
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 18, 1994

Atomic Transactions for Multiprocessor
Programming: A Formal Approach

NANCY LYNCH

May 9, 1994

1. Introduction

The atomic transaction abstraction originated in the setting of concurrent
database processing, and has proved to be successful in the more general setting
of data-oriented distributed computing. This notion allows the programmer
to specify a collection of elementary data-processing operations that are to be
performed “as if” atomically. The collection of operations should be executed
either in its entirety or not at all, and the originator of the transaction should
be informed as to which of these two has occurred. Moreover, the transaction
should appear as if all of its actions occurred at a single moment, without any
interruption from other transactions. This transaction semantics should hold in
spite of the usual sorts of failures that occur in distributed networks, such as
stopped processors and links. A useful extension of the basic notion is to allow
transactions to be nested, that is, each transaction can have subtransactions that
are themselves to be executed atomically with respect to each other.

The notion of transaction is easy to use in distributed programming, because
it permits the programmer to pretend that his/her programs are being executed
on a sequential processor. On the other hand, the costs of providing such a
clean user interface, in terms of latency and amount of communication, can be
high. These costs can often be reduced by careful consideration of exactly which
operations need to be performed atomically, and by making appropriate use of
information about the data types of the objects.

1991 Mathematics Subject Classification. 68-02, 68N15, 68P15, 68Q22, 68Q60.
This work was supported by DARPA contract N00014-92-J-4033, NSF contract 9225124-

CCR, and AFOSR-ONR contract F49620-94-1-0199.

© 1994 American Mathematical Society
1052-1798/94 $1.00 + $25 per page

125

126 NANCY LYNCH

It seems to me to be likely that the concept of atomic transaction will turn

out to be a useful language construct for multiprocessors as well as distributed

systems. This opinion is mostly based on the fact that modern multiprocessors

are becoming more and more like distributed systems: their architectures are

often based on networks rather than shared memory, and they can be subject to

unpredictable timing and failures. Also, many of the applications being run on

multiprocessors (e.g., the human genome project) appear to have a data-oriented

flavor that suggests that transactions will be useful. If so, there is a good deal of

work on transaction processing in distributed systems that can be carried over

to the new setting to provide a basis for similar work on multiprocessors.

In this paper, I describe a formal framework for describing and reasoning

about atomic transactions, including nested transactions. I indicate how this

framework is used to specify the correctness conditions that nested transactions

are supposed to satisfy, to describe a wide range of implementing algorithms,

and to give rigorous proofs that those algorithms are correct. This framework is

summarized here from the new book “Atomic Transactions”, by Lynch, Merritt,

Weihl and Fekete [15]; this framework was originally designed for reasoning

about distributed algorithms, but it is sufficiently abstract that it applies directly

to multiprocessors as well.

I believe that the correctness notions for nested transactions are sufficiently

subtle, and the implementing algorithms sufficiently complex, that such a formal

framework is crucial to the successful construction of transaction-based multipro

cessor systems. In particular, it is very likely that clever optimizations for known

implementing algorithms will be developed to fit them to particular multiproces

sor architectures; the formal framework can be used to give precise descriptions

of those optimizations and argue why they are correct.

The framework in [15] is based on earlier work on the “classical theory” of

database concurrency control, by Bernstein, Hadzilacos and Goodman [2]. That

work needed to be extended, however, to allow handling of nested transactions

instead of just single-level transactions, and of arbitrary data types instead of

just read-write objects. These extensions are important for the construction of

efficient implementations for transaction systems.

2. Formal Model

I begin by describing the formal model that is used for describing the cor

rectness conditions to be satisfied by nested transaction systems, as well as for

describing the algorithms used to guarantee these conditions. The model is pre

sented in two steps. First, I describe an underlying automaton model upon which

all this work is based, and second, I describe how to model transaction systems

using the basic automaton model.

ATOMIC TRANSACTIONS FOR MULTIPROCESSOR PROGRAMMING 127

2.1. I/O automata. An important part of the philosophy followed here is
that fundamental work on modelling and reasoning about systems should be
carried out in terms of a clean and simple semantic model, specifically, a (not
necessarily finite-state) automaton model, rather than in terms of any particular
specification language, programming language or proof logic. The justification
for this choice is that the systems are fundamentally mathematical objects, which
can be reasoned about using any combination of the tools that mathematics
offers. Defining the systems as automata allows the flexibility of using a variety
of different languages and logics to describe and reason about them.

Because the algorithms to be studied are asynchronous (i.e., they work with
out any assumptions about relative speeds of the system components), the model
that we use is the I/O automaton model of Lynch and Tuttle [16, 17]. Actually,
since we only prove safety and not liveness properties, a simple special case of
the model suffices. Namely, we only require an automaton to come equipped
with a set of states, a nonempty subset of start states, a set of actions, classified
as input, output or internal actions, and a set of steps. Each step is a triple
consisting of a pre-state, an action and a post-state. The interesting behavior
of an automaton is described by its set of finite traces (sequences of external
actions), and the notion that one automaton implements another is captured
by inclusion of the sets of traces. The model has a collection of useful opera
tions defined, most importantly, parallel composition; these operators have the
appropriate substitutivity properties.

2.2. Modelling Transaction Systems. The automaton model is used to
describe transaction systems; in fact, an interesting aspect of the modelling is
that automata are used to describe all significant system components.

In particular, an automaton is used to model each transaction (and each sub-
transaction). An automaton is also used to model the environment of the system,
which is the (possibly human) entity that generates the initial requests to perform
top-level transactions. Other automata are used to described the data objects,
often encapsulated with object-based concurrency control and recovery proto
cols. Finally, automata are used to describe other system components such as
the scheduler component of a concurrency control protocol, which enforces global
constraints on when various operations can be submitted to objects, and when
various transactions can be created (i.e., started), committed or aborted. The
entire transaction system is then described formally as the parallel composition
of the component automata.

More specifically, a transaction automaton is an automaton T having an input
action CREATE(T), which awakens it, output actions REQUEST-CREATE(T’),
each of which requests the creation of a child transaction T’, input actions
REPORT-COMMIT(T’, v) and REPORT-ABORT(T’), which report the fate
of the child, commit or abort, to the parent transaction (in case of a commit, a
return value is also provided), and output actions REQUEST-COMMIT(T, v),

128 NANCY LYNCH

by which the transaction announces that it has completed its work. See Figure

1 for the interface description.

CREATE(T)

REQUEST_CREATE (T’)

REQUEST_COMMIT(T)

REPORT_COMMIT (T’)

REPORT_ABORT (T’)

FIGURE 1. Interface for Transaction Automaton

The transaction has no significant further constraints — it is free, for example,

to issue any number of requests to create subtransactions without waiting until

previously-created children have returned. Or it can use information about the

fate of previous children to decide what children to create next.

An environment automaton is similar to a transaction automaton in that it

also requests to create “childrell” (in this case, the top-level transactions) and

receives reports of their fates. In fact, we treat the environment formally as a

special “root” transaction T0.
A data object automaton receives inputs that are invocations of operations

on the data object, and produces outputs that are the responses to those invo

cations. For uniformity with higher levels in the nested transaction hierarchy,

the invocations are considered to be the lowest level CREATE actions, analo

gous to the creation of a subtransaction, and the responses are considered to be

the lowest level REQUEST-COMMIT actions, analogous to the announcement

by a subtransaction that it has completed. A data object automaton can also

receive other inputs, to provide it with information that it can use to execute

concurrency control and recovery protocols. See Figure 2 for a sample interface

description. A scheduler automaton receives all the requests from all the other

components as inputs, and issues decisions about when CREATE’s, COMMIT’s,

ABORT’s and REPORT’s should occur.

3. Correctness

Now I describe the correctness condition to be satisfied by transaction systems.

Informally, the requirement is that the system should look to its environment “as

ATOMIC TRANSACTIONS FOR MULTIPROCESSOR PROGRAMMING 129

FIGURE 2. Interface for Object Automaton

if each set of sibling transactions executes strictly serially”; moreover, it should
look “as if aborted transactions never performed any activity at all”. In order to
say this formally, it is nicest just to give a formal definition of a serial system —

a transaction system in which the transactions do in fact execution serially, and
in which aborted transactions never do perform any activity.

3.1. Serial Systems. A serial system is a transaction-processing system, as
described above, in which the scheduler component is a serial scheduler, which
runs siblings serially. The easiest way to describe this serial scheduler automaton
is by giving explicit code in a simple guarded command language. In this repre
sentation, there is a piece of code for each action; in each case, the precondition
is given as a predicate on the pre-state s, while the modifications are given by
assignment statements. In this case, the state consists of the six indicated sets,
all initially empty (except that create-req initially contains {To}); completed is
an abbreviation for committed U aborted. The code appears in Figure 3.

The interesting actions are CREATE and ABORT. For example, an CREATE
action can only occur if a corresponding request has occurred and the CREATE
has not previously occurred; moreover, it cannot occur if the transaction was
previously aborted. An ABORT action can only occur under the same circum
stances. These two actions together imply that no transaction is both created
and aborted. Also, the serial scheduler does not create a transaction until each
of the transaction’s previously created sibling transactions has completed (i.e.,
committed or aborted).

3.2. Correctness Condition. Now it is easy to formulate the notion of
correctness for any transaction-processing system A. Namely, it should be the
case that any execution of A, there is an execution of the serial system that
looks exactly the same to the system’s environment. Here, “looks the same” is
interpreted in terms of projection on the states and actions of the environment.

Stronger notions of correctness can also be considered, in terms of preserv
ing the view of other system components besides the environment. For exam-

CREATE(T) REQUEST_COMMIT(T)

INFORM_COMMIT_AT(X)_OF(T)

INFORM_ABORT_AT(X)_OF(T)

132 NANCY LYNCH

CREATE(T)
Effect:

created := created U {T}
INFORMCOMMITAT(X)OF(T)

Effect:
irttentiorts(parent(T)) := imteritions(parent(Tflintentions(T)

intentions(T) := A

INFORMABORTAT(X)OF(T)
Effect:

interitions(U) := A, U C desc(T)
REQUEST_COMMIT(T,v)

Precondition:
T C created — commit-req
there do not exist U, (T’, v’) such that

(T, v) does not commute with (T’, v’)
(T’, v’) e interitiorts(U)
U 0 ancestors(T)

perform(total(T)(T, v)) is a behavior of 8(X)

Effect:
commit-req := commit-req U {T}
interetions(T) := (T, v)

FIGURE 4. ‘ifransition Relation for General Commutativity

based Locking Object

In the code for REQUEST-COMMIT above, we interpret the condition that

(T’, v’) is an element of irtteritions(U) as meaning that U holds a “(T’, v’)-lock”.

The use of the term “forward commutativity” rather than simply “commu

tativity” in the code indicates that there are some subtleties in the notion of

commutativity. The subtleties have to do with the fact that some invocations

can have more than one possible response, or possibly no response, defined.

These subtleties are sorted out in [15].

The scheduler used in this locking algorithm is very nondeterministic, creating,

committing, aborting and reporting the fates of transactions in any order, subject

to basic well-formedness constraints. The complete locking system is modelled by

the composition of the transaction, environment, object and scheduler automata.

Correctness for this system says that its executions look like executions of the

serial system to the environment, as well as to all non-orphan transactions.

Figure 5 contains a variant of the general locking protocol “optimized” for the

case of read-write objects, This protocol is essentially due to Moss [20]. Note

that only the objects differ from the corresponding components in the general

locking protocol — the transaction, environment and scheduler automata are the

same as in the general protocol.

4.2. Pseudotime Algorithms. Pseudotime-based protocols use a different

strategy for establishing an apparent serial order for transactions. Namely, the

scheduler assigns a pseudo time interval, an interval of real time, to each trans

action before creating it. These intervals are assigned in a nested way, so that

ATOMIC TRANSACTIONS FOR MULTIPROCESSOR PROGRAMMING 133

CREATE(T)
Effect:

created : created U {T}
INFORMCOMMITAT(X)OF (T)

Effect:
if T E write-locks then

write-locks := write-locks — {T} U {parent(T)}
val(paremt(T)) := vl(T)

if T E read-locks then

read-locks : read-locks — {T} U {parent(T)}
INFORMABORTAT(X)OF(T)

Effect:
write-locks := write-locks — desc(T)
read-locks := read-locks — desc(T)

REQUESTCOMMIT(T,v), T a read
Precondition:

T created — commit-req
write-locks C ancestors(T)
v = val(least(write-locks))

Effect:
commit-req : commit-req U {T}
read-locks := read-locks U {T}

REQUESTCOMMIT(T,v), T a write
Precondition:

T created — commit-req
write-locks U read-locks C ancestor5(T)
v =

Effect:
commit-req := commit-req U {T}
write-locks := write-locks U {T}
val(T) := data(T)

FIGURE 5. Transition Relation for Read/Write Locking Object

134 NANCY LYNCH

the intervals for children nre disjoint from each other and are included in the
interval of the parent. Objects use the pseudotimes of individual operations to
sort out the proper order for performing them. This protocol is essentially due
to Reed [21].

The pseudotime scheduler is modelled as a specific automaton that generates
pseudotime intervals and associates them with transactions, and the system is
modelled by the composition of the transaction, environment, object and sched
uler automata. Again, correctness for system says that its executions look like
executions of the serial system to the environment, as well as to all non-orphan
transactions. The apparent serial order is just that of the pseudotimes.

4.3. Hybrid Algorithms. Hybrid algorithms combine ideas of locking and
pseudotime-based algorithms to achieve more efficient concurrency control. As
do locking algorithms, hybrid algorithms serialize transactions so that they ap
pear to run in the order of their commit events. The difference is that the objects
obtain additional information about the commit events that they do not receive
in locking algorithms — not only the fact that the commits has occurred, but
“timestamps” indicating the precise order in which the commits happened. This
extra knowledge allows the objects to make better inferences about the commit
order; this reduced uncertainty in turn allows the object to respond sooner in
some cases in a hybrid algorithm than it could in a corresponding locking algo
rithm. This makes hybrid algorithms somewhat better candidates for efficient
extension to the multiprocessor setting.

Code for the object X in a typical hybrid protocol appears in Figure 6; note
the similarity to the code for the general locking objects. This time, a set intset
of operations rather than a sequence intentions is associated with each trans
action; again, these represent all the activity of the transaction’s descendants
that has committed to the level of the transaction. From each intset, we can
derive a corresponding intentions list by ordering the set according to the known
timestamps. The sequence total is then defined from the intentions lists as be
fore. Note that the relationship between the two operations in the code for
REQ UEST- COMMIT is slightly different from before. It is now described in
terms of a relation C, which is a symmetric serial dependency relation. This is a
formal way of describing dependencies among operations, and is closely related
to the definitions of commutntivity; again, the exact relationship is discussed in
[15].

The hybrid scheduler is a specific automaton that generates timestamps for
transactions, and the system is again modelled as the composition. Correctness
again says that the executions look like executions of the serial system to the
environment, as well as to all non-orphan transactions.

Because of the extra timestamp information, the constraints used for the
actions in the hybrid object are slightly weaker than in the locking object, which
sometimes permits faster responses. For example, in the case of a queue type data

ATOMIC TRANSACTIONS FOR MULTIPROCESSOR PROGRAMMING 135

CREATE(T)
Effect:

created := created U {T}
INFORMCOMMITAT(X)OF(T, t)

Effect:
intset (parent(T)) := intset(parent(T)) U intset(T)
intset(T) := 0
time(T) := t

TNFORM..ABORTAT(X)OF(T)
Effect:

intset(U) := 0 for all U E desc(T)
REQUESTCOMMIT(T,v)

Precondition:
T E created — commit-req
there do not exist U, (T’, v’) such that

((T,v),(T’,v’)) EQ
(T’, v’) E intset(U)
U ancestors(T)

perform(total(T)(T, v)) E S(X)
Effect:

commit-req := commit-req U {T}
intset(T) := {(T,v)}

FIGURE 6. Transition Relation for Hybrid Object

object, the commutativity-based locking protocol does not allow two enqueue
operations to proceed concurrently, because it has no way of later resolving the
eventual order in which they should be serialized. The hybrid algorithm allows
both to proceed, and uses information in obtains later about the commits of the
two transactions that invoked the enqueue operations to resolve the order.

4.4. Optimistic Algorithms. The book [15] also describes some “opti
mistic” concurrency control algorithms, omitted here. In general, in optimistic
algorithms, the objects allow operations to proceed rather freely; any inconsis
tencies are resolved later, before transactions commit. Correctness for optimistic
systems is typically weaker than that of non-optimistic systems; it says only that
executions look like executions of the serial system to the environment.

4.5. Orphan Management Algorithms. In distributed systems, various
factors, including node crashes and network delays, can result in orphan trans
actions descendants of aborted transactions — continuing to run even though
their results can no longer be used. Since locking, timestamp and hybrid systems
all guarantee that the environment, as well as non-orphan transactions, cannot
distinguish the system from a serial system, orphans do not cause any problem
with the basic notion of correctness. However, orphans can be undesirable be
cause they can waste resources and because they can see inconsistent states of
the data (if they see results that depend on the abort of their ancestors); this can
cause unanticipated behavior. The purpose of orphan management algorithms
is to eliminate activity by orphans as soon as possible, and to prevent them from

138 NANCY LYNCH

be possible to verify each algorithm by checking the view compatibility condi
tion directly for each object; however, our proofs have more modularity than
this, because we would like to preserve the possibility of “mixing and matching”
different concurrency control algorithms for different objects in the same system.
Thus, for each general type of algorithm (e.g., locking, pseudotime, hybrid), we
define a condition at the object boundaries that implies the view compatibil
ity condition, and that can be satisfied by a variety of implementations of the
same general type. For locking, pseudotime and hybrid systems, the conditions
are called dynamic atomicity, static atomicity and hybrid atomicity, respectively.
These conditions are essentially locally-checkable versions of the view compatibil
ity condition, given the specific information provided to the objects in the given
type of system. It is straightforward to show that (in the context of the appro
priate scheduler) each of these conditions implies the needed view compatibility
condition.

It remains, then, to show that each of the specific objects, e.g., the locking and
hybrid objects presented above, satisfies the appropriate boundary condition. In
each case, this argument is a fairly difficult, ad hoc induction on the number of
operations performed, using the various notions of commutativity of operations.
We do not see how to systematize or simplify these arguments. One strategy we
have followed is to use them to verify only the most general, nondeterministic
versions (not necessarily the most efficient versions) of the objects. The idea
is that we should only carry out these arguments once for each general kind of
object (locking, etc.) and then base the proofs for special case and optimized
versions of the objects on the correctness results for the nondeterministic objects.

Once we have verified the nondeterministic versions of the objects, we have
an easy time verifying the correctness of the many variants (e.g., special cases
and optimized versions). For example, the read-write locking object above can
be proved to be an implementation of the general commutativity-based locking
object, in the special case where the object is a read-write object. This proof
is done using a fairly standard forward simulation or possibilities mapping ar
gument. Such an argument involves setting up a correspondence between the
states of the high-level algorithm and those of the implementation, and proving,
using induction, that the correspondence is preserved by steps of the algorithm.
(See, e.g., [18].) This is the sort of argument that is sufficiently stylized to admit
computer assistance, though we have not done this work of mechanization.

Other proof methods are used for some of the other algorithms. For example,
the orphan management algorithms are verified using partial ordering methods.
Given an execution of a basic system without orphan management, a dependency
partial ordering is defined for the events, saying which ones might depend on
the prior occurrence of which others. The orphan management algorithm then
prunes out certain actions that would depend, in the sense of this dependency

ATOMIC TRANSACTIONS FOR MULTIPROCESSOR PROGRAMMING 139

orderiug, on the abort of an ancestor. This pruning can be done explicitly, using

piggybacking, or implicitly, using, e.g., logical clocks. Assuming that such bad

dependencies are eliminated, the remaining execution looks to each transaction,

orphan or not, as if it were a non-orphan in the basic system without orphan

management. Hence, it cannot see inconsistent states of the data.
The proofs for the replicated data algorithms are quite interesting. As de

scribed above, the presentation of the algorithms has a neat decomposition, sep

arating the issues of replica management and concurrency control. The replica

management is expressed by subtransactions in a serial system B, replacing log

ical accesses in another serial system A. The fact that these two serial systems

correspond in the right way is proved using fairly standard assertional reasoning,

including forward simulation arguments. Once we have correctness of the serial

system B, correctness of concurrent versions of B follows by the correctness,

already proved, of the locking, pseudotime, hybrid, or optimistic algorithm used

to manage the concurrency. Thus, the keys to the proof here are the nice prob
lem decomposition, and the use of correctness results already proved for other

concurrency control algorithms.

6. Conclusions

In this paper, I have outlined how we have formalized the notion of atomic

transaction, including considerations of nesting, aborts, and general data types.

We have defined the correctness conditions that transactions have to satisfy, have

presented a wide variety of important concurrency control protocols, and have
carried out complete correctness proofs. There are several other protocols that
have been proved correct using this framework but that do not appear in the

book [15]. These deal, in particular, with multigranularity locking [9, 13] and

with recovery protocols [3].

My hope is that much of this work will carry over to the setting of multiproces

sors. Transactions seem to be useful programming constructs for expressing the

data-manipulation requirements of some typical large data-processing parallel

applications such as the human genome project. Newer multiprocessor architec
tures look a great deal like distributed systems, with all the anomalies of timing
and failures. Thus, it seems as though transactions should be useful in this

setting.
Of course, there is much work to be done in determining how transactions

are to be implemented in multiprocessors. Each individual transaction and sub

transaction can run on a single processor. There will be processor allocation

issues, since there will be a great deal of freedom in deciding when (and where)

the various transactions in the nested transaction tree get created. The func

tion of the scheduler module will probably be decomposed into pieces that are

associated with different transactions (as it typically is in distributed systems).

140 NANCY LYNCH

The separate transaction managers can run on separate processors; these should
be located near the processors on which the associated transactions are running.
The concurrency control for each object might normally run on a single processor;
however, when the object is itself a complicated data structure, clever special-
case object implementations will probably be designed, running on a collection
of processors. These implementations might be proved correct by showing that
they satisfy the dynamic atomicity condition, or any of the other object bound
ary conditions.

Many new implementation considerations may arise for transactions in the
multiprocessor setting. In this case, I hope that we have at least provided a for
mal framework that will make it easy for implementors to reason carefully about
their implementation ideas, and even to prove formally that their algorithms are
correct.

As I have already emphasized, our strategy of working in terms of a semantic
model instead of a specific language gave us the maximum flexibility in carrying
out our correctness proofs. This strategy should also give the results maximum
applicability in new settings, involving new programming languages and archi
tectures.

This work has been a very large case study in coordinated verification of
concurrent algorithms one of the largest that has so far been done. Such
a coordinated study is valuable both for what it contributes to its application
area, and for what it teaches about the formal modelling and proof techniques.
I have tried in this paper to indicate many of the insights that have been gained
both about transaction processing and about formal modelling and verification.

I believe that many other similar coordinated verification studies should be
carried out. There are several subareas of the general area of parallel com
putation that have collections of related algorithms that could be studied in
this way. For example, there is a general issue of obtaining strong coherence
from memories with weak correctness conditions, using assumptions about ac
cess patterns by the software. Some initial work in verifying such protocols has
been done by Gibbons et al [7], but there are many other cases that could be
studied. For another example, there is a collection of work on implementation of
strongly coherent shared memory using distributed networks, where the network
is equipped with various communication capabilities such as atomic broadcast,
atomic multicast, process groups, group communication and the like. A typical
representative of this work is that of Kaashoek [11]; some preliminary work on
verifying Kaashoek’s protocols appears in [5]. For each of these subareas of par
allel computation, it should be possible to establish a suitable infrastructure of
definitions and basic theorems, building upon an underlying automaton model,
and then to use the theory to verify many algorithms in a coordinated fashion.
Doing this should provide great insights into the application areas.

ATOMIC TRANSACTIONS FOR MULTIPROCESSOR PROGRAMMING 141

Note that liveness has not been considered in this work; this is primarily

because it is not clear that any interesting liveness claims can be made for dis

tributed databases concurrency control algorithms. However, for other case stud

ies, there may be interesting liveness claims to be proved. In such cases, note that

it would be necessary to use a model that is more general than the simple au

tomaton model used above (and in [15]). In some cases, the full I/O automaton

model [17] provides sufficient machinery to express the needed liveness condi

tions. However, in some cases this will not be enough, so that a more general

model such as that in [6] or the model underlying TLA [12] will be needed.

Note finally that considerations of real time have also been neglected in this

work. There is a new body of work on real-time databases that has begun in

the real-time systems research community. This work includes implementations

of transactions that use real time in the concurrency control algorithms. It

also includes extra considerations such as time deadlines for the completion of

transactions. Modelling and verifying such algorithms will require a generalized

semantic model that gives explicit representation to real time. Recent research

has produced several candidate models, including [19, 1, 12]. These remain to

be tested on such case studies.

REFERENCES

1. Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In Automata,

Languages and Programming: Proceedings of the 17th ICALP, Lecture Notes in Computer

Science 443, pages 322—335. Springer-Verlag, 1990.
2. p. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, Reading, MA, 1987.

3. Ranjan Das. A formalization of distributed commit in data-processing systems. Bachelors

Thesis, MIT Dept. of Electrical Engineering and Computer Science, June 1992. Also, [4].

4. Ranjan Das and Alan Fekete. Modular reasoning about open systems: A case study of

distributed commit. In Proceedings of Seventh International Workshop on Software Spec

ification and Design, pages 30—39, Los Angeles, CA, December 1993. Also, [3].

5. Alan Fekete, Frans Kaashoek, and Nancy Lynch. Implementing shared objects using mul

ticast communication, February 1994. Submitted for publication.

6. Rainer Gawlick, Roberto Segala, Jørgen Søgaard-Andersen, and Nancy Lynch. Liveness in

timed and untimed systems. In Proceedings of the 21st ICALP, July 1994. To appear. Also,

Technical Report MIT/LCS/TR-587, Laboratory for Computer Science, Massachusetts

Institute of Technology, Cambridge, MA, December 1993.

7. Phillip B. Gibbons, Michael Merritt, and Kourosh Gharachorloo. Proving sequential con

sistency of high-performance shared memories. In Symp. on Parallel Algorithms and Ar

chitectures, pages 292—303, July 1991. Also, AT&T Bell Laboratories, 11211-910509-O9TM

and 11261-910509-6TM, May. 1991.
8. D. Giff’ord. Weighted voting for replicated data. In Proceedings of 7th ACM Symposium

on Operating System Principles, pages 150—162, December 1979.

9. J. Gray, R. Lone, A. Putzulo, and J. Traiger. Granularity of locks and degrees of con

sistency in a shared database. Technical Report RJ1654, IBM, San Jose, CA, September

1975.
10. M. P. Herlihy and M. McKendry. Timestamp-based orphan elimination. IEEE Transac

tions on Software Engineering, 15(7):825—831, July 1989.

11. Marinus Ftans Kaashoek. Croup Communication in Distributed Computer Systems. PhD

thesis, Centrale Buisdrukkerij VRIJE Universiteit, Amsterdam, 1992.

142 NANCY LYNCH

12. Leslie Lamport. The temporal logic of actions. Technical Report 79, Digital Systems Re
search Center, December 25 1991.

13. J. Lee and A. Fekete. Multi-granularity locking for nested transactions. In Proceedings
of 3rd Biennuel Symposium on Methemeticel Pundementels of Detebese end Knowledge
Bese Systems, volume 495 of Lecture Notes in Computer Science, pages 160—172. Springer-
Verlag, New York, NY, May 1991.

14. B. Liskov, R. Scheifler, E. F. Walker, and W. E. Weihl. Orphan detection. In Proceedings
of 17th Internetionel Symposium on Peult- Tolerent Computing, pages 2—7. IEEE, July
1987.

15. N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Trensections. Morgan Kaufmann
Publishers, 1994.

16. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. In
Proceedings of 6th ACM Symposium on Principles of Distributed Computetion, pages
137—151, August 1987. Expanded version available as Technical Report MIT/LCS/TR
387, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge,
MA, April 1987.

17. N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-Querterly,
2(3):219—246, September 1989. Also, in Technical Memo MIT/LCS/TM-373, Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, MA, November
1988.

18. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations — Part I: Untimed
systems. Submitted for publication. Also, MIT/LCS/TM-486.

19. Nancy Lynch and Frits Vaandrager. Forward and backward simulations for timing-based
systems. In Proceedings of REX Workshop “Reel- Time: Theory in Prectice”, volume 600
of Lecture Notes in Computer Science, pages 397—446, Mook, The Netherlands, June 1991.
Springer-Verlag. Also, MIT/LCS/TM-458.

20. 3. E. B. Moss. Nested Trensections: An Approech to Relieble Distributed Computing.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1981. Also, Technical
Report MIT/LCS/TR-260, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, April 1981. Also, published by MIT Press, Cambridge, MA,
March 1985.

21. D. P. Reed. Neming end Synchronizetion in e Decentrelized Computer System. PhD thesis,
Massachusetts Institute of Technology, 1978. Also, Technical Report MIT/LCS/TR-205,
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA,
October 1978.

LABOaATOaY Foa COMPUTEE SCIENCE, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAM

HaIOGE, MASSACHUSETTS 02139
E-meil eddress: lynch©theory. lcs.mit.edu

