( E )  
= C H O O S E ( U ) .  

This choice condition prohibits Lamport 's  
infinite solution. To prohibit  the second so- 
lution, we bound the rate at which information 
can traverse the network. To do so, we add the 
following stronger locality axiom to our model. 

Bounded-delay locality axiom. There exists a 
positive constant c5 such that the following is 
true. Let N and N' be systems with behaviors o ~ 
and C', respectively, and isomorphic subsystems 
~# and ~#', (with vertex sets U and U'). If the 
corresponding behaviors of the inedge borders 
of U and U' in o ~ and E' are identical through 
time t, then scenarios o% and gv' are identical 
through time t + c5. 

Thus, news of events k edges away from 
some subgraph G' takes time at least kc5 to 
arrive at G'. In a model with explicit messages, 
this axiom could be proven from an assumption 
that the transmission delay is at least 5, and the 
edge behaviors in our model would correspond 
to state descriptions of the transmitting end of 
each communications link. 

Theorem 2. Weak agreement is not possible in 
inadequate graphs Jor models satisfying the 
Bounded-delay locality axiom. 

Again, we first sketch the 3 m + 1  node 
bound. In this case, the previously published 
proof  [9] was very difficult. As before, we re- 
strict our attention to the case ]GI = n = 3, m = l. 
(The case for general m follows immediately, 
just as above.) 

Assume there are weak agreement devices 
A, B and C, for the triangle graph G containing 
nodes a, b and c. Consider the two behaviors of 
G in which all nodes are correct, and all have 
input 0 or all have input 1. Let t' be an upper 
bound  on the time it takes all nodes to choose 
0 or 1 in both  behaviors. Choose k > t'/& to be a 
multiple of 3. 

The covering graph S consists of 4k nodes, 
arranged in a ring and assigned devices and 
inputs as follows: 

[!~A--1 B c  l - - A I  ..... B--A--C--BIll1 . . . . .  C--B--~]ll 
- - B - - C  . . . .  B - - C - - A - - B  � 9  

0 0 0 0 0 0 0 0 0 0 

Consider the resulting behavior 5 P, and each 
pair of successive two-node scenarios, such as 
the two below. 

. . . .  . . . .  

As before, each scenario is identical to a 
scenario in a behavior in G of the appropriate 
two weak consensus devices. Since each pair of 
successive scenarios overlaps in one node be- 
havior (here, that of the node running B), all 
the nodes in both scenarios must choose the 
same value in G and in S. By induction, every 
node in S must choose the same value. Without  
loss of generality, assume they choose 1. 

Consider the k scenarios indicated below. 

C - - B - - A  . . . . .  B - - A - - C - - B  . . . . .  C - -B- -A]  
[I 1 1 I l I ! I I 

/ o / o  y o / o /  o 

1:4 k / /  

Let g be the behavior of G in which a, b 
and c are correct and each has input 0, and 
denote the resulting behaviors of a, b and c by 
E,, E v and Ec, respectively. 

Lemma  3. The behavior in scenario 5~i of  a node 
running device A (or B or C) is identical to E, 
(or E b or Ec) through time i6. 

Proof. The proof  is an easy induction using the 
Bounded-delay locality axion. []  

By Lemma 3, the nodes running devices C 
and A in scenario ~ have behaviors identical 
to Ec and E,  through time k& Since nodes c 
and a in G have chosen output  0 by this time, 
so have the corresponding nodes in 5~k , a con- 
tradiction. 

The general case of [Gl-<_3m and the con- 
nectivity bound  follow as for Byzantine 
agreement. [] 

There are strong similarities between this 
argument and a proof  by Angluin, concerning 
leader elections in rings and arbitrarily long 
lines of processors [1-]. Both results depend cru- 
cially on the existence of a lower bound  on the 
rate of information flow. Under  this assump- 
tion, devices in different communicat ion net- 
works can be shown to see the same local be- 
havior for some fixed time. 

5 Byzantine firing squad 
The Byzantine firing squad problem addresses a 
form of synchronization in the presence of Byz- 
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antine failures. The problem is to synchronize a 
response to an input stimulus. The response is 
to enter a designated F I R E  state. The problem 
was studied originally in [3-]. In [4], a reduction 
of weak agreement to the Byzantine firing 
squad problem demonstrates that the latter is 
impossible to solve in inadequate graphs. We 
provide a direct proof  that a simple variant of 
the original problem is impossible to solve in 
inadequate graphs. (In the original version, the 
stimulus can arrive at any time. We require it 
to arrive at time 0, or not at all. Our validity 
condition is slightly different.) The proof  is very 
similar to that for weak agreement. 

One or more devices may receive a stimulus 
at time 0. We model the stimulus as an input of 
1, and absence of the stimulus as an input of 0. 
Correct executions must satisfy the following 
conditions. 

Agreement. If a correct node enters the F IRE  
state at time t, every correct node enters the 
F IRE  state at time t. 

Validity. If all nodes are correct and the stimu- 
lus occurs at any node, they enter the FIRE 
state after some finite delay. If the stimulus 
does not occur and all nodes are correct, no 
node ever enters the F IRE  state. 

As in the case of weak agreement, solutions 
to the Byzantine firing squad problem exist in 
models in which there is no minimum com- 
munication delay. Thus the following result re- 
quires the Bounded-delay locality axiom, in ad- 
dition to the Fault  axiom. 

Theorem 4. The Byzantine Jiring squad problem 
cannot be solved in inadequate graphs Jot models 
satisfying the Bounded-delay locality axiom. 

We sketch the 3 m + l  node bound. As be- 
fore, we examine the case I G l = n = 3 ,  m =  1. 

Assume there are Byzantine firing squad de- 
vices A, B and C for the triangle graph G 
containing nodes a, b and c. Consider the two 
behaviors of G in which all nodes are correct, 
and all have input 0 or all have input 1. Let t 
be the time at which the correct devices enter 
the F I R E  state in the case that the stimulus 
occurred (the input 1 case). Since the correct 
nodes never enter the F I R E  state in the absence 
of the stimulus, they certainly do not enter the 
F I R E  state at time t. Choose k>t/6 to be a 
multiple of 3. (Recall that c5 is the minimum 
transmission delay defined in the Bounded-de- 
lay locality axiom). 

The covering graph S consists of 4k nodes, 
arranged in a ring and assigned devices and 
inputs as follows: 

~ --B--A ..... B--A--C--B ..... C--B--A 
I I I I I 1 I l 

--B--C--. -B--C--A--B-" -A--B--C ] 
0 0 0 0 0 0 0 0 0 0 

Similarly to the proof  for weak agreement, 
the middle two devices receiving the stimulus 
enter the F I R E  state at time t, as their behavior 
through time t is the same as that of the correct 
nodes in G which have received the stimulus 
and fire at time t. Because of the communi- 
cation delay, there is not enough time for 
"news"  from the distant nodes to reach these 
devices. By repeated use of the agreement prop- 
erty, all the devices in S must fire at time t. But 
through time t, the middle two devices not re- 
ceiving the stimulus behave exactly as correct 
nodes in G which do not receive the stimulus 
(the input 0 case). Thus they do not fire at time 
t, a contradiction. [] 

6 Approximate agreement 

Next, we turn to two versions of the approxi- 
mate agreement problem [-7, 11]. We call them 
simple approximate agreement and (e, c5, 7)- 
agreement. In these problems, nodes have real 
values as inputs and choose real numbers as a 
result. The goal is to have the results close to 
each other and to the inputs. In order to obtain 
the strongest possible impossibility result, we 
formulate very weak versions of the problems. 

For  the following two theorems we use only 
the Locality and Fault  axioms. We do not need 
the Bounded-delay locality axiom used for the 
weak agreement and firing squad results. 

6.1 Simple approximate agreement 

First, we turn to the simple approximate agree- 
ment problem [7]. The version we examine is 
based on that in [7]. Each correct node has a 
real value from the interval [0, 1] as input, runs 
its device and chooses a real value. Correct 
behaviors (those in which at least n - m  nodes 
are correct) must satisfy the following con- 
ditions. 

Agreement. The maximum difference be- 
tween values chosen by correct nodes must be 
strictly smaller than the maximum difference 
between the inputs, or be equal to the latter 
difference if it is zero. 
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Validity. Each correct node chooses a value 
within the range of the inputs of the nodes. 

Theorem 5. Simple approximate agreement is not 
possible in inadequate graphs. 

The proof is almost exactly that for Byzan- 
tine agreement. Here, we consider devices which 
take as inputs numbers from the interval [0, 1], 
and choose a value from [0, 1] to output. (Out- 
puts are modeled by a function CHOOSE from 
behaviors of nodes running the devices to the 
interval [0, 1].) As before, assume simple ap- 
proximate agreement can be reached in the tri- 
angle graph G. Consider the following three 
scenarios from the indicated behavior in the 
covering graph S. 

A C 

Again, each scenario is also a scenario in a 
correct behavior of G. In the first scenario, the 
only value C can choose is 0. In the third, the 
only value A can choose is 1. This means the 
values chosen by A and C in the second scena- 
rio are 0 and 1, so that the outputs are no 
closer than the inputs, violating the agreement 
condition. 

The general case of IGl<3m and the con- 
nectivity bounds follow as for Byzantine agree- 
ment. [] 

6.2 (e, 6, 7)-Agreement 

This version of approximate agreement is based 
on that in [11]. Let e, c5 and ? be positive real 
numbers. The correct nodes receive real num- 
bers as inputs, with rmi n and rma x the smallest 
and largest such inputs, respectively. These in- 
puts are all at most 6 apart (i.e. the interval of 
inputs [rmin, rmax] has length at most 3). They 
must choose a real number as output, such that 
correct behaviors (those in which at least n - m  
nodes are correct) satisfy the following con- 
ditions. 

Agreements. The values chosen by correct nodes 
are all at most e apart. 

l/alidity. Each correct node chooses a value in 
the interval [rmi n --  "2, rmax q- 7]" 

Note that if a>  c5, (e, 3, 7)-agreement can be 
achieved trivially by choosing the input value 
as output. 

Theorem 6. / f  ~ < 3, (~, c5, ?)-agreement is not pos- 
sible in inadequate graphs. 

Proof. Let ~:, c5 and 7 be positive real numbers 
with ~<6. We prove only the 3 m + l  bound on 
the number of nodes. Assume that devices A, B 
and C exist which solve the (e, 6, 7)-approximate 
agreement problem in the complete graph G on 
three nodes, for particular values of e, c5 and 7, 
where e < 6. 

Choose k sufficiently large that 8 > 2 7 / ( k -  1) 
+e,  and k + 2 is divisible by three. The covering 
graph S contains k + 2 nodes arranged in a ring, 
with devices and inputs assigned to create the 
following system. 

< A - - B  . . . . .  B - - C  ~ 
n o d e  0 1 . . .  k k+ l  

input 0 6 k~ (k+l)8 

Let 5~, for O<i<_k, denote the two-node 
scenario in 5 P containing the behaviors of no- 
des i and i+  1. By the Fault Axiom, each scena- 
rio ~ is a scenario of a correct behavior of G, 
in which the largest input value to a correct 
node is (i + 1) 6. 

Lemma 7. For O<_i<_k, the value chosen by the 
device at node i + 1 is at most ~ + 7 + i ~. 

ProoJi The proof is a simple induction. The 
device at node 1 chooses at most 3+7 ,  by va- 
lidity applied to scenario •0- Assume induc- 
tively that the device at node i chooses at most 
6 + 7 + ( i - 1 ) e ,  for 0 < i < k + l .  By agreement ap- 
plied to scenario ~ ,  the device at node i + l  
chooses at most 6 + 7 + i e .  [] 

In particular, Lemma 7 implies the device at 
node k chooses at most 6 + 7 + ( k - 1 ) e .  But va- 
lidity applied to scenario ~ implies the device 
at node k chooses at least k 6 - 7. So k 6 - 7 < c~ 
+ 7 + ( k - D e .  This implies ~_-<27/(k-1)+~, a 
contradiction. 

The general case of IG[<=3m and the con- 
nectivity bounds follow as in previous 
proofs. [] 

7 Clock synchronization 

Each node has a hardware clock and maintains 
a logical clock. The hardware clocks are real- 
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valued, invertible and increasing functions of 
time. In general, different hardware clocks run 
at different rates, and the nodes wish to syn- 
chronize their logical clocks more closely than 
their hardware clocks. We also want the logical 
clocks to be reasonably close to real time - 
setting them to be constantly zero should prob- 
ably be forbidden. Thus, we require the logical 
clocks to stay within some envelope of the hard- 
ware clocks. 

This problem was studied in [6] for the case 
of linear clock and envelope functions, where it 
was shown that it is impossible to synchronize 
to within a constant in inadequate graphs. 
Some questions concerning more general syn- 
chronization problems were raised. It was pointed 
out, for example, that diverging linear clocks 
can easily be synchronized to within a constant 
if nodes can run their logical clocks as the 
logarithm of their hardware clocks. For a large 
class of clock and envelope functions (increas- 
ing and invertible clocks, non-decreasing en- 
velopes), we are able to characterize the best 
synchronization possible in inadequate graphs. 
This synchronization requires no communi-  
cation whatsoever. 

We model node i's hardware clock, Di, as an 
input to the device at node i that has value 
D~(t) at time t. The value of the hardware clock 
at time t is assumed to be part of the state of 
the node at time t. The time on node i's logical 
clock at real time t is given by a function of the 
entire state of node i. Thus, if E~ is a behavior 
of node i (such that node i is in state Ei(t) at 
time t), then we express i's logical clock value 
at time t as C~(E~(t)). 

We assume that any aspect of the system 
which is dependent upon time (such as trans- 
mission delay, minimum step time, maximum 
rate of message transmission) is a function of 
the states of the hardware clocks. Having made 
this assumption, it is clear that speeding up or 
slowing down the hardware clocks uniformly in 
different behaviors cannot be observable to the 
nodes, so the only impact on the behaviors 
should be that they speed up or slow down in 
the same way as the hardware clocks. 

To formalize this assumption, we need to 
talk about scaling clocks and behaviors. Let h 
be any invertible function of time. If E is a 
behavior (of a edge or node), then Eh, the be- 
havior E scaled by h, is such that Eh(t) 
=E(h(t)), for all times t. Similarly, Dh is the 
hardware clock D scaled by h: Dh(t)=D(h(t)). If 
do is a system behavior or scenario, do h is the 

system behavior or scenario obtained by scaling 
every node and edge behavior in do by h. Simi- 
larly, if 5 P is a system, then 5Ph is the system 
obtained by scaling every clock in 5 P by h. 
Intuitively, a scaled clock or behavior is in the 
state at time t that the corresponding unscaled 
clock or behavior is in at time h(t). 

Scaling axiom. If do is the behavior of system ~ ,  
then doh is the behavior of system Yh .  [] 

If this axiom is significantly weakened, as by 
bounding the transmission delay, clock syn- 
chronization may be possible in inadequate 
graphs. 

In the following we use the Locality, Fault 
and Scaling axioms. We do not need the Bound- 
ed-delay locality axiom used for the weak 
agreement and firing squad results. 

The synchronization problem can be stated 
as follows. Let correct hardware clocks run 
either at f(t) or g(t), where f and g are increas- 
ing, invertible functions, with f(t)<g(t), for all 
t. Let the envelope functions 1 and u be non- 
decreasing functions such that l(t)<u(t), for all t. 

Consider what happens if everyone runs 
their logical clocks at the lower envelope, 
C(E(t))=t(D(t)). Then the logical clocks are 
synchronized to within l(g(t))-l(f(t)). The goal 
then, is to improve this trivial synchronization. 
We show that logical clocks cannot be synchro- 
nized to within l (g( t))- l ( f ( t ) )-~,  for any posi- 
tive c~. 

That  is, nontrivial synchronization is 
achieved by synchronization devices in G if 
there exist positive constant ~ and time t' such 
that every correct system behavior do satisfies 
the following conditions. 

Agreement. For any two correct nodes i and j 
in do, [Ci(Ei(t))- Cj(Ej(t))[ < l ( g ( t ) ) - l ( f ( t ) ) - ~ ,  
for all times t > t'. 

Validity. For any correct node i in do, with 
hardware clock Di and resulting behavior Eg, 
l ( f  (t)) < Ci(Ei(t)) < u(g(t)). 

TheoremS.  Nontrivial synchronization is not 
possible in inadequate graphs .for models satisfy- 
ing the Scaling axiom. 

We show that for every integer k>2 ,  there 
is a behavior d ~ of G in which node i is correct, 
has hardware clock Di= f (that is, Di(t)=f(t)), 
and in which Ci(Ei(t'))>l(f(t'))+k~. For k big 
enough, this violates the upper envelope con- 
dition, Ci(Ei(t')) < u(g(t')). 
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Define h = f  ~g. (That is, h(t)=f-~(g(t)) .)  
Then h ~ = g - l f .  Note that h(t)>t for all t, 
since f ( t )  < g(t). 

We begin with the three node, one fault 
case. The argument is very similar to the proof 
of Theorem 6. 

Assume the existence of devices A, B and C, 
time t' and positive constant ~ such that logical 
clocks of correct nodes obey the agreement and 
validity conditions: 

I C,(Ei(t)) - C~(Ej(t))I < l(g(t)) - l ( f ( t ) )  - c~, 

for all times t > t', and 

l ( f ( t ) ) <  C(E i ( t ) )~u (g ( t ) )  , f o r  all times t. 

Choose an integer k > 2 ,  such that k + 2  is a 
multiple of three, and such that 

l ( f  (t')) + k ~ > u(g(t')). 

The covering graph S contains k + 2  nodes ar- 
ranged in a ring, with devices and clock inputs 
assigned to create the following system. 

< A - - B  . . . . .  B - - C  ) 
node 0 l . . . k k+I 

c l o c k  g gh "1 . . .  gh -k gh - ( k+ l )  

b e h a v i o r  E 0 E 1 . . .  E k Ek+ 1 

Let 5 P be the behavior of this system. An 
initially troubling concern is that the hardware 
clocks in 5 P are much slower in most of the 
devices in 5 ~ than they would be in a cor- 
rect behavior in G. But consider 5'~, the two- 
node scenario containing the behaviors of 
nodes i and i + 1, where 0 < i < k. 

node 

hardware clocks 

resulting behavior 

. . . .  A - - B  . . . .  

i i+ I  

gh-i gh-(i+1) 

El [ i§ 

Now consider ~ h  i, the scenario ~ scaled 
b y  h i . 

. . . .  A - - B  . . . .  
node i i+l 

hardware clocks g f 

resulting behavior Eihi Ei+lhi 

In this scenario, the hardware clocks have 
values within the constraints for correct be- 
haviors of G. Thus we have the following. 

Lemma 9. Scenario ~i  hi, for  O<_i<k, is a sce- 
nario containing the behaviors of two correct nodes 
in a correct behavior of G. 

Lemma 10. For all i, O<i<_k, and all t>hi(t'), 

IG+, (E,+, ( t ) ) -  C,(E,(t))I 
<= l(g(h-'(t))) - l ( f ( h  '(t))) -c~. 

Proof. Fix t > h  i(t'). Then h- i ( t )> t ' .  By 
Lemma9 ,  i and i + l  are correct in ~ h  ~, so by 
the agreement assumption 

I Ci+,(G+~ hi (h- i ( t ) ) ) -  Ci(Eihi(h-'(t))) l  
<= l ( g ( h - i ( t ) ) )  - l ( f  ( h - i ( t ) ) )  - ~. 

The result is immediate. [] 

Let time t"=hk(t'). Note that t">hi(t'), for 
i<k.  

Lemma 11. For all i, 1 <_ i <_ k + 1, 

C i(E i(t'')) >/(g h - i(t")) + (i - 1) ~. 

Proof. The proof is by induction on i. By Lem- 
ma 9, scenario ~o is a scenario in G of correct 
nodes a and b, with hardware clocks g and f,  
respectively. From the validity condition, for all 
t, C~ (E, (t)) > l(f(t)). Setting t = t", and substitut- 
ing g h -1 for f ,  we have the basis step: 
C~ (E, (t")) > l(gh- l(t")). 

Now make the inductive assumption 

C,(Ei(t"))>l(gh-i(t"))+(i-1)o~, for l<i<_k. 

Since t">hi(t'), from Lemma 10, we know 

IG+ ,(G+ ,it")) - Ci(Ei(t"))l 
__</(g h - i ( t " ) )  - l ( f h  - ' ( t " ) )  - c~. 

This implies 

G + 1 ( G  + 1 (t")) 

> Ci(Ei(t")) - l (gh- i ( t"))  + l(fh-i(t"))  + c~. 

Substituting for Ci(Ei(t")) using the inductive 
assumption gives us 

Ci+ l(Ei+ l (t")) 

> l(gh-i(t")) - l (gh- ' ( t " ) )+  l ( fh- i ( t") )+ ic~ 

= l(fh-i(t"))  + ic~. 

Noting that f = gh-1,  we have the result, 

Ci+l(Ei+l(t"))>l(gh-(i+l)(t"))+icc [] 

Proof of Theorem 8. Lemma 11 implies 

G +,  (G + 1 (t")) > l(g h-(k + 1)(r + k , .  
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Since t"=hk(t'), we have 

Ck+ l (Ek+ l (t")) 
= C k + l ( E k + l  (hk(t,))) 

= Ck + 1 (Ek + 1 hk (t')) ~ l (g h - (k + 1 ) h k (t')) + k 

But the upper envelope constraint for the 
scaled scenario ~ h  k (in which k +  1 is correct 
and has hardware clock f(t)) implies that 
Ck+ 1 (Ek+ 1 hk(t')) < u(g(t')). Thus, l(f(t')) 
+ k c~ < u(g(t')). This violates the assumed bound 
on k, l ( f( t ' ))+ke>u(g(t ' )) .  

Once again, the general case of 161 < 3m is a 
simple extension of this argument. The con- 
nectivity bound also follows easily, as with the 
earlier results. [] 

7.1 Linear envelope synchronization 
and other corollaries 

Linear envelope synchronization, as defined in 
[-6], examines the synchronization problem 
when the clocks and envelope functions are lin- 
ear functions (g(t)=rt,  f ( t ) = t ,  l ( t )=a t+b  and 
u(t) = c t + d). It requires correct logical clocks to 
remain within a constant of each other, so 
that the agreement conditions is I Ci(Ei(t)) 
-C.(Ej(t))l<_c~, for all times t, instead of our 
weai~er cond-ition I C i ! E i ( t ) )  - Ci(Ej(t))l <ar t  - a t  
-c~, for all times t > t .  Our validity condition is 
slightly weaker, as well. Thus, the proof of [6] 
shows that logical clocks cannot be synchro- 
nized to within a constant; we show that the 
synchronization of logical clocks cannot be 
improved by a constant over the synchroni- 
zation ( a r t - a t )  that can be achieved trivially. 
Thus the following corollary follows im- 
mediately from Theorem 8. (Each of the four 
corollaries below holds for models satisfying the 
Scaling axiom.) 

Corollary 12. Linear envelope synchronization is 
not possible in inadequate graphs. 

We also get the following results im- 
mediately from Theorem 8, by choosing specific 
values for the clock and lower envelope func- 
tions. Note that the particular choice of the 
upper envelope function does not affect the 
minimal synchronization possible in inadequate 
graphs, although the existence of some upper 
envelope function is necessary to obtain our 
impossibility proofs. 

Corollary l3. I f  f ( t ) = t ,  g(t)=rt ,  and l( t )=at  
+ b, no devices can synchronize a constant closer 
than a r t - a t  in inadequate graphs. 

Corollary 14. I f  f ( t ) = t ,  g ( t ) = t + c  and l( t )=at  
+ b, no devices can synchronize a constant closer 
than ac in inadequate graphs. 

Corollary l5. I f  f ( t ) = t ,  g( t )=rt  and l(t) 
=log2(t), no devices can synchronize a constant 
closer than loga(r ) in inadequate graphs. 

In general, the best possible synchronization 
in inadequate graphs can be achieved without 
any communication at all. The best nodes can 
do is run their logical clocks as slowly as they 
are permitted, C(E(t)) = l(D(t)). 

8 Conclusion 

Most of the results we have presented were 
previously known. Our proofs are simpler than 
earlier proofs, and hold in more general models, 
but this is not their main contribution. While 
simplicity and generality are important goals, in 
this instance they are the welcome byproduct of 
our attempt to identify the fundamental issues 
and assumptions behind a collection of similar 
results. 

One important contribution is to elucidate 
the relationship between the unrestricted, or 
Byzantine failure assumption, and inadequate 
graphs. As is clear from our proofs, this fault 
assumption permits faulty nodes to mimic exe- 
cutions of disparate network topologies. If the 
network is inadequate, a covering graph can be 
constructed so that correct devices cannot dis- 
tinguish the execution in the original graph 
from one in the covering graph. 

A second contribution is related to the gen- 
erality of our results. Nowhere do we restrict 
state sets or transitions to be finite, or even to 
reflect the outcome of effective computations. 
The inability to solve consensus problems in 
inadequate graphs has nothing to do with com- 
putation per se, but rather with distribution. It 
is the distinction between local and global state, 
and the uncertainty introduced by the presence 
of Byzantine faults, which result in this limi- 
tation. 

Finally, we have identified a small, natural 
set of assumptions upon which the impossibility 
results depend. For example, in the case of 
weak agreement and the firing squad problem, 
the correctness conditions are sensitive to the 
actions of faulty nodes. Instantaneous notifi- 
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cation of the detection of fault events would 
allow one to solve these problems. An assump- 
tion that there are minimum delays in discover- 
ing and relaying information about faults is suf- 
ficient to make these problems unsolvable. 
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