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t. We present a mathemati
al state-ma
hine model, the Dy-nami
 I/O Automaton (DIOA) model , for de�ning and analyzing dy-nami
 systems of intera
ting 
omponents. The systems we 
onsider aredynami
 in two senses: (1) 
omponents 
an be 
reated and destroyedas 
omputation pro
eeds, and (2) the events in whi
h the 
omponentsmay parti
ipate may 
hange. The new model admits a notion of externalsystem behavior , based on sets of tra
es. It also features a parallel 
om-position operator for dynami
 systems, whi
h respe
ts external behavior,and a notion of simulation from one dynami
 system to another, whi
h
an be used to prove that one system implements the other.The DIOA model was de�ned to support the analysis of mobile agentsystems, in a joint proje
t with resear
hers at Nippon Telephone andTelegraph. It 
an also be used for other forms of dynami
 systems, su
has systems des
ribed by means of obje
t-oriented programs, and systems
ontaining servi
es with 
hanging a

ess permissions.1 Introdu
tionMany modern distributed systems are dynami
: they involve 
hanging sets of
omponents, whi
h get 
reated and destroyed as 
omputation pro
eeds, and
hanging 
apabilities for existing 
omponents. For example, programs written inobje
t-oriented languages su
h as Java involve obje
ts that 
reate new obje
tsas needed, and 
reate new referen
es to existing obje
ts. Mobile agent systemsinvolve agents that 
reate and destroy other agents, travel to di�erent networklo
ations, and transfer 
ommuni
ation 
apabilities.To des
ribe and analyze su
h distributed systems rigorously, one needs anappropriate mathemati
al foundation: a state-ma
hine-based framework that al-lows modeling of individual 
omponents and their intera
tions and 
hanges. Theframework should admit standard modeling methods su
h as parallel 
omposi-tion and levels of abstra
tion, and standard proof methods su
h as invariants



and simulation relations. At the same time, the framework should be simpleenough to use as a basis for distributed algorithm analysis.Stati
 mathemati
al models like I/O automata [7℄ 
ould be used for thispurpose, with the addition of some extra stru
ture (spe
ial Boolean 
ags) formodeling dynami
 aspe
ts. For example, in [8℄, dynami
ally-
reated transa
tionswere modeled as if they existed all along, but were \awakened" upon exe
ution ofspe
ial 
reate a
tions. However, dynami
 behavior has by now be
ome so preva-lent that it deserves to be modeled dire
tly. The main 
hallenge is to identify asmall, simple set of 
onstru
ts that 
an be used as a basis for des
ribing mostinteresting dynami
 systems.In this paper, we present our proposal for su
h a model: the Dynami
 I/O Au-tomaton (DIOA) model . Our basi
 idea is to extend the I/O automaton modelwith spe
ial 
reate a
tions, and 
ombine su
h extended automata into global
on�gurations . The DIOA model admits a notion of external system behavior,based on sets of tra
es. It also features a parallel 
omposition operator for dy-nami
 systems, whi
h respe
ts external behavior and satis�es standard exe
utionproje
tion and pasting results, and a notion of simulation relation from one dy-nami
 system X to another dynami
 system Y , whi
h 
an be used to prove thatX implements Y .We de�ned the DIOA model initially to support the analysis of mobile agentsystems , in a joint proje
t with resear
hers at Nippon Telephone and Telegraph.Creation and destru
tion of agents are modeled dire
tly within the DIOA model.Other important agent 
on
epts su
h as 
hanging lo
ations and 
apabilities aredes
ribed in terms of 
hanging signatures, using additional stru
ture. Our pre-liminary work on modeling and analyzing agent systems appeared in last year'sNASA workshop on formal methods for agent systems [1℄. We are 
urrently
onsidering the use of DIOA to model and analyze obje
t-oriented programs;here, 
reation of new obje
ts is modeled dire
tly, while addition of referen
es ismodeled as a signature 
hange.Related work: Most approa
hes to the modeling of dynami
 systems arebased on a pro
ess algebra, in parti
ular, the �-
al
ulus [9℄ or one of its vari-ants. Su
h approa
hes [4, 5, 10℄ model dynami
 aspe
ts by introdu
ing 
hannelsand/or lo
ations as basi
 notions. Our model is more primitive than these ap-proa
hes, for example, it does not in
lude 
hannels and their transmission as ba-si
 notions. Our approa
h is also di�erent in that it is primarily a (set-theoreti
)mathemati
al model, rather than a formal language and 
al
ulus. We expe
tthat notions su
h as 
hannel and lo
ation will be built upon the basi
 modelusing additional layers (as we do for modeling agent mobility in terms of sig-nature 
hange). Also, we ignore issues (e.g., syntax) that are important whendesigning a programming language (the \pre
ondition-e�e
t" notation in whi
hwe present an example is informal, and is not part of our model). Another dif-feren
e with pro
ess-algebrai
 approa
hes is that we use a simulation notion forre�nement, rather than bisimulation. This allows us more latitude in re�nement,as our example will demonstrate. Finally, our model has a well-de�ned notion



of proje
tion onto a subsystem. This is a 
ru
ial pre-requisite for 
ompositionalreasoning, and is usually missing from pro
ess-algebrai
 approa
hes.The paper is organized as follows. Se
tion 2 presents the DIOA model. Se
-tion 3 presents exe
ution proje
tion and pasting results, whi
h provide the basisfor 
ompositional reasoning in our model. Se
tion 4 proposes an appropriatenotion of forward simulation for DIOA. Se
tion 5 dis
usses how mobility and lo-
ations 
an be modeled in DIOA. Se
tion 6 presents an example: an agent whosepurpose is to traverse a set of databases in sear
h of a satisfa
tory airline 
ight,and to pur
hase su
h a 
ight if it �nds it. Se
tion 7 dis
usses further resear
h and
on
ludes. Proofs are provided in the full version [2℄, whi
h is available on-line.2 The Dynami
 I/O Automaton ModelTo express dynami
 aspe
ts, DIOA augments the I/O automaton model with:1. Variable signatures: The signature of an automaton is a fun
tion of its state,and so 
an 
hange as the automaton makes state transitions. In parti
ular,an automaton \dies" by 
hanging its signature to the empty set, after whi
hit is in
apable of performing any a
tion. We 
all this new 
lass of automatasignature I/O automata, hen
eforth referred to simply as \automata," orabbreviated as SIOA.2. Create a
tions: An automaton A 
an \
reate" a new automaton B by exe-
uting a 
reate a
tion3. Two-level semanti
s: Due to the introdu
tion of 
reate a
tions, the semanti
sof an automaton is no longer a

urately given by its transition relation. Thee�e
t of 
reate a
tions must also be 
onsidered. Thus, the semanti
s is givenby a se
ond 
lass of automata, 
alled 
on�guration automata. Ea
h state of a
on�guration automaton 
onsists of the 
olle
tion of signature I/O automatathat are 
urrently \awake," together with the 
urrent lo
al state of ea
h one.2.1 Signature I/O AutomataWe assume the existen
e of a set A of unique SIOA identi�ers, an underlyinguniversal set Auts of SIOA, and a mapping aut : A 7! Auts. aut(A) is the SIOAwith identi�er A. We use \the automaton A" to mean \the SIOA with identi�erA". We use the letters A;B, possibly subs
ripted or primed, for SIOA identi�ers.In our model, ea
h automaton A has a universal signature usig(A). Thea
tions that A may exe
ute (in any of its states) are drawn from usig(A). In aparti
ular state s, the exe
utable a
tions are drawn from a �xed (but varyingwith s) sub-signature of usig(A), denoted by sig(A)(s), and 
alled the statesignature. Thus, the \
urrent" signature of A is a fun
tion of its 
urrent statethat is always 
onstrained to be a sub-signature of A's universal signature.As in the I/O atomaton model, the a
tions of a signature (either universal orstate) are partitioned into (sets of) input, output, and internal a
tions: usig(A)= huin(A), uout(A); uint(A)i. Additionally, the output a
tions are partitioned



into regular outputs and 
reate outputs: uout(A) = huoutregular(A), u
reate(A)i.Likewise, sig(A)(s) = hin(A)(s), out(A)(s), int(A)(s)i, and out(A)(s) =houtregular(A)(s); 
reate(A)(s)i.For any signature 
omponent, the ^operator yields the union of sets of a
-tions within the signature, e.g., ^out(A)(s) = outregular(A)(s) [ 
reate(A)(s),and ^sig(A)(s) = in(A)(s) [ outregular(A)(s) [ 
reate(A)(s) [ int(A)(s).A 
reate a
tion a has a single attribute: target(a), the identi�er of the au-tomaton that is to be 
reated.De�nition 1 (Signature I/O Automaton). A signature I/O automatonaut(A) 
onsists of the following 
omponents and 
onstraints on those 
ompo-nents:{ A �xed universal signature usig(A) as dis
ussed above.{ A set states(A) of states.{ A nonempty set start(A) � states(A) of start states.{ A mapping sig(A) : states(A) 7! 2uin(A) � f2uoutregular(A) � 2u
reate(A)g �2uint(A).{ A transition relation steps(A) � states(A)� usig(A)� states(A).{ The following 
onstraints:1. 8(s; a; s0) 2 steps(A) : a 2 ^sig(A)(s).2. 8s;8a 2 in(A)(s); 9s0 : (s; a; s0) 2 steps(A)3. ^sig(A)(s) 6= ; for any start state s.Constraint 1 requires that any exe
uted a
tion be in the signature of the startstate. Constraint 2 is the input enabling requirement of I/O automata. Con-straint 3 requires that start states have a nonempty signature, sin
e otherwise,the newly 
reated automaton will be unable to exe
ute any a
tion. Thus, this isno restri
tion in pra
ti
e, and its use simpli�es our de�nitions.If (s; a; s0) 2 steps(A), we also write s a�!A s0. For sake of brevity, we writestates(A) instead of states(aut(A)), i.e., the 
omponents of an automaton areidenti�ed by applying the appropriate sele
tor fun
tion to the automaton iden-ti�er, rather than the automaton itself. In the sequel, we shall sometimes write a
reate a
tion as 
reate(A;B), where A is the identi�er of the automaton exe
ut-ing 
reate(A;B), and B is the target automaton identi�er. This is a notational
onvention only, and is not part of our model.2.2 Con�guration AutomataSuppose 
reate(A;B) is an a
tion of A. As with any a
tion, exe
ution of
reate(A;B) will, in general, 
ause a 
hange in the state of A. However, wealso want the exe
ution of 
reate(A;B) to have the e�e
t of 
reating the SIOAB. To model this, we must keep tra
k of the set of \alive" SIOA, i.e., those thathave been 
reated but not destroyed (we 
onsider the automata that are initiallypresent to be \
reated at time zero"). Thus, we require a transition relation oversets of SIOA. We also need to keep tra
k of the 
urrent global state, i.e., the



tuple of lo
al states of every SIOA that is alive. Thus, we repla
e the notionof global state with the notion of \
on�guration," and use a transition relationover 
on�gurations.De�nition 2 (Simple 
on�guration, Compatible simple 
on�guration).A simple 
on�guration is a �nite set fhA1; s1i; : : : ; hAn; snig where Ai is a sig-nature I/O automaton identi�er, si 2 states(Ai), for 1 � i � n, and Ai 6= Ajfor 1 � i; j � n; i 6= j.A simple 
on�guration fhA1; s1i; : : : ; hAn; snig is 
ompatible i�, for all 1 �i; j � n; i 6= j:1. ^sig(Ai)(si) \ int(Aj)(sj) = ;, ^out(Ai)(si) \ ^out(Aj)(sj) = ;, and2. 
reate(Ai)(si) \ ^sig(Aj)(sj) = ;.Thus, in addition to the usual I/O automaton 
ompatibility 
onditions [7℄, werequire that a 
reate a
tion of one SIOA 
annot be in the signature of another.If n = 0, then the 
on�guration is empty. Let C = fhA1; s1i; : : : ; hAn; snigbe a 
ompatible simple 
on�guration. Then we de�ne auts(C) = fA1; : : : ; Ang,outregular(C) = S1�i�n outregular(Ai)(si), 
reate(C) = S1�i�n 
reate(Ai)(si),in(C) = S1�i�n in(Ai)(si)� outregular(C), int(C) = S1�i�n int(Ai)(si).De�nition 3 (Transitions of a simple 
on�guration). The transitions thata 
ompatible simple 
on�guration fhA1; s1i; : : : ; hAn; snig (n > 0) 
an exe
uteare as follows:1. non-
reate a
tionfhA1; s1i; : : : ; hAn; snig a�!fhA1; s01i; : : : ; hAn; s0nig � fhAj ; s0ji : 1 � j � n and ^sig(Aj)(sj) = ;gifa 2 ^sig(A1)(s1) [ : : : [ ^sig(An)(sn),a 62 
reate(A1)(s1) [ : : : [ 
reate(An)(sn), andfor all 1 � i � n : if a 2 ^sig(Ai)(si) then si a�!Ai s0i, otherwise s0i = si.Transitions not arising from a 
reate a
tion enfor
e syn
hronization by mat
h-ing a
tion names, as in the basi
 I/O automaton model. Also, all involvedautomata may 
hange their 
urrent signature, and automata whose new sig-nature is empty are destroyed.2. 
reate a
tions(a) 
reate a
tion whose target does not exist a priorifhA1; s1i; : : : ; hAi; sii; : : : ; hAn; snig a�!fhA1; s1i; : : : ; hAi; s0ii; : : : ; hAn; sni; hB; tig � fhAi; s0ii : ^sig(Ai)(s0i) = ;gif1 � i � n, a 2 
reate(Ai)(si), si a�!Ai s0i, target(a) = B,B 62 fA1; : : : ; Ang, and t 2 start(B).Exe
ution of a in a simple 
on�guration where its target B is not presentresults in the 
reation of B, whi
h initially 
an be in any of its startstates t. hB; ti is added to the 
urrent 
on�guration. The automatonAi exe
uting a 
hanges state and signature a

ording to its transitionrelation and signature mapping, and all other automata remain in thesame state. If Ai's new signature is empty, then Ai is destroyed.



(b) 
reate a
tion whose target automaton already existsfhA1; s1i; : : : ; hAi; sii; : : : ; hAn; snig a�!fhA1; s1i; : : : ; hAi; s0ii; : : : ; hAn; snig � fhAi; s0ii : ^sig(Ai)(s0i) = ;gif1 � i � n, a 2 
reate(Ai)(si), si a�!Ai s0i, target(a) 2 fA1; : : : ; Ang.Exe
ution of a in a simple 
on�guration where its target is alreadypresent results only in a state and signature 
hange to the automaton Aiexe
uting a. All other automata remain in the same state. If Ai's newsignature is empty, then Ai is destroyed.If a simple 
on�guration is empty, or is not 
ompatible, then it 
annot exe
uteany transitions.If C and D are simple 
on�gurations and � = a1; : : : ; an is a �nite se-quen
e of n � 1 a
tions, then de�ne C ��!D i� there exist simple 
on�gurationsC0; : : : ; Cn su
h that C = C0 a1�!C1 a2�! � � � an�1�! Cn�1 an�!Cn = D.In anti
ipation of 
omposition, we de�ne.De�nition 4 (Con�guration).1. A simple 
on�guration is a 
on�guration2. If C1; : : : ; Cn are 
on�gurations (n > 0), then so is hC1; : : : ; Cni3. The only 
on�gurations are those generated by the above two rulesWe extend auts to 
on�gurations by de�ning auts(hC1; : : : ; Cni) = auts(C1) [: : : [ auts(Cn) for a 
on�guration hC1; : : : ; Cni.The entire behavior that a given 
on�guration is 
apable of is 
aptured bythe notion of 
on�guration automaton.De�nition 5 (Con�guration automaton). A 
on�guration automaton X isa state-ma
hine with four 
omponents.1. a nonempty set of start 
on�gurations, start(X)2. a set of 
on�gurations, states(X) � start(X)3. a signature mapping sig(X), where for ea
h C 2 states(X),(a) sig(X)(C) = hin(X)(C); out(X)(C); int(X)(C)i(b) out(X)(C) = houtregular(X)(C); out
reate(X)(C)i(
) int(X)(C) = hintregular(X)(C); int
reate(X)(C)i(d) in(X)(C), outregular(X)(C), out
reate(X)(C), intregular(X)(C), andint
reate(X)(C) are sets of a
tions.4. a transition relation, steps(X) = f(C; a;D) j C;D 2 states(X) and a 2^sig(X)(C)gWe usually use \
on�guration" rather than \state" when referring to states ofa 
on�guration automaton. De�nition 5 allows an arbitrary transition relationbetween the 
on�gurations of a 
on�guration automaton. However, these 
on-�gurations are �nite nested tuples, with the basi
 elements being SIOA. TheSIOA transitions totally determine the transitions that a given 
on�guration
an exe
ute. Hen
e, we introdu
e proper 
on�guration automata (rules CA1{CA4 below), whi
h respe
t the transition behavior of 
on�gurations.



De�nition 6 (Mutually 
ompatible 
on�gurations). Let X;Y be 
on�gu-ration automata. Let C 2 states(X), D 2 states(Y ). Then C and D are mutually
ompatible i�1. auts(C) \ auts(D) = ;,2. ^sig(X)(C) \ ^int(Y )(D) = ;, ^int(X)(C) \ ^sig(Y )(D) = ;,^out(X)(C) \ ^out(Y )(D) = ;, and3. out
reate(X)(C) \ ^sig(Y )(D) = ;, ^sig(X)(C) \ out
reate(Y )(D) = ;.De�nition 7 (Compatible 
on�guration). Let C be a 
on�guration. If Cis simple, then C is 
ompatible (or not) a

ording to De�nition 2. If C =hC1; : : : ; Cni, then C is 
ompatible i� (1) ea
h Ci is 
ompatible, and (2) ea
hpair in fC1; : : : ; Cng are mutually 
ompatible.De�nition 8 (Con�guration transitions). The transitions that a 
ompatible
on�guration C 
an exe
ute are as follows:1. If C is simple, then the transitions are those given by De�nition 32. If C = hC1; : : : ; Cni, then hC1; : : : ; Cni a�!hD1; : : : ; Dni i�(a) a 2 ^sig(C1) [ : : : [ ^sig(Cn)(b) for 1 � i � n : if a 2 ^sig(Ci) then Ci a�!Di, otherwise Ci = Di.De�nition 9 (Closure). Let C be a set of 
ompatible 
on�gurations C. X =
losure(C) is the state-ma
hine given by:1. start(X) = C2. states(X) = fD j 9C 2 C; 9� : C ��!Dg3. steps(X) = f(C; a;D) j C a�!D and C;D 2 states(X)g4. sig(X), where for ea
h C 2 states(X), sig(X)(C) is given by:(a) outregular(X)(C) = outregular(C)(b) out
reate(X)(C) = 
reate(C)(
) in(X)(C) = in(C)(d) intregular(X)(C) = int(C)(e) int
reate(X)(C) = ;Rule CA1: LetX be as in De�nition 9. If every 
on�guration ofX is 
ompatible,then X is a proper 
on�guration automaton.
on�g(C) is the automaton indu
ed by all the 
on�gurations rea
hable fromsome 
on�guration in C, and the transitions between them.De�nition 10 (Composition of proper 
on�guration automata). LetX1; : : : ; Xn, be proper 
on�guration automata. Then X = X1 k � � � k Xn is thestate-ma
hine given by:1. start(X) = start(X1)� � � � � start(Xn)2. states(X) = states(X1)� � � � � states(Xn)3. steps(X) is the set of all (hC1; : : : ; Cni; a; hD1; : : : ; Dni) su
h that(a) a 2 ^sig(X1)(C1) [ : : : [ ^sig(Xn)(Cn), and(b) if a 2 ^sig(Xi)(Ci), then Ci a�!Xi Di, otherwise Ci = Di



4. sig(X), where for ea
h C = hC1; : : : ; Cni 2 states(X), sig(X)(C) isgiven by:(a) outregular(X)(C) = outregular(X1)(C1) [ : : : [ outregular(Xn)(Cn)(b) out
reate(X)(C) = out
reate(X1)(C1) [ : : : [ out
reate(Xn)(Cn)(
) in(X)(C) = (in(X1)(C1) [ : : : [ in(X1)(C1))� outregular(X)(C)(d) intregular(X)(C) = intregular(X1)(C1) [ : : : [ intregular(Xn)(Cn)(e) int
reate(X)(C) = int
reate(X1)(C1) [ : : : [ int
reate(Xn)(Cn)Rule CA2: Let X be as in De�nition 10. If every 
on�guration of X is 
ompat-ible, then X is a proper 
on�guration automaton.De�nition 11 (A
tion hiding). Let X be a proper 
on�guration automatonand � a set of a
tions. Then X n� is the state-ma
hine given by:1. start(X n�) = start(X)2. states(X n�) = states(X)3. steps(X n�) = steps(X)4. sig(X n�), where for ea
h C 2 states(X n�), sig(X n�)(C) is given by:(a) outregular(X n�)(C) = outregular(X)(C)��(b) out
reate(X n�)(C) = out
reate(X)(C) ��(
) in(X n�)(C) = in(X)(C)(d) intregular(X n�)(X)C = intregular(X)(C) [ (outregular(X)(C) \�)(e) int
reate(X n�)(X)C = int
reate(X)(C) [ (out
reate(X)(C) \�)Rule CA3: If X is a proper 
on�guration automaton, then so is X n�.The automata generated by rules CA1, CA2 are 
alled 
losure automata,
omposed automata, respe
tively.Rule CA4: The only 
on�guration automata are those that are generated byrules CA1{CA3.De�nition 12 (Exe
ution, tra
e). An exe
ution fragment � of a 
on�gura-tion automaton X is a (�nite or in�nite) sequen
e C0a1C1a2 : : : of alternating
on�gurations and a
tions su
h that (Ci�1; ai; Ci) 2 steps(X) for ea
h triple(Ci�1; ai; Ci) o

urring in �. Also, � ends in a 
on�guration if it is �nite. Anexe
ution of X is an exe
ution fragment of X whose �rst 
on�guration is instart(X). exe
s(X) denotes the set of exe
utions of 
on�guration automaton X.Given an exe
ution fragment � = C0a1C1a2 : : : , the tra
e of � (denotedtra
e(�)) is the sequen
e that results from1. repla
ing ea
h Ci by its external signature ext(X)(Ci), and then2. removing all ai su
h that ai 62 ^ext(X)(Ci�1), i.e., ai is an internal a
tion ofCi�1, and then3. repla
ing every �nite, maximal sequen
e of identi
al external signatures bya single instan
e.tra
es(X), the set of tra
es of a 
on�guration automaton X, is the set f� j 9� 2exe
s(X) : � = tra
e(�)g.We write C ��!X C 0 i� there exists an exe
ution fragment � (with j�j � 1)of X starting in C and ending in C 0. When � 
ontains a single a
tion a (and so(C; a; C 0) 2 steps(X)) we write C a�!X C 0.



2.3 Clone-freedomOur semanti
s allows the 
reation of several SIOA with the same identi�er,provided they are \
ontained" in di�erent 
losure automata (whi
h 
ould thenbe 
omposed); we pre
lude this within the same 
losure automaton be
ausethe SIOA would not be distinguishable from our point of view. We also �nd itdesirable that SIOA in di�erent 
losure automata also have di�erent identi�ers,i.e., that identi�ers are really unique (whi
h is why we introdu
ed them in the�rst pla
e). Thus, we make the following assumption.De�nition 13 (Clone-freedom assumption). For any proper 
on�gurationautomaton X, and any rea
hable 
on�guration C of X, there is no a
tiona 2 out
reate(X)(C) [ int
reate(X)(C) su
h that target(a) 2 auts(C) and9C 0 : C a�!C 0.This assumption does not pre
lude reasoning about situations in whi
h anSIOA A1 
annot be distinguished from another SIOA A2 by the other SIOAin the system. This 
ould o

ur, e.g., due to a mali
ious host whi
h \repli
ates"agents that visit it. We distinguish between su
h repli
as at the level of reasoningby assigning unique identi�ers to ea
h. These identi�ers are not available to theother SIOA in the system, whi
h remain unable to tell A1 and A2 apart (e.g.,in the sense of the \knowledge" [6℄ about A1, A2 that they possess).3 Compositional ReasoningTo 
on�rm that our model provides a reasonable notion of 
on
urrent 
omposi-tion, whi
h has expe
ted properties, and to enable 
ompositional reasoning, weestablish exe
ution \proje
tion" and \pasting" results for 
ompositions.De�nition 14 (Exe
ution proje
tion). Let X = X1 k � � � k Xn be a proper
on�guration automaton. Let � be a sequen
e C0a1C1a2C2 : : : Cj�1ajCj : : : where8j � 0; Cj = hCj;1; : : : ; Cj;ni 2 states(X) and 8j > 0; aj 2 ^sig(X)(Cj�1). Then�dXi (1 � i � n) is the sequen
e resulting from:1. repla
ing ea
h Cj by its i'th 
omponent Cj;i, and then2. removing all ajCj;i su
h that aj 62 ^sig(Xi)(Cj�1;i).Our exe
ution proje
tion results states that the proje
tion of an exe
ution(of a 
omposed 
on�guration automaton X = X1 k � � � k Xn) onto a 
omponentXi, is an exe
ution of Xi.Theorem 1 (Exe
ution proje
tion). Let X = X1 k � � � k Xn be a proper
on�guration automaton. If � 2 exe
s(X) then �dXi 2 exe
s(Xi).Our exe
ution pasting result requires that a 
andidate exe
ution � of a 
om-posed automaton X = X1 k � � � k Xn must proje
t onto an a
tual exe
ution ofevery 
omponent Xi, and also that every a
tion of � not involving Xi does not
hange the 
on�guration of Xi. In this 
ase, � will be an a
tual exe
ution of X .



Theorem 2 (Exe
ution pasting). Let X = X1 k � � � k Xn be a proper 
on-�guration automaton. Let � be a sequen
e C0a1C1a2C2 : : : Cj�1ajCj : : : where8j � 0; Cj = hCj;1; : : : ; Cj;ni 2 states(X) and 8j > 0; aj 2 ^sig(X)(Cj�1).Furthermore, suppose that1. for all 1 � i � n : �dXi 2 exe
s(Xi),2. for all j > 0 : if aj 62 ^sig(Xi)(Cj�1;i) then Cj�1;i = Cj;iThen, � 2 exe
s(X).4 SimulationSin
e the semanti
s of a system is given by its 
on�guration automaton, we de-�ne a notion of forward simulation from one 
on�guration automaton to another.Our notion requires the usual mat
hing of every transition of the implementationby an exe
ution fragment of the spe
i�
ation. It also requires that 
orrespond-ing 
on�gurations have the same external signature. This gives us a reasonablenotion of re�nement, in that an implementation presents to its environment onlythose interfa
es (i.e., external signatures) that are allowed by the spe
i�
ation.De�nition 15 (Forward simulation). Let X and Y be 
on�guration automata.A forward simulation from X to Y is a relation f over states(X) � states(Y )that satis�es:1. if C 2 start(X), then f [C℄ \ start(Y ) 6= ;,2. if C a�!X C 0 and D 2 f [C℄, then there exists D0 2 f [C 0℄ su
h that(a) D �1�!Y D1 a�!Y D2 �2�!Y D0,(b) ext(Y )(D3) = ext(X)(C) for all D3 along �1 (in
luding D;D1),(
) ext(Y )(D4) = ext(X)(C 0) for all D4 along �2 (in
luding D2; D0).We say X � Y if a forward simulation from X to Y exists. Our notion of 
orre
timplementation with respe
t to safety properties is given by tra
e in
lusion, andis implied by forward simulation.Theorem 3. If X � Y then tra
es(X) � tra
es(Y ).5 Modeling Dynami
 Conne
tion and Lo
ationsWe stated in the introdu
tion that we model both the dynami
 
reation/movingof 
onne
tions, and the mobility of agents, by using dynami
ally 
hanging exter-nal interfa
es. The guiding prin
iple here is the notion that an agent should onlyintera
t dire
tly with either (1) another 
o-lo
ated agent, or (2) a 
hannel one ofwhose ends is 
o-lo
ated with the agent. Thus, we restri
t intera
tion a

ordingto the 
urrent lo
ations of the agents.We adopt a logi
al notion of lo
ation: a lo
ation is simply a value drawn fromthe domain of \all lo
ations." To 
odify our guiding prin
iple, we partition the set



of SIOA into two subsets, namely the set of agent SIOA, and the set of 
hannelSIOA. Agent SIOA have a single lo
ation, and represent agents, and 
hannelSIOA have two lo
ations, namely their 
urrent endpoints. We assume that all
on�gurations are 
ompatible, and 
odify the guiding prin
iple as follows: forany 
on�guration, the following 
onditions all hold, (1) two agent SIOA have a
ommon external a
tion only if they have the same lo
ation, (2) an agent SIOAand a 
hannel SIOA have a 
ommon external a
tion only if one of the 
hannelendpoints has the same lo
ation as the agent SIOA, and (3) two 
hannel SIOAhave no 
ommon external a
tions.6 Example: A Travel Agent SystemOur example is a simple 
ight ti
ket pur
hase system. A 
lient requests to buyan airline ti
ket. The 
lient gives some \
ight information," f , e.g., route anda

eptable times for departure, arrival et
., and spe
i�es a maximum pri
e f :mpthey 
an pay. f 
ontains all the 
lient information, in
luding mp, as well asan identi�er that is unique a
ross all 
lient requests. The request goes to astati
 (always existing) \
lient agent," who then 
reates a spe
ial \request agent"dedi
ated to the parti
ular request. That request agent then visits a (�xed) setof databases where the request might be satis�ed. If the request agent �nds asatisfa
tory 
ight in one of the databases, i.e., a 
ight that 
onforms to f and haspri
e � mp, then it pur
hases some su
h 
ight, and returns a 
ight des
riptorfd giving the 
ight, and the pri
e paid (fd :p) to the 
lient agent, who returns itto the 
lient. The request agent then terminates.The agents in the system are: (1) ClientAgt , who re
eives all requests from the
lient, (2) ReqAgt(f ), responsible for handling request f , and (3) DBAgtd; d 2 D,the agent (i.e., front-end) for database d, where D is the set of all databases inthe system. In writing automata, we shall identify automata using a \type name"followed by some parameters. This is only a notational 
onvenien
e, and is notpart of our model.We �rst present a spe
i�
ation automaton, and then the 
lient agent andrequest agents of an implementation (the database agents provide a straight-forward query/response fun
tionality, and are omitted for la
k of spa
e). Whenwriting sets of a
tions, we make the 
onvention that all free variables are uni-versally quanti�ed over their domains, so, e.g., finformd(f ;
ts); 
onfd(fd ; ok?)gwithin a
tion sele
td(f ) below really denotes finformd(f ;
ts); 
onfd(fd ; ok?) j fd 2F ;
ts � F ; ok? 2 Boolg.In the implementation, we enfor
e lo
ality 
onstraints by modifying the sig-nature of ReqAgt(f ) so that it 
an only query a database d if it is 
urrently atlo
ation d (we use the databse names for their lo
ations). We allow ReqAgt(f )to 
ommuni
ate with ClientAgt regardless of its lo
ation. A further re�nementwould insert a suitable 
hannel between ReqAgt(f ) and ClientAgt for this 
om-muni
ation (one end of whi
h would move along with ReqAgt(f )), or would moveReqAgt(f ) ba
k to the lo
ation of ClientAgt .



We use \state variables" in and outreg to denote the 
urrent sets of in ,outregular and int a
tions in the SIOA state signature (these are the only 
om-ponents of the signature that vary). For brevity, the universal signature de
lara-tion groups a
tions into input, output and internal only. The a
tual a
tion typesare de
lared in the \pre
ondition-e�e
t" a
tion des
riptions.Spe
i�
ation: Spe
Universal SignatureInput:request(f ), where f 2 Finformd(f ;
ts), where d 2 D, f 2 F , and 
ts � F
onfd(f ; fd; ok?), where d 2 D, f ; fd 2 F , and ok? 2 Boolsele
td(f ), where d 2 D and f 2 Fadjustsig(f ), where f 2 Finitially: frequest(f ) : f 2 Fg [ fsele
td(f ) : d 2 D; f 2 FgOutput:queryd(f ), where d 2 D and f 2 Fbuyd(f ;
ts), where d 2 D, f 2 F , and 
ts � Fresponse(f ; fd; ok?), where f ; fd 2 F and ok? 2 Boolinitially: fresponse(f ; fd; ok?) : f ; fd 2 F ;ok? 2 BoolgInternal:initially: ;Statestatus f 2 fnotsubmitted; submitted; 
omputed; repliedg, status of request f , initially notsubmittedtrans f ;d 2 Bool, true i� the system is 
urrently intera
ting with database d on behalf of requestf , initially falseok
tsf ;d � F , set of a

eptable 
ights that has been found so far, initially emptyresps � F � F � Bool, responses that have been 
al
ulated but not yet sent to 
lient, initiallyemptyxf ;d 2 N , bound on the number of times database d is queried on behalf of request f before anegative reply is returned to the 
lient, initially any natural number greater than zeroA
tionsInput request(f )E�: status f  submittedInput sele
td(f )E�: in  (in [ finformd(f ;
ts); 
onfd(fd; ok?)g) �finformd0 (f ;
ts); 
onfd0 (fd; ok?) : d0 6= dg;outreg  (outreg [ fqueryd(f ); buyd(f ; fd)g) �fqueryd0 (f ); buyd0 (f ; fd) : d0 6= dgOutregular queryd(f )Pre: status f = submitted^ xf ;d > 0E�: xf ;d  xf ;d � 1;trans f ;d  trueInput informd(f ;
ts)E�: ok
tsf ;d  ok
tsf ;d [ffd : fd 2 
ts ^ fd:p � f :mpgOutregular buyd(f ;
ts)Pre: status f = submitted ^
ts = ok
tsf ;d 6= ; ^ trans f ;dE�: skip

Input 
onfd(f ; fd; ok?)E�: trans f ;d  false;if ok? thenresps  resps [ fhf ; fd; trueig;status f  
omputedelseif 8d : xf ;d = 0 thenresps  resps [ fhf ;?; falseig;status f  
omputedelseskipOutregular response(f ; fd; ok?)Pre: hf ; fd; ok?i 2 resps ^ status f = 
omputedE�: status f  repliedInput adjustsig(f )E�: in  in�finformd(f ;
ts); 
onfd(f ; fd; ok?)g;outreg  outreg�fqueryd(f ); buyd(f ; fd)gWe now give the 
lient agent and request agents of the implementation. Theinitial 
on�guration 
onsists solely of the 
lient agent ClientAgt .



Client Agent: ClientAgtUniversal SignatureInput:request(f ), where f 2 Freq-agent-response(f ; fd; ok?), where f ; fd 2 F , and ok? 2 BoolOutput:response(f ; fd; ok?), where f ; fd 2 F and ok? 2 BoolInternal:
reate(ClientAgt;ReqAgt(f )), where f 2 FStatereqs � F , outstanding requests, initially empty
reated � F , outstanding requests for whom a request agent has been 
reated, but the responsehas not yet been returned to the 
lient, initially emptyresps � F � F � Bool, responses not yet returned to 
lient, initially emptyA
tionsInput request(f )E�: reqs  reqs [ fhf igCreate 
reate(ClientAgt;ReqAgt(f ))Pre: f 2 reqs ^ f 62 
reatedE�: 
reated  
reated [ ff g Input req-agent-response(f ; fd; ok?)E�: resps  resps [ fhf ; fd; ok?ig;done  done [ ff gOutregular response(f ; fd; ok?)Pre: hf ; fd; ok?i 2 respsE�: resps  resps � fhf ; fd; ok?igClientAgt re
eives requests from a 
lient (not portrayed), via the requestinput a
tion. ClientAgt a

umulates these requests in reqs , and 
reates a requestagent ReqAgt(f ) for ea
h one. Upon re
eiving a response from the request agent,via input a
tion req-agent-response, the 
lient agent adds the response to the setresps , and subsequently 
ommuni
ates the response to the 
lient via the responseoutput a
tion. It also removes all re
ord of the request at this point.Request Agent: ReqAgt(f ) where f 2 FUniversal SignatureInput:informd(f ;
ts), where d 2 D and 
ts � F
onfd(f ; fd; ok?), where d 2 D, fd 2 F , and ok? 2 Boolmovef (
; d), where d 2 Dmovef (d; d0), where d; d0 2 D and d 6= d0terminate(ReqAgt(f ))initially: fmovef (
; d); where d 2 DgOutput:queryd(f ), where d 2 Dbuyd(f ;
ts), where d 2 D and 
ts � Freq-agent-response(f ; fd; ok?), where fd 2 F and ok? 2 Boolinitially: ;Internal:initially: ;Statelo
ation 2 
 [ D, lo
ation of the request agent, initially 
, the lo
ation of ClientAgtstatus 2 fnotsubmitted; submitted; 
omputed; repliedg, status of request f , initially notsubmittedtransd 2 Bool, true i� ReqAgt(f ) is 
urrently intera
ting with database d (on behalf of request f ),initially falseDBagents � D, databases that have not yet been queried, initially the list of all databases Ddonedb 2 Bool, boolean 
ag, initially falsedone 2 Bool, boolean 
ag, initially falsetkt 2 F , the 
ight ti
ket that ReqAgt(f ) pur
hases on behalf of the 
lient, initially ?ok
tsd � F , set of a

eptable 
ights that ReqAgt(f ) has found so far, initially emptyA
tions



Input movef (
; d)E�: lo
ation  d;donedb  false;in  finformd(f ;
ts); 
onfd(f ; fd; ok?)g;outreg  fqueryd(f ); buyd(f ; fd),req-agent-response(f ; fd; ok?)g;int  ;Outregular queryd(f )Pre: lo
ation = d ^ d 2 DBagents ^ tkt = ?E�: DBagents  DBagents � fdg;transd  trueInput informd(f ;
ts)E�: ok
tsd  ok
tsd [ffd : fd 2 
ts ^ fd:p � f :mpg;if ok
tsd = ; thentransd  false;int  fmovef (d; d0) :d0 2 DBagents � fdggOutregular buyd(f ;
ts)Pre: lo
ation = d ^ 
ts = ok
tsd 6= ; ^tkt = ? ^ transd ^ status = submittedE�: skip

Input 
onfd(f ; fd; ok?)E�: transd  false;if ok? thentkt  fd ;status  
omputedelseif DBagents = ; thenstatus  
omputedelseskipInput movef (d; d0)E�: lo
ation  d0;donedb  false;in  finformd0 (f ;
ts); 
onfd0 (f ; fd; ok?)g;outreg  fqueryd0 (f ); buyd0 (f ; fd),req-agent-response(f ; fd; ok?)g;int  ;Outregular req-agent-response(f ; fd; ok?)Pre: status = 
omputed ^[ (fd = tkt 6= ? ^ ok?) _(DBagents = ; ^ fd = ? ^ :ok?)℄E�: status  replied;in  ;;outreg  ;;int  ;ReqAgt(f ) handles the single request f , and then terminates itself. ReqAgt(f )has initial lo
ation 
 (the lo
ation of ClientAgt) traverses the databases inthe system, querying ea
h database d using queryd(f ). Database d returns aset of 
ights that mat
h the s
hedule information in f . Upon re
eiving this(informd(f ;
ts)), ReqAgt(f ) sear
hes for a suitably 
heap 
ight (the 9fd 2 
ts :fd :p � f :mp 
ondition in informd(f ;
ts)). If su
h a 
ight exists, then ReqAgt(f )attempts to buy it (buyd(f ;
ts) and 
onfd(f ; fd ; ok?)). If su

esfull, then ReqAgt(f )returns a positive response to ClientAgt and terminates. ReqAgt(f ) 
an returna negative response if it queries ea
h database on
e and fails to buy a 
ight.We note that the implementation re�nes the spe
i�
ation (provided that alla
tions ex
ept request(f ) and response(f ; fd ; ok?) are hidden) even though theimplementation queries ea
h database exa
tly on
e before returning a negativeresponse, whereas the spe
i�
ation queries ea
h database some �nite number oftimes before doing so Thus, no reasonable bisimulation notion 
ould be estab-lished between the spe
i�
ation and the implementation. Hen
e, the use of asimulation, rather than a bisimulation, allows us mu
h more latitude in re�ninga spe
i�
ation into an implementation.7 Further Resear
h and Con
lusionsThere are many avenues for further work. Our most immediate 
on
ern is toestablish tra
e proje
tion and pasting results analogous to the exe
ution proje
-tion and pasting results given above. These will then allow us to establish substi-tutivity results of the form: if tra
es(X1) � tra
es(X2), then tra
es(X1 k Y ) �



tra
es(X2 k Y ). We shall also investigate ways of allowing a target SIOA of some
reate a
tion to be repla
ed by a more re�ned SIOA. Let X [B2℄ be the 
on�gu-ration automaton resulting when some 
reate a
tion (of some SIOA A in X) hastarget B2, and let X [B1℄ be the 
on�guration automaton that results when thistarget is 
hanged to B1. We would like to establish: if tra
es(B1) � tra
es(B2),then tra
es(X [B1℄) � tra
es(X [B2℄).Agent systems should be able to operate in a dynami
 environment, withpro
essor failures, unreliable 
hannels, and timing un
ertainties. Thus, we needto extend our model to deal with fault-toleran
e and timing. We shall also extendthe framework of [3℄ for verifying liveness properties to our model. This shouldbe relatively straightforward, sin
e [3℄ uses only properties of forward simulationthat should also 
arry over to our setting.A
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