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1 Introduction 

This paper contains an overview of recent and current work in the M.I.T. The- 
ory of Distributed Systems research group on modelling, verifying and analyzing 
problems arising in automated transit systems. The problems we consider are in- 
spired by design work in the Personal Rapid Transit (PRT) project at Raytheon 
(as described to us by Roy Johnson, Steve Spielman and Norm Delisle), and in 
the California PATH project (as described to us by Shankar Sastry, Datta God- 
bole and John Lygeros) [7, 6, 13, 3]. Our work is based on the Lynch-Vaandrager 
timed automaton model [19, 20, 18], extended to include explicit state trajecto- 
ries and continuous interaction [17]. The formal tools we use include standard 
techniques for reasoning about concurrent algorithms - invariants, simulations 
(levels of abstraction) and automaton composition, plus standard methods for 
reasoning about continuous processes - differential equations. 

Our work so far suggests that these methods are capable of providing good 
results about safety and performance of automated transit systems. The meth- 
ods support modular system description, verification, analysis and design. They 
allow a smooth combination of discrete and continuous reasoning in the same 
framework. They are especially good at handling nondeterminism and approxi- 
mate information. 

2 Background 

2.1 T i m e d  A u t o m a t a  and Hybr id  I / O  A u t o m a t a  

The starting point for our transit project was the Lynch-Vaandrager timed au- 
tomaton model, which has been used over the past few years to describe and 
analyze many distributed algorithms and simple real-time systems. The defini- 
tion of a timed automaton appears in [20, 18]. A variety of proof techniques for 
timed automata have been developed, including invariant assertions and sim- 
ulations [20], compositional methods based on shared actions [18, 5, 16], and 
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temporal logic methods [24]. Applications of the model to asynchronous and 
timing-based distributed algorithms appear in [22, 15, 12, 11, 16], applications 
to communication systems appear in [24, 9, 1], and applications to real-time 
control (trains and gates, steam boiler control) appear in [8, 10]. 

Briefly, a timed automaton is a labelled transition system having real-valued 
as well as discrete state components, and allowing continuous state evolution as 
well as discrete state changes. A timed automaton has a set of states of which 
a subset are distinguished as start states, a set of actions classified as external 
(input or output), internal, or time-passage actions, and a set of steps (both 
discrete and time-passage). As a derived notion, it also has a set of trajectories, 
which describe evolution of the state over time. A trajectory is obtained by filling 
in an interval of time solidly with states, so that time-passage steps connect all 
pairs of states. An execution is an alternating sequence of (possibly trivial) 
trajectories and discrete steps. 

Most of the proofs that  have been done using timed automata use invariants 
(statements that  are true about all reachable system states) and simulations 
(statements of relationships between states of an implementation system and 
states of a more abstract specification system). Even proofs of timing properties 
are done in this way; the key idea that makes this work is to build time deadlines 
(first and last times for certain events to occur) into the automaton state and to 
involve these deadlines in assertions. Some of the proofs have been automated, 
using the Larch Prover (LP) [4] and PVS [23]. Other proofs use composition 
and temporal logic. In these examples, the model works well, yielding clear, 
unambiguous, and understandable descriptions and proofs. 

The work on real-time control suggested to us that  some additions to the 
model would be useful for modelling hybrid systems. In particular, it would be 
convenient to have trajectories as primitive rather than derived objects; this 
would allow more direct modelling of physical behavior using physical laws. 
Also, it would be useful to allow continuous interaction between components via 
shared continuously-changing variables, in addition to discrete interaction via 
shared actions; this would allow modelling of systems with continuous controllers 
or shared clocks, for example. These considerations led us to work on developing 
a new "hybrid automaton" model. 

Some conditions we wanted the new model to satisfy were: (a) We wanted 
it to be an extension of the timed automaton model, in order to take advan- 
tage of earlier results. (b) It should support modular system description, design, 
verification and analysis (using, for example, composition, abstraction, and sys- 
tem transformation). Modular techniques work very well in reasoning about dis- 
tributed algorithms, and they should work equally well for hybrid systems. (c) It 
should be mathematical, not tied to or skewed toward any particular language for 
programming or specification, nor to any particular proof method or verification 
system. This would allow us to formulate results quite generally, only introduc- 
ing restrictions (finite-state, differentiability, integrability, Lipschitz, etc.) where 
necessary. This generality would make the model flexible enough to be used 
as the formal basis for many different languages and proof methods. (d) The 
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model should support  the effective use of different methods, in particular, those 
of discrete algorithm analysis and those of control theory, in combination. 

Our s trategy for obtaining a good hybrid au tomaton  model was to develop 
the model along with case studies in a particular application. This meant  that  
we needed to choose the "right" application: one that  was really hybrid (with 
lots of interesting continuous and discrete activity), that  was simple enough for 
us to handle yet complicated enough to exercise the theory, and that  afforded 
many  opportunit ies for modular  system description. Moreover, in carrying out 
application case studies, our strategy was to model and analyze many related 
designs rather than isolated examples; such a coordinated study would permit  
the formal structure that  is useful for the particular application to emerge. 

2.2 Automated  Transit Systems 

The application we chose was Automated Transit Systems (ATS). Among our 
reasons for this choice were: 

1. We originally considered studying air-traffic control. However, air-traffic con- 
trol is too complex to use in developing basic theory, because it adds the 
complexities of three-dimensional geometry to those of combining continu- 
ous and discrete behavior. Many of the problems arising in the ATS domain 
seem to be simpler (one-dimensional) versions of problems arising in air- 
traffic control. 

2. The ATS application is important  in its own right. There has been a recent 
surge of interest in ATS, on at least three fronts: Personal Rapid Transit  
(PRT) systems, in which small public vehicles circulate on tracks under 
au tomated  control, Intelligent Vehicle Highway Systems (IVHS), in which 
ordinary cars are augmented with sensor, communication and control devices 
to allow some automated  assistance, and traditional t ransportat ion systems, 
which are now being augmented with some automated control features. 

3. ATS is a rich application, appearing to provide the right features to ex- 
ercise the theory. It  contains issues of safety (avoiding crashes, observing 
m a x i m u m  speed limits), performance, and comfort. It  contains a rich com- 
bination of continuous and discrete behavior - a complex real-world system 
may  be controlled by an equally complex distributed computer system. It 
seems to have a good deal of modularity, for example, system decomposi- 
tions involving separate vehicles, separate nodes of a distributed computer 
system, or separate functions. It appears that  a system can be described at 
different levels of abstraction, by considering a derivative-based view versus 
an explicit function view, or a discrete view versus a continuous view. 

4. The ATS area has many  similarities with other areas we had studied ex- 
tensively, in particular, the area of communication systems. Both commu- 
nication and transit systems involve getting something successfully from a 
source to a destination, with good throughput and timely arrival. 2 This sim- 

There are differences. Messages are not usually thought of as having velocity and 
acceleration. And it is generally worse to lose a vehicle than it is to lose a message. 
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ilarity makes it likely that  techniques that have been used successfully for 
communication will carry over to ATS. 

5. Engineers working in ATS seem amenable to the use of formal methods, 
because the area is so safety-critical. 

2.3 O u r  P r o j e c t  

We have begun using timed automata and some extensions to describe and 
obtain results about typical problems arising in ATS's. The methods we are using 
include invariants and simulations, composition, and differential equations. 

With help from application engineers Johnson, Spielman, Delisle, Sastry, 
Godbole, and Lygeros, we have been identifying problems arising in ATS's, in- 
volving, for example, 

1. Attaining and maintaining safe speeds. 
2. Attaining and maintaining safe inter-vehicle distances. 
3. Implementing typical vehicle maneuvers, such as lane changes, merging and 

diverging at Y-junctions, joining and splitting "platoons" of vehicles, etc. 
4. Resolving conflicts among several different planned vehicle maneuvers. 
5. Tracking specified vehicle trajectories. 
6. Handing off control of vehicles from one computer to a neighboring computer 

in a distributed computer system. 
7. Protecting against catastrophes. 
8. Routing. 

We are modelling versions of these problems formally and proving various prop- 
erties (safety, throughput, timely arrival, passenger comfort) of the systems we 
describe. We consider these problems in the presence of various types of uncer- 
tainty, for instance, communication delays and uncertainty in vehicle response. 
We are trying to identify and use modularity wherever possible. We aim not 
only for results about the particular problems, but also at a general structured 
theory for ATS's. Also, as I described above, we are using this work to help us 
to develop general models for hybrid systems. 

The next four sections contain descriptions of some of the particular problems 
we have modelled. Section 3 contains a study of a simple deceleration maneuver. 
Section 4 shows two uses of levels of abstraction in reasoning about a simple 
acceleration maneuver: to relate a derivative view of a system to a function view, 
and to relate a discrete view to a continuous view. Sections 5 and 6 provide brief 
summaries of our work on vehicle protection systems and platoon join safety, 
respectively. The paper closes with a brief conclusion section. 

Two other papers in this volume are closely related to this one. In [26], 
Weinberg, Lynch and Delisle provide a detailed description of our work on ve- 
hicle protection systems. And in [17], Lynch, Segala, Vaandrager and Weinberg 
present the latest version of our general hybrid automaton model, which we call 
the hybrid I / 0  automaton (HIOA) model. 
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3 D e c e l e r a t i o n  

Our first project [21, 25] was the analysis of a simple control maneuver designed 
to ensure that  a vehicle's speed is within a given range [Vr~,~, Vma~] when it 
reaches a particular track position x / .  The vehicle is assumed to start  at position 
0 with known velocity v~ > Vma~:. A version of this problem was studied earlier 
by Schneider and co-workers [2]. 

We considered this problem with uncertain vehicle response and communi-  
cation delay, and with and without periodic sensor feedback. We proved, using 
invariants and simulations, that  certain example controllers guarantee correct 
behavior. 

3.1 N o  F e e d b a c k  

In the simplest version of the problem, there is no feedback from the vehicle 
to the controller. The controller is allowed to apply a brake at any time, which 
causes the vehicle to decelerate at some unknown, possibly varying rate in the 
interval [a - e, a], where a is a known negative real .-The controller can also 
disengage the brake ("unbrake") at any time. The controller can use only its 
knowledge of the constants vs, v m ~ ,  Vma~: and a to decide when to brake and 
unbrake. Of course, some restrictions on the constants are needed in order to 
make such a maneuver  possible. 

We modelled the vehicle by a single hybrid I /O  automaton (t tIOA), V, using 
the model of [17]. 3 Its discrete actions are the two inputs, brake and unbrake. 
Its s tate consists of values of the following variables: 

x E R, initially 0 
E R, initially v8 
E R, initially 0 

acc E R, initially 0 
braking, a Boolean, initially false 

Here, ace represents the acceleration proposed by the au tomaton ' s  environment 
(presumably, a controller) while ~ represents the actual acceleration. The vari- 
ables z and x represent the position and velocity, respectively. The effects of the 
discrete inputs are described by the following "'code". 

brake unbrake 
Effect: Effect: 

braking := true braking := false 
a c e  : ~  a a c e  : ~  0 

a] :E [a -- e,a] ~ :=0  

The trajectories are all the mappings w from left-closed subintervals I of R ->~ to 
states of V such that:  

3 At the time we carried out this project, we actually used a less powerful extension 
of the timed automaton model, but the newer model works even better. 
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1. braking is unchanged in w. 
2. ~ is an integrable function in w. 
3. For all t E I, the following conditions hold in state w(t): 

(a) If braking = true then ~ E [ a c c -  ~, acc], otherwise ~ = 0. 
(b) = + w(u). du. 

x = + f o  

(The dot after a state is used to indicate state components.) Thus, the acc 

variable is set by the environment (controller), by braking and unbraking. The 
actual acceleration, velocity and position are determined accordingly: the actual 
acceleration ~ is assumed to be in an interval bounded above by acc if the brake 
is on, and otherwise is 0, while the actual velocity and position are determined 
from ~ using integration. Our choice of notation for describing V is not important  
- other notation could be used, as long as it denotes the same HIOA. 

Many controllers could be combined with automaton V. We considered a 
trivial controller that  just brakes once, at some t ime in the interval [0, tl], then 
unbrakes once, at some t ime in the interval [t2,t3] after braking. The specific 
times t l ,  t~ and t3 were  chosen to be as nonrestrictive as possible. We modelled 
the controller by another HIOA, C. Its discrete actions are the two outputs,  
brake and unbrake.  It enforces the time bounds tl ,  t2 and t3 by including dead- 
line variables last-brake, f i rs t -unbrake,  and last-unbrake in its state, and manip- 
ulating them so as to ensure that  the brake and unbrake actions occur at allowed 
times. Tha t  is, initially last-brake = t l .  When brake occurs, f i r s t -unbrake  and 
last-unbrake are set to times t2 and t3 in the future, respectively. C does not 
allow time to pass beyond any last deadline currently in force, and does not 
allow an unbrake action to occur if its f irs t  deadline has not yet been reached. 
The trajectories are trivial - there is no interesting continuous behavior in the 
controller, so t ime just  passes without changing anything else. 

The entire system is modelled formally as the composition of the two HIOA's,  
V and C. We proved two properties of this composed system, V • C, both 
involving the behavior of V: 

1. If x = x]  then ~ E [vrn,~, vm~]. 

2. x eventually reaches position z / .  

For example,  consider the velocity upper bound, that  is, the claim that  the 
velocity at position z /  is at most v , ~ .  This claim can be expressed as an 
invariant, so we wanted to prove it in the usual way for invariants - by induction 
on the length of an execution. For executions of an HIOA, we take the "length" 
to be the total  number of discrete steps and trajectories. As usual for invariants, 
we had to strengthen the property so that it could be proved inductively; this 
involved saying something about states where z r z I .  By using laws of motion, 
we came up with the following stronger assertion: 

2 - 2  

A s s e r t i o n  3.1 In  all reachable states~ i f  x ~ x]  then z /  - x >_ 2a 

This says that  there is enough remaining distance to allow the velocity to de- 
crease to vm~z by position x] ,  even if deceleration is the slowest possible. 
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We proved this strengthened claim using induction. In this inductive proof, 
the cases involving discrete steps needed only discrete reasoning, while the tra- 
jectory cases needed only continuous analysis based on laws of motion. The com- 
bined argument  implies that  the assertion is always true, even with the given 
combination of continuous and discrete behavior. 

For both  the velocity lower bound and the "eventuality" property, the key 
was to show: 

A s s e r t i o n  3.2 In all reachable states, d: > Vmin. 

Again, this property cannot be proved alone using induction. The key to the 
proof turned out to be the following claim about the last-unbrake deadline while 
the vehicle is braking: 

A s s e r t i o n  3.3 In all reachable states, i f  braking = true then 
last-unbrake < now + vm,,-J: 

This says that  the brake must be turned off before the velocity has a chance to 
drop below vmi,~, assuming the m ax i m um  deceleration a - e ,  Here, now represents 
the current time. Again, this s tatement  can be proved using induction. 

This simple deceleration example already illustrates several aspects of our 
model and methods: It  shows how vehicles and controllers can be modelled using 
HIOA's  and composition, and in particular, how deadline variables can be used 
to express t iming restrictions. It shows some typical correctness conditions - 
an invariant and an eventuality property - both expressed in terms of the real- 
world component  of the system. It shows how invariants can provide the keys 
to proofs. Invariants can involve real-valued quantities representing real-world 
behavior, thus allowing facts about velocities, etc. to be proved by induction; 
invariants can also involve deadline variables, thus allowing time bounds to be 
proved by induction. 

This example also shows how continuous and discrete reasoning can be com- 
bined in a single proof, with formal criteria to ensure that  the combination is 
correct. It illustrates careful handling of uncertainty. Finally, the arguments are 
general - they don' t  handle just  the apparent worst cases, but all cases at once. 

We extended this example slightly to demonstrate  some uses of abstraction 
and composition. Namely, in place of the very nondeterministic au tomaton C 
given above, we described the causes of uncertainty in the braking and unbraking 
times in detail - we supposed that  the uncertainty arose entirely from commu- 
nication delay from a less uncertain controller C '  to V. Tha t  is, the composition 
of C '  and a "delay buffer" automaton D, C '  x D, exhibits behavior that  remains 
within the bounds allowed by the more abstract controller C. Formally, it "imple- 
ments" C, in the sense of inclusion of external behavior (here, sets of sequences 
of brake and unbrake actions, each with an associated t ime of occurrence). 

We showed this inclusion using a s imulat ion relation to relate states of C '  x D 
to states of C. The most important  part  of the definition of this simulation re- 
lation was a set of inequalities involving the deadlines in the two automata .  
The proof that  the relation is a simulation followed the normal pat tern for such 
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proofs - it involved showing a correspondence involving start  states, one in- 
volving discrete steps, and one involving trajectories. Existence of a simulation 
implies inclusion of external behavior. 

External behavior inclusion wasn't quite enough, however. What  we really 
wanted was an exact correspondence between velocity and position values in 
V, when it is composed with the controller C and when it is composed with 
the implementation C' • D. But this correspondence can be obtained from the 
external behavior inclusion result, using basic pro jec t ion  and past ing  results 
about composition of HIOA's. 

3.2 F e e d b a c k  

We also considered a version of the problem with periodic feedback from the 
vehicle to the controller, triggering immediate adjustment by the controller of 
the proposed acceleration. This time, we allowed the controller to set ace to any 
real value, not just to a fixed value a or 0. As before, the controller's request 
need not be followed exactly, but only within a tolerance of r 

Our new version of the vehicle automaton V was very similar to the one we 
used for the no-feedback case. A change is that the new V reports its position 
x and velocity x every time d. In order to express this in terms of an ItIOA, we 
added a l a s t - sample  deadline component and managed it appropriately. The new 
V has an accel(a)  input action, which causes acc to be set to a. The actual accel- 
eration ~ is anything in [ace - ~, ace]. C performs an accel output immediately 
after receiving each report. 

Now C has more information than before, so it can guarantee more precise 
velocity bounds. We modelled a controller that initially sets ace to aim so that,  
if the vehicle followed ace exactly, it would reach velocity exactly Vmaz when 
x = x].  Since the vehicle might actually decelerate faster than acc, C might 
observe at any sample point that the vehicle is going slower than expected. In 
this case, C does not change acc until the velocity actually becomes < v,~ax. 
Thereafter,  at each sample point, C sets acc to aim to reach v,~ax at exactly the 
next sample point. 

We proved the same two properties for this case as we did for the no-feedback 
case, but for tighter bounds on the final velocity. The argument again used 
invariants. For example, consider the argument that in all reachable states, x > 
vm~,~. Now to prove this by induction, we needed auxiliary statements about 
what is true between sample points, for example: 

A s s e r t i o n  3.4 In  all reachable s ta tes  between sample  points ,  
+ (acc - e ) ( la s t - sample  - now)  > v,~,~. 

That  is, if the current velocity is modified by allowing the minimum acceleration 
consistent with the current acc, until the next sample point,  then the result will 
still be > vr,,,~. Note the use of the las t - sample  deadline to express the time until 
the next sample point. This statement is proved using induction. 

This example illustrates how our methods can be used to handle more compli- 
cated examples, including periodic sampling and control. It shows how to reason 
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about  periodic sampling using intermediate invariants involving the last-sample 
deadline: The controller issues control requests to the system at sample times, 
but can "lose control" of the system's  behavior between sample points; the in- 
variants are used to bound how badly the system's  performance can degrade 
between sample points. Again, we handle all cases reliably, not just the appar-  
ent worst cases. 

4 L e v e l s  o f  A b s t r a c t i o n  

Our second project [14] showed how levels of abstraction, one of the most  im- 
por tant  tools of discrete system analysis, can be used to reason about  a simple 
acceleration maneuver.  In this case, the goal is for a vehicle to reach a specified 
velocity vy at a specified t ime t I in the future. We assumed that  the vehicle 
s tar ts  at t ime 0 with velocity 0. The vehicle reports its velocity to the controller 
every t ime d. The controller can send an accet(a) control signal to set acc := a 
immediately after each sample point. The actual acceleration ~) is anything in 
the range [acc - c, acc ]. The controller we considered aims to reach the goal of 
v] at t ime t I .  Tha t  is, it proposes acceleration ~.-v where v is the current 

t l  - -  n O W  ' 

velocity. 
Using invariants and simulations, we proved bounds on velocity at every point 

in time. The proofs use levels of abstraction in two ways: relating a derivative 
view of a system to an explicit function view, and relating a system in which 
corrections are made at discrete sampling points to a system in which correc- 
tions are made continuously. The uncertainty �9 in the acceleration is integrated 
throughout  the levels. 

First, we ignored the discrete sampling and considered a controller that  con- 
tinuously sets acc to the ratio given above, with ~) E [acc, acc - el. It  was easy 
to see that  the velocity at t ime t is at most g(t) = Lff. For the lower bound, by 

t !  " 

solving the differential equation: 

y ( t )  - v f  - y ( t )  , ,  
t] - t 

we got a conjectured lower bound of: 

vy t t ~y  t 
f ( t )  = -~y + e(tl  - t ) log(  ) 

(patched with vj at ty). The function f is the result of aiming at (t] ,  vy) and 
consistently missing low by e. 

To prove that  f is indeed a lower bound, we used two levels of abstrac- 
tion. The high level is an HIOA V giving explicit bounds on v. Its state con- 
tains only v and now, and the only constraint is that  in every reachable state, 
v E [ f (now) ,  g(now)].  The low level is another HIOA D giving bounds on the 
derivative of v. It keeps acc aiming at (t],  v!)  and ensures that  ~3 E [acc, a c c -  e]. 
In a sense, D describes how the system is supposed to guarantee the bounds 
expressed by V. 
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We showed that D "implements" V, in the sense of inclusion of external 
behavior (here, the values of v and now) .  We showed this inclusion using a 
simulation relation to relate states of D and V. As usual, the proof involved 
showing a correspondence involving start states, one involving discrete steps, and 
one involving trajectories. The only interesting case is the one for trajectories. 
Basically this involved showing that, if the pair (now,  v) starts within the region 
specified by V, the rule used by D does not cause the pair to leave that region. 
This is in turn proved .using standard methods of continuous analysis, expressed 
formally as invariants involving ~5. 

Unfortunately, the actual controller does not behave as nicely as D. It only 
sets acc to aim at (t f ,  v f )  at sample points rather than continuously. Between 
sample points, the value of acc can degrade. In fact, it is not hard to see that  
v does not necessarily remain above f - the uncertainty introduced by periodic 
sampling is reflected in a change to the actual behavior produced. Therefore, we 
had to modify V to reflect the new source of uncertainty. The result was a new V ~ 
with a new lower bound f~ constructing by aiming not at the "real goal" ( t f ,  v f ) ,  
but at an adjusted goal that  depends on d and e, specifically, ( t f ,  V f  - -  ed). 

At this point, we could have shown directly (using a simulation relation) 
that  the real system, [, implements V'. However, we found it useful to instead 
introduce a third level of abstraction, in the form of a modified version D' of 
D. D'  differs from D by having a looser rule for acc: instead of continuously 
setting acc to aim exactly at (t f ,  v l )  it can instead (continuously) set it to point 
anywhere between ( t f ,  v f )  and (t f ,  v /  - ed). Thus, D' contains uncertainty in 
acc, in addition to the e uncertainty in ~3. With these simple modifications, we 
easily modified our proof that  D implements V to show that D' implements V'. 

Having shown that D' implements V', we were able to forget about V' and 
just show that I implements D'. Using a transitivity result, this implies that I 

implements V', as needed. 
To show that  I implements D', we showed that the identity on all the state 

components of D' is a simulation relation from I to D'. The key to this proof is 
the fact that any acc that is set in I is in the range permitted by D'. Note that  
acc is set to aim at the upper end of its range, ( t f ,  v f ) ,  at each sample point, but 
can degrade between sample points. As before, we had to bound the amount of 
degradation that occurs between sample points. The key claim is that: 

A s s e r t i o n  4.1 Between  sample points,  acc > VI-e(n~ 
- -  i f - - n o w  

This says, roughly speaking, that the value of acc has not degraded too badly 
if there is still a long time until the next sample point. In particular, at the 
beginning of a sample interval, now + d = last-sample,  so the right-hand side of 

" / - "  which is exactly the upper end of the range the inequality simplifies to t~-,ow, 
allowed by D I. Also, at the end of a sample interval, now = last -sample ,  so the 
right-hand side simplifies to v/-~d-o which is exactly the lower end of the range. 

i f - - n o w  

The complete assertion gives bounds for all the intermediate points as well. This 
assertion is proved by induction. 

This example illustrate more uses of HIOA's and invariants, and the use of 
las t -sample  deadlines to limit degradation between sample points. Most impor- 
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tantly, it demonstrates two uses of levels of abstraction in reasoning about hy- 
brid control problems: relating a derivative view of a system to a function view, 
and relating a discrete view to a continuous view. Uncertainties are included 
throughout, and are handled accurately. 

The example also illustrates the useful strategy of specifying the highest-level 
correctness conditions in terms of an explicitly-specified region of allowed val- 
ues for the important physical variables. Derivative-based descriptions can be 
regarded as ways to guarantee that the behavior remains within the high-level 
regions. For instance, in air-traffic control, the highest-level specification might 
involve regions in space-time "owned" by particular airplanes. Disjointness of 
regions then would imply that planes do not collide. The mechanisms for ensur- 
ing that individual planes remain within their regions could be reasoned about 
individually, and separately from consideration of the disjointness of regions. 

Note that the bounding functions for the high-level region are obtained using 
usual methods of continuous analysis - our techniques do not provide any help 
here. However, our methods do allow systematic checking that the results of the 
analysis are correct (in particular, that they really capture the worst cases and 
that they cope correctly with uncertainties). 

5 V e h i c l e  P r o t e c t i o n  S y s t e m s  

Our third project [26] has been the analysis of automated Vehicle Protection 
(VP) systems, which are sometimes added to automated Vehicle Operation (VO) 
systems in order to enforce particular safety constraints. We model both VP and 
VO systems as HIOA's, and model their combination by composition. Each VP 
automaton monitors the physical system, using discrete sampling, and checking 
for "dangerous" conditions. When such conditions occur, the VP triggers an 
emergency response. For example, a VP might check whether a vehicle's speed is 
"close" to a specified "overspeed", in order to apply an emergency brake before 
the overspeed could actually be exceeded. In [26], we analyze both overspeed 
protection and maintenance of safe separation distance between pairs of vehicles. 

This project demonstrates how to model the important interactions between 
VP and VO systems, using HIOA's and composition. Again, bounding the degra- 
dation of physical variables between sample points is a key to the analysis. The 
project also shows how to compose several VP systems with the same VO system, 
thereby obtaining the guarantees of all the VP's at once. In this composition, 
some of the VP's might assume the effects achieved by others. Our work has 
yielded useful methods for thinking carefully about the design of such systems. 

6 J o i n i n g  P l a t o o n s  

Finally, our fourth project, just beginning, is the analysis of a "platoon join" 
maneuver arising in the PATH project [3]. The problem is for cars travelling 
in a "platoon" to join with another platoon travelling ahead of it in the same 
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lane. The join is accomplished by having the second platoon accelerate to catch 
up with the first. This introduces the possibility of collisions: We assume that 
there is some maximum possible deceleration a, the same for all vehicles. If 
the first platoon suddenly brakes at rate a, and the second platoon is near the 
first and going faster, then the second platoon will collide with the first, even 
if the second can react immediately. However, this is considered acceptable by 
the PATH researchers as long as the relative velocity of the two platoons upon 
collision is no greater than a small constant vauo~. 

In [3], a particular controller is described that ensures this relative velocity 
bound, while allowing the join to be completed as fast as possible and observing 
passenger comfort limits (expressed by bounds on acceleration and jerk). The 
controller causes the second platoon to accelerate as fast as possible, subject to 
safety limits and passenger comfort limits, in order to catch up, and then to 
decelerate as fast as possible to move into the correct position. 

Our goals are to model this system using HIOA's, and to formulate and 
prove its properties. There are four separate properties t o  prove: observance of 
the vaztow limit, eventual success in joining platoons, passenger comfort, and 
optimal join time. Our idea is to use these four separate properties as a basis for 
decomposing the system and its proof. 

So far, we have just considered the safety property - that is, the valzo~o limit. 
For this, we are describing a very nondeterministic safety controller that  just 
guarantees safety (but not necessarily the other three properties). Our plan is 
to prove that  the safety controller guarantees safety, and then to show that  
the actual controller implements the safety controller. A bonus is that  the safety 
controller should be reusable for analyzing other maneuvers besides platoon join. 

We define a Platoons HIOA to model the behavior of the platoons, and allow 
platoon 1 to be under the control of an arbitrary controller HIOA, C1. C1 is 
unconstrained, subject only to a known maximum deceleration a. The designer's 
job is to design a safety controller, C2, for platoon 2 that  works with any C1. 
That  is, the combination of Platoons, C2 and an arbitrary C1 should guarantee 

the safety property. 
The key to the safety property is an invariant that says that platoon 2's 

velocity is slow enough, relative to the velocity of platoon 1 and the inter-platoon 
distance. There are two possibilities, either of which is fine. First: 

_ z'2 2 
X'I 2 Jr Yallow 

zl  - x2 > 2a 

This says that  enough distance remains to allow platoon 2 to reach v~zto~o by 
the time a collision occurs, even if platoon 1 decelerates as fast as possible. And 

second: 
2~2 '( Xl q" Vallow 

This says that  the relative speed is already small enough. The analysis is essen- 
tially the same as in [3] (ignoring delays in response), but it is expressed in our 
invariant style. We can prove that a particular nondeterministic C2 maintains 
the disjunction of these two inequalities, and hence guarantees safety. 
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This example illustrates how our techniques (here, invariants and composi- 
tion) apply to reasonably complex, realistic systems. It shows how to model a 
controller that  is supposed to work in the presence of unpredictable behavior on 
the part of some of the real-world entities. Again, we handle all cases reliably, 
not just the apparent worst cases. Our analysis has given us some insights about 
the application. For example, we realized that it is important  to also model what 
happens after a collision; our techniques appear to be suitable for doing this, 
but  this still remains to be done. 

7 Conclusions 

We have used hybrid I /O automata  to model and verify examples arising in 
automated transit. We began with very simple deceleration examples, and have 
progressed to more realistic examples involving vehicle protection systems and 
platoon join safety. Our methods allow accurate handling of nondeterminism, un- 
certainties and discrete sampling. All cases are considered, not just the apparent 
worst cases. The methods support modular system description, verification, anal- 
ysis and design. They allow a smooth combination of discrete and continuous 
reasoning, in the same framework. 

I have pointed out the key technical features of our approach in various places 
throughout the paper. The most important  of these are: our modelling of all sys- 
tem components (physical world and computer system) as ttIOA's; our use of 
deadline variables to express timing restrictions; our use of composition to de- 
scribe interactions among components; our statement of correctness conditions 
in terms of the real world; our extensive use of invariants, including those involv- 
ing real-valued quantities such as deadlines; our handling of periodic sampling 
by limiting the degradation of key parameters between sample points; our de- 
scription of systems at many levels of abstraction; our specification of correctness 
in terms of regions of allowed values for important  physical variables; our use 
of simulations to show correspondences between different levels of abstraction; 
and our use of composition to model controllers that work in the presence of 
unpredictable behavior on the part of some of the system components. 

Our preliminary results say that these methods work well to provide useful 
results about safety and performance of automated transit systems. They have 
already had some impact on system designers. Our work on ATS modelling has 
also influenced the development of the basic HIOA model. It remains to use 
the model and methods to study many more ATS problems, and to integrate 
the results obtained for all these problems into a coherent theory for automated 
transit systems. 

A c k n o w l e d g m e n t :  Michael Branicky provided useful information about con- 
trol theory methods and useful discussions of the platoon join maneuver. 
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