
Dynami Input/Output Automata: a FormalModel for Dynami Systems(Extended Abstrat)Paul C. Attie1 2 and Nany A. Lynh21 College of Computer Siene, Northeastern University, Cullinane Hall,360 Huntington Avenue, Boston, Massahusetts 02115.attie�s.neu.edu2 MIT Laboratory for Computer Siene, 545 Tehnology Square,Cambridge, MA, 02139, USA.lynh�theory.ls.mit.eduAbstrat. We present a mathematial state-mahine model, the Dy-nami I/O Automaton (DIOA) model , for de�ning and analyzing dy-nami systems of interating omponents. The systems we onsider aredynami in two senses: (1) omponents an be reated and destroyedas omputation proeeds, and (2) the events in whih the omponentsmay partiipate may hange. The new model admits a notion of externalsystem behavior , based on sets of traes. It also features a parallel om-position operator for dynami systems, whih respets external behavior,and a notion of simulation from one dynami system to another, whihan be used to prove that one system implements the other.The DIOA model was de�ned to support the analysis of mobile agentsystems, in a joint projet with researhers at Nippon Telephone andTelegraph. It an also be used for other forms of dynami systems, suhas systems desribed by means of objet-oriented programs, and systemsontaining servies with hanging aess permissions.1 IntrodutionMany modern distributed systems are dynami: they involve hanging sets ofomponents, whih get reated and destroyed as omputation proeeds, andhanging apabilities for existing omponents. For example, programs written inobjet-oriented languages suh as Java involve objets that reate new objetsas needed, and reate new referenes to existing objets. Mobile agent systemsinvolve agents that reate and destroy other agents, travel to di�erent networkloations, and transfer ommuniation apabilities.To desribe and analyze suh distributed systems rigorously, one needs anappropriate mathematial foundation: a state-mahine-based framework that al-lows modeling of individual omponents and their interations and hanges. Theframework should admit standard modeling methods suh as parallel omposi-tion and levels of abstration, and standard proof methods suh as invariants

and simulation relations. At the same time, the framework should be simpleenough to use as a basis for distributed algorithm analysis.Stati mathematial models like I/O automata [7℄ ould be used for thispurpose, with the addition of some extra struture (speial Boolean ags) formodeling dynami aspets. For example, in [8℄, dynamially-reated transationswere modeled as if they existed all along, but were \awakened" upon exeution ofspeial reate ations. However, dynami behavior has by now beome so preva-lent that it deserves to be modeled diretly. The main hallenge is to identify asmall, simple set of onstruts that an be used as a basis for desribing mostinteresting dynami systems.In this paper, we present our proposal for suh a model: the Dynami I/O Au-tomaton (DIOA) model . Our basi idea is to extend the I/O automaton modelwith speial reate ations, and ombine suh extended automata into globalon�gurations . The DIOA model admits a notion of external system behavior,based on sets of traes. It also features a parallel omposition operator for dy-nami systems, whih respets external behavior and satis�es standard exeutionprojetion and pasting results, and a notion of simulation relation from one dy-nami system X to another dynami system Y , whih an be used to prove thatX implements Y .We de�ned the DIOA model initially to support the analysis of mobile agentsystems , in a joint projet with researhers at Nippon Telephone and Telegraph.Creation and destrution of agents are modeled diretly within the DIOA model.Other important agent onepts suh as hanging loations and apabilities aredesribed in terms of hanging signatures, using additional struture. Our pre-liminary work on modeling and analyzing agent systems appeared in last year'sNASA workshop on formal methods for agent systems [1℄. We are urrentlyonsidering the use of DIOA to model and analyze objet-oriented programs;here, reation of new objets is modeled diretly, while addition of referenes ismodeled as a signature hange.Related work: Most approahes to the modeling of dynami systems arebased on a proess algebra, in partiular, the �-alulus [9℄ or one of its vari-ants. Suh approahes [4, 5, 10℄ model dynami aspets by introduing hannelsand/or loations as basi notions. Our model is more primitive than these ap-proahes, for example, it does not inlude hannels and their transmission as ba-si notions. Our approah is also di�erent in that it is primarily a (set-theoreti)mathematial model, rather than a formal language and alulus. We expetthat notions suh as hannel and loation will be built upon the basi modelusing additional layers (as we do for modeling agent mobility in terms of sig-nature hange). Also, we ignore issues (e.g., syntax) that are important whendesigning a programming language (the \preondition-e�et" notation in whihwe present an example is informal, and is not part of our model). Another dif-ferene with proess-algebrai approahes is that we use a simulation notion forre�nement, rather than bisimulation. This allows us more latitude in re�nement,as our example will demonstrate. Finally, our model has a well-de�ned notion

of projetion onto a subsystem. This is a ruial pre-requisite for ompositionalreasoning, and is usually missing from proess-algebrai approahes.The paper is organized as follows. Setion 2 presents the DIOA model. Se-tion 3 presents exeution projetion and pasting results, whih provide the basisfor ompositional reasoning in our model. Setion 4 proposes an appropriatenotion of forward simulation for DIOA. Setion 5 disusses how mobility and lo-ations an be modeled in DIOA. Setion 6 presents an example: an agent whosepurpose is to traverse a set of databases in searh of a satisfatory airline ight,and to purhase suh a ight if it �nds it. Setion 7 disusses further researh andonludes. Proofs are provided in the full version [2℄, whih is available on-line.2 The Dynami I/O Automaton ModelTo express dynami aspets, DIOA augments the I/O automaton model with:1. Variable signatures: The signature of an automaton is a funtion of its state,and so an hange as the automaton makes state transitions. In partiular,an automaton \dies" by hanging its signature to the empty set, after whihit is inapable of performing any ation. We all this new lass of automatasignature I/O automata, heneforth referred to simply as \automata," orabbreviated as SIOA.2. Create ations: An automaton A an \reate" a new automaton B by exe-uting a reate ation3. Two-level semantis: Due to the introdution of reate ations, the semantisof an automaton is no longer aurately given by its transition relation. Thee�et of reate ations must also be onsidered. Thus, the semantis is givenby a seond lass of automata, alled on�guration automata. Eah state of aon�guration automaton onsists of the olletion of signature I/O automatathat are urrently \awake," together with the urrent loal state of eah one.2.1 Signature I/O AutomataWe assume the existene of a set A of unique SIOA identi�ers, an underlyinguniversal set Auts of SIOA, and a mapping aut : A 7! Auts. aut(A) is the SIOAwith identi�er A. We use \the automaton A" to mean \the SIOA with identi�erA". We use the letters A;B, possibly subsripted or primed, for SIOA identi�ers.In our model, eah automaton A has a universal signature usig(A). Theations that A may exeute (in any of its states) are drawn from usig(A). In apartiular state s, the exeutable ations are drawn from a �xed (but varyingwith s) sub-signature of usig(A), denoted by sig(A)(s), and alled the statesignature. Thus, the \urrent" signature of A is a funtion of its urrent statethat is always onstrained to be a sub-signature of A's universal signature.As in the I/O atomaton model, the ations of a signature (either universal orstate) are partitioned into (sets of) input, output, and internal ations: usig(A)= huin(A), uout(A); uint(A)i. Additionally, the output ations are partitioned

into regular outputs and reate outputs: uout(A) = huoutregular(A), ureate(A)i.Likewise, sig(A)(s) = hin(A)(s), out(A)(s), int(A)(s)i, and out(A)(s) =houtregular(A)(s); reate(A)(s)i.For any signature omponent, the ^operator yields the union of sets of a-tions within the signature, e.g., ^out(A)(s) = outregular(A)(s) [reate(A)(s),and ^sig(A)(s) = in(A)(s) [outregular(A)(s) [reate(A)(s) [int(A)(s).A reate ation a has a single attribute: target(a), the identi�er of the au-tomaton that is to be reated.De�nition 1 (Signature I/O Automaton). A signature I/O automatonaut(A) onsists of the following omponents and onstraints on those ompo-nents:{ A �xed universal signature usig(A) as disussed above.{ A set states(A) of states.{ A nonempty set start(A) � states(A) of start states.{ A mapping sig(A) : states(A) 7! 2uin(A) � f2uoutregular(A) � 2ureate(A)g �2uint(A).{ A transition relation steps(A) � states(A)� usig(A)� states(A).{ The following onstraints:1. 8(s; a; s0) 2 steps(A) : a 2 ^sig(A)(s).2. 8s;8a 2 in(A)(s); 9s0 : (s; a; s0) 2 steps(A)3. ^sig(A)(s) 6= ; for any start state s.Constraint 1 requires that any exeuted ation be in the signature of the startstate. Constraint 2 is the input enabling requirement of I/O automata. Con-straint 3 requires that start states have a nonempty signature, sine otherwise,the newly reated automaton will be unable to exeute any ation. Thus, this isno restrition in pratie, and its use simpli�es our de�nitions.If (s; a; s0) 2 steps(A), we also write s a�!A s0. For sake of brevity, we writestates(A) instead of states(aut(A)), i.e., the omponents of an automaton areidenti�ed by applying the appropriate seletor funtion to the automaton iden-ti�er, rather than the automaton itself. In the sequel, we shall sometimes write areate ation as reate(A;B), where A is the identi�er of the automaton exeut-ing reate(A;B), and B is the target automaton identi�er. This is a notationalonvention only, and is not part of our model.2.2 Con�guration AutomataSuppose reate(A;B) is an ation of A. As with any ation, exeution ofreate(A;B) will, in general, ause a hange in the state of A. However, wealso want the exeution of reate(A;B) to have the e�et of reating the SIOAB. To model this, we must keep trak of the set of \alive" SIOA, i.e., those thathave been reated but not destroyed (we onsider the automata that are initiallypresent to be \reated at time zero"). Thus, we require a transition relation oversets of SIOA. We also need to keep trak of the urrent global state, i.e., the

tuple of loal states of every SIOA that is alive. Thus, we replae the notionof global state with the notion of \on�guration," and use a transition relationover on�gurations.De�nition 2 (Simple on�guration, Compatible simple on�guration).A simple on�guration is a �nite set fhA1; s1i; : : : ; hAn; snig where Ai is a sig-nature I/O automaton identi�er, si 2 states(Ai), for 1 � i � n, and Ai 6= Ajfor 1 � i; j � n; i 6= j.A simple on�guration fhA1; s1i; : : : ; hAn; snig is ompatible i�, for all 1 �i; j � n; i 6= j:1. ^sig(Ai)(si) \ int(Aj)(sj) = ;, ^out(Ai)(si) \ ^out(Aj)(sj) = ;, and2. reate(Ai)(si) \ ^sig(Aj)(sj) = ;.Thus, in addition to the usual I/O automaton ompatibility onditions [7℄, werequire that a reate ation of one SIOA annot be in the signature of another.If n = 0, then the on�guration is empty. Let C = fhA1; s1i; : : : ; hAn; snigbe a ompatible simple on�guration. Then we de�ne auts(C) = fA1; : : : ; Ang,outregular(C) = S1�i�n outregular(Ai)(si), reate(C) = S1�i�n reate(Ai)(si),in(C) = S1�i�n in(Ai)(si)� outregular(C), int(C) = S1�i�n int(Ai)(si).De�nition 3 (Transitions of a simple on�guration). The transitions thata ompatible simple on�guration fhA1; s1i; : : : ; hAn; snig (n > 0) an exeuteare as follows:1. non-reate ationfhA1; s1i; : : : ; hAn; snig a�!fhA1; s01i; : : : ; hAn; s0nig � fhAj ; s0ji : 1 � j � n and ^sig(Aj)(sj) = ;gifa 2 ^sig(A1)(s1) [: : : [^sig(An)(sn),a 62 reate(A1)(s1) [: : : [reate(An)(sn), andfor all 1 � i � n : if a 2 ^sig(Ai)(si) then si a�!Ai s0i, otherwise s0i = si.Transitions not arising from a reate ation enfore synhronization by math-ing ation names, as in the basi I/O automaton model. Also, all involvedautomata may hange their urrent signature, and automata whose new sig-nature is empty are destroyed.2. reate ations(a) reate ation whose target does not exist a priorifhA1; s1i; : : : ; hAi; sii; : : : ; hAn; snig a�!fhA1; s1i; : : : ; hAi; s0ii; : : : ; hAn; sni; hB; tig � fhAi; s0ii : ^sig(Ai)(s0i) = ;gif1 � i � n, a 2 reate(Ai)(si), si a�!Ai s0i, target(a) = B,B 62 fA1; : : : ; Ang, and t 2 start(B).Exeution of a in a simple on�guration where its target B is not presentresults in the reation of B, whih initially an be in any of its startstates t. hB; ti is added to the urrent on�guration. The automatonAi exeuting a hanges state and signature aording to its transitionrelation and signature mapping, and all other automata remain in thesame state. If Ai's new signature is empty, then Ai is destroyed.

(b) reate ation whose target automaton already existsfhA1; s1i; : : : ; hAi; sii; : : : ; hAn; snig a�!fhA1; s1i; : : : ; hAi; s0ii; : : : ; hAn; snig � fhAi; s0ii : ^sig(Ai)(s0i) = ;gif1 � i � n, a 2 reate(Ai)(si), si a�!Ai s0i, target(a) 2 fA1; : : : ; Ang.Exeution of a in a simple on�guration where its target is alreadypresent results only in a state and signature hange to the automaton Aiexeuting a. All other automata remain in the same state. If Ai's newsignature is empty, then Ai is destroyed.If a simple on�guration is empty, or is not ompatible, then it annot exeuteany transitions.If C and D are simple on�gurations and � = a1; : : : ; an is a �nite se-quene of n � 1 ations, then de�ne C ��!D i� there exist simple on�gurationsC0; : : : ; Cn suh that C = C0 a1�!C1 a2�! � � � an�1�! Cn�1 an�!Cn = D.In antiipation of omposition, we de�ne.De�nition 4 (Con�guration).1. A simple on�guration is a on�guration2. If C1; : : : ; Cn are on�gurations (n > 0), then so is hC1; : : : ; Cni3. The only on�gurations are those generated by the above two rulesWe extend auts to on�gurations by de�ning auts(hC1; : : : ; Cni) = auts(C1) [: : : [auts(Cn) for a on�guration hC1; : : : ; Cni.The entire behavior that a given on�guration is apable of is aptured bythe notion of on�guration automaton.De�nition 5 (Con�guration automaton). A on�guration automaton X isa state-mahine with four omponents.1. a nonempty set of start on�gurations, start(X)2. a set of on�gurations, states(X) � start(X)3. a signature mapping sig(X), where for eah C 2 states(X),(a) sig(X)(C) = hin(X)(C); out(X)(C); int(X)(C)i(b) out(X)(C) = houtregular(X)(C); outreate(X)(C)i() int(X)(C) = hintregular(X)(C); intreate(X)(C)i(d) in(X)(C), outregular(X)(C), outreate(X)(C), intregular(X)(C), andintreate(X)(C) are sets of ations.4. a transition relation, steps(X) = f(C; a;D) j C;D 2 states(X) and a 2^sig(X)(C)gWe usually use \on�guration" rather than \state" when referring to states ofa on�guration automaton. De�nition 5 allows an arbitrary transition relationbetween the on�gurations of a on�guration automaton. However, these on-�gurations are �nite nested tuples, with the basi elements being SIOA. TheSIOA transitions totally determine the transitions that a given on�gurationan exeute. Hene, we introdue proper on�guration automata (rules CA1{CA4 below), whih respet the transition behavior of on�gurations.

De�nition 6 (Mutually ompatible on�gurations). Let X;Y be on�gu-ration automata. Let C 2 states(X), D 2 states(Y). Then C and D are mutuallyompatible i�1. auts(C) \ auts(D) = ;,2. ^sig(X)(C) \ ^int(Y)(D) = ;, ^int(X)(C) \ ^sig(Y)(D) = ;,^out(X)(C) \ ^out(Y)(D) = ;, and3. outreate(X)(C) \ ^sig(Y)(D) = ;, ^sig(X)(C) \ outreate(Y)(D) = ;.De�nition 7 (Compatible on�guration). Let C be a on�guration. If Cis simple, then C is ompatible (or not) aording to De�nition 2. If C =hC1; : : : ; Cni, then C is ompatible i� (1) eah Ci is ompatible, and (2) eahpair in fC1; : : : ; Cng are mutually ompatible.De�nition 8 (Con�guration transitions). The transitions that a ompatibleon�guration C an exeute are as follows:1. If C is simple, then the transitions are those given by De�nition 32. If C = hC1; : : : ; Cni, then hC1; : : : ; Cni a�!hD1; : : : ; Dni i�(a) a 2 ^sig(C1) [: : : [^sig(Cn)(b) for 1 � i � n : if a 2 ^sig(Ci) then Ci a�!Di, otherwise Ci = Di.De�nition 9 (Closure). Let C be a set of ompatible on�gurations C. X =losure(C) is the state-mahine given by:1. start(X) = C2. states(X) = fD j 9C 2 C; 9� : C ��!Dg3. steps(X) = f(C; a;D) j C a�!D and C;D 2 states(X)g4. sig(X), where for eah C 2 states(X), sig(X)(C) is given by:(a) outregular(X)(C) = outregular(C)(b) outreate(X)(C) = reate(C)() in(X)(C) = in(C)(d) intregular(X)(C) = int(C)(e) intreate(X)(C) = ;Rule CA1: LetX be as in De�nition 9. If every on�guration ofX is ompatible,then X is a proper on�guration automaton.on�g(C) is the automaton indued by all the on�gurations reahable fromsome on�guration in C, and the transitions between them.De�nition 10 (Composition of proper on�guration automata). LetX1; : : : ; Xn, be proper on�guration automata. Then X = X1 k � � � k Xn is thestate-mahine given by:1. start(X) = start(X1)� � � � � start(Xn)2. states(X) = states(X1)� � � � � states(Xn)3. steps(X) is the set of all (hC1; : : : ; Cni; a; hD1; : : : ; Dni) suh that(a) a 2 ^sig(X1)(C1) [: : : [^sig(Xn)(Cn), and(b) if a 2 ^sig(Xi)(Ci), then Ci a�!Xi Di, otherwise Ci = Di

4. sig(X), where for eah C = hC1; : : : ; Cni 2 states(X), sig(X)(C) isgiven by:(a) outregular(X)(C) = outregular(X1)(C1) [: : : [outregular(Xn)(Cn)(b) outreate(X)(C) = outreate(X1)(C1) [: : : [outreate(Xn)(Cn)() in(X)(C) = (in(X1)(C1) [: : : [in(X1)(C1))� outregular(X)(C)(d) intregular(X)(C) = intregular(X1)(C1) [: : : [intregular(Xn)(Cn)(e) intreate(X)(C) = intreate(X1)(C1) [: : : [intreate(Xn)(Cn)Rule CA2: Let X be as in De�nition 10. If every on�guration of X is ompat-ible, then X is a proper on�guration automaton.De�nition 11 (Ation hiding). Let X be a proper on�guration automatonand � a set of ations. Then X n� is the state-mahine given by:1. start(X n�) = start(X)2. states(X n�) = states(X)3. steps(X n�) = steps(X)4. sig(X n�), where for eah C 2 states(X n�), sig(X n�)(C) is given by:(a) outregular(X n�)(C) = outregular(X)(C)��(b) outreate(X n�)(C) = outreate(X)(C) ��() in(X n�)(C) = in(X)(C)(d) intregular(X n�)(X)C = intregular(X)(C) [(outregular(X)(C) \�)(e) intreate(X n�)(X)C = intreate(X)(C) [(outreate(X)(C) \�)Rule CA3: If X is a proper on�guration automaton, then so is X n�.The automata generated by rules CA1, CA2 are alled losure automata,omposed automata, respetively.Rule CA4: The only on�guration automata are those that are generated byrules CA1{CA3.De�nition 12 (Exeution, trae). An exeution fragment � of a on�gura-tion automaton X is a (�nite or in�nite) sequene C0a1C1a2 : : : of alternatingon�gurations and ations suh that (Ci�1; ai; Ci) 2 steps(X) for eah triple(Ci�1; ai; Ci) ourring in �. Also, � ends in a on�guration if it is �nite. Anexeution of X is an exeution fragment of X whose �rst on�guration is instart(X). exes(X) denotes the set of exeutions of on�guration automaton X.Given an exeution fragment � = C0a1C1a2 : : : , the trae of � (denotedtrae(�)) is the sequene that results from1. replaing eah Ci by its external signature ext(X)(Ci), and then2. removing all ai suh that ai 62 ^ext(X)(Ci�1), i.e., ai is an internal ation ofCi�1, and then3. replaing every �nite, maximal sequene of idential external signatures bya single instane.traes(X), the set of traes of a on�guration automaton X, is the set f� j 9� 2exes(X) : � = trae(�)g.We write C ��!X C 0 i� there exists an exeution fragment � (with j�j � 1)of X starting in C and ending in C 0. When � ontains a single ation a (and so(C; a; C 0) 2 steps(X)) we write C a�!X C 0.

2.3 Clone-freedomOur semantis allows the reation of several SIOA with the same identi�er,provided they are \ontained" in di�erent losure automata (whih ould thenbe omposed); we prelude this within the same losure automaton beausethe SIOA would not be distinguishable from our point of view. We also �nd itdesirable that SIOA in di�erent losure automata also have di�erent identi�ers,i.e., that identi�ers are really unique (whih is why we introdued them in the�rst plae). Thus, we make the following assumption.De�nition 13 (Clone-freedom assumption). For any proper on�gurationautomaton X, and any reahable on�guration C of X, there is no ationa 2 outreate(X)(C) [intreate(X)(C) suh that target(a) 2 auts(C) and9C 0 : C a�!C 0.This assumption does not prelude reasoning about situations in whih anSIOA A1 annot be distinguished from another SIOA A2 by the other SIOAin the system. This ould our, e.g., due to a maliious host whih \repliates"agents that visit it. We distinguish between suh replias at the level of reasoningby assigning unique identi�ers to eah. These identi�ers are not available to theother SIOA in the system, whih remain unable to tell A1 and A2 apart (e.g.,in the sense of the \knowledge" [6℄ about A1, A2 that they possess).3 Compositional ReasoningTo on�rm that our model provides a reasonable notion of onurrent omposi-tion, whih has expeted properties, and to enable ompositional reasoning, weestablish exeution \projetion" and \pasting" results for ompositions.De�nition 14 (Exeution projetion). Let X = X1 k � � � k Xn be a properon�guration automaton. Let � be a sequene C0a1C1a2C2 : : : Cj�1ajCj : : : where8j � 0; Cj = hCj;1; : : : ; Cj;ni 2 states(X) and 8j > 0; aj 2 ^sig(X)(Cj�1). Then�dXi (1 � i � n) is the sequene resulting from:1. replaing eah Cj by its i'th omponent Cj;i, and then2. removing all ajCj;i suh that aj 62 ^sig(Xi)(Cj�1;i).Our exeution projetion results states that the projetion of an exeution(of a omposed on�guration automaton X = X1 k � � � k Xn) onto a omponentXi, is an exeution of Xi.Theorem 1 (Exeution projetion). Let X = X1 k � � � k Xn be a properon�guration automaton. If � 2 exes(X) then �dXi 2 exes(Xi).Our exeution pasting result requires that a andidate exeution � of a om-posed automaton X = X1 k � � � k Xn must projet onto an atual exeution ofevery omponent Xi, and also that every ation of � not involving Xi does nothange the on�guration of Xi. In this ase, � will be an atual exeution of X .

Theorem 2 (Exeution pasting). Let X = X1 k � � � k Xn be a proper on-�guration automaton. Let � be a sequene C0a1C1a2C2 : : : Cj�1ajCj : : : where8j � 0; Cj = hCj;1; : : : ; Cj;ni 2 states(X) and 8j > 0; aj 2 ^sig(X)(Cj�1).Furthermore, suppose that1. for all 1 � i � n : �dXi 2 exes(Xi),2. for all j > 0 : if aj 62 ^sig(Xi)(Cj�1;i) then Cj�1;i = Cj;iThen, � 2 exes(X).4 SimulationSine the semantis of a system is given by its on�guration automaton, we de-�ne a notion of forward simulation from one on�guration automaton to another.Our notion requires the usual mathing of every transition of the implementationby an exeution fragment of the spei�ation. It also requires that orrespond-ing on�gurations have the same external signature. This gives us a reasonablenotion of re�nement, in that an implementation presents to its environment onlythose interfaes (i.e., external signatures) that are allowed by the spei�ation.De�nition 15 (Forward simulation). Let X and Y be on�guration automata.A forward simulation from X to Y is a relation f over states(X) � states(Y)that satis�es:1. if C 2 start(X), then f [C℄ \ start(Y) 6= ;,2. if C a�!X C 0 and D 2 f [C℄, then there exists D0 2 f [C 0℄ suh that(a) D �1�!Y D1 a�!Y D2 �2�!Y D0,(b) ext(Y)(D3) = ext(X)(C) for all D3 along �1 (inluding D;D1),() ext(Y)(D4) = ext(X)(C 0) for all D4 along �2 (inluding D2; D0).We say X � Y if a forward simulation from X to Y exists. Our notion of orretimplementation with respet to safety properties is given by trae inlusion, andis implied by forward simulation.Theorem 3. If X � Y then traes(X) � traes(Y).5 Modeling Dynami Connetion and LoationsWe stated in the introdution that we model both the dynami reation/movingof onnetions, and the mobility of agents, by using dynamially hanging exter-nal interfaes. The guiding priniple here is the notion that an agent should onlyinterat diretly with either (1) another o-loated agent, or (2) a hannel one ofwhose ends is o-loated with the agent. Thus, we restrit interation aordingto the urrent loations of the agents.We adopt a logial notion of loation: a loation is simply a value drawn fromthe domain of \all loations." To odify our guiding priniple, we partition the set

of SIOA into two subsets, namely the set of agent SIOA, and the set of hannelSIOA. Agent SIOA have a single loation, and represent agents, and hannelSIOA have two loations, namely their urrent endpoints. We assume that allon�gurations are ompatible, and odify the guiding priniple as follows: forany on�guration, the following onditions all hold, (1) two agent SIOA have aommon external ation only if they have the same loation, (2) an agent SIOAand a hannel SIOA have a ommon external ation only if one of the hannelendpoints has the same loation as the agent SIOA, and (3) two hannel SIOAhave no ommon external ations.6 Example: A Travel Agent SystemOur example is a simple ight tiket purhase system. A lient requests to buyan airline tiket. The lient gives some \ight information," f , e.g., route andaeptable times for departure, arrival et., and spei�es a maximum prie f :mpthey an pay. f ontains all the lient information, inluding mp, as well asan identi�er that is unique aross all lient requests. The request goes to astati (always existing) \lient agent," who then reates a speial \request agent"dediated to the partiular request. That request agent then visits a (�xed) setof databases where the request might be satis�ed. If the request agent �nds asatisfatory ight in one of the databases, i.e., a ight that onforms to f and hasprie � mp, then it purhases some suh ight, and returns a ight desriptorfd giving the ight, and the prie paid (fd :p) to the lient agent, who returns itto the lient. The request agent then terminates.The agents in the system are: (1) ClientAgt , who reeives all requests from thelient, (2) ReqAgt(f), responsible for handling request f , and (3) DBAgtd; d 2 D,the agent (i.e., front-end) for database d, where D is the set of all databases inthe system. In writing automata, we shall identify automata using a \type name"followed by some parameters. This is only a notational onveniene, and is notpart of our model.We �rst present a spei�ation automaton, and then the lient agent andrequest agents of an implementation (the database agents provide a straight-forward query/response funtionality, and are omitted for lak of spae). Whenwriting sets of ations, we make the onvention that all free variables are uni-versally quanti�ed over their domains, so, e.g., finformd(f ;ts); onfd(fd ; ok?)gwithin ation seletd(f) below really denotes finformd(f ;ts); onfd(fd ; ok?) j fd 2F ;ts � F ; ok? 2 Boolg.In the implementation, we enfore loality onstraints by modifying the sig-nature of ReqAgt(f) so that it an only query a database d if it is urrently atloation d (we use the databse names for their loations). We allow ReqAgt(f)to ommuniate with ClientAgt regardless of its loation. A further re�nementwould insert a suitable hannel between ReqAgt(f) and ClientAgt for this om-muniation (one end of whih would move along with ReqAgt(f)), or would moveReqAgt(f) bak to the loation of ClientAgt .

We use \state variables" in and outreg to denote the urrent sets of in ,outregular and int ations in the SIOA state signature (these are the only om-ponents of the signature that vary). For brevity, the universal signature delara-tion groups ations into input, output and internal only. The atual ation typesare delared in the \preondition-e�et" ation desriptions.Spei�ation: SpeUniversal SignatureInput:request(f), where f 2 Finformd(f ;ts), where d 2 D, f 2 F , and ts � Fonfd(f ; fd; ok?), where d 2 D, f ; fd 2 F , and ok? 2 Boolseletd(f), where d 2 D and f 2 Fadjustsig(f), where f 2 Finitially: frequest(f) : f 2 Fg [fseletd(f) : d 2 D; f 2 FgOutput:queryd(f), where d 2 D and f 2 Fbuyd(f ;ts), where d 2 D, f 2 F , and ts � Fresponse(f ; fd; ok?), where f ; fd 2 F and ok? 2 Boolinitially: fresponse(f ; fd; ok?) : f ; fd 2 F ;ok? 2 BoolgInternal:initially: ;Statestatus f 2 fnotsubmitted; submitted; omputed; repliedg, status of request f , initially notsubmittedtrans f ;d 2 Bool, true i� the system is urrently interating with database d on behalf of requestf , initially falseoktsf ;d � F , set of aeptable ights that has been found so far, initially emptyresps � F � F � Bool, responses that have been alulated but not yet sent to lient, initiallyemptyxf ;d 2 N , bound on the number of times database d is queried on behalf of request f before anegative reply is returned to the lient, initially any natural number greater than zeroAtionsInput request(f)E�: status f submittedInput seletd(f)E�: in (in [finformd(f ;ts); onfd(fd; ok?)g) �finformd0 (f ;ts); onfd0 (fd; ok?) : d0 6= dg;outreg (outreg [fqueryd(f); buyd(f ; fd)g) �fqueryd0 (f); buyd0 (f ; fd) : d0 6= dgOutregular queryd(f)Pre: status f = submitted^ xf ;d > 0E�: xf ;d xf ;d � 1;trans f ;d trueInput informd(f ;ts)E�: oktsf ;d oktsf ;d [ffd : fd 2 ts ^ fd:p � f :mpgOutregular buyd(f ;ts)Pre: status f = submitted ^ts = oktsf ;d 6= ; ^ trans f ;dE�: skip

Input onfd(f ; fd; ok?)E�: trans f ;d false;if ok? thenresps resps [fhf ; fd; trueig;status f omputedelseif 8d : xf ;d = 0 thenresps resps [fhf ;?; falseig;status f omputedelseskipOutregular response(f ; fd; ok?)Pre: hf ; fd; ok?i 2 resps ^ status f = omputedE�: status f repliedInput adjustsig(f)E�: in in�finformd(f ;ts); onfd(f ; fd; ok?)g;outreg outreg�fqueryd(f); buyd(f ; fd)gWe now give the lient agent and request agents of the implementation. Theinitial on�guration onsists solely of the lient agent ClientAgt .

Client Agent: ClientAgtUniversal SignatureInput:request(f), where f 2 Freq-agent-response(f ; fd; ok?), where f ; fd 2 F , and ok? 2 BoolOutput:response(f ; fd; ok?), where f ; fd 2 F and ok? 2 BoolInternal:reate(ClientAgt;ReqAgt(f)), where f 2 FStatereqs � F , outstanding requests, initially emptyreated � F , outstanding requests for whom a request agent has been reated, but the responsehas not yet been returned to the lient, initially emptyresps � F � F � Bool, responses not yet returned to lient, initially emptyAtionsInput request(f)E�: reqs reqs [fhf igCreate reate(ClientAgt;ReqAgt(f))Pre: f 2 reqs ^ f 62 reatedE�: reated reated [ff g Input req-agent-response(f ; fd; ok?)E�: resps resps [fhf ; fd; ok?ig;done done [ff gOutregular response(f ; fd; ok?)Pre: hf ; fd; ok?i 2 respsE�: resps resps � fhf ; fd; ok?igClientAgt reeives requests from a lient (not portrayed), via the requestinput ation. ClientAgt aumulates these requests in reqs , and reates a requestagent ReqAgt(f) for eah one. Upon reeiving a response from the request agent,via input ation req-agent-response, the lient agent adds the response to the setresps , and subsequently ommuniates the response to the lient via the responseoutput ation. It also removes all reord of the request at this point.Request Agent: ReqAgt(f) where f 2 FUniversal SignatureInput:informd(f ;ts), where d 2 D and ts � Fonfd(f ; fd; ok?), where d 2 D, fd 2 F , and ok? 2 Boolmovef (; d), where d 2 Dmovef (d; d0), where d; d0 2 D and d 6= d0terminate(ReqAgt(f))initially: fmovef (; d); where d 2 DgOutput:queryd(f), where d 2 Dbuyd(f ;ts), where d 2 D and ts � Freq-agent-response(f ; fd; ok?), where fd 2 F and ok? 2 Boolinitially: ;Internal:initially: ;Stateloation 2 [D, loation of the request agent, initially , the loation of ClientAgtstatus 2 fnotsubmitted; submitted; omputed; repliedg, status of request f , initially notsubmittedtransd 2 Bool, true i� ReqAgt(f) is urrently interating with database d (on behalf of request f),initially falseDBagents � D, databases that have not yet been queried, initially the list of all databases Ddonedb 2 Bool, boolean ag, initially falsedone 2 Bool, boolean ag, initially falsetkt 2 F , the ight tiket that ReqAgt(f) purhases on behalf of the lient, initially ?oktsd � F , set of aeptable ights that ReqAgt(f) has found so far, initially emptyAtions

Input movef (; d)E�: loation d;donedb false;in finformd(f ;ts); onfd(f ; fd; ok?)g;outreg fqueryd(f); buyd(f ; fd),req-agent-response(f ; fd; ok?)g;int ;Outregular queryd(f)Pre: loation = d ^ d 2 DBagents ^ tkt = ?E�: DBagents DBagents � fdg;transd trueInput informd(f ;ts)E�: oktsd oktsd [ffd : fd 2 ts ^ fd:p � f :mpg;if oktsd = ; thentransd false;int fmovef (d; d0) :d0 2 DBagents � fdggOutregular buyd(f ;ts)Pre: loation = d ^ ts = oktsd 6= ; ^tkt = ? ^ transd ^ status = submittedE�: skip

Input onfd(f ; fd; ok?)E�: transd false;if ok? thentkt fd ;status omputedelseif DBagents = ; thenstatus omputedelseskipInput movef (d; d0)E�: loation d0;donedb false;in finformd0 (f ;ts); onfd0 (f ; fd; ok?)g;outreg fqueryd0 (f); buyd0 (f ; fd),req-agent-response(f ; fd; ok?)g;int ;Outregular req-agent-response(f ; fd; ok?)Pre: status = omputed ^[(fd = tkt 6= ? ^ ok?) _(DBagents = ; ^ fd = ? ^ :ok?)℄E�: status replied;in ;;outreg ;;int ;ReqAgt(f) handles the single request f , and then terminates itself. ReqAgt(f)has initial loation (the loation of ClientAgt) traverses the databases inthe system, querying eah database d using queryd(f). Database d returns aset of ights that math the shedule information in f . Upon reeiving this(informd(f ;ts)), ReqAgt(f) searhes for a suitably heap ight (the 9fd 2 ts :fd :p � f :mp ondition in informd(f ;ts)). If suh a ight exists, then ReqAgt(f)attempts to buy it (buyd(f ;ts) and onfd(f ; fd ; ok?)). If suesfull, then ReqAgt(f)returns a positive response to ClientAgt and terminates. ReqAgt(f) an returna negative response if it queries eah database one and fails to buy a ight.We note that the implementation re�nes the spei�ation (provided that allations exept request(f) and response(f ; fd ; ok?) are hidden) even though theimplementation queries eah database exatly one before returning a negativeresponse, whereas the spei�ation queries eah database some �nite number oftimes before doing so Thus, no reasonable bisimulation notion ould be estab-lished between the spei�ation and the implementation. Hene, the use of asimulation, rather than a bisimulation, allows us muh more latitude in re�ninga spei�ation into an implementation.7 Further Researh and ConlusionsThere are many avenues for further work. Our most immediate onern is toestablish trae projetion and pasting results analogous to the exeution proje-tion and pasting results given above. These will then allow us to establish substi-tutivity results of the form: if traes(X1) � traes(X2), then traes(X1 k Y) �

traes(X2 k Y). We shall also investigate ways of allowing a target SIOA of somereate ation to be replaed by a more re�ned SIOA. Let X [B2℄ be the on�gu-ration automaton resulting when some reate ation (of some SIOA A in X) hastarget B2, and let X [B1℄ be the on�guration automaton that results when thistarget is hanged to B1. We would like to establish: if traes(B1) � traes(B2),then traes(X [B1℄) � traes(X [B2℄).Agent systems should be able to operate in a dynami environment, withproessor failures, unreliable hannels, and timing unertainties. Thus, we needto extend our model to deal with fault-tolerane and timing. We shall also extendthe framework of [3℄ for verifying liveness properties to our model. This shouldbe relatively straightforward, sine [3℄ uses only properties of forward simulationthat should also arry over to our setting.Aknowledgments. The �rst author was supported in part by NSF CA-REER Grant CCR-9702616.Referenes1. Tadashi Araragi, Paul Attie, Idit Keidar, Kiyoshi Kogure, Vitor Luhango,Nany Lynh, and Ken Mano. On formal modeling of agent omputations. InNASA Workshop on Formal Approahes to Agent-Based Systems, Apr. 2000. Toappear in Springer LNCS.2. Paul Attie and Nany Lynh. Dynami input/output automata: a formal modelfor dynami systems. Tehnial report, Northeastern University, Boston, Mass.,2001. Available at http://www.s.neu.edu/home/attie/pubs.html.3. P.C. Attie. Liveness-preserving simulation relations. In Proeedings of the 18'thAnnual ACM Symposium on Priniples of Distributed Computing, pages 63{72,1999.4. Lua Cardelli and Andrew D. Gordon. Mobile ambients. Theoretial ComputerSiene, 240(1):177{213, 2000.5. Cedri Fournet, Georges Gonthier, Jean-Jaques Levy, Lu Maranget, and DidierRemy. A alulus of mobile agents. In Proeedings of the 7th International Confer-ene on Conurreny Theory (CONCUR'96), Springer-Verlag, LNCS 1119, pages406{421, Aug. 1996.6. Joseph Y. Halpern and Yoram Moses. Knowledge and Common Knowledge in aDistributed Environment. In Proeedings of the 3'rd Annual ACM Symposium onPriniples of Distributed Computing, pages 50{61, 1984.7. Nany Lynh and Mark Tuttle. An introdution to Input/Output automata. CWI-Quarterly, 2(3):219{246, September 1989. Centrum voor Wiskunde en Informatia,Amsterdam, The Netherlands. Also, Tehnial Memo MIT/LCS/TM-373, Labora-tory for Computer Siene, Massahusetts Institute of Tehnology.8. Nany Lynh, Mihael Merritt, William Weihl, and Alan Fekete. Atomi Transa-tions. Morgan Kaufmann, 1994.9. R. Milner. Communiating and mobile systems: the �-alulus. Addison-Wesley,Reading, Mass., 1999.10. J. Riely and M. Hennessy. A typed language for distributed mobile proesses.In Proeedings of the 25th ACM SIGPLAN-SIGACT Symposium on Priniples ofProgramming Languages, 1998.

