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Summary. A new technique for proving timing properties 
for timing-based algorithms is described; it is an exten- 
sion of the mapping techniques previously used in proofs 
of safety properties for asynchronous concurrent sys- 
tems. The key to the method is a way of representing 
a system with timing constraints as an automaton whose 
state includes predictive timing information. Timing as- 
sumptions and timing requirements for the system are 
both represented in this way. A multi-valued mapping 
from the "assumptions au tomaton"  to the "require- 
ments au tomaton"  is then used to show that the given 
system satisfies the requirements. One type of mapping 
is based on a collection of "progress functions" provid- 
ing measures of progress toward timing goals. The tech- 
nique is illustrated with two examples, a simple resource 
manager and a two-process race system. 
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1 Introduction 

Assertional reasoning is a useful technique for proving 
safety properties of sequential and concurrent algo- 
rithms. This proof method involves describing the algo- 
rithm of interest as a state machine, and defining a predi- 
cate known as an assertion on the states of the machine. 
One proves inductively that the assertion is true of all 
the states that are reachable in a computation of the 
machine, i.e., that it is an invariant of the machine. The 
assertion is defined so that it implies the safety property 
to be proved. Assertional reasoning is a rigorous, simple 
and general proof technique. Furthermore, the assertions 
usually provide an intuitively appealing explanation of 
why the algorithm satisfies the property. 

One kind of assertional reasoning uses a mapping 
to describe a correspondence between the given algo- 
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rithm and a higher-level algorithm used as a specification 
of correctness. (See, for example, [17, 21, 25].) Such map- 
pings may be single-valued or multi-valued. 

So far, assertional reasoning has been used primarily 
to prove properties of sequential algorithms and syn- 
chronous and asynchronous concurrent algorithms. We 
would also like to use this technique to prove properties 
of concurrent algorithms whose operation depends on 
time, e.g., ones that arise in real-time systems or ones 
that rely on clocks that tick at approximately known 
rates. Also, the kinds of properties generally proved us- 
ing assertional reasoning have been "ordinary" safety 
properties; we would like to use similar methods to 
prove timing properties (upper and lower bounds on 
time) for algorithms that have timing assumptions. Pre- 
dictable performance is often a desirable characteristic 
of real-time systems [40]; assertional techniques could 
be very helpful in proving such performance properties. 

In this paper, we describe one way in which assertion- 
al reasoning can be used to prove timing properties for 
algorithms that have timing assumptions. Our method 
involves constructing a multi-valued mapping from an 
automaton representing the given algorithm to another 
automaton representing the timing requirements. The 
key to our method is a way of representing a system 
with timing constraints as an automaton whose state 
includes predictive timing information. Timing assump- 
tions and timing requirements for the system are both 
represented in this way, and the mappings we construct 
map from the "' assumptions automaton" to the "require- 
ments automaton". One type of mapping is based on 
a collection of "progress functions" providing measures 
of progress toward timing goals. 

We describe our method in terms of the timed automa- 
ton model, a slight variant of the time constrained au- 
tomaton model of [29]. We use this model to state the 
requirements to be satisfied, to define the basic architec- 
tural and timing assumptions, to describe the algorithms, 
and to prove their correctness and timing properties. 
A timed automaton is a pair (A, b), consisting of an I/O 
automaton [25, 26], A, together with a boundmap, b, 
which is a formal description of the timing assumptions 
for the components of the system. A timed automaton 
generates a set of timed executions which describe the 
operation of the algorithm, and a corresponding set of 
timed behaviors which describe the algorithm's external- 
ly-visible activity. In this paper, a timed automaton (A, b) 
is used to describe the given system (including its timing 
assumptions), and another timed automaton (A', b') is 
used to describe the correctness and timing requirements. 

While convenient for specifying timing assumptions 
and requirements, timed automata are not directly suited 
for carrying out assertional proofs about timing proper- 
ties, because timing properties are described externally 
(by boundmaps) rather than being built into the automa- 
ton itself. We therefore introduce a way of incorporating 
timing conditions into an automaton definition. For a 
given timed automaton (A, b), we define the automaton 
time(A, b) to be an ordinary I/O automaton (not a timed 
automaton) whose state includes predictive information 
describing the first and last times at which various events 

can next occur; this information is designed to enforce 
the timing conditions expressed by the boundmap b. The 
I/O automaton time(A, b) is related to the timed automa- 
ton (A, b) in that a certain subset of the behaviors of 
time(A, b), which we call the '"admissible" behaviors, is 
exactly equal to the set of timed behaviors of (A, b). 

We apply this construction to both the system de- 
scription (A, b) and the requirements description (A', b'); 
our '" assumptions automaton" is defined to be time(A, b) 
and our "requirements automaton" is time(A', b'). Then 
the problem of showing that a given algorithm (A, b) 
satisfies the timing requirements amounts to that of 
showing that any admissible behavior of the automaton 
time(A, b) is also an admissible behavior of time(A', b'). 
We do this by using invariant assertion techniques; in 
particular, we demonstrate a multi-valued mapping from 
states of time(A, b) to states of time(A', b'). 

We define a special class of multi-valued mappings 
that appears to be especially useful. Each such mapping 
is defined by a collection of inequalities relating the time 
bounds to be proved (those expressed by b') to the values 
of a collection of "progress functions" defined on the 
states of time(A, b). These progress functions provide up- 
per and lower bound measures of progress toward the 
timing goals expressed by b'. These functions generalize 
the notion of progress function commonly used to prove 
termination of sequential programs and asynchronous 
concurrent programs (see, e.g., the description of the 
method of well-founded sets in [28]), to allow real-valued 
rather than just discrete measures, and to allow proofs 
of lower bounds as well as upper bounds. 

In order to demonstrate the use of our technique, 
we apply it to two examples. The first example is a simple 
timing-dependent resource granting system, consisting 
of two concurrently-operating components, a clock and 
a manager. The manager monitors the clock ticks, which 
occur at an approximately known rate, and whenever 
a certain number have occurred, it grants the resource. 
We prove upper and lower bounds on the amount of 
time prior to the first grant and between each successive 
pair of grants. 

The second example involves one process increment- 
ing a counter until another process modifies a flag, and 
then decrementing the counter. When the counter 
reaches 0, the first process announces that it is done. 
We show upper and lower bounds on the time until 
the "done" announcement occurs. 

Technically, mapping techniques of the sort used in 
this paper are only capable of proving safety properties, 
but not liveness properties. Timing properties have as- 
pects of both safety and liveness. A timing lower bound 
asserts that an event cannot occur before a certain 
amount of time has elapsed; a violation of this property 
is detectable after a finite prefix of a timed execution, 
and so a timing lower bound can be regarded as a safety 
property. A timing upper bound asserts that an event 
must occur before a certain amount of time has elapsed. 
This can be regarded as making two separate claims: 
that the designated amount of time does in fact elapse 
(a liveness property), and that this amount of time cannot 
elapse without the event having occurred (a safety prop- 



erty). In this paper, we assume the liveness property that 
time increases without bound, so that all the remaining 
properties that need to be proved in order to prove either 
upper or lower time bounds are safety properties. Thus, 
our mapping technique provides complete proofs for 
timing properties without requiring any additional tech- 
niques for arguing liveness. 

There has been some other work on using assertional 
reasoning to prove timing properties. In particular, 
Haase [10], Hooman [13], Shankar and Lam [37], Tel 
[41], Schneider [36], Lewis [19], Abadi and Lamport  
[2, 18], Lamport  and Neumann [31] and Shaw [38] 
have all developed models for timing-based systems that 
incorporate time information into the state. In [41] and 
[19], in fact, the information that is included is similar 
to ours in that it is also predictive timing information 
(although not exactly the same information as ours). 
Some of the work mentioned above has used invariant 
assertions to prove timing properties; however, none of 
this work is based on mappings. 

Lynch and Vaandrager [27] describe a wide range 
of mapping proof techniques for timing-based systems, 
in the setting of a very general timed automaton model. 
One of the techniques considered there, forward simula- 
tion, is very similar to our general multi-valued mapping 
method. However, the model in [27] has less structure 
than the one considered here; in particular, it lacks the 
component structure that is needed to describe our pro- 
gress function technique. 

Several other, quite different formal approaches to 
proving timing properties have also been developed, 
based on state machine (e.g., [9]), model-checking (e.g., 
[4, 19]), co-automata (e.g., [5]) first-order logic (e.g., [14, 
15]), temporal logic (e.g., [3, 7, 11, 32, 34, 12]), Petri 
nets (e.g., [8, 39]) and process algebras (e.g., [16, 42]). 
(See the survey by Ostroff [33].) 

An earlier version of this paper appears in [23]. 
The rest of the paper is organized as follows. Section 2 

contains a description of the underlying formal models: 
I/O automata and timed automata. Section 3 contains 
the construction used to incorporate timing conditions 
into I/O automata, and some basic properties of these 
automata. Section 4 contains our definitions for map- 
pings and for collections of progress functions, and 
shows that the existence of such mappings and collec- 
tions imply that a given algorithm satisfies a given set 
of timing requirements. Section 5 contains our examples, 
the simple resource-granting system and the two-process 
race system. For each of these examples, this section 
contains a description of the system, a description of 
the corresponding requirements automaton, and a cor- 
rectness proof using mappings. We conclude with a dis- 
cussion in Sect. 6. 
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2.1 I /0  automata 

We begin by summarizing some of the key definitions 
for the I/O automaton model. We refer the reader to 
[25, 26] for a complete presentation of the model and 
its properties. 

An I/O automaton, A, consists of the following pieces: 
acts(A), a set of actions, classified as output, input and 
internal (input and output actions are called external); 
states(A), a set of states, including a distinguished subset, 
start(A), of start states; steps(A), a set of steps, where 
a step is defined to be a (state, action, state) triple; and 
part(A), a partition of the locally controlled (output and 
internal) actions into equivalence classes; the partition 
groups together actions that are to be thought of as 
under the control of the same underlying process. 

An action rc is said to be enabled in a state s' provided 
that there is a step of the form (s', ~, s). An automaton 
is required to be input enabled, which means that every 
input action must be enabled in every state. For any 
set IIc_acts(A), we denote by enabled(A, II) the set of 
states of A in which some action i n / / i s  enabled, and 
by disabled(A, II) be the set of all states of A not 
in enabled(A,H), that is, disabled(A,H)=states(A)\ 
enabled(A, II). We use the term event to refer to an occur- 
ence of an action in a sequence. 

An execution fragment of an I/O automaton A is a 
sequence (finite or infinite) of alternating states and ac- 
tions 

S0, ~1,$1~ . . . , S i + l ~ i ,  S i ,  . . .  

where for every i, (si-1, rci, si)~steps(A). (If the sequence 
is finite, then it is required to end with a state.) An execu- 
tion is an execution fragment with So,start(A). The 
schedule of an execution c~ is the subsequence of c~ consist- 
ing of all the events appearing in c~, and the behavior 
of cc is the subsequence consisting of all the external 
events. The schedules and behaviors of A are just those 
of the executions of A. An extended step is a triple (s', fl, s) 
for which there is an execution fragment that starts and 
ends with s' and s, respectively, and whose schedule is 
P. 

Concurrent systems are modeled by compositions of 
I/O automata, as defined in [25, 26]. In order to be 
composed, automata must be strongly compatible; this 
means that no action can be an output of more than 
one component, that internal actions of one component 
are not shared by any other component, and that no 
action is shared by infinitely many components. The re- 
sult of such a composition is another I/O automaton. 
The hiding operator can be applied to reclassify output 
actions as internal actions. 

2 Formal model 

In this section, we present the definitions for the underly- 
ing formal model. In particular, we define I/O automata, 
timed automata and timing conditions. We also present 
some of their relevant properties. 

2.2 Timed automata 

In this subsection, we augment the I/O automaton model 
to allow discussion of timing properties. The treatment 
here is similar to the one described in [6] and is a special 
case of the definitions proposed in [29]. A boundmap 
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for an I/O au tomaton  A is a mapping  that associates 
a closed subinterval of [-0, oo] with each class in part(A), 
where the lower bound of each interval is not oo and 
the upper  bound is nonzero. 1 Intuitively, the interval 
associated with a class C by the boundmap  represents 
the range of possible lengths of time between successive 
times when C "gets a chance" to perform an action. 
We sometimes use the notat ion bz(C) to denote the lower 
bound assigned by boundmap  b to class C, and bu(C) 
for the corresponding upper  bound. A timed automaton 
is a pair (A, b), where A is an I/O au tomaton  and b 
is a boundmap  for A. 

We require notions of " t imed execution", " t imed 
schedule" and " t imed behavior"  for timed automata ,  
corresponding to executions, schedules and behaviors for 
ordinary I /O automata .  These will all include time infor- 
mation. We begin by defining the basic type of sequence 
that  underlies the definition of a timed execution. 

Definition 2.1. A timed sequence (for an I /O au tomaton  
A) is a (finite or infinite) sequence of alternating states 
and (action, time) pairs, 

So,( l, tl), Sl t2) . . . . .  

satisfying the following conditions. 

1. The states So, s l ,  ... are in states(A). 
2. The actions 7r 1 , 7c 2 ... .  are in acts(A). 
3. The times t l ,  t2, ... are successively nondecreasing 

nonnegative real numbers. 
4. If the sequence is finite, then it ends in a state si. 
5. If the sequence is infinite then the times are un- 

bounded. 
For  a given timed sequence, we use the convention 

that to=0 .  For  any finite timed sequence e, we define 
endtime(a) to be the time of the last event in c~, if 
contains any (action, time) pairs, or 0, i f ,  contains no 
such pairs. Also, we define endstate(~) to be the last state 
in a. We denote by ord(a) (the "o rd ina ry"  part  of a) 
the sequence 

SO, 7['1, S1,  TO2, ' ' ' ,  

i.e., c~ with time information removed. 
If i is a nonnegative integer and Cspart(A), we say 

that i is an initial index for C in c~ if si~enabled(A, C) 
and either i = 0  or si_ledisabled(A, C) or ~i~C. Thus, 
an initial index for class C is the index of an event at 
which C becomes enabled; it indicates a point in c~ from 
which we will begin measuring upper  and lower time 
bounds. 

Definition 2.2. Suppose (A, b) is a timed automaton.  Then 
a timed sequence a is a timed execution of (A, b) provided 
that  ord(a) is an execution of A and ~ satisfies the follow- 
ing conditions, for each class C~part(A) and every initial 
index i for C in ~. 

1 In [29], the model is defined in a more general manner, to allow 
boundmaps to yield open or semi-open intervals as well as closed 
intervals. This restriction is not crucial in this paper, but allows 
us to avoid considering extra cases in some of the technical argu- 
ments 

1. If b , (C)<oo  then there exists j>i  with tj<h+b,(C) 
such that either ~jE C or sjEdisabIed(A, C). 

2. There does not exist j>i  with t i<  ti+bz(C) and 7~j in 
C. 

The first condition says that, starting from an initial 
index for C, within time b,(C) either some action in C 
occurs or there is a point at which no such action is 
enabled. Note  that if bu(C)-- oo, no upper  bound require- 
ment is imposed. The second condition says that, again 
starting from an initial index for C, no action in C can 
occur before time bl(C) has elapsed. Note  in particular 
that if a class C becomes disabled and then enabled once 
again, the lower bound calculation gets " res tar ted"  at 
the point where the class becomes re-enabled. 

The timed schedule of a timed execution of a timed 
au tomaton  (A, b) is the subsequence consisting of the 
(action, time) pairs, and the timed behavior is the subse- 
quence consisting of the (action, time) pairs for which 
the action is external. The timed schedules and timed be- 
haviors of (A, b) are just those of the timed executions 
of (A, b). 

We model each t iming-dependent concurrent system 
as a single timed au tomaton  (A, b), where A is a composi-  
tion of ordinary I/O au tomata  (possibly with some out- 
put actions hidden). 2 We also model problem specifica- 
tions, including timing properties, in terms of timed au- 
tomata.  

We note that the definition we use for timed au tomata  
may not be sufficiently general to capture all interesting 
systems and timing requirements. It  does capture many, 
however; we discuss this further in Sect. 6. 

3 Incorporating timing conditions into I /0  automata 

In order to use invariant assertion techniques to reason 
about  timed automata ,  w e  define an ordinary I /O au- 
tomaton  time(A, b) corresponding to a given timed au- 
tomaton  (A, b). This new au tomaton  has the timing re- 
strictions imposed by b on A built into its transition 
rules, based on predictions about  w h e n  the next event 
from each set of actions will occur. In this section, we 
give the construction of time(A, b) and also give results 
that relate the executions and behaviors of time(A,b) 
to the timed executions and timed behaviors of (A, b). 

The close relationship between (A, b) and time(A, b) 
suggest the possibility of avoiding the timed au tomaton  
definition entirely, instead using the time(A, b) notion 
as the starting point for our work. We prefer to begin 
with the timed au tomaton  definition because we regard 
that  definition as the more fundamental  of the two, ex- 
pressed as it is in terms of a traditional asynchronous 
system with some additional timing restrictions. As will 
be seen below, the time(A, b) definition introduces special 
constructs (e.g., special NULL actions and special vari- 
ables such as now), which are quite useful in proofs, but 

2 An equivalent way of looking at each system is as a composition 
of timed automata. An appropriate definition for a composition 
of timed automata is developed in [29], together with theorems 
showing the equivalence of the two viewpoints 
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which do not seem to be fundamental parts of system 
descriptions. Another  reason we prefer to begin with the 
timed automaton definition is that it has already been 
used elsewhere ([29, 6]). Moreover, we believe that the 
elegant relationship between the two expressed by Theo- 
rem 3.1 is interesting in its own right. 

3.1 Definition of time(A, b) 

Given any timed automaton (A,b), we define the 
ordinary I/O automaton time(A,b). The automaton 
time(A, b) has as its actions all pairs of the form (re, t), 
where rc is an element of acts(A)w {NULL}  and t is a 
nonnegative real number; here N U L L  is a "null action" 
that represents the passage of time. The classification 
of actions into input, output and internal actions is de- 
rived from that for A, with the additional stipulation 
that each (NULL,  t) is an internal action. (The N U L L  
action is similar to the unit action, 1, of SCCS [30] 
and to the time-passage actions of [27].) Each of the 
states of time(A, b) consists of a state, basic, of A, aug- 
mented with a variable now, and, for each class C of 
the partition of A, two variables first(C) and last(C). 
The value of the now variable represents the time of 
the last preceding event. The values of the first(C) and 
last(C) variables represent, respectively, the first and last 
times at which an event in class C is permitted to occur. 

We use record notation to denote the various compo- 
nents of the state of time(A, b): for instance, s. basic den- 
otes the state of A included in state s of time(A, b). Each 
start state of time(A, b) consists of a start state s. basic 
of A, plus now=O, plus values of first(C) and last(C) 
with the following property: if there is an action in C 
enabled in s, then s.f irst(C)= bz(C) and s. last(C)= b,(C); 
otherwise, s.first(C)=O and s. last(C)= oo. That is, if the 
start state of A has an action in C enabled, then the 
predicted times are the ones specified in the boundmap 
for C; otherwise, they are set to default values. 

If (~, t) is an action of time(A, b), thel~ (s',(~z, t), s) is 
defined to be a step of time(A, b) exactly if all of the 
following conditions hold. 

1. If 7c~acts(A) then: 
(a) s'. now = t = s. now. 
(b) (s'. basic, re, s. basic)~steps(A). 
(c) For  each C~part(A): 

i. If rc~C then s .first(C)<_t. 
ii. If s. basiccenabIed(A, C) and rcq~ C and 
s'. basic~enabIed(A, C) then s.first(C)= s'.first(C) 
and s. last(C)= s'. last(C). 
iii. If s. basic~enabled(A,C) and either rc~C or 
s'.basicEdisabled(A, C) then s . f irs t(C)=t +bl(C) 
and s. last (C) = t + bu (C). 
iv. If s. basic ~ disabled(A, C), then s.f irst(C)= 0 and 
s. last(C)= oo. 

2. If ~ = N U L L  then 
(a) s'. now <_ t = s. now. 
(b) s. basic = s'. basic. 
(c) t <s'. last(C), for each C~part(A). 
(d) s. first ( C) = s'. f irst ( C) and s. last ( C) = s'. last ( C), for 

each CEpart(A). 

The meaning of these conditions is as follows. Condi- 
tion 1 describes restrictions for the case where ~ is an 
action of A. Condition 1 (a) says that time does not pass 
during the performance of non-null actions, and Condi- 
tion l(b) says that the steps associated with non-null 
actions correctly simulate steps of A. Condition 1 (c) de- 
scribes the use and manipulation of the first and last 
variables during non-null steps. Condition 1 (c)i says that 
a locally controlled step is only permitted to occur at 
a time that is at least as great as the first time specified 
for that action's partition class. Condition 1 (c)ii says that 
an action not in a particular class that keeps the class 
enabled does not alter the timing predictions for that 
class. Condition 1 (c)iii says that an action that enables 
a particular class sets the timing predictions for that 
class to the values specified by the boundmap. Finally, 
Condition 1 (c)iv says that an action that leaves a partic- 
ular class disabled sets the timing predictions to the de- 
fault values. 

Similarly, Condition 2 describes restrictions for the 
case where ~ is the special null action. Condition 2(a) 
says that time cannot move backwards when a null ac- 
tion is performed, and Condition 2(b) says that the steps 
associated with null actions do not cause any changes 
to the underlying state of A. Condition 2(c) says that 
time cannot pass beyond the latest time specified for 
any class, and Condition 2(d) says that timing predic- 
tions are unaltered by the passage of time. 

It is easy to check that for any reachable state of 
time(A, b) and any class C of the partition, the following 
facts are true. First, it must be the case that s. last(C)>_ 
s. now (although it is possible to have s.f irst(C)< s. now). 
Second, if s. basiceenabIed(A, C) then s. Iast(C)<_s. now 
+b,(C) and s.first<_s, now+bl(C). Third, if s. basic 
~disabled(A, C) then both the last(C) and first(C) varia- 
bles have their default values (oo and 0, respectively). 

The partition classes for time(A, b) are derived one- 
for-one from those of A, with the addition of a single 
new class for all the (NULL,  t) actions. 3 Note  that a 
similar automaton was defined in [6, 23], it differs in 
not containing special "nul l"  actions. 

We will be particularly interested in a subset of the 
executions of time(A, b) that we call the "admissible exe- 
cutions". Informally, the admissible executions are those 
in which time continues to pass without bound. 

Definition 3.1. An execution of time(A, b) is said to be 
admissible provided the times associated with the N U L L  
events in the execution are unbounded. The admissible 
schedules and admissible behaviors of time(A, b) are de- 
fined to be the schedules and behaviors, respectively, of 
admissible executions of time(A, b). 

Note that any admissible execution must have infini- 
tely many N U L L  events, in order that the associated 
times might be unbounded. In each of our examples in 
this paper, we will apply the time(A, b) construction to 

3 We will not need these classes in this paper, however, since the 
purpose of I/O automaton partition classes is to enforce fairness 
to the components of the system, and we will not require such 
fairness conditions 
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a timed automaton A modeling the entire system under 
consideration. 

3.2 Relationship between (A, b) and time(A, b) 

In this subsection, we relate a timed automaton (A, b) 
to the corresponding I/O automaton time(A, b); specifi- 
cally, we prove the following main theorem, Theo- 
rem 3.1, which relates the timed behaviors of (A, b) and 
the admissible behaviors of time(A, b). (Note that both 
behaviors are sequences of pairs of the form (n, t), where 
n is an action and t is a time.) 

Theorem 3.1. The set of timed behaviors of(A, b) is the 
same as the set of admissible behaviors of time(A, b). 

This theorem implies that properties of timed behav- 
iors of a timed automaton (A, b) can be proved by prov- 
ing them about the set of admissible behaviors of the 
corresponding I/O automaton time(A, b). The latter task 
is more amenable to treatment using assertional tech- 
niques. 

The rest of this subsection is devoted to proving The- 
orem 3.1. The concepts and lemmas used in this proof  
are not needed outside of the proof, so the reader may 
wish to skip the rest of this subsection on a first reading. 

First, the definition of a timed execution contains as- 
pects of both safety and liveness. In the proof, it is useful 
to focus first on the safety aspects alone. We thus define 
the notion of a " t imed semi-execution" to capture the 
safety part of the definition of a timed execution. 

Definition 3.2. Suppose (A, b) is a timed automaton.  Then 
a finite timed sequence e is a timed semi-execution of 
(A, b) provided that ord(~) is an execution of A and e 
satisfies the following conditions, for each class C of part 
(A) and every initial index i for C in e. 
1. If b,(C) < ~ then either endtime (e) < h + b,(C) or there 

exists j > i with tj < h + b,(C) such that either nj~ C or 
sjedisabled(A, C). 

2. There does not exist j > i  with t j<h+bl (C)  and n; in 
C. 
This definition is identical to that of a finite timed 

excution (Def. 2.2), except for the "e i ther"  clause in the 
first item. This clause allows an action to fail to occur 
if insufficient time has passed by the end of the execution. 
(Recall that endtime (e) refers to the time of the last event 
in e.) We prove two technical lemmas about  the proper- 
ties of timed semi-executions. The first lemma gives a 
condition on a timed semi-execution that ensures that 
it is a timed execution. 

Lemma 3.2. Suppose that e is a timed semi-execution of 
a timed automaton (A, b). Then ~ is a timed execution 
if and only if each locally controlled action of A that is 
enabled in state endstate(e) is in a partition class C in 
part(A) such that b~(C)= ~ .  

Proof Straightforward. []  

The second lemma says that the limit of a sequence 
of timed semi-executions in which the times are un- 
bounded must be a timed execution. 

Lemma 3.3. Let {~i}~= 1 be a sequence of timed semi-execu- 
tions of(A, b) such that the following conditions hold. 
I. For any i> 1, ~ is a prefix of ei + 1. 
2. lira endtime(ei)= ~ .  

i ~ o o  

Then the limit of the ~i under the prefix ordering is a 
timed execution of(A, b). 

Proof Straightforward. [] 

We now show a simple correspondence between the 
timed semi-executions of (A, b) and the finite executions 
of time (A, b). We require an auxiliary definition. Namely, 
if e is an execution of time(A, b), we define project(a) 
to be the timed sequence obtained from e by mapping 
each occurrence of a state s in e to s. basic while keeping 
the (action, time) pairs intact, and then removing any 
N U L L  events, together with their immediately following 
states. 

Lemma 3.4. Let (A, b) be a timed automaton. 
1. l f  c( is a timed semi-execution of(A, b), then there exists 

a finite execution e of time(A,b) suck that c(=pro- 
ject(~). 

2. I f  ~ is a finite execution of time(A,b), then project(a) 
is a timed semi-execution of(A, b). 

Proof 1. Suppose that e' is a timed semi-execution of 
(A, b). First we construct c(', an alternating sequence of 
states of A and actions of time(A, b), by inserting exactly 
one N U L L  event before the first event in e' and between 
every pair of events in e'; more precisely, if s and (n, t) 
occur consecutively in e', then e" replaces this pair with 
the sequence s, (NULL,  t), s, (n, t). (The reason we need 
to insert the N U L L  events is that they are the only kinds 
of events of time(A, b) that allow time to pass.) 

Now we modify e" to obtain e, a finite sequence of 
alternating states and actions of time(A,b), by adding 
now, last and first variables to all the states in ~'. We 
do this in the unique way that guarantees that the first 
state is a start state of time(A, b) and that Conditions 
1 (a), 1 (c)ii-iv, 2(a) and 2(d) of the definition of time(A, b) 
are satisfied. Then c(=project(e). We show that e is an 
execution of time(A, b) by showing that each step of e 
satisfies the remaining conditions of the definition of 
time(A, b). 

The fact that e' is a timed semi-execution of (A, b) 
implies Condition l(b), and Condit ion2(b)  holds by 
construction. Condition 1 of Def. 3.2 ensures Condi- 
tion 2(c) of the definition of time(A, b), while Condition 2 
of Def. 3.2 ensures Condition l(c)i of the definition of 
time(A, b). 

2. Let e'=project(e). By Conditions l(b) and 2(b) of 
the definition of time(A, b), ord(e') is an execution of the 
ordinary I/O automaton A. It remains to show that for 
every class C, ~' satisfies Conditions 1 and 2 of Def. 3.2 
for C (and every i>  0). 

The initialization and Condition 1 (c)iii of the defini- 
tion of time(A, b) imply that the correct upper bounds 
are assigned to the last(C) variable whenever C becomes 
enabled, and Conditions 1 (e)ii and 2(d) imply that those 
bounds to not change until an action in C occurs or 
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C becomes disabled. Condition 2(c) then implies that the 
upper bounds are respected, which implies Condition 1 
of Def. 3.2 for C. Similarly, the initialization and Condi- 
tion 1 (c)iii imply that the correct lower bounds are as- 
signed to the first(C) variable whenever C becomes en- 
abled, and Conditions l(c)ii and 2(d) imply that those 
bounds do not change until an action in C occurs in 
C becomes, disabled. Condition 1 (c)i then implies that 
the lower bound is respected, which implies Condition 2 
of Def. 3.2 for C. [] 

Next, we show a correspondence between the timed 
executions of (A, b) and the admissible executions of ti- 
me(A, b). 

Lemma 3.5. 1. I f  c( is a timed execution of (A, b), then 
there exists an admissible execution ~ of time(A, b) such 
that ~' = project(c~). 

2. I f  ~ is an admissible execution of time(A, b), then pro- 
ject(~) is a timed execution of(A, b). 

Proof 1. Suppose c( is a timed execution of (/1, b). We 
carry out a similar construction to that in Part 1 of Lem- 
ma 3.4, except that if e' is finite, we augment e with 
an infinite suffix of N U L L  actions, associated with times 
that increase without bound. The argument is similar 
to before; the main difference is that we must argue that 
Condition 2(c) of the definitions of time(A, b) is not vio- 
lated by the trailing N U L L  events. More specifically, 
if c{ is finite, then since it is a timed execution, Lemma 3.2 
implies that each locally controlled action that is enabled 
in state endstate(W) is in a partition class C with 
b~(C) = oo. Then the definition of time(A, b) implies that 
last(C)=oo for each Cepart(A), in the state of e just 
prior to each of the trailing N U L L  events. This implies 
that the trailing N U L L  events cannot cause violations 
of 2 (c). 

2. Suppose that c~ = So, (re1, h), s~ . . . .  is an admissible 
execution of time(A, b), and let c(=project(a). Let e~ be 
the prefix of e ending with si, and let e~=project(cQ, 
for each i>0.  Then each e~ is a prefix of c~+1, and c( 
is the limit of the c~'~ under the prefix ordering. Since 
e~ is a finite execution of time(A, b), Part 2 of Lemma 3.4 
implies that c(~ is a timed semi-execution of (A, b), for 
each i>  0. We consider two cases. 

First, suppose e' is infinite. Then c~ does not have 
a suffix consisting entirely of N U L L  events. Since the 
times of the actions in e are unbounded, and e does 
not have a suffix consisting entirely of N U L L  events, 
it follows that lim endtime(a'~)= oo. Then Lemma 3.3 im- 

i ~ o o  

plies that e' is a timed execution of (A, b). 
Second, suppose that e' is finite. Then ~ has a suffix 

consisting entirely of N U L L  events, say starting after 
st, for some fixed j, and e ' - - @  As argued above, e1 
is a timed semi-execution of (A, b), so e' is a timed semi- 
execution of (A, b). Condition 2 (c) of the time(A, b) defini- 
tion and the fact that times increase without bound in 
c~ imply that each locally controlled action of A that 
is enabled in state s t. basic is in a partition class C in 
part(A) such that b , (C)= oo. Since endstate(a')=sj, basic, 

Lemma 3.2 implies that c( is a timed execution of 
(A, b). [] 

Proof(of Theorem 3.1). Immediate by Lemma 3.5. []  

4 Sufficient conditions for inclusion of timed behavior sets 

In this section, we describe a method for showing that 
the timed behaviors of one timed automaton,  (A, b), are 
also timed behaviors  of another timed automaton, 
(A', b'). This method uses the construction in Sect. 3; i.e., 
it involves showing that the admissible behaviors of time 
(A, b) are also admissible behaviors of time(A', b'). As 
we describe in Subsect. 4.1, our basic method involves 
mapping states of time(A, b) to sets of states of time(A', b') 
and is a special case of the possibilities mapping method 
described in [25, 26]. 

In the examples later in this paper (as well as others 
to which we have applied this mapping method), the 
mappings that are constructed are expressible in a partic- 
ular form: in terms of inequalities involving the values 
of the state variables of the time(A, b) and time(A', b') 
automata. In particular, these inequalities assert that the 
value of each last(C) variable of time(A', b') is at least 
as great as a certain real-valued "progress function" of 
the values of the state variables of time(A, b), and also 
that the value of each first(C) variable of time(A', b') is 
no greater than another such function. These functions 
can be thought of as measures of progress of the system 
time(A,b) toward the goals of producing events from 
the various partition classes C of time(A',b'). In Sub- 
sect. 4.2, we define our notion of progress function and 
show how they can be used to generate correct map- 
pings. 

Our notion of progress function is similar to the no- 
tion of progress function commonly used to prove live- 
ness properties of sequential and asynchronous concur- 
rent programs (e.g., in 1-28]); however, our notion gener- 
alizes the usual notion in that ours allows real-valued 
rather than just discrete measures, and that ours applies 
to lower bounds as well as upper bounds. 

4.1 Strong possibilities mappings 

In this subsection, we define the notion of a strong possi- 
bilities mapping from an automaton of the form time(A, b) 
to another automaton time(A', b'). 4 We then prove our 
basic theorem about strong possibilities mappings, 
namely, that the existence of such a mapping implies 
that the timed behaviors of (A, b) are all timed behaviors 
of (A', b'). 

Recall from Sect. 2.1 the definition of an extended step 
of an arbitrary I/O automaton. 

4 This is a strengthened version of the definition of "possibilities 
mapping" in [26], where the strengthening involves the addition 
of the third condition. The term "possibilities" is used to suggest 
the different possible states in an image set. An alternative formula- 
tion is in terms of relations rather than mappings, as is described 
in 1-27] 
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Definition 4.1. Let (A, b) and (A', b') be timed automata 
with the same set H of external actions. Let f be a map- 
ping from states of time(A,b) to sets of states of ti- 
me(A', b'). The mapping f is a strong possibilities mapping 
from time(A, b) to time(A', b') provided that the following 
conditions hold: 
1. For  every start state s of time(A, b), there is a start 

state u of time(A', b') such that u~f(s). 
2. If s' is a reachable state of time(A, b), u'ef(s') is a 

reachable state of time(A', b') and (s', (~z, t), s) is a step 
of time(A,b), then there is an extended step (u',fl, u) 
of time(A',b'), such that u~f(s) and fil(/Txgt) 
=(=, t)[(//x 0t). s 

3. If s and u are reachable states of time(A,b) and 
time (A', b'), respectively, and u e f  (s), then 
U. n O W  ~-- S. n O W .  

The first condition in the mapping definition establ- 
ishes a correspondence between start states of the two 
automata,  while the second condition establishes a corre- 
spondence between steps of time(A, b) and extended steps 
(as defined in Sect. 2.1) of time(A',b'); this correspon- 
dence must preserve the sequences of timed external 
events. The third condition simply asserts that the cur- 
rent times of corresponding states must be identical. 

The following key lemma says that the existence of 
a strong possibilities mapping is a sufficient condition 
for the inclusion of admissible behaviors. 

Lemma 4.1. Suppose that there is a strong possibilities 
mapping from time(A, b) to time(A', b'), Then any admissi- 
ble behavior of time(A, b) is an admissible behavior of ti- 
me (A', b'). 

Proof Let fi be an admissible behavior of time(A, b), and 
let ~ be an admissible execution of time(A, b) whose be- 
havior is ft. For  each finite prefix ~i of e that ends with 
a state, it is possible to construct a finite execution, ~'i, 
of time(A', b') having the same behavior as e~ and such 
that the values of the now variables of the final states 
of both executions are identical. Moreover,  it is possible 
to do this in such a way that each e'~ is a prefix of ~'~+ 1. 
(The construction is by induction on i, using Condi- 
tions 1 and 2 of Def. 4.1.) Let e' be the limit of the ~'~ ; 
then e' is an execution of time(A', b'), and the behavior 
of e' is the same as the behavior of e, which is ft. 

Since e is admissible, the values of the now variables 
of the final states of the e~ increase without bound as 
i approaches infinity. Since the values of the now vari- 
ables are the same in the final states of e~ and e'i, the 
values of the now variables of the final states of the e'~ 
also increase without bound as i approaches infinity. 
It follows that ~' is an admissible execution of time(A', b') 
with behavior ft. Thus, fi is an admissible behavior of 
time(A', b'). [] 

Now we give the main theorem of this subsection, 
which expresses the basic mapping technique for timed 
automata. 

5 We use the notation 9t in this paper to represent the nonnegative 
real numbers 

Theorem 4.2. Suppose that there is a strong possibilities 
mapping from time(A, b) to time(A', b'). Then any timed 
behavior of(A, b) is a timed behavior of (A', b'). 

Proof Immediate from Lemma4.1  and Theorem 
3.1. [] 

This theorem says that the existence of a strong possi- 
bilities mapping is sufficient by itself to yield the desired 
inclusion result for timed behaviors. Since the timed be- 
haviors of a timed automaton embody both safety and 
liveness restrictions, it follows that this mapping tech- 
nique suffices to show both types of properties. This is 
in contrast to the situation for non-timed systems, where 
analogous mapping techniques only yield safety proper- 
ties. (In [1], for example, extra machinery in the form 
of a "supplementary proper ty"  is added to the mapping 
machinery in order to allow proofs of liveness proper- 
ties.) 

Lynch and Vaandrager E27] generalize our Lem- 
ma 4.1 to the setting of a more general and abstract 
timed automaton mode l  However, there is no corollary 
analogous to our Theorem 4.2 in that paper; also, the 
model in [27] lacks the partition class structure of the 
model of this paper, which is needed to describe the 
progress function technique we describe in the following 
subsection. 

4.2 Progress function collections 

In this subsection, we define our notion of progress func- 
tions and show how they can be used to generate s t r ong  
possibilities mappings. 

The progress function definition is presented in terms 
of a pair of timed automata,  (A, b) and (A', b'), where 
(A, b) describes the system under study and (A', b') de- 
scribes the requirements to be satisfied. The underlying 
automaton, A', of (A', b') is used to describe correctness 
requirements that do not involve time, whereas the 
boundmap b' is used to describe timing requirements; 
more specifically, b' specifies upper and lower bounds 
for various kinds of events to occur, where each "kind 
of event" corresponds to a partition class C of A'. Thus, 
for each class C, the definition mentions one progress 
function ubc to describe progress toward guaranteeing 
the upper bound requirement given by b',(C), and an- 
other progress function lbc to describe progress toward 
guaranteeing the lower bound requirement given by 
bl (C). Each of these progress functions is a function from 
the state of automaton time(A, b) to 9~ u ~ .  Along with 
the functions ubc and lbc, the definition also uses an- 
other func t ionf tha t  describes a correspondence between 
states of the underlying automata A and A'. 6 The various 
conditions in the definition assert that the function f 
is a correct correspondence between states of A and A', 
and that the functions ubc and Ibc provide correct mea- 
sures of progress toward their respective goals. 

We caution the reader that this definition is somewhat 
technical. One aspect that may seem confusing is that 

6 This function could also be replaced by a multi-valued mapping, 
but this causes notational complications we thought it best to avoid 
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it is based on a mixture of the two styles of definition, 
time(A, b) versus (A', b'). However, note that the mixture 
is completely consistent, always using the time(A, b) defi- 
nition at the lower level and the (A', b') at the higher 
level. The time(A, b) definition is used at the lower level 
because the progress measures are naturally defined in 
terms of states of time(A, b) (in particular, in terms of 
the values of the first and last variables). On the other 
hand, the (A', b') definition is used at the higher level 
because it permits decomposition of the properties that 
need to be shown to demonstrate the existence of a 
strong possibilities mapping into very small pieces. 

In Sect. 5, we verify timing properties for two exam- 
ples using progress functions. We note that it is possible 
to avoid the progress function definition entirely, and 
verify correctness and timing properties for our examples 
directly from Theorem 4.2. (In fact, that is how similar 
proofs are carried out in the preliminary version of this 
paper [-231.) However, examination of our proofs based 
on Theorem 4.2 shows that they all use the notion of 
progress function implicitly. This subsection is our at- 
tempt to make this strategy explicit. 

Definition 4.2. Let (A, b) and (A', b') be timed automata 
with the same set H of external actions. Let f be a map- 
ping from states of time(A, b) to states of A'. For  each 
C~part(A'), let ubc and lbc be mappings from states 
of time (A, b) to 9t u oo. Then the collection of mappings 
~, (u bc, l bc)c~part(A,)) is a progress function collection from 
(A, b) to (A', b') provided that the following conditions 
hold: 

1. If s is a start state of time(A, b) and v=f(s), then v 
is a start state of A'. Moreover, for each CEpart(A') 
such that v~enabled(A', C), we have ubc(s)<<_ b',(C) and 
lbc(s) >_ b';(C). 

2. Suppose s' is a reachable state of time(A, b) and (s', 
(~z, t), s) is a step of time(A, b), where To#NULL. Sup- 
pose v'=f(s'), v=f(s), and v' is a reachable state of 
A'. Then there is an execution fragment ~ of A' begin- 
ning and ending with v' and v respectively, such that: 
(a) :~lH--rclH. 
(b) For  each Cepart(A'): 

i. If b'l(C)>O and a C event occurs in e, then there 
is only one C event in c~, all states occuring in 

prior to the C event are in enabled(A', C) and 
t >_ 1 bc(s'). 
ii. If all states in ~ are in enabled(A', C) and if no 
C events occur in u. then ubc(s)<ubc(s') and 
lbc(s) >_ lbc(s'). 
iii. If wenabled(A', C), and if either there is a state 
in ~ in disabled(A', C) or if a C event occurs in 
e, then ubc(s)<_t+b'(C) and Ibc(s)>t+b'l(C). 

3. Suppose s' is a reachable state of time(A, b) and (s', 
(NULL, t), s) is a step of time(A, b). Suppose v =f(s ), 
v =f(s), and v' is a reachable state of A'. Then: 
(a) v '= v. 
(b) For  each C~part(A'): 

i. t <_ubc(s'). 
ii. u bc(s) <_ u bc(s') and lbc(s) >_ Ibc(s'). 

The meaning of these conditions is as follows. Condi- 
t i o n l  asserts that any start state s of time(A, b) corre- 

sponds to a start state of A'; moreover, the value for 
each progress function in state s is defined in an appro- 
priate way to enable proof  of the desired bound. For  
example, consider the upper bound requirement for class 
C, as specified by the boundmap value b',(C). If class 
C is enabled in state v and remains enabled, then we 
will wish to prove that some action in C will occur by 
time at most b',(C). In order to use the progress function 
ubc as a progress measure to prove this upper bound, 
we require that the initial value of ubc should be no 
greater that the bound b',(C) to be proved. 

Condition 2 asserts that each non-null step of time 
(A, b) has a corresponding execution fragment of A' sat- 
isfying certain properties. Condition 2(a) says that the 
execution fragment exhibits the same external behavior 
as the given step, while Condition 2(b) says that the 
values of the progress function are handled appropriately 
to enable proof  of the desired bounds. Condition 2(b)i 
says that each progress function lbc does in fact describe 
a lower bound on the time by which an action in C 
may occur. If the lower bound specified by the bound- 
map b' for C is 0, then there is nothing to show for 
this condition; if it is nonzero, then a C event should 
only occur if the time at which it occurs is at least as 
great as the time Ibc(s'). However, there is a technicality 
that arises in this condition: recall that the lower bound 
requirement for C is restarted whenever C becomes en- 
abled or a C event occurs. This means that a violation 
of the lower bound requirement given by b't(C) could 
occur in the given execution fragment if class C becomes 
enabled in the fragment or a C event occurs, and then 
a subsequent event of C occurs; even though the time 
for this C event is at least Ibc(s'), that time might not 
be sufficiently great to satisfy the restarted lower bound 
requirement. In order to cope with this troublesome situ- 
ation, we simply rule out this pattern from the execution 
fragments we consider. 

Condition 2(b)ii simply says that the progress func- 
tions are maintained properly when no relevant steps 
occur; for example, consider the upper bound require- 
ment for class C. If no events in C occur and C remains 
enabled, then the progress function used as a progress 
measure for C's upper bound may decrease, but it should 
not be allowed to increase. Finally, Condition 2(b)iii says 
that the progress functions are restarted properly when 
a class C becomes enabled or when an event in C occurs. 
The considerations are analogous to those for proper 
initialization. 

Condition 3 describes what must happen whan a null 
step of time(A, b) occurs. Condition 3(a) says that a null 
step does not change the state of A'. Condition 3(b)i 
says that each progress function u bc does in fact describe 
an upper bound on the time by which an action in C 
must occur. That is, if the system time(A, b) is in state 
s', then it is not permissible for time to pass beyond 
time ubc(s') without some action in C occurring. Condi- 
tion 3(b)ii is similar to Condition 2(b)ii, in that it says 
that the progress functions are maintained properly 
when nothing of interest occurs. 

We now show how progress function collections can 
be used to generate strong possibilities mappings. Let 
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(~ (ubo lbc)c~v,mA,)) be a progress function collection 
from (A, b) to (A', b'). Then we define a mapping f from 
states of t ime(A,b) to sets of states of time(A', b') by: 
u ~ f  (s) iff 

1. u. basic =f(s),  
2. u. now = s. now, 
3. u. last(C) > ubc(s) for each CEpart(A'), and 
4. u.first(C) <_ lbc(s) for each Cspart(A') .  
The next lemma shows that f is a strong possibilities 
mapping. 

Lemma 4.3. Suppose that (A, b) and (A', b') are timed au- 
tomata with the same set of  external actions, and suppose 
that ~ (ubc, Ibc)c~part(A.)) is a progress function collection 

from (A, b) to (A', b'). Let  f be the corresponding mapping 
defined just above. Then f is a strong possibilities mapping 

from time(A, b) to time(A', b'). 

Proof  We show the three conditions of Def. 4.1. Condi- 
tion 3 is immediate by definition. 

For  Condition 1, let s be a start state of time(A, b). 
The Condition 1 of Def. 4.2 yields a start state v 
of A' such that v=f(s)  and, for all C~part(A'),  if 
veenabIed (A', C) then ubc(s)<_b',(C) and Ibc(s)>b'l(C). 
Define u to be the (unique)start  state of time(A', b') hav- 
ing u. basic=v. By definition of the start states of 
time(A', b'), it follows that u. now=O=s ,  now, u. last(C) 
=b'u(C) if vs  enabled(A',C) and u. last(C)=ov other- 
wise, and u.first(C)=b'l(C) if veenabled(A' ,C) and 
u.first(C) = 0 otherwise. Then we have u. basic = v =f(s), 
u. now=s,  now, and u. last(C)>ubc(s) and 
u.f irst(C)<Ibc(s)  for all C, which implies that u~f(s),  
as needed. 

Now we show Condition 2 of Def. 4.1. Let H be the 
common set of external actions for (A, b) and (A', b'). 
Suppose that s' is a reachable state of time(A, b), u'~f(s') 
is a reachable state of time(A', b'), and (s', (n, t), s) is a 
step of time(A, b). Since u'Ef(s'), it follows that u'. ba- 
sic=f(s ') ,  u ' .now=s' .now,  and u' . last(C)>ubc(s ')  and 
u'.first(C)<_Ibc(s') for all C~part(A'). Also, since u' is 
a reachable state of time(A', b'), it follows that u'. basic 
is a reachable state of A'. 

We consider two cases: 

1. ~c # N U L L .  
Then Condition 2 of Def. 4.2 yields an execution frag- 
ment e of A' with the properties detailed in that defini- 
tion. We modify ~ to obtain an execution fragment 
~' of time (A', b'), by using the same sequence of events 
as in ~, associating time t with each event, and filling 
in the values of the now, last and f irst  variables as 
determined by the definition of time(A', b'). 
In order to show that the resulting ~' is an execution 
fragment of time(A', b'), we must argue that the desig- 
nated times of events are within the bounds allowed 
by the definition of time(A', b'). The only interesting 
condition to show is Condition 1 (c)i of the definition 
of time(A', b'), for a class C that has b'~(C) >0 :  we must 
show that if any action in such a class C occurs in 
c~', then u". f irst(C)<t,  where u" is the state of 
time(A',b') just prior to that C event. By Condi- 
tion 2(b)i of Def. 4.2, there is only one C event in c~, 

. 

and all states in ~ prior to the given C event are in 
enabled(A', C); by the definition of time(A', b'), this im- 
plies that u".first(C)=u'.f irst(C). Condition 2(b)i of 
Def. 4.2 also implies that t > Ibc (s'); since 
u'.first(C)<_lbc(s'), this implies that u'.first(C)<_t, so 
that u".first(C)<_ t, as needed. 
Now we define the extended step (u',fl, u) of time(A', b') 
that arises from ~'; that is, u is the last state in ~' 
and fl is the schedule of c& We show that this extended 
step satisfies the conditions required in Def. 4.1. First, 
we must show that uef(s) ,  that is, that u. bas i c=f  (s), 
u. now=s,  now, and that u. last(C)>ubc(s) and 
u.first(C)<_Ibc(s) for all C. But u. basic=f(s)  by the 
definition of e, and u. now = t = s. now, showing the first 
two of these conditions. To see that u. last(C)> ubc(s), 
note that u'.Iast(C)>ubc(s')  since u'~f(s'); Condi- 
tions 2(b)ii and 2(b)iii of Def. 4.2 and the definition 
of time (A, b) then imply the needed inequality. A simi- 
lar argument holds for the lower bound condition. 
Also, since c~ ] / / =  rclH , it follows that 
f l l II  x 91=(~, t)lH x 9l. Thus, Condition 2 of Def. 4.1 
is satisfied. 

= N U L L .  
Define state u of time(A', b') to be the same as state 
u', except that u. now = t. We claim that (u', (NULL,  t), 
u) is the required extended step of time(A', b'). 
First, we argue that (u', (NULL,  t), u) is a step of ti- 
me(A', b'). By definition of time(A', b'), the only inter- 
esting condition to check is that t<_u', last(C) for all 
C~part(A'). So fix C~part(A'). Condit ion3(b)i  of 
Def. 4.2 implies that t < u bc(s'); since 
u'. last(C) > ubc(s'), we have t < u'. last(C), as needed. 
Now we check the remaining requirements for Condi- 
tion 2 of Def. 4.1. The correspondence between exter- 
nal action sequences is easy to see. We argue that 
u ~ f  (s). Since u. basic = u'. basic, f (s) =f(s ' )  (by Condi- 
tion 3 (a) of Deft 4.2), and u'. basic =f(s') ,  it follows that 
u. basic =f(s).  Also, u. now = t = s. now. Let C ~ part ( A'). 
Then u. last(C)=u', last(C)>_ubc(s'), and 
u b c (s') >_ u bc (s) by Condition 3 (b)ii of Def. 4.2. There- 
fore, u. last(C)>_ ubc(s). A similar argument shows that 
u. f irst(  C) <_ lbc(s). Therefore, Condition 2 of Def. 4.1 
holds, as needed. [] 

Now we give the main theorem about progress func- 
tion collections, saying that their existence implies timed 
behavior inclusion. 

Theorem 4.4. Suppose that (A, b) and (A', b') are timed au- 
tomata with the same set of  external actions. I f  there exists 
a progress function collection from (A, b) to (A', b'), then 
every timed behavior of(A,  b) is a timed behavior of  (A', b'). 

Proof  By Lemma 4.3 and Theorem 4.2. [] 

5 Examples 

In this section, we present two examples for which we 
prove time upper and lower bounds using our  mapping 
techniques, (in particular, using progress function collec- 
tions). 
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5.1 Resource manager 

Our first example is a simple resource-granting system 
adapted from an algorithm in [6]. The system consists 
of two components, a clock and a manager. The clock 
ticks at an approximately-predictable rate, and the man- 
ager counts ticks in order to decide when to grant a 
resource. We wish to analyze the time until the first 
grant, and the time between each successive pair of 
grants. 

We describe the algorithm and its timing assumptions 
as a timed automaton (A, b). The required timing behav- 
ior is presented as a timed automaton (A', b'); we prove 
that the algorithm satisfies the requirements by exhibit- 
ing a progress function collection from (A, b) to (A', b'). 

5.1.1 The algorithm 

The algorithm consists of two components, a clock and 
a manager. The clock has only one action, the output 
TICK, which is always enabled, and has no effect on 
the clock's state. It can be described as the particular 
one-state I/O automaton with the following steps. 7 
TICK  
Precondition: 

true 
Effect: 

n o n e  

The partition contains a single class, which contains 
the single output event TICK. For  convenience, we over- 
load the notation and designate this singleton class as 
TICK also. 

The manager can be described as another I/O au- 
tomaton, this one having one input action, TICK, and 
one output action, GRANT.  The manager waits a partic- 
ular number k > 0  of clock ticks before issuing each 
GRANT,  counting from the beginning or from the last 
preceding GRANT.  The manager's state has one vari- 
able: timer, holding an integer, initially k. 

The manager's algorithm is as follows: 
TICK 
Effect: 

timer ,= timer - 1 
G R A N T  
Precondition: 

timer < 0 
Effect: 

timer ,= k 
Thus, in the situation we are modeling, when the 

G R A N T  action's precondition becomes satisfied, the ac- 
tion does not occur instantly - the action waits until 
the automaton's  next local step occurs. The partition 
has a single class, containing the single output action 
GRANT;  we call this class G R A N T  as well. Fix A to 

v In the notation we use for automata, a separate description is 
given for the steps involving each action. Instead of listing the 
steps, we provide a "precondition" which describes the set of states 
in which the action is enabled, and an "effect" which describes 
the changes caused by the action. Input actions do not have a 
precondition, because they are always enabled 

be the I/O automaton which is the composition of the 
clock and manager automata, with the TICK output 
action hidden (using the I/O automaton hiding operator 
to convert it to an internal action); thus, the only exter- 
nal action of A is the output action GRANT.  

The boundmap b associates the lower bound ca and 
upper bound c2 with the class TICK, where 0 <c1_<c2 
< oo ; this means that the times between successive TIC K  
events, and the time of the first TICK event, are in the 
interval [ca,c2]. The boundmap b also associates the 
lower bound 0 and upper bound I with the class GRANT,  
where 0 < / < c o ;  this means that the times between 
successive chances for the manager to take a step, and 
the time of the first such chance, are in the interval [0, l]. 
We assume that ca > I. s We wish to show that all the 
timed behaviors of (A, b) satisfy certain upper and lower 
bounds on the time up to the first G R A N T a n d  the time 
between consecutive pairs of GRANTevents .  

We begin our analysis by stating some useful invar- 
iant properties of the algorithm. In order to do this, 
we need timing information to be included in the state, 
so we consider the automaton time(A,b), constructed 
as described in Sect. 3. Note that in this case, the auto- 
maton time(A,b) has the following variables: basic, 
now, f irst(TICK),  last(TICK), f irs t(GRANT),  and 
last(GRANT). The next lemma states invariant proper- 
ties of the automaton time(A, b). Notice that the second 
property involves the time prediction variables. 

We again use record notation to designate state com- 
ponents, e.g., we use s. timer to denote the value of the 
timer component of s. basic. 

Lemma 5.1. The following are true about any reachable 
state s of time(A, b). 

1. s. timer > O. 
2. I f  s. timer=O then s.first(TICK)>_s, last(GRANT) 

+c~ -1.  

Proof By induction on the length of an execution lead- 
ing to s. If the length is 0, then s. timer = k>0 ,  so the 
conditions are easily seen to be true. So suppose that 
(s', (n, t), s) is a step of time(A, b), where s' is reachable 
in n steps and the conditions are true for s'. We consider 
cases. 

1. n = GRANT.  
Then the effect of the G R A N T  action implies that s. ti- 
mer = k > 0, which implies both conditions. 

2. n = TICK. 
Suppose that s. timer<O. Then s'.timer=O, by the 
effect of the step and the inductive hypothesis. 
The inductive hypothesis also implies that 
s ' . f irst(TICK)>_s' . last(GRANT)+c~--l .  Since c 1 > l  
(by assumption), this implies that s' . f irst(TICK)>s' .  
last(GRANT). Since s'. las t (GRANT)> s'. now=t,  it 
follows that s ' . f irst(TICK)> t. But then the definition 
of time(A, b) implies that TICK is not enabled in s', 
a contradiction. Thus, s. timer>O, showing the first 
condition. 

8 This assumption is needed, for example, for Lemma 5.1. Other 
assumptions could be used, but they would lead to slightly different 
bounds 
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Now, s . f i r s t (TICK)  = t + c 1 and s. las t (GRANT)  <_ t + I. 
This implies that s . f i r s t (TICK)>s ,  las t (GRANT)  
+ C l -  l, showing the second condition. 

3. ~ = N U L L .  
Then all of the terms involved in the two conditions 
are the same in s' and s, so the conditions are pre- 
served. []  

5.1.2 The requirements automaton 

We show the following, for any timed behavior fi of 
(A, b): 

1. There are infinitely many G R A N T  events in ft. 
2. If t i s  the time of the first G R A N T  event in fi, then 

k . c l - l < t < _ k . c 2 + l .  
3. If t~ and t 2 a r e  the times of any two consecutive 

G R A N T  events in fi, then 

k . c l - l ~ t 2 - t t  < k ' c 2  +l. 

We let P denote the set of sequences of (action, time) 
pairs, where the only action is GRANT,  satisfying the 
above three conditions. 

We specify P in terms of another timed automaton,  
(A', b'). Define A' to  have a single state and a single 
G R A N T  output  action enabled in that state, and define 
the boundmap b' to assign to the unique class of A' 
the lower and upper bounds k. cl - I and k. c2 + l, respec- 
tively. 

Note that the timed behaviors of (A', b') are exactly 
the sequences in P. 

5.1.3 The proof  

In this subsection, we give a progress function collection 
from (A, b) to (A', b'), thereby showing that all timed be- 
haviors of (A, b) are also timed behaviors of (A', b'). This 
fact yields Theorem 5.3, which says that all timed behav- 
iors of (A, b) are in P. 

The mapping is defined by means of a progress func- 
tion collection, (J~ UbGRANT, IbGRANT) , where f ( s .  basic) 
is the unique state of A', for all s, and 

s. las t (TICK) +(s. t i m e r -  1) c2 + l 
U bGI~ANT (S) = if S. timer > O, 

s. las t (GRANT)  otherwise, 

and 

IbGRANT(S)= { 

s . f i rs t (TICK)  + (s. t i m e r -  1) c 1 
if s. timer > O, 

s. now otherwise. 

The progress functions give explicit upper and lower 
bounds for the time of the next G R A N T e v e n t ,  in terms 
of the values of the variables in the state of time(A, b). 
For  instance, if s. timer > O, a T I C K  event must happen 
within time s. last(TICK),  and then after s. t i m e r -  1 addi- 
tional ticks, each happening after at most c2 time, timer 

will become 0, thus enabling the GRANT,  which will 
happen within time at most I. 

Since there is only one class in the partit ion of A', 
we drop the subscript G R A N T o n  the progress functions 
for the rest of this example, writing simply ub and Ib 
in place of UbGRAN T and lbGRAN T. 

Lemma 5.2. The triple (f, ub, tb) is a progress function col- 
lection from (A, b) to (A', b'). 

Proof  Let s be the unique start state of time(A, b). Then 
s. timer = k > O, s. las t (TICK) = c2 and s . f i rs t (TICK)  = cl ,  
so that 

ub (s) = s. las t (TICK) + (s. timer-- 1) c2 + l = k.c2 + l 

and 

Ib(s )=s . f i r s t (TICK)+(s .  t i m e r -  1) cl =k 'Cl  >_ k ' c l  - I .  

Let v =f(s .  basic). Then v is the unique start state of A'. 
Also, 

b'u(GRANT) = k.c2 + l= ub(s) 

and 

b',(GRANT~ = k-c1 -- 1 <_ Ib(s). 

This shows Condition 1 of Def. 4.2. 
Now we show Condition 2. Suppose that s' is a reach- 

able state of time(A, b) and (s', (re, t), s) is a step of ti- 
me(A, b), where rc is nonnull. Let v denote the unique 
state of A'. We consider cases. 

1. rc = G R A N T  
Then s'. timer <_ 0 and s. timer = k > 0, by the precondi- 
tion and effect of G R A N T  in A; thus, s' . t imer=O 
by Lemma 5.1. Lemma 5.1 also implies that 
s'. f i rs t (TI  CK) >_ s'. las t (GRANT)  + C 1 - -  l. 
Let a be the execution fragment (v, GRANT,  v) of A'. 
Then Condition 2(a) of Def. 4.2 is immediate. For  
Condition 2(b)i, the enabling and uniqueness condi- 
tions are immediate; moreover, 

t = s'. now by definition of time(A, b), 

= lb (s') since s'. timer = O, 

as needed. 
Condition 2(b)ii is vacuously true, since a G R A N T  
event occurs in c~. For  Condition 2 (b)iii, we must show 
that ub(s)<_t +b'u(GRANT) and lb(s)>_t 
+b}(GRANT).  For  the upper bound, we have that 
s. last(TICK)<_t+c2,  by definition of time(A,b). 
Therefore, 

ub(s)=s,  l a s t ( T I C K ) + ( k -  1) c2 + l 
since s. timer = k > O, 

<_t+k.c2+l ,  
f = t  + b , ( G R A N T ) ,  

as needed. 
For  the lower bound, we have that s . f i r s t (T ICK)= 
s ' . f i rs t (TICK) and s'. last(GRANT)>_ t, by definition 
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of time(A, b). Therefore, 

1 b (s) = s. f irst  (TICK)  + (k - 1) c 1, since s. timer > O, 

= s ' . f i rs t (TICK) + ( k -  1) ca ,  

> s'. last (GRANT)  + k. cl - l by Lemma 5.1, 

> _ t + k . c a - l ,  

= t + h i (GRANT) ,  

as needed. 
2. re=TICK.  

Then s. timer = s'. t i m e r -  1. Let cr be the trivial execu- 
tion fragment v of A'. Once again, Condition 2(a) of 
Def. 4.2 is immediate. Conditions 2(b)i and 2(b)iii are 
vacuously true. For Condition 2(b)ii, we must show 
that ub(s)<_ub(s') and lb(s)>>_Ib(s'). There are two 
cases. 
(a) s. timer > O. 
For the upper bound, we have that s. las t (TICK)= 
t + c2 and t N s'. last(TICK),  by definition of time (A, b); 
therefore, s. las t (TICK) G s'. last(TICK) + c2. Thus, 

u b (s) = s. las t (TICK) + (s. timer-- 1) c2 + I, 

= s. last(TICK) + (s'. timer-- 2) c2 + l 
since s. timer = s'. timer-- 1, 

<_ s'. last(TICK) + (s'. timer-- 1) c2 + I, 

=ub(s'). 
as needed. 
For the lower bound, we have that s . f i r s t (T iCK)= 
t + c  a and s' . f irst(TICK)<_t by the definition of 
time(A,b); therefore, s . f irs t (TICK)>_s' . f irs t (TiCK) 
+ cl. Thus, 

I b (s) = s.first (TICK)  + (s. t i m e r -  1) cl,  

>_ s ' . f i rs t (TICK) + cl + (s. timer-- 1) cl,  

= s ' . f i rs t (TICK) + (s'. t i m e r -  1) ct 
since s. timer = s'. t i m e r -  1, 

=lb(s') ,  

as needed. 
(b) s. timer = O. 
Then s'. timer-- 1. For the upper bound, we have that 
s. last ( G R A N  T) <_ t + l and t <_ s'. last ( TI C K), so that 
s. las t (GRANT) <_ s'. last(TICK) + l, by definition of ti- 
me(A, b). Therefore, 

ub(s)=s,  las t (GRANT),  

<_ s'. last(TICK) + I, 

=ub(s') ,  

as needed. 
For the lower bound, we have that s. n o w = t  and 
s'.first(TICK)<<_t, so that s. now>_s'.first(TICK). 
Therefore, 

lb (s) = s. now, 

>_ s'. f irst  ( TI C K) , 

=lb(s') ,  

as needed. 
Now consider a step (s', (NULL,  t), s) of time(A, b), 

where s' is a reachable state of time(A, b). Condition 3(a) 

of Def. 4.2 is immediate. Now, 

ub(s,)=ls',  las t (TICK)+(s ' ,  t i m e r -  1)c2 + l if s'. timer >0, 

is '. las t (GRANT) otherwise. 

Therefore, u b (s') > min (s'. last (TICK),  
s'. last(GRANT)).  By the definition ot time(A,b), it must 
be that t <_min(s'.last(TICK), s'. last(GRANT));  thus, t_< 
u b (s'), which shows Condition 3 (b)i of Def. 4.2. For Con- 
dition 3 (b)ii, we must show that u b (s) <_ u b (s') and 1 b (s) > 
lb(s'). But since only the value of now is different in 
s and s', and s. now >_ s'. now, these inequalities follow im- 
mediately from the definitions of the progress functions 
ub and lb. [] 

Now we can put the pieces together. 

Theorem 5.3. All timed behaviors of(A, b) are in P. 

Proof Lemma 5.2 yields a progress function collection 
from (A, b) to (A', b'). Thus, by Theorem 4.4, any timed 
behavior fl of (A, b) is a timed behavior of (A', b'). This 
implies that fi~P. [] 

5.1.4 Discussion 

The bounds that we have proved above are nearly tight, 
Specifically, it is possible to produce four timed execu- 
tions of (A, b) that exhibit the following types of behav- 
ior: 
1. The time until the first G R A N T i s  exactly k. cl. 
2. The time until the first G R A N T i s  exactly k.c2 + I. 
3. The time between the first and second G R A N T e v e n t s  

is exactly k .c l  - 1. 
4. The time between the first and second G R A N T e v e n t s  

is exactly k- c2 + I. 
The only discrepancy between these bounds and those 
proved above is a difference of l in the lower bound 
for the first G R A N T  

F o r  example, the first bound is realized by the timed 
execution of (A, b) that has the following timed schedule: 

(TICK,  cO, (TICK,  2. C l )  . . . .  , 

(TICK,  k. Cl), (GRANT,  k. Cl). 

The second bound is realized by the timed execution 
that has the following timed schedule: 

(TICK,  c2), (TICK,  2 "c2), ..., 
(TICK,  k. c2), (GRANT,  k.c2 + I). 

The third bound is realized by: 

(TICK,  cl), (TICK,  2-c0,  ..., 
(TICK,  k. c~), (GRANT,  k.Cl + l) 

(TICK,  (k + 1). el) , (TICK,  (k + 2). ca) .... , 
(TICK,  2k .  ca), (GRANT,  2k.  ca). 

Finally, the fourth bound is realized by: 

(TICK,  c2), (TICK,  2. c2) .... , 
(TICK,  k.  c2), (GRANT,  k. c2) 

(TICK,  (k + 1). c2), (TICK,  (k + 2). c2), ..., 
(TICK,  2 k. c2), (GRANT,  2 k. c2 + I). 
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Note that it is possible to modify our proof to give 
the tight lower bound of k.c~ for the first GRANT; the 
idea is to split the requirements to be proved so they 
are expressed by two separate partition classes in (A', b'), 
one for the first GRANT and one for the time between 
pairs of GRANTevents. The two classes will have differ- 
ent lower bounds. There is a slight technical difficulty 
in that the algorithm (A, b) would have to be modified 
slightly in order to distinguish the first GRANT event 
from successive GRANTevents, but there is no problem 
in principle. 

Note that our resource manager is much simpler than 
the usual examples of resource-granting systems; in par- 
ticular, there is no request input that triggers the GRANT 
output. We do not think that adding such structure 
would increase the conceptual difficulty of the example 
or expose any interesting property of the methodology 
we suggest here; however, it would make the analysis 
somewhat longer. 

5.2 Two-process race system 

We consider a system composed of two processes, X 
and Y. Process X increments a counter until process Y 
modifies a flag, and then decrements the counter. When 
the counter reaches 0, process X announces that it is 
done. We are interested in upper and lower bounds on 
the time until a "done"  announcement occurs. An inter- 
esting aspect of this example is the fact that the worst- 
case time is not attained in the case where the processes 
both continually take steps at their slowest possible 
rates. Rather, it is attained when process Y takes steps 
at its slowest possible rate, while process X takes steps 
at its fastest rate until the flag is set, and then takes 
steps at its slowest rate until the counter reaches 0. (Actu- 
ally, process X does not quite take steps at its fastest 
rate; more precisely, it performs the maximum number 
of steps it can before the flag is set, but may slow down 
slightly to ensure that the last step occurs at the latest 
possible time.) 

This example was originally suggested to us by Amir 
Pnueli, as a test case for our proof technique. Several 
variants of this example, for specific bounds on the step 
time, have also been studied in [12]. 

As in the previous example, we describe the algorithm 
and its timing assumptions as a timed automaton (A, b), 
and the required timing behavior as another timed au- 
tomaton (A', b'), and produce a progress function collec- 
tion from (A, b) to (A', b'). 

5.2.1 The algorithm 

The system is described as a single timed automaton 
(A, b) containing two classes representing the two pro- 
cesses X and Y. Automaton A has state variables x, y 
and done, where x and y are integers, initially 0, and 
done is a Boolean, initially false. There are one output 
action, DONE, three internal actions, SET, INC and 
DEC, and no input actions. The partition classes are 

X = { IN C ,  DEC, DONE} and Y={SET}. Intuitively, 
there are two sequential processes (using shared memo- 
ry), one of which performs the SET action and one of 
which performs the other three actions. The transitions 
are as follows. 

SET 
Precondition: 

y = 0  
Effect: 

y. '=l  

INC 
Precondition: 

y = 0  
Effect: 

x- '=x+ 1 

DEC 
Precondition: 

y = l  
x>O 

Effect: 
x .'=x - 1 

DONE 
Precondition: 

y = l  
x = 0  
done =false 

Effect: 
done ,= true 

The boundmap b for A assigns the lower bound ll 
and the upper bound 12, where 0 < 11 -< 12 < o% with each 
of the two partition classes, indicating that the time be- 
tween successive steps of each of the two processes is 
in the interval [-11,12~. We are interested in determining 
the maximum and minimum times taken by the timed 
automaton (A, b) from the beginning until the DONE 
action occurs. 

5.2.2 The requirements automaton 

We will show that any timed behavior fi of(A, b) contains 
exactly one DONE event, occurring at a time in the inter- 

val r|tl,{2+[12[h12]. The intuition for the lower bound / \ l id]  3 
should be clear: this is the earliest time at which the 
flag can be set, and hence the earliest at which the DONE 
event can occur. The intuition for the upper bound is 
a little more complex: if process Y sets the flag at the 
latest possible time 12, then there is time for process 

12 
X to take approximately ~ steps before the flag is set, 

if X takes steps as quickly as possible. This will cause 
12 

the counter to be set to approximately ~ .  If X then 

decrements the counter as slowly as possible, with time 
12 between successive steps, then the total time to decre- 



(12) 
ment is approximately ~ 12. The precise bound in- 

volves some roundoffs and additive constants, and is 
obtained using some trial and error. 

Let P denote the set of sequences of (action, time) 
pairs, where the only action is DONE, satisfying the con- 
dition that the DONE event occurs at a time in the inter- 

We specify P in terms of a timed automaton (A', b'), 
defined as follows. A' has two states, active and inactive, 
with start state active, and a single action, DONE, which 
is an output action enabled in state actice and whose 
effect is to change the state to inactive. The boundmap 
b' assigns to the single class DONE the lower and upper 

bounds ll and (2 + [//~])12, respectively. Note that the 

timed behaviors of (A', b') are exactly the sequences in 
P. 

5.2.3 The proof 

In this subsection, we define a progress function collec- 
tion from (A, b) to (A', b'), which implies that every timed 
behavior of (A, b) satisfies P. The progress function col- 
lection, (f, UbDoN~,IbDoN~), has f (s .  basic)=active if 
s. done =false and inactive if s. done = true, and 

UbDoNE(S)= 

and 

last(Y) +(s. x +  2+[  -s" Iast(Y)- s. first(X)h 12 
s. 

if s. y = 0  and s.first(X)<_s, last(Y) 

s. last(X) + s. x.  12 otherwise, 

s.first(X) + (s. x + 2)1 l 
IbDoNe(S ) = if S. y = 0  and s.first(Y)> s. last(X) 

s.first(X) + s. x.  11 otherwise. 

We give some intuition for the first, more complicated 
case of each inequality. For  the upper bound, this is 
the case where another step of X can occur before the 
next (and only) step of Y occurs. In this case, 

I s. last (I O -  s.first (X) [ 
11 ] measures how many additional 

steps of X (after the indicated step of X) can fit before 
J 

Y must take a step, and Is. x + 2 

+[s." last(y)~s.first(X)[)'" 12 is the longest time \it can 
L 

take from the time S E T  occurs (which is at most 
s. last(Y)) until DONE occurs. In more detail, at the time 
the S E T  occurs, the value of x is at most s . x + l  

s. last ( Y) - s. f irst ( X) [, 
+ 11 j so it takes this number of DEC 

events (each consuming at most 12 time) until x gets 
set to 0, and at most another 12 until DONE occurs. 
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For the lower bound, the first case is the case where 
another step of X must occur before the next (and first) 
step of Yoccurs. In this case, x will be increased at time 
at least s.first(X) and it will take at least x + l  DEC 
operations (each consuming at least/1time) until x gets 
set to 0 and another 11 time until DONE occurs. The 
second cases of both inequalities are similar, but simpler. 

Again, since there is only one class in the partition 
of A', we will drop the subscript DONE on the progress 
functions for the rest of this example, writing simply u b 
and Ib in place of UbDoN~ and IbDoN~. 

Lemma 5.4. The triple (f, u b, l b) is a progress function 
collection from (A, b) to (A', b'). 

Proof Let s be the unique start state of time(A, b). Then 
s . f i rs t (X)=s. f i rs t (y)=l l ,  s. last(X)=s, last(y)=12, 
s. x = s. y = 0, and s. done =false. Then 

ub(s)=s, last(Y) +(s. x +2  +Is.  las t (Y)-s . f i rs t (X)  [~ 12 

and 

Ib(s) = s.first(X) + s. x.  11 = 11.  

Let v=f(s ,  basic). Then v=active, by definition of f 
which is the start state of A'. Also, b'u(DONE) 

/ F 1  1 \  

shows Condition 1 of Def. 4.2. 
Now we show Condition 2. Suppose that s' is a reach- 

able state of time(A,b) and (s',(~,t), s) is a step of 
time(A,,b), where ~c is nonnull. Also suppose that 
v = f ( s .  basic) and v =f(s.  basic). We consider cases. 
1. Tc = DONE. 

Then s'. y = 1, s'. x = O, s'. done =false, and s. done 
=true, by the precondition and effect of DONE in 
A, and s'.first(X)<__t, by the definition of time(A,b). 
Also, v ' = f  (s.' basic)=active and v = f  (s. basic)= inac- 
tire. 
Let ~ be the execution fragment (v', DONE, v) of A'. 
Condition 2(a) is immediate. For Condition 2(b)i, the 
uniqueness and enabling conditions are immediate; 
moreover, 
t >>_ s'.first (X), 

=Ib(s') since s'. y =  1 and s'. x=0 ,  
as needed. 
Condition 2(b)ii is vacuously true, since a DONE event 
occurs in c~. Condition 2(b)iii is also vacuously true, 
since v(~enabled(A', DONE). 

2. To=SET. 
Then s'. y = 0, s. y = 1, s'. x = s. x, by t h e  precondition 
and effect of S E T  in A. Moreover, s'.done=s, done 
=false, which implies that v'=v=active.  Also, 
s. last(X)= s'. last(X), s . f irst(X)= s'.first(X), s. last(X) 
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< t  + lz, t <s'. tast(D, t <<_ s'. l a s t ( X ) a n d  s'.first(Y)<_t, 
by definition of time(A, b). 
Let ~ be the trivial execution fragment v' of A'. Condi- 
t ion2(a) is immediate, and 2(b)i and 2(b)iii are va- 
cuously true. For Condition 2(b)ii, we must show that 
ub(s)<_ub(s') and lb(s)>Ib(s').  For the upper bound, 
we consider two cases. 

(a) s ' . f i rs t (X)> s'. last(Y). 
Then 

ub(s)= s. last(X) + (s. x) 12 since s. y =  1, 

= s'. last(X) + (s'. x) 12, 
=ub(s'),  

which suffices. 
(b) s ' . f irst(X) <_ s'. last(Y). 

Then 

u b (s) = s. last (X) + (s. x) 12, 
<_t+12 +(s. x) 12, 
<_t+(s'. x + 2 )  12, 

<_s'. last(Y)+(s',  x+2)  12, 

<_ s'. last(Y) 

=ub(s ') ,  

as needed. 

For the lower bound, we see that s'.first(Y)<_ s'. last(X), 
since t<  s'. last(X) and s'.first(Y)<_ t. Therefore, 

lb (s) = s.first (X) + (s. x) 11, 
= s ' . f irst(X) + (s'. x) ll,  
=Ib(s'),  

which suffices. 

3. z = I N C .  
Then s'. y = s. y = 0 and s. x -- s'. x + 1, by the definition 
of INC.  Also, s ' . f i rs t (X)<_It<s ' . las t (D,  s. last(Y)= 
s'.last(Y), s. Ias t (X)=t+12 ,  s . f i r s t ( X ) = t + l l ,  and 
s . f i r s t ( Y ) < t + l  1, by definition of time(A,b). Thus, 

ub(s') = s'. last (D  + 

Let c~ be the trivial execution fragment v' of A'. As 
before, the only nontrivial condition to show is Condi- 
tion 2 (b)ii, that u b (s)_< u b(s') and lb (s) > lb (s'). For  the 
upper bound, we consider two cases. 

(a) s . f irs t(X) <_ s. last(Y). 
Then 

ub(s)=s, last(Y)+ 

(s. x + 2 + [  s' l a s t ( y ) l s ' f i r s t (X ! ] )12 .  

N o w ,  

since s . f irs t(X) = t + 11, 

=[s. last(y)-t I, 
J 

<_ls'. last(I /)--s ' . f irst(X) [ 

since t_> s' . f irst(X) and 
s. l a s t ( R =  d. last(}). 

So 

ub(s) 
=s. last (y)+(s ,  x + 2 + [  s las t (Y) l ls ' f i rs t (X)])12,  

- ' 2 '  |s'. l as t (Y) - s ' . f i r s t (X) |~  
<s ' . las t (Y)+ s ' . x •  •  11 ])12, 

=ub(s'), 
as needed. 

(b) s. f irst(X) > s. last(Y). 
Then u b (s)= s. las t (X)+ (s. x)12. Then 

= s. last (X) + (s. x) 12, 
=s. last(X)+(s' ,  x +  1) 12, 

= t  +12 +(s'. x +  1) 12, 

<s'. last(Y)+ l~ +(s'. x + 1) l 2 
=s'. las t (D+(s ' ,  x+2)  12 

since s ' . f irst(X) < s'. last(Y), 
=ub(s'),  

as needed. 
For the lower bound, notice that 

s.first (I7) <_ t + 11 <- t + 12 = s. last (X). 

Thus, we have l b ( s )=s . f i r s t (X )+( s . x ) l l .  There are 
two cases. 

(a) s ' . f i rs t (D <_ s'. last(X). 
Then 

l b (s) = s. f irst  (X) + (s. x) t l ,  
>_ s . f irst(X) + (s'. x) 11, 
>_t§ X) ll, 
>_ s'. f i rs t (X)  + (s'. x) ll , 
= Ib (s'), 

.b(s) 

as needed. 



(b) s'.first(Y) > s'. last(X). 
Then 

I b (s) = s. f irst  (X) + (s. x) Ix, 

= s. f irst(X) + (s'. x + 1) 11, 

= s . f i r s t ( X ) - l  1 +(s'. x+2)  11, 

= t +(s'. x+2)  11, 

>_ s'. f i rs t (X)  + (s'. x + 2) 11, 

=Ib(s'). 

as needed. 

4. :~ =DEC.  
Once again, let e be the trivial execution fragment 
v' of A'. As before, the only nontrivial condition to 
show is Condition 2 (b)ii, that u b (s) < u b (s') and Ib (s) > 
lb(s'). By the definition of DEC, s ' . y = s . y = l  and 
s. x -- s'. x - 1. Also, s. last(X) = t + 12, s. f i rs t (X)  = t + I1, 
t<_s'.last(X), and t>_s'.first(X), by definition of ti- 
me (A, b). 
For the upper bound, we have that 

u b (s) = s. last (X) + (s. x) 12, 

=t+12 +(s. x) 12, 

< s'. last(X) +12 + (s. x)12, 
= s'. last(X) + (s'. x) 12, 

=ub(s'),  

as needed. 
For the lower bound, we have that 

Ib (s) = s.first (X) + (s. x) 11, 

- - t +  11 +(s. x) 11 , 

> s ' . f irs t (X)+ ll + (s. x ) l l ,  

= s' . f irst(X) + (s'. x) I1, 
=Ib(s'), 

as needed. 

Now consider a step (s ' , (NULL, t),s) of time(A,b), 
where s' is a reachable state of time(A, b). Condition 3(a) 
of Def. 4.2 is immediate. Now, 

u b (s') = if s'. y = 0 and s'.first (X) <_ s'. last (I7), 

s'. last ( X)  + s'. x . 12 otherwise. 

Thus, ub(s')>_ rain (s'. last(D, s'. last(X)). By the definition 
of time (A, b), it must be that t_< rain (s'. last (I1), s'. last (X)); 
thus, t<_ub(s'), which shows Condition 3(b)i of Def. 4.2. 
For Condition 3 (b)ii, note that there are no changes in 
any of the terms involved in the definitions of u b and 
lb, so ub(s)=ub(s')  and Ib(s)=Ib(s'). [] 

Theorem 5.5. All timed behaviors of(A,  b) are in P. 

Proof. As for Theorem 5.3, using Lemma 5.4. [] 
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5.2.4 Discussion 

For this example, the bounds we have proved are attain- 
able. That is, there is a timed execution of (A, b) for 
which the time until a D O N E  event occurs is exactly 
11, and another timed execution for which the time until 

/ 

D O N E  event occurs is exactly (2 +1 t2 I~ t2. a 
[11/] 

For example, the bound 11 is realized by the timed 
execution that has the timed schedule (SET, lO, (DONE, 

( +[ 12 II 12 is realized bY the timed execu- l,). Thebound 2 [ l l ] ]  

tion having the timed schedule 

(INC, al2), (INC, 2a l2) , . . . , ( INC,[~ l]aI2  ), (SET, 12), 

(DEC, 212), (DEC, 3 lz) .... , 

1Al2l 
where a= 'I l l  J" This timed execution involves the S E T  

happening at the latest possible time, 12. The maximum 
possible number of I N C  events occur prior to the SET, 
and the last of these occurs at the same time as the 
SET. The DEC events occur as late as possible. 

6 Conclusions and further work 

In this paper, we have described a way to carry out 
assertional proofs for timing properties of algorithms 
that have timing assumptions. The method involves ex- 
pressing an algorithm and its timing assumptions as a 
timed automaton (A, b), and expressing the timing re- 
quirements in terms of a second timed automaton (A', b'). 
Then we convert the timed automata (A, b) and (A', b') 
into ordinary (not timed) I/O automata, time(A, b) and 
time(A', b') respectively, using a general construction that 
builds predictive timing information into the automaton 
state. Then the goal of proving timing requirements can 
be met by demonstrating the existence of a certain type 
of mapping called a "strong possibilities mapping" from 
the "assumptions automaton"  time(A, b) to the "require- 
ments automaton"  time(A', b'). One way of demonstrat- 
ing the existence of such a mapping is based on a collec- 
tion of progress functions, each designed to measure pro- 
gress toward the fulfillment of one of the upper or lower 
bound requirements expressed by (A', b'). These progress 
functions generalize those used elsewhere for program 
verification in that they are real-valued rather than dis- 
crete, and that they are used for lower as well as upper 
bounds. 

We have applied this method in this paper to analyze 
the timing properties of two systems - a simple re- 
source-granting system and a race system involving two 
processes. The analyses of these two examples are 
straightforward; they consist of case analyses based di- 
rectly on the conditions specified in the definition of a 
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progress function collection. The style and level of diffi- 
culty of these proofs is exactly the same as that of typical 
inductive proofs of invariant assertions. As do other 
proofs of that type, these remove the need for complex 
dynamic arguments about the behavior of the algorithm, 
replacing them with simple checks involving individual 
algorithm steps. Because of the need to check many 
cases, the proofs are not extremely short (the proof  for 
each of our examples is about  two pages long); however, 
this style should scale very well because of the local na- 
ture of the checks performed. Also, as for other asser- 
tional proofs, it seems likely that proofs using this meth- 
od can someday be checked using machine-verification 
technology. 

We do not have an easy method for finding an appro- 
priate progress function. Just as for finding invariant 
assertions, finding the right progress function is a crea- 
tive task, which depends on an understanding of how 
the system operates. There are alternative methods 
which do not require human intervention, e.g., those 
based on model-checking [-4, 19]. However, these meth- 
ods apply only to finite-state algorithms, and are known 
to be expensive or even undecidable [4]. Moreover, these 
methods do not give the benefit of the insights provided 
by a good invariant or progress function. 

The two examples in this paper are not the only exam- 
ples to which this method has been applied. In a project 
carried out for Digital Equipment Corporation, several 
timing properties (including self-stabilization properties) 
were proved for a new link state packet distribution pro- 
tocol [20]. Some of the timing properties proved were 
unexpected, and were discovered in the course of apply- 
ing the methods of this paper. Although it is possible 
to provide some informal intuitions for these properties 
using ad hoc arguments, we do not know a better way 
than the method of this paper to provide complete and 
convincing proofs that these properties hold. We have 
found that progress functions provide a natural and intu- 
itive way of thinking about the reasons the timing prop- 
erties hold, as well as a basis for formal correctness argu- 
ments. Based on the examples that have been tried so 
far, we believe that the method may be practical for 
use in verifying timing properties for real timing-based 
algorithms. It remains to test this hypothesis by applying 
the technique to more examples; good sources for exam- 
ples are the areas of real-time computing and communi- 
cation. 

In some of the proofs we give for the DEC protocol, 
we do not give bounds that are as tight as those we 
have given for the simple examples in this paper. This 
is not surprising: in general, for complex algorithms, it 
is often much easier to prove bounds that are somewhat 
loose than to prove bounds that are actually attainable 
by some execution. The method of this paper supports 
the proof  of loose bounds just as easily as that of tight 
bounds. 

A good technique for proving timing properties of 
systems with timing assumptions should be rigorous, 
simple and general. Our technique is certainly rigorous, 
and we think it is also reasonably simple. We consider 
its generality. Although it seems to us that timed au- 

tomata are probably sufficiently general to describe typi- 
cal implementations, they may not be sufficiently general 
to describe all interesting requirements specifications. 
For  example, as currently defined, they cannot specify 
bounds for reaching certain states, but only for the oc- 
currence of certain actions. In [29], the authors express 
a similar doubt, and address it by generalizing the notion 
of a boundmap to include certain more general timing 
conditions. While we could make a similar extension 
here (indeed, we do make such an extension in an earlier 
version of this paper [23]), the extra notation required 
for doing so seems to obscure the essentially simple ideas 
of our method. Moreover, there is no guarantee that 
the resulting extension will yet be sufficiently expressive. 
(Although we state a completeness result in [23] for the 
generalized specifications, this completeness result is rel- 
ative to the restriction, not used in this paper, that the 
underlying automata A and A' are identical.) We have 
chosen to present our method here using a model that 
is possibly somewhat too restrictive, and to leave the 
appropriate generalization for future work. 

It remains to relate our method to other methods 
for proving timing properties. One method we have con- 
sidered is the one used for several algorithms in [24], 
based on bounding the time for the occurrence of inter- 
mediate milestones. Such a proof can be expressed by 
a series of proofs in our method, one for each intermedi- 
ate milestone. A good example to consider is the tourna- 
ment algorithm for mutual exclusion in [35]. The proof 
sketched in [24] for this algorithm uses recurrence in- 
equalities to bound the time until a given process wins 
at various levels of the tournament  tree. It should be 
possible to recast this proof  as a sequence of proofs, 
one for each level of the tree, where the proof  for each 
level of the tree is a generic argument based on a single 
use of the main recurrence inequality. Although we have 
not worked out this example in detail, we have done 
a complete proof  [-22, 23] of a simpler example motivated 
by this one (based on a line rather than a tree). In princi- 
ple, it seems that the ideas should extend to the more 
complex example, but this remains to be done. Some 
other techniques to relate to this one include those based 
on bounded-time temporal logic (e.g., [-3, 7, 11, 12]). Also, 
it remains to see how proofs using our techniques can 
be applied in a modular way for the verification of timing 
properties of large and complex timing-based systems. 
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