
Distrib Comput (1992) 6:121-139

�9 Springer-Verlag 1992

Using mappings to prove timing properties*
Nancy A. Lynch 1 and Hagit Attiya a

1 Laboratory for Computer Science, MIT, 545 Technology Square, Cambridge, MA 02139, USA
z Department of Computer Science, The Technion, Haifa 32000, Israel

Received March 1991 / Accepted April 1992

Nancy A. Lynch received the
B.S. degree in mathematics from
Brooklyn College, Brooklyn, NY,
in 1968, and the Ph.D. degree in
mathematics from the Massachu-
setts Institute of Technology, Cam-
bridge, MA, in 1972. She is present-
ly a professor of computer science
and electrical engineering at Mas-
sachusetts Institute of Technology.
She has also been on the computer
science faculty at Georgia Institute
of Technology and on the mathe-
matics faculty at Tufts University
and the University of Southern Ca-
lifornia. Her research interests are

in distributed and real-time computing and theoretical computer
science. In particular, she has worked on formal models and verifi-
cation methods, on algorithm design and analysis, and on impossi-
bility results. She also likes to hike and ski.

Hagit Attiya received the B.Sc.
degree in Mathematics and Com-
puter Science from the Hebrew
University of Jerusalem, in 1981,
the M.Sc. and Ph.D. degrees in
Computer Science from the He-
brew University of Jerusalem, in
1983 and 1987, respectively. She is
presently a senior lecturer at the de-
partment of Computer Science at
the Technion, Israel Institute of
Technology. Prior to this, she has
been a post-doctoral research asso-
ciate at the Laboratory for Com-
puter Science at M.I.T. Her general
research interests are distributed

computation and theoretical computer science. More specific inter-
ests include fault-tolerance, timing-based and asynchronous algo-
rithms.

* This work was supported by ONR contracts N00014-85-K-0168
and N00014-91-J-1046, by NSF grants CCR-8611442 and CCR-
8915206, and by DARPA contracts N00014-87-K-0825 and
N00014-89-J-1988

Correspondence to: N.A. Lynch

Summary. A new technique for proving timing properties
for timing-based algorithms is described; it is an exten-
sion of the mapping techniques previously used in proofs
of safety properties for asynchronous concurrent sys-
tems. The key to the method is a way of representing
a system with timing constraints as an automaton whose
state includes predictive timing information. Timing as-
sumptions and timing requirements for the system are
both represented in this way. A multi-valued mapping
from the "assumptions au tomaton" to the "require-
ments au tomaton" is then used to show that the given
system satisfies the requirements. One type of mapping
is based on a collection of "progress functions" provid-
ing measures of progress toward timing goals. The tech-
nique is illustrated with two examples, a simple resource
manager and a two-process race system.

Key words: Timing properties Timing-based algo-
rithms - F o r m a l specification - Formal verification
Assertional reasoning - Possibilities mappings - Timed
a u t o m a t a - I/O automata Progress functions

1 Introduction

Assertional reasoning is a useful technique for proving
safety properties of sequential and concurrent algo-
rithms. This proof method involves describing the algo-
rithm of interest as a state machine, and defining a predi-
cate known as an assertion on the states of the machine.
One proves inductively that the assertion is true of all
the states that are reachable in a computation of the
machine, i.e., that it is an invariant of the machine. The
assertion is defined so that it implies the safety property
to be proved. Assertional reasoning is a rigorous, simple
and general proof technique. Furthermore, the assertions
usually provide an intuitively appealing explanation of
why the algorithm satisfies the property.

One kind of assertional reasoning uses a mapping
to describe a correspondence between the given algo-

122

rithm and a higher-level algorithm used as a specification
of correctness. (See, for example, [17, 21, 25].) Such map-
pings may be single-valued or multi-valued.

So far, assertional reasoning has been used primarily
to prove properties of sequential algorithms and syn-
chronous and asynchronous concurrent algorithms. We
would also like to use this technique to prove properties
of concurrent algorithms whose operation depends on
time, e.g., ones that arise in real-time systems or ones
that rely on clocks that tick at approximately known
rates. Also, the kinds of properties generally proved us-
ing assertional reasoning have been "ordinary" safety
properties; we would like to use similar methods to
prove timing properties (upper and lower bounds on
time) for algorithms that have timing assumptions. Pre-
dictable performance is often a desirable characteristic
of real-time systems [40]; assertional techniques could
be very helpful in proving such performance properties.

In this paper, we describe one way in which assertion-
al reasoning can be used to prove timing properties for
algorithms that have timing assumptions. Our method
involves constructing a multi-valued mapping from an
automaton representing the given algorithm to another
automaton representing the timing requirements. The
key to our method is a way of representing a system
with timing constraints as an automaton whose state
includes predictive timing information. Timing assump-
tions and timing requirements for the system are both
represented in this way, and the mappings we construct
map from the "' assumptions automaton" to the "require-
ments automaton". One type of mapping is based on
a collection of "progress functions" providing measures
of progress toward timing goals.

We describe our method in terms of the timed automa-
ton model, a slight variant of the time constrained au-
tomaton model of [29]. We use this model to state the
requirements to be satisfied, to define the basic architec-
tural and timing assumptions, to describe the algorithms,
and to prove their correctness and timing properties.
A timed automaton is a pair (A, b), consisting of an I/O
automaton [25, 26], A, together with a boundmap, b,
which is a formal description of the timing assumptions
for the components of the system. A timed automaton
generates a set of timed executions which describe the
operation of the algorithm, and a corresponding set of
timed behaviors which describe the algorithm's external-
ly-visible activity. In this paper, a timed automaton (A, b)
is used to describe the given system (including its timing
assumptions), and another timed automaton (A', b') is
used to describe the correctness and timing requirements.

While convenient for specifying timing assumptions
and requirements, timed automata are not directly suited
for carrying out assertional proofs about timing proper-
ties, because timing properties are described externally
(by boundmaps) rather than being built into the automa-
ton itself. We therefore introduce a way of incorporating
timing conditions into an automaton definition. For a
given timed automaton (A, b), we define the automaton
time(A, b) to be an ordinary I/O automaton (not a timed
automaton) whose state includes predictive information
describing the first and last times at which various events

can next occur; this information is designed to enforce
the timing conditions expressed by the boundmap b. The
I/O automaton time(A, b) is related to the timed automa-
ton (A, b) in that a certain subset of the behaviors of
time(A, b), which we call the '"admissible" behaviors, is
exactly equal to the set of timed behaviors of (A, b).

We apply this construction to both the system de-
scription (A, b) and the requirements description (A', b');
our '" assumptions automaton" is defined to be time(A, b)
and our "requirements automaton" is time(A', b'). Then
the problem of showing that a given algorithm (A, b)
satisfies the timing requirements amounts to that of
showing that any admissible behavior of the automaton
time(A, b) is also an admissible behavior of time(A', b').
We do this by using invariant assertion techniques; in
particular, we demonstrate a multi-valued mapping from
states of time(A, b) to states of time(A', b').

We define a special class of multi-valued mappings
that appears to be especially useful. Each such mapping
is defined by a collection of inequalities relating the time
bounds to be proved (those expressed by b') to the values
of a collection of "progress functions" defined on the
states of time(A, b). These progress functions provide up-
per and lower bound measures of progress toward the
timing goals expressed by b'. These functions generalize
the notion of progress function commonly used to prove
termination of sequential programs and asynchronous
concurrent programs (see, e.g., the description of the
method of well-founded sets in [28]), to allow real-valued
rather than just discrete measures, and to allow proofs
of lower bounds as well as upper bounds.

In order to demonstrate the use of our technique,
we apply it to two examples. The first example is a simple
timing-dependent resource granting system, consisting
of two concurrently-operating components, a clock and
a manager. The manager monitors the clock ticks, which
occur at an approximately known rate, and whenever
a certain number have occurred, it grants the resource.
We prove upper and lower bounds on the amount of
time prior to the first grant and between each successive
pair of grants.

The second example involves one process increment-
ing a counter until another process modifies a flag, and
then decrementing the counter. When the counter
reaches 0, the first process announces that it is done.
We show upper and lower bounds on the time until
the "done" announcement occurs.

Technically, mapping techniques of the sort used in
this paper are only capable of proving safety properties,
but not liveness properties. Timing properties have as-
pects of both safety and liveness. A timing lower bound
asserts that an event cannot occur before a certain
amount of time has elapsed; a violation of this property
is detectable after a finite prefix of a timed execution,
and so a timing lower bound can be regarded as a safety
property. A timing upper bound asserts that an event
must occur before a certain amount of time has elapsed.
This can be regarded as making two separate claims:
that the designated amount of time does in fact elapse
(a liveness property), and that this amount of time cannot
elapse without the event having occurred (a safety prop-

erty). In this paper, we assume the liveness property that
time increases without bound, so that all the remaining
properties that need to be proved in order to prove either
upper or lower time bounds are safety properties. Thus,
our mapping technique provides complete proofs for
timing properties without requiring any additional tech-
niques for arguing liveness.

There has been some other work on using assertional
reasoning to prove timing properties. In particular,
Haase [10], Hooman [13], Shankar and Lam [37], Tel
[41], Schneider [36], Lewis [19], Abadi and Lamport
[2, 18], Lamport and Neumann [31] and Shaw [38]
have all developed models for timing-based systems that
incorporate time information into the state. In [41] and
[19], in fact, the information that is included is similar
to ours in that it is also predictive timing information
(although not exactly the same information as ours).
Some of the work mentioned above has used invariant
assertions to prove timing properties; however, none of
this work is based on mappings.

Lynch and Vaandrager [27] describe a wide range
of mapping proof techniques for timing-based systems,
in the setting of a very general timed automaton model.
One of the techniques considered there, forward simula-
tion, is very similar to our general multi-valued mapping
method. However, the model in [27] has less structure
than the one considered here; in particular, it lacks the
component structure that is needed to describe our pro-
gress function technique.

Several other, quite different formal approaches to
proving timing properties have also been developed,
based on state machine (e.g., [9]), model-checking (e.g.,
[4, 19]), co-automata (e.g., [5]) first-order logic (e.g., [14,
15]), temporal logic (e.g., [3, 7, 11, 32, 34, 12]), Petri
nets (e.g., [8, 39]) and process algebras (e.g., [16, 42]).
(See the survey by Ostroff [33].)

An earlier version of this paper appears in [23].
The rest of the paper is organized as follows. Section 2

contains a description of the underlying formal models:
I/O automata and timed automata. Section 3 contains
the construction used to incorporate timing conditions
into I/O automata, and some basic properties of these
automata. Section 4 contains our definitions for map-
pings and for collections of progress functions, and
shows that the existence of such mappings and collec-
tions imply that a given algorithm satisfies a given set
of timing requirements. Section 5 contains our examples,
the simple resource-granting system and the two-process
race system. For each of these examples, this section
contains a description of the system, a description of
the corresponding requirements automaton, and a cor-
rectness proof using mappings. We conclude with a dis-
cussion in Sect. 6.

123

2.1 I /0 automata

We begin by summarizing some of the key definitions
for the I/O automaton model. We refer the reader to
[25, 26] for a complete presentation of the model and
its properties.

An I/O automaton, A, consists of the following pieces:
acts(A), a set of actions, classified as output, input and
internal (input and output actions are called external);
states(A), a set of states, including a distinguished subset,
start(A), of start states; steps(A), a set of steps, where
a step is defined to be a (state, action, state) triple; and
part(A), a partition of the locally controlled (output and
internal) actions into equivalence classes; the partition
groups together actions that are to be thought of as
under the control of the same underlying process.

An action rc is said to be enabled in a state s' provided
that there is a step of the form (s', ~, s). An automaton
is required to be input enabled, which means that every
input action must be enabled in every state. For any
set IIc_acts(A), we denote by enabled(A, II) the set of
states of A in which some action i n / / i s enabled, and
by disabled(A, II) be the set of all states of A not
in enabled(A,H), that is, disabled(A,H)=states(A)\
enabled(A, II). We use the term event to refer to an occur-
ence of an action in a sequence.

An execution fragment of an I/O automaton A is a
sequence (finite or infinite) of alternating states and ac-
tions

S0, ~1,$1~ . . . , S i + l ~ i , S i , . . .

where for every i, (si-1, rci, si)~steps(A). (If the sequence
is finite, then it is required to end with a state.) An execu-
tion is an execution fragment with So,start(A). The
schedule of an execution c~ is the subsequence of c~ consist-
ing of all the events appearing in c~, and the behavior
of cc is the subsequence consisting of all the external
events. The schedules and behaviors of A are just those
of the executions of A. An extended step is a triple (s', fl, s)
for which there is an execution fragment that starts and
ends with s' and s, respectively, and whose schedule is
P.

Concurrent systems are modeled by compositions of
I/O automata, as defined in [25, 26]. In order to be
composed, automata must be strongly compatible; this
means that no action can be an output of more than
one component, that internal actions of one component
are not shared by any other component, and that no
action is shared by infinitely many components. The re-
sult of such a composition is another I/O automaton.
The hiding operator can be applied to reclassify output
actions as internal actions.

2 Formal model

In this section, we present the definitions for the underly-
ing formal model. In particular, we define I/O automata,
timed automata and timing conditions. We also present
some of their relevant properties.

2.2 Timed automata

In this subsection, we augment the I/O automaton model
to allow discussion of timing properties. The treatment
here is similar to the one described in [6] and is a special
case of the definitions proposed in [29]. A boundmap

124

for an I/O au tomaton A is a mapping that associates
a closed subinterval of [-0, oo] with each class in part(A),
where the lower bound of each interval is not oo and
the upper bound is nonzero. 1 Intuitively, the interval
associated with a class C by the boundmap represents
the range of possible lengths of time between successive
times when C "gets a chance" to perform an action.
We sometimes use the notat ion bz(C) to denote the lower
bound assigned by boundmap b to class C, and bu(C)
for the corresponding upper bound. A timed automaton
is a pair (A, b), where A is an I/O au tomaton and b
is a boundmap for A.

We require notions of " t imed execution", " t imed
schedule" and " t imed behavior" for timed automata ,
corresponding to executions, schedules and behaviors for
ordinary I /O automata . These will all include time infor-
mation. We begin by defining the basic type of sequence
that underlies the definition of a timed execution.

Definition 2.1. A timed sequence (for an I /O au tomaton
A) is a (finite or infinite) sequence of alternating states
and (action, time) pairs,

So,(l, tl), Sl t2)

satisfying the following conditions.

1. The states So, s l , ... are in states(A).
2. The actions 7r 1 , 7c 2 are in acts(A).
3. The times t l , t2, ... are successively nondecreasing

nonnegative real numbers.
4. If the sequence is finite, then it ends in a state si.
5. If the sequence is infinite then the times are un-

bounded.
For a given timed sequence, we use the convention

that to=0 . For any finite timed sequence e, we define
endtime(a) to be the time of the last event in c~, if
contains any (action, time) pairs, or 0, i f , contains no
such pairs. Also, we define endstate(~) to be the last state
in a. We denote by ord(a) (the "o rd ina ry" part of a)
the sequence

SO, 7['1, S1, TO2, ' ' ' ,

i.e., c~ with time information removed.
If i is a nonnegative integer and Cspart(A), we say

that i is an initial index for C in c~ if si~enabled(A, C)
and either i = 0 or si_ledisabled(A, C) or ~i~C. Thus,
an initial index for class C is the index of an event at
which C becomes enabled; it indicates a point in c~ from
which we will begin measuring upper and lower time
bounds.

Definition 2.2. Suppose (A, b) is a timed automaton. Then
a timed sequence a is a timed execution of (A, b) provided
that ord(a) is an execution of A and ~ satisfies the follow-
ing conditions, for each class C~part(A) and every initial
index i for C in ~.

1 In [29], the model is defined in a more general manner, to allow
boundmaps to yield open or semi-open intervals as well as closed
intervals. This restriction is not crucial in this paper, but allows
us to avoid considering extra cases in some of the technical argu-
ments

1. If b , (C)<oo then there exists j>i with tj<h+b,(C)
such that either ~jE C or sjEdisabIed(A, C).

2. There does not exist j>i with t i< ti+bz(C) and 7~j in
C.

The first condition says that, starting from an initial
index for C, within time b,(C) either some action in C
occurs or there is a point at which no such action is
enabled. Note that if bu(C)-- oo, no upper bound require-
ment is imposed. The second condition says that, again
starting from an initial index for C, no action in C can
occur before time bl(C) has elapsed. Note in particular
that if a class C becomes disabled and then enabled once
again, the lower bound calculation gets " res tar ted" at
the point where the class becomes re-enabled.

The timed schedule of a timed execution of a timed
au tomaton (A, b) is the subsequence consisting of the
(action, time) pairs, and the timed behavior is the subse-
quence consisting of the (action, time) pairs for which
the action is external. The timed schedules and timed be-
haviors of (A, b) are just those of the timed executions
of (A, b).

We model each t iming-dependent concurrent system
as a single timed au tomaton (A, b), where A is a composi-
tion of ordinary I/O au tomata (possibly with some out-
put actions hidden). 2 We also model problem specifica-
tions, including timing properties, in terms of timed au-
tomata.

We note that the definition we use for timed au tomata
may not be sufficiently general to capture all interesting
systems and timing requirements. It does capture many,
however; we discuss this further in Sect. 6.

3 Incorporating timing conditions into I /0 automata

In order to use invariant assertion techniques to reason
about timed automata , w e define an ordinary I /O au-
tomaton time(A, b) corresponding to a given timed au-
tomaton (A, b). This new au tomaton has the timing re-
strictions imposed by b on A built into its transition
rules, based on predictions about w h e n the next event
from each set of actions will occur. In this section, we
give the construction of time(A, b) and also give results
that relate the executions and behaviors of time(A,b)
to the timed executions and timed behaviors of (A, b).

The close relationship between (A, b) and time(A, b)
suggest the possibility of avoiding the timed au tomaton
definition entirely, instead using the time(A, b) notion
as the starting point for our work. We prefer to begin
with the timed au tomaton definition because we regard
that definition as the more fundamental of the two, ex-
pressed as it is in terms of a traditional asynchronous
system with some additional timing restrictions. As will
be seen below, the time(A, b) definition introduces special
constructs (e.g., special NULL actions and special vari-
ables such as now), which are quite useful in proofs, but

2 An equivalent way of looking at each system is as a composition
of timed automata. An appropriate definition for a composition
of timed automata is developed in [29], together with theorems
showing the equivalence of the two viewpoints

125

which do not seem to be fundamental parts of system
descriptions. Another reason we prefer to begin with the
timed automaton definition is that it has already been
used elsewhere ([29, 6]). Moreover, we believe that the
elegant relationship between the two expressed by Theo-
rem 3.1 is interesting in its own right.

3.1 Definition of time(A, b)

Given any timed automaton (A,b), we define the
ordinary I/O automaton time(A,b). The automaton
time(A, b) has as its actions all pairs of the form (re, t),
where rc is an element of acts(A)w {NULL} and t is a
nonnegative real number; here N U L L is a "null action"
that represents the passage of time. The classification
of actions into input, output and internal actions is de-
rived from that for A, with the additional stipulation
that each (NULL, t) is an internal action. (The N U L L
action is similar to the unit action, 1, of SCCS [30]
and to the time-passage actions of [27].) Each of the
states of time(A, b) consists of a state, basic, of A, aug-
mented with a variable now, and, for each class C of
the partition of A, two variables first(C) and last(C).
The value of the now variable represents the time of
the last preceding event. The values of the first(C) and
last(C) variables represent, respectively, the first and last
times at which an event in class C is permitted to occur.

We use record notation to denote the various compo-
nents of the state of time(A, b): for instance, s. basic den-
otes the state of A included in state s of time(A, b). Each
start state of time(A, b) consists of a start state s. basic
of A, plus now=O, plus values of first(C) and last(C)
with the following property: if there is an action in C
enabled in s, then s.f irst(C)= bz(C) and s. last(C)= b,(C);
otherwise, s.first(C)=O and s. last(C)= oo. That is, if the
start state of A has an action in C enabled, then the
predicted times are the ones specified in the boundmap
for C; otherwise, they are set to default values.

If (~, t) is an action of time(A, b), thel~ (s',(~z, t), s) is
defined to be a step of time(A, b) exactly if all of the
following conditions hold.

1. If 7c~acts(A) then:
(a) s'. now = t = s. now.
(b) (s'. basic, re, s. basic)~steps(A).
(c) For each C~part(A):

i. If rc~C then s .first(C)<_t.
ii. If s. basiccenabIed(A, C) and rcq~ C and
s'. basic~enabIed(A, C) then s.first(C)= s'.first(C)
and s. last(C)= s'. last(C).
iii. If s. basic~enabled(A,C) and either rc~C or
s'.basicEdisabled(A, C) then s . f irs t(C)=t +bl(C)
and s. last (C) = t + bu (C).
iv. If s. basic ~ disabled(A, C), then s.f irst(C)= 0 and
s. last(C)= oo.

2. If ~ = N U L L then
(a) s'. now <_ t = s. now.
(b) s. basic = s'. basic.
(c) t <s'. last(C), for each C~part(A).
(d) s. first (C) = s'. f irst (C) and s. last (C) = s'. last (C), for

each CEpart(A).

The meaning of these conditions is as follows. Condi-
tion 1 describes restrictions for the case where ~ is an
action of A. Condition 1 (a) says that time does not pass
during the performance of non-null actions, and Condi-
tion l(b) says that the steps associated with non-null
actions correctly simulate steps of A. Condition 1 (c) de-
scribes the use and manipulation of the first and last
variables during non-null steps. Condition 1 (c)i says that
a locally controlled step is only permitted to occur at
a time that is at least as great as the first time specified
for that action's partition class. Condition 1 (c)ii says that
an action not in a particular class that keeps the class
enabled does not alter the timing predictions for that
class. Condition 1 (c)iii says that an action that enables
a particular class sets the timing predictions for that
class to the values specified by the boundmap. Finally,
Condition 1 (c)iv says that an action that leaves a partic-
ular class disabled sets the timing predictions to the de-
fault values.

Similarly, Condition 2 describes restrictions for the
case where ~ is the special null action. Condition 2(a)
says that time cannot move backwards when a null ac-
tion is performed, and Condition 2(b) says that the steps
associated with null actions do not cause any changes
to the underlying state of A. Condition 2(c) says that
time cannot pass beyond the latest time specified for
any class, and Condition 2(d) says that timing predic-
tions are unaltered by the passage of time.

It is easy to check that for any reachable state of
time(A, b) and any class C of the partition, the following
facts are true. First, it must be the case that s. last(C)>_
s. now (although it is possible to have s.f irst(C)< s. now).
Second, if s. basiceenabIed(A, C) then s. Iast(C)<_s. now
+b,(C) and s.first<_s, now+bl(C). Third, if s. basic
~disabled(A, C) then both the last(C) and first(C) varia-
bles have their default values (oo and 0, respectively).

The partition classes for time(A, b) are derived one-
for-one from those of A, with the addition of a single
new class for all the (NULL, t) actions. 3 Note that a
similar automaton was defined in [6, 23], it differs in
not containing special "nul l" actions.

We will be particularly interested in a subset of the
executions of time(A, b) that we call the "admissible exe-
cutions". Informally, the admissible executions are those
in which time continues to pass without bound.

Definition 3.1. An execution of time(A, b) is said to be
admissible provided the times associated with the N U L L
events in the execution are unbounded. The admissible
schedules and admissible behaviors of time(A, b) are de-
fined to be the schedules and behaviors, respectively, of
admissible executions of time(A, b).

Note that any admissible execution must have infini-
tely many N U L L events, in order that the associated
times might be unbounded. In each of our examples in
this paper, we will apply the time(A, b) construction to

3 We will not need these classes in this paper, however, since the
purpose of I/O automaton partition classes is to enforce fairness
to the components of the system, and we will not require such
fairness conditions

126

a timed automaton A modeling the entire system under
consideration.

3.2 Relationship between (A, b) and time(A, b)

In this subsection, we relate a timed automaton (A, b)
to the corresponding I/O automaton time(A, b); specifi-
cally, we prove the following main theorem, Theo-
rem 3.1, which relates the timed behaviors of (A, b) and
the admissible behaviors of time(A, b). (Note that both
behaviors are sequences of pairs of the form (n, t), where
n is an action and t is a time.)

Theorem 3.1. The set of timed behaviors of(A, b) is the
same as the set of admissible behaviors of time(A, b).

This theorem implies that properties of timed behav-
iors of a timed automaton (A, b) can be proved by prov-
ing them about the set of admissible behaviors of the
corresponding I/O automaton time(A, b). The latter task
is more amenable to treatment using assertional tech-
niques.

The rest of this subsection is devoted to proving The-
orem 3.1. The concepts and lemmas used in this proof
are not needed outside of the proof, so the reader may
wish to skip the rest of this subsection on a first reading.

First, the definition of a timed execution contains as-
pects of both safety and liveness. In the proof, it is useful
to focus first on the safety aspects alone. We thus define
the notion of a " t imed semi-execution" to capture the
safety part of the definition of a timed execution.

Definition 3.2. Suppose (A, b) is a timed automaton. Then
a finite timed sequence e is a timed semi-execution of
(A, b) provided that ord(~) is an execution of A and e
satisfies the following conditions, for each class C of part
(A) and every initial index i for C in e.
1. If b,(C) < ~ then either endtime (e) < h + b,(C) or there

exists j > i with tj < h + b,(C) such that either nj~ C or
sjedisabled(A, C).

2. There does not exist j > i with t j<h+bl (C) and n; in
C.
This definition is identical to that of a finite timed

excution (Def. 2.2), except for the "e i ther" clause in the
first item. This clause allows an action to fail to occur
if insufficient time has passed by the end of the execution.
(Recall that endtime (e) refers to the time of the last event
in e.) We prove two technical lemmas about the proper-
ties of timed semi-executions. The first lemma gives a
condition on a timed semi-execution that ensures that
it is a timed execution.

Lemma 3.2. Suppose that e is a timed semi-execution of
a timed automaton (A, b). Then ~ is a timed execution
if and only if each locally controlled action of A that is
enabled in state endstate(e) is in a partition class C in
part(A) such that b~(C)= ~ .

Proof Straightforward. []

The second lemma says that the limit of a sequence
of timed semi-executions in which the times are un-
bounded must be a timed execution.

Lemma 3.3. Let {~i}~= 1 be a sequence of timed semi-execu-
tions of(A, b) such that the following conditions hold.
I. For any i> 1, ~ is a prefix of ei + 1.
2. lira endtime(ei)= ~ .

i ~ o o

Then the limit of the ~i under the prefix ordering is a
timed execution of(A, b).

Proof Straightforward. []

We now show a simple correspondence between the
timed semi-executions of (A, b) and the finite executions
of time (A, b). We require an auxiliary definition. Namely,
if e is an execution of time(A, b), we define project(a)
to be the timed sequence obtained from e by mapping
each occurrence of a state s in e to s. basic while keeping
the (action, time) pairs intact, and then removing any
N U L L events, together with their immediately following
states.

Lemma 3.4. Let (A, b) be a timed automaton.
1. l f c(is a timed semi-execution of(A, b), then there exists

a finite execution e of time(A,b) suck that c(=pro-
ject(~).

2. I f ~ is a finite execution of time(A,b), then project(a)
is a timed semi-execution of(A, b).

Proof 1. Suppose that e' is a timed semi-execution of
(A, b). First we construct c(', an alternating sequence of
states of A and actions of time(A, b), by inserting exactly
one N U L L event before the first event in e' and between
every pair of events in e'; more precisely, if s and (n, t)
occur consecutively in e', then e" replaces this pair with
the sequence s, (NULL, t), s, (n, t). (The reason we need
to insert the N U L L events is that they are the only kinds
of events of time(A, b) that allow time to pass.)

Now we modify e" to obtain e, a finite sequence of
alternating states and actions of time(A,b), by adding
now, last and first variables to all the states in ~'. We
do this in the unique way that guarantees that the first
state is a start state of time(A, b) and that Conditions
1 (a), 1 (c)ii-iv, 2(a) and 2(d) of the definition of time(A, b)
are satisfied. Then c(=project(e). We show that e is an
execution of time(A, b) by showing that each step of e
satisfies the remaining conditions of the definition of
time(A, b).

The fact that e' is a timed semi-execution of (A, b)
implies Condition l(b), and Condit ion2(b) holds by
construction. Condition 1 of Def. 3.2 ensures Condi-
tion 2(c) of the definition of time(A, b), while Condition 2
of Def. 3.2 ensures Condition l(c)i of the definition of
time(A, b).

2. Let e'=project(e). By Conditions l(b) and 2(b) of
the definition of time(A, b), ord(e') is an execution of the
ordinary I/O automaton A. It remains to show that for
every class C, ~' satisfies Conditions 1 and 2 of Def. 3.2
for C (and every i> 0).

The initialization and Condition 1 (c)iii of the defini-
tion of time(A, b) imply that the correct upper bounds
are assigned to the last(C) variable whenever C becomes
enabled, and Conditions 1 (e)ii and 2(d) imply that those
bounds to not change until an action in C occurs or

127

C becomes disabled. Condition 2(c) then implies that the
upper bounds are respected, which implies Condition 1
of Def. 3.2 for C. Similarly, the initialization and Condi-
tion 1 (c)iii imply that the correct lower bounds are as-
signed to the first(C) variable whenever C becomes en-
abled, and Conditions l(c)ii and 2(d) imply that those
bounds do not change until an action in C occurs in
C becomes, disabled. Condition 1 (c)i then implies that
the lower bound is respected, which implies Condition 2
of Def. 3.2 for C. []

Next, we show a correspondence between the timed
executions of (A, b) and the admissible executions of ti-
me(A, b).

Lemma 3.5. 1. I f c(is a timed execution of (A, b), then
there exists an admissible execution ~ of time(A, b) such
that ~' = project(c~).

2. I f ~ is an admissible execution of time(A, b), then pro-
ject(~) is a timed execution of(A, b).

Proof 1. Suppose c(is a timed execution of (/1, b). We
carry out a similar construction to that in Part 1 of Lem-
ma 3.4, except that if e' is finite, we augment e with
an infinite suffix of N U L L actions, associated with times
that increase without bound. The argument is similar
to before; the main difference is that we must argue that
Condition 2(c) of the definitions of time(A, b) is not vio-
lated by the trailing N U L L events. More specifically,
if c{ is finite, then since it is a timed execution, Lemma 3.2
implies that each locally controlled action that is enabled
in state endstate(W) is in a partition class C with
b~(C) = oo. Then the definition of time(A, b) implies that
last(C)=oo for each Cepart(A), in the state of e just
prior to each of the trailing N U L L events. This implies
that the trailing N U L L events cannot cause violations
of 2 (c).

2. Suppose that c~ = So, (re1, h), s~ is an admissible
execution of time(A, b), and let c(=project(a). Let e~ be
the prefix of e ending with si, and let e~=project(cQ,
for each i>0. Then each e~ is a prefix of c~+1, and c(
is the limit of the c~'~ under the prefix ordering. Since
e~ is a finite execution of time(A, b), Part 2 of Lemma 3.4
implies that c(~ is a timed semi-execution of (A, b), for
each i> 0. We consider two cases.

First, suppose e' is infinite. Then c~ does not have
a suffix consisting entirely of N U L L events. Since the
times of the actions in e are unbounded, and e does
not have a suffix consisting entirely of N U L L events,
it follows that lim endtime(a'~)= oo. Then Lemma 3.3 im-

i ~ o o

plies that e' is a timed execution of (A, b).
Second, suppose that e' is finite. Then ~ has a suffix

consisting entirely of N U L L events, say starting after
st, for some fixed j, and e ' - - @ As argued above, e1
is a timed semi-execution of (A, b), so e' is a timed semi-
execution of (A, b). Condition 2 (c) of the time(A, b) defini-
tion and the fact that times increase without bound in
c~ imply that each locally controlled action of A that
is enabled in state s t. basic is in a partition class C in
part(A) such that b , (C)= oo. Since endstate(a')=sj, basic,

Lemma 3.2 implies that c(is a timed execution of
(A, b). []

Proof(of Theorem 3.1). Immediate by Lemma 3.5. []

4 Sufficient conditions for inclusion of timed behavior sets

In this section, we describe a method for showing that
the timed behaviors of one timed automaton, (A, b), are
also timed behaviors of another timed automaton,
(A', b'). This method uses the construction in Sect. 3; i.e.,
it involves showing that the admissible behaviors of time
(A, b) are also admissible behaviors of time(A', b'). As
we describe in Subsect. 4.1, our basic method involves
mapping states of time(A, b) to sets of states of time(A', b')
and is a special case of the possibilities mapping method
described in [25, 26].

In the examples later in this paper (as well as others
to which we have applied this mapping method), the
mappings that are constructed are expressible in a partic-
ular form: in terms of inequalities involving the values
of the state variables of the time(A, b) and time(A', b')
automata. In particular, these inequalities assert that the
value of each last(C) variable of time(A', b') is at least
as great as a certain real-valued "progress function" of
the values of the state variables of time(A, b), and also
that the value of each first(C) variable of time(A', b') is
no greater than another such function. These functions
can be thought of as measures of progress of the system
time(A,b) toward the goals of producing events from
the various partition classes C of time(A',b'). In Sub-
sect. 4.2, we define our notion of progress function and
show how they can be used to generate correct map-
pings.

Our notion of progress function is similar to the no-
tion of progress function commonly used to prove live-
ness properties of sequential and asynchronous concur-
rent programs (e.g., in 1-28]); however, our notion gener-
alizes the usual notion in that ours allows real-valued
rather than just discrete measures, and that ours applies
to lower bounds as well as upper bounds.

4.1 Strong possibilities mappings

In this subsection, we define the notion of a strong possi-
bilities mapping from an automaton of the form time(A, b)
to another automaton time(A', b'). 4 We then prove our
basic theorem about strong possibilities mappings,
namely, that the existence of such a mapping implies
that the timed behaviors of (A, b) are all timed behaviors
of (A', b').

Recall from Sect. 2.1 the definition of an extended step
of an arbitrary I/O automaton.

4 This is a strengthened version of the definition of "possibilities
mapping" in [26], where the strengthening involves the addition
of the third condition. The term "possibilities" is used to suggest
the different possible states in an image set. An alternative formula-
tion is in terms of relations rather than mappings, as is described
in 1-27]

128

Definition 4.1. Let (A, b) and (A', b') be timed automata
with the same set H of external actions. Let f be a map-
ping from states of time(A,b) to sets of states of ti-
me(A', b'). The mapping f is a strong possibilities mapping
from time(A, b) to time(A', b') provided that the following
conditions hold:
1. For every start state s of time(A, b), there is a start

state u of time(A', b') such that u~f(s).
2. If s' is a reachable state of time(A, b), u'ef(s') is a

reachable state of time(A', b') and (s', (~z, t), s) is a step
of time(A,b), then there is an extended step (u',fl, u)
of time(A',b'), such that u~f(s) and fil(/Txgt)
=(=, t)[(//x 0t). s

3. If s and u are reachable states of time(A,b) and
time (A', b'), respectively, and u e f (s), then
U. n O W ~-- S. n O W .

The first condition in the mapping definition establ-
ishes a correspondence between start states of the two
automata, while the second condition establishes a corre-
spondence between steps of time(A, b) and extended steps
(as defined in Sect. 2.1) of time(A',b'); this correspon-
dence must preserve the sequences of timed external
events. The third condition simply asserts that the cur-
rent times of corresponding states must be identical.

The following key lemma says that the existence of
a strong possibilities mapping is a sufficient condition
for the inclusion of admissible behaviors.

Lemma 4.1. Suppose that there is a strong possibilities
mapping from time(A, b) to time(A', b'), Then any admissi-
ble behavior of time(A, b) is an admissible behavior of ti-
me (A', b').

Proof Let fi be an admissible behavior of time(A, b), and
let ~ be an admissible execution of time(A, b) whose be-
havior is ft. For each finite prefix ~i of e that ends with
a state, it is possible to construct a finite execution, ~'i,
of time(A', b') having the same behavior as e~ and such
that the values of the now variables of the final states
of both executions are identical. Moreover, it is possible
to do this in such a way that each e'~ is a prefix of ~'~+ 1.
(The construction is by induction on i, using Condi-
tions 1 and 2 of Def. 4.1.) Let e' be the limit of the ~'~ ;
then e' is an execution of time(A', b'), and the behavior
of e' is the same as the behavior of e, which is ft.

Since e is admissible, the values of the now variables
of the final states of the e~ increase without bound as
i approaches infinity. Since the values of the now vari-
ables are the same in the final states of e~ and e'i, the
values of the now variables of the final states of the e'~
also increase without bound as i approaches infinity.
It follows that ~' is an admissible execution of time(A', b')
with behavior ft. Thus, fi is an admissible behavior of
time(A', b'). []

Now we give the main theorem of this subsection,
which expresses the basic mapping technique for timed
automata.

5 We use the notation 9t in this paper to represent the nonnegative
real numbers

Theorem 4.2. Suppose that there is a strong possibilities
mapping from time(A, b) to time(A', b'). Then any timed
behavior of(A, b) is a timed behavior of (A', b').

Proof Immediate from Lemma4.1 and Theorem
3.1. []

This theorem says that the existence of a strong possi-
bilities mapping is sufficient by itself to yield the desired
inclusion result for timed behaviors. Since the timed be-
haviors of a timed automaton embody both safety and
liveness restrictions, it follows that this mapping tech-
nique suffices to show both types of properties. This is
in contrast to the situation for non-timed systems, where
analogous mapping techniques only yield safety proper-
ties. (In [1], for example, extra machinery in the form
of a "supplementary proper ty" is added to the mapping
machinery in order to allow proofs of liveness proper-
ties.)

Lynch and Vaandrager E27] generalize our Lem-
ma 4.1 to the setting of a more general and abstract
timed automaton mode l However, there is no corollary
analogous to our Theorem 4.2 in that paper; also, the
model in [27] lacks the partition class structure of the
model of this paper, which is needed to describe the
progress function technique we describe in the following
subsection.

4.2 Progress function collections

In this subsection, we define our notion of progress func-
tions and show how they can be used to generate s t r ong
possibilities mappings.

The progress function definition is presented in terms
of a pair of timed automata, (A, b) and (A', b'), where
(A, b) describes the system under study and (A', b') de-
scribes the requirements to be satisfied. The underlying
automaton, A', of (A', b') is used to describe correctness
requirements that do not involve time, whereas the
boundmap b' is used to describe timing requirements;
more specifically, b' specifies upper and lower bounds
for various kinds of events to occur, where each "kind
of event" corresponds to a partition class C of A'. Thus,
for each class C, the definition mentions one progress
function ubc to describe progress toward guaranteeing
the upper bound requirement given by b',(C), and an-
other progress function lbc to describe progress toward
guaranteeing the lower bound requirement given by
bl (C). Each of these progress functions is a function from
the state of automaton time(A, b) to 9~ u ~ . Along with
the functions ubc and lbc, the definition also uses an-
other func t ionf tha t describes a correspondence between
states of the underlying automata A and A'. 6 The various
conditions in the definition assert that the function f
is a correct correspondence between states of A and A',
and that the functions ubc and Ibc provide correct mea-
sures of progress toward their respective goals.

We caution the reader that this definition is somewhat
technical. One aspect that may seem confusing is that

6 This function could also be replaced by a multi-valued mapping,
but this causes notational complications we thought it best to avoid

129

it is based on a mixture of the two styles of definition,
time(A, b) versus (A', b'). However, note that the mixture
is completely consistent, always using the time(A, b) defi-
nition at the lower level and the (A', b') at the higher
level. The time(A, b) definition is used at the lower level
because the progress measures are naturally defined in
terms of states of time(A, b) (in particular, in terms of
the values of the first and last variables). On the other
hand, the (A', b') definition is used at the higher level
because it permits decomposition of the properties that
need to be shown to demonstrate the existence of a
strong possibilities mapping into very small pieces.

In Sect. 5, we verify timing properties for two exam-
ples using progress functions. We note that it is possible
to avoid the progress function definition entirely, and
verify correctness and timing properties for our examples
directly from Theorem 4.2. (In fact, that is how similar
proofs are carried out in the preliminary version of this
paper [-231.) However, examination of our proofs based
on Theorem 4.2 shows that they all use the notion of
progress function implicitly. This subsection is our at-
tempt to make this strategy explicit.

Definition 4.2. Let (A, b) and (A', b') be timed automata
with the same set H of external actions. Let f be a map-
ping from states of time(A, b) to states of A'. For each
C~part(A'), let ubc and lbc be mappings from states
of time (A, b) to 9t u oo. Then the collection of mappings
~, (u bc, l bc)c~part(A,)) is a progress function collection from
(A, b) to (A', b') provided that the following conditions
hold:

1. If s is a start state of time(A, b) and v=f(s), then v
is a start state of A'. Moreover, for each CEpart(A')
such that v~enabled(A', C), we have ubc(s)<<_ b',(C) and
lbc(s) >_ b';(C).

2. Suppose s' is a reachable state of time(A, b) and (s',
(~z, t), s) is a step of time(A, b), where To#NULL. Sup-
pose v'=f(s'), v=f(s), and v' is a reachable state of
A'. Then there is an execution fragment ~ of A' begin-
ning and ending with v' and v respectively, such that:
(a) :~lH--rclH.
(b) For each Cepart(A'):

i. If b'l(C)>O and a C event occurs in e, then there
is only one C event in c~, all states occuring in

prior to the C event are in enabled(A', C) and
t >_ 1 bc(s').
ii. If all states in ~ are in enabled(A', C) and if no
C events occur in u. then ubc(s)<ubc(s') and
lbc(s) >_ lbc(s').
iii. If wenabled(A', C), and if either there is a state
in ~ in disabled(A', C) or if a C event occurs in
e, then ubc(s)<_t+b'(C) and Ibc(s)>t+b'l(C).

3. Suppose s' is a reachable state of time(A, b) and (s',
(NULL, t), s) is a step of time(A, b). Suppose v =f(s),
v =f(s), and v' is a reachable state of A'. Then:
(a) v '= v.
(b) For each C~part(A'):

i. t <_ubc(s').
ii. u bc(s) <_ u bc(s') and lbc(s) >_ Ibc(s').

The meaning of these conditions is as follows. Condi-
t i o n l asserts that any start state s of time(A, b) corre-

sponds to a start state of A'; moreover, the value for
each progress function in state s is defined in an appro-
priate way to enable proof of the desired bound. For
example, consider the upper bound requirement for class
C, as specified by the boundmap value b',(C). If class
C is enabled in state v and remains enabled, then we
will wish to prove that some action in C will occur by
time at most b',(C). In order to use the progress function
ubc as a progress measure to prove this upper bound,
we require that the initial value of ubc should be no
greater that the bound b',(C) to be proved.

Condition 2 asserts that each non-null step of time
(A, b) has a corresponding execution fragment of A' sat-
isfying certain properties. Condition 2(a) says that the
execution fragment exhibits the same external behavior
as the given step, while Condition 2(b) says that the
values of the progress function are handled appropriately
to enable proof of the desired bounds. Condition 2(b)i
says that each progress function lbc does in fact describe
a lower bound on the time by which an action in C
may occur. If the lower bound specified by the bound-
map b' for C is 0, then there is nothing to show for
this condition; if it is nonzero, then a C event should
only occur if the time at which it occurs is at least as
great as the time Ibc(s'). However, there is a technicality
that arises in this condition: recall that the lower bound
requirement for C is restarted whenever C becomes en-
abled or a C event occurs. This means that a violation
of the lower bound requirement given by b't(C) could
occur in the given execution fragment if class C becomes
enabled in the fragment or a C event occurs, and then
a subsequent event of C occurs; even though the time
for this C event is at least Ibc(s'), that time might not
be sufficiently great to satisfy the restarted lower bound
requirement. In order to cope with this troublesome situ-
ation, we simply rule out this pattern from the execution
fragments we consider.

Condition 2(b)ii simply says that the progress func-
tions are maintained properly when no relevant steps
occur; for example, consider the upper bound require-
ment for class C. If no events in C occur and C remains
enabled, then the progress function used as a progress
measure for C's upper bound may decrease, but it should
not be allowed to increase. Finally, Condition 2(b)iii says
that the progress functions are restarted properly when
a class C becomes enabled or when an event in C occurs.
The considerations are analogous to those for proper
initialization.

Condition 3 describes what must happen whan a null
step of time(A, b) occurs. Condition 3(a) says that a null
step does not change the state of A'. Condition 3(b)i
says that each progress function u bc does in fact describe
an upper bound on the time by which an action in C
must occur. That is, if the system time(A, b) is in state
s', then it is not permissible for time to pass beyond
time ubc(s') without some action in C occurring. Condi-
tion 3(b)ii is similar to Condition 2(b)ii, in that it says
that the progress functions are maintained properly
when nothing of interest occurs.

We now show how progress function collections can
be used to generate strong possibilities mappings. Let

130

(~ (ubo lbc)c~v,mA,)) be a progress function collection
from (A, b) to (A', b'). Then we define a mapping f from
states of t ime(A,b) to sets of states of time(A', b') by:
u ~ f (s) iff

1. u. basic =f(s),
2. u. now = s. now,
3. u. last(C) > ubc(s) for each CEpart(A'), and
4. u.first(C) <_ lbc(s) for each Cspart(A') .
The next lemma shows that f is a strong possibilities
mapping.

Lemma 4.3. Suppose that (A, b) and (A', b') are timed au-
tomata with the same set of external actions, and suppose
that ~ (ubc, Ibc)c~part(A.)) is a progress function collection

from (A, b) to (A', b'). Let f be the corresponding mapping
defined just above. Then f is a strong possibilities mapping

from time(A, b) to time(A', b').

Proof We show the three conditions of Def. 4.1. Condi-
tion 3 is immediate by definition.

For Condition 1, let s be a start state of time(A, b).
The Condition 1 of Def. 4.2 yields a start state v
of A' such that v=f(s) and, for all C~part(A'), if
veenabIed (A', C) then ubc(s)<_b',(C) and Ibc(s)>b'l(C).
Define u to be the (unique)start state of time(A', b') hav-
ing u. basic=v. By definition of the start states of
time(A', b'), it follows that u. now=O=s , now, u. last(C)
=b'u(C) if vs enabled(A',C) and u. last(C)=ov other-
wise, and u.first(C)=b'l(C) if veenabled(A' ,C) and
u.first(C) = 0 otherwise. Then we have u. basic = v =f(s),
u. now=s, now, and u. last(C)>ubc(s) and
u.f irst(C)<Ibc(s) for all C, which implies that u~f(s),
as needed.

Now we show Condition 2 of Def. 4.1. Let H be the
common set of external actions for (A, b) and (A', b').
Suppose that s' is a reachable state of time(A, b), u'~f(s')
is a reachable state of time(A', b'), and (s', (n, t), s) is a
step of time(A, b). Since u'Ef(s'), it follows that u'. ba-
sic=f(s ') , u ' .now=s' .now, and u' . last(C)>ubc(s ') and
u'.first(C)<_Ibc(s') for all C~part(A'). Also, since u' is
a reachable state of time(A', b'), it follows that u'. basic
is a reachable state of A'.

We consider two cases:

1. ~c # N U L L .
Then Condition 2 of Def. 4.2 yields an execution frag-
ment e of A' with the properties detailed in that defini-
tion. We modify ~ to obtain an execution fragment
~' of time (A', b'), by using the same sequence of events
as in ~, associating time t with each event, and filling
in the values of the now, last and f irst variables as
determined by the definition of time(A', b').
In order to show that the resulting ~' is an execution
fragment of time(A', b'), we must argue that the desig-
nated times of events are within the bounds allowed
by the definition of time(A', b'). The only interesting
condition to show is Condition 1 (c)i of the definition
of time(A', b'), for a class C that has b'~(C) >0 : we must
show that if any action in such a class C occurs in
c~', then u". f irst(C)<t, where u" is the state of
time(A',b') just prior to that C event. By Condi-
tion 2(b)i of Def. 4.2, there is only one C event in c~,

.

and all states in ~ prior to the given C event are in
enabled(A', C); by the definition of time(A', b'), this im-
plies that u".first(C)=u'.f irst(C). Condition 2(b)i of
Def. 4.2 also implies that t > Ibc (s'); since
u'.first(C)<_lbc(s'), this implies that u'.first(C)<_t, so
that u".first(C)<_ t, as needed.
Now we define the extended step (u',fl, u) of time(A', b')
that arises from ~'; that is, u is the last state in ~'
and fl is the schedule of c& We show that this extended
step satisfies the conditions required in Def. 4.1. First,
we must show that uef(s) , that is, that u. bas i c=f (s),
u. now=s, now, and that u. last(C)>ubc(s) and
u.first(C)<_Ibc(s) for all C. But u. basic=f(s) by the
definition of e, and u. now = t = s. now, showing the first
two of these conditions. To see that u. last(C)> ubc(s),
note that u'.Iast(C)>ubc(s') since u'~f(s'); Condi-
tions 2(b)ii and 2(b)iii of Def. 4.2 and the definition
of time (A, b) then imply the needed inequality. A simi-
lar argument holds for the lower bound condition.
Also, since c~] / / = rclH , it follows that
f l l II x 91=(~, t)lH x 9l. Thus, Condition 2 of Def. 4.1
is satisfied.

= N U L L .
Define state u of time(A', b') to be the same as state
u', except that u. now = t. We claim that (u', (NULL, t),
u) is the required extended step of time(A', b').
First, we argue that (u', (NULL, t), u) is a step of ti-
me(A', b'). By definition of time(A', b'), the only inter-
esting condition to check is that t<_u', last(C) for all
C~part(A'). So fix C~part(A'). Condit ion3(b)i of
Def. 4.2 implies that t < u bc(s'); since
u'. last(C) > ubc(s'), we have t < u'. last(C), as needed.
Now we check the remaining requirements for Condi-
tion 2 of Def. 4.1. The correspondence between exter-
nal action sequences is easy to see. We argue that
u ~ f (s). Since u. basic = u'. basic, f (s) =f(s ') (by Condi-
tion 3 (a) of Deft 4.2), and u'. basic =f(s') , it follows that
u. basic =f(s). Also, u. now = t = s. now. Let C ~ part (A').
Then u. last(C)=u', last(C)>_ubc(s'), and
u b c (s') >_ u bc (s) by Condition 3 (b)ii of Def. 4.2. There-
fore, u. last(C)>_ ubc(s). A similar argument shows that
u. f irst(C) <_ lbc(s). Therefore, Condition 2 of Def. 4.1
holds, as needed. []

Now we give the main theorem about progress func-
tion collections, saying that their existence implies timed
behavior inclusion.

Theorem 4.4. Suppose that (A, b) and (A', b') are timed au-
tomata with the same set of external actions. I f there exists
a progress function collection from (A, b) to (A', b'), then
every timed behavior of(A, b) is a timed behavior of (A', b').

Proof By Lemma 4.3 and Theorem 4.2. []

5 Examples

In this section, we present two examples for which we
prove time upper and lower bounds using our mapping
techniques, (in particular, using progress function collec-
tions).

131

5.1 Resource manager

Our first example is a simple resource-granting system
adapted from an algorithm in [6]. The system consists
of two components, a clock and a manager. The clock
ticks at an approximately-predictable rate, and the man-
ager counts ticks in order to decide when to grant a
resource. We wish to analyze the time until the first
grant, and the time between each successive pair of
grants.

We describe the algorithm and its timing assumptions
as a timed automaton (A, b). The required timing behav-
ior is presented as a timed automaton (A', b'); we prove
that the algorithm satisfies the requirements by exhibit-
ing a progress function collection from (A, b) to (A', b').

5.1.1 The algorithm

The algorithm consists of two components, a clock and
a manager. The clock has only one action, the output
TICK, which is always enabled, and has no effect on
the clock's state. It can be described as the particular
one-state I/O automaton with the following steps. 7
TICK
Precondition:

true
Effect:

n o n e

The partition contains a single class, which contains
the single output event TICK. For convenience, we over-
load the notation and designate this singleton class as
TICK also.

The manager can be described as another I/O au-
tomaton, this one having one input action, TICK, and
one output action, GRANT. The manager waits a partic-
ular number k > 0 of clock ticks before issuing each
GRANT, counting from the beginning or from the last
preceding GRANT. The manager's state has one vari-
able: timer, holding an integer, initially k.

The manager's algorithm is as follows:
TICK
Effect:

timer ,= timer - 1
G R A N T
Precondition:

timer < 0
Effect:

timer ,= k
Thus, in the situation we are modeling, when the

G R A N T action's precondition becomes satisfied, the ac-
tion does not occur instantly - the action waits until
the automaton's next local step occurs. The partition
has a single class, containing the single output action
GRANT; we call this class G R A N T as well. Fix A to

v In the notation we use for automata, a separate description is
given for the steps involving each action. Instead of listing the
steps, we provide a "precondition" which describes the set of states
in which the action is enabled, and an "effect" which describes
the changes caused by the action. Input actions do not have a
precondition, because they are always enabled

be the I/O automaton which is the composition of the
clock and manager automata, with the TICK output
action hidden (using the I/O automaton hiding operator
to convert it to an internal action); thus, the only exter-
nal action of A is the output action GRANT.

The boundmap b associates the lower bound ca and
upper bound c2 with the class TICK, where 0 <c1_<c2
< oo ; this means that the times between successive TIC K
events, and the time of the first TICK event, are in the
interval [ca,c2]. The boundmap b also associates the
lower bound 0 and upper bound I with the class GRANT,
where 0 < / < c o ; this means that the times between
successive chances for the manager to take a step, and
the time of the first such chance, are in the interval [0, l].
We assume that ca > I. s We wish to show that all the
timed behaviors of (A, b) satisfy certain upper and lower
bounds on the time up to the first G R A N T a n d the time
between consecutive pairs of GRANTevents .

We begin our analysis by stating some useful invar-
iant properties of the algorithm. In order to do this,
we need timing information to be included in the state,
so we consider the automaton time(A,b), constructed
as described in Sect. 3. Note that in this case, the auto-
maton time(A,b) has the following variables: basic,
now, f irst(TICK), last(TICK), f irs t(GRANT), and
last(GRANT). The next lemma states invariant proper-
ties of the automaton time(A, b). Notice that the second
property involves the time prediction variables.

We again use record notation to designate state com-
ponents, e.g., we use s. timer to denote the value of the
timer component of s. basic.

Lemma 5.1. The following are true about any reachable
state s of time(A, b).

1. s. timer > O.
2. I f s. timer=O then s.first(TICK)>_s, last(GRANT)

+c~ -1.

Proof By induction on the length of an execution lead-
ing to s. If the length is 0, then s. timer = k>0 , so the
conditions are easily seen to be true. So suppose that
(s', (n, t), s) is a step of time(A, b), where s' is reachable
in n steps and the conditions are true for s'. We consider
cases.

1. n = GRANT.
Then the effect of the G R A N T action implies that s. ti-
mer = k > 0, which implies both conditions.

2. n = TICK.
Suppose that s. timer<O. Then s'.timer=O, by the
effect of the step and the inductive hypothesis.
The inductive hypothesis also implies that
s ' . f irst(TICK)>_s' . last(GRANT)+c~--l . Since c 1 > l
(by assumption), this implies that s' . f irst(TICK)>s' .
last(GRANT). Since s'. las t (GRANT)> s'. now=t, it
follows that s ' . f irst(TICK)> t. But then the definition
of time(A, b) implies that TICK is not enabled in s',
a contradiction. Thus, s. timer>O, showing the first
condition.

8 This assumption is needed, for example, for Lemma 5.1. Other
assumptions could be used, but they would lead to slightly different
bounds

132

Now, s . f i r s t (TICK) = t + c 1 and s. las t (GRANT) <_ t + I.
This implies that s . f i r s t (TICK)>s , las t (GRANT)
+ C l - l, showing the second condition.

3. ~ = N U L L .
Then all of the terms involved in the two conditions
are the same in s' and s, so the conditions are pre-
served. []

5.1.2 The requirements automaton

We show the following, for any timed behavior fi of
(A, b):

1. There are infinitely many G R A N T events in ft.
2. If t i s the time of the first G R A N T event in fi, then

k . c l - l < t < _ k . c 2 + l .
3. If t~ and t 2 a r e the times of any two consecutive

G R A N T events in fi, then

k . c l - l ~ t 2 - t t < k ' c 2 +l.

We let P denote the set of sequences of (action, time)
pairs, where the only action is GRANT, satisfying the
above three conditions.

We specify P in terms of another timed automaton,
(A', b'). Define A' to have a single state and a single
G R A N T output action enabled in that state, and define
the boundmap b' to assign to the unique class of A'
the lower and upper bounds k. cl - I and k. c2 + l, respec-
tively.

Note that the timed behaviors of (A', b') are exactly
the sequences in P.

5.1.3 The proof

In this subsection, we give a progress function collection
from (A, b) to (A', b'), thereby showing that all timed be-
haviors of (A, b) are also timed behaviors of (A', b'). This
fact yields Theorem 5.3, which says that all timed behav-
iors of (A, b) are in P.

The mapping is defined by means of a progress func-
tion collection, (J~ UbGRANT, IbGRANT) , where f (s . basic)
is the unique state of A', for all s, and

s. las t (TICK) +(s. t i m e r - 1) c2 + l
U bGI~ANT (S) = if S. timer > O,

s. las t (GRANT) otherwise,

and

IbGRANT(S)= {

s . f i rs t (TICK) + (s. t i m e r - 1) c 1
if s. timer > O,

s. now otherwise.

The progress functions give explicit upper and lower
bounds for the time of the next G R A N T e v e n t , in terms
of the values of the variables in the state of time(A, b).
For instance, if s. timer > O, a T I C K event must happen
within time s. last(TICK), and then after s. t i m e r - 1 addi-
tional ticks, each happening after at most c2 time, timer

will become 0, thus enabling the GRANT, which will
happen within time at most I.

Since there is only one class in the partit ion of A',
we drop the subscript G R A N T o n the progress functions
for the rest of this example, writing simply ub and Ib
in place of UbGRAN T and lbGRAN T.

Lemma 5.2. The triple (f, ub, tb) is a progress function col-
lection from (A, b) to (A', b').

Proof Let s be the unique start state of time(A, b). Then
s. timer = k > O, s. las t (TICK) = c2 and s . f i rs t (TICK) = cl ,
so that

ub (s) = s. las t (TICK) + (s. timer-- 1) c2 + l = k.c2 + l

and

Ib(s)=s . f i r s t (TICK)+(s . t i m e r - 1) cl =k 'Cl >_ k ' c l - I .

Let v =f(s . basic). Then v is the unique start state of A'.
Also,

b'u(GRANT) = k.c2 + l= ub(s)

and

b',(GRANT~ = k-c1 -- 1 <_ Ib(s).

This shows Condition 1 of Def. 4.2.
Now we show Condition 2. Suppose that s' is a reach-

able state of time(A, b) and (s', (re, t), s) is a step of ti-
me(A, b), where rc is nonnull. Let v denote the unique
state of A'. We consider cases.

1. rc = G R A N T
Then s'. timer <_ 0 and s. timer = k > 0, by the precondi-
tion and effect of G R A N T in A; thus, s' . t imer=O
by Lemma 5.1. Lemma 5.1 also implies that
s'. f i rs t (TI CK) >_ s'. las t (GRANT) + C 1 - - l.
Let a be the execution fragment (v, GRANT, v) of A'.
Then Condition 2(a) of Def. 4.2 is immediate. For
Condition 2(b)i, the enabling and uniqueness condi-
tions are immediate; moreover,

t = s'. now by definition of time(A, b),

= lb (s') since s'. timer = O,

as needed.
Condition 2(b)ii is vacuously true, since a G R A N T
event occurs in c~. For Condition 2 (b)iii, we must show
that ub(s)<_t +b'u(GRANT) and lb(s)>_t
+b}(GRANT). For the upper bound, we have that
s. last(TICK)<_t+c2, by definition of time(A,b).
Therefore,

ub(s)=s, l a s t (T I C K) + (k - 1) c2 + l
since s. timer = k > O,

<_t+k.c2+l ,
f = t + b , (G R A N T) ,

as needed.
For the lower bound, we have that s . f i r s t (T ICK)=
s ' . f i rs t (TICK) and s'. last(GRANT)>_ t, by definition

133

of time(A, b). Therefore,

1 b (s) = s. f irst (TICK) + (k - 1) c 1, since s. timer > O,

= s ' . f i rs t (TICK) + (k - 1) ca ,

> s'. last (GRANT) + k. cl - l by Lemma 5.1,

> _ t + k . c a - l ,

= t + h i (GRANT) ,

as needed.
2. re=TICK.

Then s. timer = s'. t i m e r - 1. Let cr be the trivial execu-
tion fragment v of A'. Once again, Condition 2(a) of
Def. 4.2 is immediate. Conditions 2(b)i and 2(b)iii are
vacuously true. For Condition 2(b)ii, we must show
that ub(s)<_ub(s') and lb(s)>>_Ib(s'). There are two
cases.
(a) s. timer > O.
For the upper bound, we have that s. las t (TICK)=
t + c2 and t N s'. last(TICK), by definition of time (A, b);
therefore, s. las t (TICK) G s'. last(TICK) + c2. Thus,

u b (s) = s. las t (TICK) + (s. timer-- 1) c2 + I,

= s. last(TICK) + (s'. timer-- 2) c2 + l
since s. timer = s'. timer-- 1,

<_ s'. last(TICK) + (s'. timer-- 1) c2 + I,

=ub(s').
as needed.
For the lower bound, we have that s . f i r s t (T iCK)=
t + c a and s' . f irst(TICK)<_t by the definition of
time(A,b); therefore, s . f irs t (TICK)>_s' . f irs t (TiCK)
+ cl. Thus,

I b (s) = s.first (TICK) + (s. t i m e r - 1) cl,

>_ s ' . f i rs t (TICK) + cl + (s. timer-- 1) cl,

= s ' . f i rs t (TICK) + (s'. t i m e r - 1) ct
since s. timer = s'. t i m e r - 1,

=lb(s') ,

as needed.
(b) s. timer = O.
Then s'. timer-- 1. For the upper bound, we have that
s. last (G R A N T) <_ t + l and t <_ s'. last (TI C K), so that
s. las t (GRANT) <_ s'. last(TICK) + l, by definition of ti-
me(A, b). Therefore,

ub(s)=s, las t (GRANT),

<_ s'. last(TICK) + I,

=ub(s') ,

as needed.
For the lower bound, we have that s. n o w = t and
s'.first(TICK)<<_t, so that s. now>_s'.first(TICK).
Therefore,

lb (s) = s. now,

>_ s'. f irst (TI C K) ,

=lb(s') ,

as needed.
Now consider a step (s', (NULL, t), s) of time(A, b),

where s' is a reachable state of time(A, b). Condition 3(a)

of Def. 4.2 is immediate. Now,

ub(s,)=ls', las t (TICK)+(s ' , t i m e r - 1)c2 + l if s'. timer >0,

is '. las t (GRANT) otherwise.

Therefore, u b (s') > min (s'. last (TICK),
s'. last(GRANT)). By the definition ot time(A,b), it must
be that t <_min(s'.last(TICK), s'. last(GRANT)); thus, t_<
u b (s'), which shows Condition 3 (b)i of Def. 4.2. For Con-
dition 3 (b)ii, we must show that u b (s) <_ u b (s') and 1 b (s) >
lb(s'). But since only the value of now is different in
s and s', and s. now >_ s'. now, these inequalities follow im-
mediately from the definitions of the progress functions
ub and lb. []

Now we can put the pieces together.

Theorem 5.3. All timed behaviors of(A, b) are in P.

Proof Lemma 5.2 yields a progress function collection
from (A, b) to (A', b'). Thus, by Theorem 4.4, any timed
behavior fl of (A, b) is a timed behavior of (A', b'). This
implies that fi~P. []

5.1.4 Discussion

The bounds that we have proved above are nearly tight,
Specifically, it is possible to produce four timed execu-
tions of (A, b) that exhibit the following types of behav-
ior:
1. The time until the first G R A N T i s exactly k. cl.
2. The time until the first G R A N T i s exactly k.c2 + I.
3. The time between the first and second G R A N T e v e n t s

is exactly k .c l - 1.
4. The time between the first and second G R A N T e v e n t s

is exactly k- c2 + I.
The only discrepancy between these bounds and those
proved above is a difference of l in the lower bound
for the first G R A N T

F o r example, the first bound is realized by the timed
execution of (A, b) that has the following timed schedule:

(TICK, cO, (TICK, 2. C l) ,

(TICK, k. Cl), (GRANT, k. Cl).

The second bound is realized by the timed execution
that has the following timed schedule:

(TICK, c2), (TICK, 2 "c2), ...,
(TICK, k. c2), (GRANT, k.c2 + I).

The third bound is realized by:

(TICK, cl), (TICK, 2-c0, ...,
(TICK, k. c~), (GRANT, k.Cl + l)

(TICK, (k + 1). el) , (TICK, (k + 2). ca) ,
(TICK, 2k . ca), (GRANT, 2k. ca).

Finally, the fourth bound is realized by:

(TICK, c2), (TICK, 2. c2) ,
(TICK, k. c2), (GRANT, k. c2)

(TICK, (k + 1). c2), (TICK, (k + 2). c2), ...,
(TICK, 2 k. c2), (GRANT, 2 k. c2 + I).

134

Note that it is possible to modify our proof to give
the tight lower bound of k.c~ for the first GRANT; the
idea is to split the requirements to be proved so they
are expressed by two separate partition classes in (A', b'),
one for the first GRANT and one for the time between
pairs of GRANTevents. The two classes will have differ-
ent lower bounds. There is a slight technical difficulty
in that the algorithm (A, b) would have to be modified
slightly in order to distinguish the first GRANT event
from successive GRANTevents, but there is no problem
in principle.

Note that our resource manager is much simpler than
the usual examples of resource-granting systems; in par-
ticular, there is no request input that triggers the GRANT
output. We do not think that adding such structure
would increase the conceptual difficulty of the example
or expose any interesting property of the methodology
we suggest here; however, it would make the analysis
somewhat longer.

5.2 Two-process race system

We consider a system composed of two processes, X
and Y. Process X increments a counter until process Y
modifies a flag, and then decrements the counter. When
the counter reaches 0, process X announces that it is
done. We are interested in upper and lower bounds on
the time until a "done" announcement occurs. An inter-
esting aspect of this example is the fact that the worst-
case time is not attained in the case where the processes
both continually take steps at their slowest possible
rates. Rather, it is attained when process Y takes steps
at its slowest possible rate, while process X takes steps
at its fastest rate until the flag is set, and then takes
steps at its slowest rate until the counter reaches 0. (Actu-
ally, process X does not quite take steps at its fastest
rate; more precisely, it performs the maximum number
of steps it can before the flag is set, but may slow down
slightly to ensure that the last step occurs at the latest
possible time.)

This example was originally suggested to us by Amir
Pnueli, as a test case for our proof technique. Several
variants of this example, for specific bounds on the step
time, have also been studied in [12].

As in the previous example, we describe the algorithm
and its timing assumptions as a timed automaton (A, b),
and the required timing behavior as another timed au-
tomaton (A', b'), and produce a progress function collec-
tion from (A, b) to (A', b').

5.2.1 The algorithm

The system is described as a single timed automaton
(A, b) containing two classes representing the two pro-
cesses X and Y. Automaton A has state variables x, y
and done, where x and y are integers, initially 0, and
done is a Boolean, initially false. There are one output
action, DONE, three internal actions, SET, INC and
DEC, and no input actions. The partition classes are

X = { IN C , DEC, DONE} and Y={SET}. Intuitively,
there are two sequential processes (using shared memo-
ry), one of which performs the SET action and one of
which performs the other three actions. The transitions
are as follows.

SET
Precondition:

y = 0
Effect:

y. '=l

INC
Precondition:

y = 0
Effect:

x- '=x+ 1

DEC
Precondition:

y = l
x>O

Effect:
x .'=x - 1

DONE
Precondition:

y = l
x = 0
done =false

Effect:
done ,= true

The boundmap b for A assigns the lower bound ll
and the upper bound 12, where 0 < 11 -< 12 < o% with each
of the two partition classes, indicating that the time be-
tween successive steps of each of the two processes is
in the interval [-11,12~. We are interested in determining
the maximum and minimum times taken by the timed
automaton (A, b) from the beginning until the DONE
action occurs.

5.2.2 The requirements automaton

We will show that any timed behavior fi of(A, b) contains
exactly one DONE event, occurring at a time in the inter-

val r|tl,{2+[12[h12]. The intuition for the lower bound / \ l id] 3
should be clear: this is the earliest time at which the
flag can be set, and hence the earliest at which the DONE
event can occur. The intuition for the upper bound is
a little more complex: if process Y sets the flag at the
latest possible time 12, then there is time for process

12
X to take approximately ~ steps before the flag is set,

if X takes steps as quickly as possible. This will cause
12

the counter to be set to approximately ~ . If X then

decrements the counter as slowly as possible, with time
12 between successive steps, then the total time to decre-

(12)
ment is approximately ~ 12. The precise bound in-

volves some roundoffs and additive constants, and is
obtained using some trial and error.

Let P denote the set of sequences of (action, time)
pairs, where the only action is DONE, satisfying the con-
dition that the DONE event occurs at a time in the inter-

We specify P in terms of a timed automaton (A', b'),
defined as follows. A' has two states, active and inactive,
with start state active, and a single action, DONE, which
is an output action enabled in state actice and whose
effect is to change the state to inactive. The boundmap
b' assigns to the single class DONE the lower and upper

bounds ll and (2 + [//~])12, respectively. Note that the

timed behaviors of (A', b') are exactly the sequences in
P.

5.2.3 The proof

In this subsection, we define a progress function collec-
tion from (A, b) to (A', b'), which implies that every timed
behavior of (A, b) satisfies P. The progress function col-
lection, (f, UbDoN~,IbDoN~), has f (s . basic)=active if
s. done =false and inactive if s. done = true, and

UbDoNE(S)=

and

last(Y) +(s. x + 2+[-s" Iast(Y)- s. first(X)h 12
s.

if s. y = 0 and s.first(X)<_s, last(Y)

s. last(X) + s. x. 12 otherwise,

s.first(X) + (s. x + 2)1 l
IbDoNe(S) = if S. y = 0 and s.first(Y)> s. last(X)

s.first(X) + s. x. 11 otherwise.

We give some intuition for the first, more complicated
case of each inequality. For the upper bound, this is
the case where another step of X can occur before the
next (and only) step of Y occurs. In this case,

I s. last (I O - s.first (X) [
11] measures how many additional

steps of X (after the indicated step of X) can fit before
J

Y must take a step, and Is. x + 2

+[s." last(y)~s.first(X)[)'" 12 is the longest time \it can
L

take from the time S E T occurs (which is at most
s. last(Y)) until DONE occurs. In more detail, at the time
the S E T occurs, the value of x is at most s . x + l

s. last (Y) - s. f irst (X) [,
+ 11 j so it takes this number of DEC

events (each consuming at most 12 time) until x gets
set to 0, and at most another 12 until DONE occurs.

135

For the lower bound, the first case is the case where
another step of X must occur before the next (and first)
step of Yoccurs. In this case, x will be increased at time
at least s.first(X) and it will take at least x + l DEC
operations (each consuming at least/1time) until x gets
set to 0 and another 11 time until DONE occurs. The
second cases of both inequalities are similar, but simpler.

Again, since there is only one class in the partition
of A', we will drop the subscript DONE on the progress
functions for the rest of this example, writing simply u b
and Ib in place of UbDoN~ and IbDoN~.

Lemma 5.4. The triple (f, u b, l b) is a progress function
collection from (A, b) to (A', b').

Proof Let s be the unique start state of time(A, b). Then
s . f i rs t (X)=s. f i rs t (y)=l l , s. last(X)=s, last(y)=12,
s. x = s. y = 0, and s. done =false. Then

ub(s)=s, last(Y) +(s. x +2 +Is. las t (Y)-s . f i rs t (X) [~ 12

and

Ib(s) = s.first(X) + s. x. 11 = 11.

Let v=f(s , basic). Then v=active, by definition of f
which is the start state of A'. Also, b'u(DONE)

/ F 1 1 \

shows Condition 1 of Def. 4.2.
Now we show Condition 2. Suppose that s' is a reach-

able state of time(A,b) and (s',(~,t), s) is a step of
time(A,,b), where ~c is nonnull. Also suppose that
v = f (s . basic) and v =f(s. basic). We consider cases.
1. Tc = DONE.

Then s'. y = 1, s'. x = O, s'. done =false, and s. done
=true, by the precondition and effect of DONE in
A, and s'.first(X)<__t, by the definition of time(A,b).
Also, v ' = f (s.' basic)=active and v = f (s. basic)= inac-
tire.
Let ~ be the execution fragment (v', DONE, v) of A'.
Condition 2(a) is immediate. For Condition 2(b)i, the
uniqueness and enabling conditions are immediate;
moreover,
t >>_ s'.first (X),

=Ib(s') since s'. y = 1 and s'. x=0 ,
as needed.
Condition 2(b)ii is vacuously true, since a DONE event
occurs in c~. Condition 2(b)iii is also vacuously true,
since v(~enabled(A', DONE).

2. To=SET.
Then s'. y = 0, s. y = 1, s'. x = s. x, by t h e precondition
and effect of S E T in A. Moreover, s'.done=s, done
=false, which implies that v'=v=active. Also,
s. last(X)= s'. last(X), s . f irst(X)= s'.first(X), s. last(X)

136

< t + lz, t <s'. tast(D, t <<_ s'. l a s t (X) a n d s'.first(Y)<_t,
by definition of time(A, b).
Let ~ be the trivial execution fragment v' of A'. Condi-
t ion2(a) is immediate, and 2(b)i and 2(b)iii are va-
cuously true. For Condition 2(b)ii, we must show that
ub(s)<_ub(s') and lb(s)>Ib(s'). For the upper bound,
we consider two cases.

(a) s ' . f i rs t (X)> s'. last(Y).
Then

ub(s)= s. last(X) + (s. x) 12 since s. y = 1,

= s'. last(X) + (s'. x) 12,
=ub(s'),

which suffices.
(b) s ' . f irst(X) <_ s'. last(Y).

Then

u b (s) = s. last (X) + (s. x) 12,
<_t+12 +(s. x) 12,
<_t+(s'. x + 2) 12,

<_s'. last(Y)+(s', x+2) 12,

<_ s'. last(Y)

=ub(s ') ,

as needed.

For the lower bound, we see that s'.first(Y)<_ s'. last(X),
since t< s'. last(X) and s'.first(Y)<_ t. Therefore,

lb (s) = s.first (X) + (s. x) 11,
= s ' . f irst(X) + (s'. x) ll,
=Ib(s'),

which suffices.

3. z = I N C .
Then s'. y = s. y = 0 and s. x -- s'. x + 1, by the definition
of INC. Also, s ' . f i rs t (X)<_It<s ' . las t (D, s. last(Y)=
s'.last(Y), s. Ias t (X)=t+12 , s . f i r s t (X) = t + l l , and
s . f i r s t (Y) < t + l 1, by definition of time(A,b). Thus,

ub(s') = s'. last (D +

Let c~ be the trivial execution fragment v' of A'. As
before, the only nontrivial condition to show is Condi-
tion 2 (b)ii, that u b (s)_< u b(s') and lb (s) > lb (s'). For the
upper bound, we consider two cases.

(a) s . f irs t(X) <_ s. last(Y).
Then

ub(s)=s, last(Y)+

(s. x + 2 + [s' l a s t (y) l s ' f i r s t (X !])12 .

N o w ,

since s . f irs t(X) = t + 11,

=[s. last(y)-t I,
J

<_ls'. last(I /)--s ' . f irst(X) [

since t_> s' . f irst(X) and
s. l a s t (R = d. last(}).

So

ub(s)
=s. last (y)+(s , x + 2 + [s las t (Y) l ls ' f i rs t (X)])12,

- ' 2 ' |s'. l as t (Y) - s ' . f i r s t (X) |~
<s ' . las t (Y)+ s ' . x • • 11])12,

=ub(s'),
as needed.

(b) s. f irst(X) > s. last(Y).
Then u b (s)= s. las t (X)+ (s. x)12. Then

= s. last (X) + (s. x) 12,
=s. last(X)+(s' , x + 1) 12,

= t +12 +(s'. x + 1) 12,

<s'. last(Y)+ l~ +(s'. x + 1) l 2
=s'. las t (D+(s ' , x+2) 12

since s ' . f irst(X) < s'. last(Y),
=ub(s'),

as needed.
For the lower bound, notice that

s.first (I7) <_ t + 11 <- t + 12 = s. last (X).

Thus, we have l b (s)=s . f i r s t (X)+(s . x) l l . There are
two cases.

(a) s ' . f i rs t (D <_ s'. last(X).
Then

l b (s) = s. f irst (X) + (s. x) t l ,
>_ s . f irst(X) + (s'. x) 11,
>_t§ X) ll,
>_ s'. f i rs t (X) + (s'. x) ll ,
= Ib (s'),

.b(s)

as needed.

(b) s'.first(Y) > s'. last(X).
Then

I b (s) = s. f irst (X) + (s. x) Ix,

= s. f irst(X) + (s'. x + 1) 11,

= s . f i r s t (X) - l 1 +(s'. x+2) 11,

= t +(s'. x+2) 11,

>_ s'. f i rs t (X) + (s'. x + 2) 11,

=Ib(s').

as needed.

4. :~ =DEC.
Once again, let e be the trivial execution fragment
v' of A'. As before, the only nontrivial condition to
show is Condition 2 (b)ii, that u b (s) < u b (s') and Ib (s) >
lb(s'). By the definition of DEC, s ' . y = s . y = l and
s. x -- s'. x - 1. Also, s. last(X) = t + 12, s. f i rs t (X) = t + I1,
t<_s'.last(X), and t>_s'.first(X), by definition of ti-
me (A, b).
For the upper bound, we have that

u b (s) = s. last (X) + (s. x) 12,

=t+12 +(s. x) 12,

< s'. last(X) +12 + (s. x)12,
= s'. last(X) + (s'. x) 12,

=ub(s'),

as needed.
For the lower bound, we have that

Ib (s) = s.first (X) + (s. x) 11,

- - t + 11 +(s. x) 11 ,

> s ' . f irs t (X)+ ll + (s. x) l l ,

= s' . f irst(X) + (s'. x) I1,
=Ib(s'),

as needed.

Now consider a step (s ' , (NULL, t),s) of time(A,b),
where s' is a reachable state of time(A, b). Condition 3(a)
of Def. 4.2 is immediate. Now,

u b (s') = if s'. y = 0 and s'.first (X) <_ s'. last (I7),

s'. last (X) + s'. x . 12 otherwise.

Thus, ub(s')>_ rain (s'. last(D, s'. last(X)). By the definition
of time (A, b), it must be that t_< rain (s'. last (I1), s'. last (X));
thus, t<_ub(s'), which shows Condition 3(b)i of Def. 4.2.
For Condition 3 (b)ii, note that there are no changes in
any of the terms involved in the definitions of u b and
lb, so ub(s)=ub(s') and Ib(s)=Ib(s'). []

Theorem 5.5. All timed behaviors of(A, b) are in P.

Proof. As for Theorem 5.3, using Lemma 5.4. []

137

5.2.4 Discussion

For this example, the bounds we have proved are attain-
able. That is, there is a timed execution of (A, b) for
which the time until a D O N E event occurs is exactly
11, and another timed execution for which the time until

/

D O N E event occurs is exactly (2 +1 t2 I~ t2. a
[11/]

For example, the bound 11 is realized by the timed
execution that has the timed schedule (SET, lO, (DONE,

(+[12 II 12 is realized bY the timed execu- l,). Thebound 2 [l l]]

tion having the timed schedule

(INC, al2), (INC, 2a l2) , . . . , (INC,[~ l]aI2), (SET, 12),

(DEC, 212), (DEC, 3 lz) ,

1Al2l
where a= 'I l l J" This timed execution involves the S E T

happening at the latest possible time, 12. The maximum
possible number of I N C events occur prior to the SET,
and the last of these occurs at the same time as the
SET. The DEC events occur as late as possible.

6 Conclusions and further work

In this paper, we have described a way to carry out
assertional proofs for timing properties of algorithms
that have timing assumptions. The method involves ex-
pressing an algorithm and its timing assumptions as a
timed automaton (A, b), and expressing the timing re-
quirements in terms of a second timed automaton (A', b').
Then we convert the timed automata (A, b) and (A', b')
into ordinary (not timed) I/O automata, time(A, b) and
time(A', b') respectively, using a general construction that
builds predictive timing information into the automaton
state. Then the goal of proving timing requirements can
be met by demonstrating the existence of a certain type
of mapping called a "strong possibilities mapping" from
the "assumptions automaton" time(A, b) to the "require-
ments automaton" time(A', b'). One way of demonstrat-
ing the existence of such a mapping is based on a collec-
tion of progress functions, each designed to measure pro-
gress toward the fulfillment of one of the upper or lower
bound requirements expressed by (A', b'). These progress
functions generalize those used elsewhere for program
verification in that they are real-valued rather than dis-
crete, and that they are used for lower as well as upper
bounds.

We have applied this method in this paper to analyze
the timing properties of two systems - a simple re-
source-granting system and a race system involving two
processes. The analyses of these two examples are
straightforward; they consist of case analyses based di-
rectly on the conditions specified in the definition of a

138

progress function collection. The style and level of diffi-
culty of these proofs is exactly the same as that of typical
inductive proofs of invariant assertions. As do other
proofs of that type, these remove the need for complex
dynamic arguments about the behavior of the algorithm,
replacing them with simple checks involving individual
algorithm steps. Because of the need to check many
cases, the proofs are not extremely short (the proof for
each of our examples is about two pages long); however,
this style should scale very well because of the local na-
ture of the checks performed. Also, as for other asser-
tional proofs, it seems likely that proofs using this meth-
od can someday be checked using machine-verification
technology.

We do not have an easy method for finding an appro-
priate progress function. Just as for finding invariant
assertions, finding the right progress function is a crea-
tive task, which depends on an understanding of how
the system operates. There are alternative methods
which do not require human intervention, e.g., those
based on model-checking [-4, 19]. However, these meth-
ods apply only to finite-state algorithms, and are known
to be expensive or even undecidable [4]. Moreover, these
methods do not give the benefit of the insights provided
by a good invariant or progress function.

The two examples in this paper are not the only exam-
ples to which this method has been applied. In a project
carried out for Digital Equipment Corporation, several
timing properties (including self-stabilization properties)
were proved for a new link state packet distribution pro-
tocol [20]. Some of the timing properties proved were
unexpected, and were discovered in the course of apply-
ing the methods of this paper. Although it is possible
to provide some informal intuitions for these properties
using ad hoc arguments, we do not know a better way
than the method of this paper to provide complete and
convincing proofs that these properties hold. We have
found that progress functions provide a natural and intu-
itive way of thinking about the reasons the timing prop-
erties hold, as well as a basis for formal correctness argu-
ments. Based on the examples that have been tried so
far, we believe that the method may be practical for
use in verifying timing properties for real timing-based
algorithms. It remains to test this hypothesis by applying
the technique to more examples; good sources for exam-
ples are the areas of real-time computing and communi-
cation.

In some of the proofs we give for the DEC protocol,
we do not give bounds that are as tight as those we
have given for the simple examples in this paper. This
is not surprising: in general, for complex algorithms, it
is often much easier to prove bounds that are somewhat
loose than to prove bounds that are actually attainable
by some execution. The method of this paper supports
the proof of loose bounds just as easily as that of tight
bounds.

A good technique for proving timing properties of
systems with timing assumptions should be rigorous,
simple and general. Our technique is certainly rigorous,
and we think it is also reasonably simple. We consider
its generality. Although it seems to us that timed au-

tomata are probably sufficiently general to describe typi-
cal implementations, they may not be sufficiently general
to describe all interesting requirements specifications.
For example, as currently defined, they cannot specify
bounds for reaching certain states, but only for the oc-
currence of certain actions. In [29], the authors express
a similar doubt, and address it by generalizing the notion
of a boundmap to include certain more general timing
conditions. While we could make a similar extension
here (indeed, we do make such an extension in an earlier
version of this paper [23]), the extra notation required
for doing so seems to obscure the essentially simple ideas
of our method. Moreover, there is no guarantee that
the resulting extension will yet be sufficiently expressive.
(Although we state a completeness result in [23] for the
generalized specifications, this completeness result is rel-
ative to the restriction, not used in this paper, that the
underlying automata A and A' are identical.) We have
chosen to present our method here using a model that
is possibly somewhat too restrictive, and to leave the
appropriate generalization for future work.

It remains to relate our method to other methods
for proving timing properties. One method we have con-
sidered is the one used for several algorithms in [24],
based on bounding the time for the occurrence of inter-
mediate milestones. Such a proof can be expressed by
a series of proofs in our method, one for each intermedi-
ate milestone. A good example to consider is the tourna-
ment algorithm for mutual exclusion in [35]. The proof
sketched in [24] for this algorithm uses recurrence in-
equalities to bound the time until a given process wins
at various levels of the tournament tree. It should be
possible to recast this proof as a sequence of proofs,
one for each level of the tree, where the proof for each
level of the tree is a generic argument based on a single
use of the main recurrence inequality. Although we have
not worked out this example in detail, we have done
a complete proof [-22, 23] of a simpler example motivated
by this one (based on a line rather than a tree). In princi-
ple, it seems that the ideas should extend to the more
complex example, but this remains to be done. Some
other techniques to relate to this one include those based
on bounded-time temporal logic (e.g., [-3, 7, 11, 12]). Also,
it remains to see how proofs using our techniques can
be applied in a modular way for the verification of timing
properties of large and complex timing-based systems.

Acknowledgements. We would like to thank Amir Pnueli for sug-
gesting the race-system example of Sect. 5.2 as a test case for our
proof technique. We would also like to thank Stephen Ponzio for
his helpful comments on much earlier versions of this paper, and
George Varghese for many useful suggestions on the final version.

References

1. Abadi M, Lamport L: The existence of refinement mappings.
DEC SRC Res Rep 29 (1988)

2. Abadi M, Lamport L: An old-fashioned recipe for real time.
Proc. REX Workshop "Real-Time: Theory in Practice'. Mook,
The Netherlands 1991

139

3. Alur R, Henzinger T: Real-time logics: complexity and expressi-
veness. Proc 5th IEEE Syrup on Logic in Computer Science,
pp 390-401 (1990)

4. Alur R, Courcoubetis C, Dill D: Model-checking for real-time
systems. Proc 5th IEEE Syrup on Logic in Computer Science,
1990

5, Alur R, Dill D: Automata for modelling real-time systems. Proc
ICALP '90, Lect Notes Comp Sci vol 443: Springer, Berlin Hei-
delberg New York, pp 322~335

6. Attiya H, Lynch N: Time bounds of real-time process control
in the presence of timing uncertainty. Proc 10th Real-Time Sys-
tems Symposium, pp 268-284, December 1989. Expanded ver-
sion available as Tech Rep MIT/LCS/TR-403, Laboratory for
Computer Science, MIT, July 1989

7. Bernstein A, Hatter P Jr: Proving real-time properties of pro-
grams with temporal logic. Proc 8th Syrup on Operating System
Principles. Operating Syst Rev 15 (5): 1-11 (1981)

8. Coolahan JE, Roussopoulus SN: Timing requirements for time-
driven systems using augmented Petri nets. IEEE Trans Soft-
ware Eng SE-9 (5): 603-616 (1983)

9. Gabrielian A, Franklin MW: State-based specification of com-
plex real-time systems. Proc 9th IEEE Real-Time Systems
Syrup, pp 2-11 (1988)

10. Hasse VH: Real-time behavior of programs. IEEE Trans Soft-
ware Eng SE-7 (5):49~501 (1981)

11. Harel E, Lichtenstein O, Pnueli A: Explicit clock temporal logic.
Proc 5th IEEE Syrup on Logic in Computer Science, pp 402-
413 (1990)

12. Henzinger TA, Manna Z, Pnueli A: Temporal proof methodo-
logies for real-time systems. Proc ACM Symp on Principles
of Programming Languages, pp 353-366 (1991)

13. Hooman J: A compositional proof theory for real-time distrib-
uted message passing. TR 4-1-1(1), Department of Mathematics
and Computer Science, Eindhoven University of Technology
1987

14. Jahanian F, Mok A: A graph-theoretic approach for timing
analysis and its implementation. IEEE Trans Comput C-36
(8):961 975 (1987)

15. Jahanian F, Stuart DA: A method for verifying properties of
modechart specifications. Proc 9th IEEE Real-Time Systems
Symp, pp 12-21 (1988)

16. Koymans R, Vytopil J, deRoever WP: Real-time programming
and asynchronous message passing. Proc 2nd ACM Syrup on
Principles of Distrib Comput, pp 187-197 (1983)

17. Lamport L: Specifying concurrent program modules. ACM
Trans Program Lang Syst. 5 (2): 190-222 (1983)

18. Lamport L, Abadi M: Refining and composing real-time specifi-
cations (in progress)

19. Lewis HR: Finite-state analysis of asynchronous circuits with
bounded temporal uncertainty. Tech Rep TR-15-89, Aiken
Computation Laboratory, Harvard University

20. Lynch N, Harvey A, Perlman R, Varghese G: An analysis of
the OSI network layer link state packet distribution protocol
(in progress)

21. Lynch N: Concurrency control for resilient nested transactions.
Adv Comput Res 3:335-373 (1986)

22. Lynch N, Attiya H: Using mappings to prove timing properties.
Technical Memo MIT/LCS/TM-412.b, Laboratory for Com-
puter Science, MIT, March 1990

23. Lynch N, Attiya H: Using mappings to prove timing properties.
Proc of the 9 th Annu ACM Syrup on Principles of Distributed
Computing, Quebec, Canada, pp 265-280 (1990)

24. Lynch N, Goldman K: Lecture notes for 6.852. MIT/LCS/RSS-
5, Laboratory for Computer Science, MIT, 1989

25. Lynch N, Tuttle M: Hierarchical correctness proofs for distrib-
uted algorithms. Proc 7th ACM Symp on Principles of Distrib-
uted Computing, pp 137-151 (1987). Expanded version avail-
able as Technical Report MIT/LCS/TR-387, Laboratory for
Computer Science, MIT, April 1987

26. Lynch N, Tuttle M: An introduction to input/output automata.
CWI-Quarterly, vol 2, no 3, 1989. Also: Technical Memo, MIT/
LCS/TM-373, Laboratory for Computer Science Massachusetts
Institute of Technology, November 1988

27. Lynch N, Vaandrager F: Forward and backward simulations
for timing-based systems. Proc REX Workshop "Real-Time:
Theory in Practice", Mook, The Netherlands 1991

28. Manna Z: Mathematical theory of computation. McGraw-Hill
Comput Sci Ser. MacGraw-Hill 1974

29. Merritt M, Modugno F, Tuttle M: Time constrained automata.
In: Baeten JCM, Groote JF (eds) Proc CONCUR 91. Amster-
dam, Lect Notes Comput Sci vol 527, Springer, Berlin Heidel-
berg New York, pp 408-423

30. Milner R: Calculi for synchrony and asynchrony. TCS 25,
pp 26%310 (1983)

31. Neumann PG, Lamport L: Highly dependable distributed sys-
tems. Tech Rep, SRI International, Contract Number
DAEA18-81-G-0062, SRI Project 4180, June 1983

32. Ostroff JS: Deciding properties of timed transion models. IEEE
Trans Paral Distrib Sys 1 (2): 170-183 (1990)

33. Ostroff JS : Survey of formal methods for the specification and
design of real-time systems IEEE Press (to appear)

34. Ostroff JS, Wonham WM: A framework for real-time discrete
event control. IEEE Trans Aurora Control (1990)

35. Peterson G, Fischer M: Economical solutions for the critical
section problem in a distributed system. Proc 9th ACM Syrup
on Theory of Computing, pp 91 97 (1977)

36. Schneider FB: Real-time reliable systems project. Foundations
of Real-Time Computing Research Initiative, ONR Kickoff
Workshop, pp 28-32 (1988)

37. Shankar AU, Lam S: Time-dependent distributed systems:
proving safety, liveness and timing properties. Distrib Comput
2:61-79 (1987)

38. Shaw AC: Reasoning about time in higher-level language soft-
ware. IEEE Trans Software Eng SE-15 (7): 875-889 (1989)

39. Sifakis J: Petri nets for performance evaluation. Measuring, mo-
deling and evaluating computer systems. In: Beilner H, Gelenbe
E (eds) Proc 3rd Symp IFIP Working Group 7.3, Amsterdam,
North-Holland 1977, pp 75-93

40. Stankovic J, Ramamritham K: The SPRING Kernel: a new
paradigm for real-time operating systems. ACM Operating Syst
Rev 23 (3):54-71 (1989)

41. Tel G: Assertional verification of a timer based protocol. Proc
ICALP '88, Lect Notes Comput Sci vol 317, Springer, Berlin
Heidelberg New York, pp 600-614

42. Zwarico A: Timed acceptance: an algebra of time dependent
computing, Ph.D. Thesis, Department of Computer and Infor-
mation Science, University of Pennsylvania 1988

