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Abstract
In this paper we study the problem of developing efficient distributed algorithms for dense wire-
less networks. For many problems in this setting, fast solutions must leverage the reality that
radio signals fade with distance, which can be exploited to enable concurrent communication
among multiple sender/receiver pairs. To simplify the development of these algorithms we de-
scribe a new communication abstraction called FadingMAC which exposes the benefits of this
concurrent communication, but also hides the details of the underlying low-level radio signal
behavior. This approach splits efforts between those who develop useful algorithms that run on
the abstraction, and those who implement the abstraction in concrete low-level wireless models,
or on real hardware.

After defining FadingMAC, we describe and analyze an efficient implementation of the ab-
straction in a standard low-level SINR-style network model. We then describe solutions to the
following problems that run on the abstraction: max, min, sum and mean computed over input
values; process renaming; consensus and leader election; and optimal packet scheduling. Combin-
ing our abstraction implementation with these applications that run on the abstraction, we obtain
near optimal solutions to these problems in our low-level SINR model—significantly advancing
the known results for distributed algorithms in this setting. Of equal importance to these con-
crete bounds, however, is the general idea advanced by this paper: as wireless networks become
more dense, both theoreticians and practitioners must explore new communication abstractions
that can help tame this density.
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1 Introduction

In this paper we present and study a communication abstraction designed to facilitate
efficient computation in dense wireless networks. In addition to defining the abstraction,
we describe and analyze an implementation on a low-level SINR-style network model, and
provide multiple applications that leverage it to efficiently solve standard network problems.
Problem: Contention Management in Dense Wireless Networks. In wireless net-
works devices share channels. A common approach to avoiding contention among multiple
transmitters on the same channel is to have devices compete to gain exclusive use of the
channel. This strategy, for example, is deployed by both the 802.11 and Zigbee standards
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to prevent message loss due to collision. It is also implicitly enforced in the graph-based
models often used by theoreticians to study distributed algorithms for wireless networks (e.g.,
the radio network model [7, 1] or dual graph model [16, 5]), as these models assume any
contention leads to message loss at the receiver.

This exclusive-use strategy is effective for many existing networking scenarios. It is not
well suited, however, for dense wireless networks in which hundreds, thousands, or even
tens of thousands of wireless devices might be located in a small area. Dense networks
have become increasingly relevant due to emerging trends such as the Internet-of-Things, in
which networking capability is embedded into a wide variety of objects. The density of these
networks render exclusive-use contention management strategies too inefficient for many
problems, as the time required for each device to use the channel in isolation is prohibitive.
Solution: Abstractions that Leverage Spatial Reuse. One way to enable efficient
computation in dense wireless networks is to take advantage of the reality that radio
signals fade with distance. This property makes it possible to support a large amount of
concurrent communication among closely packed devices—a strategy often called spatial
reuse.1 Leveraging spatial reuse can allow network applications to solve certain problems
much faster than relying on an exclusive-use strategy (c.f., our below results summary).

Developing algorithms that leverage spatial reuse requires low-level wireless network
models that directly model radio signal fading and determine receive behavior using a signal to
interference and noise ratio (SINR) equation. These models have received extensive attention
from specialists in the algorithms community (e.g., [8, 14, 17, 13, 12, 11, 4, 19, 20, 18]), but
they are also complex, and arguably demand too high a barrier of entry for those interested
in dense networks, but not necessarily willing to master the intricacies of affectance formulas
and interference-bounded annuli. These difficulties impede efforts to develop useful and
efficient applications that are well suited for dense networks.

We argue that a solution to these problem is to develop communication abstractions
that present the network application developer an intuitive interface that exposes the
concurrent communication benefits of spatial reuse, while hiding the low-level details of
the underlying radio signal behavior. This approach splits efforts between those developing
network applications that run on the abstraction, and those who are implementing the
abstraction in low-level models, and, eventually, on real hardware. By doing so it simplifies
the study of efficient distributed algorithms in SINR models, and provides feedback to
practitioners about how best to innovate network stacks to accommodate the continued
growth of wireless device density.
The FadingMAC Abstraction. In this paper we propose one such communication
abstraction, which we call FadingMAC. This abstraction organizes the wireless devices (called
processes in the following) into a labelled tree structure. It then moves through the levels of
the resulting tree: at each level, processes assigned to tree nodes at that level can use the
abstraction to communicate with the processes assigned to their parent and/or child nodes
in the tree. This abstraction allows processes to aggregate and disseminate information in
time proportional to the tree height. Therefore, if the tree has a small height compared to
the network size, it enables certain computations to complete faster than what is possible
with exclusive-use strategies.

1 The basic mechanism behind spatial reuse is the following: If a pair of wireless devices u and v are close
together compared to other nearby transmitters in the network, then the strength of a radio signal sent
from u and received at v might be strong enough compared to interference from other slightly more
distant transmitters to allow v to successfully receive u’s message.
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Our Results. We begin by describing and analyzing an implementation of the FadingMAC
abstraction using a standard low-level SINR wireless network model. In the following, let
n be the number of processes in the system and R be the ratio between the longest and
shortest link in the low-level model (in nearly all realistic scenarios R is at most polynomial
in n). Our FadingMAC implementation guarantees the following with high probability in n:
its setup mode requires O(logR · logn · log∗ n) rounds; the height of the resulting tree is in
O(logR); and it requires only O(1) rounds to handle communication at each tree level.

We then turn our attention to applications that run on the FadingMAC abstraction. We
begin by adapting a classical parallel prefix scan strategy to our setting, and then use this
scan as a key subroutine to implement solutions to the following problems, selected due to
their relevance to dense wireless networking scenarios:

max, min, sum, and mean calculated over input values;
renaming processes with unique labels from 1 to n (or renaming any subset of k processes
with unique labels from 1 to k);
leader election and consensus among arbitrary subsets of participating processes; and
optimal packet scheduling (each process has a request for a certain number of rounds
it needs to send information, and the goal is to agree on a schedule that assigns each
process exactly their requested number of rounds).

Our solutions require visits to at most O(h) tree levels by the abstraction, where h is
the tree height. Combined with our abstraction implementation, and the assumption that R
is polynomial in n, we obtain new distributed algorithms for these problems in a low-level
SINR model that require a setup cost of O(log2 n · log∗ n) rounds and only O(logn) rounds
per instance. Given that Ω(logn) rounds is a fundamental speed limit for solving non-trivial
problems with high probability in the SINR setting (see the discussion of [9] in Section 2),
these solutions are near optimal, and exponentially faster than the Ω(n) rounds required for
solving these types of problems with exclusive-use strategies.

To summarize, our results provide three strong contributions to the study of dense wireless
networks. First, our applications combined with our abstraction implementation provide new
(and nearly optimal) solutions to multiple useful distributed algorithm problems in the SINR
model. Second, our abstraction simplifies the future development of efficient distributed
algorithms for the complicated SINR setting. Third, we validate the general argument that
in both theory and practice, the right abstractions can help tame the increasingly important
setting of dense networks.

2 Related Work

In a 2006 paper [19], Moscibroda and Wattenhofer described and analyzed a centralized
algorithm that can schedule a connected structure of links in an SINR model in O(log4 n)
rounds. They note that in many standard models (such as the exclusive-use models cited above
as motivation) this problem requires Ω(n) rounds—underscoring the importance of spatial
reuse for efficient computation in dense networks. A subsequent series of papers [20, 18, 12]
presented refined centralized scheduling algorithms, culminating in a O(logn)-round solution
due to Halldórsson and Mitra [12]. These same authors subsequently published a distributed
version of their algorithm [11]. By comparison, our FadingMAC implementation solves this
same scheduling problem in O(logR · logn · log∗ n) rounds. These results, however, are not
directly comparable as [20, 18, 12, 11] all assume that devices can adjust their transmission
power, whereas we assume all devices use a fixed uniform power.
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More recent results [14, 17] study efficient data aggregation in the SINR model with
distributed algorithms and fixed uniform power. Hobbs et al. [14] describe a deterministic
algorithm that aggregates data in a multihop network2 in O(D + ∆ · logn) rounds, where
D is the diameter of the connectivity graph and ∆ is its maximum degree (see the below
footnote about connectivity graphs). Notice, in our single hop setting D = n. In addition,
this algorithm, unlike ours, requires carrier sensing. Perhaps closer is the work of Li et al. [17],
which shows how to aggregate data in a single hop setting in O(logR) rounds. Their solution,
however, requires that devices are provided their position and neighbor count in advance—
enabling efficient strategies built on fixed geographic regions. Our FadingMAC solution, by
contrast, does not assume this information is known.

Fineman et al. [9] prove a Ω(logn) lower bound on symmetry breaking with high prob-
ability in the same SINR model we study. A closer inspection of this bound reveals it
holds for basic partition detection, and therefore applies to the applications we study in
Section 7—establishing their time complexities as optimal or near optimal (depending on
assumptions about R and whether you include the one-time abstraction setup cost).

Our implementation of the FadingMAC abstraction adapts the reliable subgraph simula-
tion strategy introduced to solve distributed one-to-all broadcast in [8], while our applications
leverage a distributed prefix scan subroutine that adapts strategies from classical parallel
solutions to this problem (see [2] and our discussion in Section 7). We previously explored
the idea of mediating between low-level wireless models and high-level applications with
our earlier work on the Abstract MAC Layer [15]. The Abstract MAC Layer is intended to
abstract away the details of contention management (primarily) in graph-based models.

3 System Model

We assume a synchronous network with n > 1 computational processes. Let V be the set
of processes. We assume each process is distinguished by a comparable unique ID. Time
proceeds in synchronous rounds that we label 1, 2, 3, ..., and all processes start in round 1.

We assume the processes are connected by some underlying wireless network over which
they can attempt to broadcast and receive messages. We assume this network is single hop,
which we define in a general way here to mean that if a process i ∈ V transmits alone in a
given round, all nodes receive i’s message during this round. We assume message sizes are
bounded to contain at most O(polylog(n)) unique IDs and/or bits.

In this paper, we present and study a communication abstraction called FadingMAC
(defined below), that mediates between high-level network algorithms and a low-level wireless
network model. Accordingly, we assume each computational process implements two distinct
components: (1) a FadingMAC abstraction implementation that interacts with other processes
through the low-level wireless network model; and (2) a high-level algorithm that interacts
with other processes only through the interface provided by its local copy of the abstraction.
We sometimes say the high-level algorithm runs on the abstraction.

4 The FadingMAC Abstraction

The FadingMAC abstraction organizes the processes into a rooted tree structure. Each
process is potentially assigned to multiple nodes in the tree. The abstraction then proceeds

2 In the SINR setting, single hop and multihop refer to the connectivity graph that results from connecting
with an edge any process pair that are sufficiently close to communicate in the absence of interference.
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in phases, with each phase dedicated to a level in the tree. A process assigned to a node u in
the level corresponding to the current phase can use a children-to-parent communication
primitive, provided by the abstraction, to communicate reliably with the process assigned
to u’s parent (assuming u is not the root). This process can also use a parent-to-children
communication primitive to reliably communicate with the processes assigned to u’s children
(if any). The order in which the abstraction’s phases visit levels in the underlying tree are an
abstraction parameter. That is, different uses of FadingMAC can use different patterns of
moving through the tree.

We begin below by formalizing the type of tree the abstraction uses to organize the
nodes. We then detail the communication primitives provided by the abstraction, and present
the parameters that describe a particular implementation’s performance and correctness
guarantees.
The Tournament Tree. The abstraction begins an execution in a setup mode, during
which it organizes the processes into a tournament tree defined with respect to V (see below).
Formally, this means that by the end of the setup mode, the abstraction outputs to each
process information about its assigned nodes in the tree. When considered collectively, this
output information defines a unique tree T .

In more detail, a tournament tree defined over V is a rooted tree that satisfies the
following properties:

1. Each node in the tree is labelled with a process from V .3

2. There are n leaves labelled with the n unique processes from V .
3. All leaf nodes are at the same level in the tree.
4. Each non-leaf node in the tree is labeled with the label of one of its children.

We call a labeled tree of the type a tournament tree because the label of each non-leaf
node can be interpreted as the winner of a competition among the processes labeling its
children. Fix a tournament tree T . As is standard for rooted trees, we label the tree’s levels
starting with 0 for the root level and increasing the level number as we move downward
toward the leaves. We define h(T ) to describe its height (i.e., the largest level in the tree).
For a given level ` ∈ [0, h(T )], we define V (T, `) to be the processes labeling nodes at `.

During the setup mode, the FadingMAC abstraction will identify a single tournament
tree T defined with respect to V and output to each process i ∈ V the following three pieces
of information regarding the nodes it labels in T : (1) the smallest level in T that includes
i, which we denote `(T, i) = min{` ∈ [0, h(T )] : i ∈ V (T, `)}; (2) if `(T, i) > 0, i’s parent
in level `(T, i)− 1 (otherwise it receives some default value ⊥); (3) the height h(T ) of the
tree. Notice, the collective knowledge provided to the processes about T by the abstraction
uniquely specifies T .
The Communication Primitives. After the setup mode completes the abstraction informs
all processes that it is shifting into communication mode. While in communication mode,
the abstraction divides rounds into phases. Each phase is dedicated to a single level from the
underlying tournament tree T organized during the setup mode. The abstraction notifies
all processes when each phase begins as well as the phase’s corresponding level in T . The
pattern the abstraction follows in visiting the tree levels is fixed as an abstraction parameter.
That is, different applications can instantiate the abstraction with different patterns for

3 Technically, the node is labelled with the unique ID corresponding to process i, but for notational
simplicity we use i and i’s ID interchangeably.)
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visiting the tree levels. (The applications we study later in this paper, for example, fix a
pattern that sweeps from the leaves to the root and then back down again.)

During a phase dedicated to tree level `, every process in V (T, `) is provided the op-
portunity to communicate with processes assigned to nearby nodes in T using a pair of
communication primitives provided by FadingMAC.

In more detail, the abstraction provides both a parent-to-children and children-to-parent
broadcast primitive. During the first round of a phase dedicated to level `, each process
i ∈ V (T, `) can provide as input to the abstraction a message m1 for the parent-to-children
primitive and a message m2 for the children-to-parent primitive. By the definition of a
tournament tree, if i ∈ V (T, `), then this process is assigned to exactly one node u at this
level of T . During the subsequent rounds of the phase the abstraction attempts to deliver
m1 to the process assigned to u’s parent in T (if u is the root or process i is assigned to u’s
parent as well, then it will receive its own message back.) It also attempts to deliver m2 to
the processes assigned to u’s children in T (if any).
Abstraction Parameters. The guarantees of a given implementation of the FadingMAC
abstraction is characterized by the following parameters:

tsetup: the number of rounds required to complete the setup mode.
tphase: the number of rounds required for each phase during the communication mode.
hmax: the maximum height of the tournament tree.

To accommodate probabilistic implementations of the abstraction, we include a failure
probability, pfail, describing the maximum probability that the abstraction fails to satisfy
its specified behavior.

5 The Low-Level SINR Wireless Model

Here we define a low-level wireless model that captures the fading behavior of radio signals.
We call this “the SINR” model, but note that there are many related variations on this same
style of model (the variant defined below is a generalized version of the model defined in [8]).

The SINR model is motivated by the premise that transmissions are successfully received
when the signal arriving at a given receiver is sufficiently strong compared to the sum of
interference from other transmissions. The strength of the transmissions is modeled as
inversely proportional to a polynomial of the distance transmitted. The idea that signals
fade with distance in this manner and interference sums at the receiver match experimental
investigations (c.f., [21, 6]). This is the primary reason why the SINR model is viewed as
one of the most realistic analytic models currently available for studying low-level wireless
algorithms. We note, however, that earlier studies of the SINR model tended to place the
devices in the plane and define “distance” to be Euclidean. This assumption weakens the
realism of the model as real environments can distort and attenuate signals in complex ways.
To accommodate this reality, we replace Euclidean distances in our below model definition
with a more general metric that captures more diverse signal environments.

We now formalize the model definition. In doing so, we mostly follow notation from
[8]. We assume that all processes transmit with the same power, which for simplicity we
normalize as 1. The strength of a transmission from process u as received by a process v is
1/d(u, v)α, where d(u, v) is the distance from u to v and α is a constant. The transmission
is successful if v is listening and the SINR formula holds:

SINR(u, v, I) := 1/d(u, v)α

N +
∑
w∈I 1/d(w, v)α ≥ β ,
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where I is the set of other concurrent transmitters, β is a positive constant dependent on the
hardware and coding schemes used, and N quantifies the ambient noise.

We assume that the distance metric satisfies the following doubling property: There are
constants λ and d, with λ > 0 and 0 < d < α, such that if U is a set of processes of mutual
distance at least dmin, and all processes in U are within a distance x · dmin from a given
process, then |U | ≤ λ · xd. For the Euclidean plane, this holds with d = 2. We use this
relaxed definition to account for the various effects of signal propagation.

Let rs denote the maximum distance at which successful transmission is possible, i.e.,
1/rαs = βN , or rs = (βN)−1/α. Let R denote the ratio between the largest and smallest
process distance in the network.

We assume that processes have no collision detection or carrier sensing capability, and no
advance knowledge of their distances to other processes. The processes know a polynomial
upper bound on the standard deployment parameters: the network size n = |V | and the
distance diversity R. We also assume they know reasonable approximations of the network
parameters α, β, n, and N .

6 Implementing FadingMAC in the SINR Model

We now describe and analyze a randomized distributed algorithm that implements the
FadingMAC abstraction defined in Section 3 in the SINR model defined in Section 5. Our
optimized version of this algorithm, presented in Section 6.3, implements the abstraction
with tsetup = O(logR · logn · log∗ n), tphase = O(1), hmax = O(logR), and pfail < n−c, for
a constant c > 1.

6.1 SINR-Induced Graphs
Our construction for each given level ` is based on constructing a bounded-degree graph H`.
To distinguish, we shall refer to the nodes of the graph as vertices, reserving nodes for nodes
of the tournament tree, and noting that computation on behalf of both types of objects is
executed by processes. To construct H`, we apply the concept of SINR-induced graphs as
defined by Daum et al. in [8]. Let U ⊆ V be a subset of the vertices, let p be a transmission
probability, and let µ ∈ (0, p) ∩ Ω(1) be a reliability parameter. We define the SINR-induced
graph Hµ

p [U ] with vertex set U and edge set Eµp [U ] as follows. Assume that each vertex in
U transmits with probability p and each vertex in V \ U transmits with probability 0. For
u, v ∈ U , we have {u, v} ∈ Eµp [U ] if and only if u receives a message from v with probability
at least µ and also v receives a message from u with probability at least µ. Note that all
distances between vertices/nodes are within the metric space, not in terms of path lengths in
the graph/tree.

Distributed Computation of SINR-Induced Graphs. Given a set of vertices U ⊆ V
and parameters p and µ, the graph Hµ

p [U ] cannot be computed exactly in a distributed way.
However, it is possible to efficiently compute a close approximation of Hµ

p [U ]. In [8], an
ε-close approximation of Hµ

p [U ] is defined as a graph H̃µ
p [U ] = (U, Ẽµp [U ]) for which:

Eµp [U ] ⊆ Ẽµp [U ] ⊆ E(1−ε)µ
p [U ]

It is shown in [8] that an ε-close approximation H̃µ
p [U ] of Hµ

p [U ] can be constructed as follows
in 2T rounds, where T = c lnn

ε2µ for a sufficiently large constant c > 0. In all 2T rounds, all
vertices in U transmit with probability p. In the first T rounds, each vertex u ∈ U compiles
a list of all vertices of which u receives a message in at least

(
1− ε

2
)
µT of the T rounds. In
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the second T rounds, those lists are exchanged and an edge {u, v} is added to Ẽµp [U ] if and
only if u is in v’s list and v is in u’s list. It is shown in Lemma 3 in [8] that this algorithm
computes an ε-close approximation of Hµ

p [U ], w.h.p. We note that because in each round,
a vertex can only receive a message from a single vertex, the maximum degree of H̃µ

p [U ] is
bounded by 1/µ = O(1).

We can also show that Hµ
p [U ] contains all relatively short edges. We first need the

following lemma, which is actually somewhat surprising, even though its proof (in the
appendix) deploys relatively standard techniques.

I Lemma 1. Given a constant ζ ≥ 1, there exists a constant ν = νζ > 0 such that the
following holds. If U ⊆ V is a subset of minimum pairwise distance dmin and u, v ∈ U are
vertices of distance at most d(u, v) ≤ ζ · dmin, then whenever v transmits while other vertices
within distance ν ·dmin of u are silent, u is guaranteed to successfully receive the transmission
of v.

We now extend Lemma 4 in [8], to show that Hµ
p [U ] contains all short edges.

I Lemma 2. For all p ∈ (0, 1/2] and every constant η > 1, there exists µ ∈ (0, p) such that
∀U ⊆ V with minimum pairwise distance dmin, the graph Hµ

p [U ] (and thus also the graph
H̃µ
p [U ]) contains all edges between vertices u, v ∈ U with d(u, v) ≤ η · dmin.

Proof. Let ν be the constant for which Lemma 1 holds for ζ = η. Let u, v ∈ U be any pair of
vertices with d(u, v) ≤ η · dmin. Let S be the set of vertices in V within distance ν · dmin of u,
excluding v. By the doubling property of the metric, |S| ≤ λ ·νd. By Lemma 1, u receives the
message from v if v transmits while the vertices in S are silent. The probability of the former
is p while the probability of the latter is (1− p)|S|. Since these events are independent, it
follows that u successfully receives a message from v with probability p(1−p)|S| ≥ p(1−p)λ·νd .
By a symmetric argument, the same holds for the probability that v successfully receives a
message from u. Hence, for µ ≥ p2(1− p)2λ·νd , {u, v} satisfies the condition of being an edge
in Hµ

p . J

6.2 Construction and Properties of the Basic Tournament Tree
We now first describe the construction of a tournament tree that supports basic communication
primitives. In the next subsection, we extend this construction and show how to get a tree
and a constant-length TDMA schedule for implementing the communication primitives on
each level. For the construction of the tournament tree T , we fix a transmission probability p
and a (constant) parameter µ > 0 such that the conditions of Lemma 2 are satisfied for η = 2
and the graph Hµ

p contains all edges of length at most 2dmin for every U ⊆ V .4 Further,
for the distributed construction of an ε-close approximation H̃µ

p [U ] of Hµ
p [U ] for a vertex

set U , we fix ε := 1/10 throughout the construction. We construct the tournament tree T
bottom-up and level by level. That is, we start with level ` = h(T ) connecting the leaf nodes
to their parents and then move up the tree until we reach level 1 where we select a root node
r ∈ V (T, 1) and connect all nodes V (T, 1) to the root node r. The construction for level `
returns the set of nodes V (T, ` − 1) that proceed to the next level and it fixes the parent
nodes in level `− 1 for all nodes in V (T, `) \ V (T, `− 1).

In the following, we describe the construction for a given level ` ∈ {1, . . . , h(T )} (recall
that V (T, h(T )) = V ):

4 We can for example fix p = 1/2 and choose µ > 0 as a sufficiently small constant.
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1. Compute the graph H` := H̃µ
p [V (T, `)].

2. Compute a maximal independent set (MIS) I of H` and set V (T, `− 1) := I

3. Each node u ∈ V (T, `)\V (T, `−1) chooses its parent v arbitrarily among its H`-neighbors
in V (T, `− 1).

The following theorem summarizes the basic properties of the resulting tournament tree T .

I Theorem 3. With high probability, the constructed tournament tree T has the following
properties:

The height of the tree is h(T ) = O(logR).
Suppose all nodes in V (T, `) transmit with probability p and the other nodes are silent in a
given round r and level ` ∈ {1, . . . , h(T )}. Then, for every node u ∈ V (T, `), u receives a
message from its parent in round r with constant probability, and the parent also receives
a message from u in round r with constant probability.
The tree T can be constructed in time O(logR · logn · log∗ n) in the SINR model.

Proof. We first prove that the height of the constructed tree T is O(logR), w.h.p. Let d(`)
min

be the minimum distance between vertices in V (T, `). By Lemma 2 and the choice of the
parameters p and µ, the graph H` contains an edge for every two vertices u, v ∈ V (T, `)
at distance at most min

{
2d(`)

min, rs

}
. Because V (T, ` − 1) is chosen as an MIS of the

graph H`, no two verticess in V (T, ` − 1) can be neighbors in H` and we thus get that
d

(`−1)
min > min

{
2d(`)

min, rs

}
. Hence as long as d(`)

min ≤ rs/2, we have d(`−1)
min > 2d(`)

min. As soon as

d
(`)
min > rs/2, by Lemma 2, H` is a complete graph and thus we reached the last level (` = 1).

The claim that h(T ) = O(logR) now follows because from the definition of R, the minimum
distance between vertices in V is at least rs/R.

The second property follows directly from the definition of the edges of the graph Hµ
p and

the fact that parents are neighbors in Hµ
p . In turn, it implies that every vertex in V (T, `)

successfully receives a message from each of its neighbors in H` within O(logn) rounds, w.h.p.
Hence, a single communication round in a standard message passing model on H` can be
simulated in O(logn) rounds in the SINR model. Because H` has bounded degree, an MIS
of H` can be computed in O(log∗ n) rounds in a standard message passing model on H` [10]
and the also the third claim of the lemma follows. J

6.3 A Tournament Tree with an Efficient TDMA Schedule
We next show how to adapt and extend the construction of the previous subsection to obtain
a tournament tree with the same properties as in Theorem 3, but now with the additional
assumption of a constant-length TDMA schedule for implementing the communication
primitives on each level.

As in Section 6.2, the tree is computed in a bottom-up fashion and we describe the
construction of a single level ` in detail. We first give an outline of the construction. We fix
the parameters p, µ, and ε as before and we again construct the graph H` = H̃µ

p [V (T, `)]. As
a next step, we compute a TDMA schedule of length L = O(1) for communicating on graph
H`. That is, we assign a color φ`(v) ∈ {1, . . . , L} to each vertex v ∈ V (T, `). We then define
an L-round schedule S` for level ` such that exactly the nodes v ∈ V (T, `) with φ`(v) = i

transmit in round i. We say that an edge {u, v} ∈ E[H`] is successful w.r.t. schedule S` if
in round φ`(u) of the schedule S`, v receives a message from u and in round φ`(v) of S`, u
receives a message from v. We define H ′` as the subgraph of H` consisting of all edges that
are successful w.r.t. S`. The level ` of the tree T is then constructed in the same way as
before, but by using graph H ′` instead of graph H`.
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We will next show that the coloring φ` can be constructed such that the resulting
subgraph H ′` of H` still contains all edges of length min

{
2d(`)

min, rs

}
and as a consequence,

the constructed tree still satisfies the properties of Theorem 3.
In order to construct the coloring φ`, we consider an SINR-induced graph Hµ′

p′ [V (T, `)]
such that Hµ′

p′ [V (T, `)] contains all edges between vertices in V (T, `) of distance at most
η · d(`)

min, for a sufficiently large constant η > 2. Note that by Lemma 2, we can choose
constants p′ and µ′ such that the graph Hµ′

p′ [V (T, `)] satisfies this. We choose η as the value
of ν obtained from applying Lemma 1 with ζ = 2. The coloring φ` will be computed as a
standard vertex coloring of an ε-close approximation of the SINR-induced graph Hµ′

p′ [V (T, `)].
As in the basic construction, we construct the tree T in a bottom-up way, starting at

level ` = h(T ) where the leaf nodes are connected to their parents and ending at level 1
where a root node r ∈ V (T, 1) selected. We again describe the construction for a given
level ` ∈ {1, . . . , h(T )}. In the following description, ∆(H+

` ) denotes the maximum degree of
graph H+

` .

1. Compute the graph H+
` := H̃µ′

p′ [V (T, `)].
2. Compute a (∆(H+

` ) + 1)-vertex coloring φ` of the graph H+
`

3. Compute the graph H` := H̃µ
p [V (T, `)].

4. Compute the graph H ′` consisting of all the edges of H` that are successful w.r.t. the
TDMA schedule induced by the coloring φ`.

5. Compute a maximal independent set (MIS) I of H ′` and set V (T, `− 1) := I

6. Each node u ∈ V (T, `)\V (T, `−1) chooses its parent v arbitrarily among the H ′`-neighbors
in V (T, `− 1).

Analogously to Theorem 3, the following theorem summarizes the properties of the constructed
extended tournament tree T . The proof is deferred to the appendix.

I Theorem 4. With high probability, the constructed tournament tree T has the following
properties:

The height of the tree is h(T ) = O(logR).
For every ` ∈ {1, . . . , h(T )}, when using the TDMA schedule induced by the coloring φ`
of V (T, `), (bidirectional) communication between every node u ∈ V (T, `) and its parent
in V (T, `− 1) can be carried out in O(1) rounds.
The tree T can be constructed in time O(logR · logn · log∗ n) in the SINR model.

7 High-Level Algorithms

Here we describe and analyze several useful high-level algorithms that run on the FadingMAC
abstraction. The key subroutine used for these applications is a distributed prefix scan over
the processes’ input values. We begin below by describing and analyzing an algorithm that
computes such a scan using a small number of FadingMAC phases, before moving on to
describe the algorithms that leverage these scans.

7.1 Distributed Prefix Scans Using FadingMAC
During its setup mode, the FadingMAC abstraction returns each process information about
the nodes it labels in a tournament tree T . We can transform T into an ordered tree by using
a comparison operator defined over process labels to order the siblings of each parent from
left to right (i.e., the operator that compares the process unique ids). This ordered version
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of T then allows us to order the n processes in the network from 1 to n by considering the
leaf labels from left to right.

In the following, in a slight abuse of notation, we use process i, for i ∈ [1, n], to indicate
the process ranked in position i in this ordering. Assume each process i has an input value ai
from some value domain S that includes an identity element ε. Let ⊕ be a binary associative
operator defined over S. (This combination of S and ⊕ defines a monoid.) The goal of a
distributed prefix scan for a given monoid and input value assignment in our model is for
each process i to learn: si = a1 ⊕ a2 ⊕ ...⊕ ai.

We emphasize that prefix scans (also called prefix sums) are a core primitive in algorithm
design, as they provide a building block for efficiently solving a variety of different problems.
They are therefore studied in multiple models. In an exclusive-use radio network model it is
straightforward to see that Ω(n) rounds are required (as each process needs its own round
to communicate its value). Below we describe and analyze an algorithm that leverages the
FadingMAC abstraction to calculate a prefix scan in 2h(T ) communication mode phases. We
emphasize that for the implementation of FadingMAC provided in this paper, this translates
to O(logn) rounds for most networks.5
Strategy and Comparison to Parallel Prefix Scans. Our distributed strategy adapts
general ideas from the classical parallel prefix scan algorithms; c.f., [3]. Similar to our setup,
these parallel algorithms tend to also consider an ordered tree with one input value assigned
to each of the n leaves. They move up the tree level by level, starting from the leaves and
heading toward the root, at each node u summing the values of u’s children. The result is
that each node u learns the sum of the values in the leaves of the subtree rooted at u. The
algorithm then moves down the tree level by level, with each internal node u informing each
child the sum of its siblings to its left in the tree ordering.

Our distributed prefix scan algorithm implements this same basic strategy. To do so,
however, it must overcome two difficulties that separate our model from parallel models: (1)
in the parallel setting the tree used is fixed by the algorithm and known to all processes,
while in our model the tree is returned by the abstraction and each process is only provided
partial information about the tree’s structure; (2) in the parallel setting a different process
can be assigned to each node in the tree, while in our model each of the n processes might
be responsible for multiple tree nodes on the path from its leaf to the root, complicating the
algorithm description.
Algorithm Preliminaries. The algorithm described below uses the FadingMAC abstraction
parameterized to visit the tree levels in order starting from the leaves and heading up to the
root (called the up sweep in the following), and then visiting the tree levels in order starting
from the root and heading back down to the leaves (called the down sweep in the following).
Only a single up sweep followed by a single down sweep are required for our algorithm to
compute it prefix scan.

Fix some node u in the ordered tournament tree. Let u.left indicate the rank of the
leftmost leaf in this interval, and r.right indicate the rank of the rightmost leaf. By definition,
r.left ≤ r.right, but it is possible that u.left = r.right. We define the sum of the subtree rooted
at u, denoted s(u), to be the sum (defined with respect to the ⊕ operator) of the input values
associated with the leaves of u’s subtree. Formally: s(u) = au.left ⊕ au.left+1 ⊕ ...⊕ au.right.
Algorithm Description. We now describe our algorithm which computes a distributed
prefix scan using the FadingMAC abstraction. We first describe its behavior during the up

5 Our implementation requires only a constant number of rounds per phase and provides h(T ) = O(logR).
For most realistic networks, R will be at most polynomial in n.
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sweep and then during the down sweep. The following assumes we have already entered the
abstraction’s communication mode.

Up Sweep. During the up sweep phases, the goal is to calculate the sum of the subtree
rooted at each node in the ordered tournament tree T . That is, for each node u in T , our
algorithm will calculate and store s(u). Recall, in a tournament tree, each node is labelled
with a process. In our algorithm, it will be the responsibility of the process that labels u to
calculate and store s(u). This process will also end up storing a copy of s(u′) for each child
u′ of u in T , as this will be needed during the subsequent down sweep.

To accomplish this goal, each process i maintains an accumulation variable x(i) initialized
to the identity element ε at the beginning of the upsweep. It will use this variable to help
calculate the sum values for which it is responsible.

In more detail, each process i has two types of responsibilities for each level ` visited
during the upsweep. The first type of responsibilities applies if ` > 0 and there exists a node
u at level `− 1 that is labelled with process i. If these conditions are met, then process i
will calculate s(u) by the end of this phase. To do so, process i first waits to see if node
u receives any values from its children at level ` during this phase, delivered through the
children-to-parent broadcast primitive provided by the abstraction. Assume this occurs and
that we label the received values q1, q2, ..., qj . In this case, process i updates x(i) as follows:
x(i)← x(i)⊕ q1 ⊕ q2 ⊕ ...⊕ qj . Process i will also save these received values which, as will
soon be made clear, describe the sum of the subtrees rooted at these children—knowledge
process i will need during the down sweep.

Regardless of whether or not u received any values, at the end of this phase, process i
locally calculates and stores s(u) as follows: s(u)← ai ⊕ x(i).

The second type of responsibility applies if there exists a node v at the current level `
that is labelled with process i. If v is a leaf (i.e., ` = h(T )), then process i can directly set
s(v) = ai. If v is not a leaf, then process i would have calculated s(v) during the previous
phase for level ` + 1 as described above. Therefore, in both cases, s(v) is defined. If v’s
parent is not labelled with process i, then process i will use the children-to-parent broadcast
primitive to send s(v) to (the process labelling) u’s parent.

Down Sweep. We now describe the behavior of our algorithm during the down sweep.
The goal during the down sweep is for the process labelling each node u in T to learn:

pred(u) =
{
a1 ⊕ a2 ⊕ ...⊕ au.left−1 if u.left > 1,
ε else.

That is, pred(u) is the sum of the values (defined with respect to ⊕) associated with all
the leaves (if any) to the left of the subtree rooted at u in T .

We accomplish this goal as follows. Before the down sweep begins, the root u0 of the
tree can directly set pred(u0) ← ε. Now assume inductively that we arrive at the phase
associated with level `, 0 ≤ ` < h(T ), and pred is already calculated for all nodes at level `.
During this phase, (the processes labeling) these nodes will send (the processes labelling)
their children at level `+ 1 their pred values.

In more detail, fix some u at level `. Assume u is labelled with process i. It is the
responsibility of process i to calculate the pred value for each of u’s children and to then
send it to the processes labelling them using the parent-to-children broadcast primitive. To
do so, let u1, u2, ..., uj be u’s j ≥ 1 children nodes, ordered by the same comparison operator
we used to order T . By the postcondition of the up sweep, process i knows s(ui) for each
child ui of u. Process i can therefore calculate pred(ui), for each child ui, as follows:
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pred(ui)←
{
pred(u)⊕ s(u1)⊕ s(u2)⊕ ...⊕ s(ui−1) if i > 1,
pred(u) else.

Final Calculation of Scan Values. Each process i labels a single leaf node u in tree T . By
the postcondition of the down sweep described above, process i knows pred(u) by the end
of the down sweep. Because pred(u) is the sum of all values in si except ai, process i can
conclude the algorithm by calculating si ← pred(u)⊕ ai.
Analysis. The correctness of the above distributed prefix scan algorithm follows from a
straightforward inductive argument that establishes that during the up sweep each s(u) is
correctly calculated. If these subtree sum values are correct then the correctness of the pred
values calculated during the subsequent down sweep follows directly from the operation of the
algorithm. We formalize this correctness with the following theorem, where pfail describes
the maximum probability that abstraction fails to satisfy its tphase and hmax guarantees.

I Theorem 5. This algorithm computes a distributed prefix scan using the FadingMAC
abstraction in O(tphase · hmax) rounds after the abstraction has entered the communication
mode, with probability at least 1− pfail.

7.2 Applications
We now describe multiple applications that leverage the distributed prefix scan algorithm
from the previous section as a subroutine to efficiently solve useful numerical and distributed
coordination problems. Every application below requires at most a constant number of
distributed prefix scans, which each require at most O(tphase ·hmax) rounds. When combined
with our FadingMAC implementation in the SINR model, we obtain solutions to the below
problems that run with high probability in the SINR model in at most O(logR) rounds, in
addition to the one-time time cost of O(logR · logn · log∗ n) rounds for the abstraction setup
mode. As argued above, R is at most polynomial in n for most realistic networks, meaning
these SINR solutions require only O(logn) rounds per instance, and a one-time setup cost of
O(log2 n · log∗ n) rounds.
Renaming and Network Sizing. Our system model assumes that the n processes are
only provided comparable unique IDs. In many applications it might useful if the processes
were assigned unique IDs from the set {1, 2, ..., n}. This can be easily accomplished with a
single distributed prefix scan. In more detail, set the domain S to be the natural numbers
and ⊕ to describe addition. Each process sets its initial value to 1 then computes a prefix
scan. It follows directly from the definition of the scan that each process will end up with
a sum that describes its rank order in the tournament tree leaves—providing the needed
renaming from 1 to n. To rename only a subset of k participating processes, it is sufficient
for these participants to set their initial value to 1 and the non-participants to set their
initial value to 0. The sum values at the participants provide a renaming of the participants
from 1 to k. In both cases, the process labeling the root of the tournament tree will learn the
sum of all values during the prefix scan. It can then announce this information to the rest
of the network by transmitting alone in the first round after the scan or disseminating the
information during the scan’s down sweep. The result is that all processes learn the number
of participants in the renaming, which, in the case of all processes participating, is also the
network size n.
Basic Aggregation Functions: Max, Min, Sum, Mean. It is straightforward to
compute basic aggregation function on the process inputs using distributed prefix scans. Here
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we consider max, min, sum and mean functions (where the mean function assumes the values
are numerical). In all four cases, the first step is to run the renaming and network sizing
strategy described above. At the end of step, the processes are renamed from 1 to n and all
processes know n. This requires one prefix scan. To calculate max or min, the processes can
perform another prefix scan with ⊕ as the max or min operator, respectively. In both cases,
both the root and the process renamed n will end up with the correct value. To calculate
the sum of the initial values, it is sufficient to perform a scan with ⊕ describing addition.
As before, the root and the process renamed n will end up with the sum. Either of these
processes can then calculate the mean by simply dividing this sum by the network size n.
Leader Election and Consensus. Leader election and consensus are key primitives in
distributed system design. If we assume all processes are participating in the primitive, we
can solve both problems directly after the abstraction setup mode completes: the process
that labels the root can declare itself leader or announce its initial value as the decision for
consensus. On the other hand, if we assume only an arbitrary subset of the processes have an
initial value or are interested in becoming leader, we can leverage the distributed prefix scan
to break symmetry among this unknown set of participants. In more detail, the processes
execute a max computation using the prefix scan as described above. In the case of leader
election, the participating processes use their unique id as their input value, and in the case
of consensus they use their input value. The non-participating processes set their input value
to some default minimum value from the domain that is guaranteed to be at least as small as
any id or initial value. At the end of the scan, the initial value sum identifies a single leader
or correct decision value, which can then be spread to the full network as above.
Packet Scheduling. The packet scheduling problem assumes that each process i has some
request ri ≥ 0 describing the number of rounds it needs to broadcast alone on the channel
to deliver some important information to the network or perhaps a nearby base station.
Let T =

∑n
i=1 ri be the total number of rounds needed by all the processes. The packet

scheduling problem requires the processes to agree on a transmission schedule that provides
each process i at least ri consecutive rounds to send its information. A distributed prefix
scan provides an eloquent and efficient solution to this problem. In more detail, the processes
use the natural numbers as the value domain and use addition for ⊕. Each process i then
sets its initial value for the scan as ai ← ri. At the end of the scan, the sum si learned
by each process i describes the sum of all request values of processes at its rank or below,
with sn = T . The processes can use these values to define a T -round packet schedule. In
particular, each process i claims the rounds si − ri + 1 to si in the schedule. The result is
an optimal length schedule in which each process gets its requested number of rounds in a
contiguous interval of the schedule.
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A Missing Proofs

Lemma 1 Given a constant ζ ≥ 1, there exists a constant ν = νζ > 0 such that the following
holds. If U ⊆ V is a subset of minimum pairwise distance dmin and u, v ∈ U are vertices
of distance at most d(u, v) ≤ ζ · dmin, then whenever v transmits while other vertices within
distance ν · dmin of u are silent, u is guaranteed to successfully receive the transmission of v.

Proof. W.l.o.g., assume that dmin ≤ rs/(2ζ). Otherwise, clearly the lemma holds by choosing
ν = 2ζ.

Clearly, the constant ν has to depend on the SINR parameters α, β, and N , as well
as on the constants λ and d that characterize the growth of the underlying metric space.
Specifically, we define γ := α− d and we choose a constant ν′ as

ν′ :=
(

2β · (2ζ)α · λ · 2γ

2γ − 1

)1/γ
.

The constant ν is the chosen as 2dlog2 ν
′e, i.e., ν ≤ 2ν′ is the smallest power of 2 larger than

or equal to ν′.
We want to show that S/(I + N) ≥ β, where S := 1/d(u, v)α is the signal strength at

node u of the message transmitted by v, and I is the maximum possible total interference at
node u caused by nodes at distance more than νdmin from u. We prove this by showing that
S/N ≥ 2β and that S/I ≥ 2β. We have

S

N
≥

1
(ζ·dmin)α

N
≥

1
(rs/2)α

N
> 2αβ > 2β , (1)

where we used in the third inequality that the transmission radius rs is upper bounded by
rs < (1/βN)1/α.

In order to bound S/I, we first analyze the interference I. The maximum possible
interference I occurs if all nodes at distance more than νdmin from u transmit. We know
that for every x > 1, the number of nodes in U within radius x · dmin of u is at most λxd.
We upper bound I by summing the interference of the maximum number of nodes within
distance between 2idmin and 2i+1dmin, for all sufficiently large i. We set i0 := log2 ν and get

I ≤
∞∑
i=i0

λ · 2(i+1)d · 1
(2idmin)α = 2dλ

2(α−d)i0
· 1
dαmin

· 1
1− 2d−α = 2αλ

νγ
· 1
dαmin

· 2γ

2γ − 1 .

In the last equation, we used that 2i0 = ν. We therefore have

S

I
≥

1
(ζ·dmin)α

2αλ
νγ ·

1
dαmin
· 2γ

2γ−1
= νγ(2γ − 1)

(2ζ)αλ2γ = 2β
( ν
ν′

)γ
≥ 2β. (2)

Equations (1) and (2) now directly imply that the SINR S/(I +N) ≥ β. J

Theorem 4. With high probability, the constructed tournament tree T has the following
properties:

The height of the tree is h(T ) = O(logR).
For every ` ∈ {1, . . . , h(T )}, when using the TDMA schedule induced by the coloring φ`
of V (T, `), (bidirectional) communication between every node u ∈ V (T, `) and its parent
in V (T, `− 1) can be carried out in O(1) rounds.
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The tree T can be constructed in time O(logR · logn · log∗ n) in the SINR model.

Proof. First note that the second property holds directly by the construction of the tree T .
All edges connecting nodes in V (T, `) with their parents in (V, `− 1) are edges of the graph
H ′`, which is constructed to only contain edges on which the TDMA schedule induced by the
coloring φ` allows to communicate in both directions. The length of the TDMA schedule is
equal to ∆(H+

` ) + 1, which is bounded by a constant because every SINR-induced graph
Hµ
p [U ] with constant parameters p and µ has degree at most 1/µ = O(1).
The third claim (i.e., the running time) follows in essentially the same way as in the proof

of Theorem 3. The graph H+
` can be constructed in the same asymptotic time as the graph

H`. Also as on H`, a single communication round of a standard message passing model on
H+
` can be simulated in time O(logn), w.h.p. Because on a bounded degree graph G, a

(∆(G) + 1)-vertex coloring can be computed in time O(log∗ n) [10], the coloring φ` can be
computed in time O(logn log∗ n). Further, given the coloring φ` and the graph H`, the graph
H ′` can be computed in O(logn) rounds, by first going through the TDMA schedule once (in
O(1) time) and by afterwards (in O(logn) time) exchanging information with all neighbors
in H` to detect which edges of H` were successful w.r.t. the TDMA schedule induced by φ`.
The time complexity for the remainder of the construction follows in the same way as in
Theorem 3 because the graph H ′` is a subgraph of H`.

It therefore remains to show that the depth of the tree T is at most O(logR). This
follows in the same way as in Theorem 3 if we can show that H ′` contains all edges of length
at most 2d(`)

min between vertices of V (T, `). As in Theorem 3, the minimum distance between
nodes is then at least doubled when going from some level ` to the next level `− 1. To show
that H ′` contains all edges of length at most 2d(`)

min, consider two nodes u, v ∈ V (T, `) with
d(u, v) ≤ 2d(`)

min. We need to show that the TDMA schedule induced by φ` allows u to receive
a message from v (and vice versa). The graph H+

` is chosen such that it contains all edges of
length at most νd(`)

min for the constant ν of Lemma 1 when ζ = 2. Therefore any two vertices
with the same color are at distance more than νd(`)

min. Hence, in the round of the TDMA
schedule corresponding to color φ`(v), v transmits and all other vertices within distance
νd

(`)
min of node u are silent. It therefore follows directly from Lemma 1 (with ζ = 2) that

u successfully receives the message from v. Symmetrically, it also follows that the TDMA
schedule allows v to send a message to u. This concludes the proof. J
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