
Distrib. Comput. (2005) 18(2): 125–155
DOI 10.1007/s00446-005-0140-9

SPEC ISSUE DISC 0 3

Shlomi Dolev · Seth Gilbert · Nancy A. Lynch ·
Alexander A. Shvartsman · Jennifer L. Welch

GeoQuorums: implementing atomic memory
in mobile ad hocad hocad hoc networks

Submitted: 21 January 2004 / Accepted: 8 December 2004 / Published online: 8 November 2005
C© Springer-Verlag 2005

Abstract We present a new approach, the GeoQuorums ap-
proach, for implementing atomic read/write shared memory
in mobile ad hoc networks. Our approach is based on asso-
ciating abstract atomic objects with certain geographic loca-
tions. We assume the existence of focal points, geographic
areas that are normally “populated” by mobile nodes. For
example, a focal point may be a road junction, a scenic
observation point, or a water resource in the desert. Mo-
bile nodes that happen to populate a focal point participate
in implementing a shared atomic object, using a replicated
state machine approach. These objects, which we call focal
point objects, are prone to occasional failures when the cor-
responding geographic areas are depopulated. The GeoQuo-
rums algorithm uses the fault-prone focal point objects to
implement atomic read/write operations on a fault-tolerant
virtual shared object. The GeoQuorums algorithm uses a
quorum-based strategy in which each quorum consists of a
set of focal point objects. The quorums are used to maintain
the consistency of the shared memory and to tolerate lim-
ited failures of the focal point objects, which may be caused
by depopulation of the corresponding geographic areas. We
present a mechanism for changing the set of quorums on
the fly, thus improving efficiency. Overall, the new GeoQuo-
rums algorithm efficiently implements read and write oper-
ations in a highly dynamic, mobile network.

S. Dolev (B)
Department of Computer Science, Ben-Gurion University
E-mail: dolev@cs.bgu.ac.il

S. Gilbert · N. A. Lynch
MIT Computer Science and Artificial Intelligence Laboratory
E-mail: {sethg, lynch}@theory.csail.mit.edu

A. A. Shvartsman
Department of Computer Science and Engineering,
University of Connecticut
E-mail: aas@cse.uconn.edu

J. L. Welch
Department of Computer Science, Texas A&M University
E-mail: welch@cs.tamu.edu

Keywords Mobile networks · Ad hoc networks · Dynamic
distributed algorithms · Fault-tolerance · Location-aware

1 Introduction

In this paper, we introduce a new approach to designing al-
gorithms for mobile ad hoc networks. An ad hoc network
uses no pre-existing infrastructure, unlike cellular networks
that depend on fixed, wired base stations. Instead, the net-
work is formed by the mobile nodes themselves, which co-
operate to route communication from sources to destina-
tions.

Ad hoc communication networks are, by nature, highly
dynamic. Mobile nodes are often small devices with limited
energy that spontaneously join and leave the network. As a
mobile node moves, the set of neighbors with which it can
directly communicate may change completely.

The nature of ad hoc networks makes it challenging to
solve the standard problems encountered in mobile comput-
ing, such as location management (e.g., [9]), using classical
tools. The difficulties arise from the lack of a fixed infras-
tructure to serve as the backbone of the network. In this pa-
per, we begin to develop a new approach that allows exist-
ing distributed algorithms to be adapted for highly dynamic
ad hoc environments.

One such fundamental problem in distributed computing
is implementing atomic [22] (or linearizable [18]) read/write
shared memory. Atomic memory is a basic service that facil-
itates the implementation of many higher-level algorithms.
For example, one might construct a location service by re-
quiring each mobile node to periodically write its current lo-
cation to the memory. Alternatively, a shared memory could
be used to collect real-time statistics, for example, record-
ing the number of people in a building. We present here a
new algorithm for atomic multi-writer/multi-reader memory
in mobile ad hoc networks.

The GeoQuorums approach. We divide the problem of im-
plementing atomic read/write memory into two parts. First,



126 S. Dolev et al.

we define a static system model, the Focal Point Object
Model, that associates abstract objects with certain fixed
geographic locales. The mobile nodes implement this model
using a replicated state machine approach. In this way, the
dynamic nature of the ad hoc network is masked by a static
model. Moreover, it should be noted that this approach can
be applied to any dynamic network that has a geographic
basis. Second, we present an algorithm to implement read-
/write atomic memory using the Focal Point Object Model.

The implementation of the Focal Point Object Model de-
pends on a set of physical regions, known as focal points.
The mobile nodes within a focal point cooperate to simulate
a single virtual object, known as a focal point object. Each
focal point supports a local broadcast service, LBcast, which
provides reliable, totally ordered broadcast. This service al-
lows each node in the focal point to communicate reliably
with every other node in the focal point. The local broadcast
service is used to implement a type of replicated state ma-
chine, one that tolerates joins and leaves of mobile nodes. If
a focal point becomes depopulated, then the associated focal
point object fails. (Note that it does not matter how a focal
point becomes depopulated, be it as a result of mobile nodes
failing, leaving the area, going to sleep, etc. Any depopula-
tion results in the focal point failing.)

The GeoQuorums algorithm implements an atomic read/
write memory algorithm on top of the geographic abstrac-
tion, that is, on top of the Focal Point Object Model. Nodes
implementing the atomic memory use a GeoCast service (as
in [4, 28]) to communicate with the focal point objects. In or-
der to achieve fault tolerance and availability, the algorithm
replicates the read/write shared memory at a number of fo-
cal point objects. In order to maintain consistency, accessing
the shared memory requires updating certain sets of focal
points, known as quorums [2, 14, 29, 32, 33]. An important
and novel aspect of our approach is that the members of our
quorums are focal point objects, not mobile nodes.

The algorithm uses two sets of quorums: (i) get-
quorums, and (ii) put-quorums, with the property that ev-
ery get-quorum intersects every put-quorum.1 There is no
requirement that put-quorums intersect other put-quorums,
or get-quorums intersect other get-quorums. The use of quo-
rums allows the algorithm to tolerate the failure of a limited
number of focal point objects.

Our algorithm uses a Global Position System (GPS) time
service, allowing it to process write operations using a single
phase; prior single-phase write algorithms made other strong
assumptions, for example, relying either on synchrony [33]
or single writers [2]. Our algorithm guarantees that all read
operations complete within two phases, but allows for some
reads to be completed using a single phase: the atomic mem-
ory algorithm flags the completion of a previous read or
write operation to avoid using additional phases, and propa-
gates this information to various focal point objects. As far

1 Elsewhere, these are usually referred to as read-quorums and
write-quorums. The operations performed by the objects in these quo-
rums, however, are not typical read and write operations. Therefore we
use the put/get terminology.

as we know, this is an improvement on previous quorum-
based algorithms.

For performance reasons, at different times it may be de-
sirable to use different sets of get-quorums and put-quorums.
For example, during intervals when there are many more
read operations than write operations, it may be preferable
to use smaller get-quorums that are well distributed, and
larger put-quorums that are sparsely distributed. In this case,
a client can rapidly communicate with a get-quorum, while
communicating with a put-quorum may be slow. If the op-
erational statistics change, it may be useful to reverse the
situation.

The algorithm presented here includes a limited “recon-
figuration” capability: it can switch between a finite number
of predetermined quorum systems, thus changing the avail-
able put-quorums and get-quorums. As a result of the static
underlying Focal Point Object Model, in which focal point
objects neither join nor leave, it is not a severe limitation to
require the number of predetermined quorum systems to be
finite (and small). The resulting reconfiguration algorithm,
however, is quite efficient compared to prior reconfigurable
atomic memory algorithms [15, 27]. Reconfiguration does
not significantly delay read or write operations, and, as no
consensus service is required (as in [27]), reconfiguration
terminates rapidly.

This paper contains three primary contributions. First,
we introduce the Focal Point Object Model, a geographic ab-
straction model which allows simple, static algorithms to be
adapted for highly dynamic environments. Second, we pro-
vide an implementation of the Focal Point Object Model us-
ing mobile nodes. Third, we implement a reconfigurable at-
omic read/write shared memory, using the static Focal Point
Object Model.

An extended abstract of this work was previously pub-
lished in the 17th International Symposium on Distributed
Computing (DISC 2003) [8]. In this paper, we more for-
mally separate the algorithm into two distinct components,
defining a Focal Point Object Model, which can be used as
the basis for other algorithms in mobile networks. We also
include complete proofs of correctness that were omitted in
the prior version.

Other approaches. Quorum systems are widely used to im-
plement atomic memory in static distributed systems [2, 13,
14, 17, 32, 33]. More recent research has pursued applica-
tion of similar techniques to highly dynamic environments,
like ad hoc networks. Many algorithms depend on recon-
figuring the quorum systems in order to tolerate frequent
joins and leaves and changes in network topology. Some
of these [6, 11, 17, 29] require the new configurations to
be related to the old configurations, limiting their utility in
ad hoc networks. Englert and Shvartsman [12] showed that
using any two quorum systems concurrently preserves atom-
icity during more general reconfiguration. Recently, Lynch
and Shvartsman introduced RAMBO [27] (extended in [15]),
an algorithm designed to support distributed shared memory
in a highly dynamic environment. The RAMBO algorithms



GeoQuorums: implementing atomic memory in mobile ad hoc networks 127

allow arbitrary reconfiguration, supporting a changing set
of (potentially mobile) participants. The GeoQuorums ap-
proach handles the dynamic aspects of the network by cre-
ating a geographic abstraction, thus simplifying the atomic
memory algorithm. While prior algorithms use reconfigura-
tion to provide fault tolerance in a highly dynamic setting,
the GeoQuorums approach depends on reconfiguration pri-
marily for performance optimization. This allows a simpler,
and therefore more efficient, reconfiguration mechanism.

Haas and Liang [16] also address the problem of im-
plementing quorum systems in a mobile network. Instead
of considering reconfiguration, they focus on the problem
of constructing and maintaining quorum systems for stor-
ing location information. Special participants are designed
to perform administrative functions. Thus, the backbone is
formed by unreliable, ad hoc nodes that serve as members
of quorum groups. Stojmenovic and Pena [31] choose nodes
to update using a geographically aware approach. They pro-
pose a heuristic that sends location updates to a north-south
column of nodes, while a location search proceeds along
an east-west row of nodes. Note that the north-south nodes
may move during the update, so it is possible that the lo-
cation search may fail. Karumanchi et al. [19] focus on
the problem of efficiently utilizing quorum systems in a
highly dynamic environment. The nodes are partitioned into
fixed quorums, and every operation updates a randomly se-
lected group, thus balancing the load. Lee et al. [23] and
Bhattacharya [3] have done simulation studies comparing
the use of probabilistic quorum systems and traditional quo-
rum systems in implementing location services for mobile
ad hoc networks.

Document structure. The rest of the paper is organized as
follows. The system model appears in Sect. 2. In Sect. 3,
we formally define an atomic object, and provide some ma-
chinery to prove that an algorithm implements an atomic ob-
ject. In Sect. 4, we define the Focal Point Object Model, and
provide a brief overview of the algorithm. Section 5 then
presents the Operation Manager, an implementation of read/
write atomic memory based on the Focal Point Object
Model, and Sect. 6 proves it correct. Section 7 then presents
the Focal Point Emulator, an implementation of the Focal
Point Object Model, and Sect. 8 includes a proof of correct-
ness. Section 9 discusses the performance of the algorithm,
and Sect. 10 concludes and presents some areas for future
research.

2 System model

In this section, we describe the underlying theoretical model,
and discuss the practical justifications. Figure 1 defines some
of the mathematical notation used throughout this paper.
Figure 3 provides an overview of the system model.

2.1 Theoretical model

Our world model consists of a bounded region of a two-di-
mensional plane, populated by mobile nodes. Each mobile

Fig. 1 Notation used throughout this paper

node is assigned a unique identifier from a set, I . The mo-
bile nodes may join and leave the system, and may fail at
any time. (We treat leaves as failures.) The mobile nodes
can move on any continuous path in the plane, with speed
bounded by a constant. We assume there exists at least one
node, i0 ∈ I .

Mobile nodes. We model the location and motion of spe-
cific mobile nodes using a (hybrid) RealWorld automaton
(see [25, 26] for a formal presentation of hybrid automata).
The RealWorld automaton represents a part of the environ-
ment, and is outside the control of the algorithm. It maintains
in its state the current location of every mobile node.

In order to model nodes joining and leaving the system,
the RealWorld automaton also maintains in its state an in-
dication for each mobile node whether it is asleep, awake
or failed. Formally, when the execution begins, the Real-
World automaton is initialized with a set, A ⊆ I , of mobile
nodes. Each mobile node is similarly initialized with an indi-
cator as to whether it begins the execution awake or asleep.
A new node i is woken up when the RealWorld automaton
sends a wakeupi action to node i , and adds i to A. A node
i fails when the RealWorld automaton sends a faili action
to node i and removes i from A. Throughout this paper, for
clarity of presentation we omit the formal details relating
to a node waking up: each automaton described in this pa-
per can be trivially transformed to only perform operations
when it is awake. Similarly, each of the automaton can be
trivially transformed to only perform operations when it has
not failed.

The RealWorld automaton contains a Geosensor com-
ponent that maintains the current location of each mobile
node. It also maintains the current real time. The time is rep-
resented as a nonnegative real number.

The computation at each mobile node is modeled by
a set of asynchronous (hybrid) automata (interacting via



128 S. Dolev et al.

shared actions), each formed by augmenting a regular I/O
automaton with continuous inputs from the Geosensor com-
ponent of the RealWorld, along with the fail and wakeup
actions.

Focal Points. While we make no assumptions about the mo-
tion of the mobile nodes, we do assume that certain regions
are usually “populated” by mobile nodes. We assume that
there exists a collection of non-intersecting regions in the
plane, called focal points, such that (i) “most” focal points
remain “populated” during an execution, and (ii) the mo-
bile nodes in each focal point are able to implement a re-
liable, atomic broadcast service. We define these properties
more formally in the next paragraph. Condition (i) is used to
ensure that sufficiently many focal points remain available.
Once a focal point becomes unavailable due to “depopula-
tion”, we do not allow it to recover if it is repopulated. Con-
dition (ii) ensures that all mobile nodes within a focal point
can communicate reliably with each other, and that messages
are totally ordered. We assume that each mobile node is ini-
tialized with a list of all the focal points, indicating their
location and the region covered by each.

More formally, a focal point consists of a unique iden-
tifier, chosen from the set O , and a contiguous geographic
region in the plane. No two focal points intersect. A node
is in a focal point at some point in the execution if (ac-
cording to the RealWorld automaton) its location is within
the region defined by the focal point. A focal point is popu-
lated throughout a finite execution if there exists a sequence,
j0, . . . , jk of mobile nodes with the following properties:

• Node j0 is in the focal point when the execution begins.
That is, the location of node j0 at the beginning of the
execution (as determined by the RealWorld automaton)
is within the region specified for the focal point.

• For all � < k, node j�+1 enters the focal point suffi-
ciently far in advance before node j� leaves the focal
point. Node j�+1 remains in the focal point sufficiently
long after node j� leaves the focal point.

• Node jk is in the focal point at the end of the execution.

A focal point is populated throughout an infinite execution
if it is populated for all finite prefixes of the execution.

Notice that this definition requires a mobile node to join
a focal point “sufficiently prior” to the earlier node leaving
and remains in the focal point “sufficiently long” after the
earlier node leaves. We intentionally avoid defining “suffi-
ciently prior and “sufficiently long” precisely; however, this
time interval must be long enough for the focal point join
protocol to complete. This protocol requires two messages
to be broadcast, and therefore this “sufficient” time will be
proportional to a small number of message broadcast time
intervals. If a focal point is populated throughout an execu-
tion, it said to be correct. If a focal point is not correct, it is
said to fail. We assume that at most f focal points fail during
an execution.

LBcast service. One reason that we are able to tolerate such
dynamic mobile nodes moving in such unpredictable ways

is that we assume relatively strong, though reasonable, com-
munication services. For each focal point, we assume a reli-
able, atomic broadcast service. The atomic broadcast service
for focal point h, LBcasth , supports the following actions for
each mobile node i :

• Input lbcast(m)h,i
• Output lbcast-rcv(m)h,i

where m is an arbitrary message to be sent. (Notice that the
first index of the action indicates the focal point; the second
index indicates the node at which the action takes place.)
The LBcast service satisfies the usual requirements of a re-
liable, atomic broadcast service, with the exception that its
guarantees hold only for mobile nodes that are in the focal
point. Specifically, for any arbitrary focal point, h, the fol-
lowing hold:

Reliable delivery: Assume that mobile node i performs an
lbcast(m)h,i event using the LBcasth,i service, and that
node i is in focal point h when the lbcast occurs. Then
for every mobile node, j (potentially the same as node
i), that is in focal point h when the message is sent,
and remains in the focal point forever thereafter2 and
does not fail (i.e., receive a failure notification from
the RealWorld automaton), a lbcast-rcv(m)h, j event
eventually occurs, delivering the message to node j .

Integrity: For any LBcast message m and mobile node i , if
an lbcast-rcv(m)h,i event occurs, then (1) node i is in
focal point h when the message is received, and (2) an
lbcast(m)h,� event precedes it, for some mobile node
�, and this node � is in focal point h when the lbcast
occurs.

No duplication: For any message m and mobile node i , if
at most one lbcast(m)h,∗ event occurs, then at most
one lbcast-rcv(m)h,i event occurs. (The algorithms
presented ensure that each message is sent at most once.)

Total order: There exists a total ordering, m1, . . . , mk of all
messages sent on the LBcasth service during the execu-
tion such that if some mobile node, i , receives messages
mr and mt , then i receives mr prior to mt if and only if
r < t . Notice that there is no requirement that this total
ordering relate in any way to the real time order in which
the messages were sent.

GeoCast service. The mobile nodes also depend on a global
message delivery service, GeoCast. The GeoCast service
delivers a message to a specified destination point in the
plane and every node within a certain radius of that desti-
nation. Formally, then, the GeoCast service is parameterized
by some constant R which determines the size of the des-
tination region. The constant R is chosen to be larger than
the radius of the largest focal point, where the “radius” of a

2 Note that after the message is received, node j may of course leave
the focal point.



GeoQuorums: implementing atomic memory in mobile ad hoc networks 129

focal point is defined in the natural way as the smallest dis-
tance such that for some “center” of the focal point the entire
region is circumscribed by a circle with the specified radius.
Therefore, a GeoCast message can be sent to every mobile
node in a focal point by sending a message to the center of
the focal point.

For mobile node i , the GeoCast service supports the fol-
lowing two actions:

• Input geocast(m, d)i
• Output geocast-rcv(m, d)i

where m is an arbitrary message to be sent and d ∈ L is the
destination location.

If the message is destined for all the nodes in a fo-
cal point, then d is the center of the focal point. Alter-
natively, if the message is destined for an individual mo-
bile node j , then d is some location that (hopefully) is
near to node j . The GeoCast service has the following
properties:

Reliable delivery: Assume that the mobile node i performs
a geocast(m, d)i action. Then for every mobile node j
that is within distance R of location d when the message
is sent, and remains within distance R of location d for-
ever thereafter and does not fail, a geocast-rcv(m, d) j
event eventually occurs, delivering the message to
node j .

Integrity: For any GeoCast message m and mobile node i ,
if a geocast-rcv(m, d)i event occurs, then (1) node i
is within distance R of location d when the message is
received, and (2) a geocast(m, d)� event precedes it,
for some mobile node �.

No duplication: For any message m and mobile node i , if
at most one geocast(m)∗ event occurs, then at most
one geocast-rcv(m)i event occurs. (The algorithms
presented ensure that each message is sent at most once.)

Delivery time: Each message takes some time > 0 to be
delivered. (This ensures that each operation takes some
time > 0 to complete.)

Configurations. A configuration, c, consists of three com-
ponents: members(c), get-quorums(c), and put-quorums(c).
The set members(c) is a collection of focal point identi-
fiers, and determines which focal points are part of the con-
figuration. (Recall that each focal point has an identifier
in O .)

The sets put-quorums(c) and get-quorums(c) are col-
lections of quorums; each quorum is a set of focal point
identifiers. Each focal point in a quorum is a member
of the configuration. That is, each quorum is a subset of
members(c).

Every get-quorum intersects every put-quorum. That is,
if G ∈ get-quorums(c) and P ∈ put-quorums(c), then:

• G ∩ P �= ∅.

Moreover, if any f focal points fail, then at least one
get-quorum and one put-quorum survive intact. That is, for
any set of f focal point identifiers, F , there exists a quorum
G ∈ get-quorums(c) and P ∈ put-quorums(c) such that:

• F ∩ G = ∅
• F ∩ P = ∅.

Thus, an algorithm based on these quorums can tolerate f
focal points failing.

We assume a fixed set of configurations that is finite, or-
dered, and known in advance to all mobile nodes. Each con-
figuration is assigned a name in M (the set of configuration
names).

Each configuration proposal is identified by a tuple of
three components: a time when the configuration is pro-
posed, the node (∈ I ) that proposed the configuration, and
the name of the configuration (∈ M) that is being proposed.
We refer to such a tuple (i.e., an element of C) as a configu-
ration identifier.

As long as no mobile node proposes more than one
configuration at a given instant, then every configuration
identifier (i.e., every proposal) created during an execution
is unique. The configuration identifiers are ordered lexico-
graphically, based first on comparing the time components,
then comparing the process identifiers, and then comparing
the configuration names.

2.2 Practical aspects

This theoretical model represents a wide class of real mo-
bile systems. First, there are a number of ways to provide
location and time services, as represented by the Geosen-
sor. GPS is perhaps the most common means, but others,
like Cricket [30], are being developed to remedy the weak-
nesses in GPS, such as the inability to operate indoors. Our
algorithms can tolerate small errors in the time or location,
though we do not discuss this.

Second, the broadcast services specified here are reason-
able. Consider the implementation of the LBcast service. If a
focal point is small enough, it should be easy to ensure that a
single wireless broadcast, with appropriate error correction,
reaches every mobile node at the focal point. If the broadcast
service uses a time-division/multiple-access (TDMA) proto-
col, which allocates each node a time slot in which to broad-
cast, then it is easy to determine a total ordering of the mes-
sages. A node joining the focal point might use a separate
reservation channel to compete for a time slot on the main
TDMA communication channel, with a fixed, finite number
of time slots. This would eliminate collisions on the main
channel, while slightly prolonging the process of joining a
focal point.

A GeoCast service is also a common communication ser-
vice in mobile networks: a number of algorithms have been
developed to solve this problem, originally for the internet
protocol [28] and later for ad hoc networks (e.g., [4, 21]).

We propose one set of configurations that may be par-
ticularly useful in practical implementations. In this case,



130 S. Dolev et al.

Fig. 2 Clusters

we use two configuration c0 and c1. We take advantage
of the fact that accessing nearby focal points is usually
faster than accessing distant focal points. The focal points
can be grouped into clusters, using some geographic tech-
nique [5]. Figure 2 illustrates the relationship among mobile
nodes, focal points, and clusters. For configuration c0, the
get-quorums are defined to be the clusters. The put-quorums
consist of every set containing one focal point from each
cluster. Configuration c1 is defined in the opposite manner.
Assume, for example, that read operations are more common
than write operations (and most read operations only require
one phase). If the clusters are relatively small and are well
distributed (so that every mobile node is near to every focal

Client i

Geosensor i

Client j

LBcast kLBcast h

Geosensor j

GeoCast Service

RealWorld

geocast

geocastrcv

lbcastrcvlbcastrcv

lbcast lbcast

lbcastrcv
lbcastrcv

geocastrcv

geocast

geocastrcv

geocast

geocastrcv

geocast

lbcast lbcast

geoupdate geoupdate
failwakeup

wakeup

fail

Node jNode i

Fig. 3 Architecture of the theoretical system model. The shaded boxes represent two mobile nodes, i and j , operating in a highly dynamic
environment. Everything inside the shaded area represents programs running on the mobile node. Everything outside the shaded area represents
the general system model, including the GeoCast service, multiple LBcast services (one per focal point), and the Geosensor components of the
RealWorld for nodes i and j . The RealWorld automaton represents the physical world in which the other automata operate

point in some cluster), then configuration c0 is quite effi-
cient. On the other hand, if write operations are more com-
mon than read operations, configuration c1 is quite efficient.
Our algorithm allows the system to switch safely between
two such configurations.

Another difficulty in implementation might be agreeing
on the focal points and ensuring that every mobile node has
an accurate list of all the focal points and configurations.
Some strategies have been proposed to choose focal points:
for example, the mobile nodes might send a token on a ran-
dom walk, to collect information on geographic density [10].
The simplest way to ensure that a mobile node has access to
a list of focal points and configurations is to depend on a
centralized server, through transmissions from a satellite or
a cell-phone tower. Alternatively, the GeoCast service itself
might facilitate finding other mobile nodes, at which point
the definitive list can be discovered.

3 Atomic objects

Atomic objects play an important role in this paper. The
main result of this paper is an algorithm that implements
a highly fault-tolerant read/write atomic object that can tol-
erate a highly dynamic environment. We also discuss imple-
menting arbitrary atomic objects, using focal points. In this
section, we formally define an atomic object, as specified by



GeoQuorums: implementing atomic memory in mobile ad hoc networks 131

Fig. 4 Abstract read/write object. a is a visual representation of a read/write object, while b is the formal sequential specification

a variable type. We specify the variable type for a read/write
object, formally describe an atomic object, and discuss what
it means to implement an atomic object.

3.1 Variable types

An atomic object is specified by a variable type that de-
scribes its sequential behavior. The definition presented here
is adapted from [24] and [1]. A variable type, τ , consists of
the following components:

• V , a set of legal values (i.e., states) for the object
• v0 ∈ V , an initial value (i.e., state) for the object
• invocations, a set of invocations
• responses, a set of responses
• δ, the transition function, a mapping from:

(invocations × V ) → (responses × V )

that maps every invocation and state to a response and a
new state.

We now specify a variable type for a read/write object.
(In Sect. 5 we present a more complicated variable type as
part of our algorithm.) A read/write object has the following
variable type:

• V , an arbitrary set of values for the atomic object
• v0 ∈ V , an arbitrary initial value
• invocations = {read} ∪ {write(v) : v ∈ V }
• responses = {read-ack(v) : v ∈ V } ∪ {write-ack}
• δ is defined as follows:

– δ(read, v) → 〈read-ack(v), v〉
– δ(write(v′), v) → 〈write-ack, v′〉

In programmatic style (used later in this paper), the read-
/write variable type is expressed as the sequential specifica-
tion presented in Fig. 4b.

3.2 Canonical atomic objects

While the variable type specifies the sequential behavior of
an object, it does not specify how the object behaves when

it receives concurrent invocations. We therefore specify a
canonical atomic object automaton that indicates the legal
behaviors of an object of a given variable type. Figure 5
presents the automaton for an atomic object of type:

τ = 〈V, v0, invocations, responses, δ〉
with ports in Q, using the I/O automata formalism (see [24]
for more details).

The input and output actions are of the form
invoke(inv)p and respond(resp)p, where inv ∈ invocations,
resp ∈ responses, and p ∈ Q.

Each invocation and response takes place on a port, and
each port can support only one operation at a time. Notice
that the set of ports of the atomic object is a parameter of
the canonical object. Here Q is a parameter of the canoni-
cal automaton; different instantiations of the automaton will
uses different sets for Q. In some cases, Q may simply be I ,
the set of node identifiers, in which case each mobile node
has one port on the atomic object. In other cases, Q may be
S = N

>0 × OP × I , where OP is some set of operation
identifiers (see Fig. 1), giving each mobile node a countably
infinite number of ports on the object, which allows each
mobile node more concurrent access to the object. We will
show in more detail why this is useful in Sect. 5, where we
present the Operation Manager, an algorithm that makes use
of objects with ports in S.

Figure 4a depicts the atomic object derived from the
read/write variable type. In diagrams like Fig. 4a, for clar-
ity of presentation, instead of writing invoke(read) and
the corresponding respond(read-ack), we write read and
read-ack, as the direction of the arrows makes clear the ac-
tion involved. We also omit the parameters to the invocations
and responses.

Notice that the canonical automaton is not a distributed
algorithm; it assumes centralized state that all the nodes can
access. It does, however, support concurrent read and write
invocations on different ports. The automaton simply per-
forms the operations in some order. This is consistent with
the usual notion that an atomic object serializes all of its
operations.



132 S. Dolev et al.

Fig. 5 Canonical atomic object specification

The canonical automaton is presented with no liveness
conditions. Often (as in [24]), there is an additional failp ac-
tion, for each port in Q, and a “tasks” specification requires
that as long as no failp action occurs, each invocation on p
eventually leads to a response. In this paper, we focus on for-
mally proving the safety properties (in particular, atomicity)
of our algorithms, and discuss liveness less formally.

3.3 Implementing canonical objects

We say that an automaton, U , is a well-formed environment
for an atomic object if:
1. Its outputs are exactly the invocations of the object, and

its inputs are exactly the responses of the object.
2. In every execution, for every port p, the automaton never

performs two consecutive invocations on port p without
an intervening response on port p.
We then say that an automaton, S, implements the canon-

ical (abstract) object, A, if:
1. S has the same input and output actions as A, the canon-

ical object.
2. If U is a well-formed environment, then any trace of S ◦

U is also a trace of A ◦ U . This implies that S preserves
the well-formedness and safety guarantees of A .

(Informally, a trace of an automaton is the sequence of input
and output actions occurring in an execution. The symbol ◦
represents the composition of automata, as defined in [24]).

The most common way of showing that an algorithm im-
plements an atomic object is to show that in every execu-
tion there exists a total ordering of the operations with cer-
tain properties. This ordering reflects the order in which the

operations are performed in the canonical automaton. The
following theorem is a variant of Lemmas 13.10 and 13.16
in [24].3

Theorem 1 Let A be a canonical atomic object of some
variable type, and assume that S is an automaton with the
same inputs and outputs as A, and that U is any well-formed
environment. For every execution α of S ◦ U in which every
operation completes, assume that the following holds:

Let � be the set of operations in α. Assume that there
exists a total ordering, ≺, on all the operations in � with
the following properties:

1. The total order is consistent with the external order of
invocations and responses. That is, if π completes before
π ′ begins, then π ≺ π ′.

2. Fix some π ∈ �. Let inv1, inv2, . . . , invk be the invoca-
tions of the operations preceding π in the total ordering,
indexed according to the total ordering. Let inv(π) be the
invocation that initiates π , and resp(π) be the response
that concludes π .

Let v be the value of the variable type that results from
starting with the initial value, v0, and processing the fol-
lowing invocations: inv1, inv2, . . . , invk .

Then the response to operation π is consistent with the
object being in state v. More formally, consider the event
respond(resp(π)) that occurs in α. Then for some value
v′ of the variable type, 〈resp(π), v′〉 = δ(inv(π), v).

3 Lemmas 13.10 and 13.16 in [24] are presented for a setting with
only finitely many ports, while here we allow there to be a countably in-
finite number of ports. However, nothing in the lemmas or their proofs
depends on the number of ports being finite, so the results carry over
for our setting.



GeoQuorums: implementing atomic memory in mobile ad hoc networks 133

Then traces(S ◦ U ) ⊆ traces(A ◦ U ).

Since U is an arbitrary environment, this implies that S im-
plements A.

Property 1 requires that the total ordering be consistent
with the real-world ordering of operations. Consider the ex-
ample of a read/write atomic object: this property requires
that if a write operation successfully completes and writes
some value, val, then a later read operation cannot return an
earlier value.

Property 2 requires that the total ordering of operations
be consistent with the actual responses sent during the exe-
cution, since the total ordering is supposed to represent the
order in which operations appear to happen. Consider again
the example of a read/write atomic object: Property 2 guar-
antees that if, in the real execution, a read operation returns
some value, val, then the closest preceding write operation
(in the total order) must write that same value val.

The proof of Theorem 1 is similar to that of
Lemma 13.16 in [24]:

Proof (sketch). The proof involves choosing a serializa-
tion point for each operation: the earliest point after which
the operation has begun and every operation preceding it in
the total order has begun, where ties are ordered consistently
with the total order. Property 1 ensures that the serialization
point occurs before the operation completes and Property 2
ensures that the serialized execution has the same responses
as the real execution. �

In the case of a read/write atomic object, it is necessary
to determine only a partial ordering of the operations. The
following theorem, then, is the analogue of Theorem 1, and
is proved in [24], Lemmas 13.10 and Lemma 13.164:

Theorem 2 Let A be a canonical atomic read/write object
(i.e., an object of the variable type presented in Fig. 4b),
and assume that S is an automaton with the same inputs and
outputs as A, and that U is any well-formed environment.
For every execution α of S ◦ U in which every operation
completes, assume that the following holds:

Let � be the set of operations in α. Assume that there
exists a partial ordering, ≺, on all the operations in � with
the following properties:

1. All write operations are totally ordered, and every read
operation is ordered with respect to all the writes.

2. The partial order is consistent with the external order of
invocations and responses, that is, there do not exist read
or write operations π1 and π2 such that π1 completes
before π2 starts, yet π2 ≺ π1.

3. Every read operation that is ordered after any writes re-
turns the value of the last write preceding it in the par-
tial order; any read operation ordered before all writes
returns v0.

4 In [24], a fourth property is included, assuming that each operation
is preceded by only finitely many other operation. This is unnecessary,
as it is implied by Property 2.

Then traces(S ◦ U ) ⊆ traces(A ◦ U ).

Again, since U is an arbitrary environment, this implies
that S implements A.

4 GeoQuorums overview

In this section, we present an overview of the GeoQuorums
algorithm. The algorithm consists of two independent com-
ponents: the Focal Point Emulator, which implements the
Focal Point Object Model in a highly dynamic environment
(described in Sect. 2), and the Operation Manager, an al-
gorithm that implements an atomic read/write object in the
Focal Point Object Model. The GeoQuorums algorithm is
the composition of these two sub-algorithms, resulting in an
atomic read/write object, with port set Q = I , implemented
in a mobile ad hoc network.

Our implementation is described for a single object, x ∈
X ; the composition of all the read/write objects results in a
distributed shared read/write memory.

We first define the Focal Point Object Model (Sect. 4.1)
and then provide a brief overview of the Operation Manager
(Sect. 4.3) and the Focal Point Emulator (Sect. 4.4). A de-
tailed description of the Operation Manager and a proof of
correctness appear in Sects. 5 and 6. A detailed description
of the Focal Point Emulator and a proof of correctness ap-
pear in Sects. 7 and 8.

4.1 Focal Point Object Model

The Focal Point Object Model is a simple model that hides
much of the highly dynamic behavior of the system. It is
therefore much easier to specify correct algorithms for the
Focal Point Object Model than for the general highly dy-
namic environment described in Sect. 2.

The Focal Point Object Model is a shared memory
model. The model consists of two types of entities: applica-
tion components running on mobile nodes, specified by (hy-
brid) I/O automata, and atomic objects, specified by variable
types. The clients communicate only through their interac-
tions with the atomic objects; there is no message-passing
network. We call these objects “focal point objects”, hinting
at how we later implement them. Each client has a countably
infinite number of ports onto each shared object, allowing it
to invoke concurrent operations on an object. That is, the
port set, Q of each object is S = N

>0 × OP × I , where OP
is a set of operations: get, put, confirm, and recon-done.
As is usual in shared memory models, the clients can invoke
only one operation at a time on each port of an object.

The Focal Point Object Model also guarantees that the
response to an invocation on a focal point object comes at
a strictly later time (according to the clock available to the
mobile nodes) than the invocation. This technical require-
ment indicates that the clock provides sufficient resolution
to measure the time of an operation.

This model is presented schematically in Fig. 6, where
an arbitrary application interacts with a set of focal point



134 S. Dolev et al.

Fig. 6 Focal Point Object Model. The application automata are run-
ning on the mobile nodes, and receive inputs from and send outputs
to external clients of the service. The application automata communi-
cate by invoking operations on the focal point objects. (The RealWorld
component of the model is omitted for clarity)

objects. The Focal Point Object Model guarantees that no
more than f focal point objects fail in any execution.

4.2 Example algorithm

As an example of an algorithm that uses the Focal Point Ob-
ject Model, consider the problem of implementing an unre-
liable atomic read/write memory in the Focal Point Object
Model. In this simple example, we use only a single focal
point object, obj, with port set Q = I . The focal point object
implements the read/write memory variable type presented
in Fig. 4b. Let p = i , a port for client i on object obj. When a
client, i , receives a read request, it simply invokes the read
operation on the focal point object. It does this by perform-
ing the following action: invoke(〈read〉)p. Notice that the
operation is invoked on port p = i . In this example, there
is no reason to use more than a single port per mobile node.
Eventually, the focal point object performs the following ac-
tion: respond(〈read-ack, val〉)p. At this point, the client i
can return the value. A write operation proceeds similarly,
invoking the write operation on the focal point object.

This simple algorithm solves the problem of implement-
ing unreliable read/write atomic memory in the Focal Point
Object Model. This algorithm is, effectively, a centralized
solution. If the focal point object, obj, fails (either because a
focal point itself fails, or because of message loss in the net-
work), then the read/write memory itself fails. In Sects. 4.3
and 5 we describe a fault-tolerant algorithm for read/write
atomic memory in the Focal Point Object Model.

4.3 Operation Manager overview

The Operation Manager is an algorithm designed to imple-
ment a read/write atomic object (with port set Q = I ) in the

Focal Point Object Model. Using this model significantly
simplifies the algorithm. There is no notion of mobility in
the Focal Point Object Model, and as a result, the Operation
Manager avoids much of the complexity usually associated
with an ad hoc mobile network. There is no need to handle
nodes joining and leaving in any special way, as the only
interprocess communication is through the focal point ob-
jects. The read/write atomic object is robust, guaranteeing
ongoing operation, if at most f focal point objects fail.

The Operation Manager is a quorum-based algorithm
for read/write memory. By replicating data at multiple fo-
cal point objects, and performing read and write operations
on quorums of focal point objects, the Operation Manager
ensures that the data is maintained reliably and consistently.

The Operation Manager relies on the variable type of the
focal point objects, which we call the put/get variable type.
These objects support specially defined operations, put, get,
and two others, that allow clients to send information to the
objects and retrieve information from the objects, thus ex-
changing information.

Each read and write operation uses a different port on the
focal point objects, so that earlier operations do not interfere
with later ones. (In fact, an operation may use two different
ports for two different phases during the operation.) This al-
lows for improved performance, since even if a given object
is very slow during one operation (perhaps never respond-
ing, due to a lost or severely delayed message), it may be
used in a later operation.

Figure 7 depicts the various components of the Opera-
tion Manager. The dashed black oval represents the bound-
ary interface of the Operation Manager. Notice that this

Fig. 7 Implementing atomic read/write memory in the Focal Point Ob-
ject Model. This figure depicts how the Operation Manager is imple-
mented in the Focal Point Object Model (as depicted in Fig. 6). The
dotted oval depicts the boundary between the Focal Point Object Model
and the external clients. The solid oval depicts the boundary of the
read/write atomic memory. The application automata of Fig. 6 are here
the OM Clients (Operation Manager Clients), and the focal point ob-
jects are put/get objects. (The RealWorld component of the model is
omitted for clarity)



GeoQuorums: implementing atomic memory in mobile ad hoc networks 135

interface includes three operations: read, write and recon.
Our goal is to show that the GeoQuorums algorithm im-
plements an atomic read/write object; the recon interface
should be hidden from the external environment that will
use this as a read/write object.

We therefore assume that there exists a set of recon-
figuration automata, one for each mobile node, which we
call ReconClienti , for all i in I . These reconfiguration au-
tomata generate recon requests, and they receive recon-ack
responses. They are not a part of the algorithm presented in
this paper, but rather a component specified by a client of
the GeoQuorums algorithm. We place only one restriction
on the ReconClient automata: the reconfiguration clients are
required to respect the environmental well-formedness re-
quirement that a recon request is issued only if there is
no ongoing read, write, or reconfiguration. (It would be a
relatively simple modification to completely decouple the
ReconClient automata from the read/write environment, by
allowing concurrent reconfigurations and read/write opera-
tions, as is done in RAMBO [27]. We impose this restriction
primarily for simplicity of presentation.)

When the Operation Manager is composed with both the
ReconClient automata and the focal point objects, the recon
and recon-ack actions are hidden, as are the invoke and the
respond actions on the put/get objects. This results in an
external interface consisting only of read/read-ack actions
and write/write-ack actions, as depicted by the solid black
oval in Fig. 7. This matches the external signature of a read-
/write object, as specified in Fig. 4b (with port set Q = I ).

4.4 Focal point emulator overview

The Focal Point Emulator implements the Focal Point Ob-
ject Model in an ad hoc mobile network. The nodes in a
focal point (i.e., in the specified physical region) collabo-
rate to implement a focal point object. They take advantage
of the powerful LBcast service to implement a replicated
state machine that tolerates nodes continually joining and
leaving. This replicated state machine consistently main-
tains the state of the atomic object, ensuring that the invo-
cations are performed in a consistent order at every mobile
node.

5 Operation Manager

In this section we present the Operation Manager (OM), an
algorithm built on the Focal Point Object Model. As the Fo-
cal Point Object Model contains two entities, focal point ob-
jects and mobile nodes, we present two specifications, one
for the objects (each depicted as a “Focal Point Object” in
Fig. 6) and one for the application running on the mobile
nodes (each depicted as an “Application” in Fig. 6):

• put/get variable type (Fig. 8): the variable type of the
focal point objects in the Focal Point Object Model.

Fig. 8 Definition of the put/get variable type τ

• Operation Manager Client (Figs. 9, 10, and 11): an au-
tomaton that receives read, write, and recon requests
from clients and manages quorum accesses to implement
these operations.

Figure 7 depicts the various Operation Manager compo-
nents. The Operation Manager (OM) is the collection of all
the Operation Manager Clients (OMi , for all i in I ). It is
composed with the focal point objects, each of which is an
atomic object with the put/get variable type.

5.1 The put/get variable type

The put/get variable type supports four operations: put,
get, confirm, and recon-done. The variable type is speci-
fied in Fig. 8. The put and get operations are used to set and
retrieve the value. We first describe the various state com-
ponents of the variable type, and then explain the different
operations and how they modify the state.

Variable type state components. The put/get variable type
is used to maintain a value, which is therefore the primary
component of its state. The variable type also contains a tag



136 S. Dolev et al.

Fig. 9 Operation manager client signature and state for node i in I , where τ is the put/get variable type

component in its state. Each tag consists of a nonnegative
real number (the time at which the tag was determined) and
a unique process identifier (i.e., T = R

≥0 × I , see Fig. 1). A
tag is associated with every value, and the tags determine an
ordering on the values that are stored by the put invocations
(the only invocations that modify the value component of
the state). Ordering these values allows us to order the high-
level write operations that create these values, which is nec-
essary for guaranteeing atomic consistency. The put and get
invocations take a configuration identifier, new-config-id, as
a parameter (Fig. 8, Lines 10 and 19). The put/get vari-
able type includes a config-id in its state, corresponding to
the largest configuration identifier that any put or get invo-
cation has used. The confirmed-set is a set of tags, indicat-
ing whether a tag has been confirmed. We explain later in
Sect. 5.2 when a tag is confirmed. The recon-ip flag indi-
cates whether the focal point object believes that a recon-
figuration is in progress; this is set to true true when the
object learns about a new configuration, and is set to false
when a recon-done indicates that the configuration is fully
installed.

Variable type transitions. The put/get variable type sup-
ports four types of invocations and responses. A put invo-
cation includes three parameters: the new-value, a value to
be stored in the state, the new-tag, a tag, and new-config-id,
a configuration identifier. The put invocation modifies the
value component of the state only if the invocation’s tag,
new-tag, is larger than the tag stored in the state (i.e., the

tag of the last successful put invocation, Fig. 8, Line 11).
The put invocation also modifies config-id if the invoca-
tion’s configuration identifier, new-config-id, is larger than
the identifier config-id stored in the state (Line 14). When-
ever the put invocation causes config-id to be modified, we
assume that a reconfiguration is in progress and set recon-ip
to true (Line 16).

A put invocation results in a put-ack response. The re-
sponse includes the configuration identifier stored in the
state, config-id, and an indication of whether a reconfigu-
ration is in progress, recon-ip.

A get invocation takes a single parameter:
new-config-id, a configuration identifier. The get mod-
ifies the state only if the invocation’s configuration
identifier, new-config-id, is larger than the config-id stored
in the state. In this case, the objects’ configuration identifier,
config-id, is set to the invocation’s configuration identifier,
new-config-id. As in the case of a put invocation, if the
config-id is modified, recon-ip is set to true.

A get invocation results in a get-ack response. This re-
sponse includes the tag and value stored in the state, as well
as the config-id and an indication of whether a reconfigura-
tion is in progress, that is, recon-ip. It also includes a boolean
flag indicating whether the tag is confirmed. That is, it re-
turns true if the tag is in the confirmed-set stored in the state.
Effectively, this indicates whether a confirm invocation has
previously indicated that the tag is confirmed.

A confirm invocation takes one parameter: a new-tag.
The confirmed-set component of the state is modified,



GeoQuorums: implementing atomic memory in mobile ad hoc networks 137

Fig. 10 Operation manager client invoke/respond transitions for node i

adding the tag new-tag to this set. The confirm invocation
results in a confirm-ack response.

A recon-done invocation includes a single parameter: a
new-config-id, a configuration identifier. The recon-ip com-
ponent of the state is modified if the configuration identi-
fier, new-config-id, matches the config-id stored in the state.
In this case, recon-ip is set to false. This indicates that the
configuration associated with that configuration identifier is
installed, that is, that the reconfiguration that proposed the
configuration identifier is complete. This invocation results
in a recon-done-ack response. (Note that if new-config-id
is not equal to config-id, stored in the state, the invocation
is ignored. While it may improve performance to allow the
recon-done action to modify config-id, we do not do this in
the interests of simplicity.)

5.2 Operation manager client specification

The Operation Manager Client uses the atomic objects (with
the put/get variable type) provided by the Focal Point Ob-

ject Model as replicas, invoking put operations to update the
focal point objects and get operations to retrieve the value
(and associated information) from the focal point objects.
Replication allows the Operation Manager Clients to guar-
antee fault-tolerance, tolerating the failure of up to f focal
point objects. Figure 7 depicts the implementation of a read-
/write atomic object in the Focal Point Object Model.

Signature. We first describe the signature of the Operation
Manager Client, contained in Fig. 9. The external signature
consists of read actions, write actions, and recon actions, to
initiate the appropriate operations, and read-ack, write-ack,
and recon-ack actions to indicate that the operation have
completed.

The external signature also includes invoke and
respond actions, to communicate with the focal point ob-
jects. Each of these actions is performed on some port, p,
for some object, obj.

There are also two internal actions: read-2 and recon-2.
The first of these begins the second phase of a read opera-
tion. The latter begins the second phase of a reconfiguration



138 S. Dolev et al.

Fig. 11 Operation manager client read/write/recon and geo-update transitions for node i

operation. (We describe these operations later in this
section.)

The Operation Manager Clients are composed with two
sets of automata: the focal point objects and the ReconClient
automata. The invoke/respond actions allow the Operation
Manager to communicate with the focal point objects. The
recon and recon-ack allow the Operation Manager to com-
municate with the ReconClient automata.

State. The state of an Operation Manager Client consists of
two parts: some general state that is maintained throughout
the execution, and the op record, which maintains state spe-
cific to an ongoing operation.

The confirmed-set is a set of tags associated with
operations that have completed. That is, if a tag is in
confirmed-set, then some read or write operation associated
with that tag has completed.



GeoQuorums: implementing atomic memory in mobile ad hoc networks 139

The conf-id is the largest configuration identifier that
the Operation Manager Client has received. The Opera-
tion Manager Client receives configuration identifiers from
respond actions for get-ack and put-ack responses.

The recon-ip flag indicates whether the Operation Man-
ager Client believes that a reconfiguration is in progress.
The Operation Manager Client sets this flag to true when-
ever it receives a new, larger configuration identifier (from
a respond action), and sets it to false when it receives an
indication that the reconfiguration is complete (also from a
respond action).

The clock is the current real time, as specified by the
Geosensor component of the RealWorld.

The ongoing-operations is a set of objects and ports,
indicating that an operation has been invoked on the spec-
ified port of that object, and that a response has not yet
occurred. This is used to ensure the well-formedness con-
dition that atomic objects require: there is only one opera-
tion ongoing at any given time on a given port of a given
object.

Each invocation of a focal point objects uses a port,
which consists of a sequence number, an operation identi-
fier, and a node identifier. The current-port-number stores
the sequence number component of the port. An invocation
by node i , then, uses the port 〈current-port-number, op, i〉,
where op is either put, get, confirm, or recon-done.

Every time a new phase of an operation is begun, the
current-port-number is incremented. Since only one op-
eration can take place on a port at a time, incrementing
the port number allows the new phase to perform invoca-
tions, even if old invocations on the prior port have not
completed.

The op record maintains information specific to a given
operation. The op.type field indicates the type of the ongo-
ing operation. The op.phase field indicates the phase of the
operation. (Operations may go through two phases: a get
phase and a put phase; a write operation performs only a
put phase.) The op.tag field indicates the largest tag discov-
ered during the get phase of an operation. The op.value field
indicates the value associated with that tag.

The op.recon-ip field indicates whether a reconfigura-
tion is in progress. Notice that, unlike the general recon-ip
flag, the op.recon-ip flag is never reset to false until the
phase completes. Once a reconfiguration occurs concur-
rently with some phase of an operation (and some Operation
Manager Client receives information about this reconfigura-
tion), the op.recon-ip flag is set to true for the rest of the
phase.

The op.recon-conf-id field is used to keep track of the
configuration being installed by an ongoing reconfiguration.
While the reconfiguration occurs, a new reconfiguration may
be initiated at some other mobile node. This may cause the
node’s configuration identifier, conf-id, to be modified. The
op.recon-conf-id, however, is not modified until the ongoing
reconfiguration is complete.

The op.acc set is an accumulator that maintains the set of
object identifiers of objects that have performed a respond

during the phase of an operation. A phase completes when
op.acc contains a large enough set of object identifiers;
in particular, it completes when object identifiers that are
associated with appropriate quorums are contained within
the op.acc set.

Read/write operations. The code for read/write operations
is presented in Figs. 10 and 11. We first explain how a write
operation proceeds, and then go on to explain read opera-
tions.

Each read and write operation consists of either one or
two phases. A write operation requires only a single phase,
a “put phase” that propagates the new value to at least one
quorum of focal point objects. Some read operations require
only a single phase, a “get phase”, that retrieves the value
from at least one quorum of focal point objects. Other read
operations require two phases: a “get phase”, that retrieves
the value, followed by a “put phase”, that propagates the re-
trieved value.

Assume that the read or write operation is initiated at
node i . During each phase of the operation, node i invokes
put and get operations on the focal point objects. Each in-
vocation and subsequent response uses a port.

Each phase of each operation uses a unique port. When
a phase begins, node i chooses a new port to use during that
phase by incrementing the current-port-number (for exam-
ple, Fig. 11, Line 3).

The choice of port serves two purposes. First, it ensures
that the Operation Manager Client respects the well-formed-
ness requirement of the focal point objects. Well-formedness
requires that only one operation may occur at a time on each
port of each object. By choosing a new port for each phase,
we ensure that node i can perform invocations during that
phase, regardless of earlier ongoing operations without vio-
lated well-formedness.

Second, the use of a unique port, p, for each phase al-
lows node i to be sure that any response received on port p
is the result of an invocation during the phase associated with
port p. Any response on any other port (i.e., a port that is not
identified by current-port-number) is ignored (see Fig. 11,
Line 42, for example), since it results from an earlier (com-
pleted) phase.

A write operation begins at node i when OMi receives
a write(val)i request. Node i then examines its clock to
choose a new tag for the operation (Fig. 11, Line 4). For
example, if the write is initiated at time t , then the tag is
chosen to be 〈t, i〉. At this point, the current-port-number
is incremented, choosing port p for this phase of the
operation.

The OMi automaton then begins a put phase, which per-
forms put invocations on the focal point objects (Fig. 10,
Lines 11–21). We allow invocations to happen, nondeter-
minstically, on all the focal point objects. In most cases, of
course, there is no need to contact all the focal point objects;
it is simpler, however, to allow nondeterministic invocations
and assume that an optimized implementation may impose
further restrictions.



140 S. Dolev et al.

The phase completes when the OMi automaton re-
ceives “sufficient” responses from the objects on port p
(Fig. 10, Lines 57–67). Assume that when the operation
begins, the automaton is in the configuration identified by
cid = 〈∗, ∗, c〉 (i.e., cid = conf-idi ). If all responses indicate
that c is the most recent configuration identifier and no
reconfiguration is in progress, then the operation terminates
when OMi receives at least one response from each object in
some put-quorum, P ∈ put-quorums(c) (Fig. 11, Line 12).

On the other hand, if any response indicates that a re-
configuration is in progress, then OMi waits until it receives
responses from objects in quorums of every configuration.
Specifically, the phase completes when for every configura-
tion c′ in M , there is some quorum, P ∈ put-quorums(c′)
such that every object in P has responded to node i during
the phase (Fig. 11, Line 10).

After the operation the OMi may notify objects that the
tag has been confirmed, indicating that the previous opera-
tion is complete (Fig. 10, Lines 23–29). The confirm invo-
cation uses the port 〈current-port-number, confirm, i〉, thus
ensuring that it does not conflict with put and get invoca-
tions.

A read request can complete in one of two ways: if the
value being read has been confirmed, the operation com-
pletes in one phase; otherwise, the operation completes in
two phases. When the OMi automaton receives a read re-
quest, it first begins a get phase (Fig. 11, Line 22) and
performs get invocations on the atomic objects (Fig. 10,
Lines 1–9). Again, assume that when the operation begins,
the automaton is in the configuration identified by cid =
〈∗, ∗, c〉 (i.e., cid = conf-idi ).

If all responses indicate that c is the most recent con-
figuration identifier, then the get phase terminates when
OMi receives a response from each object in some quorum
G ∈ get-quorums(c). Otherwise, the phase completes when
for every configuration c′ in M , OMi receives a response
from each object in some quorum G ∈ get-quorums(c′).

At this point, OMi chooses the value associated with the
largest tag from any of the responses and determines if the
operation is complete, or whether a second phase is neces-
sary. If the chosen tag has been confirmed, then the operation
completes (Fig. 11, Lines 24–36).

Otherwise, OMi begins a second phase, a put phase. The
put phase is similar to the protocol for the write operation
(Fig. 11, Lines 38–52): the current-port-number is incre-
mented, choosing port p for this phase of the operation; the
OMi automaton then begins a put phase, which performs put
invocations on the focal point objects (Fig. 10, Lines 11–
21); the phase completes when the OMi automaton receives
“sufficient” responses from the objects on port p (Fig. 10,
Lines 57–67).

The knowledge of the confirmed tags is used to short-
circuit the second phase of certain read operations. The sec-
ond phase is required only when a prior operation with the
same tag has not yet completed. By notifying objects when
the tag has been confirmed, the algorithm allows later oper-
ations to discover that a second phase is unnecessary.

Reconfiguration. The code for the reconfiguration algorithm
is presented in Fig. 10 (where Lines 31–38 are used by the
reconfiguration mechanism, while the rest is used also by the
read/write mechanism) and Fig. 11, Lines 68–97.

The reconfiguration algorithm differs from the reconfig-
uration processing presented in the RAMBO algorithm [15,
27]. The new algorithm eliminates the Recon service and the
associated consensus service, while limiting the number of
configurations the system can support. In RAMBO, an arbi-
trary new configuration can be proposed, while upgrading
to the new configuration requires knowledge about all active
preceding configurations. The Recon service in RAMBO uses
consensus to agree on the order of configurations, while the
configuration-upgrade operation in RAMBO uses the knowl-
edge of the order and local information about active config-
urations.

The new reconfiguration algorithm works with a known
finite set of possible configurations. The algorithm does not
use consensus because all possible preceding configurations
are known. The configuration identifiers determine a total or-
dering on the installed configurations, however it is not nec-
essary that a mobile node be aware of all prior configuration
identifiers in the total order. It is sufficient for the reconfigu-
ration algorithm to simply contact all configurations in order
to ensure that all configurations preceding it in the total order
are contacted. Because this simplification obviates the need
for a consensus service, it significantly improves efficiency.

A reconfiguration operation is a two-phase operation
similar to a two-phase read operation; it includes a get phase
and a put phase. In each phase it requires contacting appro-
priate quorums of objects from certain configurations.

A reconfiguration begins when the Operation Manager
Client receives a recon(c) input, where c names one of the
configurations in M . For the sake of this discussion, assume
that the recon is initiated at mobile node i .

First, the Operation Manager Client chooses a new, uni-
que configuration identifier, by examining the local clock,
and using its node identifier (i.e., node i) and the name of the
new configuration (i.e., configuration c). Specifically, if the
recon(c)i occurs at time t , then the configuration identifier
is cid = 〈t, i, c〉 (Fig. 11, Line 70). At the same time, node i
sets its conf-idi to the new configuration identifier (〈t, i, c〉)
and sets recon-ipi to true, to indicate that a reconfiguration
is in progress (Fig. 11, Line 71).

The OMi then chooses a new port for the operation,
incrementing the current-port-numberi (Fig. 11, Line 72).
This event starts a get phase. During the get phase, several
invoke(get, . . .)obj,p events occur (Fig. 10, Lines 1–9) for
objects obj in quorums of all configurations in M .

When a respond(get-ack, . . .)obj,p event occurs (on the
same port p), obj is added to op.acc. The phase completes
when i has received a response from every object in at least
one put-quorum and one get-quorum of each configuration
in M .

At this point, a recon-2(cid)i event occurs (Fig. 11,
Lines 75–85) and the Operation Manager Client chooses a
new port, p′ (Fig. 11, Line 83). This event begins the put



GeoQuorums: implementing atomic memory in mobile ad hoc networks 141

phase. During the put phase, several invoke(put, . . .)obj,p′
events occur (Fig. 10, Lines 11–21) for objects obj in quo-
rums of the new configuration, c.

When a respond(put-ack, . . .)obj,p′ event occur (on the
same port p′), obj is added to op.acc. The phase completes
when node i has received responses from every object in at
least one put-quorum of the new configuration, c (Fig. 11,
Line 91).

At this point, a recon-ack(cid)i event occurs (Fig. 11,
Line 87–97), ending the reconfiguration.

If conf-idi is equal to op.recon-conf-id, then recon-ipi is
set to false (Fig. 11, Line 96). Otherwise, a new configura-
tion with a larger configuration identifier has been discov-
ered by node i , and a reconfiguration for this new configu-
ration identifier may be in progress elsewhere. Therefore, in
this case, recon-ipi is left unchanged.

When a reconfiguration is not in progress, node i may
notify focal point objects that the reconfiguration for a cer-
tain configuration identifier is done, with recon-done invo-
cations (Fig. 10, Line 31–38).

Finally, notice that the reconfiguration algorithm pro-
ceeds in the same way, regardless of whether the newly pro-
posed configuration (i.e., the configuration with name c) is
the same as the old configuration: whenever the new config-
uration identifier is different from the old one, a reconfigu-
ration occurs.

6 The operation manager implements
a read/write object

In this section, we show that the Operation Manager guaran-
tees atomic consistency. We show that the Operation Man-
ager correctly implements an atomic read/write object by
showing that a partial ordering of operations exists with the
properties required by Theorem 2. We first define some nota-
tion, in Sect. 6.1. We then define a partial order, in Sect. 6.2.
Next, we prove some preliminary lemmas, in Sect. 6.3. We
then outline the main part of the proof in Sect. 6.4, and then
move on to the main body of the proof in Sect. 6.5.

6.1 Notation

We first define some notation that we use during the proof.
Throughout this section, we fix α to be an execution of the
entire system: the Operation Manager, the focal point ob-
jects, the reconfiguration clients, and the well-formed envi-
ronment, U . Additionally, we assume that every read and
write operation in α completes. Let � be the set of read and
write operations in α.

There are two ways in which a read operation may con-
clude: after two phases (see Fig. 11, Lines 24–34), or af-
ter a single phase (see Fig. 11, Lines 54–56). In the first
case, at the end of the read operation when the read-ack
occurs, op.phase = put, indicating that a “put” phase has
completed. In the second case, at the end of the read opera-
tion, op.phase = get, indicating that only a single phase, a

“get” phase, has completed. In this case, the tag, op.tag, is
in the set confirmed immediately before the read completes,
so the operation completes after only the get phase.

Every read operation begins with a read action and
ends with a read-ack action. We say that a read operation
π ∈ � that takes place at node i is a two-phase read opera-
tion if a read-2i event occurs between the readi event and
read-acki event. Operation π is a one-phase read operation
if no read2i event occurs.

We now associate a configuration identifier with each ph-
ase of a read or write operation, π , based on the value of the
conf-id of the operation’s initiator at the end of that phase.
Specifically, if π is a one-phase read operation initiated by
node i , then the “get configuration” of π , get-conf-id(π),
is the value of conf-idi when π’s read-acki event occurs,
ending the get phase. If π is a two-phase read operation,
then get-conf-id(π) is the value of conf-idi when operation
π’s read-2i event occurs, ending the get phase. (If π is a
write operation, then π has no get phase, so get-conf-id(π)
is undefined.)

If for some operation π , get-conf-id(π) = 〈t, i, c〉, then
we define get-conf (π) to be c, the name of the configuration
identified by the get-conf-id(π). We say the get-conf (π) is
the “get configuration” of π .

If π is a two-phase read operation (respectively, a
write operation), then the “put configuration identifier”
of π , the put-conf-id(π), is the value of the configura-
tion identifier conf-idi when π’s read-acki (respectively,
write-acki ) event occurs. If π is a reconfiguration opera-
tion, then the configuration identifier put-conf-id(π) is equal
to op.conf-idi when the recon-ack event occurs. (If π is
a one-phase read operation, then π has no put phase, so
put-conf-id(π) is undefined.)

If for some operation π , put-conf-id(π) = 〈t, i, c〉, then
we define put-conf (π) to be c, the name of the configuration
identified by the put-conf-id(π). We say the put-conf (π) is
the “put configuration” of π .

Next, we associate a “recon-in-progress” flag with each
phase of a read or write operation, based on the value of
op.recon-ip at the end of that phase. Specifically, if π is a
one-phase read operation initiated by node i , then we define
get-rip(π) to be the value of op.recon-ipi when operation
π’s read-acki event occurs, ending the get phase. If π is
a two-phase read operation, then get-rip(π) is the value of
op.recon-ipi when π’s read-2i event occurs, ending the get
phase.

If π is either a two-phase read operation or a write op-
eration, then we define put-rip(π) to be equal to the value
of the op.recon-ipi flag when π’s read-acki or write-acki
event occurs.

The get-rip and put-rip flags indicate whether node
i detects a reconfiguration in progress during the get or
put phase of the operation. It is sufficient to consider the
value of the op.recon-ip flag at the end of the phase,
since the flag is never set to false during the phase: none of
the invoke/respond actions set op.recon-ip to false, only
the write, read, read-2, recon, and recon-2 event might



142 S. Dolev et al.

have this effect, if recon-ip is true. If at any time during the
phase recon-ip is set to true, which happens only during a
respond event, then op.recon-ip is set to true at the same
time (for example, see Fig. 10, Lines 49–50), and it is there-
fore true at the end of the phase.

During the proof, if s is a state during the execution and
obj is a focal point object, we use the terminology s.obj to
refer to the state of the object. If x is a component of the
state of the object, we use the terminology s.obj.field to refer
to the field component of the object. For example, s.obj.tag
refers to the tag of the object obj in state s.

6.2 Partial order

We now construct an appropriate partial ordering, and then
show that it meets the necessary requirements of Theorem 2.
For a read or write operation, π ∈ �, initiated at mobile
node i , we define tag(π) as follows: tag(π) = op.tagi im-
mediately after the acknowledgment of π occurs, that is,
when the read-acki or write-acki event occurs. (In fact,
the tag is often fixed earlier in the operation, as we show
in Lemma 1.) For a reconfiguration operation, ρ, we define
tag(ρ) = op.tagi immediately after the recon-2 event oc-
curs. We then define the partial order ≺:

• For any two operations π1 and π2:

if tag(π1) < tag(π2) then π1 ≺ π2 .

• For any write operation π1, and any read operation π2:

if tag(π1) = tag(π2) then π1 ≺ π2 .

We show in Theorem 4 that this partial order, ≺, satis-
fies the three conditions of Theorem 2. The key condition to
prove about the partial ordering is that it is consistent with
the ordering of operations in α. That is, we need to show
Property 2 of Theorem 2, that if π1 and π2 are two opera-
tions, and π1 completes before π2 begins, then π2 does not
precede π1 in the partial order.

6.3 Preliminary lemmas

Before beginning the main part of the proof, we prove a few
preliminary lemmas. First we examine when during an op-
eration the tag of the operation is fixed. Then we prove some
general lemmas about the propagation of tags and values
during a put phase and the retrieval of tags and values during
a get phase.

Recall that for operation π at node i , tag(π) is defined as
the value of op.tagi when the operation completes. In fact,
if the operation has a put phase, the tag is fixed prior to the
put phase of the operation.

Lemma 1 If π is a write operation at node i , then tag(π) =
op.tagi immediately after the writei event. If π is a two-
phase read operation, then tag(π) = op.tagi immediately
after the read-2i event.

Proof. Assume π is a write operation. In this case, OMi
performs only put invocations. Notice that the response
action, respond(put-ack, . . .)i , does not update op.tagi
Therefore op.tagi does not change after the writei event un-
til the write-acki event that concludes the operation and de-
fines the tag(π).

Assume π is a read operation. Similarly, after the
read-2i event, the OMi only performs put invocations, so
again the tag op.tagi does not change after the read-2i
event, until the read-acki that concludes the operation and
defines the tag(π). �

We next note that the tag component of the focal point
object’s state is nondecreasing:

Lemma 2 For every focal point object, obj, the tag of obj is
nondecreasing. If s and s′ are two states during execution α,
and s precedes s′, then s.obj.tag ≤ s′.obj.tag.

Proof. Immediate by examination of the code that modi-
fies tag. The tag is modified only in Fig. 8, Line 13, which
is executed only if new-tag > tag. �

Next we consider how tag information is propagated dur-
ing read and write operations to focal point objects. We show
that after the put phase of an operation completes, there ex-
ists a specific quorum of objects each of which has a tag no
smaller than that of the operation.

Lemma 3 Let π be a two-phase read operation, a write op-
eration, or a reconfiguration that occurs at node i . Then
there exists a put-quorum, P, in put-conf (π) such that for
every object, obj, in P, tag(π) ≤ obj.tag anytime after π
completes.

Proof. This lemma follows from the termination condition
of the put phase of an operation. Assume that when the put
phase of π begins (i.e., immediately after the write, read-2,
or recon-2 event), p = 〈current-port-number, put, i〉, the
port number that is used throughout the phase. Also, assume
that cid = put-conf-id(π) = 〈∗, ∗, c〉.

We divide the proof of into two subcases: the case where
put-rip(π) = false, and where put-rip(π) = true.

First, consider the case where put-rip(π) = false. Re-
call that if π is a read or write operation, then the configura-
tion identifier cid (which is equal to put-conf-id(π)) is equal
to the configuration identified by conf-idi when the opera-
tion completes; if π is a reconfiguration, then cid is equal to
the configuration identifier op.conf-idi when the operation
completes. (Notice that our use of c is consistent with the
notation used in Fig. 11, Lines 8, 56 and 90).

Then the precondition for the put phase ending is that
there exists a put-quorum P ∈ put-quorums(c) such that
P ⊆ op.acci (see Fig. 11, Lines 8, 56 and 90).

An object obj is added to op.acc only when the follow-
ing event occurs: respond(put-ack, . . .)obj,p (see Fig. 10,
Lines 57–67). The focal point object model guarantees that
each respond event is caused by a unique preceding invoke
event, that is: invoke(put, t, v, cid)obj,p. Since the invoca-
tion takes place on port p, this means that it must occur after



GeoQuorums: implementing atomic memory in mobile ad hoc networks 143

the beginning of the put phase. Therefore, the tag, t, is in fact
equal to tag(π), the tag at the beginning of the put phase, by
Lemma 1 and the definition of tag(π). The focal point ob-
ject model guarantees that at some point between the invo-
cation and the response, the put transition was executed on
the object’s state, thus ensuring that the tag of the object is
no smaller than t .

We conclude, then, by Lemma 2, that for each object,
obj ∈ P , tag(π) ≤ obj.tag after operation π completes.

We now consider the case where put-rip(π) = true. As-
sume, then, that π is a two-phase read operation or a write
operation. In this case, the precondition for the put phase
ending is that for every configuration c′, there exists a put-
quorum P ∈ put-quorums(c′) such that P ⊆ op.acci (see
Fig. 11, Lines 10 and 58). Fix c′ = c.

By the same argument as before, we can conclude that
for every object, obj ∈ P , tag(π) ≤ obj.tag when operation
π completes. �

When put-rip is true there is a stronger version of this
lemma for read and write operations: there exists at least
one put-quorum for each configuration where every object
in the put-quorum has a tag no smaller than the tag of the
operation.

Lemma 4 Let π be a two-phase read operation or a write
operation, and assume it occurs at node i . If put-rip(π) =
true, then for every c ∈ M, there exists a put-quorum, P ∈
put-quorums(c), such that for every object, obj, in quorum
P, tag(π) ≤ obj.tag anytime after π completes.

Proof. This lemma follows from the termination condition
of the put phase of an operation. Assume that when the put
phase of π begins (i.e., immediately after the write, read-2,
or recon-2 event), p = 〈current-port-number, put, i〉, the
port that is used throughout the phase. Fix any arbitrary c ∈
M .

The precondition for the put phase ending is that there
exists a put-quorum P ∈ put-quorums(c) such that P ⊆
op.acci (see Fig. 11, Lines 10 and 58).

An object, obj is added to op.acc only when the follow-
ing event occurs: respond(put-ack, . . .)obj,p (see Fig. 10,
Lines 57–67). The focal point object model guarantees that
each respond event is caused by a unique preceding invoke
event: invoke(put, t, v, c)obj,p. Since this invocation occurs
on port p, this means that it must occur after the beginning of
the put phase. Therefore, the tag, t, is in fact equal to tag(π),
the tag at the beginning of the put phase, by Lemma 1 and
the definition of tag(π). The focal point object model guar-
antees that at some point between the invocation and the re-
sponse, the put transition was executed on the object’s state,
thus ensuring that the tag of the object is no smaller than t .

We conclude, then, by Lemma 2, that for each object,
obj ∈ P , tag(π) ≤ obj.tag after operation π completes.
Since for every c ∈ M there exists such a put-quorum, P ,
the lemma holds. �

We next show that a get phase effectively retrieves infor-
mation on the tags from a quorum of a certain configuration.

Lemma 5 Let π be a two-phase read operation that occurs
at node i . Then there exists a get-quorum, G, in get-conf (π)
such that for every object, obj in G, obj.tag when π begins
is ≤ tag(π).

Proof. This lemma is similar to Lemma 3, and follows
from the termination condition of the get phase of an
operation.

Assume that when the get phase begins (i.e., immedi-
ately after the read event), p = 〈current-port-number,
get, i〉, the port that is used throughout the phase. Also, as-
sume that configuration identifier cid = get-conf-id(π) =
〈∗, ∗, c〉.

We divide the proof into two subcases: the case where
get-rip(π) = false, and where get-rip(π) = true.

First, consider the case where get-rip(π) = false. Re-
call that cid, the get-conf-id(π), is equal to the configura-
tion identifier conf-idi when the get phase of the operation
completes. (Notice that our use of c is consistent with the
notation used in Fig. 11, Line 40.)

Then the precondition for the get phase ending is that
there exists a get-quorum G ∈ put-quorums(c) such that
G ⊆ op.acci (see Fig. 11, Line 44).

An object, obj is added to op.acc only when the fol-
lowing event occurs: respond(get-ack, t, v, . . .)obj,p (see
Fig. 10, Lines 40–55). The focal point object model guar-
antees that each respond event is caused by a unique pre-
ceding invoke event: invoke(get, . . .)obj,p.

Since the invocation takes place on port p, this means
that it must occur after the beginning of the get phase. The
focal point object model guarantees that the get transition
occurs sometime after the invocation and prior to the re-
sponse. Therefore, the tag t in the response is greater than
or equal to obj.tag when the invocation occurs. We therefore
conclude, by observing Fig. 10, Lines 44–45, that obj.tag ≤
tag(π) when the phase begins.

We now consider the case where get-rip(π) = true. In
this case, the precondition for the get phase ending is that for
every configuration c′, and in particular for the case where
c′ = c, there exists a get-quorum G ∈ get-quorums(c′) such
that G ⊆ op.acci (see Fig. 11, Line 42).

By the same argument as before, we can conclude that
for every object, obj ∈ G, obj.tag ≤ tag(π) when the phase
begins. �

Again, in the case where get-rip(π) is true, we can show
a stronger property: the get phase retrieves tag information
from at least one get-quorum of each configuration.

Lemma 6 Let π be a two-phase read operation that
occurs at node i . If recon-ipi = true at the end of the get
phase, then for every configuration c ∈ M, there exists a
get-quorum, G ∈ get-quorums(c) such that for every object,
obj in G, obj.tag when π begins is ≤ tag(π).

Proof. This lemma is similar to Lemma 4, and follows
from the termination condition of the get phase of an
operation.



144 S. Dolev et al.

Assume that when the get phase of operation π be-
gins (i.e., immediately after the read event occurs), the port
p = 〈current-port-number, get, i〉, the port that is used
throughout the phase. Fix any arbitrary c ∈ M .

The precondition for the get phase ending is that there
exists a get-quorum G ∈ get-quorums(c) such that G ⊆
op.acci (see Fig. 11, Line 42).

An object, obj is added to op.acc only when the fol-
lowing event occurs: respond(get-ack, t, v, . . .)obj,p (see
Fig. 10, Lines 40–55). The focal point object model guar-
antees that each respond event is caused by a unique pre-
ceding invoke event: invoke(get, . . .)obj,p.

Since the invocation takes place on port p, this means
that it must occur after the beginning of the get phase. The
focal point object model guarantees that the get transition
occurs sometime after the invocation and prior to the re-
sponse. Therefore, the tag t in the response is greater than
or equal to obj.tag when the invocation occurs. We therefore
conclude, by observing Fig. 10, Lines 44–45, that obj.tag ≤
tag(π) when the phase begins. Since for every c ∈ M there
exists such a get-quorum, G, the lemma holds. �

6.4 Outline of the operation manager proof

Our goal is to show that if we have two operations, π1 and
π2, and π1 completes before π2 begins, then π2 ⊀ π1. We
break this proof into a number of cases:

1. Operation π2 is a write operation (Lemma 7).
2. Operation π2 is a read operation and operation π1 is ei-

ther a two-phase read operation or a write operation.
(a) put-ip(π1) ∨ get-ip(π2) = true.

Either the put phase of π1 or the get phase of π2
detects a reconfiguration in progress (Lemma 8).

(b) put-ip(π1) ∨ get-ip(π2) = false.
Neither the put phase of π1 nor the get phase of π2
detect a reconfiguration in progress.

i. put-conf-id(π2) = get-conf-id(π2).
The put configuration identifer of π2 is equal to
the get configuration identifer of π2 (Lemma 9).

ii. put-conf-id(π1) > get-conf-id(π2).
The put configuration identifier of π1 is strictly
larger than the get configuration identifier of π2
(Lemma 11).

iii. put-conf-id(π1) < get-conf-id(π2).
The put configuration identifier of π1 is strictly
smaller than the get configuration identifier of
π2 (Lemma 12).

3. Operation π2 is a read operation and operation π1 is a
one-phase read operation (Lemma 14).

6.5 Proving the operation manager correct

We now proceed to examine the various cases, as outlined
above.

Case 1: Write Operation. We first consider the case where
π2 is a write operation:

Lemma 7 (Case 1) If π1 is a read or write operation, and
π2 is a write operation, and π1 completes before π2 begins,
then π1 ≺ π2.

Proof. Assume that operation π2 occurs at node i . The re-
sult follows immediately by the choice of tag(π2). The tag
op.tagi is chosen during the write(v)i action (see Fig. 11,
Line 4). It is chosen using the real-time clock (along with
a process identifier to break ties). The tag of π1 must have
been chosen at the beginning of a prior write operation, or
must be the initial value. If the tag of π1 is the initial value,
then the tag of π2 is necessarily larger. Assume, then, that
the tag of π1 originates with a prior write operation.

This prior write operation must take some time strictly
greater than zero to complete, since the write operation re-
quires performing at least one invocation on a focal point ob-
ject and receiving a response from that invocation. The focal
point object model guarantees that each operation consisting
of an invocation and a response on a focal point object takes
some time to complete: the invocation and the response do
not occur at the same time. Therefore the write operation
must take some time strictly greater than zero to complete.
Since π2 begins after π1 ends, it begins at some time strictly
greater than zero after the prior write operation begins.

This ensures that tag(π1) < tag(π2), which immediately
implies that π1 ≺ π2, as desired. �

For the rest of the proof we assume that π2 is a read opera-
tion.

Case 2: Two-Phase Read and Write Operations. We now
consider the case where π1 is either a two-phase read oper-
ation or a write operation, and π2 is a read operation. We
postpone until later the case where π1 is a one-phase read
operation.

There are two subcases to consider, depending on
whether at least one of the flags put-rip(π1) or get-rip(π2) is
true (Case 2(a)), or both flags are false (Case 2(b)).

We first consider the case where at least one of the put
phase of π1 or the get phase of π2 detects a reconfiguration
in progress (Case 2(a)). That is, if i initiates operation π1
and j initiates π2, then we assume that at least one of the
following two conditions holds:

• At the end of the put phase of π1, op.recon-ipi = true.
• At the end of the get phase of π2, op.recon-ip j = true.

Lemma 8 (Case 2(a)) Assume operation π1 is a two-phase
read or write operation at node i . Assume that π2 is a read
operation initiated at node j , and that π1 completes before
π2 begins. Assume that at least one of the following is true:

• put-rip(π1) = true, or
• get-rip(π2) = true.

Then tag(π1) ≤ tag(π2), and as a result π2 ⊀ π1.



GeoQuorums: implementing atomic memory in mobile ad hoc networks 145

Proof. In this case, at least one of the two nodes detects
a reconfiguration in progress: node i during the put phase
and/or node j during the get phase. We divide this case into
two subcases, depending on whether it is node i or node j
that detects the reconfiguration.

Subcase 1: First, assume that put-rip(π1) = true.
This implies that node i detects the reconfiguration dur-

ing the put phase of π1.
Choose c′ = get-conf (π2). Lemma 4 guarantees that

there exists a put-quorum, P ∈ put-quorums(c′), such that
for every object, obj ∈ P , tag(π1) ≤ obj.tag when π1 com-
pletes (since it guarantees this for every c′ ∈ M).

Lemma 5 guarantees that there exists a get-quorum, G,
in get-quorums(c′), the get configuration of π2, such that for
every object, obj ∈ G, obj.tag ≤ tag(π2) when π2 begins.

Then there must exist an object, obj ∈ G ∩ P , since
both are quorums of the same configuration c′ and one is a
get-quorum and the other is a put-quorum.

We already know that tag(π1) ≤ obj.tag when π1 com-
pletes. And obj.tag when π2 begins is ≤ tag(π2). Since π1
completes before π2 begins, we conclude that tag(π1) ≤
tag(π2).

Subcase 2: Next, assume that get-rip(π2) = true.
This implies that node j detects the reconfiguration dur-

ing the get phase of π2.
Choose c′ = put-conf (π1). Lemma 6 guarantees that for

every c′ ∈ M , there exists a quorum, G ∈ get-quorums(c′),
such that for every object, obj ∈ G, obj.tag ≤ tag(π2) when
π2 begins (since it guarantees this for every c′ ∈ M).

Lemma 3 guarantees that there exists a put-quorum, P ,
in put-quorums(c′), the put configuration of π1, such that
for every object, obj ∈ P , tag(π1) ≤ obj.tag when π1 com-
pletes.

Then there must exist an object, obj ∈ G ∩ P , since
both are quorums of the same configuration c′ and one is a
get-quorum and the other is a put-quorum.

We already know that tag(π1) ≤ obj.tag when π1 com-
pletes. And obj.tag ≤ tag(π2) when π2 begins. Since π1
completes before π2 begins, we conclude that tag(π1) ≤
tag(π2). �

In the next case (Case 2(b)), we assume that neither the
put phase of operation π1 nor the get phase of operation
π2 detects the reconfiguration in progress. Thus for the next
set of lemmas, we assume that put-rip(π1) and get-rip(π2)
are both false. This case has three subcases, depending on
the relationship of the put configuration identifier of π2 and
the get configuration identifier of π1. First, we assume that
these configurations identifiers are the same.

Lemma 9 (Case 2(b).i) Assume that operation π1 is a two-
phase read operation or a write operation at node i , and that
π2 is a read operation at node j . Assume that π1 completes
before π2 begins.

Also, assume that put-rip(π1) and get-rip(π2) are both
false and that put-conf-id(π1) = get-conf-id(π2). Then we
conclude that tag(π1) ≤ tag(π2), and as a result, π2 ⊀ π1.

Proof. Let cid = put-conf-id(π2) = get-conf-id(π1). As-
sume that cid = 〈∗, ∗, c〉.

Lemma 3 guarantees that there exists a put-quorum, P
such that for every object, obj ∈ P , tag(π1) ≤ obj.tag when
π1 completes.

Lemma 6 guarantees that there exists a get-quorum, G ∈
get-quorums(c) such that for every object, obj ∈ G, the tag
obj.tag ≤ tag(π2) when π2 begins.

Since P is a put-quorum and G is a get-quorum of the
configuration identified by c, there must exist some object,
obj ∈ P ∩ G.

We already know that tag(π1) ≤ obj.tag when π1 com-
pletes. And obj.tag ≤ tag(π2) when π2 begins. Since π1
completes before π2 begins, we conclude that tag(π1) ≤
tag(π2). �

We now consider the case (Case 2(b).ii) where the put
configuration identifier of π1 is larger than the get configu-
ration identifier of π2. That is, we consider the case where
put-conf-id(π1) > get-conf-id(π2). It turns out that this case
cannot occur.

We first need to show that when the recon-ip flag at node
i is set to false, this correctly indicates that the configura-
tion identified by conf-id is fully installed, meaning that the
reconfiguration that created conf-id has completed.

Since we assume in this case (Case 2(b).ii) that the flag
get-rip(π2) is false, this lemma shows that the configuration
identified by get-conf-id(π2) is fully installed prior to the
start of π2.

Lemma 10 Let α′ be a prefix of α, and let c be some config-
uration that is not the initial configuration: c �= 〈0, i0, c0〉.

Assume that at the end of α′, conf-idi = cid =
〈∗, ∗, c〉 and recon-ipi = false. Then for some node j , a
recon-ack(cid) j event occurs in α′.

Proof. Assume, without loss of generality, that α′ is the
shortest prefix of α such that for any node k, conf-idk = cid
and recon-ipk = false at the end of α′.

There are only two ways in which i can have configura-
tion identifier conf-idi = cid and flag recon-ipi set to false:
either i performs a recon-ack(cid)i action (see Fig. 11,
Line 96), or i receives a put-ack or get-ack response from
an object specifying configuration c and new-rip = false
(see Fig. 10, Lines 50–64). (The recon(c)i event does result
in conf-idi = cid, however recon-ipi is set to true.)

Assume, however, that i receives a put-ack or get-ack
from some object, obj, specifying configuration new-cid and
flag new-rip set to false. Then we know that an invoca-
tion event, invoke(recon-done, new-cid)obj,〈∗, j ′〉, must oc-
cur prior to the put-ack or get-ack from obj, as this is the
only event that can set obj.recon-ip to false.

But we assumed that i was the first node to be in this
state (i.e., α′ is the shortest prefix ending with some node



146 S. Dolev et al.

i in this state), so this recon-done invocation cannot oc-
cur. Therefore i must perform a recon-ack(cid)i . The node
i , then, satisfies the required properties of node j . �

We can now show that the get configuration identifier
of π2 is always greater than or equal to the put configuration
identifier of π1. Therefore, the second case (Case 2(b).ii) can
never occur.

Lemma 11 (Case 2(b).ii) Assume operation π1 occurs in α
at node i before operation π2 begins at node j . Assume that
π1 is a two phase read or write operation, and π2 is a read
operation.

Assume that put-rip(π1) and get-rip(π2) are both false.
Then put-conf-id(π1) ≤ get-conf-id(π2).

Proof. If put-conf-id(π1) = 〈0, i0, c0〉 (the smallest pos-
sible value for a configuration identifier), then clearly this
result is true. Assume, therefore, that put-conf-id(π1) >
〈0, i0, c0〉.

It is clear that recon-ipi is false at the end of the put
phase of π1, since op.recon-ipi = false: whenever recon-ipi
is set to true, so is op.recon-ipi , and op.recon-ip is not reset
to false until the phase is completed.

Lemma 10 then implies that for some node, k, a reconfig-
uration acknowledgment, recon-ack(put-conf-id(π1))k , oc-
curs prior to the end of the second phase of π1. In particular,
the recon-ack occurs prior to the beginning of π2.

In order for the recon to complete, a recon-2 must oc-
cur. This event completes the get phase of reconfiguration.
The precondition of recon-2 requires that for every config-
uration c′ ∈ M , there exists a quorum P ∈ put-quorums(c′)
such that P ⊆ op.acc. This implies that each object in quo-
rum P responds to a get invocation in the first phase of the
recon operation. (Notice that during a reconfiguration, there
are get invocations made on objects in put-quorums. This is
the one exception to the general rule that get operations are
invoked on objects in get quorums and put operations are
invoked on objects in put quorums.)

Choose c′ = get-conf (π2), and let the put-quorum P ∈
put-quorums(c′) be the put-quorum (described above) con-
tacted by node k prior to the recon-2 event, and therefore
prior to the start of operation π2.

When the get phase of π2 completes, there exists some
put-quorum of objects, G ∈ put-quorums(get-conf (π2)),
such that every object, obj ∈ G has responded to a get invo-
cation during the first phase of π2.

There must be some object obj in G ∩ P , as both G and
P are quorums of the same configuration, get-conf (π2), and
one is a get-quorum and the other is a put-quorum.

Recall that the reconfiguration in question is installing
the configuration put-conf-id(π1). As a result of the invoca-
tion of object obj during the get phase of the reconfiguration,
it is clear that at the end of the get phase, put-conf-id(π1) ≤
obj.config-id.

As a result of the response of object obj during the get
phase of π2, it is clear that obj.config-id ≤ get-conf-id(π2)
at the beginning of the get phase.

We thus conclude: put-conf-id(π1) ≤ get-conf-id(π2).
�

The next case to consider is when the put configura-
tion identifier of π1 is strictly smaller than the get config-
uration identifier of π2. This is the most complicated part
of the proof, and relies on showing that an intervening re-
configuration operation – the one that creates configuration
get-conf-id(π2) – relays information from π1 to π2.

Lemma 12 (Case 2(b).iii) Assume operation π1 is a two-
phase read or write operation at node i . Assume that π2 is
a read operation initiated at node j , and that π1 completes
before π2 begins.

Also, assume that put-conf-id(π1) < get-conf-id(π2). Fi-
nally, assume that put-rip(π1) and get-rip(π2) both equal
false. Then tag(π1) ≤ tag(π2), and as a result π2 ⊀ π1.

Proof. Some reconfiguration must occur in order to cre-
ate configuration get-conf-id(π2). We first identify the re-
configuration, ρ, that creates the new configuration. We
then show that tag(ρ) ≤ tag(π2). Finally, we show that
tag(π1) ≤ tag(ρ), concluding the proof.

Notice that get-conf-id(π2) �= 〈0, i0, c0〉, since it
is strictly larger than put-conf-id(π1), and 〈0, i0, c0〉 is
the smallest possible value for configuration identifier
put-conf-id(π1).

Since op.recon-ip j = false at the end of the get phase of
π2, this means that recon-ip j = false at the beginning of the
get phase of π2: this is because no action resets op.recon-ip j
to true during an operation.

Consider the prefix α′ of α whose last event is the read
event that begins π2. Then by Lemma 10, there exists some
node k that performs a recon-ack(get-conf (π2))k in α′, that
is, prior to the read j of π2. Let ρ be the recon operation
concluding with this recon-ack event.

We now show that tag(ρ) ≤ tag(π2). Lemma 3 guaran-
tees that there exists some put-quorum, P , in the put config-
uration of ρ such that for each object, obj ∈ P , tag(ρ) ≤
obj.tag at the end of the reconfiguration. Note that P is in
put-quorums(c), where c is a part of the put and get con-
figuration identifiers; that is, 〈∗, ∗, c〉 = put-conf-id(ρ) and
〈∗, ∗, c〉 = get-conf-id(π2).

Lemma 5 guarantees that there exists some get-quorum,
G ∈ get-quorums(c) such that for every object, obj ∈ G,
obj.tag ≤ tag(π2) when π2 begins.

Since G is a get-quorum and P is a put-quorum of the
configuration identified by get-conf-id(π2), there exists an
object, obj1 ∈ G ∩ P .

We have already shown that tag(ρ) ≤ obj1.tag when ρ
completes. And we have already shown that obj1.tag when
π2 begins is ≤ tag(π2). Since ρ completes before π2 begins,
we conclude from Lemma 2 that tag(ρ) ≤ tag(π2).

We next show that tag(π1) ≤ tag(ρ). Consider the re-
configuration event, recon-2(get-conf-id(π2))k , that occurs
as part of reconfiguration ρ, ending the get phase of the
reconfiguration. The precondition for the recon-2 action
requires that for every configuration c′ ∈ M , there ex-
ists a get-quorums G ∈ get-quorums(c′) such that G ⊆



GeoQuorums: implementing atomic memory in mobile ad hoc networks 147

op.acck when the event occurs. This implies that for ev-
ery object, obj ∈ G, an invoke(get, . . .)obj,p event and
a respond(get-ack, . . .)obj,p event occur during the get
phase, where p is the port number during the get phase of
the reconfiguration. As part of this get operation, a perform
event occurs at the automaton for obj.

Choose c′ = put-conf-id(π1), and let quorum G be the
get-quorum determined by the end of the get phase of the
reconfiguration. Lemma 3 guarantees that there exists some
put-quorum, P ∈ put-quorums(c′) such that for every ob-
ject, obj ∈ P , tag(π1) ≤ obj.tag at the end of π1.

Since G is a get-quorum of the configuration identified
by c′ and P is a put-quorum of the configuration identified
by c′, there exists some object, obj2 ∈ G ∩ P . We know that
tag(π1) ≤ obj2.tag when π1 completes, since an invocation
during the put phase ensure that obj2.tag is at least tag(π1).
And we know that obj2.tag ≤ tag(ρ) when ρ begins.

At this point, however, we do not know which event
came first: the invocation during the put phase of π1 or the
response during the get phase of ρ.

Since obj2 is an atomic object, it must process these two
invocations – doing perform steps in the canonical automa-
ton – in one order or the other. Assume that obj2 processes
the invocation by ρ first, that is, the perform step in response
to ρ precedes the perform step in response to π1. In this
case, the response to π1 includes a configuration identifier
no smaller than get-conf-id(π2), the configuration being in-
stalled by ρ. As a result: put-conf-id(π1) ≥ get-conf-id(π2).
This contradicts our assumption that the put configuration
identifier of π1 is less than the get configuration identifier
for π2.

Therefore, we can conclude that the invocation of obj2
for π1 precedes the response of obj2 for π2. It follows, then,
that tag(π1) ≤ tag(ρ). Combining the two inequalities,
we conclude that tag(π1) ≤ tag(π2), which implies that
π2 ⊀ π1. �

Case 3: One-phase read operations. We now address the
case of single-phase read operations. We assume that π1 is
a one-phase read operation, that is, it does not have a put
phase.

Notice that in Lemma 12, we depended significantly on
π1 propagating its tag to a put-quorum of objects. Since a
one-phase read operation has no put phase, we cannot use
this.

Instead, we rely on the fact that a one-phase read opera-
tion, π occurs only when the tag of operation π is confirmed,
indicating that another two-phase operation, π ′ has already
propagated the tag of π to a put-quorum.

We first need a lemma showing that if a tag, t , is con-
firmed, then there exists a two-phase operation that propa-
gated tag t to a put-quorum.

Lemma 13 Let α′ be a prefix of α, and assume that at some
node i , at the end of α′, the tag t ∈ confirmedi . Then there
exists an operation, π , in α′ such that tag(π) = t and π is
either a two phase read-operation or a write operation.

Proof. Without loss of generality, assume that execution
α′ is the shortest prefix of α such that at the end of α′, for
some node i , t ∈ confirmedi .

There are two ways in which a tag can be added to the
confirmed set of i : either a response from some object indi-
cates that a tag is confirmed (see Fig. 10, Line 54), or i itself
completes a two-phase operation and adds t to the confirmed
set (Fig. 11, Lines 66 and 77).

In the first case, this implies that there exists some ob-
ject, obj, that has t ∈ obj.confirmed-set at some point in α′.
However, this would imply that some other node k had per-
formed a confirm invocation on obj (Fig. 8, Line 27) in α′,
as this is the only way in which a tag can be added to an
object’s confirmed set.

This, then, implies that t ∈ confirmedk in α′, when the
confirm invocation occurs. This violates the assumption that
α′ is the shortest prefix to end with some node, i , containing
t in confirmedi .

Therefore, node i must perform a read-acki or
write-acki in α′ that adds t to confirmedi (Fig. 11, Lines 66–
77). The value op.tagi must be equal to t , because t is added
to confirmedi . Further, if the operation is a read operation,
then a precondition of the read-acki is that op.phase = put,
implying that it is a two-phase read operation. The node i ,
then, satisfies all the required properties of node j . �

Now we can show that with one-phase reads, the partial or-
dering induced by the tags is consistent with the real order-
ing of the operations:

Lemma 14 (Case 3) Assume operation π1 is a one-phase
read operation, and occurs at node i . Assume that π2 is a
read operation initiated at node j , and that π1 completes
before π2 begins. Then tag(π1) ≤ tag(π2), and as a result
π2 ⊀ π1.

Proof. Since π1 is a one-phase read operation, the asso-
ciated tag is confirmed (tag(π1) ∈ confirmedi ) when the
read-acki event occurs (Fig. 11, Line 33). Recall that the
tag, tag(π1), is the value of tagi when the read-acki event
occurs.

By Lemma 13, a two-phase operation π ′ must complete
prior to the read-acki event of π1 and tag(π1) = tag(π ′),
the tagi when the read-acki event occurs.

Since π ′ completes before the end of π1, it also com-
pletes before π2 begins. Therefore, by Lemma 12, tag(π ′) ≤
tag(π2); as a result, tag(π1) ≤ tag(π2). �

Main result. Combining the lemmas from all the vari-
ous cases (Lemma 7, Lemma 8, Lemma 9, Lemma 11,
Lemma 12, and Lemma 14), we conclude:

Theorem 3 If π1 and π2 are two operations, and π1 com-
pletes before π2 begins, then π2 ⊀ π1.

We now claim that the Operation Manager, composed
with the focal point objects, the ReconClients, and a well-
formed environment, implements a read/write atomic object.



148 S. Dolev et al.

Theorem 4 Let U be a well-formed environment. Let S
be the composition of the Operation Manager, the focal
point objects, the ReconClients and the environment, U,
where all input and output actions are hidden except for
read, read-ack, write, and write-ack. Let A be the canon-
ical atomic read/write object, an object of the variable
type presented in Fig. 4b. Then: traces(S ◦ U ) ⊆ traces
(A ◦ U )).

Proof. First, notice that S has the appropriate input and
output actions. Next, we go through the three conditions re-
quired by Theorem 2:

1. Follows from the uniqueness of the tags: each is chosen
by examining the local clock, and using process identi-
fiers to break ties.

2. Follows from Theorem 3.
3. Follows from the way in which the partial order is

defined, as a read operation is ordered directly after the
write operation whose value it returns.

�

7 Focal point emulator

In this section we present an algorithm to implement the Fo-
cal Point Object Model. The algorithm allows mobile nodes
moving in and out of focal points, communicating wiht dis-
tributed clients through the GeoCast service, to implement
an atomic object (with port set Q = S) corresponding to a
particular focal point. We refer to this algorithm as the Focal
Point Emulator (FPE).

Figure 14 depicts the various components of the FPE.
The clients (on the left) send invocations and receive
responses from the FPE Client, which simply attaches a
tag to every request and then broadcasts the request (using
the GeoCast service) to a focal point, where it is received
by multiple FPE Servers. The FPE Servers then coordinate
among themselves, using the LBcast service to determine
an ordering of the requests. They then update their local
replicas of the data object, and broadcast a response back.
The FPE Client then removes duplicates, and sends the
response to the client. The FPE Client runs on every mobile
node that wants to access this particular atomic object;
the FPE Server runs on every node and is active when that
node is in the focal point corresponding to the atomic object.

FPE client. The code for the FPE Client is presented in
Fig. 15. The FPE Client has three basic purposes. First, it
ensures that each invocation receives at most one response
(eliminating duplicates). Second, it abstracts away the Geo-
Cast communication, providing a simple invoke/respond in-
terface to the mobile node. Third, it provides each mobile
node with multiple ports to the focal point object; the num-
ber of ports depends on the atomic object being imple-
mented.

FPE server. The FPE Server is the automaton that allows
the mobile nodes in a focal point to simulate a single replica.
The FPE Server implements a replicated state machine, us-
ing the totally ordered local broadcast to ensure consistency.
Figure 12 contains the signature and state of the FPE. The
remaining code for the FPE Server is in Fig. 16.

When a node enters the focal point, it broadcasts a join-
request message using the LBcast service and waits for a re-
sponse. The other nodes in the focal point respond to a join-
request by sending the current state of the simulated object
using the LBcast service. As an optimization, to avoid un-
necessary message traffic and collisions, if a node observes
that someone else has already responded to a join-request,
then it does not respond. Once a node has received the re-
sponse to its join-request, then it starts participating in the
simulation, by becoming active.

When a node receives a GeoCast message containing an
operation invocation, it resends it with the LBcast service to
the focal point, thus causing the invocation to become or-
dered with respect to the other LBcast messages (which are
join-request messages, responses to join requests, and op-
eration invocations). Since it is possible that a GeoCast is
received by more than one node in the focal point, there is
some bookkeeping to make sure that only one copy of the
same invocation is actually processed by the nodes. We in-
clude an optimization that if a node observes that an invo-
cation has already been sent with the LBcast service, then it
does not do so.

Active nodes keep track of operation invocations in the
order in which they receive them over the LBcast service.
Duplicates are discarded using the unique operation ids. The
operations are performed on the simulated state in order. Af-
ter each one, a GeoCast is sent back to the invoking node
with the response. Operations complete when the invoking
node remains in the same region as when it sent the invoca-
tion, allowing the GeoCast to find it.

When a node leaves the focal point, it re-initializes its
variables.

A subtle point is to decide when a node should start col-
lecting invocations to be applied to its replica of the object
state. A node receives a snapshot of the state when it joins.
However by the time the snapshot is received, it might be
out of date, since there may have been some intervening
messages from the LBcast service that have been received
since the snapshot was sent. Therefore the joining node must
record all the operation invocations that are broadcast af-
ter its join request was broadcast but before it received the
snapshot. This is accomplished by having the joining node
enter a “listening” state once it receives its own join-
request message; all invocations received when a node is
in either the listening or the active state are recorded,
and actual processing of the invocations can start once
the node has received the snapshot and has the active
status.

A precondition for performing most of these actions is
that the node is in the relevant focal point. This property
is covered in most cases by the integrity requirements of the



GeoQuorums: implementing atomic memory in mobile ad hoc networks 149

Fig. 12 FPE server signature and state for node i and object obj of variable type τ = 〈V, v0, invocations, responses, δ〉

LBcast and GeoCast services, which imply that these actions
only happen when the node is in the appropriate focal point.

8 The FPE implements the focal point object model

In this section, we show that the Focal Point Emulator cor-
rectly implements the Focal Point Object Model. We focus
on a single focal point, interacting with some environment.
Since atomic objects can be composed, it suffices to show
that the focal point implements an atomic object. Fix obj to
be this focal point object.

The body of the proof consists primarily of determining
a total ordering on all operations of the atomic object for an
arbitrary execution in which all the operations complete, as
per Theorem 1. Let α be some such execution. The total or-
dering is shown to have the necessary properties, allowing
us to conclude that the algorithm correctly implements an
atomic object. In particular, we need to show that the devised
ordering is consistent with the real-time ordering of opera-
tions, and that the ordering is consistent with the responses
sent during the execution.

Let A be the abstract system consisting of an atomic ob-
ject (of an arbitrary variable type). See Fig. 13. Let S be the
system consisting of a set of FPE Clients, composed with
the GeoCast network, composed with an FPE Server, each
containing an object replica. See Fig. 14.

Fig. 13 Individual Focal Point Object, which implements an atomic
object that responds to invocations



150 S. Dolev et al.

Fig. 14 Components of the Focal Point Emulator. When an FPE Client (on the left) receives an invocation, it sends the request to all the FPE
Servers using the GeoCast service. At least one of the FPE Servers broadcasts the request to all the other FPE Servers in the focal point, using the
LBcast service. Each FPE Server then updates its Object Replica as a result of the request. At this point, at least one FPE Server send a response
to the FPE Client, using the GeoCast service

Let U be a well-formed environment. Our goal, then, is
to show that traces(S ◦ U ) ⊆ traces(A ◦ U ). We consider
an arbitrary execution, α, of the system S ◦ U in which ev-
ery operation completes. Let � be the set of operations in
α. Since every operation completes, we know that for every
π ∈ �, for some p ∈ P , an invoke(π)obj,p event occurs,
followed by a respond(π)obj,p event.

Preliminaries. We now define some preliminary notation,
after which we specify a total ordering of operations in exe-
cution α on the atomic object.

Each operation, π ∈ �, is assigned a unique identifier
by the FPE Client before it is GeoCast to the FPE Servers
(see Fig. 15, Line 3). We refer to this identifier as id(π).

The LBcast service guarantees a total ordering on all
messages sent within a focal point. For any execution, or
prefix of an execution, β, let IM(β) be the set of messages
sent (and later delivered) by the LBcast service in β.

(For the purposes of discussion, we will consider a “mes-
sage” to consist of the tuple: 〈op, inv, oid, loc〉, the tuple sent
by an lbcast.)

The set IM(β) contains one message for every lbcast(m)
event in β. Notice that this same message is delivered by
multiple lbcast-rcv(m)i events, each at a different node i .

The definition of the LBcast service guarantees that there
exists a total ordering of the messages in IM(α) that is con-
sistent with the order in which each mobile node receives the
messages. That is, if node i receives two messages mr and
mt in that order, then mr ≺ mt in this ordering.

Each of the invoke messages sent by the LBcast ser-
vice include an identifier, oid. Let id(m) be the identifier
associated with message m. This identifier is closely related
to the identifier associated with operation, id(π) that led to
this message: for all of the invoke messages, the oid is set
to the unique identifier of an operation associated with that
message. (See Fig. 16, Line 8, and notice that the enqueued
LBcast message uses the identifier from the received Geo-

Cast request). This allows us to say that certain LBcast mes-
sages are associated with each operation. However, it also
means that these identifiers are not unique: two LBcast mes-
sages may have the same identifier, because the two mes-
sages are created as a result of the same operation.

We define a total ordering on operations π ∈ � as fol-
lows, using the ordering determined by the LBcast service.
Let πi and π j be two operations in �. For operation πi ,
let m1 be the first message in IM(α) associated with op-
eration πi : id(m1) = id(πi ). The message m1 is the first
message delivered by LBcast in α that was generated by
operation πi .

Similarly, for operation π j , let m2 be the first message
in IM(α) such that id(m2) = id(π j ). We say that πi ≺ π j
if m1 ≺ m2. Since operation identifiers are unique, and an
operation can only be associated in this way with a single
message (i.e., the first), this defines a total ordering.

Properties of the Total Order. The most difficult property of
Theorem 1 to show is Property 2. We need to show that the
total ordering is consistent with the responses sent by the
FPE Servers.

Let α′ be any finite prefix of execution α, and let i be any
node. Of all the LBcast messages ordered in IM(α′), choose
m to be the largest message received by node i in α′ and not
in pending-opsi at the end of α′. More formally, choose m
such that:

1. lbcast-rcv(m)i occurs in α′
2. m /∈ �state(α′).pending-opsi
3. ∀m′ ∈ IM(α′) satisfying the preceding two conditions,

m′ ≺ m .

Here �state(α′) denotes the last state in α′. The message m
is, in effect, the most recent message that has been processed
by node i : all prior messages have been received, added to
the set pending-opsi , and removed; all later messages are in
the set pending-opsi , or have not yet been received.



GeoQuorums: implementing atomic memory in mobile ad hoc networks 151

Fig. 15 FPE client for client i and object obj of variable type τ = 〈V, v0, invocations, responses, δ〉

We define γ (α′, i) to be the state of the atomic object af-
ter processing all LBcast messages prior to (and including)
m. That is, γ (α′, i) is the state after beginning in the initial
state, v0, and processing all the invoke messages for node i
in IM(α′), stopping at message m (while skipping the “dupli-
cate” messages, referring to the same operation, that might
occur in IM(α′)). In particular, this means that γ (α′, i)
is the state after processing the operations, π1, π2, . . . , πt ,
where πt is the most recent operation that i has processed
in α′.

We show that for all prefixes α′ of execution α, if node i
has completed the join protocol, then the state of the replica
at node i is equal to γ (α′, i). That is, the state of the replica
at node i is consistent with all prior operations in IM(α′)
having occurred.

If node i has itself received all the messages in IM(α′),
this claim is immediate. In the case that node i has joined the
focal point during the execution, however, node i may have
only received some suffix of the sequence. As a result, the
main difficulty in proving the following invariant is showing
that the join protocol works, i.e. that after a node sets its
status to active, it has correctly acquired a good snapshot of
the state of the world.

Invariant 1 Let α′ be any finite prefix of execution α.
If: �state(α′).statusi = active, then: �state(α′).vali =
γ (α′, i).

Proof. We show this by induction on the length of α′. For
the base case, consider the initial state of the system, before
any actions occur in α. Let β ′ be this empty prefix of α. If i
is not in any focal point, then statusi = idle, and the result
is trivial. If i is in some focal point, then the state of vali
is v0. However, in this case IM(β ′) is empty, and as a result
γ (β ′, i) also equals v0.

For the inductive step, let s and s′ be the states before
and after the new event, respectively. Let β be the previous
prefix of α, that is, s = �state(β). Let β ′ be the new prefix
of α, that is, s′ = �state(β ′).

We know, inductively, that for any finite prefix α′
of β, for any node j , if �state(α′).status j = active,
then: �state(α′).val j = γ (α′, j)). We need to show that
�state(β ′).vali = γ (β ′, i). We now consider the various ac-
tions relevant to this claim.

• lbcast-rcv(invoke, inv, oid, loc)i : (Fig. 16, Lines 24–
28.)
Recall that the sequence IM(β ′, i) only includes mes-
sages that have been sent in β ′, received by i , and are
no longer in pending-opsi . As a result of this action,
the message, m, is added to pending-opsi , and therefore
the sequence IM(β ′, i) is equal to IM(β, i), and as a re-
sult, γ (β ′, i) = γ (β, i). By induction, we already know
that γ (β, i) = �state(β).vali . The state of the repli-
cated object is also unchanged, that is: �state(β ′).vali =
�state(β).vali . The result then follows.



152 S. Dolev et al.

Fig. 16 FPE server transitions for client i and object obj of variable type τ = 〈V, v0, invocations, responses, δ〉

• simulate-op(inv)i : (Fig. 16, Lines 36–43.)
First, when this action occurs, statusi = active, since
that is a precondition to this action (Fig. 16, Line 38).
The invoke operation removes the message from the set
pending-opsi , and therefore adds the associated invoca-
tion to IM(β, i). That is, IM(β ′, i) = IM(β, i) ∪ {m}.
Therefore: γ (β ′, i) = δ(m, γ (β, i)), since the total or-
dering guarantee of the LBcast service ensures that the
message m is ordered after every message in IM(β, i).
The state of vali was initially γ (β, i) in state s, by in-
duction. After this action, vali is set to δ(m, γ (β, i)), as
this is the definition of how the object responds to invo-
cations. This maintains the desired invariant.

• leavei : (Fig. 16, Line 45.)
In this case, statusi ← idle, and the claim is trivially
true.

• lbcast-rcv(join-ack, j id, v)i : (Fig. 16, Lines 17–22.)
This is the main interesting case of this proof. In this
action, node i sets status to active (Fig. 16, Lines 21),
if the message is a response to an outstanding join-req

previously sent by i . (If this is not the case, then this
action causes no change to statusi , pending-opsi , or
vali , and the invariant is trivially maintained.)

�

The LBcast service guarantees that if a message is re-
ceived, an earlier lbcast occurred at some node j that sent
the message. In particular, some node j previously per-
formed a lbcast(〈join-ack, j id, v〉) j .

The only action that causes a join-ack to be sent is a
prior join request begin received . Therefore, node j previ-
ously performed an lbcast-rcv(〈join-req, j id〉)i . Let β ′′ be
the prefix of β ending with the lbcast-rcv(〈join-req, j id〉) j
action.

Consider the state of node j at the end of β ′′. First, the
status, status j , must be active; otherwise node j would not
send a respond to the join request. Inductively, then, we
know that �state(β ′′).val j is equal to γ (β ′′, j). Moreover,
we can conclude that v, the value send from j to i , is also
equal to γ (β ′′, j).



GeoQuorums: implementing atomic memory in mobile ad hoc networks 153

Since vali is set to v when the join-ack message is re-
ceived, it remains only to show that:

γ (β ′, i) = γ (β ′′, j) , (1)

and we can conclude that vali = γ (β ′, i), as desired.
Let m be the largest message in IM(β ′) received by i that

is not in s′.pending-opsi . We claim that m must correspond
to node i’s join request.

First, notice that i ignores all messages that it receives
before its own join request. None of these messages are
added to pending-opsi , and therefore m is no smaller than
all such messages.

Second, notice that i adds every message it receives after
its own join request to pending-opsi because when i receives
its own join request, it sets statusi to listening (Fig. 16,
Line 13). No message is removed from the set pending-opsi
because statusi is not yet active (Fig. 16, Line 38). There-
fore m cannot be equal to any message received by i after i’s
own join request.

We conclude, then, that m is exactly i’s join request. The
state γ (β ′, i) is defined as the state reached after processing
all messages prior to m, that is, prior to i’s join request.

Notice, though, that i’s join request is exactly the last
message processed by j in β ′′ before sending a response to
i . In particular, then, γ (β ′′, j) is the state reached on pro-
cessing every message in IM(β ′′ prior to i’s join request.

Therefore, Eq. (1) holds, and the invariant holds in
state s′.

The rest of the cases are straightforward, having no effect
on the status of i , the elements of pending-opsi , or the state
of the replicated object.

We can now show that the two properties required by
Theorem 1 hold for the total ordering we have defined, and
as a result, the Focal Point Emulator, S, is a correct imple-
mentation of the Focal Point Object Model, A.

Theorem 5 For all executions, traces(S ◦ U ) ⊆ traces(A ◦
U ).

Proof. We consider the properties from Theorem 1 in or-
der:

1. This follows from Invariant 1. Let π ∈ � be an oper-
ation. The client that performs the response for π does
so because it receives a GeoCast with a response for π
from a server, say i , for the first time. Let α′ be the pre-
fix of α ending just before the simulate-op action that
caused i to enqueue the GeoCast response. The value
v determined by starting in state v0 and handling all
the invoke(πr ) operations prior to π is exactly γ (α′, i):
every preceding operation is associated with an earlier
LBcast message (by the way in which the total ordering
is defined); at the time when node i invokes operation π ,
it has removed all prior messages from the pending-ops
queue, and therefore the message associated with opera-
tion π is exactly the largest message that i has received
in α′ that is not in pending-opsi . Invariant 1 shows that
the state of vali prior to operation π is equal to γ (α′, i).

Therefore the response to operation π is exactly that ob-
tained by applying π to γ (α′, i).

2. Let message m1 be the first message associated with op-
eration πi , and let message m2 be the first message as-
sociated with operation π j . Since πi completes before
π j begins, the message m1 must be received before the
message m2 is sent, and therefore m1 precedes m2. This
then implies that πi precedes π j , as needed.

Therefore this theorem follows from Theorem 1. �

9 Performance discussion

The performance of the GeoQuorums algorithm stems from
the performance of the Operation Manager and the perfor-
mance of the Focal Point Emulator.

We first examine the performance of read and write oper-
ations, as executed by the Operation Manager. Assume that
the Focal Point Object Model guarantees that all invocations
result in a response within time T . Then if no more than f
focal point objects fail, each read or write operations takes at
most time 2T : each operation requires at most two phases,
and each phase can be completed in time T , as all the objects
can be invoked concurrently. A write operation, however re-
quires on a single phase. Similarly, many read operations
only require a single phase. These operations require at most
time T . Similarly, a reconfiguration operation takes at most
time 2T .

We next discuss the performance of the Focal Point Em-
ulator to determine the maximum time required for an in-
vocation to receive a response. We consider a focal point
object that does not fail, and we assume that a mobile node
performing an invocation does not move too far until a re-
sponse is received. In particular, such a mobile node moves
no further than distance R from the location at which it ini-
tiated the invocation (where R is a parameter defined by the
GeoCast service’s Reliable Delivery guarantee).

The performance of the focal point objects is directly
dependent on the performance of the two communication
services. Assume that every GeoCast message is delivered
within time dG , and every LBcast message is delivered
within time dL B ; let d = dG + dL B . Then every invocation
receives a response within time 2d: each phase takes at most
two round-trip messages. (An extra round of communication
may be caused by the discovery during the first round that a
reconfiguration is in progress.)

We then conclude that if a mobile node, i , initiates a read
or write operation, and no more than f focal points fail, and
node i does not move further than distance R after the op-
eration begins (until the operation completes), then the op-
eration completes within time 8d . A write operation, or a
one-phase read operation, completes within time 4d .

The algorithm as specified also allows the implementa-
tion to trade-off message complexity and latency. In each
phase of a read or write operation, the node initiating the op-
eration must perform invocations on a quorum of focal point
objects; each invocation is going to cause message traffic in



154 S. Dolev et al.

the network. It can achieve this goal by performing invo-
cations on all focal point objects concurrently, thereby en-
suring the fastest result, at the expense of a high message
complexity. Alternatively, the node can invoke only the fo-
cal point objects in a single quorum. If some of these focal
point objects have failed, and they do not all respond, the
node can perform invocations on another quorum, and con-
tinue until it receives a response from every object in some
quorum. This leads to lower message complexity, but may
take longer.

10 Conclusions and future work

We have presented a new approach, the GeoQuorums ap-
proach, to implementing algorithms in mobile ad hoc net-
works. We have presented a geographic abstraction model,
the Focal Point Object Model, and an algorithm, the Focal
Point Emulator, that implements it using mobile nodes. We
have presented the Operation Manager, which uses the static
model to implement an efficient, reconfigurable atomic read/
write memory.

The GeoQuorums approach transforms a highly dy-
namic, ad hoc environment into a static setting. This ap-
proach should facilitate the adaptation of classical dis-
tributed algorithms to ad hoc networks.

We also believe that our approach will be useful in study-
ing hybrid networks, consisting of both mobile nodes and
fixed infrastructure. In areas where there are non-mobile,
fixed participants, simpler and more efficient versions of the
FPE can be used. When nodes enter areas with no infrastruc-
ture, the more dynamic algorithm can seamlessly take over.

A major open area of research, then, is to determine other
uses of the Focal Point Object Model, and other algorithms
that rely on focal point objects. For example, it seems possi-
ble to build mobile routing services using focal point objects
to maintain routes. Similarly, the use of the Focal Point Ob-
ject Model should facilitate the design of resource allocation
and task allocation algorithms.

There are many open questions relating to the geo-
graphic abstraction itself.

It would be a natural extension to allow focal points to
recover. Currently, once a focal point object fails, it can-
not recover, even when new mobile nodes reenter it. Using
techniques developed in [7], we can allow focal point recov-
ery, thus improving the fault-tolerance of the system. On the
other hand, developing an algorithm for atomic memory that
can itself recover (when the underlying focal points recover)
remains an interesting problem.

Also using techniques developed in [7], we can im-
plement more general automata, rather than simply atomic
objects, using focal points. It remains an open question,
however, to determine how general an automaton can be
implemented. In particular, can one implement timed au-
tomata [20] using these techniques?

It is also an interesting question to consider how config-
urations should be chosen, and when reconfiguration should

occur. For example, how many configurations should the al-
gorithm use? The more configurations that are made avail-
able to the algorithm, the better the performance of read and
write operations, if the correct configuration is installed. On
the other hand, more configurations means slower reconfig-
uration and slower operations during reconfiguration.

Moreover, if there are many possible configuration, the
choice of a configuration becomes more difficult. Since there
are only a finite number of configurations to choose from, it
should be possible for the mobile nodes to determine which
configuration is optimal for a given set of read and write op-
erations. Using the techniques of competitive analysis it may
be possible to determine the optimal configuration for a se-
quence of read and write operations, even without knowing
the sequence in advance.

It would also be interesting to consider other implemen-
tations of the Focal Point Object Model. The implementa-
tion presented in this paper has two major drawbacks. First,
it requires the participation of every mobile node in a focal
point. It is easy to relax this requirement, by allowing a mo-
bile node to choose not to participate, as long as it is sure
that other nodes are participating. It may improve perfor-
mance and energy efficiency to allow only a small number
of mobile nodes – in particular, those that tend to reside the
most within the focal point – to maintain the focal point. If
a very reliable node remains continuously in the focal point
(for example, a fixed, non-mobile base station), then there is
no reason to burden too many other nodes. Second, the Focal
Point Emulator relies on a powerful local broadcast service,
LBcast. Considering the highly local nature of a focal point,
there may be implementations of the Focal Point Object
model that rely only on a weaker communication service.

We would therefore like to consider implementations
of the Focal Point Object Model that depend on a leader
election algorithm to determine a primary copy of the data
in a focal point object. It may also be possible to implement
a focal point object based on the RAMBO algorithms
([15, 27]). This would be useful in settings where global
time is not available, or where a local broadcast service was
unavailable.

We have assumed a static definition of focal points and
configurations. It remains an open question to determine
how to choose a good set of focal points, how to construct
a map of focal points in a distributed fashion, and how to
modify the set of focal points dynamically.

Overall, we believe that the Focal Point Object Model
will significantly simplify the development of algorithms for
mobile, highly dynamic networks. This research motivates a
number of interesting open questions related to both prac-
tical implementations of this abstraction and further exten-
sions of this model.

Acknowledgements This work is supported in part by NSF grant
CCR-0098305 and NSF ITR Grant 0121277. Part of the work of the
first author has been done during visits to MIT and Texas A&M. The
first author is partially supported by an IBM faculty award, the Israeli
ministry of defense, NSF, and the Israeli Ministry of Trade and Indus-
try. The second and third authors are partially supported by AFOSR
Contract #FA9550-04-1-0121, DARPA Contract #F33615-01-C-1896,



GeoQuorums: implementing atomic memory in mobile ad hoc networks 155

NSF Grant 64961-CS, and NTT Grant MIT9904-12. The fourth au-
thor is partially supported by the NSF Grant 9988304, 0311368 and
by the NSF CAREER Award 9984774. The fifth author is partially sup-
ported by NSF Grant 0098305 and Texas Advanced Research Program
000512-0091-2001.

References

1. Attie, P., Lynch, N.A., Rajsbaum, S.: Boosting fault-tolerance in
asynchronous message passing systems is impossible. Technical
Report LCS-TR-877, MIT (2002)

2. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in
message-passing systems. Journal of the ACM 42(1), 124–142
(1995)

3. Bhattacharya, S.: Randomized location service in mobile ad hoc
networks. In: Proceedings of the 8th International ACM Workshop
on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, pp. 66–73 (2003)

4. Camp, T., Liu, Y.: An adaptive mesh-based protocol for geocast
routing. Journal of Parallel and Distributed Computing: Special
Issue on Mobile Ad-hoc Networking and Computing 196–213
(2002)

5. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.:
Computational Geometry: Algorithms and Applications 2nd edn.
Springer-Verlag (2000)

6. Dolev, D., Keidar, I., Lotem, E.Y.: Dynamic voting for consis-
tent primary components. In: Proceedings of the Sixteenth An-
nual ACM Symposium on Principles of Distributed Computing,
pp. 63–71. ACM Press (1997)

7. Dolev, S., Gilbert, S., Lynch, N.A., Schiller, E., Shvartsman, A.A.,
Welch, J.L.: Virtual mobile nodes for mobile adhoc networks. In:
Proceeding of the 18th International Conference on Distributed
Computing, pp. 230–244 (2004)

8. Dolev, S., Gilbert, S., Lynch, N.A., Shvartsman, A.A., Welch, J.L.:
Geoquorums: Implementing atomic memory in mobile ad hoc net-
works. In: Proceeding of the 17th International Conference on
Distributed Computing, pp. 306–320 (2003)

9. Dolev, S., Pradhan, D.K., Welch, J.L.: Modified tree structure for
location management in mobile environments. Computer Com-
munications: Special Issue on Mobile Computing 19(4), 335–345
(1996)

10. Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-
stabilizing group communication in ad-hoc networks. In: Proceed-
ings of the 21st IEEE Symposium on Reliable Distributed Sys-
tems, pp. 70–79 (2002)

11. El Abbadi, A., Skeen, D., Cristian, F.: An efficient fault-tolerant
protocol for replicated data management. In: Proceedings of the
4th Symposium on Principles of Databases, pp. 215–228. ACM
Press (1985)

12. Englert, B., Shvartsman, A.A.: Graceful quorum reconfiguration
in a robust emulation of shared memory. In: Proceedings of
the International Conference on Distributed Computer Systems
(ICDCS’2000), pp. 454–463 (2000)

13. Garcia-Molina, H., Barbara, D.: How to assign votes in a dis-
tributed system. Journal of the ACM 32(4), 841–860 (1985)

14. Gifford, D.K.: Weighted voting for replicated data. In: Proceed-
ings of the Seventh Symposium on Operating Systems Principles,
pp. 150–162 (1979)

15. Gilbert, S., Lynch, N.A., Shvartsman, A.A.: RAMBO II: Rapidly
reconfigurable atomic memory for dynamic networks. In: Pro-
ceedings of the International Conference on Dependable Systems
and Networks, pp. 259–269 (2003)

16. Haas, Z.J., Liang, B.: Ad hoc mobile management with uniform
quorum systems. IEEE/ACM Transactions on Networking 7(2),
228–240 (1999)

17. Herlihy, M.P.: Dynamic quorum adjustment for partitioned data.
Transactions on DB Systems 12(2), 170–194 (1987)

18. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condi-
tion for concurrent objects. ACM Transactions on Programming
Languages and Systems 12(3), 463–492 (1990)

19. Karumanchi, G., Muralidharan, S., Prakash, R.: Information dis-
semination in partitionable mobile ad hoc networks. In: Proceed-
ings of IEEE Symposium on Reliable Distributed Systems pp. 4–
13 (1999)

20. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.: The theory
of timed I/O automata. Technical Report MIT-LCS-TR-917a, MIT
(2004)

21. Ko, Y.B., Vaidya, N.: Geotora: A protocol for geocasting in mo-
bile ad hoc networks. In: Proceedings of the IEEE International
Conference on Network Protocols, pp. 240–249 (2000)

22. Lamport, L.: On interprocess communication – parts I and II. Dis-
tributed Computing 1(2), 77–101 (1986)

23. Lee, H., Vaidya, N., Welch, J.L.: Location tracking using quo-
rums in mobile ad-hoc networks. Ad Hoc Networks 1(4), 371–381
(2003)

24. Lynch, N.A.: Distributed Algorithms. Morgan Kaufman (1996)
25. Lynch, N.A., Segala, R., Vaandraager, F.: Hybrid I/O automata.

Information and Computation 185(1) (2003)
26. Lynch, N.A., Segala, R., Vaandraager, F.: Hybrid I/O automata.

Technical Report LCS-TR-827d, MIT (2003)
27. Lynch, N.A., Shvartsman, A.A.: RAMBO: A reconfigurable

atomic memory service for dynamic networks. In: Proceedings of
the 16th International Symposium on Distributed Computing, pp.
173–190 (2002)

28. Navas, J.C., Imielinski, T.: Geocast – geographic addressing and
routing. In: ACM/IEEE International Conference on Mobile Com-
puting and Networking, pp. 66–76 (1997)

29. Prisco, R.D., Fekete, A., Lynch, N.A., Shvartsman, A.A.: A dy-
namic primary configuration group communication service. In:
Proceedings of the 13th International Symposium on Distributed
Computing, pp. 64–78 (1999)

30. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket
location-support system. In: Proceedings of the 6th ACM MOBI-
COM, pp. 32–43 (2000)

31. Stojmenovic, I., Pena, P.E.V.: A scalable quorum based location
update scheme for routing in ad hoc wireless networks. Technical
Report TR-99-09, Computer Science, SITE, University of Ottawa
(1999)

32. Thomas, R.H.: A majority consensus approach to concurrency
control for multiple copy databases. Transactions on Database
Systems 4(2), 180–209 (1979)

33. Upfal, E., Wigderson, A.: How to share memory in a distributed
system. J. ACM 34(1), 116–127 (1987)


