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ABSTRACT
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1. Introduction.

Reliable broadcast of messages in point-to-point computer networks is an
important distributed application which has received considerable attention. A
simple and obvious way to broadcast a message is to send a separately
addressed copy of it to every host in the network and repeat this process until
an acknowledgment is received. This solution, however, leaves room for possible
improvement in several directions. First of all, this solution is clearly inefficient

since it can generate much more network traffic than necessary.

Efficiency could be improved if the network servers were programmed to
handle broadcast messages intelligently. This approach is taken in [AWEv84],

[DaMe78], [Peac80], [Rose80], and [SeAw83]. Unfortunately, it is not always

t This work has been supported by NSF Grants DMC-8351616 and DMC-8505194, New Jersey Governor’s
Commission on Science and Technology Contract 85-990660-6, and grants from DEC, IBM, NCR, and Con-
current Computer corporations.
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applicable. For instance, Arpanet users cannot program that network’s servers
(IMPs), nor are the servers preprogrammed to implement broadcast efficiently.
However, even when servers are nonprogrammable, one can still achieve better
efficiency than with the simple solution. In particular, expensive communication

links can be identified and avoided whenever possible.

While the simple solution has reliability provisions in the form of ack-
nowledgments this is not always adequate. Consider, for example, a situation
when the broadcasting host gets disconnected form the network after delivering
the message only to a portion of all hosts. The rest of the hosts will never (or
uﬁtil the source is reconnected) receive the message. Therefore, we would like to

have a broadecast algorithm in which all hosts share the responsibility for reli-

able message delivery so that in the described scenario the hosts that success- .

fully received the message from the source could then propagate it to others.

Finally, improvement can also come from taking advantage of the fact that
broadcast applications usually operate on streams of many messages rather
than on a few isolated messages. By ordering messages at the source and keep-
ing track of the messages received so far at every host the algorithm we propose
will be able to dynamically make decisions on how to propagate newly gen-
erated messages. The benefits gained in terms of reliability and low delay will
outweigh the extra communication cost involved when the broadcast stream is

sufficiently long (consists of many messages).

It is important to note that reliability is treated here as a relative measure

rather than an all-or-nothing property. That is, instead of classifying protocols
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as reliable or unreliable, we try to estimate to what degree they are reliable (or
unreliable). No statement can be made about the reliability of any broadcast
protocol without first making some assumptions concerning the reliability of the
network itself. For example, if the network stays in a partitioned state for an
indefinite period of time, no protocol, no matter how clever, can guarantee reli-
able delivery of broadcast messages to all destinations. On the other hand, if
the partition is repaired for a brief period of time, only to reappear and persist,
some protocols might be able to take advantage of this brief opening to com-
plete a brc;adcast while others might not. Thus it seems more justified to speak
of relative reliability of a protocol, referring to the degree to which it is capable
of utilizing communication opportuniti.es presented by the dynamically changing

network. This issue is discussed in greater detail in subsequent sections.

Interestingly enough, not all applications that make use of broadecast
require that it be reliable. For example, in adaptive routing it may be necessary
to distribute the information regarding queueing delays in different parts of the
network. Broadcast could be used for this purpose. However, if a broadcast
message is late in coming, due to communication failures, it may just as well

not arrive at all because it will soon be outdated by a more recent one anyway.

So it seems useful to keep in mind some specific applications which require
reliable broadcast. The main motivating application that has been driving the
present work is management of highly available replicated databases. There are
several known techniques for solving the problem of high data availability in
replicated databases in the face of network partitions, all of which require reli-

able broadcast of updates. But while the goal of reliable broadecast is to
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eventually deliver all messages to all destinations, there are some particulars
associated with certain approaches. For example, in the type of approaches that
forego serializability of transaction execution in order to achieve maximum data
availability (e.g., Data-Patch [Garc83], log transformation [BIKa85], [Sari85],
and data fragmentation [GaKo87]), it is not absolutely essential that updates
be installed in remote copies of the database always in the correct order, i.e., in
the order they were generated. Consequently, it is not essential that broadecast

messages be always delivered in the order they were dispatched.

In designing a reliabie broadcast we take into account this consideration.
As a result, the stress is put on delivering messages as promptly as possible, but
not necessarily in the strict order. Note that this relaxation of requirements on
a reliable broadcast gives potentially more flexibility to the protocol and may

improve its average delay characteristic.

2. Basic Assumptions.

In this section, the chosen network environment is described in more detail,

and some motivations for considering this environment are introduced.

-

The network consists of a set of hosts, communication servers, and com-
munication links. Hosts are computers that participate in the broadcast applica-
tion. Servers are nodes interconnected among themselves by point-to-point
bidirectional links into a communication subnetwork. (This study can be
extenaed to the case when some of the links are of the broadcast type, however
we choose not to consider this extension here.) Each host is attached to a

server. Some servers, however, may have no corresponding hosts, and, therefore,




act only as switches.

In reality, a server is either a separate dedicated communication processor
(e.g., Arpanet) or a process residing at the same physical computer with the
corresponding host (e.g., Bitnet). If the latter is true, a clean interface between
the host and the corresponding server is assumed. For our purposes it is both

convenient and sufficient to assume that servers are separate nodes.

There is no multicast facility provided by the network, and servers cannot
handle messages with multiple addresses. The only kind of instruction a host
can give to a server is request it to deliver a message to a single destinatién.
Thus if the same message is to be sent to several destinations, the above pro-
cedure has to be repeated several times. Servers are assumed to be nonpro-
grammable as far as the broadcast application is concerned, i.e., the code that
is run on the servers cannot be changed to expedite reliable broadcast. That

leaves the only remaining alternative: implementing broadcast on the hosts.

The kind of scenario described in the previous paragraph is quite realistic.
It may arise in a network of the type of Arpanet (which still does not provide a
multicast facility), when (some of) the hosts connected to the network wish to

enact efficient and reliable broadcast for a common application.

The host that issues broadcast messages (which will also be called data
messages) is referred to as the source. Here, we study only a single-source
broadcast problem. However, a multiple-source broadcast can be performed reli-
ably by running several identical single-source protocols suggested in the

present paper. From the point of view of efficiency this option also appears to




be a reasonable one.

The hosts are reliable and never fail. The servers and links, however, can
fail. In view of this latter assumption, the assumption concerning the reliability
of hosts is no longer overly restrictive, for a host crash can now be "simulated"
by a server or link failure, provided of course that hosts are equipped with non-

volatile data storage.

We make no assumptions about communication failures in the network
other than the impossibility of malicious messages being generated. Links can:
fail and recover at any time. Messages can arrive out of order, have arbitrary
delays, be lost at any point (even when the link over which the lost message
was sent is perceived to be operational), or be spontaneously duplicated. More-
over, the fact that a meséage is lost is not automatically detected by the com-
munication subsystem and, therefore, cannot be reported to the application.
Similarly, failures of links and their recoveries are not detected either. Thus, the
application can never be certain whether a given link is operational at any

given moment.

The reason for vmaking as few assumptions as possible about the way the
communication network behaves, particularly the way in which it may fail, is to
design a protocol that does not depend for reliability on the data link layer of
the network [Tane81|. There is a growing feeling among the researchers in the
field against such dependency. Moreover, even though most of the existing net-
works have reliability mechanisms — such as message acknowledgments —

implemented at the data link layer, it is likely that future designs will favor
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pushing these mechanisms up to the application layer. A strong efficiency argu-

ment can be made in favor of such arrangement.

The next assumption will be referred to as the communication transitivity
assumption. It postulates that if during the time interval (¢, ¢') it is possible
for host z to communicate with host y, and for host y to communicate with host
2 then it should be possible, during (¢, ¢'), for host z to communicate with host
2. The significance of communication transitivity will become apparent when
we discuss the particulars of the proposed protocol. The assumption seems quite ‘
reasonable for networks with adaptive routing since in a situation described
there exists at least one communication path between hosts z and z — the one

that goes through (the server of) host v.

Hosts possess no knowledge of the network topology or any other static
information concerning the network. They do, however, know the identities of
other participating hosts. (When this latter assumption is not valid, i.e., some
hosts do not know the identities of all other hosts, the problem becomes very

different. See [Deme87] for a possible solution.)

Finally, we assume that there is a division of all links into two categories,
according to their bandwidth. All links with a high bandwidth are called cheap;
links with a low bandwidth are called expensive. For obvious reasons, it is not

specified what high and low mean precisely, but we assume that expensive links
| are much more expensive than cheap ones. This assumption is motivated by the
existence of long haul networks (with low bandwidth links) with local networks

(with high bandwidth links) integrated into them. In a global network of this
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kind some hosts are connected via cheap links while others are connected via

expensive links only.

Since they have no static information about the network, hosts do not
know which links are cheap and which are expensive. We assume, however, that
there is a way for a host to tell whether the message it has just received
traversed an expensive link on its way to the destination. (For instance, there
could be a special bit in the message format initialized to O and set to 1 by a
server whenever the message in question traversed an expensive link. Even if the
network did not provide this type of service, the service could be implemented
on the host level. One way to do this would be to timestamp each message at
the time it is sent out. This would allow each host to estimate the time in tran-
sit. Since the expected times for cheaply delivered messages and for expensively
delivered ones vary significantly, hosts would be able to tell them apart.) The
ability to distinguish expensively delivered messages from cheaply delivered ones

is the only kind of dynamic information available to hosts.

3. Basic Ideas.

As was mentioned earlier, the goals of our protocol should be low cost, low
average delay, and high reliability. In this section we focus on some basic ideas
on how to achieve these goals, without going into details of our proposed algo-

rithm.

We start with a fairly obvious observation, namely that optimal cost can-
not be achieved for broadcast in our environment. This is illustrated by the

example in Figure 3.1. (In all examples, from here on, hosts will be denoted by




squares, and servers by circles.)

In this example we have three hosts connected by a network of four
servers. Host %, is the source of broadcast. Clearly, the most cost efficient (as
well as the delay minimizing) way for A, to broadcast a message would be as
follows. Host A; hands the message to its server (s;). Server s, then, sends it
to server s4. Sever s, makes two copies of the message and sends one copy each
to servers sy and s3. Finally, servers sp and sz pass the message on to hosts ho
and k3, respectively. In this way, no link is traversed more than once (and,
obviously, every link has to be traversed in the given example for the broadcast

to succeed).

(54)
hoj—Go) Se—1ha

Figure 3.1.

Note, however, that servers cannot handle multiply addressed messages,
nor is there any way for host A, to explicitly instruct server 84 to duplicate the
message and send the copies to two separate destinations (and even if there
were, that would do no good because ki knows nothing of the network topol-
ogy). Hence, broadcast cannot possibly be performed as described above. So, no
matter what type of protocol one comes up with for our environment, it will

not, in general, have optimal performance.
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We have implicitly assumed here that the cost of a protocol is measured in
the number of times a message traverses a communication link in the network.
However, since, for a protocol implemented on hosts, there is no way of knowing
how many links a host-to-host message traverses or even how it is routed by the
network, this cost metric does not present a very good basis for comparison of
different protocols. Thus we introduce a new metric: the number of packets
delivered (at least part of the way) over expensive links. This metric seems
acceptable for two reasons. First, it closely approximates the actual cost of
broadcast because it is assumed that high-bandwidth (cheap) links are much
cheaper to use than low-bandwidth ones. Second, since the only thing that can
be said about how a packet has been delivered to its destination is whether it
has traversed any expensive links, this seems the only way to estimate the real

cost.

At any given time, all the hosts in the network can be divided into groups
such that within each group hosts can communicate among themselves cheaply,
but hosts in different groups can only communicate using expensive links. Such
a group of hosts is called a cluster. Clustering of hosts can change over time due
to failures and repairs of communication links.” Note that hosts’ views of the

constituency of their clusters may not always conform to reality.

Assuming that the network is not partitioned and disregarding for now the

possibility of any changes in it, it would be desirable to arrange clusters in a

t A packet is a physical embodiment of a message. Each time a message is sent from
host to host, it becomes a new packet.
* In this context, repair can also mean an introduction of a new link.
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tree rooted at the cluster containing the source. This tree is referred to as the
cluster tree. Then broadcast messages could trickle down the tree from parent
cluster to child cluster. Barring the possibility of lost inter-clsuter packets, it
would take k — 1 expensive packets, where k is the number of clusters in the

network, to broadcast one message. Clearly, this is optimal (in the new metric).

Every cluster, except the one at the root of the cluster tree, has a special
host in it, called the cluster leader. The cluster leader receives broadcast mes-
sages from one of the hosts in the parent cluster, and it is responsible for distri-
buting them to other members of its own cluster (cluster neighbors). Broadcast
is initiated when the source sends a message to its cluster members. Figure 3.2

gives an example of a cluster tree.

As was mentioned before, the cluster tree arrangement fepresents a
demontsrably good option for minimizing the cost of broadeast. If we also want
low average delay, however, it is not enough to come up with just any cluster
tree. The main idea for reducing delays is, for every cluster, to try to find a
parent that can deliver new broadcast messages as promptly as possible.
Namely suppose that, for a given cluster C, we have a choice of parents €' or
C". Further, suppose that somehow it is known that cluster €’ receives broad-
cast messages ahead of C”. Then C' is a better candidate for a parent than
C", and cluster C should become a child of C'. Note that at a later time, due
to changing message traffic, some other cluster can become a more desirable
parent for C than C’. ‘Thus, we may have to dynamically restructure the cluster

tree to minimize delays.




O Node of cluster tree D Node of host parent graph

Cluster leader

Figure 3.2.
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Dynamic changes in the cluster tree may also eb necessary to compensate
for component failures. For example, if a cluster leader finds out that it no
longer can communicate with its parent, it should try to find a new parent. In
another instance, a cluster leader (or its server) may fail, in which case the
members of the cluster must come up with a new cluster leader to maintain the

connectivity of the tree.

Failures can also cause packets to get lost, and the reliable broadcast algo-
rithm must compensate for this. To detecst lost packets, all broadcast messages
are sequenced numbered so that it is easy to tell when a message has failed to
be delivered to any given host. When that happens, certain actions are taken to

enact a redelivery of a lost packet.

4. The Algorithm.

In the previous section some high level strategies for enacting efficient reli-
able broadcast were outlined. Nothing was said, however, about any specific
ways of implementing those strategies. In particular, it was not explained how a
cluster tree can be constructed and maintained. In this section, the actual
broadcast algorithm is presented. (For a formal specification of the algorithm

see Appendix.)

4.1. The Parent Host Graph.

To enact broadcast, hosts attempt to configure themselves into a tree with
the source as its root. In a failure-free environment, such a tree would be

stable, and data messages could be sent from parent to child to make broadcast
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complete. However, because of the possibility of link failures, the tree can
become disconnected, and the nodes should be able to reconfigure into a
ciifferent tree if at all possible. The resulting structure is, therefore, dynamic
and referred to as the host parent graph, to underscore the fact that connec-

tivity is not always achieved (e.g., during partitions).

(It is important not to confuse communication links of the network with
edges of the host parent graph. For the latter correspond to communication

paths that, in general, can consist of several links.)

We say that a host parent graph induces a cluster tree if (1) the host
parent graph is a tree; and (2) children of every cluster leader include all other
hosts that are in the same cluster. (For the sake of generality, from now on, we
consider the source as a cluster leader.) The relationship between parent host
graphs and cluster graphs induced by them is best illustrated by the example in
Figure 3.2. There, the little squares (representing hosts) are the nodes of the
parent host graph, and all the connections between the squares are its edges.
The large ellipses (representing clusters), on the other hand, are the nodes of
the cluster tree, whose edge set includes only those edges that go between the
ellipses. It is easy to see that the host parent graph in this example induces the

cluster tree shown in the picture.

Not every parent graph, though, induces a cluster tree. Consider again the
parent graph of Figure 3.2. Suppose, however, that a high bandwidth path has
just been repaired between clusters C and L. That means that these two clus-

ters have been joined into ome. Hence, the cluster tree is changed, and the
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parent graph no longer induces the new cluster tree.

To reduce the cost of broadecast, it is desirable to have a host parent graph
that induces a cluster tree. Thus the algorithm must maintain a host parent
graph in such a way that it dynamically adjusts to changes in the network and

tends to assume a configuration that induces a cluster tree.

Broadcast messages are propagated in the host parent graph from the root
all the way down. Thus, upon receipt of a broadcast message, a host sends it on
to all its children. For reasons explained below, a host can accept a message
sequence-numbered higher than any it has received so far, only from its parent.

If such a message arrives from any other host, it is discarded.

4.2. The Attachment Procedure.

At the heart of the algorithm is the attachment procedure, which is period-
ically activated at every host. The purpose of this procedure is to make sure
that the host is attached to a "good" parent, and if that is not the case, find a

better one.

As was mentioned earlier, Broadcast messages are sequence numbered.
Every host keeps track of all the messages it has received so far. For each host
t, a set INFO; contains the sequence numbers of all messages received by 7. Let
us define a paftial' ordering < on sets of message sequence numbers. We write
A < Bif the largest element of A is strictly less than the largest element of B,

i.e., if max < max(g). Also, we write A ~ B, if max = maXx(q). These sets
Le., i qu(Q) qu(Q) , ) qu(Q) qEB(q)

are used for detection and redelivery of lost packets. They are also used for

dynamically maintaining the host parent graph with the goal of maximizing
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reliability and minimizing delays.

Each host ¢ maintains an array of sets of message sequence numbers,
MAP;. MAP;[j] represents host 7's view of INFO; (thus, MAP;[i{] = INFO;).
Hosts periodically update one another on the current values of their INFO sets.
INFOq, where s is the source, gets updated every time a new broadcast message

is generated at the source.

CLUSTER; is a set that contains the identities of hosts that, according to
host ¢, are in the same cluster with 1. This set can be updated when a message
(of any kind, not necessarily a broadcast message) is received from another host
J- If the cost bit in the message is 1, and j was a member of CLUSTER,, then j
is taken out of this set. Similarly, if the cost bit is 0, and j was not in the set, it
is added. CLUSTER; is initialized to {¢}, i.e., in the beginning each host
assumes that it is in a cluster by itself. Of course, if there is some information

to the contrary, then CLUSTER; can be initialized differently.

CHILDREN; is a set of all the children of host ¢ in the host parent graph
and is maintained by host 7 itself. Also, host 7 has an array p;[] such that its j-
th element is the supposed parent of host j. Entry p;[¢], of course, is the true
parent of ¢, at all times. Arrays p; are mutually updated on a periodic basis

among the hosts in the same cluster only.

Finally, there is a static linear ordering imposed on all the hosts. The

number assigned by the ordering to host ¢ is denoted by order(7).

The attachment procedure consists of a number of options that must be

tried by the host, in the order indicated, until either a suitable new parent is
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found or all options are exhausted without success. In the latter case, the host

waits a certain period of time! before initiating the same procedure again. If,

however, a parent is found, a message is sent to it requesting inclusion in its

CHILDREN set. If the acknowledgment to this message times out, the pro-

cedure is repeated to find another candidate with which the given host can

communicate. The old parent, if any, is also notified of the change by an

appropriate message.

7)-

The options, for each host 3, are as follows (the new parent of ¢ is denoted

I. For a host currently without a parent:

1)

(2)

(3)

Attach to a host in the same cluster that has a parent in a different cluster
or no parent at all (a cluster leader), and a greater (according to relation
<) INFO set. Thus j must satisfy the following conditions:

J € CLUSTER;
pil7] € CLUSTER,
MAP;[i] < MAP{j]
Attach to a cluster leader in thé same cluster with an "equal" INFO set
and a greater static order number.
J € CLUSTER,;
pil7] € CLUSTER;
MAP[i] ~ MAP;[;]
order (i) < order(j)
Attach to'a host in a different cluster with a greater INFO set.
Jj & CLUSTER;
MAP;[1}) < MAP;[5]

! This time period is a parameter of the algorithm.




-17 -

IL. For a host with a parent in a different cluster:

(1) See Case I, Option 1.
(2) See Case I, Option 2.

(3) Attach to a host in a different cluster with an INFO set greater than that
of the given host’s current parent.

j & CLUSTER,
MAP;[p;{i]] < MAP{j]

HI. For a host with a parent in the same cluster:

(1) Attach to the ancestor that is a cluster leader in the same cluster
J € CLUSTER;

pi[7] ¢ CLUSTER;
]. — p‘.[ o p,[z]]
Note: It is possible for a cycle to be created in the parent graph that con-
sists of hosts in the same cluster. Such a situation will be detected when
this option is tried. In that case the responsibility for breaking the cycle
delegated to the host with the highest order number on the cycle. This host

becomes a cluster leader and starts looking for a suitable parent outside
the cluster.

The procedure is run at all hosts but the source. Note that in the very
beginning of broadcast, the host parent graph is just a collection of hosts with
no parent—child connections among them. In the process of broadecast those

connections are established and changed as appropriate.

4.3. Properties of the Attachment Procedure.

In this subsection, we show that the attachment procedure constructs a
host parent graph that induces a cluster dynamically, by adapting to constantly

changing network topology and loads.
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First of all, we need to show that the attachment procedure constructs a
parent graph that is dynamically acyclic, i.e., has no persistent cycles, barring
the case of partition. Since hosts accept broadcast messages only from their
parents, no host’s INFO set can be smaller than that of any of its descendants.
Therefore the only way to form a cycle is for a host to attach to one of its own
descendants with an “equal" INFO set. This can be the case only if that descen-
dant is a cluster leader in the same cluster (case I, option 2 and case II, option
2). Hence, that cluster must contribute at least one cluster leader to the cycle.
Of all cluster leaders from the cluster considered that are on the cycle, the one
with the highest order number will eventually start looking for a new parent
outside the cluster (case II, option 3). If it is successful, the cycle will be broken.
If not, that will mean that it cannot communicate with any hosts that have
greater INFO sets. By the transitivity assumption, none of the hosts on the
cycles can communicate with such hosts either. Thus, even if the cycle is not
broken, it does not matter in this particular case. For a cycle in the parent
graph is undesirable only because no host on the cycle can get any new broad-
cast messages. But in the described situation this is the case even if there were
no cycle. This indicates that a partition has occurred in the network. When the

partition is repaired the cycle will be broken by the cluster leader.

Note that it is entirely possible that between the time the cycle is formed
and the time it is broken, all the hosts that are on it become cluster neighbors
(even if it was not the case at the creation of the cycle). If this happens, then
it is no longer possible to break the cycle in the manner desceribed in the previ-

ous paragraph. However, the provision in option 1 of case II of the attachment
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procedure will lead to breaking of the cycle. So umless there is a partition in

the network, no cycle in the parent graph can be stable.

Options 1 and 2 of cases I and II work towards éstablishing a single cluster
leader for each cluster, by making it a priority to look for a new parent within
the cluster. Only when this fails, does the host look for a parent outside its clus-
_ ter (option 3 of cases I and IT). Option 1 of case III (for a host with a parent
within the same cluster) attempts to establish a connection with a cluster
leader directly, if it is not the case already. As a result, all hosts in the same

cluster tend to organize into a single cluster tree node.

Option 3 of case I is for a host that has been unable to find a parent
within its own cluster and, therefore, has to look elsewhere. This host, then,

becomes a cluster leader.

Option 3 of case II is for a cluster leader that tries to improve its situation
in terms of the delay with which it receives broadecast messages, by switching to
a parent that has received more recent messages (with greater sequence
numbers). This idea for reducing delays is similar to the one proposed by Awer-
buch and Even [AWEv84]. In their work, however, it was applied in a different
network setting (programmable severs, more restricted failure assumptions,

disallowed acceptance of out-of-order messages).

Besides being an instrument for reducing delays, option 3 of case II can
help a host to detect when its parent has become disconnected from it. For, in
that case, the old parent’s INFO set will fall behind those of other out-of-cluster

hosts with which the given host can communicate. Note, however, that for
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hosts other than cluster leaders the attachment procedure does not provide an
automatic way of detecting the failure or disconnection of the parent. There-
fore, we need a separate provision to help detect this situation. One way to this
would be to time out on a parent that fails to send messages such as the ones
containing its INFO set and the identity of its own parent, which are being rou-
tinely exchanged by hosts in the same cluster. When this occurs, the host sets

its parent pointer to NIL and goes through options 1 to 3 of case III.

4.4. Gap Filling.

The attachment procedure presented above is a way for the hosts partici-
pating in broadcast to adjust to component failures as well as to the changing
loads in different parts of the network. The part of the protocol discussed here
deals with compensating for lost broadcast messages (or filling gaps in INFO
sets). Note that loss of messages can result not only from unreliable behavior of
the communication subnetwork, but also from the workings of the attachment
procedure. In particular, after a host has attached to a new parent, it may
receive a broadcast message from its old parent (if the old parent never got the
message requesting detachment from its former child), but in compliance with

the restriction introduced above it is forced to discard it.

One type of gap filling actions takes place among parent graph neighbors.
When a host attaches to a new parent, the parent examines its new child’s
INFO set and forwards to the child all those messages that the child is missing
and that the parent has. When a host receives a gap filling message (a broad-

cast message with a sequence number less than the largest it has already seen),
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it forwards it to all those of its parent graph neighbors (its children and its
parent) that according to its MAP do not have it. In addition to the above,
every host periodically tries to fill its parent graph neighbors’ gaps using mes-
sages that it has seen. This is done more frequently for the members of the
same cluster and less frequently for the members of different clusters. The res-
triction that a host can accept broadcast messages only from its parent does
not have to apply to gap filling messages because they do not alter the relation-

ships among INFO sets.

Gap filling among parent graph neighbors only is not sufficient in that it
fails, in some cases, to fill all the gaps or at least as many gaps as the current
communication status of the network would allow. To illustrate consider the fol-
lowing example. Let there be three hosts in the network: s (the source), ¢, and j
(in different clusters). The parent graph is shown in Figure 4.1. In it, s is the
root, and ¢ and j are its children. Suppose that a network partitioning occurs
that leaves s isolated from the rest of the network. But ¢ and 7 can still com-
municate with each other. Suppose, further, that three data messages (num-
bered 1, 2, and 3) were issued by s before the network partitioned; message
number 2 has not reached node 4, and message number 1 has not reached node
J- Since neither INFO; < INFOj nor INFO; < INFO,, hosts ¢ and j will not be
able to reconfigure themselves into a new parent graph until the partitioning is
repaired. And thus, as ¢ and j are not parent graph neighbors, they will not be

able to fill each other’s gap even though they can communicate with each other.

In order to deal with this kind of situations we introduce another type of

gap filling actions. These take place periodically among hosts that are parent
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INFO, = {1, 2, 3}

INFO; = {1, 3} () (7) INFO, = {2, 3}

Figure 4.1.
graph neighbors. Frequency of this type of exchanges should be relatively low

since these hosts belong to different clusters, and therefore the communication

cost is high.

5. Conclusions.

We have presented a broadcast protocol for networks with nonprogramm-
able servers that appears to have good cost, delay, and reliability characteris-
tics. We wish to emphasize, however, that our pfotocol is based on heuristics
and, therefore, cannot be expected to perform optimally. The problem of
efficient reliable broadcast in networks with nonprogrammable servers is a hard

one, and solving it in a truly optimal way appears to be difficult.

There is one performance aspect that has not yet been discussed. It is the
trade-off between reliability and cost-delay characteristics. That such should
exist is no surprise. Reliability is understood to mean the ability of the algo-
rithm to utilize as much as possible the communication opportunities presented
by the network. Thus, if there is even a brief interval during which hosts &,
and ky can communicate, and h; has a broadcast message that ho does not, a

reliable protocol will detect this fact and have %k, send this message (repeatedly
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if necessary) to k. But to achieve this, including the detection of the existence
of the communication path between the two hosts, hosts have to exchange mes-
sages. The more frequently this is done, the more chance we will have to use the
brief interval to deliver the message, and, at the same time, the more costly the

algorithm will be.

In the algorithm presented here, these trade-offs are examplified by the fre-
quency with which hosts enact INFO exchange, parent pointer exchange, and
gap filling. These can be tuned according to specific cost-reliability require-

ments.

Throughout this paper we assumed that hosts have access to dynamic
information concerning clustering. Note that even if such information is una-
vailable, but instead there is a static knowledge of clusters, the latter can be
used in the algorithm, albeit with less satisfying performance results. Further-
more, if no cluster information at all is available, the algorithm still can be
used, with the assumption that every host is in a separate cluster by itself, at

any given moment.

A number of fairly obvious optimizations can be incorporated in the actual
implementation of the algorithm. For instance, some control messages that are
dispatched by the same host at about the same time can be piggybacked in one
packet. As a:nother example, INFO sets can be pruned of messages with
sequence numbers 1 through n when it becomes known that all hosts have safely

received them.
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8. Appendix.

In this section, the proposed broadcast algorithm is formally specified. It

consists of procedures that are all event driven, except INITIALIZE, which is

run once at every host 7 at the very beginning of broadecast.
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procedure INITIALIZE

begin
CHILDREN; «— (%
CLUSTER; + (;
for all hosts 7 do
pilt] «— NIL;
for all hosts 7 do
MAP[j] « (;
set timers NP1(z), EIC(7), EIN(z), GFC(i), GFN(7), EPP(%)
end

procedure UPDATE-CLUSTER
event receipt of an arbitrary message M from host 7

/* (M).cost denotes the value of the cost bit in the format of message
M. CLUSTER; is updated according to this value. */

begin
if M).cost > 0 and 7 € CLUSTER; then
CLUSTER; «— CLUSTER; — {j};
else if (M).cost < 0 and 7 ¢ CLUSTER; then
CLUSTER; «— CLUSTER; U {7};

end
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procedure PARENT-ALIVE
event receipt of an arbitrary message M from host j

/* Whenever a message is received from the parent the timer
gets reset. So when it expires, that indicates that the parents
is out of reach. */

begin
if j = p;[¢] and j € CLUSTER, then
reset timer PA(7)
end
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procedure NEW-PARENT
event: expiration of timers NP1(z) or NP2(:) or PA(s)

/* This is the attachment procedure. It is initiated either after a regular
predetermined interval (timer NP1(z)), or if a newly selected parent

fails to respond (timer NP2(z)), or when an in-cluster parent dies
(timer PA(z)). */

begin
if PA(7) expired then p;[i] = NIL;
if p;[i] = NIL then & = p;[i]
else A = pi[p;[]];
if p;[¢] = NIL or p;[{] ¢ CLUSTER; then
begin
if there is a host 5s.t. § € CLUSTER;
and p;|j] ¢ CLUSTER;
and MAP;[i] < MAP;|;] then
pilt] «— 3
else if there is a host js.t. § € CLUSTER; and pil7] ¢ CLUSTER,
and MAP[i] = MAP;[7] and order(i) < order(j) then
pilt] < 7
else if there is a host js.t. MAP;[h] < MAP;[j] then
pi[i] - .7';
else if there is a host js.t. MAP[h] =~ MAP,[j] and order(i) < order(;) then
pili] + 3;
send DECLARE to p;;
reset timer NP(7)

end
else if
begin
repeat anscestor <— py[p,[i]]
until anscestor = i or p;[anscestor] ¢ CLUSTER;;
if anscestor = i then
if order(i) = max order(s) then pi] «— NIL
j on cycle
else
begin
send DECLARE to p;;
reset timer INP(2)
end
end

end;
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procedure NEW-CHILD
event receipt of DECLARE from host j

/* Host 7 indicates that it wants to attach. It is included in
CHILDREN;. Also, the gaps that it might have are filled. */

begin
CHILDREN; «— CHILDREN; | { 1%
for all rs.t. r € MAP;[i] and r ¢ MAP;j] do
send message r to host j;
send ADOPT to host 7
end

procedure DETACH-A-CHILD
event receipt of DETACH from host 7

begin
CHILDREN; « CHILDREN; — {5}
end
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procedure NEW-PARENT-ACKNOWLEDGED
event receipt of ADOPT from host j

/* The new parent has acknowledged adoption. If this does not happen for

a certain period of time (timer NP2(s)), NEW-PARENT is invoked again.

If ADOPT comes from a host which is not the parent, that host must be the old
parent that never got DETACH. In that case DETACH is sent again. */

begin
if 7 = p;[/] then
begin
freeze timer NP2(1);
reset timer NP1(z)
if 7 € CLUSTER, then reset timer PA(:)
end
else send DETACH to j
end

procedure EXCHANGE-INFO-CLUSTER
event expiration of timer EIC(3)

/* For exchange of INFO sets among members of the same cluster. */

begin
for all j € CLUSTER; do
send MAP;[¢| to host j;
reset timer EIC(%)
end
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procedure EXCHANGE-INFO-NONCLUSTER
event expiration of timer-EIN(i)

/*For exchange of INFO sets aniong hosts from different cluster. Executed
with low frequency than the previous procedure. */

begin
for all j ¢ CLUSTER; do
send MAP;[1] to host 3;
reset timer EIN(1)
end

procedure UPDATE-MAP
event receipt of MAP;[j] from host j

/* MAP is update after receiving INFO set from another host. */

begin
MAP;[7] « MAP;[j];
if j € CHILDREN; then ‘
for all rs.t. r € MAP;[j] and r € MAP[i] do
send message r to host 7
end

procedure EXCHANGE-PARENT-POINTERS
event expiration of timer EPP()

/* Tell your cluster neighbors who your parent is. */

begin
for all j € CLUSTER; do
send p;[7] to host 3
reset timer EPP(z)
end
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procedure UPDATE-PARENT-POINTERS
event receipt of p;[5] from host j

/* Update the p array. */

begin
pil7] « pjlJ]
end

procedure GAP-FILLING-CLUSTER
event expiration of timer GFC(s)

/* Fill gaps of the parent graph neighbors within the same cluster. */

begin
for all js.t. j € CLUSTER; and (5 = p;[i] or j € CHILDREN;)
for all rs.t. r € MAP,[i] and r € MAP,[;] do
send r to 7;
reset timer GFC(7)
end

procedure GAP-FILLING-NONCLUSTER
event expiration of timer GFN(z)

/* Fill gaps of the parent graph neighbors that are in a different cluster. */

begin
for all js.t. j ¢ CLUSTER; and (j = p,[i] or j € CHILDREN;)
for all 7s.t. r € MAP[i] and r ¢ MAP;[j] do
send r to 7;
reset timer GFIN(7)
end
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procedure PROPAGATION
event: receipt of broadcast message r from host j

/* A broad message has been received. It is discarded if it comes from
a host other than the parent and has a sequence number greater than any
seen so far. Otherwise, it is accepted and forwarded to parent graph

neighbors. */

begin

end

MAP,[j] «— MAP;[5) U {r};
if r € MAP;[i] then
discard message r

o Iy q
else if j # p;[i] and r > qeﬂ,‘?}}%[x‘](q) then

begin
discard message r;
send DETACH to host 7

for all ks.t. k € CHILDREN; U {p;[i]} — {s} and r € MAP;[k] do

end
else
begin
store message r;
MAP{i] «— MAP{i] U {r};
send message r to host k
end :






