
Keeping Mobile Robot Swarms Connected

Alejandro Cornejo1, Fabian Kuhn1, Ruy Ley-Wild2, and Nancy Lynch1

1 MIT, Cambridge MA 02139, USA
{acornejo,fkuhn,lynch}@csail.mit.edu

2 CMU, Pittsburgh PA 15213, USA
rleywild@cs.cmu.edu

Abstract. Designing robust algorithms for mobile agents with reliable
communication is difficult due to the distributed nature of computation,
in mobile ad hoc networks (MANETs) the matter is exacerbated by the
need to ensure connectivity. Existing distributed algorithms provide co-
ordination but typically assume connectivity is ensured by other means.
We present a connectivity service that encapsulates an arbitrary motion
planner and can refine any plan to preserve connectivity (the graph of
agents remains connected) and ensure progress (the agents advance to-
wards their goal). The service is realized by a distributed algorithm that
is modular in that it makes no assumptions of the motion-planning mech-
anism except the ability for an agent to query its position and intended
goal position, local in that it uses 1-hop broadcast to communicate with
nearby agents but doesn’t need any network routing infrastructure, and
oblivious in that it does not depend on previous computations.

We prove the progress of the algorithm in one round is at least
Ω(min(d, r)), where d is the minimum distance between an agent and its
target and r is the communication radius. We characterize the worst case
configuration and show that when d ≥ r this bound is tight and the algo-
rithm is optimal, since no algorithm can guarantee greater progress. Fi-
nally we show all agents get ε-close to their targets within O(D0/r+n2/ε)
rounds where n is the number of agents and D0 is the sum of the initial
distances to the targets.

1 Introduction

Motivation. Designing robust algorithms for mobile agents with reliable commu-
nication is difficult due to the distributed nature of computation. If the agents
form a mobile ad hoc network (MANET) there is an additional tension be-
cause communication is necessary for motion-planning, but agent movement may
destabilize the communication infrastructure. As connectivity is the core prop-
erty of a communication graph that makes distributed computation possible,
algorithms for MANETs must reconcile the interaction between communication
and motion planning in order to preserve connectivity.

Existing distributed algorithms for MANETs provide coordination but typi-
cally sidestep the issue of connectivity by assuming it is ensured by other means.
For example, algorithms on routing [1,2], leader election [3], and mutual exclu-
sion [4] for MANETs assume they run on top of a mobility layer that controls the

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 496–511, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Keeping Mobile Robot Swarms Connected 497

trajectories of the agents. Those algorithms deal with connectivity by assuming
the mobility layer guarantees that every pair of nodes that need to exchange a
message are connected at some instant or transitively through time, otherwise
they work on each independent connected cluster. On the other hand, work on
flocking [5,6], pattern formation [7], and leader following [8] provides a mobility
layer for a MANET that determines how agents will move. Again connectivity
is sidestepped by assuming coordination runs atop a network layer that ensures
it is always possible to exchange information between every pair of agents. The
service we present would thus enable to execute the flocking algorithm of [5]
using the routing algorithm of [2], or running the leader follower algorithm of
[8] using the leader election service of [3], with the formal guarantee that con-
nectivity is maintained and progress is made. The connectivity service allows an
algorithm designer to focus on the problems which are specific to the application
(i.e. search and rescue, demining fields, space exploration, etc.) without having
to deal with the additional issues that arise when there is no fixed communica-
tion infrastructure. We expect algorithms designed on top of this service will be
easier to prove correct because the safety and progress properties are maintained
orthogonally by the guarantees of the service.

Related work. The problem of preserving connectivity has been addressed before,
mainly in the control theory community. However, most proposed solutions are
either centralized or preserve connectivity only while performing specific tasks
(i.e. converging to a point). For example [9] models connectivity as a constrained
optimization problem, but as a result the solution is centralized and does not
exploit the locality of distributed computation. Another centralized algorithm
for second-order agents is proposed in [10], however it conservatively preserves
all edges in the graph. The problem of gathering (rendezvous) all agents to a
single point while preserving connectivity is studied in [11,12,13,14]. In [15,16]
the authors evaluate through simulations the problem of connected deployment,
but do not prove in which configurations the algorithms achieve deployment or
preserve connectivity. In contrast in this paper we present a local algorithm that
preserves connectivity while performing an arbitrary task, we focus on providing
formal safety and progress guarantees. A preliminary version of the algorithm
without progress guarantees appeared in [17].

Communication Model. We assume each agent is equipped with a communica-
tion device that permits reliable broadcasting to all other agents within some
communication radius r. Without loss of generality we suppose r = 1 throughout.
The service operates in synchronous rounds, it assumes access to a positioning
device; relative position between neighboring agents is sufficient, but for ease of
exposition we assume absolute position is available. Finally the service assumes
the existence of a motion planner which is queried at each round for the desired
target position, the service produces a trajectory which preserves connectedness
and, when possible, gets closer to the target.

498 A. Cornejo et al.

Contributions. We present a distributed connectivity service that modifies an
existing motion plan to ensure connectivity using only local information and
without making any assumptions of the current and goal configurations. In par-
ticular, even if the goal configuration is disconnected, the service guarantees
connectivity while trying to get each agent as close as possible to its target.
Furthermore, the connectivity service only requires the immediate intended tra-
jectory and the current position, but it is stateless, and hence oblivious. The
service is also robust to the motion of each agent in that the refined plan pre-
serves connectivity irrespective of the agents’ speed changes. Therefore agents
remain connected throughout their motion even if they only travel a fraction
(possibly none) of their trajectory.

Connectivity is a global property, so determining whether an edge can be re-
moved without disconnecting the graph may require traversing the whole graph.
However, exploiting the distributed nature of a team of agents requires allowing
each agent to perform tasks with a certain degree of independence, so commu-
nicating with every agent in the graph before performing each motion is pro-
hibitive. To solve this we parametrize the service with a filtering method that
determines which edges must be preserved and which can be removed, we also
suggest several local algorithms that can be used to implement this filtering step.

We define progress as the quantification of how much closer each agent gets
to its target in a single round. Our algorithm guarantees that the total progress
is at least min(d, r) in configurations where every agent wants to move at least
some distance d and the communication radius is r. Furthermore, we exhibit a
class of configurations where no local algorithm can do better than this bound,
hence under these conditions the bound is tight and the algorithm is asymptot-
ically optimal. In the last section we prove all agents get ε-close to their target
within O(D0/r + n2/ε) rounds where D0 is the total initial distance to the tar-
gets and n is the number of agents. Since the motion of the agents occurs in
a geometric space and the service deals directly with motion planning, most
progress arguments rely on geometrical reasoning.

We introduce some notation and definitions in §2. In §3 we present the inter-
secting disks connectivity service and discuss its parametrization in a filtering
function. We prove the algorithm preserves connectivity and produces robust
trajectories (§4). In §5 we prove that any lower-bound on progress for chains
also applies to general graphs. We start §8 by giving a lower bound on progress
of a very restricted class of chains with only two nodes, and in the rest of the
section we show how to extend this lower bound to arbitrary chains. We give
the termination bound in §9 and conclude in §10.

2 Preliminary Definitions

The open disk centered at p with radius r is the set of points at distance less
than r from p: diskr(p) := {q : ‖p− q‖ < r}. The circle centered at p with radius
r is the set of points at distance r from p: circler(p) := {q : ‖p − q‖ = r}. The
closed disk centered at p with radius r is the set of points at distance at most

Keeping Mobile Robot Swarms Connected 499

r from p: diskr(p) := circler(p) ∪ diskr(p) = {q : ‖p − q‖ ≤ r}. We abbreviate
disk(p, q) := disk‖p−q‖(p), circle(p, q) := circle‖p−q‖(p), disk(p, q) := disk‖p−q‖(p).
The unit disk of point p is disk1(p).

The lens of two points p and q is the intersection of their unit disks: lens(p, q) :=
disk1(p)∩disk1(q). The cone of two points p and q is defined as the locus of all the
rays with origin in p that pass through lens(p, q) (the apex is p and the base is
lens(p, q)): cone(p, q) := {r : ∃s ∈ lens(p, q).r ∈ ray(p, s)}, where ray(p, q) :=
{p + γ(q − p) : γ ≥ 0}.

A configuration C = 〈I, F 〉 is an undirected graph where an agent i ∈ I
has a source coordinate si ∈ R

2, a target coordinate ti ∈ R
2 at distance di =

‖si − ti‖, and every pair of neighboring agents (i, j) ∈ F are source-connected
(i.e., ‖si −sj‖ ≤ r) where r is the communication radius. We say a configuration
C is a chain (resp. cycle) if the graph is a simple path (resp. cycle).

3 Distributed Connectivity Service

In this section we present a distributed algorithm for refining an arbitrary mo-
tion plan into a plan that moves towards the intended goal and preserves global
connectivity. No assumptions are made about trajectories generated by the mo-
tion planner, the connectivity service only needs to know the current and target
positions and produces a straight line trajectory at each round; the composed
trajectory observed over a series of rounds need not be linear. The trajectories
output by the service are such that connectivity is preserved even if an adversary
is allowed to stop or control the speed of each agent independently.

The algorithm is parameterized by a filtering function that determines a suffi-
cient subset of neighbors such that maintaining 1-hop connectivity between those
neighbors preserves global connectivity. The algorithm is oblivious because it is
stateless and only needs access to the current plan, hence it is resilient to changes
in the plan over time.

3.1 The Filtering Function

Assuming the communication graph is connected, we are interested in a Fil-

ter subroutine that determines which edges can be removed while preserving
connectivity. Let s be the position of an agent with a set N of 1-hop neighbors,
we require a function Filter(N, s) that returns a subset of neighbors N ′ ⊆ N
such that preserving connectivity with the agents in the subset N ′ is sufficient
to guarantee connectivity.

We will not require for Filter to be symmetric, hence it may deem necessary
for i to preserve j as a neighbor, but not the other way around. However, a
Filter function is valid if preserving symmetric edges is sufficient to preserve
global connectivity, where an edge (i, j) is symmetric if i should preserve j
(sj ∈ N ′

i) and vice versa (si ∈ N ′
j).

The identity function Filter(N, s) := N is trivially valid because connec-
tivity is preserved if no edges are removed. However, ideally we want a Filter

500 A. Cornejo et al.

function that in some way “minimizes” the number of edges kept. A natural
choice is to compute the minimum spanning tree (MST) of the graph, and re-
turn for every agent the set of neighbors which are its one hop neighbors in
the MST . Although in some sense this would be the ideal filtering function, it
cannot be computed locally and thus it is not suited for the connectivity service.

Nevertheless, there are well known local algorithms that compute sparse con-
nected spanning subgraphs, amongst them is the Gabriel graph (GG) [18], the
relative neighbor graph (RNG) [19], and the local minimum spanning tree
(LMST) [20]. All these structures are connected and can be computed using
local algorithms. Since we are looking to remove as many neighbors as possible
and MST ⊆ LMST ⊆ RNG ⊆ GG, from the above LMST is best suited.

Remark. The connected subgraph represented by symmetric filtered neighbors
depends on the positions of the agents, which can vary from one round to the
next. Hence, the use of a filtering function enables preserving connectivity with-
out preserving a fixed set of edges (topology) throughout the execution; in fact,
it is possible that no edge present in the original graph appears in the final
graph.

3.2 The Algorithm

We present a three-phase service (cf. Algorithm 1) that consists of a collection
phase, a proposal phase, and an adjustment phase. In the collection phase each
agent queries the motion planner and the location service to obtain its current
and target positions (si and ti respectively). Each agent broadcasts its position
and records the position of neighboring agents discovered within its communi-
cation radius.

Algorithm 1. ConnServ run by agent i

� Collection Phase
si ← query positioning device()
ti ← query motion planner()
broadcast si to all neighbors
Ni ← {sj | for each sj received}

� Proposal Phase
N ′

i ← Filter (Ni, si)
Ri ←

⋂
sj∈N′

i
disk1(sj)

pi ← argminp∈Ri
‖p − ti‖

broadcast pi to all neighbors
Pi ← {pj | for each pj received}

� Adjustment Phase
if ∀sj ∈ N ′

i .‖pj − pi‖ ≤ r then
return trajectory from si to pi

else
return trajectory from si to si + 1

2 (pi − si)
end if

Keeping Mobile Robot Swarms Connected 501

In the proposal phase the service queries the Filter function to determine
which neighboring agents are sufficient to preserve connectivity. Using the neigh-
bors returned by Filter the agent optimistically chooses a target pi. The target
is optimistic in the sense that if none of its neighboring agents move, then moving
from source si to the target pi would not disconnect the network. The proposed
target pi is broadcast and the proposals of other agents are collected.

Finally in the adjustment phase, each agent checks whether neighbors kept by
the Filter function will be reachable after each agent moves to their proposed
target. If every neighbor will be reachable, then the agent moves from the current
position to its proposed target, otherwise it moves halfway to its proposed target,
which ensures connectivity is preserved (proved in the next section).

4 Preserving Connectivity

In this section we prove the algorithm preserves network connectivity with any
valid Filter function. Observe that since Ri is the intersection of a set of disks
that contain si, it follows that Ri is convex and contains si. By construction
pi ∈ Ri and thus by convexity the linear trajectory between si and pi is contained
in Ri, so the graph would remain connected if agent i were to move from si to
pi and every other agent would remain in place. The following theorems prove a
stronger property, namely, the trajectories output guarantee symmetric agents
will remain connected, even if they slow down or stop abruptly at any point of
their trajectory.

Adjustment Lemma. The adjusted proposals of symmetric neighbors are con-
nected.

Proof. The adjusted proposals of symmetric agents i and j are p′i = si+ 1
2 (pi−si)

and p′j = sj + 1
2 (pj − sj). By construction ‖si − pj‖ ≤ r and ‖sj − pi‖ ≤ r, so

the adjusted proposals are connected:

‖p′i − p′j‖ = ‖si − sj +
1
2
(pi − pj + sj − si)‖ ≤ 1

2
(‖si − pj‖ + ‖sj − pi‖) ≤ r

Safety Theorem. If Filter is valid, the service preserves connectivity of the
graph.

Proof. Assuming Filter is valid, it suffices to prove that symmetric neighbors
remain connected after one round of the algorithm. Fix symmetric neighbors i
and j. If ‖pi − pj‖ > r, both adjust their proposals and they remain connected
by the Adjustment lemma. If ‖pi − pj‖ ≤ r and neither adjust, they trivially
remain connected. If ‖pi − pj‖ ≤ r but (wlog) i adjusts but j doesn’t adjust,
then si, pi ∈ disk1(pj), and by convexity p′i ∈ disk1(pj), whence ‖p′i − pj‖ ≤ r.

Even if two agents are connected and propose connected targets, they might
disconnect while following their trajectory to the target. Moreover, agents could

502 A. Cornejo et al.

stop or slow down unexpectedly (perhaps due to an obstacle) while executing
the trajectories. We prove the linear trajectories prescribed by the algorithm for
symmetric neighbors are robust in that any number of agents can stop or slow
down during the execution and connectivity is preserved.

Robustness Theorem. The linear trajectories followed by symmetric neigh-
bors are robust.

Proof. Fix symmetric neighbors i and j, we need to prove that all intermediate
points on the trajectories are connected. Fix points qi := si + γi(pi − si) and
qj := sj + γj(pj − sj) (γi, γj ∈ [0, 1]) on the trajectory from each source to its
proposed target. Since the neighbors are symmetric, si, ti ∈ disk1(sj) ∩ disk1(tj)
and by convexity qi ∈ disk1(sj) ∩ disk1(tj). Similarly sj , tj ∈ disk1(qi) and by
convexity qj ∈ disk1(qi), whence ‖qi − qj‖ ≤ r.

5 Ensuring Progress for Graphs

For the algorithm to be useful, besides preserving connectivity (proved in §4)
it should also guarantee that agents make progress and eventually reach their
intended destination. We start by identifying several subtle conditions with-
out which no local algorithm could both preserve connectivity and guarantee
progress.

Cycles. Consider a configuration where nodes are in a cycle, two neighboring
nodes want to move apart and break the cycle and every other node wants to
remain in place. Clearly no local algorithm can make progress because, without
global information, nodes cannot distinguish between being in a cycle or a chain,
and in the latter case any movement would violate connectivity. As long as the
longest cycle of the graph is bounded by a known constant, say k, using local
LMST filtering over �k/2
-hops will break all cycles. A way to deal with graphs
with arbitrary long cycles without completely sacrificing locality would be to use
the algorithm proposed in this paper and switch to a global filtering function to
break all cycles when nodes detect no progress has been made for some number
of rounds. For proving progress, in the rest of the paper we assume there are no
cycles in the filtered graph.

Target-connectedness. If the proposed targets are disconnected, clearly progress
cannot be achieved without violating connectivity, hence its necessary to assume
the target graph is connected. For simplicity, in the rest of the paper we assume
that the current graph is a subgraph of the target graph, this avoids reasoning
about filtering when proving progress and one can check that as a side effect the
adjustment phase is never required.

5.1 Dependency Graphs

Fix some node in an execution of the ConnServ algorithm, on how many other
nodes does its trajectory depend on? Let region(S) :=

⋂
s∈S disk1(s) and let

Keeping Mobile Robot Swarms Connected 503

proposal(S, t) := argminp∈region(S) ‖p − t‖, then a node with filtered neighbor set
N ′ and target t depends on k neighbors (has dependency k) if there exists a
subset S ⊆ N ′ of size |S| = k such that proposal(S, t) = proposal(N ′, t) but
proposal(S′, t) �= proposal(N ′, t) for any subset S′ ⊆ N ′ of smaller size |S′| < k.

The dependency of a node can be bounded by the size of its filtered neighbor-
hood. If the filtering function is LMST then the number of neighbors is at most
6 or 5 depending on whether the distances to neighbors are unique (i.e. breaking
ties using unique ID’s). The following lemma gives a tighter upper bound on the
dependency of a neighbor which is independent of the filtering function.

Lemma 6. Every agent depends on at most two neighbors.

Proof. Fix agent i with filtered neighbors N ′ and target t, let R = region(N ′).
If t ∈ R then proposal(N ′, t) = proposal(∅, t) = t and agent i depends on no
neighbors. If t /∈ R then proposal(N ′, t) returns a point p in the boundary of
region R. Since R is the intersection of a finite set of disks it follows that p is
either in the boundary of a single disk so i depends on a single neighbor, or the
intersection of two disks so i depends on at most two neighbors.

Given the above, for any configuration C = 〈I, F 〉 we can consider its dependency
graph D = 〈I, E〉 where there exists a directed edge (u, v) ∈ E iff node u depends
on node v. Hence, D is a directed subgraph of C with maximum out-degree 2.
Moreover since graphs with cycles cannot be handled by any local connectivity
service, then for the purpose of proving progress we assume C has no undirected
cycles. This implies that the only directed cycles in D are simple cycles of length
2, we refer to such dependency graphs as nice graphs.

A prechain H is a sequence of vertices 〈vi〉i∈1..n such that there is a simple cy-
cle between vi, vi+1 (i ∈ 1..n−1). Observe that a vertex v is a singleton prechain.
Below we prove that any nice dependency graph D contains a nonempty prechain
H with no out-edges.

Theorem 7. Every finite nice graph G = 〈V, E〉 contains a nonempty prechain
H ⊆ V with no out-edges.

Proof. Fix a graph G = 〈V, E〉 and consider the graph G′ that results from
iteratively contracting the vertices u, v ∈ V if (u, v) ∈ E and (v, u) ∈ E. Clearly
G′ is also a finite nice graph and any vertex v′ in G′ is a prechain of G, however
G′ does not contain any directed cycles.

We follow a directed path in G′ starting at an arbitrary vertex u′, since the
graph is finite and contains no cycles, we must eventually reach some vertex v′

with no outgoing edges, such a vertex is a prechain and has no outgoing edges,
which implies the theorem.

Therefore by theorem 7 any lower bound on progress for chains also holds for
general configurations. In particular the lower bound of Ω(min(d, r)) for chains
proved in the next section applies for general graphs as well.

504 A. Cornejo et al.

8 Ensuring Progress for Chains

In this section we restrict our attention to chain configurations and show that,
if agents execute the connectivity service’s refined plan, the total progress of the
configuration is at least min(d, r), where d is the minimum distance between
any agent and its target and r is the communication radius. We introduce some
terminology to classify chains according to their geometric attributes, then we
prove the progress bound for a very restricted class of chains. Finally, we establish
the result for all chains by showing that the progress of an arbitrary chain is
bounded below by the progress of a restricted chain.

Terminology. Each agent has a local coordinate system where the source is
the origin (si = 〈0, 0〉) and the target is directly above it (ti = 〈0, di〉). The
left side of agent i is defined as Li := {〈x, y〉 : x ≤ 0} and the right side as
Ri := {〈x, y〉 : x > 0} where points are relative to the local coordinate system.
An agent in a chain is balanced if it has one neighbor on its left side, and the
other on its right side; a configuration is balanced if every agent is balanced.

A configuration is d-uniform if every agent is at distance d from its target
(di = d for every agent i). Given a pair of agents i and j, they are source-
separated if ‖si −sj‖ = 1; they are target-separated if ‖si −sj‖ = 1; and they are
target-parallel if the rays ray(si, ti) and ray(sj , tj) are parallel. An agent i with
neighbors j and k is straight if si, sj and sk are collinear; a chain configuration
is straight if all agents are straight.

Given an agent with source s, target t and a (possibly empty) subset of neigh-
bors S ⊆ N , its proposed target w.r.t. S is defined as t∗ = proposal(S, t). The
progress of the agent would be δ(s, t; S) := ‖s − t‖ − ‖t∗ − t‖, which we abbre-
viate as δi for agent i when the si, ti and Si are clear from context. Observe
that since region(S ∪ S′) ⊆ region(S), δ(s, t; S ∪ S′) ≤ δ(s, t; S). The progress of
a configuration C is the sum every agent’s progress: prog(C) :=

∑
i δi.

Proof Overview. We first characterize the progress of agents in a balanced and
source-separated chain and show the progress bound specifically for chains that
are d-uniform, source- and target-separated, balanced, and straight (§8.2). Then
we show how to remove each of the requirements of a chain being straight,
balanced, source- and target-separated, and d-uniform (§8.3). Ultimately, this
means that an arbitrary target-connected chain configuration C = 〈I, F 〉 can be
transformed into a d-uniform, source- and target-separated, balanced, straight
chain configuration C′ such that prog(C) ≥ prog(C′) ≥ min(d, r), where d is
the minimum distance between each source and its target in the original con-
figuration C (d := mini∈I ‖si − ti‖) and the communication radius is r. At
each removal step we show that imposing a particular constraint on a more
relaxed configuration does not increase progress, so that the lower bound for
the final (most constrained) configuration is also a lower bound for the original
(unconstrained) configuration. The bound shows that straight chains (the most
constrained configurations) are the worst-case configurations since their progress
is a lower bound for all chains. We show the lower bound is tight for d-uniform
configurations by exhibiting a chain with progress exactly min(d, r) (§8.3).

Keeping Mobile Robot Swarms Connected 505

Fig. 1. Transformation overview from arbitrary to restricted chains

8.1 Progress Function for Balanced and Separated Chains

We explicitly characterize the progress of an agent in a balanced, source-separated
chain. In such a configuration, if an agent has source s with target t, the source-
target distance is d := ‖s−t‖ and the position of its neighbors s−1, s+1 (if any) can
be uniquely determined by the angles of the left (λ := ∠t, s, s−1) and right neigh-
bor (ρ := ∠t, s, s+1). Since an agent’s progress is determined by it’s neighbors, its
progress can be defined as a function δ∠(d, λ, ρ).

If the agent doesn’t depend on either neighbor, it can immediately move to
its target and its progress is d. If it (partially) depends on a single (left or right)
neighbor at angle θ, then progress is δsingle(d, θ) := d + 1 −

√
1 + d2 − 2d cos θ.

If it (partially) depends on both neighbors at angles ρ and λ, then progress is
δboth(d, λ, ρ) := d −

√
2 + d2 − 2d cosρ + 2 cos(ρ + λ) − 2d cosλ. If completely

immobilized by one or both of its neighbors, its progress is 0. Therefore the
progress of an agent is described by the following piecewise function,
parametrized by the source-target distance d and the angle to its neighbors ρ
and λ. Observe that the agent i’s progress function is monotonically decreasing
in ρ and λ.

δ∠(d, λ, ρ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d ρ ≤ cos−1 d
2 and λ ≤ cos−1 d

2

δsingle(d, ρ) ρ > cos−1 d
2 and sin(ρ + λ) ≥ d sin λ

δsingle(d, λ) λ > cos−1 d
2 and sin(ρ + λ) ≥ d sinρ

δboth(d, λ, ρ) ρ + λ < π and sin(ρ + λ) < d sinρ, d sin λ

0 ρ + λ ≥ π

8.2 Progress for Restricted Chains

We prove a lower bound on progress of min(d, r) for d-uniform, source- and
target-separated, balanced, straight chains with communication radius r. Let
Ck(d, θ) represent a d-uniform, source- and target-separated, straight chain of
k nodes, where ∠ti, si, si+1 = θ for i ∈ 1..n − 1. We first establish the progress
bound for chains of two nodes and then extend it to more than two nodes.

Progress Theorem for Restricted 2-Chains. For any θ ∈ [0, π], the chain
C2(d, θ) makes progress at least min(d, r) (prog(C2(d, θ)) ≥ min(d, r)).

Proof. Suppose θ ≤ arccos d
2 , then if d ≤ r agent 1 makes progress d, if d > r

then agent 1 makes progress at least r. Similarly if θ ≥ π − arccos d
2 and d ≤ r

506 A. Cornejo et al.

agent 2 makes progress d, if d > r then agent 2 makes progress at least r.
Otherwise θ ∈ (arccos d

2 , π−arccos d
2) and the progress function from §8.1 yields

δsingle(d, θ) + δsingle(d, π − θ) = 2 + 2d −
√

1 + d2 − 2d cos θ −
√

1 + d2 + 2d cos θ

The partial derivative is d sin θ(1/
√

1 + d2 + 2d cos θ − 1/
√

1 + d2 − 2d cos θ),
whose only root in (0, π) is θ = π

2 , which is a local minimum. We use the first
order Taylor approximation as an upper bound of

√
1 + d2 and since d2 < d:

prog(C2(d, θ)) ≥ prog(C2(d,
π

2
)) ≥ 2δsingle(d,

π

2
)

≥ 2 + 2d − 2
√

1 + d2) ≥ 2 + 2d − 2 − d2 ≥ d

Progress Theorem for Restricted n-Chains. Configurations Cn(d, θ) (n >
2) and C2(d, θ) have the same progress (prog(Cn(d, θ)) = prog(C2(d, θ))).

Proof. Since Cn is straight and separated, internal nodes make no progress (δi =
0 for i ∈ 2..n − 1). The first node in Cn (and C2) has a single neighbor at angle
θ, so δn

1 = δ2
1 . Similarly the last node in Cn (and C2) has a single neighbor at

angle π − θ, so δn
n = δ2

2 . Therefore prog(Cn(d, θ)) = prog(C2(d, θ)).

8.3 Progress for Arbitrary Chains

We prove that the progress of an arbitrary chain is bounded by below by the
progress of a restricted chain, hence the progress bound proved in the previous
section for restricted chains extends to all chains. Furthermore, we show the
bound is tight for d-uniform configurations by exhibiting a class of chains for
which progress is exactly min(d, r).

To extend the progress result from restricted to arbitrary chains, we exhibit a
sequence of transformations (cf. Fig 1) that show how to transform an arbitrary
chain to be d-uniform, source-separated, target-separated, balanced and straight.
Each transformation doesn’t increase progress and preserves the configuration’s
properties. The proofs rely heavily on geometric reasoning and are the most
technical part of the progress bound. Due to space restrictions we list the lemmas
without proof, see [21] for the detailed proofs.

Truncation Lemma. Suppose a source s with target t and neighbors S. Let
tT = s+γ(t−s) with γ ∈ [0, 1] be its truncated target, then δ(s, t; S) ≥ δ(s, tT ; S).

Separation Lemma. A d-uniform configuration C can be transformed into a d-
uniform, source- and target-separated configuration C′ with prog(C) ≥ prog(C′).

Balancing Lemma. Fix a configuration C where agent i has neighbors i − 1
and i+1 on the same side. Let C′ be the configuration obtained by reflecting every
sj and tj for j > i (or j < i) around agent i’s y-axis. Then prog(C) ≥ prog(C′).

Keeping Mobile Robot Swarms Connected 507

Straightening Lemma. Fix a configuration C described by {θi}i∈1..n−1 and
a straight configuration C′ described by {θ′i}i∈1..n−1 where every angle is θn−1
(θ′i := θn−1 for i ∈ 1..n). Then prog(C) ≥ prog(C′).

With these transformations in place we are ready to prove a bound on the
progress of an arbitrary chain.
Progress Theorem for Chains. TheprogressofachainC = 〈I, F 〉 isprog(C) ≥
min(mini∈I di, r).

Proof. By the Truncation lemma we can set all the source-target distances to d =
min(mini∈I di, r) to obtain a d-uniform chain. Using the Separation, Balancing,
and Straightening lemmas there exists an angle θ ∈ [0, π] such that the straight
chain Cn(d, θ) has less progress than C (prog(C) ≥ prog(Cn(d, θ)))).

Finally by the Progress theorem for straight n-chains we have prog(Cn(d, θ)) =
prog(C2(d, θ)), and by the progress lemma progress for 2-chains we have
prog(C2(d, θ)) ≥ d for any θ. Hence, prog(C) ≥ prog(Cn(d, θ)) = prog(C2(d, θ)) ≥
d.

Optimality Theorem. The lower bound on progress is tight for d-uniform
configurations: there are chains that cannot make more than min(d, r) progress
under any local service, and ConnServ achieves exactly that much progress.

Proof. For any n, we exhibit a chain of n agents with progress exactly min(d, r).
Fix n and consider the straight chain Cn(d, 0), the first agent has progress
min(d, r) (δn

1 = min(d, r)) while every other agent has no progress (δn
i = 0

for i > 1), therefore prog(Cn(0, d)) = min(d, r). This class of of chains cannot
make more than min(d, r) progress under any local service and ConnServ achieves
exactly that much progress.

9 Termination

Consider an arbitrary chain of agents running the connectivity service. How
many rounds does it take the agents to get (arbitrarily close) to their target?
Let di[k] be the source-target distance of agent i after round k, we say an agent
is ε-close to its target at round k iff di[k] ≤ ε. Given the initial source-target
distance di[0] of each agent, we will give an upper bound on k to guarantee every
agent is ε-close.

So far we proved that while the target of every agent is outside its commu-
nication radius r, the collective distance traveled is r; moreover this is tight up
to a constant factor. However, once an agent has its target within its commu-
nication radius, we can only argue that collective progress is proportional to
the smallest source-target distance (since we truncate to the smallest distance).
Unfortunately this is not enough to give an upper bound on k.

Let Dk =
∑

i di[k] and dmin[k] = mini di[k], then Dk+1 ≤ Dk−min(dmin[k], r).
However, if dmin[k] = 0 this yields Dk+1 ≤ Dk and we cannot prove termination.
The following lemma allows us to sidestep this limitation. We call a chain almost

508 A. Cornejo et al.

d-uniform if all the inner nodes are d-uniform and the outermost nodes have
source-target distance 0.

Progress Theorem for Almost-Uniform Chains. An almost d-uniform
chain Cn of size n ≥ 3 has progress prog(Cn) ≥ δ∠(d, π

2 , arccos d
2) ≥ γ0d where

γ0 := 1 −
√

2 −
√

3.

Proof. Observe that the Balancing and Separation theorems still apply. More-
over, by the independence lemma and the monotonicity of the progress function
we can assume the endpoints are at an angle of arccos d

2 to their neighboring
source-target vector.

Hence, for n = 3 we need to consider one configuration, and by the target-
connectedness assumption it’s clear that the inner node makes full progress and
hence prog(C3) ≥ d. For n > 3 there is a family of possible chains determined
by the angles between the inner nodes, we proceed by a complete induction on
n. Observe that we can assume the progress of the internal nodes depends on
both of its neighbors, since otherwise we could argue about a smaller subchain.

Case 1. Base case. Let n = 4, clearly only the two internal nodes make progress,
therefore we have prog(C4) = δboth(d, arccos d

2 , α)+δboth(d, π−α, arccos d
2) where

α is the angle between the two internal nodes. If α ≤ arccos d
2 or π−α ≤ arccos d

2 ,
then prog(C4) ≥ d. For arccos d

2 ≤ α ≤ π − arccos d
2 we define the restricted

minimization problem α∗ = argminα prog(C4). There is a unique minimum at
α∗ = π

2 and hence prog(C4) ≥ 2δ∠(d, π
2 , arccos d

2) ≥ γ0d.

Case 2. Inductive step. Consider a chain of length n > 4 with n − 2 interior
nodes. Let S be the set of angles between the first n−3 interior nodes and let α be
the angle between the last interior nodes. The progress of the chain is prog(Cn) =
p(S, α)+δ∠(d, α, arccos d

2), where p(S, α) represents the progress of the first n−3
interior nodes. Similarly for a chain of length n+1 there are n−1 interior nodes,
and its progress is prog(Cn+1) = p(S, α) + δ∠(d, α, β) + δ∠(d, π − β, arccos d

2).
We prove the bound by cases on α. If α ≤ π

2 , we can minimize the last
two terms of prog(Cn+1) by solving minα,β δ∠(d, α, β) + δ∠(d, π − β, arccos d

2),
which has a single minimum at α = β = π

2 , and thus prog(Cn+1) = p(S, α) +
δ∠(d, α, β) + δ∠(d, π − β, arccos d

2) ≥ δ∠(d, π
2 , π

2) + δ∠(d, π
2 , arccos d

2) ≥ γ0d.
If α > π

2 , by the inductive hypothesis we have prog(Cn) ≥ γ0d and it suffices
to show prog(Cn+1) ≥ prog(Cn). This is equivalent to proving δ∠(d, α, β) +
δ∠(d, π − β, arccos d

2) − δ∠(a, α, arccos d
2) ≥ 0 for α > π

2 and any β, which also
holds.

Intuitively, the progress theorem for almost-uniform chains proves that once
subset of the agents reach their target, the rest of the agents make almost the
same progress as before. Intuitively, it seems reasonable to expect that if a subset
of the agents get ε-close to their target (for small enough ε) a similar result should
hold. This is at the core of the termination theorem which proves an upper bound
on the number of rounds needed for nodes to be ε-close to their targets.

Keeping Mobile Robot Swarms Connected 509

We say the targets of two nodes are �-connected if they are at distance � of
each other. So far we have assumed neighboring nodes have connected targets,
that is, they are r-connected. To prove the next theorem we require a stronger
assumption, namely, that targets are (r − 2ε)-connected.

Termination Theorem. Under the (r − 2ε)-connected assumption, nodes get
ε-close within O(D0/r + n2/ε) rounds.

Proof. Since targets are (r − 2ε)-close, we can assume each node stops at the
first round when they are ε-close to their target and the resulting configuration
is connected. Therefore we can consider the source-target distance of a node to
be either greater than ε when it is not ε-close, or zero once it is ε-close.

If initially every node i is at distance di ≥ r from its target, it takes at most
D0/r rounds before there exists some node i with di < r. If there is a node i

with source-target distance di < r it follows that Dk < rn2

2 , we argue that from
this point on we can assume a progress of at least γ0ε per round until every node
reaches its target, therefore the total number of rounds is O(D0/r + n2/ε).

Consider a chain C = 〈I, F 〉 and let the subset Sk ⊆ I represent the set
of agents which are already at their target at round k (i ∈ Sk iff di[k] = 0).
If Sk = I then we are done, otherwise there exists a subchain C′ ⊆ C where
all agents except possibly the endpoints have di[k] > ε. Hence, by the progress
theorem for almost-uniform chains the progress is at least γ0ε.

10 Conclusion

In this paper we present a local, oblivious connectivity service (§3) that encap-
sulates an arbitrary motion planner and can refine any plan to preserve connec-
tivity (the graph of agents remains connected) and ensure progress (the agents
advance towards their goal). We prove the algorithm not only preserves connec-
tivity, but also produces robust trajectories so if an arbitrary number of agents
stop or slow down along their trajectories the graph will remain connected (§4).

We also prove a tight lower bound of min(d, r) on progress for d-uniform
configurations (§8). The truncation lemma allows this lower bound to apply
to general configurations using the minimum distance between any agent and
its goal. Thus, when each agent’s target is within a constant multiple of the
communication radius, the lower bound implies the configuration will move at a
constant speed towards the desired configuration.

As the agents get closer to their goal, this bound no longer implies constant
speed convergence. We prove a bound of O(D0/r + n2/ε) on the number of
rounds until nodes are ε-close. This bound requires assuming targets are (r−2ε)-
connected, though we conjecture that it is possible to remove this assumption.
The D0/r term in the bound is necessary because when the initial source-target
distance is large enough, clearly no service can guarantee robust, connected
trajectories if agents advance faster than one communication radius per round.

It would be tempting to prove agents advance at a rate proportional to the
mean (instead of the minimum) source-target distance, which would imply a

510 A. Cornejo et al.

termination bound of O(D0/r + n log n
ε). However, it is possible to construct an

example which shows that the progress is less than γ · mean, for any constant
γ > 0. An alternative approach we intend to pursue in future work is to directly
argue about the number of rounds it takes the agents to reach their target.
This may give a tighter bound on the rate of convergence over quantifying the
distance traveled by the agents in a single round, which necessarily assumes a
worst case configuration at every step.

References

1. Johnson, D., Maltz, D.: Dynamic Source Routing in Ad Hoc Wireless Networks.
Computer Communications Review - SIGCOMM (1996)

2. Perkins, C., Royer, E.: Ad-hoc On-Demand Distance Vector Routing. In: Workshop
on Mobile Computing Systems and Applications (1999)

3. Malpani, N., Welch, J., Vaidya, N.: Leader Election Algorithms for Mobile Ad-hoc
Networks. In: DIAL-M: Workshop in Discrete Algorithms and Methods for Mobile
Computing and Communications (2000)

4. Walter, J., Welch, J., Vaidya, N.: A Mutual Exclusion Algorithm for Ad Hoc Mobile
Networks. Wireless Networks (2001)

5. Regmi, A., Sandoval, R., Byrne, R., Tanner, H., Abdallah, C.: Experimental Im-
plementation of Flocking Algorithms in Wheeled Mobile Robots. In: Proceedings
of the American Control Conference 2005, pp. 4917–4922 (2005)

6. Hayes, A., Dormiani-Tabatabaei, P.: Self-organized flocking with agent failure: Off-
line optimization and demonstration with real robots. In: ICRA (2002)

7. Fierro, R., Das, A.: A modular architecture for formation control. Robot Motion
and Control (2002)

8. Carpin, S., Parker, L.E.: Cooperative Leader Following in a Distributed Multi-
Robot System. In: ICRA (2002)

9. Zavlanos, M.M., Pappas, G.J.: Controlling Connectivity of Dynamic Graphs. In:
CDC-ECC, pp. 6388–6393 (2005)

10. Savla, K., Notarstefano, G., Bullo, F.: Maintaining limited-range connectivity
among second-order agents. SIAM Journal on Control and Optimization (2007)

11. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point con-
vergence algorithm for mobilerobots with limited visibility. ICRA 15(5), 818–828
(1999)

12. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337(1-3), 147–168 (2005)

13. Ganguli, A., Cortés, J., Bullo, F.: Multirobot rendezvous with visibility sensors in
nonconvex environments. CoRR abs/cs/0611022 (2006)

14. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to
gather oblivious mobile robots with limited visibility. In: SSS, pp. 484–500 (2006)

15. Lee, G., Chong, N.Y., Defago, X.: Robust Self-Deployment for a Swarm of Au-
tonomous Mobile Robots with Limited Visibility Range. In: Robot and Human
interactive Communication (2007)

16. Maja, A.H., Howard, A., Matari, M.J., Sukhatme, G.S.: An Incremental Self-
Deployment Algorithm for Mobile Sensor Networks. Autonomous Robots, Special
Issue on Intelligent Embedded Systems 13, 113–126 (2001)

Keeping Mobile Robot Swarms Connected 511

17. Cornejo, A., Lynch, N.: Connectivity Service for Mobile Ad-Hoc Networks. In:
Spatial Computing Workshop (2008)

18. Gabriel, K., Sokal, R.: A new statistical approach to geographic variation analysis.
Systematic Zoology 18(3), 259–278 (1969)

19. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern
Recognition 12(4), 261–268 (1980)

20. Li, N., Hou, J.C., Sha, L.: Design and analysis of an MST-based topology control
algorithm. INFOCOM 3, 1702–1712 (2003)

21. Cornejo, A., Kuhn, F., Lynch, N., Ley-Wild, R.: Keeping mobile robot swarms con-
nected. MIT-CSAIL-TR-2009-027 (2009), http://hdl.handle.net/1721.1/45568

http://hdl.handle.net/1721.1/45568

	Keeping Mobile Robot Swarms Connected
	Introduction
	Preliminary Definitions
	Distributed Connectivity Service
	The Filtering Function
	The Algorithm

	Preserving Connectivity
	Ensuring Progress for Graphs
	Dependency Graphs

	Ensuring Progress for Chains
	Progress Function for Balanced and Separated Chains
	Progress for Restricted Chains
	Progress for Arbitrary Chains

	Termination
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

