
Proving Performance Properties(even Probabilistic Ones)Nancy LynchMIT Laboratory for Computer ScienceCambridge, MA 02139, USAlynch@theory.lcs.mit.eduSeptember 2, 1994Abstract: This paper surveys some new tools and methods for formally verifying time performanceproperties of systems that satisfy timing assumptions. The techniques are potentially of practical bene�tin the validation of real-time process control and communication systems. The tools and methods includenondeterministic timed automaton models, invariant assertion and simulation techniques for provingworst-case time bounds, probabilistic timed automaton models, and Markov-style techniques for provingprobabilistic time bounds. All of these techniques are well suited for (partial) mechanization.1 IntroductionA rich collection of formal methods have become well established for proving correctnessproperties { usually, safety and liveness properties { for asynchronous concurrent systems.The most important of these techniques are invariant assertion methods and simulation(re�nement) methods for proving safety properties, and temporal logic methods for prov-ing liveness properties. Other important techniques include algebraic and partial orderingmethods.But basic correctness properties are not the only ones that must be proved. Perfor-mance properties { especially time performance properties { are often nearly as importantas correctness. In fact, for some systems, timing properties of system components are re-quired to ensure the correct operation of the system as a whole. Yet formal methods havenot been used very much to prove performance properties; nearly all of the proofs thathave been carried out for such properties are ad hoc.The goal of this paper is to show some ways in which proofs of timing properties canbe formalized and systematized. We discuss the methods in three groups: those that areused for proving worst-case time bounds for asynchronous and timing-based algorithms,those for proving timing properties for hybrid systems, and those for proving probabilistictime bounds for probabilistic systems. Another paper in this proceedings, by Luchangco,Soylemez, Garland and Lynch [12], shows how proofs using the methods in the �rst groupcan be veri�ed mechanically. 1

2 Time Bounds for Asynchronous and Timing-BasedAlgorithms2.1 TheoryThe basic model that we use for modelling asynchronous and timing-based systems isthe nondeterministic timed automaton model of Lynch and Vaandrager [18, 17, 14]. Webase our work on an automaton model rather than any particular speci�cation language,programming language or proof system in order to obtain the greatest exibility in choiceof speci�cation and proof methods.Timed automata. A timed automaton A consists of a set states(A) of states, a nonemptyset start(A) � states(A) of start states, a set acts(A) of actions, including a special time-passage action �, a set steps(A) of steps (transitions), and a mapping nowA : states(A)!R�0. (R�0 denotes the nonnegative reals.) The actions are partitioned into external andinternal actions, where � is considered external; the visible actions are the non-� exter-nal actions; the visible actions are partitioned into input and output actions. The setsteps(A) is a subset of states(A)� acts(A)� states(A). We write s a�!A s0 as shorthandfor (s; �; s0) 2 steps(A), and usually write s:nowA in place of nowA(s). We sometimessuppress the subscript or argument A.A timed automaton must satisfy �ve axioms: [A1] If s 2 start then s:now = 0.[A2] If s ��! s0 and � 6= � then s:now = s0:now . [A3] If s ��! s0 then s:now < s0:now .[A4] If s ��! s00 and s00 ��! s0, then s ��! s0. The statement of [A5] requires the auxiliaryde�nition of a trajectory, which describes restrictions on the state changes that can occurduring time-passage. Namely, if I is any interval of R�0, then an I-trajectory is a functionw : I ! states, such that w(t):now = t for all t 2 I, and w(t1) ��! w(t2) for all t1; t2 2 Iwith t1 < t2. That is, w assigns a state to each time t in interval I, in such a way thattime-passage steps can connect any pair of states in the range of w. If w is an I-trajectoryand I is left-closed, then let w:fstate to be the �rst state of w, while if I is right-closed,then let w:lstate denote the last state of w. If I is a closed interval, then an I-trajectoryw is said to span from state s to state s0 if w:fstate = s and w:lstate = s0. The �nal axiomis: [A5] If s ��! s0 then there exists a trajectory that spans from s to s0.Timed Executions and Timed Traces. A timed execution fragment is a �nite orin�nite alternating sequence � = w0�1w1�2w2 � � � where:1. Each wj is a trajectory and each �j is a non-time-passage action.2. If � is a �nite sequence, then it ends with a trajectory.3. If wj is not the last trajectory in � then its domain is a closed interval. If wj is the last trajectorythen its domain is left-closed (and either right-open or right-closed).4. If wj is not the last trajectory then wj:lstate �j+1�!wj+1:fstate.A timed execution is a timed execution fragment for which w0:fstate is a start state. Wefocus mainly on the admissible timed executions, i.e., those in which the now valuesoccurring in the states approach 1. A state of a timed automaton is de�ned to bereachable if it is the �nal state of the �nal trajectory in some �nite timed execution.

In order to describe the problems to be solved by timed automata, we require ade�nition for their visible behavior. We use timed traces, where the timed trace of anytimed execution is just the sequence of visible events that occur in the timed execution,paired with their times of occurrence. The admissible timed traces of the timed automatonare just the timed traces that arise from all the admissible timed executions.Composition. Let A and B be timed automata satisfying the following compatibilityconditions: A and B have no output actions in common, and no internal action of A isan action of B, and vice versa. Then the composition of A and B, written as A� B, isthe timed automaton de�ned as follows.� states(A �B) = f(sA; sB) 2 states(A) � states(B) : sA:nowA = sB :nowBg;� start(A �B) = start(A) � start(B);� acts(A �B) = acts(A) [acts(B); an action is external in A�B exactly if it is external in eitherA or B, and likewise for internal actions; a visible action of A �B is an output in A �B exactlyif it is an output in either A or B, and is an input otherwise;� (sA; sB) ��!A�B (s0A; s0B) exactly if1. sA ��!A s0A if � 2 acts(A), else sA = s0A, and2. sB ��!B s0B if � 2 acts(B), else sB = s0B ;� (sA; sB):nowA�B = sA:nowA.Then A�B is a timed automaton. If � is a timed execution of A�B, we write �jA and�jB for the projections of � on A and B, respectively. For instance, �jA is de�ned byprojecting all states in � on the state of A, removing actions that do not belong to A,and collapsing consecutive trajectories.MMT automata. An important special case of the timed automaton model, describ-able in a particularly simple way, is the MMT timed automaton model [20], developed byMerritt, Modugno and Tuttle. We use a special case of their de�nition from [19, 14].An MMT automaton is an I/O automaton [13] together with upper and lower boundson time. An I/O automaton A consists of a set states(A) of states, a nonempty setstart(A) � states(A) of start states, a set acts(A) of actions, (partitioned into externaland internal actions; the external actions are further partitioned into input and outputactions), a set steps(A) of steps, and a partition part(A) of the locally controlled (i.e.,output and internal) actions into at most countably many \tasks". The set steps(A) is asubset of states(A)� acts(A)� states(A); An action � is said to be enabled in a state sprovided that there exists a state s0 such that (s; �; s0) 2 steps(A), i.e., such that s ��!A s0.It is required that the automaton be input-enabled , by which is meant that � is enabledin s for every state s and input action �. The �nal component, part, is sometimes calledthe task partition. Each class in this partition groups together actions that are supposedto be part of the same \task".An MMT automaton is obtained by augmenting an I/O automaton with certain upperand lower time bound information. Let A be an I/O automaton with only �nitely manytasks. For each task C, de�ne lower and upper time bounds, lower (C) and upper(C),where 0 � lower (C) < 1 and 0 < upper(C) � 1; that is, the lower bounds cannot bein�nite and the upper bounds cannot be 0.

A timed execution of an MMT automaton A is de�ned to be an alternating sequenceof the form s0; (�1; t1); s1; � � � where the �'s are input, output or internal actions (but nottime-passage actions). For each j, it must be that sj �j+1�! sj+1. The successive times arenondecreasing, and are required to satisfy the given lower and upper bound requirements.Finally, admissibility is required: if the sequence is in�nite, then the times of actionsapproach 1. Each timed execution of an MMT automaton A gives rise to a timedtrace, which is just the subsequence of external actions and their associated times. Theadmissible timed traces of the MMT automaton A are just the timed traces that arisefrom all the timed executions of A.It is not hard to transform any MMT automaton A into a naturally-correspondingtimed automaton A0. First, the state of the MMT automaton A is augmented with anow component, plus �rst(C) and last(C) components for each task. The �rst(C) andlast(C) components represent, respectively, the earliest and latest time in the future thatan action of task C is allowed to occur. The time-passage action � is also added. The�rst and last components get updated in the natural way by the various steps, accordingto the lower and upper bounds speci�ed in the MMT automaton A. The time-passageaction has explicit preconditions saying that time cannot pass beyond any of the last(C)values, since these represent deadlines for the various tasks. Restrictions are also addedon actions of any task C, saying that the current time now must be at least equal to�rst(C). The resulting timed automaton A0 has exactly the same admissible timed tracesas the MMT automaton A.Invariants and simulations. We de�ne an invariant of a timed automaton to be anyproperty that is true of all reachable states.The de�nition of a simulation is paraphrased from [18, 17, 14]. We use the notationf [s], where f is a binary relation, to denote fu : (s; u) 2 fg. Suppose A and B are timedautomata and IA and IB are invariants of A and B, respectively. Then a simulationfrom A to B with respect to IA and IB is a relation f over states(A) and states(B) thatsatis�es:1. If u 2 f [s] then u:now = s:now .2. If s 2 start(A) then f [s] \ start(B) 6= ;.3. If s ��!A s0, s; s0 2 IA, and u 2 f [s] \ IB , then there exists u0 2 f [s0] such that there is a timedexecution fragment from u to u0 having the same timed visible actions as the given step.Note that � is allowed to be the time-passage action in the third item. The most importantfact about simulations is that they imply admissible timed trace inclusion:Theorem 2.1 If there is a simulation from timed automaton A to timed automaton B,with respect to any invariants, then every admissible timed trace of A is an admissibletimed trace of B.In practice, the simulations often have an interesting form: a system of inequalities[19].

2.2 ApplicationsWe sketch several examples of time bounds for asynchronous and timing-based concurrentalgorithms, proved using the tools and methods described above. The MMT model issu�cient to describe all of these. The examples are summarized from [14, 15, 11].Counting Process. The �rst and simplest example involves an automaton that countsdown from some �xed positive integer k and then reports its completion. The timebetween successive steps is assumed to be in the range [c1; c2].Count:Actions:Output: reportInternal: decrementState components:count , initially k > 0reported , Boolean, initially falseTransitions:decrementPrecondition:count > 0E�ect:count := count � 1 reportPrecondition:count = 0reported = falseE�ect:reported := trueTasks and bounds:freportg, bounds [c1; c2]fdecrementg, bounds [c1; c2]Informally, it is easy to see that the time until a report occurs is in the range [(k +1)c1; (k+1)c2]. In order to prove this formally, we express these time bound assumptionsby a trivial high-level reporting automaton called Report.Report:Actions:Output: reportState components:reported , Boolean, initially falseTransitions:reportPrecondition:reported = falseE�ect:reported := true

Tasks and bounds:freportg, bounds [(k+ 1)c1; (k + 1)c2].We can show that Count implements Report, that is, that every admissible timedtrace of Count is an admissible timed trace of Report. Speci�cally, we de�ne (s; u) 2 fprovided that the following hold:� u:now = s:now ,� u:reported = s:reported ,� u:last(report) �� s:last(decrement) + s:count � c2 if s:count > 0,s:last(report) otherwise.� u:�rst(report) �� s:�rst(decrement) + s:count � c1 if s:count > 0,s:�rst(report) otherwise.The now and reported conditions are straightforward. The last (report) component isconstrained to be at least as large as a calculated upper bound on the latest time untila report action is performed by Count . If count > 0, then this calculated bound is thelast time at which the �rst decrement can occur, plus the additional time required to docount � 1 decrement steps, followed by a report; since each of these count steps couldtake at most time c2, this additional time is at most count � c2. On the other hand, ifcount = 0, then this calculated bound is the last time at which the report can occur.The interpretation of the condition for �rst(report) is symmetric { the lower bound tobe proved should be no larger than a calculated lower bound on the earliest time until areport action is performed by Count .Lemma 2.2 The relation f is a forward simulation from Count to Report.Proof: The proof involves verifying the three properties in the de�nition of a forwardsimulation (after proving some trivial invariants). The correspondence between now val-ues is immediate, and it is easy to check that the unique start states of the two automataare related by f . The interesting part of the proof is the third condition { the stepcorrespondence. For this, we consider cases based on types of transitions.For example, consider a transition s decrement�!Count s0, where u 2 f [s]. Then s:count > 0.Thus, u:now = s:now , u:reported = s:reported, u:last(report) � s:last(decrement) +s:count � c2, and u:�rst(report) � s:�rst(decrement)+ s:count � c1. It su�ces to show thatu 2 f [s0]. The �rst two conditions in the de�nition of f carry over immediately.For the third condition, consider �rst the case where s0:count > 0. Then the left sideof the inequality, last(report), does not change, while on the right side, last (decrement)cannot increase by more than c2, and the second term decreases by exactly c2. (The reasonwhy last(decrement) cannot increase by more than c2 is as follows: The construction ofthe timed automaton from the MMT automaton for Count | captured by invariants| implies that s:now � s:last(decrement). On the other hand, s0:last(decrement) =s0:now + c2 and s0:now = s:now .) So the inequality still holds after the step.Similar arguments can be made for the case where s0:count = 0, and for the lowerbound.

This lemma implies the following theorem, which says that Count satis�es the timingrequirements.Theorem 2.3 Every admissible timed trace of Count is an admissible timed traces ofReport.It is possible to use an equational theorem prover to verify proofs of simulations suchas this one, as well as proofs of the needed invariants. In fact, such a theorem prover can�ll in some of the proof steps. Work along these lines, using the Larch theorem prover[6], is described in [12].The Count algorithm is trivial; in the rest of this section, we sketch more interestingtime bound results that can be proved using the same strategy. Without such a stylizedmethod, proving such time bounds would be a di�cult task.Fischer mutual exclusion algorithm. The Fischer mutual exclusion algorithm [5] is apopular test case for formal methods for verifying real-time algorithms. In this algorithm,a collection of user processes compete for control of a resource, using a single sharedvariable x that they can only access using read and write operations. We model theentire assembly of processes and x as an MMT automaton, where the tasks correspondto the di�erent types of steps performed by the processes (several tasks per process). Ahigh-level description of the algorithm is:Fischer, process i:L: wait for x = 0x := iif x 6= i then go to L(Critical Region)x := 0As described so far, this algorithm can violate mutual exclusion. For example, two pro-cesses, i and j, might both test x and �nd its value to be 0. Then i might set x := iand immediately check and see its own index, and then j might do the same. In order toavoid this bad interleaving, we introduce time restrictions: for each process, the time forsetting x, once x has been seen equal to 0, is in the range [0; a], while the time to checkx after it has been set is in the range [b;1], for some constants a, b, where a < b. Thisrules out the bad interleaving above, since any process i that sets x := i is made to waitlong enough before checking to ensure that any other process j that tested x before i setx (and therefore might subsequently set x := j) has already set x := j. That is, thereshould be no processes left at the point of setting x, when i �nally checks.It is easy to translate this code into an MMT automaton Fischer (say, in precondition-e�ect style). The input actions are of the form tryi, by which a process i tries to get accessto the resource, and exit i, by which a process returns the resource, and the outputs arecrit i, by which the algorithm grants access to the resource (critical region) and remi,by which the algorithm gives permission to the user program to return to the remainderof its processing. There are also internal actions test i, set i, check i and reset i. Thetasks correspond to the individual actions. Then mutual exclusion can be expressed

as an invariant on the algorithm's state (more precisely, on the state of a composedFischer system automaton consisting of the Fischer automaton and and a collection ofnondeterministic user automata). It can be proved as a consequence of the followinginvariant, which is in turn proved easily by induction:Lemma 2.4 If pci = check and x = i and pcj = set then �rst(check i) > last(set j).That is, if i is about to check x successfully, then any other process that is about to setx is scheduled to do so before i can check x.Mutual exclusion is the property that is usually proved for this algorithm. But sincethis paper is about proving time bounds, we take the example further. We assume anupper bound of c, c � b, for each check action, and an upper bound of a for all the otheractions, and we show that the time from when any process is trying to obtain the resourceuntil some process has it is at most 2c + 5a.Following the same strategy as for the Count example, we formulate the speci�cationof the time bound as an MMT automaton Mutex with the same external actions as theFischer algorithm. The Mutex automaton is very nondeterministic; it expresses only themutual exclusion property plus the given time bound. Then we use the simulation methodto show that the Fischer system implements the Mutex system (i.e., the composition ofthe Mutex automaton and the users).In this example, the time bound is most easily understood in terms of reaching certainmilestones. In particular, once the critical region is empty, the �rst important event isfor the shared variable x to be \seized" by some contending process. The next importantevent is for the value of x to \stabilize" so that it can no longer be modi�ed by any processuntil someone reaches the critical region. It turns out that the �rst milestone is reachedwithin at most time c+ 3a, then the second milestone is reached within additional timea, and �nally some process reaches the critical region within additional time c + a; thetotal is 2c+ 5a.Formally, we can express these milestones as the events of another intermediate MMTautomaton I. A trivial simulation can be used to show that the I system implementsthe Mutex system, and then a more complicated simulation can be used to show that theFischer system implements the I system. For example, a key piece of the simulation fromFischer to I is the set of inequalities that involve calculated bounds on time for someprocess to seize x:1. u:last(seize) � s:last(reseti) + c+ 2a if s:pci = reset.2. If s:x = 0 then u:last(seize) � minifh(i)g,where h(i) = 8><>: s:last(check i) + 2a if s:pci = check ,s:last(test i) + a if s:pci = test,s:last(set i) if s:pci = set ,1; otherwise.Thus, if some process i has just exited, the calculated bound is the maximum time untilprocess i resets x := 0, plus c+ 2a. If x = 0, the calculated bound is the minimum of acollection of individual process bounds, where the bound for process i measures the timeuntil i sets x (if no other process does so in the meantime).Theorem 2.5 Every admissible timed trace of the Fischer system is an admissible timedtrace of the Mutex system.Again, the proof can be checked mechanically [12].

Dijkstra mutual exclusion algorithm. Dijkstra's asynchronous algorithm [4] for mu-tual exclusion using read/write shared memory is one of the earliest published distributedalgorithms.Dijkstra, process i:L: ag (i) := 1while x 6= i doif ag (x) = 0 then x := iag(i) := 2for j 6= i do:if ag (j) = 2 then goto L(Critical Region)ag(i) := 0Unlike the Fischer algorithm, the Dijkstra algorithm guarantees mutual exclusion regard-less of the relative speeds of processes. For a time bound, we can assume an upper boundof a for all process steps and show that the time from when any process is trying untilsome process is critical is at most (3n + 11)a. (Here and elsewhere, n is the number ofprocesses in the system.)The proof strategy is the same as for the Fischer algorithm, using an intermediateautomaton with seize and stabilize milestones, plus an additional dropback milestone.The dropback event indicates a point by which all but the process whose index is inx have dropped back to the �rst stage of the algorithm, where ag = 1 (or by whichsomeone goes critical, it this happens �rst). I uses upper bounds (n+ 5)a, 2a, (n + 1)aand (n+3)a for the milestones seize, stabilize , dropback and critical , respectively. UsingI, we can provide two stylized simulations to show the needed time bound.LeLann-Chang-Roberts leader election algorithm. The LeLann-Chang-Robertsleader election algorithm for ring networks [10, 3] works as follows:LCR:Every process sends its process identi�er clockwise. Smaller identi�ers that encounter largeridenti�ers are discarded. If a node receives its own identi�er in a message, it elects itself asleader.If we assume an upper bound of ` on the step time for each process, and an upper boundof d on the time to deliver the oldest message in each channel, then we can show that thetime until a leader is elected is at most (n+1)`+nd. The di�culty of the proof involves thepossible pile-up of messages in channels if some processes and channels operate faster thanothers. The proof again uses an intermediate automaton I, this time with n milestones.Milestone i, 1 � i � n, is reached when the slowest token has progressed distance i aroundthe ring. The bounds for the successive milestones are all ` + d, and the bound for the�nal leader report is `. The simulation from the LCR system to I determines how manymilestones have been reached based on the least progress made by any identi�er.

Discussion. Timed automata, MMT automata, simulations and invariants have beensuccessful for verifying time bounds for a substantial collection of asynchronous andtiming-based concurrent algorithms. These have not all been toy examples, but includealgorithms for which time bounds are otherwise di�cult to obtain. The method pro-vides information (invariants, simulations) that help in documenting the operation of thealgorithms. The method is systematic, and lends itself to mechanical assistance.The proofs have more common structure than just the use of simulations and invari-ants. In several of the cases, an intermediate milestone automaton is used. In everycase, an important part of the simulation is a set of inequalities involving calculated up-per and/or lower bounds. These calculated bounds can usually be expressed as \progressfunctions" that measure the time until the speci�cation-level goals are reached. If progressfunctions satisfy certain properties (as detailed in [19]), then a relation derived from themin a systematic way is guaranteed to be a simulation. Identifying such common structureshould help in further systematizing the proofs.3 Timing Properties for Hybrid SystemsThe results of Section 2.2 show how simulation and invariant methods can be used toprove time performance properties for asynchronous and timing-based algorithms. Nowwe show how the same methods can be used to prove properties of \hybrid" systemscontaining both real world and computer components, for example, real-time processcontrol systems. The real world components typically include physical quantities thatchange continuously as time passes, as well as quantities that are changed by discreteevents.3.1 TheoryIt turns out that the timed automaton and MMT automaton models introduced in Sec-tion 2.1 for representing algorithms are also adequate for representing most real-time sys-tems with real world components. The main di�erence is that the trajectory mechanismprovided by the general timed automaton model now becomes important for modellingcontinuous changes in the real-world components. The simulation and invariant methodsare still used in much the same way as before.3.2 ApplicationsWe discuss one example: the Generalized Railroad Crossing (GRC) problem [7].Generalized railroad crossing. The problem involves real world trains and gates,interacting with a computer system via sensors and actuators. There are several paralleltracks on which trains travel through a road intersection I. Before arriving in I, each trainarrives in the general region R, and triggers a sensor that noti�es the computer systemof its arrival. When a train leaves I, it also triggers a sensor. The computer system iscapable of lowering and raising a crossing gate. Parameters �1 and �2 describe lower andupper bounds on the time from when a train triggers the arrival sensor until it reaches I,

and parameters down and up describe upper bounds on the time to lower and raise thegate completely. There are two requirements:1. A safety property, which says that if a train is in I then the gate is down.2. A utility property, which says that the gate must be up unless there is a reason it should not be:either within following time �1 or preceding time �2 (two additional parameters), some train willbe in I.The problem is to formalize these requirements and to design and verify a computersystem that satis�es them. This problem was originally proposed as a challenge problemfor comparing the e�ectiveness of various formal methods for handling such problems.We present the approach from [8, 9]. We begin by de�ning separate timed automata forthe trains and gate components, plus a placeholder automaton to represent the interfacebetween the real world components and the computer system. Initially, we give discreteautomata Trains and Gate, and later infer results about the corresponding continuouscomponents using general properties of timed automaton composition. For example,Trains is the following MMT automaton.Trains:Actions:Output: enterR(r), r a trainenterI (r), r a trainexit(r), r a trainState components:for each train r:r:status 2 fnot-here; P; Ig, initially not-hereTransitions:enterR(r)Precondition:r:status = not-hereE�ect:r:status := PenterI (r)Precondition:r:status = PE�ect:r:status := I
exit(r)Precondition:r:status = IE�ect:r:status := not-hereTasks and bounds:Each action is a separate task; all bounds are trivial except each enterI (r) has [�1; �2].Similarly,Gate is modelled as a discrete MMT automaton, with four states, up, going-down ,down and going-up. It has inputs lower and raise, which place the gate in state going-downor going-up, respectively, and outputs down and up, which signal the arrival of the gateat the extreme positions.For the speci�cation, there is also a trivial CompSpec component describing the com-puter system's interface. The complete speci�cation AxSpec consists of the composition of

these three automata, plus two axioms corresponding to the safety and utility properties,which constrain the set of executions.To describe an implementation, we replace CompSpec by CompImpl { a timed au-tomaton that decides when to raise and lower the gate. It lowers the gate when there is atrain that might reach I within time down , and raises it when there is no train that couldreach I within time up + down . The complete system SysImpl is just the compositionof the three components, with no extra constraints. We must show that SysImpl satis�esthe requirements, speci�cally, that each admissible timed execution of SysImpl projectson the real world components to look like an admissible timed execution of AxSpec. Thisis the same as saying that SysImpl satis�es the two axioms.The safety property is proved as an invariant of SysImpl . We are more interestedhere in the utility property, however, since it can be classi�ed as a performance property.As for the previous performance properties, we would like to prove this using a simula-tion. But to do this, we need a speci�cation automaton, which is not the same as anaxiomatic speci�cation. Thus, we give a second speci�cation, OpSpec, in the form of atimed automaton. Instead of having an axiom about time intervals, we put in explicitlast components as before, as deadlines for certain speci�cation-level goals. For example,OpSpec includes the provision that whenever the gate is lowered, some train will be inthe crossing within time �1. This is expressed by means of a last component that gets setwhen CompImpl lowers the gate to time �1 in the future, and gets disabled when sometrain enters I.An ad hoc argument is used to prove that OpSpec implements AxSpec (in the sensethat each admissible timed execution of OpSpec projects on the real world to look like anadmissible timed execution of AxSpec). (The implementation relationship does not needto go the other way.) Then the more systematic simulation methods are used as beforeto show that SysImpl implements OpSpec. Technically, the simulation proof only showsinclusion of sets of admissible timed traces, and not the preservation of the completeview of the real world. But general properties of timed automaton composition yield thestronger correspondence as a corollary. We obtain:Theorem 3.1 For every admissible timed execution � of SysImpl, there is an admissibletimed execution �0 of AxSpec such that �0jTrains �Gate = �jTrains �Gate.Also, as noted earlier, we can de�ne more realistic models of the real world components,such as a Gate 0 automaton with a speci�c function describing the position of the gate whileit is being lowered or raised. We can then infer results about the continuous models fromthose for the discrete models, using general properties of timed automaton composition.Discussion. Timed automata, simulations and invariants have proved able to cope suc-cessfully with the Generalized Railroad Crossing problem, in particular, with its perfor-mance properties. The results obtained are very general { e.g., they apply to arbitraryvalues of the various parameters. This is in contrast, say, to model-checking methodswhich (usually) only work for speci�c constants. As before, the method provides usefulinformation in the form of invariants and simulations, is systematic, and lends itself tomechanical assistance.

It appears that applications experts for process control systems prefer axiomatic tooperational speci�cations. Furthermore, the axioms should be statements about the realworld, and should (as far as possible) be independent of each other. On the other hand,an operational, automaton-style speci�cation is needed for the application of invariantand simulation proof methods. We conclude that both types of speci�cations should beprovided, and a proof that the operational speci�cation implements the axiomatic spec-i�cation should be given. In the GRC example, this proof of correspondence betweenthe two speci�cations is ad hoc. It remains to develop a user-friendly language for ax-iomatic speci�cation of real-time systems, and a systematic way of relating (and perhapstranslating) such speci�cations to operational speci�cations.It is useful to work initially with simpli�ed, discrete models of the real world compo-nents, and then to use general properties of timed automaton composition to extend theresults to more realistic, continuous models.The GRC example is small. It remains to see how well these methods scale up torealistic size process control systems. We are currently looking at some problems arisingin transportation systems such as the Personal Rapid Transit system currently beingdesigned by Raytheon.4 Probabilistic Time Bounds for Probabilistic Algo-rithmsWe �nish with a collection of new formal tools and methods for proving time boundproperties for probabilistic systems. The motivating examples are the many randomizeddistributed algorithms that have been developed in the theory of distributed computing.The appropriate time bounds for such algorithms are generally probabilistic time bounds,i.e., assertions that some event occurs within a certain amount of time t, with at least acertain probability p.It is notoriously di�cult to obtain correct proofs for randomized distributed algo-rithms, and so it is worthwhile to develop systematic proof methods. The methods we useto prove probabilistic time bounds are somewhat di�erent from the simulation methodsdiscussed in the previous sections. However, the development of these methods representswork in progress; eventually, the methods used for probabilistic algorithms ought to bebetter uni�ed with those used for non-probabilistic algorithms.4.1 TheoryThe theory we used is taken from [22, 16, 21].Probabilistic timed automata. We modify the timed automaton model to incorpo-rate probabilistic state transitions; speci�cally, we allow non-time-passage steps to be ofthe form (s; �;�), where � is a probability distribution whose domain is a subset of thestates of the algorithm. The meaning is that when the step occurs, a probabilistic choiceaccording to distribution � is used to determine the new state. A probabilistic timed

automaton (pta) has a combination of nondeterministic and probabilistic branching in itstimed executions, where nondeterminism is involved in the choice of the next step.Meaningful probabilistic statements about the behavior of a pta must be based on aprobability distribution on its timed executions. In order to obtain such a distribution, wemust resolve all nondeterministic choices, making all the branching probabilistic. We dothis by hypothesizing an entity called an adversary that determines the next step; formally,an adversary is a function that, given the �nite execution performed so far, returns thefollowing (possibly probabilistic) step. A �xed adversary A gives rise to an execution treewith only probabilistic branch points, and thereby to a probability distribution on timedexecutions.An adversary is said to be admissible provided that all the timed executions thatappear in its distribution are admissible, i.e., provided that it always allows time to passto 1. When we claim that an algorithm (pta) guarantees some property P with at leastprobability p, we mean that for every admissible adversary A, the probability of P in theprobability distribution of timed executions generated by A is at least p.Markov rules. One practical method for proving probabalistic time bound propertiesis based on formulating Markov-style statements of the form U t�!p U 0, where U and U 0are sets of states. This statement means that for every admissible adversary A, if thealgorithm is started in a state in U , then in the probability distribution generated by A,the probability that a state in U 0 is reached within time t is at least p. Such statementscan be combined:Lemma 4.1 If U t�!p U 0 and U 0 t0�!p0 U 00 then U t+t0�!pp0 U 00.Coin lemmas. In most situations where a property of the form U t�!p U 0 is true, theprobability p arises as the probability that certain designated random choices are madein a favorable way. In such a case, the statement can usually be proved by �xing theresults of those choices in the favorable way and converting all the remaining randomchoices to nondeterministic choices. This gives rise to an ordinary (non-probabilistic)timed automaton A. Proving that the desired time bound holds with certainty for Aimplies that it holds with probability p in the original pta. The soundness of this strategyis justi�ed by a series of coin lemmas in [21].4.2 ApplicationsWe have so far carried out two signi�cant proofs of probabilistic time bound propertiesfor randomized distributed algorithms.Lehmann-Rabin Dining Philosophers algorithm. The randomized Dining Philoso-phers algorithm of Lehmann and Rabin works as follows.LehmannRabin:Each contending process executes a loop wherein it randomly chooses a direction, left or

right, waits to obtain the fork in that direction, and then instantaneously examines the otherfork. If the second fork is free, it takes it and proceeds to the critical region; otherwise, itdrops its �rst fork and returns to the beginning of the loop.The safety property, i.e., that no two processes with conicting resource requirements everreach their critical regions simultaneously, is easy to show. A more interesting property isthe following probabilistic time bound claim: from any state where some process is tryingto obtain its forks, within time 14`, and with probability at least 116, some process willreach the critical region.1 This can be expressed in the form T 14`�!116 C. where T is the setof states in which some process is trying to get its forks and C is the set of states in whichsome process is in the critical region.This property is proved in [16] using Markov rules and coin lemmas. We use a chain of�ve Markov rules marking progress from T to C, each with its own time and probabilitybounds, and combine them using Lemma 4.1. Some of these rules involve probability 1,and in fact describe results that hold with certainty; these can be proved by methods suchas the simulation method already developed for proving time bounds for non-probabilistictimed automata. The others all involve the results of particular random coin tosses,generally the �rst coin tosses by a small number of neighboring processes. These can beproved by using the coin lemmas to reduce the problem to one involving non-probabilistictimed automata, then using methods for proving time bounds for non-probabilistic timedautomata. In [16], operational arguments are used to prove the claims for non-probabilistictimed automata, but it is clear in principle that the arguments could be redone moresystematically using simulations.For an example of an argument that is done for this proof, consider a situation involvinga process i and its right neighbor i+ 1. Suppose that i has already obtained its left forkand is about to test its right fork (the one shared with i+1), while process i+1 is aboutto toss its coin. This situation is formally described as a set U of states of the algorithm.We claim that U �̀!12 U 0, where U 0 is the set of states in which some process has both itsforks. The probability of 12 is just the probability that i+ 1 chooses right. In that case,we claim that the given situation leads to U 0 with absolute certainty, within time `. Tosee this, note that i must test its right fork within time `. If it succeeds in getting it, thenwe are done. If not, then it must be that in the meantime, i+ 1 has obtained it. But ifi + 1 has obtained it, then it must be i + 1's second fork, since i + 1's next coin toss isright . Thus in this case, i+ 1 must have both its forks and again we are done.Aggarwal-Kutten spanning tree algorithm. A larger and more complex exampleis the Aggarwal-Kutten randomized algorithm for �nding a spanning tree in a networkbased on an unknown undirected graph G [2]. Processes are assumed to be identical(e.g., they do not have unique identi�ers), and so the only way to break symmetry inthe construction of the tree is using randomness. The algorithm is too complicated toexplain quickly, but the basic idea is that each process tries to form a spanning tree withitself as the root, using a broadcast-convergecast strategy. In doing this, each process1Again, ` is an upper bound on process step time.

uses a randomly-chosen identi�er, and if it discovers the existence of another root (bydiscovering a di�erent identi�er) it takes steps to combine with the other root.The problem is that there might be more than one root with the same identi�er, pre-venting them from discovering each other's existence. To address this problem, the rootsmake repeated random choices of new identi�ers, according to a careful discipline, andpropagate these throughout their trees. Then it turns out that within time proportionalto the diameter of the network, and with at least a nonzero constant probability, a uniquespanning tree will result.This algorithm is a randomized distributed algorithm of typical di�culty; the stateof the art in the distributed algorithms area has till now not permitted careful proofs ofsuch algorithms. Nevertheless, in [1] this bound is proved, using Markov rule and coinlemma methods. There are two interesting points to be noted about the proof. First,as is common when careful proofs are carried out for complicated algorithms, a mistakewas found in the original code. (It was easy to �x.) Second, although the �nal proof isfairly lengthy, the parts of it that deal with probabilities constitute only a few pages. Onee�ect of our work on systematizing such proofs has been the reduction of reasoning aboutprobabilistic systems to reasoning about non-probabilistic systems.Discussion. Systematic proofs of probabilistic time bounds for probabilistic algorithmsare possible. The methods we have used so far { Markov rules and coin lemmas { aresomewhat di�erent from those used for non-probabilistic algorithms. Mechanical assis-tance is clearly possible for the non-probabilistic parts of the reasoning; we do not knowif additional assistance is possible for the probabilistic parts.Intuitively speaking, there seems to be some redundancy in the methods we haveapplied so far to probabilistic systems. Both the strategy of combining Markov rules andthe techniques for proving individual Markov rules involve measuring progress toward agoal. Perhaps there is a way of unifying these methods.It should also be possible to extend simulation methods directly to probabilistic sys-tems, without �rst removing the probabilistic choices. The simulation relations themselvesmight be probabilistic, corresponding states with probability distributions on states ratherthan with single states. It remains to de�ne such correspondences, verify their soundness,and see how they can be used in veri�cation.5 ConclusionsThere are now a wide range of practical, systematic methods for verifying time perfor-mance properties for concurrent systems. These include timed automata, simulations,invariants, probabilistic timed automata, Markov rules and coin lemmas. Computer as-sistance is possible for most of these, using equational theorem provers such as Larch.Remaining work includes developing the formal methods for probabilistic systemsfurther, and unifying them with the simulation and invariant methods. It also includesfurther attempts to automate these methods, and to apply them to many more examples.

References[1] Sudhanshu Aggarwal. Time optimal self-stabilizing spanning tree algorithms. Master's thesis, MITElectrical Engineering and Computer Science, May 1994.[2] Sudhanshu Aggarwal and Shay Kutten. Time optimal self stabilizing spanning tree algorithms. InR.K. Shyamasundar, editor, 13th International Conference on Foundations of Software Technologyand Theoretical Computer Science, volume 761 of Lecture Notes in Computer Science, pages 400{410,Bombay, India., December 1993. Springer-Verlag.[3] Ernest Chang and Rosemary Roberts. An improved algorithm for decentralized extrema-�nding incircular con�gurations of processes. Communications of the ACM, 22(5):281{283, May 1979.[4] E.W. Dijkstra. Solution of a problem in concurrent programming control. Communications of theACM, 8(9):569, September 1965.[5] Michael Fischer. Re: Where are you? E-mail message to Leslie Lamport. Arpanet message number8506252257.AA07636@YALE-BULLDOG.YALE.ARPA (47 lines), June 25, 1985 18:56:29EDT.[6] Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover. Technical report,Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, California 94301, December 1991.Research Report 82.[7] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. A benchmark for comparing di�erent approachesfor specifying and verifying real-time systems. In Proc., Tenth Intern. Workshop on Real-TimeOperating Systems and Software, May 1993.[8] Constance Heitmeyer and Nancy Lynch. The generalized railroad crossing: A case study in formalveri�cation of real-time systems. In Proceedings of the 15th IEEE Real-Time Systems Symposium.,San Juan, Puerto Rico, December 1994. To appear.[9] Constance Heitmeyer and Nancy Lynch. The generalized railroad crossing: A case study in formalveri�cation of real-time systems. Technical Memo MIT/LCS/TM-511, Laboratory for ComputerScience, Massachusetts Institute of Technology, Cambridge, MA, 1994. To appear.[10] G. LeLann. Distributed systems, towards a formal approach. In IFIP Congress, pages 155{160,Toronto, 1977.[11] Victor Luchangco. Using simulation techiniques to prove timing properties. Master's thesis, MITElectrical Engineering and Computer Science, 1994. In progress.[12] Victor Luchangco, Ekrem S�oylemez, Stephen Garland, and Nancy Lynch. Verifying timing prop-erties of concurrent algorithms. In Proceedings of the Seventh International Conference on FormalDescription Techniques for Distributed Systems and Communications Protocols (FORTE'94), IFIPTransactions, Berne, Switzerland, October 1994. IFIP WG6.1, Elsevier Science Publishers B. V.(North Holland).[13] N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-Quarterly, 2(3):219{246,September 1989. Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.[14] Nancy Lynch. Simulation techniques for proving properties of real-time systems. In A Decadeof Concurrency: Reections and Perspectives, Lecture Notes in Computer Science, pages 375{424,REX School/Symposium, Noordwijkerhout, the Netherlands, June 1993. Springer-Verlag.[15] Nancy Lynch. Simulation techniques for proving properties of real-time systems. In Sang H. Son,editor, Principles of Real-Time Systems. Prentice Hall, 1994. To appear.[16] Nancy Lynch, Isaac Saias, and Roberto Segala. Proving time bounds for randomized distributedalgorithms. In Thirteenth Annual ACM Symposium on the Principles of Distributed Computing, LosAngeles, CA, August 1994.[17] Nancy Lynch and Frits Vaandrager. Forward and backward simulations { Part II: Timing-basedsystems. Submitted for publication.

[18] Nancy Lynch and Frits Vaandrager. Forward and backward simulations for timing-based systems.In Proceedings of REX Workshop \Real-Time: Theory in Practice", volume 600 of Lecture Notes inComputer Science, pages 397{446, Mook, The Netherlands, June 1991. Springer-Verlag.[19] Nancy A. Lynch and Hagit Attiya. Using mappings to prove timing properties. Distrib. Comput.,6:121{139, 1992.[20] Michael Merritt, Francemary Modugno, and Mark R. Tuttle. Time constrained automata. InJ. C. M. Baeten and J. F. Goote, editors, CONCUR'91: 2nd International Conference on Concur-rency Theory, volume 527 of Lecture Notes in Computer Science, pages 408{423, Amsterdam, TheNetherlands, August 1991. Springer-Verlag.[21] Roberto Segala. PhD thesis, MIT Dept. of Electrical Engineering and Computer Science, 1993. Inprogress.[22] Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes. In Proceed-ings of the 5th International Conference on Concurrency Theory - CONCUR'94, Lecture Notes inComputer Science, Uppsala, Sweden, August 1994. Springer-Verlag.

