
Testing Self-Similar Networks

Constantinos Djouvas1, Nancy D. Griffeth1, Nancy A. Lynch2

1 Lehman College, The City University of New York
2 Massachusetts Institute of Technology

Abstract. Network testing presents different challenges from software
testing. One challenge is that only a small number of networks, at best,
can actually be tested, even when the goal is to test a class of networks.
One solution is to select a representative network, which will display any
faults present in any network of the class. This paper introduces the use
of “self-similarity” to select such a network.

1 Introduction

When a vendor tests the network equipment it provides, the goal is to verify that
the equipment works in an entire range of network topologies and configurations.
Network tests performed by network users may also require verifying correctness
of a class of networks. For example, ISP networks change continuously. Even
small organizations add new hosts regularly. Anyone may add or swap in new
network equipment as new technologies or higher bandwidths become available.
The remaining equipment must continue working as expected.

This problem motivates the question of how to choose a network for testing,
when the real goal is to verify that an entire class of networks works. The central
goal of this work is to find a single representative of a class of networks, whose
correctness implies the correctness of the class. This paper investigates the use
of a subnetwork that is common to all of the networks in the class and whose
behavior looks like the behavior of any of the networks. When a subnetwork has
this property, we call the networks “self-similar” because each is similar to a
substructure of itself.

Perhaps the best-known example of this is the use of proxies in a network. A
Web server behind a proxy looks like a Web server to a client; similarly, a proxy
and client together look like a client to the Web server.

2 Related Work

Protocol conformance testing solves the network testing problem by verifying
that the implementation of each network device conforms to the required pro-
tocol standards. If the protocol standards guarantee that the network has the
required properties, then protocol conformance testing shows that the network
has the required properties. An excellent review of protocol conformance testing
appears in [7].



This approach presupposes a validated formal model of each protocol and
proofs that the models have the required properties. In practice, Internet stan-
dards have rarely been formalized and the job of developing formal proofs has
barely begun. Some standards, such as BGP, have actually been shown to have
serious problems [4]. Others, such as DHCP, work correctly with high probabil-
ity, but will behave incorrectly on rare occasions [2]. However, networks may still
have many desirable properties, and methods of verifying these are required.

A different approach to network testing is to extend protocol conformance
testing to “network interoperability testing,” as in [3, 5]. This approach treats the
network as a black box, whose external behavior is known but whose internal
behavior cannot be observed. The test methodology requires coverage of all
possible sequences of visible actions.

However, the problem of determining what network to test has not yet been
addressed. The central contribution of the paper is the method for choosing the
network to be tested, by finding a common substructure of all the networks that
behaves like each of the networks. This is a reasonable approach, since most
networks are built from components that behave like the network as a whole.

Section 6 presents a case study, containing two proofs of the self-similarity
of learning bridges.

3 The I/O Automaton Model

To analyze the properties of networks, we use the I/O automata model [8], which
models network components as automata and their interactions as shared actions
of the automata.

The model provides the formal framework for saying that one network be-
haves like another. Automaton A is said to implement automaton B if all exter-
nally visible behaviors of A are also externally visible behaviors of B.

An important technique for proving that one automaton implements another
is simulation. One automaton is said to simulate another if there is a simulation
relation (defined in Section 6) relating the states of the first to the states of the
second.

A self-similar automaton is an automaton A that can be replicated and con-
nected to itself via a channal to form a new automaton that implements the orig-
inal automaton A. Another important concept is self-similar properties, which
are properties of an automaton that are preserved by such a composition.

We review the definition of I/O Automata briefly here. For details, see [8].

Definition 1. An I/O automaton consists of the following components:

– sig(A), a signature, consisting of three disjoint sets of actions: the input
actions in(A), output actions out(A), and internal actions int(A). Output
and internal actions are locally controlled; input actions are controlled by an
automaton’s environment. The set of all actions in the signature is denoted
acts(A).

– states(A), a nonempty, possibly infinite set of states.



– start(A), a nonempty subset of states(A), called the start states.
– trans(A), a state-transition relation, contained in states(A)×acts(sig(A))×

states(A). We require that for each state s and input action π, there is a
transition (s, π, s′).

– tasks(A), a task partition, which is an equivalence relation on the locally
controlled actions of A and which has at most countably many equivalence
classes.

An execution of an I/O automaton is a sequence s0, π1, s1, ..., sn−1, πn, sn

where s0 is a start state and (si−1, πi, si) is a transition for each i ≥ 1. An exe-
cution can be finite or infinite. The set of executions of I/O automaton A is de-
noted as execs(A). We define traces(A) as the set of all sequences π1, π2, ..., πn, ...
obtained by removing the states from a sequence in execs(A). Traces capture the
notion of externally visible behavior.

A trace property of an automaton A is a property that holds for all traces of
A.

The composition operation allows the construction of complex I/O automata
by combining primitive I/O automata. To compose automata, we consider ac-
tions with the same signature in different automata to be the same action, and
when any component performs an action π, it forces all the components having
the same action to perform it. Thus for composition to work, automata must be
compatible.

Definition 2. A countable collection {Si}i∈I is compatible if for all i, j ∈ I, i 6=
j, all of the following hold:

1. int(Si)
⋂

acts(Sj) = φ
2. out(Si)

⋂
out(Sj) = φ

3. No action is contained in infinitely many sets acts(Si)

Definition 3. Given a compatible collection {Ai}i∈I of automata, the compo-
sition A = Πi∈IAi is formed by the following rules:

– sig(A) is defined by:
• out(A) =

⋃
i∈I out(Ai)

• int(A) =
⋃

i∈I int(Ai)
• in(A) =

⋃
i∈I in(Ai)−

⋃
i∈I out(Ai)

– states(A) = Πi∈Istates(Ai).
– start(A) = Πi∈Istart(Ai).
– trans(A) is the set of triples (s, π, s′) such that for all i ∈ I, if π ∈ acts(Ai)

then (si, π, s′i) ∈ trans(Ai)
– tasks(A) =

⋃
i∈I(Ai)

We denote a finite composition of automata A1, ..., An by A1 ‖ ... ‖ An.
After composing I/O Automata, we may want to hide actions used for com-

munication between components, turning them into internal actions of the com-
posed automaton. The operation ActHideΦ(A) for Φ ⊂ out(A) is defined as the
automaton obtained from A by changing each output action in Φ to an internal
action.



4 Self-Similarity

The problem that motivates this paper is the problem of finding a representative
network to test instead of testing all members of a class. If there is a subnetwork
N that looks like the entire network, then the smallest such subnetwork is an
obvious candidate. This is because we can test N by itself to determine the
properties of the entire network.

Defining Self-Similarity Because we are interested in networks, we consider only
automata with output actions named send and input actions named receive.
These automata are parameterized by the number of interfaces they have on the
network. Each send action is associated with one of the interfaces, and sends
the message out the interface. Each receive action is also associated with an
interface and receives a message arriving on the interface.

An automaton with n interfaces has a signature containing at least the fol-
lowing actions:

send(m : Message, i : Int), where 1 ≤ i ≤ n
receive(m : Message, i : Int), where 1 ≤ i ≤ n

Message is the set of possible messages over the interface.
To combine automata, we use a channel automaton Channel(a, b)i,j , as de-

scribed in [8], which joins interface i of automaton a to interface j of automaton
b. When there are only two automata in the composition, we write Channeli,j
This automaton has input actions send(m, i)a and send(m, j)b and output ac-
tions receive(m, i)a and receive(m, j)b. We assume a reliable, FIFO channel au-
tomaton, guaranteeing that messages are delivered reliably, in-order, and with
no duplication.

Suppose that an automaton N is parameterized by the number of interfaces
n. Then we say that N(n) is self-similar if

ActHideΦ(traces(N(n)) ‖ Channeli,j ‖ traces(N(n))) ⊆ traces(N(2n− 2)),
where Φ = {send(m, i)a, send(m, j)b, receive(m, i)a, receive(m, j)b}.

In other words, the externally visible actions of the composition of N(n) with
itself, using a channel connecting interfaces i and j, looks like a single automaton
N(2n− 2), ignoring actions on the interfaces connecting the automata.

We also define self-similarity for properties of networks, since it may be easier
to establish self-similarity of interesting properties than for entire automata. We
say that a trace property T is self-similar if the network N(n) ‖ Channeli,j ‖
N(n) has property T whenever network N(n) has property T . Thus test results
concerning a self-similar property of a network N(n) can be generalized to apply
to larger networks.

Using Self-Similarity in Testing By the definition of self-similarity, correct be-
havior of a self-similar network N implies correct behavior of a larger network



composed of multiple instances of N . Perhaps more important, if there are bugs
in the larger network, they will also be found in N .

There are two approaches that allow us to take advantage of self-similarity
to reduce the size of the network under test. First, we can define a self-similar
model of the network that has the properties of interest in the test effort . Second,
we can test directly whether the properties of interest are self-similar. The case
study of learning bridges in Section 6 follows the first approach. We apply the
second approach in a longer version of this paper at [1].

Self-Similar Models This approach requires a generalized model M of the net-
work that is self-similar. If the specification holds for M and if we establish by
testing that N implements M , we can use the test results as if N itself were
self-similar. The following theorem is the basis of this claim.

Theorem 1 If M(n) is self-similar and if

traces(N(n)) ⊆ traces(M(n)) ⊆ traces(S)

then

ActHideΦ(traces(N(n)) ‖ Channeli,j ‖ traces(N(n))) ⊆ traces(S).

This theorem says that given a network N(n) and a self-similar model M(n),
where M(n) implements S and N(n) implements M(n), we can conclude that
two composed instances of network N(n) implements S. By induction, we can
compose any number of instances of N(n) and still conform to S.

Proof. Follows immediately from the definitions.

Self-Similar Properties If self-similar trace properties S and T both hold for a
network N , then clearly so does the trace property S ∧ T . This can be used to
show that if a complex network requires that a number of properties T1, ..., Tn

be true, it is necessary to prove only that each property is self-similar, rather
than trying to prove all of them at once.

In general, we won’t be able to show self-similarity of every network property
that we are interested in. However, we may be able to show self-similarity of a
significant subset, so that testing of those properties can be carried out on a
smaller network.

5 Learning Bridges

A learning bridge incorporates a forwarding algorithm and a spanning tree al-
gorithm. In this section we give a brief description of each algorithm as it is
relevant to this paper.



Learning Bridge Algorithm Learning bridges interconnect separate IEEE 802
LAN segments into a single bridged LAN.

A learning bridge relays and filters frames “intelligently” between the sepa-
rate LAN segments [6]. Initially, the bridge forwards every frame that arrives at
a port out every other port. Also when a frame arrives at a port, it “learns” the
relationship between the source address and the port. It records this relationship
in a filteringdatabase. Once the address-to-port relationship has been learned,
any frame sent to that address will be sent out the corresponding port.

Spanning tree algorithm The Spanning Tree Algorithm converts an arbitrary
topology to a tree. This eliminates cycles from the network so that frames won’t
be forwarded forever. We assume that the following important property is en-
forced by the Spanning Tree Algorithm, as required by the standard:

The Spanning Tree Algorithm creates a single spanning tree for any
bridged LAN topology.

Thus, there is a unique path between any two hosts and cycles are eliminated.

6 Self-Similarity of Learning Bridges

This section presents a proof that learning bridges are self-similar. The proof is
based on a generalized model of learning bridges. The self-similarity property
allows a tester to use Theorem 5.1 to justify testing only a single learning bridge
to verify an entire network3.

Learning bridge operation can be described briefly as “send incoming frames
out all ports until the correct port is known; then send out the correct port
only.”

A network of bridges that conform exactly to this requirement is not self-
similar. Consider the following example:

Bridges A and B are connected to each other, with A preceding B
in a path from S (source) to D (destination). Suppose that the filter-
ing database in A does not contain an entry for D, while the filtering
database of B does contain an entry for D. Then if a message initiated
is from S to D, A will forward this message to every active port but B
will forward it only to the correct port.

Now suppose we compose A and B to one bridge AB. If our model
included the requirement mentioned above, on external observer would
expect the trace of AB to have only one outgoing message having as des-
tination D. But this will not happen. Instead the message will forwarded
to all ports that have been inherited by A and to a single port inherited
by B, the same one as the B would have forwarded the message to.

3 Note that we address only the forwarding of messages in this paper, not the con-
struction of the spanning tree.



So we define a generalized model, which requires only that the bridge copies
each message to the “correct port”, and perhaps other ports as well. By “correct
port” P , we mean that P is the port through which the destination is reachable.
The learning bridge implements this by using a filtering database to record the
source address of each arriving message along with the port at which it arrived.
All subsequent messages sent to that address will be copied to the corresponding
port (and possibly other ports). If no message has been received from the des-
tination address, the filtering database does not have an entry for the address,
and the bridge forwards the message to all ports.

The Generalized Model Each bridge has four actions: input action receive,
output action send, and internal actions copyIn, copyOut, and delete. It has a
filtering database, an input and output buffer for each port, and an array of
queues corresponding to each pair of input port and output port. The array
entry queue[i, j] is a queue of messages that arrived at port i and destined to be
sent out port j.

The receive action adds received messages to the input buffer for the arrival
port and updates the filtering database. The send action sends the first message
in a port’s output buffer to the channel connected to the port. The copyIn action
copies a message from an input buffer to the end of all the internal queues for
the input port; copyOut copies a message from one internal queue to an output
buffer. Finally, the delete action can delete a random message m from an internal
queue, if the correct port is known at the time of the delete and the queue doesn’t
correspond to the correct port for the message4.

automaton bridge(n : Int)i

signature
input

receive(m, inPort)i

output
send(m, outPort)i

internal
copyIn(m, inPort)
copyOut(m, inPort, outPort)i

delete(m, inPort, outPort)i

states
inbuf, an array of input buffers, indexed by {1, ..., n }, one for each port
outbuf, an array of output buffers (FIFO queues) indexed by {1, ..., n},

one for each port, initially all empty.

4 The delete action is one of many ways to model the possibility that a bridge is
allowed to forward a message out a port other than the correct one. It works by
nondeterministically removing messages from queues that don’t lead to the correct
port.



queue, an array of FIFO queues indexed by {1, ..., n} × {1, ..., n}
one for each pair of ports, initially all empty.

filterDB, a mapping of message destinations to ports of bridgei indexed
by {1, ..., n}, initially all nil.

transitions
receive(m, inPort)i

effect
add m to inbuf(inPort)
set filterDB(m.src) := inPort

send(m, outPort)i

precondition
m first element on outbuf(outPort)

effect
remove first element from outbuf(outPort)

copyIn(m, inPort)
precondition

m is the first element on inbuf [inPort]
effect

add m to queue[inPort, i] for all i 6= inPort
remove m from inbuf [inPort]

copyOut(m, inPort, outPort)i

precondition
m first element on queue[inPort,outPort]

effect
add m to outbuf[outPort]
remove m from queue[inPort, outPort]

delete(m, inPort, outPort)i

precondition
m is in the queue queue[inPort, outPort]∧
filteringdb[dest(m)] 6= nil ∧ filteringdb[dest(m)] 6= outPort

effect
remove m from queue[inPort, outPort]

We assume that there are a finite number of active ports in any bridge and that
the spanning tree algorithm determines which ports are active.

Composition of Bridges In this section we describe the composition of two
learning bridges. Remember that we assume that the Spanning Tree Protocol
has been run to completion by all the bridges in the network and that there
are no failures. Because of this, there is only one active path between any two
bridges.



Let bridge1 and bridge2 be two learning bridges running the IOA defined
above. We use the convention that port i is a port of bridge1 and j is a port of
bridge2. Without loss of generality, we assume that port i0 of bridge1 is connected
with the port j0 of bridge2 through Channeli0,j0 . Because of the Spanning Tree
Protocol, these are the only active ports connecting bridge1 and bridge2.

Let bridgec be the result of renaming ports of bridge2 to n+1, ..., 2n to avoid
conflict with port numbers of bridge1, then composing bridge1 and bridge2 with
a connecting channel, and finally hiding the send and receive actions on the
channel between them:

bridgec = ActHideΦ(bridge1 ‖ Channeli0,j0 ‖ bridge2) and
Φ = {send(m, i0)1, receive(m, i0)1, send(m, j0)2, receive(m, j0)2}.

The goal is to show that bridgec is essentially the same as a single bridge,
which we will call bridgep, running the learning bridge IOA. bridgep must have
the same number of ports as bridge1 and bridge2 together, minus the two con-
nected ports. Thus if bridge1 and bridge2 each have n active ports, bridgep has
2n− 2 active ports.

Port i of bridgep with 1 ≤ i ≤ n, is connected to the same channel as the
corresponding port i of bridge1. Similarly port j of bridgep, with n+1 ≤ j ≤ 2n,
is connected to the same channel as the corresponding port j of bridge2.

Finally, the input and output actions of bridgep are renamed so that the ac-
tions on port i, 1≤i≤n, are receive(m, i)1 and send(m, i)1 (instead of receive(m, i)p

and send(m, i)p); similarly, actions on port j, n+1 ≤ j ≤ 2n, are receive(m, j)2
and send(m, j)2.

Simulating a bridge with a composition of bridges We use an important
theorem about IOA to show the equivalence of bridgec to bridgep. The theorem
says that if there is a simulation relation (defined below) from an IOA A to an
IOA B, then traces(A) ⊆ traces(B).

Definition 4. A simulation relation from an IOA A to an IOA B is a re-
lation R ⊆ states(A) × states(B). Define f : states(A) → P(states(B)) by
f(s) = {t|(s, t) ∈ R}. To be a simulation relation, R must satisfy the following
conditions:

1. If s ∈ start(A), then f(s) ∩ start(B) 6= φ (start condition).
2. If s is a reachable state of A, u ∈ f(s) is a reachable state of B, and

(s, π, s′) ∈ trans(A), then there is an execution fragment α of B starting
in state u and ending in some state u′ ∈ f(s′) such that trace(α) = trace(π)
(step condition).

We define a relation from bridgec to bridgep and prove that it is a simulation
relation. This gives us the desired result.

Theorem 1. The learning bridge automaton bridge(n) is self-similar.



Proof. Let s be a state of bridgec and t be a state of bridgep. We use dot notation
to denote a state variable in a bridge, e.g., s.filterDB1 is the value of the filtering
database of bridge1 in state s of bridgec.

The pair (s, t) belongs to the relation R if:

Condition 1 The filtering database of bridgep contains the same entries as the
union of the filtering databases of the two component bridges of bridgec, excluding
the entries for the internal ports:

t.filterDB = s.filterDB1∪s.filterDB2−{〈addr, port〉|port ∈ {i0, j0}}

Condition 2 The output buffer for each port of bridgep contains the same mes-
sages as the output buffer of the corresponding port of bridgec:

t.outbuf [i] = s.outbuf [i]m for i ∈ ports1

⋃
ports2 − {i0, j0}, and the

value m ∈ {1, 2} depends on the value of i.

There are no buffers in bridgep corresponding to i0 and j0. These buffers in
bridgec may contain any messages consistent with the next condition.

Condition 3 The input buffer for each port of bridgep contains the same mes-
sages as the input buffer of the corresponding port of bridgec:

t.inbuf [i] = s.inbuf [i]m for i ∈ ports1

⋃
ports2 − {i0, j0} and the value

of m ∈ {1, 2} depends on the value of i.

Condition 4 The internal array of message queues t.queue corresponds to the
combined arrays s.queue1 and s.queue2 as follows:

– t.queue[i, i′] = s.queue[i, i′]1 if i, i′ ∈ ports1, i, i
′ 6= i0

– t.queue[j, j′] = s.queue[j, j′]2 if j, j′ ∈ ports2, j, j
′ 6= j0

– t.queue[i, j] is a concatenation of the following queues for i ∈ ports1, j ∈
ports2, with i 6= i0, j 6= j0:

s.queue[j0, j]2,s.outbuf [j0]2,s.queuej0,i0 ,s.inbuf [i0]1,s.queue[i, i0]1
– t.queue[j, i] is defined symmetrically for i ∈ ports1, j ∈ ports2, with i 6=

i0, j 6= j0:

To show that the above relation is a simulation relation, we must prove
two conditions, the start condition and the step condition. The former is trivial
because all the states of both bridges are initially empty. The latter condition
requires the proof that the states of bridgep and bridgec correspond after each
action. First we prove state correspondence for the filtering databases.

State Invariant 1 In all reachable states of the composed IOA, the filtering
database of bridgec corresponds to the filtering database of bridgep as defined by
the simulation relation.



The proof is by induction of the length of an execution. The result is clear
if a message is forwarded out only ports of the bridge at which it arrived. It’s
less obvious when a frame arrives at one bridge and is forwarded out the second
bridge. In this case, the filtering databases of both bridge1 and bridgep are
updated on receipt of the message with the relationship between the arrival port
and the source address. Later, the filtering database of bridge2 is updated to
show the path to the source goes through bridge1. Since the simulation relation
refers only to the entry in bridge1 and ignores the entry in bridge2, itis preserved
in this case (as well as all others).

To show that input buffers, output buffers, and internal queues correspond
after each action, we consider all actions π. The following table summarizes all
the possible actions of bridgec, the corresponding execution fragment of bridgep

and the trace, which is the same for both bridges.

Action of Bridgec Execution fragment
of Bridgep

Trace

1 receive(m, i)1, i 6= i0 receive(m, i)1 receive(m, i)1
2 receive(m, j)2, j 6= j0 receive(m, j)2 receive(m, j)2
3 receive(m, i0)1 λ λ
4 receive(m, j0)2 λ λ
5 send(m, i)1, i 6= i0 send(m, i)1 send(m, i)1
6 send(m, j)2, j 6= j0 send(m, j)2 send(m, j)2
7 send(m, i0)1 λ λ
8 send(m, j0)2 λ λ
9 delete(m, i, i′)1, i′ 6= i0 delete(m, i, i′)p λ
10delete(m, j, j′)2, j′ 6= j0 delete(m, j, j′)p λ
11delete(m, i, i0)1 Sequence

delete(m, i, j)p for
j ∈ ports2, j 6= j0

λ

12delete(m, j, j0)2 Sequence
delete(m, j, i)p for
i ∈ ports1, i 6= i0

λ

13 copyIn(m, i)1, i 6= i0 copyIn(m, i)p λ
14 copyIn(m, j)2, j 6= j0 copyIn(m, j)p λ
15 copyIn(m, i0)1 λ λ
16 copyIn(m, j0)2 λ λ
17 copyOut(m, i, i′)1, i′ 6=

i0

copyOut(m, i, i′)p λ

18 copyOut(m, j, j′)2, j′ 6=
j0

copyOut(m, j, j′)p λ

19 copyOut(m, i, i0)1 λ λ
20 copyOut(m, j, j0)2 λ λ

Table 1: Correspondence between actions of Bridgec and Bridgep

A simple case analysis establishes the result.



7 Conclusions

In this paper, we have shown that the self-similarity of network devices and their
properties provides a powerful tool for reducing the size of a network testing
effort. All networks in a class of self-similar networks can be tested by testing
the smallest self-similar subnetwork. This reduces to one the number of networks
to be tested while minimizing the size of the network.

A case study of the self-similarity of learning bridges illustrates one approach
to using self-similarity in network testing. This approach uses a self-similar net-
work model that captures the behaviors that the network must implement. A
longer version of this paper [1] shows how to define required properties of learning
bridges and prove self-similarity.

Additional work is needed to identify other self-similar networks and im-
portant self-similar properties of networks. Another line of investigation is to
determine how to evaluate the coverage of a set of tests for a network and to
develop ways to measure the level of confidence we have that a network works,
given a test suite for the network.

References

1. Constantinos Djouvas, Nancy Griffeth, and Nancy Lynch. Using self-similarity for
efficient network testing, September 2005.

2. Ralph Droms. RFC 2131: Dynamic host configuration protocol, March 1997.
3. Nancy Griffeth, Ruibing Hao, David Lee, and Rakesh Sinha. Integrated system

interoperability testing with applications to voip. In Proceedings of FORTE/PSTV
2000, Pisa, Italy, October 2000.

4. Timothy G. Griffin and Gordon T. Wilfong. An analysis of BGP convergence prop-
erties. In Proceedings of SIGCOMM, pages 277–288, Cambridge, MA, August 1999.

5. Ruibing Hao, David Lee, Rakesh K. Sinha, and Nancy Griffeth. Integrated sys-
tem interoperability testing with applications to voip. IEEE/ACM Trans. Netw.,
12(5):823–836, 2004.

6. IEEE standard for local and metropolitan area networks: Media access control
(MAC) bridges, June 2004.

7. D. Lee and M. Yannakakis. Principles and Methods of Testing Finite State Machines
- A Survey. In Proceedings of the IEEE, volume 84, pages 1090–1126, 1996.

8. Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., March
1996.


