
Robust emulation of shared memoryusing dynamic quorum-acknowledged broadcastsNancy Lynch Alex ShvartsmanMassachusetts Institute of Technology, Laboratory for Computer Science,545 Technology Square, NE43-365, Cambridge, MA 02139, USA.December 2, 1996AbstractThis paper presents robust emulation of multi-writer/multi-reader registers in message-passingsystems using dynamic quorum con�gurations. In addition to processor and link failures, thisemulation tolerates changes in quorum con�gurations, i.e., on-line replacements of one quorumsystem consisting of read and write quorums with another such system. This work extends theresults of Attiya, Bar-Noy and Dolev [1] who showed how to emulate single-writer/multi-readerregisters robustly in message-passing systems using majorities.The emulation in this paper is speci�ed using a modular two-layer architecture. The lower layeruses unreliable broadcast to disseminate a request from the higher layer to a set of processors, andthen to collect responses from a subset of the processors. The subset can be speci�ed by a predicateor by using a quorum system. The lower layer then computes a function on the collected responsesand returns the result to the higher layer. The broadcast can take advantage of hardware-assistedbroadcast as we do not assume that the broadcast is reliable or that it has fifo, causal or atomicproperties. The higher layer algorithm emulates robust multi-writer/multi-reader registers wherequorum con�gurations are used to ensure that the registers are atomic.A unique feature of the read/write service is that it implements dynamically changing quorumcon�gurations. The service includes two interfaces, a functional interface for reads and writes,and a management interface for recon�guration. The processor designated as the recon�gurer ex-ecutes requests that replace the current quorum con�guration with the new con�guration. Thecombination of the higher and lower layers allows essentially unlimited concurrency and does notinvolve locks. Waiting can occur only (a) due to processor or link failures that disconnect at leastone processor in each read and write quorum of the speci�ed con�gurations, or (b) when frequentrecon�gurations interfere with reads/writes and cause them to contribute to recon�gurations. How-ever, as soon as recon�gurations stop, and as long as for each lower level request specifying a set ofread or write quorums there exists a single quorum of active and connected processors, then readsand writes complete without waiting. All of this is transparent to the clients of the service.The algorithms are speci�ed here in terms of I/O automata [8, 9], and their correctness is provenusing invariants and partial-order-based methods. It is shown that the algorithm is correct, andthat it implements atomic replicated read/write objects.Keywords : Distributed algorithms, fault-tolerance, atomic registers, message-passing, quorums.Author e-mail : lynch@theory.lcs.mit.edu (primary contact), alex@theory.lcs.mit.edu.Submission category : Regular paper.Approximate word count : 9,500 (not counting optional appendices).This material has been cleared through author a�liations.1

1 IntroductionThe two major multiprocessor computation paradigms are the shared-memory paradigm andthe message-passing paradigm. Developing e�cient algorithms that can tolerate componentfailures and timing delays for these models has been a goal for algorithm designers for along time. It has been observed that in many cases it is easier to develop algorithms for theshared-memorymodel than for the message-passing model. Consequently, in such cases thereis value in developing an algorithm �rst for the shared-memorymodel and then automaticallyconverting it to run in the message-passing model. Among the important results in thisarea are the algorithms of Attiya, Bar-Noy and Dolev [1] who showed that it is possible toemulate shared memory robustly in message-passing systems. Their very interesting, fullyasynchronous algorithm implements atomic single-writer/multi-reader registers in unreliable,asynchronous networks. Our work is inspired by and builds on their results.In more detail, [1] shows that any wait-free algorithm for the shared-memory modelthat uses atomic single-writer/multi-reader registers can be emulated in the message-passingmodel where processors or links are subject to crash failures. The authors of [1] give abasic algorithm for complete networks using unbounded timestamps, a version for arbitrarynetwork topologies, and they also modify their algorithms so that it uses only boundedtimestamps. These algorithms are based on processor majorities and thus are able to toleratescenarios where any minority of processors are disabled or are unable to communicate. Thealgorithms [1] are constructed with the help of a communicate procedure that uses half-duplex, ping-pong, point-to-point links to broadcast messages and to collect responses fromany majority of processors. The basic algorithmic techniques are very e�cient and theyrender the algorithm suitable for an e�ective implementation.Using majorities is a special case of quorum systems [6]. A simple quorum system (alsocalled coterie) is a collection of sets such that any two sets, called quorums, intersect [5]. Amore re�ned approach divides the quorum system into a collection of read quorums and acollection of write quorums such that any read quorum intersects any write quorum. Suchsystems have been used to implement distributed mutual exclusion [5] and data replicationprotocols [4, 7]. Quorums can be used with replicated data in transaction-style synchro-nization that limits concurrency (cf. [2]), whereas our goal and the goal of [1] is to reducerestrictions on asynchrony and concurrency.In this paper we present a service that emulates shared memory registers using broadcastsand dynamically changing quorum con�gurations. Our algorithms extend the unbounded-timestamp single-writer solution of Attiya, Bar-Noy and Dolev [1] in four ways:1. Our construction emulates multi-writer/multi-reader registers.2. We replace the majority-based approach of [1] with a quorum-based approach { this isdone in a way that does not involve synchronization and that preserves the asynchronyand non-determinism found in the original solution [1].3. We augment the multi-writer/multi-reader service with a management interface used torecon�gure the quorum system on-the-y without changing the functional interface of theservice and without suspending any reads/writes in progress or disabling new requests.4. Our algorithm is de�ned in a modular way using a two-layer architecture; the lowerlevel speci�es a new general-purpose primitive that formalizes abstract acknowledged-broadcast computation. 2

Of the four extensions, the most technically challenging part of our work is the dynamicquorum system recon�gurations. We next cover in more detail the speci�c extentions andinnovations. We split the complexity of the overall solution by specifying it in a modularfashion as a composition of two layers.� The lower layer implements a computation primitive that we call �. The primitiveuses quorum-acknowledged broadcasts and condenser functions to perform computationsrequested by the higher layer. The broadcast used by the lower layer can take advantageof hardware-assisted broadcast as we do not assume that the broadcast is reliable or thatit has fifo, causal or atomic properties.We specify two versions of the primitive, the simpler primitive �(C) uses a globally-known static quorum con�guration C, while � allows for the quorum con�gurations to bechanged. Each primitive admits straightforward implementation using message-passing.Our use of the � primitive illustrates how computing with the � primitive can be ane�ective tool in developing distributed algorithms.� The higher layer algorithm emulates robust multi-writer/multi-reader registers wherequorum systems are used to ensure that the registers are atomic. This layer extends thesingle writer protocol [1] to a multi-writer protocol. We use quorum systems in a waythat ensures the atomicity of the multi-writer/multi-reader registers without resorting tolocking or mutual exclusion.A unique feature of this layer is that we deal with dynamically changing quorum con�gu-rations. In a static quorum system the same con�guration is used regardless of changingload balancing or availability concerns. Our service exports two interfaces, a functionalinterface o�ering the read/write service, and a management interface for recon�guration.The management interface designates one processor as the recon�gurer. This processorexecutes requests that replace the current quorum con�guration with a new con�gurationusing �. This does not involve any synchronization, but some read and write requestsconcurrent with a recon�guration may need to perform steps that contribute to the re-con�guration. This is done transparently to the clients of the service.The solution implemented by the composition of the two layers reects practical systemconcerns dealing with communication e�ciency, with fault-tolerance and with system man-agement (i.e., with supervision and control of the system so that it ful�lls the requirementsof its users, cf. [16]).Our service can be implemented by using point-to-point messages or by taking advantageof broadcast. In the network settings where processors closely cooperate, it is increasinglyimportant to assume the availability of e�cient broadcast or multicast. This assumption isreasonable for LAN-based environments and for emerging high-speed WANs. The availabilityof hardware-assisted broadcast [14, 3] makes the cost of using broadcast similar to the costof sending a point-to-point message. Note that our algorithms do not require such broadcastto have atomic, fifo, or causal properties.Our robust emulation can tolerate a broad range of patterns of processor and link failures.The service is guaranteed to continue operation provided that the processor performing aservice request is able to communicate with processors constituting some read quorum andsome write quorum during a certain time interval. The duration of this interval must be3

su�cient to allow the completion of the individual invocations of � using the con�gurationscontaining these quorums. The actual quorums need not be the same for all invocations.When a quorum system needs to be recon�gured, this is done using the managementinterface of our service without suspending or interrupting the read/write service providedto its clients via the functional interface. The successful deployment and use of complex dis-tributed applications often depends on our ability to manage the application as a distributedresource on the basis of current and historical observations [15]. A resource manager canmonitor the environment for changing performance requirements and availability conditionsand, in our case, evolve the quorum system using the management interface of the service.In achieving the above, we formally specify and analyze the algorithms for the multi-writer/multi-reader service. Our algorithms are speci�ed in terms of I/O automata [8, 9].We use invariants and partial-order based methods to prove that our algorithms are correct,and that it implements atomic replicated read/write objects. The main proof introduces anew \Fill" notion used to predict the acknowledgment vector of � invocations. This is ane�ective tool in reducing the complexity and size of proofs.The correctness analysis assumes no bounds on message delivery times. We carry outconditional performance analysis by assuming that point-to-point messages are deliveredand locally processed in bounded time d (unknown to the processors), or not delivered atall. In the absence of recon�gurations, and assuming that messages to and from a set ofprocessors constituting at least one read and one write quorum are delivered, reads andwrites take no more than time 4d using the current quorum system. Each recon�gurationtakes no more than time 6d, whether or not there are any concurrent writes or reads. Whenrecon�gurations are encountered, the response time for writes and reads grows incrementally.In general, using a quorum system that is k versions older than the current system increasestime by at most 2dk, thus reads and writes take at most time 4d + 2dk.In our implementation, we assume the availability of unbounded counters, whereas Attiya,Bar-Noy and Dolev [1] also provide an implementation using bounded counters. We discussthis assumption at the end of the paper.The rest of this paper is as follows. In Sec. 2 we de�ne models and conventions. In Sec. 3 wepresent �(C) and � primitives. In Sec. 4 we specify multi-writer/multi-reader service thatuses �(C). In Sec. 5 we give the recon�gurable algorithm using �, prove atomicity of theemulated registers, and assess the performance of the service. We conclude with a discussionin Sec. 6. Supporting material and proofs are given in the optional appendices.2 The model of computation and conventionsThe message-passing model of computation we use in this work is as follows. There are nprocessors with unique identi�ers in the set PID. For simplicity we assume PID = f1: : : : ; ng,but we do not assume that the identi�er set is compact. The processors communicateusing point-to-point messages at the level of abstraction of the network layer, i.e., in normaloperations, any two processors can send messages to each other, the delivery is unreliable,but the contents of messages are not corrupted. We assume no bounds on message deliverytimes { the algorithms must be asynchronous. In the cases where a message is sent to allprocessors, broadcast can be used. Such broadcast does not need to guarantee any atomic,fifo, causal or any other such properties.We use the following failure model: 4

�� ��The �(C) primitivesubmit(m; ; s; id)irespond(r; id)i deliver(m; id)iack(v; id)ij 1K �����(1) (2)(3)(4)Figure 1: The model of the quorum-acknowledged broadcast primitive �(C).� Processors are subject to crash-failures and restarts. Processors do not lose their contextdue to failures. Such failures can be modelled as (possibly unbounded) delays.� Link failures may render some of the nodes unreachable some of the time.� In general we allow an adversary to cause arbitrary patterns of failures. When we assessperformance of an algorithm we assume that when a response is expected from a quorumin some con�guration, then the processors in at least one such quorum do respond.In presenting distributed algorithms and showing the algorithms to be correct we makeno assumptions about the length of time it takes for a message to be delivered or the amountof time it takes to perform a local computation. These assumptions will be made only forthe purpose of evaluating the performance of the algorithms.For the rest of the paper we de�ne the following data types and conventions:� PID = f1; 2; : : : ; ng, the set of processor unique identi�ers� OID = [i2PIDOID i, operation unique identi�ers, where OIDi is the set of identi�ersgenerated by processor i and for i 6= j we have OID i [OID j = ;� M , the set of messages sent by processors� A, the set of values sent and returned by processors� A condenser is a function � : (A [f?g)n ! A; let � be the set of condenser functions� Q = 2PID, the set of quorums� C � Q� � Q�, the set of quorum con�gurations, each con�guration has selectors readand write, such that if C = hC:read;C:writei 2 C, where C:read = fR1; : : : ; Rrg andC:write = fW1; : : : ;Wwg, then every Ri has a nonempty intersection with every Wj.The speci�cations in this paper are done in terms of I/O automata [8, 9]. When a namedvalue x is used in the code fragment of an action and the name is neither a part of the state,nor appears in the signature, we declare the type of such name using Hidden(x) notation.3 The quorum-acknowledged broadcast primitiveWe de�ne two versions of the primitive, �(C) which uses a �xed quorum con�gurationC = hC:read;C:writei, and � which allows changing quorum con�gurations.3.1 The �(C) primitiveThe model of the primitive is given in Figure 1. The primitive is invoked via the submitaction (1) that contains the message m, the condenser function and selector s which is5

either read or write to indicate whether to use read or write quorums of the globally knowncon�guration C. The message is delivered to a processor via the deliver action (2), andthe processor acknowledges the message by returning the value v via the ack action (3).The invoking processor applies the function to a set of responses corresponding to anappropriate quorum at some point after these acknowledgements become available, and itreturns the results to its client (4).Below we state an abstract speci�cation of �(C), give an abstract implementation usingsend/receive channels and assess its performance.The �(C) primitiveData-types:m 2Mv 2 A Condenser function: 2 �Unique identi�ers: id 2 OIDOperation descriptors: d; desc= hmsg; con; sel; acc[1::n]; dlv; rspi 2 D,where D =M � �� fread; writeg�An � 2PID � Bool. The selectors are:msg : the message to be broadcastcon : the condenser functionsel : quorum type selector, either read or writeacc[1::n]: array of accumulated acknowledgements, where n is the number of processorsdlv : a set of member ids to whom the message was deliveredrsp : a boolean indicating whether the submitter had responded to its clientOperations: op 2 O,where O = OID ! D [f?gActions of i:Input: submit(m; ; s; id)iack(v; id)i Output: respond(r; id)ideliver(m; id)iState:op 2 O, initially empty, i.e., for any id, op(id) is unde�nedC 2 C, the �xed quorum con�gurationTransitions of i:submit(m; ; s; id)iE�: op(id) := hm; ; s;?n, ;, false ideliver(m; id)iPre: op(id):rsp = falsei =2 op(id):dlvop(id):msg = mE�: op(id):dlv := op(id):dlv [figack(v; id)iE�: op(id).acc[i] := v respond(r; id)i Hidden(a[1::n] 2 V n; Q 2 Q)Pre: op(id).rsp = falseQ 2 C:(op(id):sel)Q � fk : op(id):acc[k] 6= ?g8k 2 Q : a[k] = op(id):acc[k]8k =2 Q : a[k] = ?E�: r := (op(id):con)(a)op[id].rsp := trueWe assume that the clients of �(C) adhere to the syntax of the speci�cation. Furthermore,each submit is made unique by the invocation identi�er id, and that any ack is issued onlyin response to a deliver and only once. The clients of the primitive have OID i as a state6

component and they structure their output submit actions so that its precondition includesthe conjunct \id 2 OID i" and its e�ect includes \OID i := OID i � fidg".An execution � of an I/O automaton A is a �nite or in�nite sequence of alternatingstates and actions of A starting with the initial state. The trace of �, denoted by trace(�),is the subsequence of � consisting of all the external actions. Let � be an execution of �(C)together with clients as above.For a con�guration C we have a lemma that follows from the properties of quorums:Lemma 3.1 Suppose � is an execution of �(C) together with its clients and respond(: : : ; id1)iand respond(: : : ; id2)j are two actions in � with id1 6= id2. Suppose that � includessubmit(: : : ; write; id1)i and submit (: : : ; read; id2)j. Then there is an index k such that bothack (: : : ; id1)k and ack (: : : ; id2)k occur in �.In Appendix A we present a straightforward implementation of the �(C) primitive thatwe call �(C). The implementation uses send/receive point-to-point channels. Each channelis modelled having send(m)i;j and recv(m)j;i actions, and channeli;j state variables for i; j 2PID. Such channels have very simple speci�cations (cf. [8]) which are omitted here.Lemma 3.2 The composition of �(C) and the channel automata implements �(C).The performance analysis is as follows:Theorem 3.3 Suppose in any execution of �(C) (a) there is a �xed upper bound on localstep time during which a processor reads all received messages, performs local computation,and sends any necessary replies, (b) for any delivered message, it is delivered after at mosta known �xed delay, and (c) there exists a set of processors Q 2 C:s for s speci�ed in anysubmit action such that they receive the request and their acknowledgements are deliveredto the invoker of the submit, then it takes O(1) time between the submit transition and thematching respond transition, and there are �(n) messages sent as the result of the submit.3.2 The � primitiveThe � primitive is an extension of the �(C) primitive which does not rely on the �xedglobally-known quorum con�guration C. The single di�erence in the interfaces of the twoprimitives is that the submit action of �(C) has the argument s 2 fread;writeg indicatingwhether to use C:read or C:write quorums, while � has the argument q 2 Q� in which theclient speci�es the set of quorums to use.The state of � does not include C, and de�nition of the operation descriptors is changedso that sel selector is replaced with qrm 2 Q�. The qrm component is initialized to qin the e�ect of the submit action. The only remaining change is in the respond action,where in the precondition the conjunct \Q 2 C:(op(id):sel)" is replaced with the conjunct\Q 2 op(id):qrm".The implementation �(C) can be similarly extended to produce the implementation �for the � primitive. It is not di�cult to see that Lemma 3.1 and Lemma 3.3 given in theprevious subsection equally apply to � and �.4 Fixed quorums algorithm using �(C)In this section we specify an algorithm for atomic multi-writer/multi-reader registers using a�xed quorum con�guration and the �(C) primitive. The algorithm speci�es the higher layer7

and �(C) the lower layer of the robust register emulation. We give a proof sketch of thealgorithm correctness and of its performance analysis. The presentation illustrates the mainalgorithmic ideas and proof techniques used in the next section in the more complicatedalgorithm using dynamic quorum con�gurations.4.1 Fixed quorums algorithm speci�cationIn the approach of Attiya, Bar-Noy and Dolev [1], each copy of the register is stored togetherwith a label used to order the writes and to determine the result of which write is returnedby reads. In their single-writer approach the monotonically increasing label is maintainedby the writer and is associated with the register. When the writer assigns a new valueto the register along with the next higher label, it informs a majority of processors of thenew value and label. Readers perform their operation by reading a majority of values andassociated labels, selecting the value with the maximum label, and then informing a majorityof processors of the value and the labels adopted by the write before returning the chosenvalue ot the client.We generalize this approach by using a quorum con�guration instead of majorities. Oursolution is a pleasingly uniform algorithm for the readers and the (now multiple) writers.We replace the labels of [1] with the tags generated by the writers. The tags are pairsconsisting of the sequence number seq and the processor identi�er pid , and the tags areordered lexicographically. Thus each register is represented locally at each processor by itsvalue val and its tag tag. To simplify the presentation, we state the solution for one emulatedregister. Other than the interface, the only di�erence between the readers and the writersis that the writers assign new tags by incrementing the maximum tag found, while readerssimply use the maximum tags.The formal speci�cation is given below. At a high level, the writer (reader) accepts aclient write (read) request, invokes the �(C) primitive by using the submit action to queryall processors in a read quorum for their tags. When this query phase completes with therespond action, the writer lexicographically increments the maximum tag returned and theninvokes the �(C) primitive to propagate the new tag prop-tag and the new value prop-val toall processors in a write quorum. The reader simply propagates the maximum tag.Each processor has two queues. The request-q maintains client read requests in the formh\read", ci and write requests in the form h\write", v; ci, where c is the client identi�er. Onlythe request at the head of the queue is processed at any given time. The second queue ack-qis used for acknowledgments to be sent out subsequently to the speci�c deliver transitions.Reader/writer speci�cation with �xed quorumsData-types:T = N� PID, the tags of read and write operations with selectors seq and pidq 2 fread; writeg, selector for the quorum con�gurationL, client unique identi�ers(Other data-types as in � de�nition)State: (for each processor p 2 PID)tag 2 T , initially tag = hseq; pidi = h0; 0ival 2 A, initially val = v0 2 A 8

prop-tag 2 T , tag used in propagating results, initially prop-tag = h0; 0iprop-val 2 A, initially unde�nedstatus 2 f query-ready, query-active, prop-ready, prop-active, prop-done g, initially idlerequest-q , a sequence of (f\read"g�L) [(f\write"g�A�L), queue of requests, initially emptyack-q, a sequence of M � ID, initially emptyCondenser functions:� � � (a).(ha[k]:val; a[k]:tagi : 8j : a[k]:tag � a[j]:tag) : maximum tag computation.Actions:Input: write(v)c;preadc;prespond(h\query-ack",v; t i,id)prespond(h\prop-ack" i, id)pdeliver(h\query" i, id)pdeliver(h\propagate", v; t i, id)p Output: read-con�rm(v)c;pwrite-con�rmc;psubmit(h\query" i, (\query-ack",�),q; id)psubmit(h\propagate", v; t i,(� (a).(\prop-ack")), q; id)pack(m; id)pTransitions:write(v)c;pE�: append h\write", v, c i to request-qreadc;pE�: append h\read", c i to request-qsubmit(h\query" i, (\query-ack", �), q; id)pPre: status = query-readyrequest-q 6= ;q = readE�: status := query-activerespond(h\query-ack",v; t i,id)p Hidden(u 2 A)E�: if head(request-q) = h\write", u; c i thenprop-val := u;prop-tag := ht:seq + 1; p ielseprop-val := v;prop-tag := tstatus := prop-readysubmit(h\propagate", v; t i,(� (a).(\prop-ack")), q; id)pPre: status = prop-readyq = writev = prop-valt = prop-tagE�: status := prop-active

respond(h\prop-ack" i, id)pE�: status := prop-doneread-con�rm(v)c;pPre: v = prop-valstatus = prop-donehead(request-q) = h\read", c iE�: request-q := tail(request-q)status := query-readywrite-con�rmc;p Hidden(v)Pre: status = prop-donehead(request-q) = h\write", v, c iE�: request-q := tail(request-q)status := query-readydeliver(h\query" i, id)pE�: append hh\query-ack", val; tag i, id i to ack-qdeliver(h\propagate", v; t i, id)pE�: if t >lex tag thenval := v; tag := tappend hh\prop-ack" i, id i to ack-qack(m; id)pPre: head(ack-q) = hm, id iE�: ack-q := tail(ack-q)We now de�ne conventions that in the rest of the paper are used to identify client-levelread and write operations. We use variable � (appropriately subscripted when necessary) touniquely identify the client-level operations.Client-level read and write operations contain the query and propagation phases in eachof which the �(C) primitive is invoked once for the case of the �xed quorum con�guration.The �rst phase uses read quorums C:read and the second uses the write quorums C:write.9

De�nition 4.1 The phases of the read or write operation � are de�ned as follows:1. The operation � is in its query phase after the transition of the submit of \query" andprior to the submit of \propagate".2. The operation � is in its propagate phase after the transition of the submit of \propagate"and prior to the response to its client. 2In a given execution � we say that a read (write) operation � propagates a tag if thetag is used in the submit action in the propagation phase of �. We denote by ��(�) the tagpropagated by operation �. Where � is clear from the context we omit it and use � (�).The invocation event of a client-level read (write) operation is its corresponding read(write) action. The response event of the read (write) operation is its corresponding read-con�rm (write-con�rm) action.Suppose for some execution � the actions of an operation � include the actions of the�(C) primitive for some id, starting with the submit action and including the respond action.The unique identi�er id also uniquely identi�es the client-level operation �. When thepropagation tag ��(�) is de�ned for an operation � in the respond action uniquely identi�edby id1, or when ��(�) is propagated by the �(C) primitive using unique identi�er id2, thenwe also let � (id1) or � (id2) stand for ��(�).For the client-level operations in an execution we de�ne relation CP, the client-precedingorder as follows:De�nition 4.2 If in an execution �, any � invoked in the operation �1 completes beforeany � is invoked in the operation �2 (i.e., �1 completes before �2 starts), then h�1; �2i 2 CP.Where convenient, we use the notation �1 �cp �2 to indicate the same. 2The CP relation can be dynamically maintained as a history variable { for the purposeof the proofs only. This is done by maintaining a set completed of operations that is initiallyempty, and by adding an operation to it at the point of its completion, i.e., setting completedto completed [f�g, where � is the operation just being completed. We dynamically constructCP by setting CP, upon the start of a new operation �, to CP [f(�0; �) : �0 2 completedg.Note that these derived variables are otherwise not used in any way by the algorithm.4.2 Proof of correctnessFor any execution we are interested in showing the atomicity of the read and write operations.We show atomicity of the implementation by using the following lemma of [8]:Lemma 4.1 [8] Let � be a (�nite or in�nite) sequence of actions of a read/write object ex-ternal interface. Suppose that � is well-formed for each i 2 PID, and contains no incompleteoperations. Let � be the set of all operations in �. Suppose that � is an irreexive partialordering of all the operations in �, satisfying the following properties:1. For any operation � 2 �, there are only �nitely many operations � such that � � �.2. If the response event for � precedes the invocation event for � in �, then it cannot bethe case that � � �.3. If � is a write operation and � is any operation in �, then either � � � or � � �.4. The value returned by each read operation is the value written by the last preceding writeoperation according to � (or v0, the initial value, if there is no such write).10

Then � satis�es the atomicity property. 2This lemma lists four conditions involving a partial order on operations in �. If anordering satisfying these four conditions exists, it is guaranteeing that there is some way toinsert serialization points satisfying the atomicity property. Condition 1 rules out orderingsin which in�nitely many operations precede some particular other operation. Condition 2says that the � ordering must be consistent with the order of invocations and responses bythe clients. Condition 3 says that � totally orders the write operations and orders all theread operations with respect to the write operations. Condition 4 says that the responses toreads are consistent with �.We now present the proof of atomicity of the registers implemented by the compositionof the �xed quorum algorithm and �(C). We proceed with preliminary lemmas that lead tothe main result (a selection of proofs is in the optional Appendix B).It is easy to see that since tags are only changed in the e�ects of deliver actions wheretags are lexically increased, we have:Lemma 4.2 Tags maintained by each processor are monotonically nondecreasing.Each read and write operations include exactly two sequential invocations of the �(C)primitive. The �rst invocation uses read quorums and the second uses the write quorums.Lemma 4.3 If for an operation �, t is the tag returned by the query phase of the algorithmand � (�) is the tag used in the propagation phase, then (i) if � is a read then t = � (�), and(ii) if � is a write then t < � (�).Now the main supporting lemma:Lemma 4.4 If in an execution �, �1 �cp �2, then (i) if the operation �2 is a read, then��(�1) �lex ��(�2), and (ii) if the operation �2 is a write, then ��(�1) <lex ��(�2).We now de�ne the partial order needed to apply Lemma 4.1 in the main theorem for �xedcon�gurations as follows: Let � be any sequence of read and write operations � containingno incomplete operations. We de�ne the (irreexive) partial order PO = h�;� i on theoperations by letting: �1 � �2 for �1; �2 2 �, if (a) � (�1) <lex � (�2), or (b) �1 is a write and�2 is a read such that � (�1) =lex � (�2).The following theorem is shown with the help of Lemma 4.1:Theorem 4.5 � satis�es the atomicity property.4.3 Conditional performance analysisTo assess the performance of the atomic multi-writer/multi-reader service, we assume thatfor any invocation of �(C) the invoker does not fail, and that it receives responses fromat least one quorum of processors in C. We also assume that d is an upper bound for thelongest message delivery delay (when message is indeed delivered), plus local processing ofthe message, and sending any replies. In addition, it is assumed that processors that haveenabled transitions continue taking steps. With these assumptions, and using Theorem 3.3(recall its assumptions) we show the following:Theorem 4.6 Any read or write operation takes time 4d and at most 8n messages.11

The � primitivesubmit(m; ; q; id)irespond(r; id)i deliver(m; id)iack(v; id)irecon�� ��
~] / 3read read-con�rm(v) write(v) write-con�rm

& %6
Atomic Read/Write Serviceq K � 1'

&
$
%Figure 2: Two-layer modular view of the read/write service with recon�gurable quorums.5 Recon�gurable quorums algorithm using �In this section we specify the multi-writer/multi-reader algorithm with quorum recon�gura-tions using the � primitive. We then prove that the algorithm correctly implements atomicmulti-reader/multi-writer registers and assess its conditional performance. A high-level mod-ular representation of the service is given in Figure 2.5.1 Recon�gurable quorums algorithm speci�cationTo extend the �xed quorum algorithm to recon�gurable quorums, we need to solve theproblems of (1) informing active processors of new con�gurations, (2) ensuring that it issafe to stop using an older con�guration in favor of the new one, and (3) ensuring thatany processors that attempt to use any of the obsolete con�gurations are able to obtain thecurrent con�guration.Achieving this is technically challenging for several reasons. We do not assume availabilityof reliable broadcast or channels, thus not all processors may learn of the existence of a newcon�guration. Furthermore, since we allow processor restarts, and restarted processors mayhave their con�gurations arbitrarily out of date. We need a distributed solution which doesnot rely on the availability of the recon�gurer to dispense current quorum con�gurations toprocessors with obsolete con�gurations. The solution also has to allow concurrency in thepresence of recon�gurations without resorting to locking or mutual exclusion.We give speci�cation in two parts. In the �rst part we give common data-types and thetransitions of reader/writer. In the second part we de�ne the transitions of the recon�gurer.Read and write operations consist of two phases in which the � primitive is invoked atleast once. The �rst phase, query, uses read quorums and the second, propagation, the writequorums. De�nitions 4.1 and 4.2 are the same for client operations with recon�gurations.The fact the queries and propagations may involve more than one invocation of � has noimpact on the meaning of these de�nitions.As in the case with �xed con�gurations, � (�) denotes the tag propagated by operation �.12

Similarly, the main di�erence between reads and writes is that in the case of reads, the valuewith the associated maximum tag are propagated, and in case of writes, the new value andthe lexicographically incremented tag are propagated.A reader/writer maintains con�guration index pair cix and con�guration pair Cfg. Theseare such that cix:act is the index of the active current con�guration, cix:bid is the index ofthe proposed con�guration, and Cfg:Act is the active current con�guration and Cfg:Bid isthe proposed con�guration. When cix:act = cix:bid, it means that Cfg:Act = Cfg:Bid , andthat the proposed con�guration is accepted as active. Note that the con�guration indexpairs can be compared lexicographically.The query and propagation phases of readers/writers are similar to the phases of the �xedquorum algorithm, but include a possible iteration. Each phase invokes � until the responsereturns an index pair that contains no higher con�guration index than the index of theinvoker. If a higher active index is detected, it is adopted and the primitive is invoked usingthe con�guration with the higher index. When a reader/writer uses the current con�guration,the processing is essentially identical to the �xed con�guration case. Perhaps surprisingly,the con�gurations used in the query and propagation phases need not be the same!Recon�gurable quorums algorithmData-types:The set of con�guration indices: I2, with selectors act, the active con�guration number, and bid,the proposed con�guration numberCon�guration indices: x; z; cix =2 I2The set of con�guration pairs: C2, with selectors Act, the active con�guration, and Bid, the pro-posed con�gurationCon�guration pairs: X;Z 2 C2The values returned in the acknowledgements of the query phase (and accumulated in op(id)acc[1::n]by �) are of the type M � A� T � I2 �Q2. The selectors for each component is as follows:msg 2M , the message type of \query-ack"val 2 A , the data object valuetag 2 T , the tag of the objectcix 2 I2 , the con�guration index paircfg 2 C2 , the quorum con�guration pairCondenser functions:� � � (a).(ha[k]:val; a[k]:tagi : 8j : a[k]:tag � a[j]:tag) : maximum tag (same as for �xed con�gu-rations)� � � (a).(ha[k]:cix; a[k]:cfgi : 8j : a[k]:cix� a[j]:cix) : maximum con�guration index and associ-ated con�gurationState of the reader/writer: (for each processor p 2 PID)The state components are the same as for the �xed quorums algorithm, but withthe following additions:cix 2 I2, the con�guration index pair, initially h0; 0iCfg 2 C2, the con�guration pair, initially hC0; C0i, for some C0.next-con�g : C , a generator of con�gurations. 13

Actions of the reader/writer:(The actions write, read, write-con�rm and read-con�rm are identical to theircounterparts in the �xed quorums speci�cation and we do not repeat them here.)Inputs: respond(h\query-ack", v; t; z; Z i, id)prespond(h\prop-ack", z; Z i, id)pdeliver(h\query" i, id)pdeliver(h\propagate", v; t i, id)pdeliver(h\recon-done", z; Z i, id)p Outputs:submit(h\query" i, (\query-ack",�; �),q; id)psubmit(h\propagate", v; t i,(� (a).(\prop-ack"), �), q; id)pack(m; id)pTransitions of the reader/writer:submit(h\query" i, (\query-ack", �; �), q; id)pPre: status = query-readyrequest-q 6= ;q = Cfg:Act:readE�: status := query-activecix-used := cix.actcfg-used := Cfg.Actrespond(h\query-ack", v; t; z; Z i, id)pE�: if cix-used � z:bid thenif head(request-q)=h\write",u; c i thenprop-val := u;prop-tag := ht:seq + 1; pielseprop-val := v;prop-tag := tstatus := prop-readyelseif z > cix thencix := z; Cfg := Zstatus := query-ready
submit(h\propagate", v; t i,(� (a).(\prop-ack"), �), q; id)pPre: status = prop-readyq = Cfg:Act:writev = prop-valt = prop-tagE�: status := prop-activecix-used := cix:actcfg-used := Cfg:Actrespond(h\prop-ack", z; Z i, id)pE�: if cix-used � z:bid thenstatus := prop-doneelseif z > cix thencix := z; Cfg := Zstatus := prop-readydeliver(h\query" i, id)pE�: append hh\query-ack", val; tag; cix; Cfg i, id ito ack-qdeliver(h\propagate", v; t i, id)pE�: if t >lex tag then val := v; tag := tappend hh\prop-ack", cix; Cfg i, id i to ack-qdeliver(h\query-install", z; Z i, id)pE�: append hhval; tag; cix; Cfg i, id i to ack-qif z > cix then cix := z;Cfg := Z deliver(h\recon-done", z, Z i, id)pE�: if z > cix then cix := z;Cfg := Zappend hh\prop-ack" i, id i to ack-qack(m; id)pPre: head(ack-q) = hm, id iE�: ack-q := tail(ack-q)The recon�gurer has three phases. Each phase consist of a single invocation of �. In thequery-install phase it informs a read quorum and a write quorum in current con�guration ofthe new con�guration and it obtains the register value with the maximum tag it found. Inthe propagate phase it propagates this tag and value to a quorum in the new con�guration.In the recon-idle phase it announces the recon�guration complete.14

De�nition 5.1 The phases of the recon�gurer are de�ned as follows:1. The recon�gurer is in its query-install phase after the transition of the submit of \query-install" and prior to the submit of \propagate".2. The recon�gurer is in its propagate phase after the transition of the submit of \propagate"and prior to the submit of \recon-done".3. The recon�gurer is in its recon-idle phase after the transition of the submit of \recon-done" and prior to the submit of \query-install". The recon�gurer is also in its \recon-idle" phase prior to the submit of the very �rst \query-install". 2The recon�gurer r maintains the current quorum con�guration sequence number cix:actrand the current con�guration Cfg:Actr. In any global state, the current con�guration index isde�ned to be cix:actr. For any processor p, its con�guration is current, if cix:actp = cix:actr.State of the recon�gurer r:The state components are the same as for the reader/writer above, except thatthe request-q component is deletedActions of the recon�gurer:(The deliver and ack actions are identical to the actions of readers/writers)Inputs: reconrrespond(h\install-ack",v; t; z; Z i, id)rrespond(h\prop-ack", z; Z i, id)rrespond(h\recon-ack" i, id)r Outputs:submit(h\query-install", z; Z i,(� (a).(\install-ack"), �; �), q; id)rsubmit(h\propagate", v; t i,(� (a).(\prop-ack"), �), q; id)rsubmit(h\recon-done", z; Z i,� (a).(\recon-ack"), q; id)rTransitions of the recon�gurer:reconrPre: status = idleE�: Cfg.Bid := next-con�gcix.bid := cix.act + 1status := new-con�gsubmit(h\query-install", z; Z i,(� (a).(\install-ack"), �; �), q; id)rPre: status = new-con�gz = cix ^ Z =Cfgq = Cfg:Act:read 1 Cfg:Act:write (see note)E�: cix := z; Cfg := Zstatus := query-activerespond(h\install-ack", v; t; z; Z i, id)rE�: prop-val := v; prop-tag := tstatus := query-donesubmit(h\propagate", v; t i,(� (a).(\prop-ack"), �), q; id)rPre: status = query-donev = prop-val ^ t = prop-tagq = Cfg:Bid:writeE�: status := prop-active
respond(h\prop-ack", z; Z i, id)rE�: status := propagate-donesubmit(h\recon-done", z; Z i,� (a).(\recon-ack"), q; id)rPre: status = propagate-donez = hcix:bid; cix:bidiZ = hCfg:Bid; Cfg:Bidiq = Cfg:Bid:writeE�: cix := zCfg := Zrespond(h\recon-ack" i, id)rE�: status := idleThe deliver and ack actions are identicalto the actions of readers/writers.Note: For A;B 2 Q, we de�ne A 1 B asthe set fa [b : a 2 A ^ b 2 Bg.15

5.2 Correctness of the composed automatonWe now consider the composition of the multi-reader/multi-writer automaton, the recon�g-urer automaton and the � primitive.In showing the correctness of the composed automaton, we introduce a succinct and ef-fective way of expressing the eventuality of certain outcomes based on the current knowledge.The proof uses a new \Fill" notion, which we use to predict the acknowledgment vector fora current invocation. This notion can be used to great advantage in stating our invariantsand in reducing the size of their proofs.Our Fill notion produces a \virtual" acknowledgment from each processor based ontaking the actual acknowledgment if it is already de�ned, else a predicted acknowledgmentdetermined as follows. If a deliver has occurred at p without the corresponding ack, thenthe queued acknowledgment; if the deliver has not occurred, then the acknowledgment thatwould be produced if the deliver occurred as the next event.Formally,De�nition 5.2 For the invocation of the � primitive with the unique identi�er id, let �p :M �State !M be the function computed in the e�ects of the deliver action by processor pto construct the acknowledgment message upon the receipt of a message from the submit-er,we de�ne: Fill(p; id)� if op(id) = ?then ?else if p 2 op(id):acksthen op(id):acc[p]else if 9hm; idi 2 ack-qpthen melse �p(m; statep) 2We now show the atomicity of the implementation using Lemma 4.1. In the rest of thissection we state the most important lemmas and theorems. The detailed proofs are given inAppendix C. The numbering below preserves the numbering given in Appendix C.The key to the proof is a multi-part invariant, which we present just below. Part I3 is themost important part; it mirrors Lemma 4.4 of the algorithm with �xed quorum con�gurationsas it relates the tags of operations where one follows another. Parts I1 and I2 are auxiliaryinvariants.Parts I1a,b,c deal with the properties of the tags of completed operations and the stateof the recon�guration. Part I1a states that for any completed read or write operation �, ifno new quorum system is being processed by the recon�gurer, then there exists a currentwrite quorum such that all processors in it reect either � or some other operation thatsupercedes it.Part I1b states that if the recon�gurer invoked � to install a new con�guration, then nomatter what active read quorum it ends up using, it is guaranteed to obtain a tag that is atleast as large as the tag of any completed operation. This guarantee is expressed using theFill notation.Part I1c states that if the recon�gurer invoked � to propagate the maximum tag it foundto a new write quorum, then this tag is as high as the tag of any completed operation andany processors that have acknowledged the propagated tag have updated their own tags.16

query phase of ��0 ~ (1) �(�0)recon�gurationU (2) new con�g propagation phase of �recon�guration1 (2) �(�)U (3) new con�gI2a I2b Time� (1) �(�)-Figure 3: Invariant illustration for parts I2a and I2b.Part I2a states that for any read or write in its query phase, either (1) the tag returnedby the query is guaranteed to be at least as high as the tag of any completed operation {this is expressed with the help of the Fill notation, or (2) the operation detects that itscon�guration is obsolete { the guarantee of detection is expressed using Fill. See Figure 3.Part I2b states that for any read or write operation � in its propagation phase, then atleast on of the following conditions is guaranteed to hold: (1) its propagation tag is eitherbeing propagated using the current con�guration, or (2) the tag is already reected in awrite quorum of the new con�guration, or (3) � detects that its con�guration is obsolete {again this guarantee of detection is expressed using Fill. See Figure 3.Part I3 is the key part of the invariant. It states that a read completely following anotheroperation has the tag that is at least as large, and that a write has the tag strictly largerthan any other operation that precedes it.Lemma 5.14 In all reachable states:I1 8� 2 completed,(a) if the recon�gurer is in its recon-idle phase :9W 2 Cfg.Act:writer : 8i 2 W : � (�) � tagi(b) if the recon�gurer is in its query-install phase having invoked � using identi�er oidr:8R 2 Cfg.Act:readr : � (�) � maxi2RfFill(i; oidr):tagg(c) if the recon�gurer is in its propagate phase having invoked � using identi�er oidr andthe tag � (recon) : (� (�) � � (recon)) ^ (8i 2 op(oidr):acks : � (recon) � tagi)I2 8� =2 completed,(a) If �0 �cp � and � at processor p is in the query phase having invoked � using identi�eroid, then for any R 2 cfg-used:readp, then(1) � (�0) � maxi2RfFill(i; oid):tagg, or(2) cix-usedp < maxi2RfFill(i; oid):cix:bidg.(b) If � is in the propagation phase having invoked � using identi�er oid, then(1) cix-usedp is current, or(2) 9W 2 Cfg.Act:writer : 8i 2 W : � (�) � tagi, or(3) 8W 2 cfg-used:writep : cix-usedp < maxi2WfFill(i; oid):cix:bidg.I3 If �1 �cp �2 and � (�2) is de�ned, then(a) � (�1) � � (�2) when �2 is a read,(b) � (�1) < � (�2) when �2 is a write.The proof of the lemma is by induction on the length of any execution of the composedautomata (Appendix C). 17

Lemma 5.15 In any execution, if �1 �c:p: �2, then (i) if �2 is a read operation, then� (�1) �lex � (�2), and (ii) if �2 is a write operation, then � (�1) <lex � (�2).Proof: Using Lemma 5.14(I3) and Lemma 5.2. 2We now prove the atomicity of the register implementation similarly to the proof of the�xed quorums implementation by constructing a partial order and using Lemma 4.1.Let � be � containing no incomplete operations. We de�ne the (irreexive) partial orderPO = h�;� i on the operations by letting: �1 � �2 for �1; �2 2 �, if(a) � (�1) <lex � (�2), or(b) �1 is a write and �2 is a read such that � (�1) =lex � (�2).Theorem 5.16 Any such sequence of read and write operations � satis�es the atomicityproperty.Proof: Follows the proof of Theorem 4.5. 25.3 Conditional performance analysisTo assess the performance of the atomic multi-writer/multi-reader service, we make thesame assumptions as in Section 4.3. With these assumptions, and adapting Theorem 3.3 forrecon�gurable quorums, we show the following:Theorem 5.1 In the absence of recon�gurations, any client-level read or write operationtakes (a) time 4d if it starts with the current con�guration, and (b) time 4d + (current �cix-used) � 2d if it starts in the con�guration cix-used.The performance of any recon�guration does not depend on any concurrent client-level-operations:Theorem 5.2 Any recon�guration takes time at most 6d and at most 12n messages.6 DiscussionWe have presented a robust service that emulates atomic multi-writer/multi-reader registerin message passing systems. The service ensures atomicity of the emulated registers byrelying on quorum systems in a way that allows great deal of asynchrony, concurrency andfault-tolerance. The service also allows for the quorum systems to be evolved dynamically,for example in response to changing operating conditions. This dynamic changes do notrequire any synchronization and the performance of the atomic register service is degradedgracefully when recon�gurations are frequent.On manageability of distributed services: One of the problems often encountered in deployingdistributed systems is that they are di�cult to manage { many resource come without su�-cient management facilities and require either manual intervention or else are equipped withmanagement interfaces that are either inadequate or require out-of-band communication.Although the management interface provided by our service solves a narrowly focused man-agement problem, it gives a good example of clean integration of functional and managementaspects of the service. In particular, we require no out-of-band communication or relianceon �xed external quorum systems { the recon�guration is achieved by using exclusively thenative communication primitives and the quorum system that is being changed!18

On e�cient atomic read/write registers and bounded sequence numbers: Our algorithmsassume the availability of unbounded counters used to number register versions and quorumcon�gurations. The single-writer algorithm of Attiya, Bar-Noy and Dolev [1] is re�ned bythe authors to use bounded counters at a modest increase in storage in message sizes. Theimplementation of [1] relies on a reliable ping-pong mechanism. This is done to allow, in aparticular section of the protocol, only a single unacknowledged message between any twoprocessors. Furthermore, any link is assumed to be reliable unless it crashes, after which thelink remains forever inoperable.It appears that such reliable ping-pong mechanism would assume too much reliabilityon the part of the communication subsystem. We conjecture that either the underlyingsubsystemmay need itself either to use unbounded counters or to use messages of unboundedsize (cf. the result [8, Thm. 22.11] due to Lynch, Mansour and Fekete).On failure models considered: We have considered only the benign component failures { theprocessor and link failures never create spontaneous messages and the messages that are sentare delivered without alteration. Malki and Reiter [10] recently explored the use of quorumsystems in the presence of Byzantine failures. It would be interesting to examine additionalfailure models that can be handled by atomic register emulations.Optimizing the communication e�ciency of accessing quorum systems: In our solution we useunreliable broadcast (or simulated broadcast) to achieve substantial asynchrony, concurrencyand fault-tolerance. We have argued in the introduction that in contemporary networksthe use of hardware-assisted broadcast is more e�cient than its linear-in-the-number-of-destinations message complexity suggests. In addition, the results of Peleg and Wool [13]indicate that for many quorum systems a linear number of messages would in fact be requiredto either reach a single active quorum or to detect a quorum all of whose members have eitherfailed or are inaccessible. It may be interesting to explore a staged approach to broadcastusing multicasts in conjunction with quorum systems that do not su�er from the worst caselinear number of messages.Other extensions, uses and optimizations: In this paper we concentrated on the correctnessof the solution. There are obvious ways to optimize the solution. For example, instead ofsending sets of quorums in the invocation of the lower layer primitive, we can easily sendnames of well-known quorum systems. It is also easy to reduce the number of unnecessaryrequest deliveries and acknowledgements in the lower layer by piggy-backing cancellationmessages onto broadcasts.Our recon�gurable algorithm implements a single recon�gurer. However note that therecon�gurer need not be a single point of failure { we conjecture that the algorithm can bemodi�ed so that the processors that learn of a new con�guration start using the currentand the new con�gurations concurrently until (if ever) the recon�gurer enters its recond-idlephase. Of course it is also very interesting to extend the recon�gurable algorithm to multipleconcurrent recon�gurers.We are currently pursuing other uses of the lower layer computation primitive. The prim-itive can be extended easily to handle termination conditions (i.e., preconditions of respond)that are de�ned as a predicate (instead of expressing set containment). We are lookingfor algorithms that can be expressed naturally in a modular fashion using the generalizedprimitive as a general-purpose distributed systems building block.Acknowledgments: The authors thank Alan Fekete and Roberto De Prisco for their com-19

ments an an earlier draft. This work was supported by the following contracts: ARPAN00014-92-J-4033 and F19628-95-C-0118, NSF 922124-CCR, and ONR-AFOSR F49620-94-1-01997.Author email: lynch@theory.lcs.mit.edu, alex@theory.lcs.mit.edu.References[1] H. Attiya, A. Bar-Noy and D. Dolev, \Sharing Memory Robustly in Message Passing Systems",J. of the ACM, vol. 42, no. 1, pp. 124-142, 1996.[2] P.A. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control and Recovery inDatabase Systems, Addison-Wesley, Reading, MA, 1987.[3] S.E. Deering and D.R. Cheriton, \Multicast Routing in Datagram Internetworks and ExtendedLANs", ACM TOCS, vol. 8, no. 2, 1990.[4] S.B. Davidson, H. Garcia-Molina and D. Skeen, \Consistency in Partitioned Networks", ACMComputing Surveys, vol. 15, no. 3, pp. 341-370, 1985.[5] H. Garcia-Molina and D. Barbara, \How to Assign Votes in a Distributed System," J. of theACM, vol. 32, no. 4, pp. 841-860, 1985.[6] D.K. Gi�ord, \Weighted voting for Replicated Data", in Proc. of 7th ACM Symp. on Oper.Sys. Princ., pp. 150-162, 1979.[7] M.P. Herlihy, Replication Methods for Abstract Data Types, Doctoral Dissertation, MIT,LCS/TR-319, 1984.[8] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1996.[9] N.A. Lynch and M.R. Tuttle, \An Introduction to Input/Output Automata", CWI Quarterly,vol.2, no. 3, pp. 219-246, 1989.[10] D. Malki and M. Reiter, \Byzantine Quorum Systems", TR CS96-8, Inst. of Comp. Sci, theHebrew Univ. of Jerusalem, July 9, 1996.[11] M.H. Olsen, E. Oskiewicz and J.P. Warne, \A Model for Interface Groups", IEEE 10th Symp.on Reliable Distributed Systems, pp. 98-107, 1991.[12] J.-F. Paris and P.K.Sloope, \Dynamic Management of Highly Replicated Data", in IEEE 11thSymp. on Reliable Distr. Systems, pp. 20-27, 1992.[13] D. Peleg and A. Wool, \How to be an E�cient Snoop, or the Probe Complexity of QuorumSystems", in Proc. of the 15th ACM Symp. on Princ. of Distr. Comput., pp. 290-299, 1996.[14] RFC 1112, Internet Group Multicast Protocol, Internet Standard Protocol (Recommended).[15] A.A. Shvartsman, \Dealing with History and Time in a Distributed Enterprise Manager",IEEE Network, vol. 7, no. 6, pp. 32-41, 1993.[16] M. Sloman, "Management: What and Why", in Network and Distributed Systems Manage-ment, M. Sloman, Ed., Addison-Wesley, 1994.
20

Optional AppendicesAn implementation �(C) of �(C)Here we present a straightforward implementation of the �(C) primitive that we call �(C).The implementation uses send/receive point-to-point channels. Each channel is modelledhaving send(m)i;j and recv(m)j;i actions, and channeli;j state variable for i; j 2 PID. Suchchannels have very simple speci�cation (cf. [8]) that is omitted here. Main di�erences between�(C) and �(C) are that (1) instead of the global op, each processor maintains a statecomponent op invocations it initiates, and (2) messages are communicated using the channelswith the help of queues out-q and deliver-q. It is not di�cult to see that the composition of�(C) and the channel automata implements �(C).Speci�cation of �(C)Data-types:Operation descriptors: desc = h msg, con, qrm, acc[1::n] i 2 Da,where Da =M � �� Q� � (A [f?g)n. The selectors for each component is as follows:msg : message to be broadcast by the primitivecon : the condenser functionsel : read/write quorum selectoracc[1::n]: array of accumulated acknowledgements, where n is the number of processorsOperations: O = OID ! Da [f?g(Other data-types from the Sections 2 and 3.1 as needed)State: (for each processor i 2 PID)Ops : 2OID , the set of active operation identi�ers, initially emptyop 2 O, operationsout-qj : queues of outgoing messages to individual processors (for j 2 PID), initially emptydeliver-q : the queue of incoming requests to be delivered locally, initially emptyAuxiliary variables: (computed on global state)op(id):dlv : the set of processors to whom the message was delivered as the result of the primitiveinvocation id. It is initially empty, and it is computed as: op(id):dlv : op(id):dlv [fig in thee�ects of the deliver action.op(id):acks�fpid : op(id):acc[pid] 6= ?gop(id):rsp : when op(id) 6= ?, then op(id):rsp = false i� id 2 Ops, and op(id):rsp = true i�id 62 Ops.Actions: (for processor i)Input: submit(m; ; s; id)iack(v; id)irecv(m)j;i Output: respond(r; id)ideliver(m; id)isend(m)i;j21

Transitions:submit(m; ; s; id)iE�: op(id) := hm; ; s;?n iOps := Ops [fidgfor j 2 PIDdo append hm, id i to out-qjsend(m)i;jPre: head(out-qj) = mE�: out-qj := tail(out-qj)recv(m)j;i Hidden(m0 2M; v 2 A)E�: if m = hm0; idi thenappend hm0; j; id i to deliver-qelseif m = hv; idi ^ id 2 Ops thenop(id):acc[j] := v
deliver(m; id)iPre: head(deliver-q) = hm; j; id iE�: deliver-qi := tail(deliver-qi)ack(v; id)iE�: append hv, id i to out-qjrespond(r; id)i Hidden(Q 2 Q; a 2 An)Pre: id 2 OpsQ 2 C:(op(id):sel)Q � op(id):acks8k 2 Q : a[k] = op(id):acc[k]8k 62 Q : a[k] = ?E�: r := (op(id):con)(a)Ops := Ops� fidgAppendix B: Selected proofs for Section 4Lemma 4.2 Tags maintained by each processor are monotonically nondecreasing.Proof: The tags are changed only in the e�ects of deliver actions used in the propagation of tags,where the change is e�ected only if the tag value is lexically increased. 2Lemma 4.3 If for an operation �, t is the tag returned by the query phase of the algorithm and�(�) is the tag used in the propagation phase, then (i) if � is a read then t = �(�), and (ii) if � isa write then t < �(�).Proof: Established by the respond action that completes the query phase of �. 2The main supporting lemma:Lemma 4.4 If in an execution �, �1 �cp �2, then (i) if the operation �2 is a read, then ��(�1) �lex��(�2), and (ii) if the operation �2 is a write, then ��(�1) <lex ��(�2).Proof: We consider each of the two cases:(i) �1 is a read or a write and �2 is a read. LetW1 2 C:write be a write quorum used in propagating��(�1). Let R2 2 C:read be a read quorum used the query phase of �2. By Lemma 3.1, there isat least one processor i such that i 2 W1 \ R2 and uses its tagi in the acknowledgement in queryphase of �2. Since tags are monotonically nondecreasing by Lemma 4.2, tagi � ��(�1). Since ��(�2)is computed as the maximum over the acknowledgements received from R2 and by Lemma 4.3 itfollows that �(�1) �lex �(�2).(ii) �1 is a read or a write and �2 is a write. Using a similar argument we can show that tagi �lex�(�1) for the processor i. Since �(�2) is computed by the action respond and from Lemma 4.3 itfollows that �(�1) <lex �(�2). 2We now de�ne the partial order needed to apply Lemma 4.1 in the main theorem for �xedcon�gurations as follows:Let � be any sequence of read and write operations � containing no incomplete operations.We de�ne the (irreexive) partial order PO = h�;� i on the operations by letting: �1 � �2 for�1; �2 2 �, if 22

(a) �(�1) <lex �(�2), or(b) �1 is a write and �2 is a read such that �(�1) =lex �(�2).In what follows, we let � stand for some read operation, and ! stand for some write operationas needed.Theorem 4.5 � satis�es the atomicity property.Proof: The necessary properties for Lemma 4.1 (see lemma statement) are as follows:1. If � is a write, it has a �nite tag �(�) and is preceded by �nitely many other writes. Since �contains no incomplete operations, there can only be a �nite number of reads � preceding �with �(�) <lex �(�). Similarly, if � is a read, it can only be preceded by �nitely many writes !with �(�) � �(�), with �nitely many other reads preceding or concurrent with these writes.2. We show this by case analysis. For an operation �, we use "� to denote the invocation event,and �# to denote the response event. We use � for read and ! for write events. With twooperations, there are four cases:(a) �# precedes "! { in this case, �(�) <lex �(!) by Lemma 4.4. Thus ! 6� � by the POconstruction.(b) �1# precedes "�2 { in this case, by the de�nition of PO, if �(�1) <lex �(�2), then �2 6� �1, elseif �(�1) =lex �(�2), then, since both are reads, they are not ordered by the PO construction.(c) !# precedes "� { in this case �(�) �lex �(!) by Lemma 4.4, and ! � � by the POconstruction. Thus � 6� !.(d) !1# precedes "!2 { in this case �(!1) < �(!2) by the same lemma again forcing !1 � !2 inPO. Thus !2 6� !1.3. This follows from the de�nition of PO, since the tags of any two writes are (lexicographically)comparable and are not equal, since they are unique. If � is a read then (a) if its tag is smaller,it implies � � !, (b) if its tag is larger, it implies ! � �, or (c) if it has the same tag, then inthis case again ! � �.4. The value returned by a read � is value written by the last preceding write ! according to �.This is so because for any such read and write pair, �(!) = �(�). (If there is no preceding write,then � returns v0.)Therefore, by Lemma 4.1, any such � satis�es the atomicity property. 2Appendix C: Selected proofs for Section 5In the presentation below where necessary, for any state component x, we let x(k) denote the valueof the component after k transitions, and x(k+1) its value after the k + 1st transition.Lemma 5.1 Tags maintained by each processor are monotonically increasing, i.e., if for any trace,j and k are transitions such that j � k, then for all i 2 PID we have tagji �lex tagki .Proof: The tags are changed only in the e�ects of deliver actions used in the propagation of tags,where the change is e�ected only if the tag value is lexically increased. 2Lemma 5.2 If for on operation �, t is the tag returned by the query phase of the algorithm and�(�) is the tag used in the propagation phase, then (i) if � is a read then t = �(�), and (ii) if � isa write then t < �(�).Proof: Established by the respond action that completes the query phase of �. 223

Lemma 5.3 In any reachable state, for any client-level operation � if i 2 op(oid):acks, where oidis the invocation of the � primitive in the propagation phase of �, then �(�) � tagi.Proof: When a processor i acknowledges a propagated tag, it makes tagi = �(�) unless tagi > �(�).This establishes �(�) � tagi. The invariant is maintained by the monotonicity of tagp (Lemma 5.1)and by the fact that �(�) is not changed once it is de�ned. 2The single recon�guration processor r maintains the current quorum con�guration sequencenumber cix:actr and the current con�guration Cfg:Actr.In any global state, the current con�guration index is de�ned to be cix:actr.For any processor p, its con�guration is current, if cix:actp = cix:actr.Lemma 5.4 For any processor p, cix:actp � cix:actr, where r is the recon�gurer.Proof: { left as an exercise for the reader. 2Lemma 5.5 For any processor p, either cix:actp is current, or 9W 2 Cfg:Act:writep : 8i 2 W :cix:acti > cix:actp.Proof: Operationally: before the new con�guration is activated by the submit of \recon-done",all members of at least one write quorum of the previous con�guration are informed of the newproposed con�guration as ensured by the recon�gurer's \query-install" phase. 2Lemma 5.6 For any read or write operation � in its propagation phase that executes a submit atprocessor p:(a) If cix-usedp is not current, then 8W 2 cfg-usedp : cix-usedp < maxi2W fFill(i; oidp):cix:bidg.(b) If cix-usedp is current and the submit occurs while the recon�gurer is in its propagationphase, then 8W 2 cfg-usedp : cix-usedp < maxi2W fFill(i; oidp):cix:bidg.Proof: (a) Using Lemma 5.5 it can be shown that the following is an invariant for the primitiveinvocation oid in the propagation phase:If cix-usedp < cix:actr at submit, then 9R 2 cfg-usedp : 8i 2 R : cix-usedp < Fill(i; oid):cix:bid.(b) Since cix-usedp is current and the submit follows the recon�gurer's respond to \query-install",then the respond to \propagate" at p returns z such that cix-usedp < z:bid. 2The following lemmas will be used in the proof of the main multi-part invariant. In the �rsttwo lemmas we address the state of a read or write operation that is in the \propagate" phase.Lemma 5.7 If a read or write operation � at processor p is in the propagation phase using theprimitive oidp using cix-usedp that is current, and the recon�gurer is in the query-install phaseusing the primitive oidr, then 8R 2 Cfg:Act:readr : 8W 2 cfg-usedp : 8i 2 R \W , at least one ofthe following holds:(a) i 62 op(oidp):dlv [op(oidr):dlv(b) cix-usedp < Fill(i; oidp):cix:bid(c) �(�) � Fill(i; oidr):tagProof: By induction on the length of any execution of the composition of the reader/writer andthe recon�g automata.Base case: the execution is of length 0. Since there are no operations in progress, this case isvacuously satis�ed.Inductive step: assume the invariant holds for all executions consisting of k transitions of thecomposed automata, and we now consider an execution of length k+ 1. We are using the propertyof the current con�guration that if R 2 Cfg:Act:readr and W 2 Cfg:A:writer, then R \W 6= �.24

submit of \query-install" : The e�ects of the transition establish op(id):dlv. If op(oidp):dlv = �,then the clause (a) is satis�ed.Else consider any i 2 (R \W) \ op(oidp):dlv. If such i exists, then �(�) � tagi (monotonicity)and this establishes the clause (c) since tagi = Fill(i; id):tag.respond to \query-install" : maintains the invariant.submit of \propagate" : This establishes op(id):dlv = �. If op(oidr):dlv = �, then the clause (a) issatis�ed.Else consider any i 2 (R\W)\op(oidr):dlv. If such i exists, then cix-usedp � Fill(i; oidp):cix:bid.This establishes the clause (b).respond at p : maintains the invariant.deliver : The invariant is maintained by the monotonicity of data object tags and the con�gurationindices.ack : Any ack maintains the invariant. 2Lemma 5.8 If a read or write operation � at processor p is in the propagation phase using theprimitive oidp with cix � usedp current, and the recon�gurer is in the propagation phase, theneither:(1) 8W 2 cfg-used:writep : cix-usedp < maxi2W fFill(i; oidp):bidg, or(2) �(�) � �(oidr).Proof: By induction on the length of any execution of the composition of the reader/writer andthe recon�g automata.Base case: the execution is of length 0. Since there are no operations in progress, this case isvacuously satis�ed.Inductive step: assume the invariant holds for all executions consisting of k transitions of thecomposed automata, and we now consider an execution of length k + 1.submit of \propagate" of � : Since the recon�gurer is in its \propagate" phase and cix-isedp iscurrent, the clause (1) is established using Lemma 5.6(b).submit of \propagate" by the recon�gurer : Since the recon�gurer is in its query phase prior to thissubmit and cix-usedp is current, Lemma 5.7 invariant holds prior to the submit.Clause 5.7(a) does not hold true, since the recon�gurer proceeds to propagate. If clause 5.7(c)holds true prior to this submit, then the clause (1) of the lemma is satis�ed. If clause 5.7(b)holds true prior to this submit, then the clause (2) is satis�ed.respond to propagate at p : This maintains the invariant.respond to \propagate" at the recon�gurer : This maintains the invariant.deliver : The invariant is maintained because of the monotonicity of tags and indices.ack : The invariant is maintained because of the monotonicity of tags and indices. 2The following simple lemma establishes a property of the propagation tag of the recon�gurer.Lemma 5.9 If the recon�gurer is in its \query-install" phase using the primitive oidr and if forsome read or write operation �, 8R 2 X:A:readr : �(�) � maxI2RfFill(i; oidr):tagg, then followingthe respond to \query-install" and prior to submit of \propagate", the recon�gurer's propagationtag is such that �(�) � �(recon). 25

Proof: The lemma follows from the algorithm speci�cation by the monotonicity of tags and thepreconditions and e�ects of the respond. 2The next two lemma establish certain properties of the recon�gurer and reader/writer in theirrespective \propagate" phases.Lemma 5.10 If the recon�gurer is in its \propagate" phase using the primitive oidr and thepropagation tag �(recon), then(a) 8i 2 op(oidr):acks : (�(recon) � tagi ^ cixr � cixp) , and(b) Following the respond to \propagate" and prior to submit of \recon-done", 9W 2 Cfg:Bid:writer :8i 2W : (�(recon) � tagi ^ cixr � cixp) .Proof: The clause (a) follows from the algorithm speci�cation by the monotonicity of tags. Theclause (b) follows from clause (a) and the preconditions on the respond. 2Lemma 5.11 If a read or write operation � at processor p is in its \propagate" phase using theprimitive oidp with cix-usedp that is not current, then either:(a) 8W 2 cfg-usedp : cix-usedp < maxi2W fFill(i; oidp):cix:bidg, or(b) 9W 2 Cfg.Act:writer : 8i 2 W : �(�) � tagi .Proof: By induction on the length of any execution of the composition of the reader/writer andthe recon�g automata.Base case: the execution is of length 0. Since there are no completed operations, this case isvacuously satis�ed.Inductive step: assume the invariant holds for all executions consisting of k transitions of thecomposed automata, and we now consider an execution of length k + 1.The following transitions have the potential of a�ecting the invariant:submit of \propagate" of � : Since cix-usedp is not current, the clause (a) follows from Lemma 5.6(a).submit of \recon-done" by the recon�gurer : In the state preceding the submit, � is in the \prop-agate" phase and the recon�gurer is in the \propagate" phase. Here we distinguish two cases:� cix-usedp is current in the previous state: in this case we use Lemma 5.8. If the clause 5.8(1)is true, then the clause (a) is satis�ed with the. Else, if the clause 5.8(2) is true, it establishes�(�) � �(recon). From Lemma 5.10(b) together with the e�ects of submit of \recon-done"we establish 9W 2 Cfg.Act:writer : 8i 2 W : �(�) � tagi and satisfy the clause (a).� cix-usedp is not current in the previous state: Here, by the inductive hypothesis, eitherthe clause (a) or clause (b) hold and are not a�ected by the submit of \recon-done" sincecix-usedp is not current in all cases. 2The next two lemmas establish the properties of reader/writer in its \propagate" phase whenthey use a con�guration index that is not current.Lemma 5.12 If a read or write operation � at processor p is in its \propagate" phase using theprimitive oidp with cix-usedp that is not current, and the recon�gurer is in its \query-install" phaseusing the primitive oidr, then either:(a) 8W 2 cfg-usedp : cix-usedp < maxi2W fFill(i; oidp):cix:bidg , or(b) 8R 2 Cfg.Act:readr : �(�) � maxi2RfFill(i; oidr):tagg .26

Proof: By induction on the length of any execution of the composition of the reader/writer andthe recon�g automata.Base case: the execution is of length 0. Since there are no operations in progress, this case isvacuously satis�ed.Inductive step: assume the invariant holds for all executions consisting of k transitions of thecomposed automata, and we now consider an execution of length k + 1.The following transitions have the potential of a�ecting the invariant:submit of \propagate" of � : Since cix-usedp is not current, the clause (a) follows from Lemma 5.6(a).submit of \query-install" : Prior to this transition, � is still in the \propagate" phase with cix-usedpnot current. Therefore Lemma 5.11 applies. If the clause 5.11(a) is true, then the clause (a) issatis�ed.Assume the clause 5.11(b) is true. Then by the intersection property of the read and writequorums in Cfg.Actr, the clause (b) is satis�ed. 2Lemma 5.13 If a read or write operation � at processor p is in its \propagate" phase using theprimitive oidp with cix-usedp that is not current, and the recon�gurer is in its \propagate" phaseusing the primitive oidr, then either:(a) 8W 2 cfg-usedp : cix-usedp < maxi2W fFill(i; oidp):cix:bidg , or(b) �(�) � �(oidr) .Proof: By induction on the length of any execution of the composition of the reader/writer andthe recon�g automata.Base case: the execution is of length 0. Since there are no operations in progress, this case isvacuously satis�ed.Inductive step: assume the invariant holds for all executions consisting of k transitions of thecomposed automata, and we now consider an execution of length k + 1.The following transitions have the potential of a�ecting the invariant:submit of \propagate" of � : Since cix-usedp is not current, the clause (a) follows from Lemma 5.6(a).submit of \propagate" by the recon�gurer : Prior to this transition, � is in its \propagate" phaseand the recon�gurer is in its \query-install" phase. Therefore Lemma 5.12 applies. If theclause 5.12(a) is true, then the clause (a) is satis�ed. Else the clause 5.12(b) is true. 2We now show the main multi-part invariant:Lemma 5.14 In all reachable states:I1 8� 2 completed,(a) if the recon�gurer is in its recon-idle phase :9W 2 Cfg.Act:writer : 8i 2 W : �(�) � tagi(b) if the recon�gurer is in its query-install phase having invoked � using identi�er oidr: 8R 2Cfg.Act:readr : �(�) � maxi2RfFill(i; oidr):tagg(c) if the recon�gurer is in its propagate phase having invoked � using identi�er oidr and thetag �(recon) : (�(�) � �(recon))^ (8i 2 op(oidr):acks : �(recon) � tagi)I2 8� =2 completed,(a) If �0 �cp � and � at processor p is in the query phase having invoked � using identi�er oid,then for any R 2 cfg-used:readp, then(1) �(�0) � maxi2RfFill(i; oid):tagg, or(2) cix-usedp < maxi2RfFill(i; oid):cix:bidg.27

(b) If � is in the propagation phase having invoked � using identi�er oid, then(1) cix-usedp is current, or(2) 9W 2 Cfg.Act:writer : 8i 2 W : �(�) � tagi, or(3) 8W 2 cfg-used:writep : cix-usedp < maxi2W fFill(i; oid):cix:bidg.I3 If �1 �cp �2 and �(�2) is de�ned, then(a) �(�1) � �(�2) when �2 is a read,(b) �(�1) < �(�2) when �2 is a write.Proof: By induction on the length of any execution of the composition of the reader/writer andthe recon�g automata.Base case: the execution is of length 0. Since there are no completed operations, this case isvacuously satis�ed.Inductive step: assume each of the three invariants of the lemma hold for all executions consist-ing of k transitions of the composed automata, and we now consider an execution of length k + 1.The inductive step is divided into three parts:Inductive step for I1a: Only the following actions can a�ect the invariant:respond to \propagate" : Here we only need to consider a client-level operation � that becomescompleted as the result of the respond of the propagation phase of �. Let oid be the identi�erof the query phase. From the preconditions to respond, 9W 2 cfg-used:writep such that W �op(oid):acks. The operation becomes completed as the e�ect of the transition i� cix-usedp �z:bid . By Lemma 5.3, if i 2 op(oid):acks then �(oid) = �(�) � tagi. If cix-usedp is current thenthe invariant I1a is re-established. Else if cix-usedp is not current then we use the inductivehypothesis I2b. Since � completes, then the clause (2) must hold, i.e., 9W 2 Cfg.Act:writer :8i 2 W : �(�) � tagi and I1a is re-established.submit of \recon-done" : Prior to this transition, the recon�gurer is in its \propagate" phase. Usingthe inductive hypothesis for I1c, we have �(�) � �(recon). Together with the e�ects of thetransition and Lemma 5.10 this re-establishes I1a.deliver or ack : The invariant is preserved by monotonicity of tags and indices.Inductive step for I1b: Only the following actions can a�ect the invariant:respond to \propagate" of � : Prior to this transition, � is in its \propagate" phase using theprimitive oidp and con�guration index cix-usedp and the recon�gurer is in its \query-install"phase. We distinguish two cases� cix-usedp is current: Here Lemma5.7 applies. Since � completes, only the clause 5.7(c) istrue. This is su�cient to re-establish I1b.� cix-usedp is not current: Here Lemma5.12 applies. Since � completes, only the clause 5.12(b)is true. This is su�cient to re-establish I1b.submit of \query-install" : Prior to the transition, � 2 completed and the recon�gurer is in its\recon-idle" phase. We use the inductive hypothesis for I1a and the intersection property ofread and write quorums and De�nition 5.2 of Fill to re-establish I1b.Inductive step for I1c: Only the following actions can a�ect the invariant:respond to \propagate" of � : Prior to this transition, � is in its \propagate" phase using theprimitive oidp and con�guration index cix-usedp and the recon�gurer is in its \propagate" phase.We distinguish two cases 28

� cix-usedp is current: Here Lemma5.8 applies. Since � completes, only the clause 5.8(2) istrue. This is su�cient to re-establish I1c.� cix-usedp is not current: Here Lemma5.13 applies. Since � completes, only the clause 5.13(b)is true. This is su�cient to re-establish I1b.submit of \propagate" by the recon�gurer : Prior to the transition, � 2 completed and the re-con�gurer is in its \query-install" phase. We use the inductive hypothesis for I1b and Lem-maLemQ7 to re-establish �� � �(recon) and thus I1c.Inductive step for I2a: Only the following actions can a�ect the invariant:submit of \query" : Consider a new client-level operation �2 and the submit with identi�er id ofits query. Assume that there is also an operation �1 such that �1 �cp �2 (if no such �1 existsthen I2a is preserved).If cix-usedp is current then using the inductive hypothesis for I1a we have 9W 2 Cfg.Act:writep :8i 2 W : �(�1) � tagi. This establishes the clause I2a(1).Else cix-usedp is not current. By Lemma 5.5 9W 2 Cfg.Act:writep : 8i 2 W : cix:acti >cix-usedp. By the intersection property of read and write quorums, this establishes the claseI2a(2).In either case the invariant I2a is re-established.deliver : We only need to consider the actions of the type deliver(h\query" i, id)p. From thecode of the composed automata: op(oid):dlv(k+1) = op(oid):dlv(k) [fig and ack-q(k+1)i = ack-q(k)i � hhvali; tagii; idi. The e�ects of this on I2a is to move, for the processor i, is to placethe value of tagi on the ack-qi. This does not change the set of values used to compute themaximum in I2a and preserves the invariant.ack : We only need to consider the actions of the type ack(hval; tagi; id)i in the query phase.From the code of the composed automata: ack-q(k+1)i = tal(ack-q(k)i) and op(id):ack[i](k+1) =hval; tagi. This does not change the set of values used to compute the maximum in I2a, sincethe e�ects of this is to set op(id):acc[i] to the tag that was previously in the queue ack-qi. Theinvariant is re-established.respond to \query" : Since either the clause (1) or (2) is true prior to this transition, it is still soas the result of the transition.Inductive step for I2b: Only the following action can a�ect the invariant:submit of \propagate" : If cix-usedp is current then the clause (1) is established.Else cix-usedp is not current. Here, by Lemma 5.5 the clause (3) is established.submit of \recon-done" : If some � is in its \propagate" phase at processor p, then cix-usedp is nolonger current. Prior to the \recon-done", the recon�gurer is in its \propagate" phase, and sois �. We consider two cases:� cix-usedp is current prior to \recon-done": Therefore Lemma 5.8 applies.If the clause 5.8(1) is true prior to \recon-done", then it is still the case. This establishesthe clause I2b(3).If the clause 5.8(2) is true prior to \recon-done", then �(oidr) � �(�). Together withLemma 5.10 and the e�ects of the submit of \recon-done" implies 9W 2 Cfg.Act:writer :8i 2 W : �(�) � tagi. This establishes the clause I2b(2).29

� cix-usedp is not current prior to \recon-done": Here � is in its propagate phase andLemma 5.13 applies. If the clause 5.13(a) is true, then the clause I2b(3) is established.Else the clause 5.13(b) is true. Together with Lemma 5.10 and the e�ects of the submitof \recon-done" implies 9W 2 Cfg.Act:writer : 8i 2 W : �(�) � tagi. This establishes theclause I2b(2).respond to \propagate" : If cix-usedp is current, then clause (1) is established.Assume cix-usedp is not current. Using the induction hypothesis, if I2b(3) is true prior to thetransition, then it is still true after. Else if I2b(2) is true prior to the transition, then it is stilltrue.The invariant I2b is re-established.Inductive step for I3: Only the following action can a�ect the invariant:respond to \query" : Here for some client-level operation �2, the respond for a query de�nes new�(�2). Prior to the respond, �2 was in the query phase, and we use the inductive hypothesisI2a.If the clause I2a(2) is true prior to the transition, then �(�2) is still unde�ned. If the clauseI2a(1) is true prior to the transition, then �(�2) is de�ned using a read quorum R 2 cfg-used:readp as maxi2RfFill(i; oid):tagg.The above maximum is the value of the variable t used in the computation of �(�2) in thee�ects of respond. When �2 is read, this results in �(�2) = t, and when �2 is write, this resultsin �(�2) > t. Thus, for any �1 �cp �2, if �2 is a read, then �(�1) � �(�2), and if �2 is a write,then �(�1) < �(�2). Therefore I3 is maintained. 2Lemma 5.15 In any execution, if �1 �c:p: �2, then (i) if �2 is a read operation, then �(�1) �lex�(�2), and (ii) if �2 is a write operation, then �(�1) <lex �(�2).Proof: Using Lemma 5.14(I3) and Lemma 5.2. 2We now use by Lemma 4.1 of [8]. (In what follows, we let � stand for some read operation, and! stand for some write operation as needed.)Let � be any sequence of read and write operations � containing no incomplete operations.We de�ne the (irreexive) partial order PO = h�;� i on the operations by letting: �1 � �2 for�1; �2 2 �, if(a) �(�1) <lex �(�2), or(b) �1 is a write and �2 is a read such that �(�1) =lex �(�2).Theorem 5.16 � satis�es the atomicity property.Proof: Follows the proof of Theorem 4.5. 230

