Dynamic Input/Output Automata: a Formal
Model for Dynamic Systems
(Extended Abstract)

Paul C. Attie! 2 and Nancy A. Lynch?

1 College of Computer Science, Northeastern University, Cullinane Hall,
360 Huntington Avenue, Boston, Massachusetts 02115.
attie@ccs.neu.edu
2 MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA, 02139, USA.
lynch@theory.lcs.mit.edu

Abstract. We present a mathematical state-machine model, the Dy-
namic I/O Automaton (DIOA) model, for defining and analyzing dy-
namic systems of interacting components. The systems we consider are
dynamic in two senses: (1) components can be created and destroyed
as computation proceeds, and (2) the events in which the components
may participate may change. The new model admits a notion of ezternal
system behavior, based on sets of traces. It also features a parallel com-
position operator for dynamic systems, which respects external behavior,
and a notion of simulation from one dynamic system to another, which
can be used to prove that one system implements the other.

The DIOA model was defined to support the analysis of mobile agent
systems, in a joint project with researchers at Nippon Telephone and
Telegraph. It can also be used for other forms of dynamic systems, such
as systems described by means of object-oriented programs, and systems
containing services with changing access permissions.

1 Introduction

Many modern distributed systems are dynamic: they involve changing sets of
components, which get created and destroyed as computation proceeds, and
changing capabilities for existing components. For example, programs written in
object-oriented languages such as Java involve objects that create new objects
as needed, and create new references to existing objects. Mobile agent systems
involve agents that create and destroy other agents, travel to different network
locations, and transfer communication capabilities.

To describe and analyze such distributed systems rigorously, one needs an
appropriate mathematical foundation: a state-machine-based framework that al-
lows modeling of individual components and their interactions and changes. The
framework should admit standard modeling methods such as parallel composi-
tion and levels of abstraction, and standard proof methods such as invariants

and simulation relations. At the same time, the framework should be simple
enough to use as a basis for distributed algorithm analysis.

Static mathematical models like I/O automata [7] could be used for this
purpose, with the addition of some extra structure (special Boolean flags) for
modeling dynamic aspects. For example, in [8], dynamically-created transactions
were modeled as if they existed all along, but were “awakened” upon execution of
special create actions. However, dynamic behavior has by now become so preva-
lent that it deserves to be modeled directly. The main challenge is to identify a
small, simple set of constructs that can be used as a basis for describing most
interesting dynamic systems.

In this paper, we present our proposal for such a model: the Dynamic I/0O Au-
tomaton (DIOA) model. Our basic idea is to extend the I/O automaton model
with special create actions, and combine such extended automata into global
configurations. The DIOA model admits a notion of external system behavior,
based on sets of traces. It also features a parallel composition operator for dy-
namic systems, which respects external behavior and satisfies standard execution
projection and pasting results, and a notion of simulation relation from one dy-
namic system X to another dynamic system Y, which can be used to prove that
X implements Y.

We defined the DIOA model initially to support the analysis of mobile agent
systems, in a joint project with researchers at Nippon Telephone and Telegraph.
Creation and destruction of agents are modeled directly within the DIOA model.
Other important agent concepts such as changing locations and capabilities are
described in terms of changing signatures, using additional structure. OQur pre-
liminary work on modeling and analyzing agent systems appeared in last year’s
NASA workshop on formal methods for agent systems [1]. We are currently
considering the use of DIOA to model and analyze object-oriented programs;
here, creation of new objects is modeled directly, while addition of references is
modeled as a signature change.

Related work: Most approaches to the modeling of dynamic systems are
based on a process algebra, in particular, the 7-calculus [9] or one of its vari-
ants. Such approaches [4,5,10] model dynamic aspects by introducing channels
and/or locations as basic notions. Our model is more primitive than these ap-
proaches, for example, it does not include channels and their transmission as ba-
sic notions. Our approach is also different in that it is primarily a (set-theoretic)
mathematical model, rather than a formal language and calculus. We expect
that notions such as channel and location will be built upon the basic model
using additional layers (as we do for modeling agent mobility in terms of sig-
nature change). Also, we ignore issues (e.g., syntax) that are important when
designing a programming language (the “precondition-effect” notation in which
we present an example is informal, and is not part of our model). Another dif-
ference with process-algebraic approaches is that we use a simulation notion for
refinement, rather than bisimulation. This allows us more latitude in refinement,
as our example will demonstrate. Finally, our model has a well-defined notion

of projection onto a subsystem. This is a crucial pre-requisite for compositional
reasoning, and is usually missing from process-algebraic approaches.

The paper is organized as follows. Section 2 presents the DIOA model. Sec-
tion 3 presents execution projection and pasting results, which provide the basis
for compositional reasoning in our model. Section 4 proposes an appropriate
notion of forward simulation for DIOA. Section 5 discusses how mobility and lo-
cations can be modeled in DIOA. Section 6 presents an example: an agent whose
purpose is to traverse a set of databases in search of a satisfactory airline flight,
and to purchase such a flight if it finds it. Section 7 discusses further research and
concludes. Proofs are provided in the full version [2], which is available on-line.

2 The Dynamic I/O Automaton Model

To express dynamic aspects, DIOA augments the I/O automaton model with:

1. Variable signatures: The signature of an automaton is a function of its state,
and so can change as the automaton makes state transitions. In particular,
an automaton “dies” by changing its signature to the empty set, after which
it is incapable of performing any action. We call this new class of automata
signature I/0 automata, henceforth referred to simply as “automata,” or
abbreviated as SIOA.

2. Create actions: An automaton A can “create” a new automaton B by exe-
cuting a create action

3. Two-level semantics: Due to the introduction of create actions, the semantics
of an automaton is no longer accurately given by its transition relation. The
effect of create actions must also be considered. Thus, the semantics is given
by a second class of automata, called configuration automata. Each state of a
configuration automaton consists of the collection of signature I/O automata
that are currently “awake,” together with the current local state of each one.

2.1 Signature I/O Automata

We assume the existence of a set .4 of unique SIOA identifiers, an underlying
universal set Auts of SIOA, and a mapping aut : A — Auts. aut(A) is the SIOA
with identifier A. We use “the automaton A” to mean “the SIOA with identifier
A”. We use the letters A, B, possibly subscripted or primed, for SIOA identifiers.

In our model, each automaton A has a universal signature usig(A). The
actions that A may execute (in any of its states) are drawn from usig(A4). In a
particular state s, the executable actions are drawn from a fixed (but varying
with s) sub-signature of usig(A), denoted by sig(A4)(s), and called the state
signature. Thus, the “current” signature of A is a function of its current state
that is always constrained to be a sub-signature of A’s universal signature.

As in the I/O atomaton model, the actions of a signature (either universal or
state) are partitioned into (sets of) input, output, and internal actions: usig(A)
= (uin(A), wout(A), uint(A)). Additionally, the output actions are partitioned

into regular outputs and create outputs: uwout(A) = (uoutregular(A), ucreate(A)).
Likewise, sig(A)(s) = (in(A)(s), out(A)(s), int(A)(s)), and out(A)(s) =
(outregular(A)(s), create(A)(s)).

For any signature component, the ~ operator yields the union of sets of ac-
tions within the signature, e.g., out(A)(s) = outregular(A)(s) U create(A)(s),
and sig(A)(s) = in(A)(s) U outregular(A)(s) U create(A)(s) U int(A)(s).

A create action « has a single attribute: target(a), the identifier of the au-
tomaton that is to be created.

Definition 1 (Signature I/O Automaton). A signature I/O automaton
aut(A) consists of the following components and constraints on those compo-
nents:

— A fized universal signature usig(A) as discussed above.

— A set states(A) of states.

— A nonempty set start(A) C states(A) of start states.

— A mapping sz'g(A) . states(A) — uin(A) {2uoutregular(A) X 2ucreate(A)} X
2uint(A)_

A transition relation steps(A) C states(A) x usig(A) x states(A).

The following constraints:

1. Y(s,a,s') € steps(A) : a € sig(A)(s).

2. Vs,Va € in(A)(s),3s" : (s,a,s') € steps(A)

3. sig(A)(s) # 0 for any start state s.

Constraint 1 requires that any executed action be in the signature of the start
state. Constraint 2 is the input enabling requirement of I/O automata. Con-
straint 3 requires that start states have a nonempty signature, since otherwise,
the newly created automaton will be unable to execute any action. Thus, this is
no restriction in practice, and its use simplifies our definitions.

If (s,a,s') € steps(A), we also write s — 4 s'. For sake of brevity, we write
states(A) instead of states(aut(A)), i.e., the components of an automaton are
identified by applying the appropriate selector function to the automaton iden-
tifier, rather than the automaton itself. In the sequel, we shall sometimes write a
create action as create(A, B), where A is the identifier of the automaton execut-
ing create(4, B), and B is the target automaton identifier. This is a notational
convention only, and is not part of our model.

2.2 Configuration Automata

Suppose create(A4, B) is an action of A. As with any action, execution of
create(A4, B) will, in general, cause a change in the state of A. However, we
also want the execution of create(A4, B) to have the effect of creating the SIOA
B. To model this, we must keep track of the set of “alive” SIOA, i.e., those that
have been created but not destroyed (we consider the automata that are initially
present to be “created at time zero”). Thus, we require a transition relation over
sets of SIOA. We also need to keep track of the current global state, i.e., the

tuple of local states of every SIOA that is alive. Thus, we replace the notion
of global state with the notion of “configuration,” and use a transition relation
over configurations.

Definition 2 (Simple configuration, Compatible simple configuration).
A simple configuration is a finite set {(A1,s1),...,(An, Sn)} where A; is a sig-
nature I/0 automaton identifier, s; € states(A;), for 1 <i < n, and A; # A;
for1<ij <n,i#j.
A simple configuration {(A1,s1),...,{An,sn)} is compatible iff, for all 1 <

NETRES?

1. sig(Ay)(si) Nint(A;)(s;) = 0, out(A;)(s;) Nout(A;)(s;) =0, and

2. create(A;)(s;) N sig(A;)(s;) = 0.

Thus, in addition to the usual I/O automaton compatibility conditions [7], we
require that a create action of one SIOA cannot be in the signature of another.

If n = 0, then the configuration is empty. Let C = {(A41,s1),...,(4n,sn)}
be a compatible simple configuration. Then we define auts(C) = {44,...,4,},
outregular(C) = U, <;<,, outregular(A;)(s;), create(C) = J; <;<,, create(A4;)(s:),
n(C) = Ui<ic,, in(Ai)(s:) — outregular(C), int(C) = U, <;<,, int(A:)(s:)-
Definition 3 (Transitions of a simple configuration). The transitions that
a compatible simple configuration {(A1,s1),...,{An,sn)} (n > 0) can ezecute
are as follows:

1. non-create action .
{<A1,51>, Ce (An, Sn)} —

{<A1,8I1>, cen 7<An75{n>} - {<A]75;> :1<j<nand szg(Aj)(S]') = @}
if R
a € sig(Ar)(s1) U...Usig(An)(sn),
a ¢ create(A1)(s1) U. ..U create(An)(sn), and
forall 1 <i<mn:ifac sig(A;)(s;) then s; — 4, s}, otherwise s; = s;.
Transitions not arising from a create action enforce synchronization by match-
ing action names, as in the basic I/O automaton model. Also, all involved
automata may change their current signature, and automata whose new sig-
nature is empty are destroyed.

2. create actions
(a) create action whose target does not exist a priori

{(Al,Sl),... ,(Ai,si),... ,<An,5n>}i) R
{<A17 81>7 R (Ala S;): Tt <An7 STL>7 <B7t>} - {(A“ S;> : Slg(AZ)(Si) = @}
if
1 <i<n,ac create(A;)(s;), si —>a, 8%, target(a) = B,
B¢ {A,...,A,}, and t € start(B).
Execution of @ in a simple configuration where its target B is not present
results in the creation of B, which initially can be in any of its start
states t. (B,t) is added to the current configuration. The automaton
A; executing a changes state and signature according to its transition
relation and signature mapping, and all other automata remain in the
same state. If A;’s new signature is empty, then A; is destroyed.

(b) create action whose target automaton already exists

{<A1,51>,... ,(Ai,si),... ,(An,5n>}i) R

{(A1,81), ... (A sty oo (An,sn) b — {(A, sb) = sig(Aq)(sh) = 0}
if
1 <i<n,ac create(A;)(s;), si —>a, 8}, target(a) € {A1,...,A,}.
Execution of ¢ in a simple configuration where its target is already
present results only in a state and signature change to the automaton A;
executing a. All other automata remain in the same state. If A;’s new
signature is empty, then A; is destroyed.

If a simple configuration is empty, or is not compatible, then it cannot execute
any transitions.

If C' and D are simple configurations and = = ay,...,a, is a finite se-
quence of n > 1 actions, then define C —— D iff there exist simple configurations
Co,...,Cy such that C = Cy 50y 2 - 30, 1 2 C, =D.

In anticipation of composition, we define.

Definition 4 (Configuration).

1. A simple configuration is a configuration
2. If Cy,...,Cy are configurations (n > 0), then so is (C1,...,Ch)
3. The only configurations are those generated by the above two rules

We extend auts to configurations by defining auts((C1,...,Cy)) = auts(Cy) U
... U auts(C,) for a configuration (C1,...,Ch).

The entire behavior that a given configuration is capable of is captured by
the notion of configuration automaton.

Definition 5 (Configuration automaton). A configuration automaton X is
a state-machine with four components.

1. a nonempty set of start configurations, start(X)
2. a set of configurations, states(X) D start(X)
3. a signature mapping sig(X), where for each C € states(X),
(a) sig(X)(C) = (in(X)(C), out(X)(C), int(X)(C))
(b) out(X)(C) = (outregular(X)(C), outcreate(X)(C))
(¢) int(X)(C) = (intregular(X)(C), intcreate(X)(C))
(d) in(X)(C), outregular(X)(C), outcreate(X)(C), intregular(X)(C), and
intcreate(X)(C) are sets of actions.
4. a transition relation, steps(X) = {(C,a,D) | C,D € states(X) and a €

sig(X)(C)}

We usually use “configuration” rather than “state” when referring to states of
a configuration automaton. Definition 5 allows an arbitrary transition relation
between the configurations of a configuration automaton. However, these con-
figurations are finite nested tuples, with the basic elements being SIOA. The
SIOA transitions totally determine the transitions that a given configuration
can execute. Hence, we introduce proper configuration automata (rules CAl-
CA4 below), which respect the transition behavior of configurations.

Definition 6 (Mutually compatible configurations). Let X, Y be configu-
ration autornata. Let C € states(X), D € states(Y). Then C and D are mutually
compatible iff

1. auts(C) N auts(D) = 0, R R
2. sig(X)(C) Nint(Y)(D) =0, int(X)(C) N sig(Y)(D) =0,
out(X)(C) Nout(Y)(D) =0, and
3. outcreate(X)(C) N sig(Y)(D) = 0, sig(X)(C) N outereate(Y)(D) = 0.

Definition 7 (Compatible configuration). Let C be a configuration. If C
is simple, then C is compatible (or not) according to Definition 2. If C =
(C1,...,Cn), then C is compatible iff (1) each C; is compatible, and (2) each
pair in {Cy,...,Cp} are mutually compatible.

Definition 8 (Configuration transitions). The transitions that a compatible
configuration C can ezecute are as follows:

1. If C is simple, then the transitions are those given by Definition 3
2. IfC =(Cy,...,C), then (Cy,...,C,) == (Dy,...,D,) iff

(a) a € sig(Cy) U...Usig(Cp)

(b) for 1 <i<n:ifac sig(C;) then C; = Dy, otherwise C; = D;.

Definition 9 (Closure). Let C be a set of compatible configurations C. X =
closure(C) is the state-machine given by:

1. start(X) =C
2. states(X) ={D | 3C € C,3r: C 5 D}
3. steps(X) = {(C,a,D) | C =D and C, D € states(X)}
4. sig(X), where for each C € states(X), sig(X)(C) is given by:
(a) outregular(X)(C) = outregular(C)
(b) outcreate(X)(C) = create(C)
(c) n(X)(C) =1in(C)
(d) intregular(X)(C) = int(C)
(e) intcreate(X)(C) =0

Rule CA1: Let X be as in Definition 9. If every configuration of X is compatible,
then X is a proper configuration automaton.

config(C) is the automaton induced by all the configurations reachable from
some configuration in C, and the transitions between them.

Definition 10 (Composition of proper configuration automata). Let
Xi1,...,X,, be proper configuration automata. Then X = X || --- || X,, is the
state-machine given by:

1. start(X) = start(Xy) x - -+ x start(X,,)

2. states(X) = states(X1) X - -+ X states(X,,)

3. steps(X) is the set of all ((C1,...,Cn),a,{(D1,...,Dy)) such that
(a) a € si9(X1)(C1) U...Usig(X,)(Ch), and
(b) if a € sig(X;)(Cy), then C; ——x, Dy, otherwise C; = D;

4. sig(X), where for each C = (Cy,...,Cy) € states(X), sig(X)(C) is
wen by:
?a) outlr/egular(X)(C) = outregular(X1)(C1) U ... U outregular(X,)(Cp)
(b) outcreate(X)(C) = outcreate(X1)(C1) U . U outcreate(X,,)(Ch)
(¢) in(X)(C) = (in(X1)(C1)U...Uin(X1)(1))—outregular()(C)
(d) intregular(X)(C) = intregular(X;)(C1) U ... U intregular(X,)(Cy)
(e) intcreate(X)(C) = intereate(X1)(C1) U ... U intcreate(X,,)(Cy)

Rule CA2: Let X be as in Definition 10. If every configuration of X is compat-
ible, then X is a proper configuration automaton.

Definition 11 (Action hiding). Let X be a proper configuration automaton
and X a set of actions. Then X \ X is the state-machine given by:

1. start(X \ X) = start(X)

2. states(X \ X)) = states(X)

3. steps(X \ X)) = steps(X)

4. sig(X' \ X), where for each C € states(X \ X)), sig(X \ X)(C) is given by:
(a) outregular(X \ X)(C) = outregular(X)(C) — ¥
(b) outcreate(X \ X)(C) = outcreate(X)(C) — X
(c) in(X \ £)(C) = in(X)(C)
(d) intregular(X \ X)(X)C = intregular(X)(C) U (outregular(X)(C) N X)
(e) intcreate(X \ X)(X)C = intcreate(X)(C) U (outcreate(X)(C) N X)

Rule CA3: If X is a proper configuration automaton, then so is X \ X.

The automata generated by rules CA1l, CA2 are called closure automata,
composed automata, respectively.
Rule CA4: The only configuration automata are those that are generated by
rules CA1-CA3.

Definition 12 (Execution, trace). An execution fragment o of a configura-
tion automaton X is a (finite or infinite) sequence CoaiChas ... of alternating
configurations and actions such that (Ci—1,a;,C;) € steps(X) for each triple
(Ci—1,a;,C;) occurring in «. Also, a ends in a configuration if it is finite. An
execution of X is an execution fragment of X whose first configuration is in
start(X). execs(X) denotes the set of executions of configuration automaton X .

Given an execution fragment @ = Coa1Cias ..., the trace of a (denoted
trace(a)) is the sequence that results from

1. replacing each C; by its external signature ext(X)(C;), and then

2. removing all a; such that a; € ext(X)(Ci_1), i.e., a; is an internal action of
Ci_1, and then

3. replacing every finite, maximal sequence of identical external signatures by
a single instance.

traces(X), the set of traces of a configuration automaton X, is the set {f | da €
execs(X) : B = trace(a)}.

We write C' — x C' iff there exists an execution fragment a (with |a| > 1)
of X starting in C and ending in C'. When « contains a single action a (and so
(C,a,C") € steps(X)) we write C —=x C".

2.3 Clone-freedom

Our semantics allows the creation of several SIOA with the same identifier,
provided they are “contained” in different closure automata (which could then
be composed); we preclude this within the same closure automaton because
the SIOA would not be distinguishable from our point of view. We also find it
desirable that SIOA in different closure automata also have different identifiers,
i.e., that identifiers are really unique (which is why we introduced them in the
first place). Thus, we make the following assumption.

Definition 13 (Clone-freedom assumption). For any proper configuration
automaton X, and any reachable configuration C of X, there is no action
a € outcreate(X)(C) U intcreate(X)(C) such that target(a) € auts(C) and
3c . C L.

This assumption does not preclude reasoning about situations in which an
SIOA A; cannot be distinguished from another SIOA A, by the other SIOA
in the system. This could occur, e.g., due to a malicious host which “replicates”
agents that visit it. We distinguish between such replicas at the level of reasoning
by assigning unique identifiers to each. These identifiers are not available to the
other SIOA in the system, which remain unable to tell A; and A, apart (e.g.,
in the sense of the “knowledge” [6] about A;, A2 that they possess).

3 Compositional Reasoning

To confirm that our model provides a reasonable notion of concurrent composi-
tion, which has expected properties, and to enable compositional reasoning, we
establish execution “projection” and “pasting” results for compositions.

Definition 14 (Execution projection). Let X = X3 || --- || X,, be a proper
configuration automaton. Let « be a sequence Copa1C1a2C5 ... C5_1a;Cj ... where
Vj > 0,05 = (Cji,...,Cjn) € states(X) and Vj > 0,a; € sig(X)(Cj_1). Then
alX; (1 <i<n)is the sequence resulting from:

1. replacing each C; by its i’th component Cj;, and then
2. removing all a;C;; such that a; & sig(X;)(Cj-1,).

Our execution projection results states that the projection of an execution
(of a composed configuration automaton X = X || --- || X,,) onto a component
X, is an execution of Xj.

Theorem 1 (Execution projection). Let X = X; || --- || X, be a proper
configuration automaton. If a € execs(X) then a[X; € execs(X;).

Our execution pasting result requires that a candidate execution « of a com-
posed automaton X = X || --- || X,, must project onto an actual execution of
every component X;, and also that every action of a not involving X; does not
change the configuration of X;. In this case, a will be an actual execution of X.

Theorem 2 (Execution pasting). Let X = X, || --- || X, be a proper con-
figuration automaton. Let a be a sequence Coa1C1a2C5...C5_1a;C; ... where
Vi > 0,0; = (Cj1,...,Cin) € states(X) and ¥j > 0,a; € sig(X)(Cj_1).
Furthermore, suppose that

1. forall1<i<nm: oz|—X}- € execs(X;),
2. forallj >0:if a; o4 SZ'g(Xi)(Cj_Li) then Cj_17i = Cji

)

Then, a € execs(X).

4 Simulation

Since the semantics of a system is given by its configuration automaton, we de-
fine a notion of forward simulation from one configuration automaton to another.
Our notion requires the usual matching of every transition of the implementation
by an execution fragment of the specification. It also requires that correspond-
ing configurations have the same external signature. This gives us a reasonable
notion of refinement, in that an implementation presents to its environment only
those interfaces (i.e., external signatures) that are allowed by the specification.

Definition 15 (Forward simulation). Let X and Y be configuration automata.
A forward simulation from X to Y is a relation f over states(X) x states(Y)
that satisfies:

1. if C € start(X), then f[C] N start(Y) # 0,

2. if C —5x C' and D € f[C], then there exists D' € f[C"] such that
(a) Dﬂ)yDl L>Y D2 ﬂ)YD,’
(b) ext(Y)(D3) = ext(X)(C) for all D3 along o (including D, Dy),
(¢) ext(Y)(Dy4) = ext(X)(C") for all Dy along as (including Dy, D').

We say X <Y if a forward simulation from X to Y exists. Our notion of correct
implementation with respect to safety properties is given by trace inclusion, and
is implied by forward simulation.

Theorem 3. If X <Y then traces(X) C traces(Y).

5 Modeling Dynamic Connection and Locations

We stated in the introduction that we model both the dynamic creation/moving
of connections, and the mobility of agents, by using dynamically changing exter-
nal interfaces. The guiding principle here is the notion that an agent should only
interact directly with either (1) another co-located agent, or (2) a channel one of
whose ends is co-located with the agent. Thus, we restrict interaction according
to the current locations of the agents.

We adopt a logical notion of location: a location is simply a value drawn from
the domain of “all locations.” To codify our guiding principle, we partition the set

of SIOA into two subsets, namely the set of agent SIOA, and the set of channel
SIOA. Agent SIOA have a single location, and represent agents, and channel
SIOA have two locations, namely their current endpoints. We assume that all
configurations are compatible, and codify the guiding principle as follows: for
any configuration, the following conditions all hold, (1) two agent SIOA have a
common external action only if they have the same location, (2) an agent SIOA
and a channel SIOA have a common external action only if one of the channel
endpoints has the same location as the agent SIOA, and (3) two channel SIOA
have no common external actions.

6 Example: A Travel Agent System

Our example is a simple flight ticket purchase system. A client requests to buy
an airline ticket. The client gives some “flight information,” f, e.g., route and
acceptable times for departure, arrival etc., and specifies a maximum price f.mp
they can pay. f contains all the client information, including mp, as well as
an identifier that is unique across all client requests. The request goes to a
static (always existing) “client agent,” who then creates a special “request agent”
dedicated to the particular request. That request agent then visits a (fixed) set
of databases where the request might be satisfied. If the request agent finds a
satisfactory flight in one of the databases, i.e., a flight that conforms to f and has
price < mp, then it purchases some such flight, and returns a flight descriptor
fd giving the flight, and the price paid (fd.p) to the client agent, who returns it
to the client. The request agent then terminates.

The agents in the system are: (1) ClientAgt, who receives all requests from the
client, (2) ReqAgt(f), responsible for handling request f, and (3) DBAgt,,d € D,
the agent (i.e., front-end) for database d, where D is the set of all databases in
the system. In writing automata, we shall identify automata using a “type name”
followed by some parameters. This is only a notational convenience, and is not
part of our model.

We first present a specification automaton, and then the client agent and
request agents of an implementation (the database agents provide a straight-
forward query /response functionality, and are omitted for lack of space). When
writing sets of actions, we make the convention that all free variables are uni-
versally quantified over their domains, so, e.g., {informq(f, fits), confy(fd, 0k?)}
within action selectq(f) below really denotes {inform(f, fits), confq(fd, ok?) | fd €
F,flits C F, 0k? € Bool}.

In the implementation, we enforce locality constraints by modifying the sig-
nature of RegAgt(f) so that it can only query a database d if it is currently at
location d (we use the databse names for their locations). We allow RegAgt(f)
to communicate with ClientAgt regardless of its location. A further refinement
would insert a suitable channel between ReqAgt(f) and ClientAgt for this com-
munication (one end of which would move along with RegAgt(f)), or would move
ReqAgt(f) back to the location of ClientAgt.

We use “state variables” in and outreg to denote the current sets of in,
outregular and int actions in the SIOA state signature (these are the only com-
ponents of the signature that vary). For brevity, the universal signature declara-
tion groups actions into input, output and internal only. The actual action types
are declared in the “precondition-effect” action descriptions.

Specification: Spec

Universal Signature
Input:
request(f), where f € F
informg (f, fits), where d € D, f € F, and flts C F
confq(f, fd, ok?), where d € D, f,fd € F, and ok? € Bool
selecty(f), where d € D and f € F
adjustsig(f), where f € F
initially: {request(f) : f € F} U {selectq(f) : d € D,f € F}
Output:
queryg(f), where d € D and f € F
buyq(f, fits), where d € D, f € F, and flts C F
response(f, fd, ok?), where f,fd € F and ok? € Bool
initially: {response(f, fd, ok?) : f,fd € F, ok? € Bool}
Internal:
initially: 0

State

statusy € {notsubmitted, submitted, computed, replied}, status of request f, initially notsubmitted

transy g € Bool, true iff the system is currently interacting with database d on behalf of request
f, initially false

okfits; 4 C F, set of acceptable flights that has been found so far, initially empty

resps C F X F X Bool, responses that have been calculated but not yet sent to client, initially
empty

zs,qg € N, bound on the number of times database d is queried on behalf of request f before a
negative reply is returned to the client, initially any natural number greater than zero

én(i)tl}g)gguest(f) Input confy(f, fd, 0k?)
Eff: statusy < submitted Eff: transs q < false;
if ok? then
Input selecty(f) resps < resps U {(f, fd, true)};
Eff: in < statusy < computed
(in U {informg(f, fits), confq(fd, ok?)}) — els'e
{inform (£, fits), confy (fd, ok?) : d' # d}; if Vd: zf,q =0 then
outreg resps < resps U {(f, L, false)};
(outreg U {auerya(f), buya(f, fd)}) — status; ¢ computed
{querygr (f), buygr (f, fd) : d' # d} elsek,
skip

Outregular queryq(f)
Pre: statusy = submitted A zy g4 > 0
Eff: Tfd < Tf,d— 1;

transs q < true

Outregular response(f, fd, 0k?)
Pre: (f,fd, ok?) € resps A statusy = computed
Eff: status; < replied

Input informgy(f, fits) Input adjustsig(f)
Eff: okfits; 4 < okfits; 4 U Eff: in < in—
{fd : fd'€ fits A fd.p < f.mp} {informq(f, flts), confq(f, fd, ok?)};

outreg < outreg—

Outregular buya(f, fits) {querya(f), buya(f, fd)}

Pre: statusy = submitted A
fits = okfits; 4 # O A transys q
Eff: skip

We now give the client agent and request agents of the implementation. The
initial configuration consists solely of the client agent ClientAgt.

Client Agent: ClientAgt

Universal Signature

Input:

request(f), where f € F

req-agent-response(f, fd, ok?), where f, fd € F, and 0k? € Bool
Output:

response(f, fd, ok?), where f,fd € F and ok? € Bool
Internal:

create(ClientAgt, ReqAgt(f)), where f € F

State

reqs C F, outstanding requests, initially empty

created C F, outstanding requests for whom a request agent has been created, but the response
has not yet been returned to the client, initially empty

resps C F X F X Bool, responses not yet returned to client, initially empty

Actions
Input request(f) Input req-agent-response(f, fd, ok?)
Eff: regs < regs U {(f)} Eff: resps < resps U {(f, fd, ok?)};

done < done U {f}
Create create(ClientAgt, ReqAgt(f))
Pre: f € reqgs A f & created Outregular response(f, fd, 0k?)
Eff: created < created U {f} Pre: (f, fd, ok?) € resps
Eff: resps < resps — {(f, fd, ok?)}

ClientAgt receives requests from a client (not portrayed), via the request
input action. ClientAgt accumulates these requests in regs, and creates a request
agent ReqAgt(f) for each one. Upon receiving a response from the request agent,
via input action reqg-agent-response, the client agent adds the response to the set
resps, and subsequently communicates the response to the client via the response
output action. It also removes all record of the request at this point.

Request Agent: ReqAgt(f) where f € F

Universal Signature

Input:
informg (f, fits), where d € D and fits C F
confq(f, fd, ok?), where d € D, fd € F, and ok? € Bool
movey (¢, d), where d € D
moves(d, d'), where d,d’ € D and d # d’
terminate(ReqAgt(f))
initially: {moves(c,d), where d € D}
Output:
queryq(f), where d € D
buyq(f, fits), where d € D and fits C F
req-agent-response(f, fd, ok?), where fd € F and ok? € Bool
initially: 0
Internal:
initially: @

State

location € ¢ U D, location of the request agent, initially ¢, the location of ClientAgt

status € {notsubmitted, submitted, computed, replied}, status of request f, initially notsubmitted

transq € Bool, true iff ReqAgt(f) is currently interacting with database d (on behalf of request f),
initially false

DBagents C D, databases that have not yet been queried, initially the list of all databases D

donedb € Bool, boolean flag, initially false

done € Bool, boolean flag, initially false

tkt € F, the flight ticket that RegAgt(f) purchases on behalf of the client, initially L

okflts; C F, set of acceptable flights that RegAgt(f) has found so far, initially empty

Actions

Input moves(c, d)
Eff: location «+ d;
donedb <+ false;
in < {informq(f, fits), confq(f, fd, 0k?)};
outreg + {querya(f), buya(f, fd),
req-agent-response(f, fd, ok?)};
int < 0

Outregular queryq(f)
Pre: location = d ANd € DBagents N tkt = L
Eff: DBagents < DBagents — {d};

transq < true

Input informg(f, flts)
Eff: okfits; < okflts; U
{fd : fd € fits A fd-p < f.mp};
if okfltsy; = 0 then
transg < false;
int < {moves(d,d’') :
d" € DBagents — {d}}

Input confy(f, fd, ok?)
Eff: transg < false;
if ok? then
tkt < fd;
status <— computed
else
if DBagents = () then
status <— computed
else
skip

Input moves(d,d’)
Eff: location + d';
donedb < false;
in < {inform,, (f, fits), conf . (f, fd, ok?)};
outreg < {queryys (f), buyar (f, fd),
req-agent-response(f, fd, ok?)};
int < 0

Outregular req-agent-response(f, fd, ok?)

Pre: status = computed A
[(fd =tkt # L A ok?) Vv

Quiregular buya(f, fiis) (DBagents =0 A fd = L A —0k?)

Pre: location = d A fits = okflts; # 0 A
tkt = L A transg N status = submitted
Eff: skip Eff: status < replied;

in <+ 0;
outreg <+ 0;
int < 0

ReqAgt(f) handles the single request f, and then terminates itself. ReqAgt(f)
has initial location ¢ (the location of ClientAgt) traverses the databases in
the system, querying each database d using queryy(f). Database d returns a
set of flights that match the schedule information in f. Upon receiving this
(informy(f, fits)), ReqAgt(f) searches for a suitably cheap flight (the 3fd € fits :
fd.p < f.mp condition in inform,(f, fits)). If such a flight exists, then ReqAgt(f)
attempts to buy it (buy.(f, flts) and confy(f, fd, 0k?)). If succesfull, then ReqAgt(f)
returns a positive response to ClientAgt and terminates. ReqAgt(f) can return
a negative response if it queries each database once and fails to buy a flight.

We note that the implementation refines the specification (provided that all
actions except request(f) and response(f, fd, ok?) are hidden) even though the
implementation queries each database exactly once before returning a negative
response, whereas the specification queries each database some finite number of
times before doing so Thus, no reasonable bisimulation notion could be estab-
lished between the specification and the implementation. Hence, the use of a
simulation, rather than a bisimulation, allows us much more latitude in refining
a specification into an implementation.

7 Further Research and Conclusions

There are many avenues for further work. Our most immediate concern is to
establish trace projection and pasting results analogous to the execution projec-
tion and pasting results given above. These will then allow us to establish substi-
tutivity results of the form: if traces(X;) C traces(Xs), then traces(X; || Y) C

traces(Xs || Y). We shall also investigate ways of allowing a target SIOA of some
create action to be replaced by a more refined SIOA. Let X[Bs] be the configu-
ration automaton resulting when some create action (of some SIOA A in X)) has
target Bo, and let X[B;] be the configuration automaton that results when this
target is changed to B;. We would like to establish: if traces(B;) C traces(Bz),
then traces(X[B1]) C traces(X[Bs]).

Agent systems should be able to operate in a dynamic environment, with
processor failures, unreliable channels, and timing uncertainties. Thus, we need
to extend our model to deal with fault-tolerance and timing. We shall also extend
the framework of [3] for verifying liveness properties to our model. This should
be relatively straightforward, since [3] uses only properties of forward simulation
that should also carry over to our setting.

Acknowledgments. The first author was supported in part by NSF CA-
REER Grant CCR-9702616.

References

1. Tadashi Araragi, Paul Attie, Idit Keidar, Kiyoshi Kogure, Victor Luchangco,
Nancy Lynch, and Ken Mano. On formal modeling of agent computations. In
NASA Workshop on Formal Approaches to Agent-Based Systemns, Apr. 2000. To
appear in Springer LNCS.

2. Paul Attie and Nancy Lynch. Dynamic input/output automata: a formal model
for dynamic systems. Technical report, Northeastern University, Boston, Mass.,
2001. Available at http://www.ccs.neu.edu/home/attie/pubs.html.

3. P.C. Attie. Liveness-preserving simulation relations. In Proceedings of the 18’th
Annual ACM Symposium on Principles of Distributed Computing, pages 63-72,
1999.

4. Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177-213, 2000.

5. Cedric Fournet, Georges Gonthier, Jean-Jacques Levy, Luc Maranget, and Didier
Remy. A calculus of mobile agents. In Proceedings of the 7th International Confer-
ence on Concurrency Theory (CONCUR’96), Springer-Verlag, LNCS 1119, pages
406-421, Aug. 1996.

6. Joseph Y. Halpern and Yoram Moses. Knowledge and Common Knowledge in a
Distributed Environment. In Proceedings of the 3’rd Annual ACM Symposium on
Principles of Distributed Computing, pages 50-61, 1984.

7. Nancy Lynch and Mark Tuttle. An introduction to Input/Output automata. CWI-
Quarterly, 2(3):219-246, September 1989. Centrum voor Wiskunde en Informatica,
Amsterdam, The Netherlands. Also, Technical Memo MIT/LCS/TM-373, Labora-
tory for Computer Science, Massachusetts Institute of Technology.

8. Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic Transac-
tions. Morgan Kaufmann, 1994.

9. R. Milner. Communicating and mobile systems: the m-calculus. Addison-Wesley,
Reading, Mass., 1999.

10. J. Riely and M. Hennessy. A typed language for distributed mobile processes.
In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1998.

